
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2007

Decoupling method for parallel Delaunay two-dimensional mesh Decoupling method for parallel Delaunay two-dimensional mesh

generation generation

Leonidas Linardakis
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Linardakis, Leonidas, "Decoupling method for parallel Delaunay two-dimensional mesh generation"
(2007). Dissertations, Theses, and Masters Projects. Paper 1539623520.
https://dx.doi.org/doi:10.21220/s2-mqsk-5d79

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-mqsk-5d79
mailto:scholarworks@wm.edu

Decoupling M ethod
for Parallel Delaunay 2D Mesh Generation

Leonidas Linardakis

Athens Greece

M.Sc. C.S. College of William & M ary
M.Sc. M athem atics University of Ioannina

A Dissertation presented to the G raduate Faculty
of the College of W illiam and Mary in Candidacy for the Degree of

Doctor of Philosophy

D epartm ent of Com puter Science

The College of W illiam and Mary
August 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright 2007 Leonidas Linardakis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

rritla s Linardakis

Approved by the Committee, June 2007

Committee Chair
Associate Professor Nikos Chrisochoides, Computer Science

The College of William & Mary

Assistant Professor Qun Li, Computer Science

The College of William & Mary

Associate Professor Weizhen Mao, Computer Science
The College of William & Mary

Associate Profe^sdfr Virginia Torczon, Comp|(iter)Science
TheCollege of William & Mary

Professor Noel J. walkington, Mathematical Sciences
Carnegie Mellon University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT PAGE

Meshes are central structures for numerical methods, such as the finite element method.
These numerical methods require high quality refined meshes in order to achieve good
approximations of the analytical model. Unstructured meshes are the most popular; their
adaptive nature allows them to give boundary conforming meshes of good quality, with
optimal size. The most widely studied 2D mesh generation method is the Delaunay method.

Creating in parallel guaranteed quality large unstructured meshes is a challenging prob­
lem. The Delaunay refinement procedure is memory intensive with unpredictable computa­
tional behavior. Moreover, geometries may be quite complex, adding difficulty to parallelize
the mesh generation. Parallel mesh generation procedures decompose the original mesh gen­
eration problem into smaller subproblems tha t can be solved in parallel. The subproblems
can be treated as either completely or partially coupled, or they can be treated as completely
decoupled.

Parallel mesh generation procedures tha t are based on geometric domain decompositions
require the permanent separators to be of good quality (in terms of their angles and length),
in order to maintain the mesh quality. The Medial Axis domain decomposition, an innovative
geometric domain decomposition procedure tha t addresses this problem, is introduced. The
Medial Axis domain decomposition is of high quality in terms of the formed angles, and
provides separators of small size, and also good work-load balance. It presents for the first
time a decomposition method suitable for parallel meshing procedures tha t are based on
geometric domain decompositions.

The decoupling method for parallel Delaunay 2D mesh generation is a highly efficient and
effective parallel procedure, able to generate billions of elements in a few hundred of seconds,
on distributed memory machines. Our mathematical formulation introduces the notion of
the decoupling path, which guarantees the decoupling property, and also the quality and
conformity of the Delaunay submeshes. The subdomains are meshed independently, and
as a result, the method eliminates the communication and the synchronization during the
parallel meshing. A method for shielding small angles is introduced, so that the decoupled
parallel Delaunay algorithm can be applied on domains with small angles. Moreover, we
present the construction of a sizing function, that encompasses an existing sizing function
and also geometric features and small angles. The decoupling procedure can be used for
parallel graded Delaunay mesh generation, controlled by the sizing function.

The decoupling approach allows 100% code re-use of existing, fine-tuned and well tested,
sequential mesh generators, minimizing the effort of code parallelization. Our results indi­
cate high scalability of the decoupling approach, and also show superlinear speedups, when
compared to the sequential library.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A cknow ledgm ents iii

1 Introduction 1
1.1 Delaunay Mesh Generation and R uppert’s A lgorithm 2
1.2 Parallel Mesh G e n e ra t io n ... 4
1.3 The Delaunay Decoupling A p p ro a c h ... 6

2 The G eom etric D om ain D ecom posion P rob lem 9

3 The M edial A xis D om ain D ecom position 13
3.1 The Medial Axis Domain Decom position... 13
3.2 Junction T r ia n g le s .. 15
3.3 The MADD P ro ced u re ... 18
3.4 The MADD First A lgorithm ... 20
3.5 The MADD Second A lg o r i th m ... 25
3.6 Proof of C o rrec tn ess .. 30
3.7 N-w&y D ecom position ... 31

4 M A D D Enhancem ents 33
4.1 Static and Dynamic M A D D ... 33
4.2 Separator Smoothing P rocedure ... 35
4.3 Parallel M A D D .. 37
4.4 N -way Graded Decomposition.. 38

5 M A D D Im plem entation and E xperim ental R esults 43
5.1 Im plem entation .. 43
5.2 Experimental R esu lts .. 43

6 T he U niform D ecoupling M ethod 48
6.1 The Decoupling Z one.. 48
6.2 Construction of the Decoupling P a t h ... 51
6.3 Proof of C o rrec tn ess .. 52
6.4 The Parallel Delaunay Decoupling P ro c e d u re ... 55
6.5 Performance E v a lu a tio n .. 60

7 The Graded D ecoupling M ethod 70
7.1 Graded Mesh Generation ... 70
7.2 The Graded Decoupling A p p ro a c h .. 71
7.3 Gradation Controlled Domain D ecom position ... 72

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 The Graded Delaunay Decoupling P a t h ... 78
7.5 Construction of the Graded Delaunay Decoupling P a th 80
7.6 The Graded Delaunay Decoupling P ro c e d u r e ... 81
7.7 Performance E v a lu a tio n .. 84

8 The D ecoupling M ethod for D om ains w ith Sm all A ngles 87
8.1 A Shielding Procedure for Small Input A ng les ... 88
8.2 Construction of the Sizing Function ... 99
8.3 The Decoupling Method for Domains with Small A n g le s 103

9 Conclusions and Future W ork 106

Bibliography 109

VITA 116

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

The members of the committee made usefull comments tha t helped make this work more
complete. I thank them for their help. I also thank Tom Crockett for providing helpful
information on the workings of SciClone and the MPI library.

This work was partially funded by NSF ACI-0085969 and NGS-0203974, the Computer
Science Department of the College of William and Mary, and the Virginia Institute of
Marine Science under the grants ONR N00014-05-1-0831 and NOAA NA04NOS4730254.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes. The views and conclusions contained herein are those of the author, and do not
necessarily represent official views or endorsements of the funding organizations.

This work was performed using computational facilities at the College of William and
Mary, which were enabled by grants from Sun Microsystems, the National Science Founda­
tion, and Virginia’s Commonwealth Technology Research Fund.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A mesh is a covering (or tessellation) of a bounded n-dimensional domain Q by a set of

“simple” n-dimensional elements. A mesh M. consists of an hierarchy of sets of geometric

entities M. = {0, E°, E 1, • • • , E n}. The hierarchy represents the dimensions of the entities,

E° is a set of O-dimensional entities (points), E 1 is a set of segments, and so on. The entities

of a mesh obey the following rules.

1. Any entity A £ UE l belongs to fl, A £ fh Moreover, the union of all the n-dimensional

entities is a cover of £l,

U A^gnA — n .

2. The intersection between any two fc-dimensional entities is an entity of lower dimension

(including the empty set). So, for any 0 < k < n and any two entities A ,B £ E k, we

have

A f) B £ Ei, where I < k.

3. The fc-dimensional interior of any ^-dimensional entity does not contain entities of

lower dimension. For I < k and A £ E k, B € E l, we have

intfc(A) D B = 0.

In the case of a simplex mesh any entity A £ E k is a fc-dimensional simplex. In the two

dimensional (2D) Euclidean space a simplex mesh consists of triangles.

Meshes are central in numerical methods, such as the finite element method (FEM), and

finite volume method (FVM). These numerical methods are indispensable for simulating

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complex physical phenomena, and they require high quality refined meshes, in order to

guarantee good approximations of the analytical model. The quality of the mesh is measured

by the size of the elements (and the induced gradation), and their shape (the angles they

form). Unstructured triangular meshes are popular because they demonstrate adaptivity

to the geometry, giving boundary conforming meshes of good quality, and also optimal size.

Delaunay meshes are widely used 2D triangular meshes.

1.1 Delaunay Mesh Generation and R uppert’s Algorithm

The Delaunay triangulation is named after the Russian mathematician Boris Nikolaevich

Delone [31]. It is a triangulation such tha t the circumcircle (the circumscribed circle) of

every triangle is empty, tha t is it does not contain any other vertex of the triangulation (see

Figure 1.1). This property is referred as the empty circumcircle property. The Delaunay

triangulation of a set of points in general position is unique, and maximizes the minimum

angle over all possible triangulations [82].

Figure 1.1: Delaunay triangulation and mesh generation. Top left, in Delaunay trian­
gulation the circumcircles of the triangles are empty. Top right, in the Delaunay mesh
generation the circumcenters of the ’bad’ triangles are inserted and b ottom left the mesh
is re-triangulated. B ottom right, the circumcenter point insertion and triangulation is
irregular.

Delaunay refinement procedures provide theoretical guarantees for the mesh quality

(angles), and at the same time are very efficient. In the Delaunay mesh generation points

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are inserted in the triangulation (commonly called Steiner points) in order to improve the

quality of the mesh (see Figure 1.1). A triangle is considered “bad” when it contains a small

angle, or equivalently when the circumradius to shortest edge ratio is large. In addition to

improving the quality of the mesh in terms of the angles, the same refinement procedure is

used to reduce the size of the triangles, so tha t the maximum triangle area is bounded by

a desirable size.

Delaunay mesh refinement algorithms became popular by Paul Chew [17, 18] and Jim

Ruppert [72]. R uppert’s algorithm provides both quality and gradation guarantees and

has been the basis of extensive study and further optimizations in both efficiency and

effectiveness. A detailed study is given by Jonathan Shewchuk [78, 81], and also a state-

of-art implementation [77, 86]. Miller et al. present an analysis of R uppert’s algorithm in

[59]. Several improvements have been proposed to extent the algorithm for 3D and also to

cope with small boundary angles (see [15, 14, 58, 65, 80, 79]). The reader will find more

information on mesh generation and Delaunay triangulation in [6, 7, 34, 35, 38, 64].

R up p ert’s A lgorithm . For the sequential mesh procedure we will consider R uppert’s al­

gorithm [72]. This is a Delaunay mesh refinement algorithm for 2D domains, tha t guarantees

the quality of the elements. It creates an initial triangulation and follows an incremental

approach to refine the mesh. Triangles which have circumradius to shortest edge ratio

greater than \ / 2 are split, by inserting points in their circumcenters and constructing a new

Delaunay triangulation. Special treatm ent is required near the boundary of the domain. If

a point is inserted too close to the boundary, it will result either poor triangle quality, or

an unnecessary large number of triangles. Points tha t are inside the diametral circle of a

boundary segment will not be inserted. Instead, the boundary segment that is encroached

will be split in half, and the new Delaunay triangulation includes the two subsegments. The

algorithm maintains the Delaunay property after the insertion of each point. In order to

guarantee the termination of this procedure the boundary angles should be at least 60°1.

Let fl be a 2-dimensional domain formed by by a set of points and line segments in­

tersecting only at their end points. In other words, Q is defined by a planar straight line

1This condition is relaxed in improved versions of the algorithm.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph (PSLG). An entity of the domain is either a vertex or a segment of the boundary.

Two entities are incident when they share a common point.

D efinition 1. The minimum local feature size of Q is defined as the minimum distance

between two non incident entities1 [78]; it will be denoted by lfsmin(tt).

The following theorem is known to be true [78]:

Theorem 1. Let every two incident segments ofQ to form an angle no less than 60°. Rup­

pert’s algorithm terminates when applied on Ll. giving a mesh of triangles with circumradius

to shortest edge ratio at most \J2 and with no triangle edge shorter than lfsmin(Q).

Ruppert’s algorithm is not computational expensive, but is memory intensive and has

unpredictable computational behavior, which is input dependent.

1.2 Parallel M esh Generation

In order to generate a mesh on a multicomputer environment it is necessary to decom­

pose the mesh generation problem. This can be achieved in two ways: (i) by a mesh

data-decomposition approach, or (ii) by a geometric domain decomposition approach. Mesh

data-decomposition approaches decompose the mesh data structure, without inserting geo­

metric separators into the geometry. On the other hand, geometric domain decompositions

partition the domain by inserting separators into the geometry, and these separators will

be a permanent part of the geometry. Methods tha t follow a mixed approach have also

been proposed (see for example Shephard et al. [75], and also de Cougny and Shephard

[29]), but they inherently present a higher degree of complexity. Another classification of

parallel meshing methods is given by de Cougny and Shephard [27]: (a) mesh interfaces and

subdomains concurrently, (b) premesh the interfaces, and (c) postmesh the interfaces. A

recent survey of parallel mesh generation methods is given by Chrisochoides [23], where the

parallel meshing methods are classified as (a) tightly-coupled, (b) partially-coupled, and (c)

decoupled methods.

2For a PSLG domain the minimum local feature size will be the minimum distance between two vertices,
or a vertex and a segment [78].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mesh data-decomposition methods are attractive, and have been studied extensively,

because they do not have have to face the difficult geometric domain decomposition prob­

lem. A data-decomposition approach is used by Lohner and Cebral [55], who employ an

octree decomposition of the domain to partition the current front in an advancing front

mesh method. For parallel Delaunay mesh generation an octree decomposition is used by

Chernikov and Chrisochoides [16] to identify parts of a Delaunay mesh tha t can be refined

independently. Another common data-decomposition approach is to create an initial mesh,

and then decompose it using a graph partitioner. The refining procedure can applied on

each part of the mesh, with some communication to maintain the conformity; this approach

has been followed by Chrisochoides and Nave [24]. Finally, Kadow and Walkington [43]

employ a projective method [8] and alternate cuts to create in parallel, and decompose,

an initial Delaunay triangulation. The triangulation is further refined in parallel, and the

communication is controlled via an encroachment zone along the cuts.

Geometric domain decomposition approaches insert separators into the domain, and

these are treated as a constrained part of the geometry (see Fig. 1.2). The separators will be

a permanent part the geometry, and they should observe certain quality conditions, like the

angles they form. These conditions impose additional difficulty to parallel mesh generation

methods tha t use geometric decompositions. On the other hand these methods have the

advantage of low cost of communication during the parallel run. The geometric domain

decomposition methods tha t have been proposed fall into two categories: (a) Those tha t

mesh interfaces and subdomains concurrently, and (b) those tha t premesh the interfaces.

The parallel constrained Delaunay Triangulation, proposed by Chew et al. [19], meshes

concurrently the interfaces and the subdomains. The interfaces are treated as external

boundary by each process, and a message is sent to the neighboring subdomain when an

interface is split. Another concurrent approach, based on templates, is described by Pebay

[66].

Methods tha t mesh a priori the interfaces target mainly the elimination of the commu­

nication during the parallel mesh procedure, and also have the benefit of high code re-use

(the sequential mesher can be used without, or minimal, modifications). The core Delau­

nay mesh refinement procedure is fast (although memory intensive), and the increasing

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JlF
'JB _ms

Figure 1.2: Left: Part of the Chesapeake Bay geometry decomposed uniformly by the
MADD method. Right: Detail of the Delaunay mesh of the subdomains. The mesh was
created by the decoupling procedure.

processing power of the CPUs reveals the network as the bottleneck for parallel processing.

Therefore it is natural to attem pt to eliminate the communication. Parallel mesh generation

procedures with no communication for distributed memory machines, based on prerefining

the interfaces, have been studied in the past. Nigel Weatherill and his collaborators have

proposed an a priori scheme for parallel mesh generation on distributed memory computers

(see Gaither et al. [36], Said et al. [73], Larwood et al. [48]). The procedure though

does not preserve the Delaunay properties globally and does not provide quality guarantees

along the separators. A projective method tha t eliminates the communication for parallel

Delaunay triangulation is described by Blelloch et al. [8]. In [37] J. Galtier and P. L.

George propose a parallel projective Delaunay mesh generation method which guarantees

the quality of the elements and eliminates communication, but may suffer setbacks in the

form of regenerating part of the mesh.

1.3 The Delaunay Decoupling Approach

The methods tha t mesh a priori the interfaces, and eliminate communication, face two

problems in order to guarantee the termination of the parallel procedure and also the

stability in terms of the quality, conformity and size of the final global mesh. First it

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is necessary to produce quality geometric domain decompositions tha t will have minimal

negative effect to the mesh generation proccess. The second problem is to calculate the

interface refining size, so tha t we can guarantee the conformity of the final mesh, without

compromising its quality. The solution these two problems for 2D domains is the subject

of the work in hand.

The Parallel Delaunay decoupling method consists of two major steps (see Fig. 1.2):

the Medial Axis domain decomposition step, and the decoupling procedure step.

The domain decomposition procedure should produce decompositions of good quality in

terms of the created angles, and also the size of the separators. If small angles are created

during the decomposition procedure, these constitute artifacts tha t will distort the quality

and size of the final mesh, and also will affect the stability and performance of the mesh

generator. The separators constitute artifacts, and should be kept at minimal size. On the

other hand, the Delaunay mesh generation procedure is unpredictable, therefore special care

should be taken to achieve good load balance. Finally, the domain decomposition should

be able to accommodate graded parallel mesh generation procedures, thus it should have

the capability to produce graded decompositions according to given sizing criteria.

The second step is the decoupling procedure. The decoupling property allows the sub-

domains to be meshed in parallel and independently, and at the same time guarantees

the conformity and quality of the global mesh. The decoupling zone and the decoupling

path give a general mathematical formulation for decoupling any Delaunay mesh genera­

tion procedure. The separators created by the domain decomposition are refined during

a preprocessing step before the parallel mesh generation procedure. The refining proce­

dure results the decoupling property, which allows us to create quality Delaunay meshes

in parallel, while eliminating the communication. Our results indicate high scalability of

the decoupling approach, and also show superlinear speed-ups, when compared to the se­

quential library. Moreover, the decoupling approach allows 100% code re-use of existing,

state-of-art, sequential mesh generators, minimizing the effort of code parallelization.

The Medial Axis domain decomposition (MADD), tha t we propose in this work, is an

innovative domain decomposition procedure, based on an approximation of the Medial Axis

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the domain. The MADD method fullfills the requirements described above, and produces

decompositions suitable for parallel mesh generation. The geometric domain decomposition

problem is described in Chapter 2. In Chapter 3 we present the core MADD algorithm,

while in Chapter 4 several extentions and improvements are examined. Finally, in Chapter

5 we present our experimental results.

We describe the notions of the decoupling zone and the decoupling path, in Chapter

6. In the same chapter the uniform decoupling procedure is described. Graded Delaunay

meshes, governed by a sizing function or background grid, can also be created in parallel

using the decoupling approach. Again, the quality and conformity of the mesh is guaranteed,

while the communication is eliminated. This procedure is described in Chapter 7. Finally,

a shielding method for pre-processing small input angles is described in Chapter 8. In

addition, a method for constructing a sizing function tha t encompasses an existing sizing

function, and also geometric features and small angles, is described in the same chapter.

This procedure allows the decoupling method to be applied on domains with small angles,

creating in parallel graded Delaunay 2D meshes.

D efin ition 2. In the rest of this exposition we define the domain II to be the closure o f an

open connected bounded set in M2. The boundary dll is defined by a planar straight line

graph (PSLG), which is formed by a set of line segments, intersecting only at their end

points.

The above definition allows the existence of holes inside the domain, but does not allow

internal boundaries. The algorithms we present can be extended to also handle internal

boundaries.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

The Geom etric Dom ain Decom posion

Problem

Although the Domain Decomposition (DD) problem has been studied for more than twenty

years in the context of parallel computing, there are many aspects of this problem which

are unsolved. DD methods have been used for solving numerically partial differential equa­

tions using parallel computing (cf. [83]). In the context of parallel mesh generation we

encounter the Geometric Domain Decomposition problem (GDD). We will study the for­

mulation, solution and implementation of the GDD problem for a continuous 2-dimensional

(2D) domain Q. Our goal is to decompose Q, into non-overlapping subdomains D{, so that

the subdomains Di create no new artifacts, such as small angles between the separators

dDi, and the separators and the external boundary dQ. These decompositions are suitable

for stable parallel graded mesh generation procedures, where the termination of these pro­

cedures and the quality of the resulting elements depend on the features of the subdomains.

Furthermore, the same decompositions can be used for the next step, by the parallel FEM

or FD solver. However, the geometric domain decomposition we describe does not depend

on how the mesh is used, or what is the PDE solving method.

Geometric domain decomposition techniques partition the domain geometry into sub-

domains; the subdomains are created by inserting internal boundaries (separators) into the

domain. Parallel mesh generation procedures tha t follow this approach require low commu­

nication [19], or no communication at all [37, 73, 52], and thus are very efficient. Geometric

domain decomposition methods can be characterized as topology-based or geometry-based.

Typically, topology-based techniques partition a mesh of the domain, or the dual graph of

a background mesh, giving a decomposition of the domain. This approach is followed by

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Metis library [45]. On the other hand, geometry-based techniques take into account the

geometric characteristics of the domain. For example, the Recursive Coordinate Bisection

approach [5] recursively bisects the domain along the axes, while the Inertial method [61]

uses the inertia axis of the domain to produce a decomposition. Finally, libraries like Chaco

[40] provide both topology and geometry-based approaches.

Guaranteed quality mesh generation algorithms [17, 18, 72] produce elements with good

aspect ratio and good angles. These algorithms require the initial boundary angles to be

within certain good bounds. For example, R uppert’s algorithm [72] requires boundary an­

gles (the angles formed by the boundary edges) no less than 60°, in order to guarantee the

termination1. When these algorithms are used in domain decomposition based parallel mesh

generation procedures, the separators are treated as external boundary of each subdomain.

Consequently, the domain decomposition should create separators tha t meet the require­

ments of the mesh generation algorithm. Even in the cases where the meshing algorithm

can handle small input angles (as in [14, 65, 80]), these are undesirable when formed by the

separators. If small angles are created by the decomposition procedure, these constitute

artifacts tha t will have a negative effect to the quality and size of the final mesh, and also

will affect the performance of the mesh generator. Therefore the constructed separators

should form angles no less than a given bound <I»o, which is determined by the sequential

mesh generation procedure tha t will be used to mesh the individual subdomains.

The performance of the parallel mesh generation is affected by the required communi­

cation and the work-load balance among the processors. If there is communication, this

is usually proportional to the size of the separator, therefore, one of our objectives in the

domain decomposition step is to minimize the size of the separators. On the other hand,

the load balancing problem is best addressed by over-decomposing the domain [22], Over­

decomposition allows both static and dynamic load balancing methods to distribute equally

the work-load among the processors more effectively [2, 52], These methods though will

be less effective, if some of the subdomains represent a much larger work-load than the

average2. Therefore, we should keep the maximum area of the subdomains close to the

lrrhis condition is relaxed in improved versions of the algorithm.
2Small work loads do not create load-balancing problems when over-decomposition is used. On the

contrary, the resulting granularity can be used to improve the load balance, especially on heterogenous

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: Left: The Pipe geometry. The angles produced by graph-based partitioner,
like Metis, depend on the background mesh, and can be as small as the smaller angle of
the mesh. The angles marked with dots are “small” (less than 60°). Right: Part of the
Chesapeake bay geometry. When the geometry is complicated, methods like the Recursive
Coordinate Bisection and the Inertial Method can produce arbitrary small angles between
the separators and the domain boundary, and also can place separators arbitrary close to
the boundary.

average subdomain area3.

In conclusion, a geometric domain decomposition is suitable for stable parallel mesh

generation, if it satisfies the following criteria.

C l. Create good angles, i.e., angles no smaller than a given tolerance To < 7r/2. The value

of is determined by the sequential, guaranteed quality, mesh generation algorithm

(for R uppert’s algorithm we use the value To = 60°).

C2. The length of the separator should be relatively small.

C3. The maximum area of the subdomains should be close to the average subdomain area.

Previous DD approaches are very successful for traditional parallel PDE solvers, but

they were not developed for parallel mesh generation procedures, and thus do not address

the problem of the formed angles. On the other hand, domain decomposition procedures

used for parallel mesh generation aim mostly to solve the load balancing problem and to

minimize the communication [32, 44, 87]. For example, graph based partitioning algorithms,

environments.
3The area of the subdomains does not always reflect to work-load of the mesh generation procedure.

However, for well shaped subdomains, as the ones produced by MADD, and for Delaunay mesh generators,
the work-load is analogous to the area of the subdomain (see Section 6.4)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like Metis, give well-balanced decompositions with small separators, but the angles formed

by the separators depend on the background mesh, and they can be as small as the smallest

angle of the mesh (see Figs. 2.1 left, and 5.5). On the other hand, methods like the

Recursive Coordinate Bisection and the Inertial Method can create arbitrary small angles,

and also place the separators arbitrary close to the boundary (see Fig. 2.1 right), so they

are unsuitable for parallel mesh generation procedures.

In addition to the requirements described above, the domain decomposition should be

able to accommodate graded parallel mesh generation procedures, and thus it should have

the capability to produce graded decompositions according to given sizing and gradation cri­

teria. The Medial Axis domain decomposition (MADD) addresses all the above conditions,

and it is described in the following chapters.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The M edial A xis Dom ain D ecom position

3.1 The Medial Axis Dom ain Decom position

The Medial Axis Domain Decomposition (MADD) method is based on an approximation of

the medial axis (MA) of the domain. The MA was introduced by Blum [9] as a way to depict

the shape of an object, and has been studied extensively [13, 12, 20, 50, 76, 89]. It has

also found numerous applications in the context of mesh generation (see [1, 35, 39, 69]). A

decomposition procedure based on critical medial axis points [85] for sequential quadrilateral

mesh generation is described by Tam et al [84]. This procedure was proposed for parallel

mesh generation by Chrisochoides [21].

Figure 3.1: Left: The medial axis of a domain is the locus of the centers of the maximal
inscribed circles. Right: The angles formed by a point c' of the medial axis and its contact
points (b') are at least 90°. The angle at b can not be less than 90°, unless c is a not a point
of the medial axis, or b its not its contact point

A circle C C Q. is said to b e maximal in O, if there is no other circle C" C Cl such tha t

C C C '. The closure of the locus of the circumcenters of all maximal circles in Cl is called

the medial axis Cl (see Fig 3.1 left), and will be denoted by MA(fl). The intersection of a

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: Left: The Delaunay triangulation of the pipe intersection. The circumcenters
of the triangles approximate the medial axis. Right: The circumcenters are the Voronoi
points. The separator is formed by selecting a subset of the Voronoi points and connecting
them with the boundary.

boundary of Cl and a maximal circle C is not empty. The points C fl dCl. where a maximal

circle C intersect the boundary, are called contact points of c, where c is the center of C.

Every point c G MA(f2) \ dCl has at least two contact points. The domain decomposition

method I propose is based on the following simple geometric property:

Lem m a 2. Let b a contact point o f c G MA(Ci). The angles formed by the segment cb and

the tangent o f the boundary dCl at b are at least 7t / 2 .

Proof. We will prove the lemma in the general case when D has a piecewise C l boundary.

Suppose tha t the proposition is not true. Then there is a point c G MA(Cl) of the medial

axis and a contact point b G dCl of c, such tha t cb forms an angle <p < 7t/2 with the

boundary at b (see Fig. 3.1, right). Take c to be the origin of the axes and cb to define

the y axis. W ithout loss of generality we assume tha t <f> is formed by the tangent from the

right. Let (x (s) ,y (s)) be locally the normal parametric representation of the curve, with

b = (a;(0), y(0)) = (0, y(0)) and a:(s) > 0. We have y(0) > 0. Since <f> < 7t/2, we have

y '(0) < 0. Let R(s) = x 2(s) + y 2(s) be the square of the distance between c and the points

of the curve. Because b is a contact point of c, it must be R (s) > R(0) — \cb\2. We have

R '(0) = 2y(0)y/(0) < 0. This means tha t locally R(s) < R (0), which is a contradiction. □

The medial axis of Cl can be approximated by Voronoi points of a discretization of

the domain [13, 12]. We make use of the property of Lemma 2 to construct separators

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tha t consist of linear segments which connect the Voronoi points to the boundary. The

approximation of the MA(f l) is achieved in two steps: (1) discretization of the boundary,

and (2) computation of a boundary conforming Delaunay triangulation using the points

from step (1). The circumcenters of the Delaunay triangles are the Voronoi points of the

boundary vertices. The separators will be formed by connecting these circumcenters to the

vertices of the Delaunay triangles. Figure 3.2 depicts the boundary conforming mesh of

the cross section of a rocket (left), and the media axis approximation and a 2-way separator

for the same geometry (right).

The level of the discretization of the boundary determines the quality of the approxima­

tion of the medial axis. However, our goal is not to approximate accurately the medial axis,

but to obtain good angles from the separator. Therefore our criteria for the discretization of

the domain will be determined from the quality of the angles formed between the separators

and the boundary dfl. We achieve our goal by defining a new set of triangles.

D efinition 3. A 2-way decomposition of a domain Q can be defined as follows. A complete

separator H C.Q, is a finite set of simple paths (a continuous 1-1 map h : [0,1] —► Q.), which

we call partial separators, that do not intersect and define a decomposition D \ , D 2 of A,

such that: D \ and D 2 are connected sets, with D \ U D 2 = D, and for every path P C O,

which connects a point of D \ to a point of D 2 , we have P D H 0.

In Figure 3.2 right a two-way decomposition is depicted. The complete separator is

formed by four partial separators.

3.2 Junction Triangles

D efinition 4. Let T be a Delaunay triangulation of a discretization Z q of the boundary

dll. We call a triangle t £ T a junction triangle (see Fig. 3.3) if:

1. it includes its circumcenter c,

2. at least two of its edges are not in Z q .

3. at least two of the segments defined by the circumcenter and the vertices of t form

angles > <h0, both with the boundary and each other.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

external boundary Delaunay triangulation

Figure 3.3: Examples of junction and non junction triangles. Left: Triangle 0 1 0 2 0 5 is a
junction triangle, while 0 1 0 5 0 5 has two edges on the boundary and 0,2 0 4 0 ,5 does not include
its cicrcumcenter, so they are not junction triangles. Right: The only junction triangles is
0 4 0 3 0 5 .

In Fig. 3.3 right, triangle 0 1 0 ,30,5 satisfies all the above criteria and is a junction triangle.

The other triangles are not junction triangles. 0 4 0 2 0 3 and 0 1 0 5 0 5 do not include their

circumcenter and violate property (1); 0 3 0 4 0 5 has two edges on the boundary, violating

property (2); 0 1 0 5 0 7 does not include a partial separator tha t has acceptable angles (both

angles at a i and 0 7 are less than the tolerance $ 0 (for $ 0 = 60°), so it violates property

(3).

The first criterion is set only for the simplicity of the MADD algorithm, in order to avoid

negative weights and guarantee tha t at least two angles between the segments are good.

The second criterion prevents a decomposition tha t will create very small subdomains. The

third criterion guarantees the quality of the angles. Let 0 1 0 2 0 - 5 be the vertices of t. Then

the third criterion demands the existence of at least one pair of segments OiCOj, where c is

the circumcenter of 0,10,20 ,3 , so tha t all the angles formed with these segments are greater

or equal to Such pairs o,ica,j are called partial separators and they will be candidates to

form a complete separator. A complete separator decomposes a domain into two connected

subdomains.

Let 5 (D) be the number of holes of ft. The desirable level of refinement Z q satisfies two

conditions:

(i) In the Delaunay triangulation T of Z q there are at least g(£l) + 1 junction triangles.

(ii) Every segment of the discretization Z q has an empty diametral circle.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: On the left, the two Delaunay triangles, A \ ,A 2 , do not have common vertices.
On the right, the triangles share one common vertex; the case of two common vertices is
reduced to this.

The first condition requires the existence of at least g(Q) + 1 junction triangles. We will

see in Section 3.6 tha t this condition is sufficient, although not necessary, for the existence

of at least one complete separator. The existence of enough candidate separators depends

on the discretization Z q of the domain Q. A discussion on the level of refinement of Z q is

presented in Section 4.1.

The second condition guarantees tha t all the segments of Z q will appear as edges in T .

It also guarantees tha t all the circumcenters of the triangles of T are contained in fl [78].

This in turn guarantees the existence of at least one triangle tha t includes its circumcenter

(Lemma 4).

Lem m a 3. Let A \, A<i be two triangles of a Delaunay triangulation, such that the circum­

center ci of A \ is in the triangle A i and they don’t have the same circumcircle. Let C2 be

the circumcenter of A 2 and r \, r 2 be the radii o f the circumcircles o f A] and A 2 respectively.

Then we have rq < V 2 -

Proof. Let r be the smaller distance of ci from the vertices of A 2 , see Figure 3.4. Then

r > r \ . So we have r 2 > r, and consequently r 2 > r\. □

Lem m a 4. I f all segments in Z q have empty diametral circles, then there is at least one

triangle in the Delaunay triangulation T of Z q that includes its circumcenter.

Proof. We know that, when the boundary segments have empty diametral circles, all the

circumcenters of the triangles of T are in T [78]. We assume tha t the points are in general

position, i.e. there are no co-circular points. We will prove the lemma by contradiction.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose tha t the lemma is not true. Then for every triangle A* there is another triangle

A i+\ / Ai, such tha t the circumcenter Cj of A; is included in Aj+i. Let 77 be the radius

of the circumcircle of A.,. Since we assumed tha t no triangle includes its circumcenter, the

sequence (Aj} is infinite. On the other hand the set {£.;} of all triangles in Zq is finite, so

the sequence (A j) includes an element tk twice. Then A; = A m = tk, for some I < k. From

the previous lemma we have 77 < 77+i < ... < rm, which contradicts to the fact that 77 and

rm are the radii of the same circle, and thus equal. So the lemma must hold. □

3.3 The M AD D Procedure

The MADD algorithm uses as a starting point the approximation of the medial axis by the

Delaunay triangulation T , as described in the previous section. The complete separator is

formed by partial separators (see Definition 3). The partial separators connect two points of

the boundary, since T is a boundary conforming triangulation. The properties of junction

triangles permit the construction of good angles between the partial separators and the

external boundary of the geometry. We have developed two MADD algorithms. The first

MADD algorithm is described in Section 3.4, and selects a set of partial separators from

the junction triangles. The MADD second algorth will allow additionally partial separators

to be edges of the Delaunay triangulation and is described in Section 3.5. The selection of

the partial separators in both algorithms is based on minimizing the size of the separators,

and are guaranteed to form a complete separator.

The MADD algorithm uses as a starting point the approximation of the medial axis

by the Delaunay triangulation T , as described in the previous section. Any algorithm

tha t gives a Delaunay boundary conforming triangulation can be used to create it. For our

implementation we have used Triangle [77], which is considered to be a state of art Delaunay

mesher for planar geometries. The MADD algorithm uses the Delaunay triangulation to

identify a set of candidate partial separators. Then it will form a complete separator by

a set of partial separators, tha t will guarantee the decomposition of the domain into two

subdomains. The selection of partial separators is based on minimizing the size of the

separators, while maintaining the balance of the areas.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The MADD algorithm maps the Delaunay triangulation T into a graph Gt - The in­

formation encapsulated in this graph includes: (a) the topology of T , (b) the length of the

partial separators, and (c) the area of the subdomains tha t will be created. This informa­

tion will be used to : (1) guarantee tha t the inserted partial separators form a complete

separator, (2) minimize the length of separators, and (3) keep the subdomain areas balanced.

After G-j- is constructed, the graph is contracted into a graph G'-j-, so tha t only the

acceptable partial separators are represented in G'q-. Then the contracted graph is parti­

tioned, in a way tha t maintains the balance between the subgraph weights, and minimizes

the cut cost. Any of the well known graph partitoning algorithms [46, 4, 41, 42, 44, 8 8],

tha t decompose a connected graph into two connected subgraphs and satisfy the above

criteria can be used. In the cases where the partitioner gives non-connected subgraphs, a

connectivity check step must be preformed (see Section 5.1). Finally, the graph partition is

translated back into insertions of partial separators, which results a 2 -way decomposition.

The major steps of the algorithm are:

1. Create a modified graph Gt from the Delaunay triangulation T.

2. Contract Gt into the graph G'T , so that only the candidate partial separators are

represented.

3. Partition the graph G'r , optimizing the subgraph weight balanced and the cut-cost.

4. Translate the cuts of the previous partition into the corresponding partial separators

and insert them into the geometry.

In Sections 3.4 and 3.5 are described two MADD algorithms. In the first algorithm the

graph nodes represent edges of the triangulation, and the contraction procedure is applied

on the non-junction triangles. In the second algorithm the graph nodes represent triangles;

additionally, edges of the Delaunay triangles tha t form good angles are allowed as partial

separators.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 The M ADD First Algorithm

C onstruction o f th e Graph Gt

In the first MADD algorithm the Delaunay triangulation T is represented as a weighted

graph, which is the dual graph of the edges of the triangles. Two nodes of the graph are

adjacent if their corresponding edges belong in the same triangle. The length of the radius

of the circumcircle of this triangle will be the weight of the graph edge. The weights of the

nodes are set to zero in this step, and they will be computed in the graph contraction step

(see Section 3.4).

Figure 3.5 left depicts the step for constructing the graph G t- One graph node is

created for each edge of the triangulation, and two nodes are connected if they belong to

the same triangle. Let d^ be the node corresponding to the edge a-ia-j. The weight of the

edge connecting d{j,djk is the length |q a j |, where q is the circumcenter of the triangle.

For example, the edge tha t connects d i2 and cfos has weight the length |ci a.2 j - The above

procedure is described by the Algorithm 3.1.

A lgorithm 3.1.
1. for all the edges ajCij in T do
2 . Add node dij to the graph G t -, with zero weight
3. endfor
4. for all triangles t € T do
5. for the three pairs (a^aj, aja^) of edges of t do
6 . Create a graph edge between the corresponding nodes dy , dj
7. with weight the length of the circumradius of t
8. endfor
9. endfor

Graph C ontraction

In this step the graph Gt produced from the previous step is contracted into a new graph

G't , so tha t only the edges of junction triangles are represented as nodes in G'r . The nodes

of Gt th a t correspond to edges of non junction triangles of T are contracted in G’r .

In order to contract the graph Gt , first we iterate through all the triangles tha t are not

junction triangles. The nodes of Gt th a t correspond to the three edges of a non-junction

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23 2323

external boundary Delaunay triangulation partial separators graph edges graph contraction

Figure 3.5: An example of creating the MADD graph. Left is a part of the Delaunay tri­
angulation and the creation of the corresponding initial graph G t . M iddle, the procedure
of contracting the graph by combining the nodes of G t- The nodes connected by dashed
lines are combined. R ight is the final graph G'v th a t corresponds to this part.

triangle are combined into a single node and the new node replaces the initial nodes in

the external graph edges, while the edges between the three initial nodes are deleted. The

weight of the new node is the sum of the weights of the initial ones, plus the area of the

triangle.

The remaining nodes correspond to the edges of junction triangles. Junction triangles

contain candidate partial separators, whose number may vary from one to three. From

the three possible partial separators we keep the one that forms the greater minimum

angle. Since in junction triangles there is at least one partial separator tha t forms angles

no less than $ 0, the selected partial separator forms angles > <f>0. We establish this partial

separator by combining the two of the three nodes tha t correspond to edges of the triangle.

Let a ia 2 a 3 be a junction triangle and c its circumcenter. Let be the corresponding node

to the edge aia,j, then the weight of the node dij is updated by adding the weight of the area

included by the triangle ccnaj. Let ajca^ be the partial separator tha t forms the greater

minimum angle. Then the nodes dji and dki are contracted into a single node, where a, is

the remaining vertex of the triangle 0 4 (12(13 . The procedure is illustrated with the following

example.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exam ple. Figure 3.5 (center) illustrates the procedure of contracting the graph. The bold

lines indicate the external boundary. The triangles are part of the boundary conforming

Delaunay triangulation of the domain. As above, we denote by the graph node tha t

corresponds to the segment aicij. We demonstrate four different cases.

Case I: The triangle aqasae has two edges on the boundary, so it is not a junction

triangle, and the three corresponding nodes are combined to one. The edges connecting the

new node <f15 are the external ones i.e., the edges tha t connect c/1 5 to c/12 and d\b to dab■

The weight of c/'15 is equal to the area of the triangle aiaba^.

Case II: The triangle 0,20.4125 does not include its circumcenter and so it is not a junction

triangle. We follow the same procedure as in Case I. The nodes <̂2 5 ,^ 2 4 ,^ 4 5 are contracted

into a new node c/25. The new node has weight the area of the triangle 0 2 0 4 0 5 and is

connected to the nodes d\2 , d'15, c/ia, c/3 4 .

Case III: The triangle 0 4 0 2 0 5 is a junction triangle. The areas of the triangles formed

by its circumcenter ci and its corners are added to the weight of the corresponding nodes.

For example, the area |o2Ciai| is added to the node dyi, similarly the areas |a2 0 5 Ci|, and

I0 1 C4 0 5 1 are added to the nodes d'25 d'15, respectively. Suppose tha t the partial separator

a ic i0 2 is the one tha t tha t forms the greater minimum angle. Then the nodes d'15 and </25

are contracted into a new node c/ 2 5 with its weight to be equal to the sum weights of the

two previous nodes. The graph edge connecting the nodes d[5 and c/ 2 5 is deleted, while the

two other graph edges are contracted into one edge connecting </25 to c/1 2 ; the new edged

weight is equal to the sum of the two previous edge weights, which is equal to the length of

the partial separator aici<2 2 .

Case IV: The triangle <1203(24 is also a junction triangle. As for the previous triangle,

first we add the areas of the triangles formed by the circumcenter C2 and the vertices. The

areas |a2 C2 a4 |, |«2 C2 0 .3 |, and |<2302(141 are added to the weight of the nodes </25, c/23, and

c/3 4 , respectively. However, suppose in this case the angle 6 , formed by the segment C2 0 3

and the external boundary segment <2 3 6 , is less than <f>0. Then the two partial separators

tha t include this segment are rejected and we keep the separator <2 2 0 2 0 4 , which is the one

that forms the greater minimum angle. The nodes 0/23 and c/ 3 4 are combined to the node

c/34. The new node is connected to </25 by an edge with weight equal to the sum of the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two previous edge weights, which is the length of the partial separator 0 ,2 0 2 0 .4 . Figure 3.5

(right) shows the final graph.

A lgorithm 3.2.
1. for all non junction triangles t 6 T do
2 . Combine the three nodes tha t correspond to the edges of t,
3. generating a new node d!
4. Add the area of t to the weight of d!
5. endfor
6 . for all junction triangles t £ T do
7. Let c be circumcenter of t
8 . for all edges OiOj of t do
9. Add the area of the triangle OiCOj to the weight

1 0 . the corresponding node dij
11. endfor
12. Find the partial separator aicaj in t forming a max min angle
13. Combine the nodes d,,̂ and djk, where is the remaining vertex
14. endfor

The above procedure is described in Algorithm 3.2.

T he C onstruction o f th e Separator

After contracting the graph, the constructed graph G'r is partitioned. The number of the

edges of the graph is less or equal to the number of junction triangles, thus the size of the

graph partitioning problem is significantly smaller than the element-wise dual graph of the

boundary conforming Delaunay triangulation T . Graph partitioning can be very expensive,

and reducing the size of the results smaller partitioning time cost.

After partitioning G'T , the final step of the MADD is to construct the separator of the

geometry. From the previous step we have a partition of the graph G'r in two connected

subgraphs. This partition will give a corresponding separator for the geometry. Each edge

of the graph corresponds to a partial separator of the form OiCOj, where c is a circumcenter

of a junction triangle and aj, aj are two of its vertices. For every graph edge tha t is cut by

the partition we will insert the related partial separator in the geometry. In our example

above (see Figure 3.6) the partial separator 0 2 0 2 0 4 is created in the case that the graph

partitioner chooses to cut the edge e2 -

The algorithm traverses the list of all triangles and identifies those triangles whose edges

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: A partition of the graph and the corresponding separator, on the right, depicted
with dotted lines.

correspond to disconnected nodes after the graph partition. In these triangles the partial

separators are inserted, separating the edges tha t don’t belong to the same subgraph. In

Figure 3.6 the partial separator <1202014 separates the edge 0 ,2 0 .4 from the edges 0 ,2 0 3 and

0 3 0 4 . The set of all these inserted partial separators establishes a (complete) separator for

the domain, as we will see in Section 3.6. The construction of the separator is described

in Algorithm 3.3.

A lgorithm 3.3.
1. for all triangles t € T do
2 . if one of the edges a* ay of t belong to a different
3. subgraph from the other two edges then
4. Insert the partial separator ajcay,
5. where c is the circumcenter of t
6. end if
7. endfor

The ratio of the cost of the cut to the weight of the subgraphs is translated to the

ratio of the total length of the separator to the area of the subdomains. Provided that the

graph partitioner gives a good cut cost to subgraph weight ratio, the ratio of length of the

separator to the area of the subdomains is also good. This way we obtain separators of

relatively small size, and the areas of the subdomains are balanced. Moreover, since all the

partial separators, by the construction of G'-j-, form good angles, the constructed separator

forms good angles. In summary, the constructed separator meets the decomposition criteria

C l - C3 in Section 2.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a,

external boundary Delaunay triangulation partial separators rejected separators

Figure 3.7: Left is a part of the Delaunay triangulation and right are the partial separa­
tors. Triangle a ia 3 a5 is a junction triangle, while the other triangles are not.

3.5 The M ADD Second Algorithm

In the second MADD algorithm we have two types of partial separators (see Fig. 3.7):

(a) non-boundary edges of the Delaunay triangulation that form angles > $o with the

boundary, and (b) segments tha t connect a circumcenter of a junction triangle with its

vertices. For the first type of partial separator we only have to scan the non-boundary

edges of the Delaunay triangulation and select the ones tha t create angles at least equal

to our tolerance bound <3?o- The second type of partial separators are included in junction

triangles, as in the first algorithm.

In Fig. 3.7, triangle a ia 3 a.5 is a junction triangle, while the other triangles are not

junction. The partial separators are either internal Delaunay edges, like a ia 2 , a\a 3 and

0 6 0 7 , or are formed by connecting the circumcenter of a junction triangle to its vertices.

In our example 0 1 CO3 , ojcos and 0 3 0 0 5 are the three possible partial separators inside the

junction triangle 0 1 0 2 0 3 . The partial separators always connect two points of the boundary,

since T is a boundary conforming triangulation. The complete separator is formed by

choosing a subset of partial separators tha t will decompose the domain into two connected

subdomains.

C onstruction o f th e Graph Gt

In this step the junction triangles of the Delaunay triangulation T are divided into three

triangles, and the final triangulation is represented as a weighted dual graph. Each of the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L
a, ai a.aa

external boundary Delaunay triangulation partial separators graph edges node contraction

Figure 3.8: An example of creating the MADD graph. Left is a part of the Delaunay
triangulation and the creation of the corresponding initial graph G t - C enter, the procedure
of contracting the graph by combining the nodes of G t- The nodes connected by doubled
lines are combined. R ight is the final graph G tha t corresponds to this part.

three triangles included into a junction triangle are represented by three graph nodes. Non­

junction triangles are represented by a single graph node. Nodes tha t represent adjacent

triangles are connected by a graph edge. The weight of each node is set equal to the area

of the corresponding triangle, while the weight of a graph edge connecting two nodes is set

equal to the length of the common triangle edge tha t is shared by the two corresponding

triangles. Algorithm 3.4 describes the graph construction procedure.

A lgorithm 3.4.
1. for all the triangles didjdk in T do
2 . if didjdk is a junction triangle then
3. let c be the circumcenter of didjdk',
4. create three nodes corresponding to triangles

diCdj, diCdk, djCdk with weight equal to their areas;
5. else
6 . create one node with weight equal to \didjdk[,
7. end if
8. endfor
9. for all nodes d E G t do

1 0 . find the adjacent triangles and connect the corresponding
nodes by a graph edge with weight equal to the length of
their common triangle edge;

11. endfor

Fig. 3.8 (left) depicts the step for constructing the graph G t - Triangles 0 1 0 2 0 3 , a 11250,6 ,

0 3 0 4 0 5 and 0 1 0 6 0 7 are not junctions, and each is represented by one node, d\, dg, cfe, and dj

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#4 ^4 ^4

a5

«7 a, a ,a

external boundary Delaunay triangulation partial separators graph edges node contraction

Figure 3.9: An example of contraction of the nodes inside of a junction triangle. Left is a
part of the Delaunay triangulation and the creation of the corresponding initial graph G t-
Center, the procedure of contracting the graph, in this case the two nodes of the junction
triangle a\a^a^ are combined. R ight is the final graph G'v and the corresponding candidate
partial separators.

respectively. Triangle 0 1 0 3 0 5 is a junction triangle and is divided in three triangles: 0 1 0 0 3 ,

0 1 0 0 5 and 0 3 0 0 5 , where c is the circumcenter of 0 1 0 3 0 5 . These triangles are represented

by the nodes d,2 , d.4 . and c/3 respectively. The weight of each node is equal to the area of

the corresponding triangle. For example, the node c/2 has weight equal to the area |aico3 |.

Nodes tha t represent adjacent triangles are connected by a graph edge, with weight equal to

the length of their common triangle edge. For example, the nodes d\ and c/2 are connected

by a graph edge with weight equal to the length |a ia 3 |, while the nodes for c/2 and c/3 are

connected by a graph edge with weight equal to |co3 |. The above procedure is described by

Algorithm 3.4.

Graph C ontraction

In this step the graph Gt produced from the previous step is contracted into a new graph

G'q-, so tha t only the acceptable partial separators are represented as edges in G'T . In order

to contract the graph Gt we iterate through all the graph edges and eliminate those that

correspond to not acceptable triangle edges. A triangle edge is not acceptable if at least

one of the angles tha t it creates is less than 4>o- The graph edge tha t corresponds to non-

acceptable triangle edges is deleted, and the two graph nodes that were connected by the

eliminated edge are combined into one node; the new node represents the total area of the

triangles represented by the contracted nodes.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 3.8 (center) illustrates the procedure of contracting the graph. The triangle edge

<23(15 forms small angles with the boundary and is not acceptable. The corresponding graph

edge (Z3 CZ5 is eliminated, while the nodes ds and c/5 are combined into a new node. The new

node represents the polygon 0 3 0 0 5 0 4 and its weight is equal to the polygon area, which is

the sum of the two previous areas. The new node also inherits all the external graph edges

of the two previous nodes, which in this case are the two edges and d^d^. The same

procedure is followed for eliminating the edges d^d^ and d^dj. In Fig. 3.8 right the final

graph G't is depicted with the corresponding areas and partial separators.

In Fig. 3.9 we have a slightly different geometry, which depicts the elimination of an

internal edge of a junction triangle. The triangle edge ca$ forms a small angle with the

boundary, so it is not acceptable and it is eliminated. The two nodes d% and c/3 in the

junction triangle 0 ,1 0 ,3 0 ,5 , which are separated by this edge, are combined into a new node.

The new node inherits two graph edges connecting it to the same node c/4 . These two edges

have a total weight equal to the length of the partial separator a 100 ,5 . The above procedure

is described by Algorithm 3.5.

A lgorithm 3.5.
1. for all edges didj € Gt do
2 . if the corresponding triangle edge

forms an angle < # 0 then
3. delete the edge didj-,
4. create a new node d with weight equal to the

sum of the weights of the nodes c/*, dj;
5. transfer all the external graph edges of

di and dj to the new node cZ;
6. end if
7. endfor

T he C onstruction o f th e Separator

The result of the previous step is a graph G'T , whose edges represent the partial separators

tha t can be used to decompose the domain. The next step is to partition the graph in two

connected subgraphs and translate this partition into a geometric domain decomposition.

The weights of the nodes of G'T represent the size of the corresponding areas, while the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a, a5'5

a, a,•6 6

Oj a ,a

external boundary partial separators graph edges

Figure 3.10: Left is depicted the graph G'T with the corresponding areas. C enter The
graph is partitioned by deleting two graph edges. R ight The corresponding partial sepa­
rator is inserted to the geometry.

weights of the edges represent the length of the corresponding partial separators. The

objective of the graph partitioner is to minimize the ratio of the cut-cost to the subgraph

weight. The graph contraction step reduces significantly the size of the graph, resulting a

smaller partitioning time cost.

After partitioning the graph G'r into two connected subgraphs, the final step is to

construct the separator of the geometry, by translating the graph edge cuts to insertions

of partial separators. The partial separators, tha t correspond to edges cut by the graph

partitioner, are inserted into the geometry. In Fig. 3.10 (left) the graph G'r is depicted, the

graph partition cuts of the two edges d^d?, and dad. a (middle), and the corresponding partial

separator a\ca^ is inserted to the geometry (right). The construction of the separator is

described in Algorithm 3.6.

A lgorithm 3.6.
1. for all the edges didj G G'r do
2. if di and dj belong to different subgraphs then
3. insert the partial separator, corresponding to didj,

into the geometry;
4. end if
5. endfor

If the graph G'T has at least two nodes, then a 2-way partition exists and it will give a

decomposition of the domain into two subdomains Provided that the graph partitioner gives

a small cut cost and balanced subgraph weights, the length of the separator will be relatively

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

small and the areas of the subdomains will be approximately equal. Moreover, since all the

partial separators, by the construction of G'r , form good angles, the constructed separator

will also form good angles. Thus, the constructed separator meets the decomposition criteria

C l - C3 described in Section 2.

3.6 Proof of Correctness

In this subsection we prove tha t the MADD algorithm decomposes the domain in two

connected subdomains. We remind tha t the domain Cl is the closure of an open connected

bounded set and the boundary dCl is a PSLG formed by a set of linear segments which

do not intersect. A separator H C Cl is a finite set of simple paths (a continuous 1-1 map

h : [0,1] —> Cl) tha t do not intersect and define a decomposition A±, of Cl in the following

way: A \ and A<i are connected sets, with A 1 U A 2 = Cl, and U ft H 0 for every path U C Cl

which connects a point of A 1 to a point of A%-

Lem m a 5. Let g(Cl) be the genus (number of holes) of Cl and n the number of junction

triangles. I f n > m , then there is a separator for Cl formed by partial separators.

Proof. We will prove the lemma by induction on g(Cl). If g(Cl) = 0, then n > 1, and there

is at least one partial separator. In this case, every partial separator is a separator for Cl,

since every simple path / : [a, b] —> O, with /(a) , f(b) € dCl and / (a , b) C Cl°, is a separator

for fL

Suppose the lemma is true for g(Cl) = q, we will prove it is true for g(Cl) = q + 1. We

have tha t n > q + 1. If for a partial separator acb, where a, b G dCl, we have tha t both

a, b don’t belong to the boundary of a hole, then acb forms a separator, as in the case

g(Cl) = 0. In the case tha t one of the points a, b belong to the boundary of a hole O, then

by inserting the partial separator acb we eliminate O. The new domain has q holes and

n — 1 > q junction triangles. Thus, by the inductive hypothesis, it can be decomposed by

partial separators. Therefore there is a separator formed by partial separators, when the

conditions of the lemma are satisfied. □

T heorem 6. Let g(Cl) be the genus and n the number of junction triangles. I f n > g(Cl),

then the MADD algorithm decomposes Cl in two subdomains.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.11: IV-way partitions, where N = 2,4,8,16, by the MADD divide and conquer
method.

Proof. Let ej, i = 1,..., n be the edges of the contracted graph G'r created by MADD. Each

of these edges corresponds to a partial separator h i,i = 1,..., n. We will show tha t every

decomposition of the graph G'T corresponds to a decomposition of fl formed by partial

separators, and vice versa.

Let E = {ei,i E 1} be the set of edges tha t the graph partitioner cuts, creating two

subgraphs G \, G2. Let H = {h i,i € 1} be the set of partial separators tha t are correspond

to these edges. Finally, let A \ , A 2 C fl be the two corresponding areas to the subgraphs

G i , G 2. Obviously A \ U A 2 = fh From the construction of the graph we have tha t the

connected subgraphs correspond to path connected areas of fh Assuming tha t the graph

partitioner decomposes G'-j- in two connected subgraphs, then G \ , G 2 are connected, and

so A \, A 2 are also connected. Every path U C fl from a point of A \ to a point of A 2

corresponds to a path U' in G'r form a node of G\ to a node of GV Since the edges E

decompose Gi from G2 , we have U' D E ^ 0. Let ej E U' fl E. Then we have U n hj 7 ̂ 0,

and the path U intersects H. Thus H is a separator for fh Working backwards we see that

a separator for fl corresponds to a partition of the graph. The existence of such a separator

is proved in Lemma 5, and this completes the proof. □

3.7 iV-way D ecom position

So far we have described the MADD procedure for a 2-way decomposition. In order to

create more than two subdomains we apply the MADD procedure following the divide and

conquer paradigm (see Figure 3.11). The created subdomain are further decomposed by

applying the MADD independently. The resulting decomposition shows good adaptivity to

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the geometry and also the divide and conquer approach lends itself to a parallel domain

decomposition procedure, as the one described in Section 4.3

The AT-way decomposition can be controlled by user defined criteria as to which sub-

domains should be decomposed. For example, a maximum area criterion will result subdo­

mains with area less than a given bound. In section 4.4 we examine decomposing criteria

tha t produce graded decompositions, and in Section 7.3 we describe a gradation cotrolled

N -way domain decomposition.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

M A D D Enhancem ents

4.1 Static and Dynam ic M AD D

The existence and the quality of a complete separator depends on the number and quality

of the partial separators, which in turn depends on the level of the discretization of the

boundary segments, and also on the geometry of the domain. There are three parameters

tha t effect the level of required discretization: (1) the number of subdomains we want to

create, (2) the characteristics of the initial geometry, and (3) the lower angle bound <f>o- It

is hard to define what would be a difficult geometry to decompose, since geometries that

look complicated may form areas where “natural” cuts can be made, while geometries that

look simple may lack these natural cuts.

Estimating the level of the refinement, tha t would give an optimal decomposition, is a

difficult problem. Increasing the refinement will result a better approximation of the medial

axis, and more - and better in terms of the C1-C3 criteria - partial separators. However,

over-refinement creates a number of problems. First, it increases the time for decomposing

the geometry, since the time for creating the Delaunay triangulation, and also for the MADD

procedure, depends on the number of input points (see the experimental results in Section

5.2). Second, it could result into arithmetic rounding errors when calculating geometric

entities, like circumcenters and angles. We implemented two approaches for the refining

problem. The first is a static approach, where the refining is predetermined, and the second

is a dynamic approach, where the refining is an adaptive procedure.

S ta tic M A D D . During the static MADD refining procedure the refining size of boundary

and separator edges is precomputed. The level of refinement is based on a user-defined

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uniform refinement factor r, the average boundary segment size L a. and the V N , where N

is the number of subdomains. The square root of the number of subdomains was chosen in a

heuristic way, based on the fact tha t the square of the lengths of the separators is analogous

to the areas of the subdomains. The average area of subdomain is A /N , where A is the total

area and N the number of subdomains. So, the separator lengths will be proportional to

y / l /N , and consequently the level of refinement should be analogous to V N . The average

boundary segment size L a is used to produce a close to uniform discretization, by breaking

the initial segments into subsegments of length La/r , where r is a user-defined factor. This

factor is chosen to reflect the lower angle bound in relation to the geometry we want to

decompose.

D ynam ic M A D D . In the dynamic MADD approach each subdomain is refined individ­

ually and adaptively. The refinement is not permanent and is performed locally on the

subdomain we want to decompose. First an initial refining is applied, as described in the

static approach. If the decomposition procedure fails to find separators, the refining is

recalculated, in a geometric increasing level. This means tha t the refining factor r takes

gradually the values r, 2r, 4r, and so on, until the decomposition with the given conditions

is achieved. After successfully decomposing a subdomain, the refining is discarded, allowing

a next adaptive refining procedure to take place.

This adaptive approach allows large decompositions to be created (we have created

decompositions of the order of 50,000 subdomains), and at the same time is efficient. The

refining procedure is fast, and most of the subdomains will be decomposed in the first step,

using minimum refinement, and thus are decomposed fast. The subdomains tha t are harder

to decompose will go into the next levels of refinement. As the decomposition progresses,

the created subdomains tend to have simple shapes, and thus require small refinement. The

subdomains tha t require more than two refining iterations are a small precentage of the

total number of subdomains (usually less than 1 %), and thus they result a small adaptivity

performance cost.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: The Pipe domain decomposed in 64 subdomains using the MADD algorithm.
On the left no smoothing is used. Most of the separators don’t meet at their end-points,
and they create small segments on their common boundaries. On the m iddle the smoothing
procedure is used, giving conforming separators. R ight, the points of the first type (a) and
second type (b) are depicted.

4.2 Separator Sm oothing Procedure

The independent computation of the separators might create small segments along their

common boundary (see Fig. 4.1, left). The size of these segments depends on the level

of the refinement of the extrenal and internal boundaries. As we increase the number of

subsegments (thus decreasing the size of them), we also increase the probability of creating

these small segments. On the other hand, the graph partitioner has information only about

the size of the separators, and not about their quality, i.e., the angles tha t they form.

Although all the permissible separators form angles greater than a predefined lower bound

$o> we would like to choose the ones tha t are not only small, but also form the best possible

angles (close to 7t/2). In order to deal with these two issues we introduce a smoothing

procedure tha t improves the quality of the decomposition.

The smoothing procedure is performed in two steps. The first step takes place during the

construction of the graph G t - In this step we incorporate into the weight of the graph edges

two types of additional information: (a) the quality of the angles tha t the corresponding

separators form, and (b) the conformity with existing separators (i.e. if the separator’s

end-points meet at the end-points of an existing separator). The weight of each graph edge

is multiplied by a coefficient /o, which reflects the quality of the minimum angle <fi tha t the

corresponding separator forms. This coefficient is computed as /o = ^_$0+1, for </> < 7r / 2 ,

and ^/f-^o '+ i’ ôr ^ — 7r/ ^ ’ coefficient fo takes values from ^ - ^ o + i > when (j> > 7r/2,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

up to 1, when the minimum angle is equal to the minimum acceptable bound (f> — 4>o- So,

the weight of the graph edge is decreased proportionally to the quality of the minimum

angle.

We would also like to encourage the graph partitioner to choose separators that conform

with existing separators, i.e., th a t meet on the common boundary with the existing partial

separators of the adjacent subdomains. To this end we identify two types of boundary

points (see Fig. 4.1, right). Points of the first type are either initial points of the domain

boundary, or are end-points of an existing separator. In order to encourage the graph

partitioner to choose conforming separators, we decrease the weight of the graph edges

when these correspond to separators defined from points of the first type. These are end­

points of existing separators (or of the initial boundary), and the new separators that meet

at these points are conforming with the existing separators. The second type of points are

the middle points of segments defined by the first type points. We also reduce the weight of

the graph edges corresponding to separators defined from second type points. In this way

we increase the probability th a t a separator will be chosen tha t has end-points either on

existing end-points (first type points), or away from them (second type points).

The previous step awards conforming separators, and the ones tha t form better angles,

but it does not guarantee tha t these will be chosen by the graph partitioner. In order

to improve further the quality of the separator we introduce a second smoothing step, an

ad hoc heuristic, after the graph partitioning procedure. Instead of inserting the partial

separators chosen by the graph partitioner, we examine all the possible separators tha t

are close to the initial ones, and insert the optimal, according to an optimality function.

The neighboring separators are defined by the neighboring points to the end-points of the

initial separator. The optimality function computes the degree of quality based on : (a)

the size of the separator, (b) the minimum angle tha t it forms, and (c) the type of its

end-points. The value /o of the angle quality is computed as described above. The value

/ i reflects the conformity and is set to 0.5 for including first type points, 0.85 for including

second type points, and 1.0 otherwise. The normalized separator length is represented by

/ 2 - Finally, the imbalance, measured as the bigest subdomain area over the total area, is

represented by fy. Minimizing the four values /o, / i , / 2 , / 3 is an multiobjective optimization

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem. A common way to explore the solutions of multiobjective optimization problems

is by employing the notion of the Pareto surfaces (c.f. [25]). This approach provides a set of

solutions where a tradeof between the objectives occurs. An optimal balance between the

two subdomains is not a strict requirement, because the over-decomposition of the domain,

and also the divide and conquer way we create the subdomains. So we are satisfied to keep

the value fa less than a bound1 L& < 1. Then we select through a local search the partial

separator tha t minimizes the product / o / i / 2 -

The smoothing procedure, almost always, gives conforming separators tha t form good

angles. This depends though on the initial partition of the graph, the balance of the

decomposition, and of course, the geometric characteristics of the domain.

4.3 Parallel M ADD

The divide and conquer approach we use for decomposing the domain provides the way to

parallelize the MADD procedure. In the case of static decomposition with no smoothing,

each subdomain is decomposed independently. In this case it is straight forward to paral­

lelize the MADD procedure. When we use the dynamic approach and also the smoothing

procedure, then additional information must be communicated between neighboring sub-

domains. We have implemented a parallel MADD (PMADD) for the first case, where no

communication is needed. The second case is still parallelizable, but it requires additional

communication procedures.

Processors 1 8 16 32 48 64
Key domain
Subdomains 1 2 96 192 384 576 768

PMADD (secs) 0 . 2 0 0.37 0.44 0.60 0.83 1.05
Time / subdomain 0.017 0.004 0.0023 0.0016 0.0014 0.0014

Pipe domain
Subdomains 16 128 256 512 768 1024

PMADD (secs) 0.27 0.51 0.60 0.89 1.07 1.47
Time / subdomain 0.016 0.004 0.0023 0.0017 0.0014 0.0014

Table 4.1: Performance results for the parallel MADD for the Key and the Pipe geometries.

lrrhe default value for Lb is set to 0.75.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PMADD method is implemented using a master/worker model. Let P be the

number of processors, and N the number of subdomains we want to create. Processor 0

is used as the master processor, while all the processors, including processor 0 , are used

as worker processors. The master processor maintains a sorted list of the areas assigned

to each processor. In each iteration of the PMADD procedure a decomposition request

is sent from the master processor to the processors assigned with larger to tal areas. The

processors tha t receive such requests decompose their larger subdomain in two subdomains

using MADD. One of the two created subdomains is sent to a processor with small total

assigned area. The procedure is repeated until all N subdomains are created.

During the PMADD phase, the first P subdomains are created in log(P) iterations. The

total number of iterations for the parallel MADD phase is

^ j f + log(P) = 2(M - 1) + log(P),

where M = ^ is the average number of the final subdomains per processor. Typical

values for M in our experiments vary between 12 and 20. Each iteration is using on

average 2(M-l)+\g(P) = 2 (M-i)+~log(p) Processors) requiring communication volume of the

same order. The experimental results indicate a small slope linear time, as Table 4.1 shows.

4.4 N -w ay Graded Decom position

The N -way decomposition procedure we have described so far produces uniform domain

decompositions, i.e. the areas of the subdomains are approximately equal. This approach

is well suited for uniform mesh generation, but in many cases we would like to have a

graded, locally refined, mesh. In these cases a uniform decomposition will result imbalance

during the parallel mesh generation, and also during the parallel FD /FEM procedure. In

this section we describe a procedure tha t produces graded domain decompositions using the

MADD algorithm.

N -way graded domain decompositions can be produced in a similar way as the non­

graded ones, by recursively applying the MADD procedure. The only step tha t needs to be

modified is the way we choose the subdomain to be decomposed. In the uniform case, the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Graded MADD based on boundary weights. Left, a model of the Chesapeake
bay is decomposed in 1250 subdomains, with weights on all the boundary points and inter­
polation factor set to zero. R ig h t, detail of the decomposition, the irregular inner polygons
represent islands and are part of the initial domain.

subdomain with the larger area is decomposed, while in the graded case the subdomains

are “weighted” , and the subdomain with the largest weight is decomposed. There are two

ways to define the “weight” of the subdomains. The first is to define an area bound for

each subdomain. The second is to assign a relative density weight for each subdomain, and

use it as a gradation criterion. In the first case, the subdomain with the greater area to

area bound ratio will be decomposed, and no subdomain with area ratio greater than a

user-defined bound will be in the final decomposition. In the case of using a density weight

criterion, the subdomain with the greatest density weight is chosen to be decomposed, and

the parts of the geometry with greater density weights will be decomposed more intensively.

The subdomain weight is computed as the sum of a uniform weight, reflecting the area of

the subdomain, and the graded weight, reflecting the assigned weight to the subdomain.

The formula is

weight — u x subdomain_area + a x subdomain_weight,

where u and a are user defined weight factors.

While the subdomain area bound approach is a natural extension of the existing ap­

proaches for defining the element size of the mesh, it does not allow the user to predefine

the number of subdomains he wants to create. The number of subdomains depends not

only on the expected size of the mesh, which can be estimated through an area criterion,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but also by the number of processors tha t we want to utilize and the available memory.

Using density weights allows us to produce graded decompositions and at the same time to

predefine the number of subdomains tha t will be created.

In our implementation the decomposition procedure can be controlled in the following

three ways:

1. Using density weights on the boundary points.

2. Using density-weight or required-area values over an unstructured background mesh.

3. Using a density-weight function or a required-area function over a structured back­

ground grid.

C ase (1) The use of density weights on the boundary points is the simplest case, and

can be viewed a sub-case of the case (2). We describe it separately because it is simple

to define, and in some cases (like crack propagation) we need a better refinement near the

boundary. The weights assigned to the boundary are defined in the PSLG file tha t describes

the geometry. Each point, in addition to its coordinates, is assigned an integer density

weight value. A value of zero means tha t the point will not contribute to the density. Each

subdomain is assigned a density weight value, which is the sum of its boundary weights. An

interpolation factor allows the user to define the weights of the created internal boundaries;

we use a linear interpolation procedure. An interpolation factor of zero will assign zero

weights to the interfaces. Examples of this approach are depicted in Fig. 4.2.

C ase (2) In this case we use a density-weight or required-area background mesh. A set

of points in the interior, or on the boundary, of the geometry is assigned either with density

weights, which indicate the required level of refinement at the neighborhood of these points,

or with required area values, which indicate the area of the subdomain including this point.

The points typically would be vertices of a previous mesh (see Fig 4.4, left). The density

weight of each subdomain is computed as the sum of the weights of the points included in

the subdomain. An example of this approach is depicted in Fig. 4.3, which is a model used

to study the incompressible turbulent flow past a circular cylinder [33], and in Fig. 4.4. The

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n ■.. .»—»
J HL- □ 1 n hri

Mi
Figure 4.3: Graded MADD based on weighted background mesh. Top is the weight back­
ground mesh vertices of the Cylinder domain, and b ottom is the corresponding decompo­
sition in 280 subdomains.

Figure 4.4: Graded MADD based on weighted background mesh. Left is the weight back­
ground mesh vertices of the Pipe domain, and right is the corresponding decomposition
into 1250 subdomains.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: Left, the Key is decomposed in 1250 subdomains using a linear weight function,
proportional to x coordinate. R ight, the Pipe decomposed in 1315 subdomains using an
area function proportional to p12, where p is the distance from the center of the inner circle.

size of the background mesh should be proportional to the number subdomains we want

to create. Creating a large number of subdomains using few background points will result

poor quality of the subdomain gradation, with much larger subdomains adjacent to small

ones. This will increase the subdomain connectivity and the cost for the start-up in the

communication of the FEM solver. On the other hand, too many background points will

unnecessarily slow the procedure, without improving the quality of the gradation.

C ase (3) In this case we use a density weight function, or a required area function, to

control the gradation of the decomposition. These functions are evaluated over a structured

gird created on the fly during the decomposition procedure. The density-weight function

assigns a weight to each point of the created background mesh, and, as in case (2), the

density weight of each subdomain is computed as the sum of these weights. An example of

this approach is depicted in Fig. 4.5 (left).

The required-area function assigns to each point the maximum subdomain area tha t is

expected for the subdomain tha t includes this point. The required-area for a subdomain

is computed as the minimum of the required-area function values of all the mesh points

contained in the subdomain. In each step the subdomain with the highest ratio of area

over required area is chosen to be decomposed. The procedure is repeated, until no ratio is

greater than a user-defined bound (default is 1), or until a maximum number of subdomains

is reached. An example of this approach is depicted in Fig. 4.5 (right).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

M A D D Im plem entation and Experim ental

R esults

5.1 Im plem entation

The programming language for our implementation is C. The Triangle library ([8 6 , 77])

was used for the creation of the Delaunay triangulation during the MADD procedure. The

Metis library ([57, 45]) was used for the graph partitioning step in the MADD procedure.

Metis does not always produce connected components, while the MADD method requires

a graph partition into two connected subgraphs. A routine was implemented tha t identifies

these cases and restores the connectivity. There are also cases where the graph partition will

result the insertion of two partial separators tha t meet in the same boundary point. The

angle formed between these two separators might be less than the bound <f>o, giving a non-

acceptable decomposition. We have added a procedure tha t checks for these cases, modifies

and repartitions the graph, so tha t only angles > <X>o are created during the insertion of

separators. In general these cases correspond to high cut costs, due to the length of the two

intersecting separators, and in our experiments they rarely occurred.

5.2 Experimental Results

For our experiments we used three model domains. The Pipe model is an approximation of

a cross section of a regenerative cooled pipe geometry. It consists of 576 boundary segments

and 9 holes. The Key is a domain provided with Triangle [77], and has 54 boundary

segments and 1 hole. The Chesapeake bay (Cbay) model defined from 13,524 points and it

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: On the left the Pipe domain is depicted, and right the Key domain. Both are
decomposed uniformly into 1250 subdomains by the MADD procedure.

has 26 islands.

We ran three sets of sequential experiments. In the first set we produced uniform

decompositions for the three test domains using the static MADD. For the second set of

experiments we used the dynamic MADD on the Key domain, and we we compare the

results to the ones obtained by Metis, which is a state of the art graph partitioner. In the

third set of experiments we assess the performance of the graded MADD. The experiments

were performed on a Dual Pentium 3.4GHz processor.

S ta tic M A D D . In the first set of experiments we used the static MADD with a lower

angle bound of 60°. The results show tha t the time to decompose a domain is directly

related to the size of the domain (measured in number of segments), and the level of the

refinement we apply on it (see Figs. 5.2 -5.3). The problem size for all the major routines

(Delaunay triangulation, graph creation and partition) is proportional to the number of

the input segments, and thus we should expect this behavior. The level of refinement is

analogous to V N , where N are the number of subdomains. The refinement level, and the

decomposition times, for the Pipe and the Chesapeake bay tend to reflect this “square root”

behavior. This is not the case for the Key, which has few initial segments, and requires

more intense refinement in order to get good decompositions.

D y n am ic M A D D . For the second set of experiments we partitioned the Key geometry

up to 2,000 subdomains uniformly, using the dynamic MADD, and we compare the results

to those obtained by Metis, which a state-of-art partitioner often used for parallel mesh gen-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Pipe
- - Key
- - Ch. baya isooo

a 10000 T?

02 5000

Subdomains

— Pipe
—■ Key
— CBay

u<u(A
<us

0.8

Subdomains

Figure 5.2: Decomposition times for the Figure 5.3: The refinement (number of seg-
uniform static MADD. ments) for the uniform static MADD

eration. A background Delaunay mesh, of size approximately 120 triangles per subdomain,

was used for the Metis decompositions. The Delaunay mesh generation procedure is the

only one tha t provides quality guarantees, creating angles no less than 30°. The background

mesh was translated into a weighted graph, with weights reflecting the edge lengths and

the triangle areas, and then Metis was called to partition the graph. The dynamic MADD

implements the adaptive local refinement procedure described in Section 4.1. The lower

angle bound was set to 70°.

Figure 5.4 depicts the minimum, median and 90% quantiles of the angles created by

MADD. As expected, the minimum angles axe no less than 70°, while most of the angles

are close to 90°. In comparison, Metis gives minimum angles as small as the ones in the

background mesh (see Fig. 5.5). The efficiency of the MADD depends on the geometry

(Fig. 5.2), while the efficiency of Metis depends on the size of the background mesh. For

the Key geometry MADD performs better (see Fig. 5.6), for the Pipe the decomposition

times had small differences, while for the Cbay domain Metis performed better. The average

length of the separators per subdomain is almost the same (Fig. 5.7), with MADD being

slightly better. The maximum ratio of the subdomain separator length to the subdomain

area is the same for the two methods, see Fig. 5.8. The maximum subdomain area is close

to the average subdomain area for the MADD method (Fig 5.9), while Metis results almost

perfect maximum subdomain area due to the near perfect balancing tha t it produces.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

150

120
jU ’bfl
C

< J 90

60

30

° 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Subdomains

Figure 5.4: The angles created by MADD.
The minimum, median and 90% quantiles
are depicted.

2

1.5

H
0.5

° 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Subdomains

Figure 5.6: The decomposition times for
MADD and Metis. The mesh generation
time is included.

n 1 i 1 i 1 i 1 r

|«—»MADD|

rH n n n n n n n n n -

1 i I I 1 i I ■ I I L

o-o Metis

150

Subdomains

Figure 5.5: The angles created by Metis.
The minimum, median and 90% quantiles
are depicted.

Subdomains

Figure 5.7: The average separator length
per subdomain.

4

O
§
8

3

0 ,
200 400 600 800 1000 1200 1400 1600 1800 2000

Subdomains
o

Figure 5.8: The maximum ratio of subdo­
main separator length/subdomain area.

o-o MADD
o-0 Metis
»—* Mean Area

g 0.005

Subdomains

Figure 5.9: The maximum area of the sub-
domains. Metis gives identical maximum to
the mean area, a result of practically per­
fect balance.

All figures refer to uniform dynamic decompositions of the Key geometry.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6

2.4
— Pipe
—- Key
- - CBay

2.2

2

r-s 1,8 i/i
8
^ 1.4 u
S 1.2
P 1

0.8

0.6

0.4

0.2

00 200 400 600
Subdomains

800 1000 1200

Figure 5.10: Decomposition times for the
weighted boundary MADD.

2.6

2.4

2.2

2

1.4<u
6 1.2
P 1

0.8

0.6

0.4

0.2

0
0 200 400 600 800 1000 1200

Subdomains

Figure 5.11: Decomposition times for the
graded MADD using a weighted back­
ground mesh and weight functions.

Pipe (weight mesh)
Pipe (weight function)
Key (weight function)

G ra d e d M A D D . For the first group of graded decomposition experiments we used

boundary weights on the three domains. The user can control the gradation level, by setting

the gradation factor a, the uniform weight factor u, and the boundary interpolation weight,

p, tha t will be applied on the interfaces (see Section 4.4. The parameters for the Pipe and

the Key were u = 3, a = 3,p = 0.5, while for the Cbay they were u = 2, a = 3,p = 0.

The second group of experiments was performed on the Pipe domain using a background

mesh of 1,010 points. Both area and weight values over the background mesh were used,

and they produced similar decompositions for the same number of subdomains (see Fig.

4.4). The quality of the gradation depends on the ratio of the number of mesh points

to the number of subdomains, as well as the gradation of the background mesh. Domain

decomposition into a large number of subdomains, while using a small number of background

mesh points, will result poor gradation.

We also tested the Pipe and the Key domains using weight and area functions, evaluated

over a structured grid. This grid is created on the fly, when each subdomain is created; it

includes a total of 21,684 points for the Pipe domain and 8,115 points for the Key. This high

number of the points results in a good approximation of the density for each subdomain

(the decompositions are depicted in Fig. 4.5), while the cost to create them is small (see

Fig. 5.11). Of course, defining the functions analytically has the advantage of avoiding the

interpolation procedure, which can have a significant cost. The weight and area functions

are defined by the user and are linked dynamically, during the execution of the program.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

The Uniform Decoupling M ethod

6.1 The Decoupling Zone

The separators and the subdomains created by the MADD procedure have good quality

in terms of the shape and size. Our goal though is to be able to create Delaunay meshes

independently for each subdomain, and the previous procedure cannot guarantee this. In

order to create the mesh independently in each subdomain we have to ensure tha t the

final mesh will be Delaunay conforming. Blelloch et al [8] describe a projective method for

decoupling the parallel Delaunay triangulation procedure for a set of points. A study of

conditions for a priori conformity for constrained Delaunay triangulations is presented by

Pebay and Pascal [6 6]. A projective separator approach is used by Galtier and George [37]

for generating a Delaunay mesh independently in each subdomain. This approach though

does not always guarantee a priori Delaunay conformity, and may suffer form set-backs.

Said et al [73] describe a procedure for generating independently a 3D Delaunay mesh on a

distributed memory environment, again with no quality guarantees.

In order to ensure the Delaunay conformity in the mesh generation context we will

refine the separators using conditions derived from the mesh refining algorithm. A special

“zone” around the segments of the separators (see Figure 6.1) will guarantee that the mesh

generation procedure can be applied independently on each subdomain, giving a Delaunay

conforming mesh for the whole domain, formed by the union of all the submeshes.

Let M. be a Delaunay mesh generation procedure. Let B = d be a PSLG, where Q

is the domain we wish to mesh, as defined in Section 1.3. Let V be the set of piecewise

linear separators that decompose the domain D in n subdomains D{ and let Bt = dD t be

the boundaries of the subdomains.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1: A fraction of the pipe intersection. Left: Part of the separators H inserted
by MADD. M idd le : Refining Tt gives a decoupling path V\ the decoupling zone Z p is
depicted. R ig h t: Ruppert’s algorithm was applied on the subdomains with an element
area restriction; Z-p is empty and V is invariant. The final mesh is Delaunay conforming.

D efin ition 5. The set of the open diametral circles of all the segments that form V is be

called the decoupling zone o fP and is denoted by Zp .

D efin ition 6 . V is a decoupling path with respect to M , i f after applying M. independently

on the subdomains Di, i = 1, ...,n , the decoupling zone Z p is empty.

P ro p o s itio n 7. Let Mi the mesh produced by A4 on the subdomain Di. I f V is a decoupling

path with respect to M , then the union UMi is a conforming Delaunay triangulation.

Proof. Let M be the Delaunay triangulation of the vertices Vm = UVa^ of UMi. We will

prove tha t M = UMj, by showing tha t the set of edges S of M are identical to the set

of edges US) of UMj, thus the two triangulations are the same and UMi is a conforming

Delaunay triangulation.

First we observe tha t V is a subset of both S and US). because its decoupling zone is

empty. For any edge ab G S there are two cases: (i) Both end points a, b belong to the same

subdomain M j, a,b G Vmj ■ (ii) a G Mi and b G M j \ Mi.

Case (i). Suppose a, b G Vjm.. From the local Delaunay property, there is an empty

circumcircle C of ab which does not include any points in Vm- Because Vm, C Vm, C must

be empty in the set VMr Thus ab G S j and ab G US',t.

Case (ii). We will show tha t this case cannot occur, there is no edge ab G S such that

a G Mi and b G M j \ Mi. Suppose we have such an edge ab. Then ab C D and, since the

subdomains Mi and M j are separated by V , a and b are separated by V . So ab fl V ^ 0.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the other hand we have P C S , which means tha t two edges of the triangulation M

intersect. This contradicts the definition of a mesh (rule 2 in the Introduction).

Since case (ii) cannot occur, we conclude from case (i) that S C U5V The two triangu­

lations M and U M j must have the same number of edges, so we have S = US'.;, and thus

M = U M j. This proves the proposition. □

P ro p o s itio n 8 . I f the algorithm M is a mesh refinement algorithm, then the decoupling

path V is invariant during the steps o f M , in which the Delaunay property is maintained.

Proof. Suppose tha t during the procedure A4 an edge s € V is destroyed. T hat means tha t

the diametral circle Cs of s includes some point. Since M does not remove points, Cs will

not be empty after the termination of M .. This contradicts the definition of the decoupling

path. □

Proposition 7 proves that, provided tha t we have constructed a decoupling path, the

subdomains can be meshed independently and the final mesh will be Delaunay conforming.

Observe tha t these results are true for a geometry in any n-dimensional Euclidean space

Our next step will be to construct a 2D decoupling path from the separators created by

MADD.

The decoupling path is defined with respect to a mesh generation procedure and, in

many cases [17, 72], the stopping conditions of the mesh generation algorithm allow us to

compute the length of the edges of the separators, so tha t these edges will form a decoupling

path. Then we only have to refine the segments of the separators, acquiring this predefined

length.

For the sequential mesh procedure we will consider Ruppert’s algorithm [72], and The­

orem 1 will be used for the decoupling procedure. The only requirement for R uppert’s

algorithm is tha t the boundary angles must be at least 60°1. Provided tha t our initial

boundary fl satisfies this criterion, we can apply MADD to decompose Q, using an angle

bound $ 0 = 60°. So, both the constructed separators and the external boundaries form

angles > 60°. Consequently the created subdomains are acceptable for this mesh generation

algorithm.

lrThis condition is relaxed in improved versions of the algorithm.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Construction of the Decoupling Path

Let B = d fl be the boundary of the domain ft, and TL the set of separators in ft created by

the MADD method using an angle bound of <F0 = 60°. Let B, = dD j be the boundaries of

the created subdomains and D p = D U TL.

In order to construct a decoupling path V from the separators TL we will refine TL by

inserting points along its edges, obtaining a desirable segment length. The calculation of

this length is based on a parameter k. Let L = min{|,s|/ s is a segment of TL}. Let k be a

real constant parameter, such that

0 < k < min(lfsmin(L>w), L /4). (6 .1)

The parameter k will be calculated from the conditions of the algorithm, so tha t it can be

guaranteed tha t no edge will be created with length less than k.

The following lemma describes the refining procedure of TL.

Lem m a 9. Let s be a segment ofTL. Then there is v £ N such that, after inserting u — 1

points bi on s, we have k < \b{bi+i\ < 2k for any two consequent points

Proof. Let I be the length of the segment s and v such that 2(v — l)/c < I < 2i/k. Then,

by dividing the s into u equal subsegments, we have for the length I' of the subsegments:

2(t7 1}fc < l ' < 2k. For v > 3, we have 2^ ~ 1̂ > ^=, and this proves the lemma. □

Let V be the separators TL after we have inserted the points bi, as described in the

previous lemma, and let D-p = D U V. The following lemmata hold.

Lem m a 10. Let bi,bi+1 two consequent points inserted on a segment s of TL. Then the

diametral circle of h,;6 ,;+i is empty.

Proof. The diametral circle C of 6 A + i is contained in the diametral circle of s , which by

the MADD construction does not include any of the points of D p.

The remaining points to be examined are the inserted points bj. We have tha t all the

angles are greater than 60° and, from Lemma 9, no created segment is less than half of any

other created segment. Consequently, C cannot contain a point bj created by the refining

procedure. □

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L em m a 11. The following inequality holds: Ifs^ ^ jDy) > k.

Proof. We have from the relation 6.1 tha t lfsmin(D ^) > k. We will examine the distances

created by the inserted points.

Let bi be a point inserted in a segment s of H. For the distance d of bi from a non

incident to s segment we have d > lfsmin(Hw) > k. The same holds for the distance d' from

points tha t are not incident to s, because we have d' > d > k .

For the distance d between bi and an incident segment we have d > s in60° ■ - ^ k = k.

Finally, the distance between bi and a point tha t belongs to an incident segment is greater

than the distance d of the previous relation, and this completes the proof. □

The previous lemma demonstrates the property tha t will be used to prove tha t V is a

decoupling path. Our next step will be to calculate the parameter k.

Ruppert’s algorithm can be applied using either the quality criterion for the circumradius

to shortest edge ratio, or by adding a criterion for the maximum area of the created elements.

We will calculate k for this two cases separately. We will prove tha t V is a decoupling path

for the two cases: (I) When R uppert’s algorithm is applied with only the quality criterion of

the circumradius to shortest edge ratio. (II) When it is applied with an additional criterion

for the maximum triangle area.

6.3 Proof of Correctness

C ase I: T h e ra tio c r ite r io n

In this case we are only interested for the circumradius to shortest edge ratio. Since k gives

a bound for the size of the created segments, we would like k to be as big as possible and at

the same time satisfy the relation 6.1. Proposition 1 and Lemma 11 indicate tha t we can

define k = min{lfsmin (Dh) , L / 4}.

P ro p o s itio n 12. Define k = min{//smin(T>7^), L/A} and let V be the piecewise linear sep­

arators as constructed in Lemma 9. Then V is a decoupling path with respect to Ruppert’s

algorithm.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. According to Theorem 1, R uppert’s algorithm when applied to a subdomain Bi, will

not create segments less than lfsmin(Rj). We will show ad absurdo tha t the decoupling zone

Z-p is empty after the term ination of the algorithm.

Suppose tha t Z p is not empty after the mesh procedure and some points have been

inserted in it. T hat means tha t some boundary segments of V have been encroached and

thus have been split in half. Prom Lemma 9 the length of the segments of V is less than 2k

and by splitting them the created segments will have length less than k. This contradicts

to Proposition 1 because, from Lemma 11, we have lfsmin(Rj) > lfsm;n(Dp) > k.

Thus the decoupling zone Z p is empty after applying R uppert’s algorithm, and V is a

decoupling path with respect to this algorithm. □

C oro lla ry 13. V remains invariant during Ruppert’s algorithm execution.

Proof. R uppert’s algorithm does not remove points and maintains the Delaunay property

after inserting a point. The corollary is a direct consequence of the previous proposition

and of Proposition 8 . □

Proposition 12 states tha t we can process the subdomains independently, using Rup­

pert’s algorithm, and the final mesh will be Delaunay conforming and of guaranteed quality.

Next we will examine the case where we have an additional condition for the area of the

triangles.

C ase II: T h e ra tio a n d m ax a re a c r ite r ia

In this case, besides the circumradius to shortest edge ratio condition, we have an additional

criterion for the maximum triangle area. In many cases we want to construct Delaunay

meshes, not only with good quality of angles, but also of a desired maximum size. Let A

be a bound to the maximum triangle area, then all the triangles of the final mesh will have

an area at most A. To achieve this, the mesh generation algorithm will split the triangles

in two cases: (a) Because of the bad circumradius to shortest edge ratio, (b) Because the

area of the triangle is greater than A.

We will calculate k so tha t the previous results will remain valid.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L em m a 14. Let I be the smallest edge of a triangle with area greater than A and circum­

radius to shortest edge ratio at most \/2 . Then I >

Proof. Let r be the circumradius of the triangle. Then j < y/2 and A < r -I. So, A < r ■ I <

=$> i > . / Xv/2 V v'T

We want to define k in such a way tha t the mesh generation procedure will not create

edges smaller than k. The previous lemma indicates tha t we should have k < We

will take k — min{lfsmin(D-^), L/4, Then Lemma 11 holds, and we have the

following theorem:

T h e o re m 15. Let k = min{ lfsm-,n(D n), L/4, be the parameter for the point inser­

tion procedure in Lemma 9, and V the produced set of separators. Then V is a decoupling

path with respect to Ruppert’s algorithm with the criteria o f maximum circumradius to

shortest edge ratio y/2 and maximum triangle area A.

Proof. There are two cases for splitting a triangle: a) because of its circumradius to shortest

edge ratio, or b) because of its area.

When R uppert’s algorithm splits a triangle because of its circumradius to shortest edge

ratio it does not create edges smaller than lfsm;n(_D-p) > k. If a triangle is split because of

its size, then from Lemma 14 we have tha t the smaller created edge will be no less than

> k. In both cases no edge smaller than k will be created.

It is easy to see now tha t the decoupling zone Z-p will be empty, after R uppert’s algo­

rithm has been applied on the subdomains Bi with the additional condition of a maximum

triangle area A. If this was not so, then some edge of V would be encroached and split.

From Lemma 9 the new edges will be smaller the k, which is a contradiction. □

In summary, the procedure of preprocessing the separators created by MADD, as de­

scribed in Lemma 9, creates a decoupling path with respect to R uppert’s algorithm, in both

cases of the quality and the size criteria. In the first case, the construction is based on the

minimum local feature size, while in the second the maximum area of the triangles is taken

into account.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The size optimality (times a constant) of the mesh produced by R uppert’s algorithm,

when only the the angle criterion is used, is based on to local feature size [72, 78]. The

size optimality, combined with the angle quality, provides the basis of the adaptivity to the

geometry, tha t the Delaunay mesh displays. On the other hand, the insertion of separators

by itself changes the geometry to be meshed, and the uniform refinement of the separators

alternates the local feature size of the geometry. After applying the decoupling procedure,

the size optimality of the mesh is not any more guaranteed. The use of the local feature

size, instead of the global minimum, in creating the decoupling path, would improve the

gradation and mesh size, especially when there are big differences in the local feature size.

In cases though where the geometry is very simple but h-refinement is im portant [33], we

would like to limit the area of the triangles, and in these cases the optimality of the mesh size

is not based on the local feature size. The meshes produced using the area restriction are

usually much larger, and thus more prompt for parallel processing. The experiments that

we ran show tha t the over-refinement imposed by the decoupling procedure is insignificant

(see Section 6.5), when the area criterion is used.

The creation of the decoupling path allows us to generate Delaunay meshes, indepen­

dently for each subdomain, with good angle quality and of the desired size. The final mesh,

formed by the union of the submeshes, is Delaunay conforming. As a result, this procedure

decouples the domain and enables us to parallelize the mesh generation procedure, while

eliminating the communication between the processors.

6.4 The Parallel Delaunay Decoupling Procedure

The procedure for the parallel mesh generation consists of two steps:

1. The parallel MADD (PMADD) phase: In this step the domain is decomposed using

the parallel MADD method in a master/worker processor scheme (see Section 4.3),

and the subdomains are distributed to the processors.

2. The mesh generation phase: This step is performed independently for each subdomain

and includes two sub-steps:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: The Pipe domain uniformly meshed by the Decoupling procedure. Right is
depicted a detail of the mesh, where the decoupling path is shown.

(a) The decoupling of the subdomains by refining the interfaces, as described in

Section 6.2.

(b) The mesh generation on the subdomains. In this step the sequential mesh gen­

erator is applied independently on each subdomain.

During the PMADD phase the domain is over-decomposed (i.e. we create N » P

subdomains, where P is the number of processors), in order to achieve good load balancing

(see Section 6.4). The created subdomains are are assigned a priori to the processors and

no data movement takes place after the PMADD phase. After the requested number of

subdomains have been created, the master processor sends requests to all processors to

mesh the subdomains assigned to them. Each processor iterates through its subdomains

and performs two steps:

(a) Refines the interfaces, where the separators created by the MADD are refined by

inserting vertices, as described in the decoupling procedure in Section 6.2, according to

the given mesh quality criteria. The parameter k , tha t determines the refinement of the

separators, is computed before the mesh generation phase begins, and is used to refine the

internal boundaries of all the subdomains, independently for each subdomain. Although

each interface is refined independently for the two subdomains where it belongs, the result

is conforming, because the same parameter k is used, the same orientation for the interfaces,

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and of course the same algorithm.

(b) The mesh generation procedure is applied on the subdomains independently. The

sequential mesh generator is used as is, in the form of a library. The interfaces, since they are

refined from the decoupling procedure, will not be further refined form the mesh generation

procedure and they will remain unchanged, as proved in Section 6 . So, no communication

is required, and the created meshes are Delaunay conforming. The procedure terminates

when all the meshes for subdomains have been created. The parallel procedure is described

by Algorithm 6.1

S ta tic L oad B a lan c in g During the PMAAD phase the subdomains are assigned to

the processors and no data movement takes place after this phase. This induces an a

priori, static, load balance. Our experiments show tha t more than 99% of the to tal time

is spent in the meshing phase (see Section 6.5), which does not suffer from communication

or synchronization cost. Thus, the work-load balance among the processors is the main

parameter tha t affects the performance of the method. The load balancing problem for mesh

refinement is a difficult problem, because of the unpredictable computational behavior of the

meshing procedure. The problem becomes more approachable by the use of the PMADD

for over-decomposing the domain. The over-decomposition approach creates much more

work-loads than the avaliable processors [47]. This results higher granularity of the work­

loads, and thus achieves better load balancing among the processors [22]. The goals of

the PMADD is to minimize the larger area and to distribute the subdomains uniformly to

the processors. The obtained subdomains have similar geometric shapes, and their area is

proved to be a good measure for estimating the work load for the mesh generator.

Our experimental data show, for the geometries we tested so far, tha t the parallel MADD

procedure creates subdomains with similar “good” shape (see Figure 5.1), when the number

N of subdomains is large. Figure 6.3 shows that, as we increase N , and thus decrease the

area of the subdomains, the meshing time converges, with very small differences between

subdomains of similar size. This result demonstrates tha t the area of the subdomain can be

used to estimate the work-load of the mesher for this subdomain. Of course this depends

on the geometry of the original domain, which is one of the parameters tha t determine the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgor ith m 6.1.

M a s te r P ro cesso r:
1. Read the definition of the domain fi
2. Initialize and maintain a sorted list of the areas of the subdomains
3. w hile the current number of subdomains is less than N do
4. sen d decompose requests to processors tha t are assigned

large area of subdomains
5. rece ive replies about decomposition and area information
6 . en d w hile
7. send requests to processors to decouple and mesh their subdomains
8 . receive replies u n til all processors completed meshing
9. send requests for termination

W o rk er P ro cesso rs:
1 0 . w hile not term inate do
11. rece ive request from Master and/or other workers
1 2 . if request is to decouple th e n
13. Apply MADD on the largest subdomain
14. sen d reply to Master
15. send a new subdomain to other processor
16. e n d if
17. if request is to receive a subdomain th e n
18. Add the new subdomain to this worker’s mesh-queue
19. sen d reply to Master
2 0 . e n d if
2 1 . if request is to start meshing th e n
2 2 . fo r each assigned subdomain do
23. Refine the separators according to the decouple procedure
24. Apply the sequential mesh generator on the subdomain
25. end fo r
26. sen d completion message to master
27. e n d if
28. endw hile

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

+ Pipe

4

1

0,
0.02 0.04

Area
0.080 0.01 0.03 0.05 0.06 0.07

Figure 6.3: Mesh time for different sizes of
subdomains of the key and the pipe geom­
etry.

10

Pipe, 50M elem., 1024 subdomains
■ MADD
$ MADD idle, communication
g meshing

9

8

7

m
6

-I
I 5

l\4

3

2

1

0
Processor Number

Figure 6.4: The work balance for 64 procs,
50M elem.

1000

900

800

700

600

\ 500

' 400

300

200

 .11 " " 11 " i 111 11
Pipe, 2B elem., 1024 subdomains

I MADD
$ MADD idle, communication
g meshing

21 28 35 42
Processor Number

1000

900

TT T TT T
Pipe, 2B elem., 1280 subdomains

I MADD
& MADD idle, communication
g meshing

14 21 28 35 42 49 56 63
Processor Number

Figure 6.5: The work balance for 64 procs.
2B elem., 1024 subdomains for the pipe.

Figure 6 .6 : The work balance for 64 procs.
2B elem. 1280 subdomains for the pipe.

level of required decomposition.

The load balance among the processors is achieved by balancing the total area of the

subdomains assigned to each processor. The first effort to create subdomains with similar

sizes takes place during the graph partition. This result though is not guaranteed, and

the obtained subdomains can have differences in size. By over-decomposing we have the

ability to distribute the subdomains, so tha t each processor is assigned approximately the

same total size. Moreover, the random distribution of the subdomains gives a more uniform

assignment of subdomains tha t differ from the average in terms of size and geometry. The

results of this simple approach are good. Figure 6.4 depicts the load balance among 64

processors for the pipe geometry, for 1024 subdomains and 50M mesh size. This picture is

typical in most cases. However, we have observed tha t the load balance does not depend

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only on the geometry and the size of the subdomain, but also on size of the created mesh.

Figure 6.5 shows the load balance for the same decomposition of the pipe, as in Fig. 6.4,

this time for a mesh size of 2 billion elements. We see tha t the good load balance of the

Figure 6.4 is destroyed. The reason for this is that the time for creating larger meshes is much

more sensitive to area and geometry differences. The answer to this problem is to increase

N . In this way we improve two parameters: i) the size of the mesh for each subdomain is

decreased, and thus the time to create it is less sensitive to the differences, and ii) a more

uniform assignment of the subdomains can be accomplished. Figure 6 . 6 shows the balance

for the same mesh size, 2 billion elements, by decomposing it into 1280 subdomains. This

small increase of the number of subdomains gives an impressive improvement, the load

balance is satisfactory and the to tal time is decreased in less than half, the reasons are

described in Sections 6.5, 6.5.

The previous example shows tha t the load balance is sensitive to the size of the final

mesh. The level of the required decomposition depends not only on the geometry and the

number of the processors, but mainly on the size of the final mesh. Let E be an estimation

for the final size of the mesh in millions of elements. From our experiments we found that,

for our setup, the number of subdomains should be at least N = Yg. This means tha t in

average 1.6M elements will be created for each subdomain. A higher decomposition has, of

course, higher time cost, but this cost is insignificant against the gain, Figures 6.5 and 6 .6 ,

as well as the results in the next section demonstrate it. A dynamic load balance approach

is described in Section 7.6.

6.5 Performance Evaluation

We evaluate the Parallel Delaunay Decoupling (PDD) method with respect to three re­

quirements: (1) stability, (2) parallel efficiency, and (3) code re-use. Our experimental data

indicate tha t the PDD method is stable i.e., the elements of the distributed mesh retain

the same good quality of angles as the elements generated by the Triangle (see Figures 6 .8

and 6.13 (right)); at the same time it is very efficient as our fixed and scaled speedup data

(see Figures 6.12, and 6.13 (left)) indicate. Finally it is based on 100% code re-use i.e.,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing sequential libraries like Metis and Triangle are used without any modifications for

the parallel mesh generation.

E x p e r im e n ta l S e tu p . We have used two model domains (see Figure 5.1, with relatively

simple geometries2: The Pipe, a cross section of rocket from a NASA model problem where

the peripheral pipes are used to cool the main cylinder in the center tha t contains combus­

tion gases, and the Key, a domain provided with Triangle. We ran three sets of experiments:

(1) to observe the behavior of the MADD and Decoupling method in sequential execution

for small meshes, 4-5 million (M) elements, (2) to calculate the fixed speedup for fixed size

meshes of the order of 40-50M elements, and (3) to compute the scaled speedup for meshes

whose size range from 12M to 2 billion (B) elements.

The programming language for our implementation was C + + and DMCS [3] was used as

the communication substrate. The Triangle [77] library was used for the mesh generation

procedure as well as for the creation of the Delaunay triangulation during the MADD

procedure. The parameters passed to Triangle for the mesh generation were two: (a) for

the quality the elements (Ruppert’s algorithm is used to achieve circumradius to shortest

edge ration less then a / 2), and (b) for the maximum area of the generated elements. Also,

Metis [45] was used for the graph partitioning step in the MADD procedure. The cases that

Metis returned non-connected subgraphs were recognized and discarded. All the libraries

where used without modifications, minimizing the cost for the parallel implementation and

achieving 1 0 0 % code-reuse.

The experiments ran on SciClone, a high-performance computing environment in the

College of William and Mary. SciClone is a heterogeneous cluster of Sun workstations which

use Solaris 7 operating system. For our experiments we have used a subcluster of 32 dual-

cpu Sun Ultra 60 workstations 360 MHz, with 512 MB memory and 18.2 GB local disk.

Networking was provided by a 36-port 3Com Fast Ethernet switch (lOOMb/sec).

2The complexity of the geometry will challenge the PMADD and in particular the Delaunay triangulation
procedure. Provided the efficiency of Triangle, this shouldn’t be a problem. The mesh refinement procedure
will be applied on the created subdomains, which have simple geometries. However, for three dimensional
cases the complexity of the geometry is a much more serious issue.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sequential E xperim ents

We ran a set of sequential experiments in order to compare the sequential Delaunay decou­

pling method, where we over-decompose the domain, with Triangle, the best known publicly

available sequential guaranteed quality Delaunay mesh generation code for two dimensional

domains. In these experiments we examine the affects of the decoupling procedure with

respect to the performance of the mesh procedure, the size of the final mesh, which indi­

cates tha t the over-refinement we introduce is insignificant, and the quality of the elements

in terms of the angle distribution. The size of the meshes we created is limited by the

size (5.5M) we were able to generate with Triangle due to memory limitations. However,

using the Delaunay decoupling method we were able to generate more than 30M on a single

processor.

Figure 6.7 shows the ratio of the size of the decoupled meshes over the size of the non­

decoupled mesh, which is a measure of the over-refinement we introduce when we decouple

the domains. Similarly, Table 6.1 presents the number of elements for different levels of

decoupling. The over-refinement is insignificant, it is less than 0.4%, despite the intense

over-decomposition (less than 90K elements per subdomain).

Key, 5M elem.
— 1 subdomain

32 subdomains
64 subdomains

0.03

80 100
Angle (degrees)

120 180

— Key, 3M elem.
 Key, 5M elem.
 Pipe, 3M elem. J
— - Pipe, 5M elem.

5 1.005

20 30
Number of Subdomains

40 50 60 7010

Figure 6.7: The increase of number of ele- Figure 6 .8 : The angle distribution for dif-
ments for decoupling into different number ferent number of subdomains,
of subdomains.

The overhead of the sequential MADD method is approximately linear with respect to

the number of subdomains, see Figure 6.9. This overhead is small compared to the mesh

generation time. The total execution time using the sequential decoupling procedure is

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Subdomains 1 8 16 32 48 64
Key elements 5,193,719 5,197,066 5,200,395 5,203,023 5,208,215 5,210,857
Total time 46.146 38.414 38.204 37.590 37.322 37.333
Pipe elements 5,598,983 5,602,668 5,605,819 5,607,055 5,609,404 5,613,624

Total time 59.263 41.342 41.046 40.370 40.352 40.147

Table 6.1: The number of elements and the total time (in seconds) for the same mesh
generation parameters and for different levels of decoupling. The times do not include the
mesh merging procedure.

a—o Key
s o Pipe0.6

0.5

5 0.4

c5 0.3
•a•3
5 10.2

C/3

0.1

0
20 30 40

Number of Subdomains
10 50 60 70

Figure 6.9: The time for the sequential
MADD.

o—o Key, 3M elem.
o . o Key, 5M elem.
* •• a pipe, 3M elem.
v —v Pipe, 5M elem.

SP
j

Number of Subdomains

Figure 6.10: The time for sequential mesh­
ing after decoupling into subdomains. The
times do not include the mesh merging pro­
cedure.

decreased up to 6 8 % of the time it takes for Triangle to generate a mesh with the same

quality. As the size of the mesh increases the performance of the decoupling procedure

compared to Triangle is improving even further, because the size of the working set for each

subdomain is smaller and the Delaunay mesh algorithm used in Triangle has a non-linear

time complexity [77].

The quality of the elements produced after the decoupling of the domain into subdomains

is evaluated by comparing the distribution of angles. We compare the angles of the elements

from both the non-decoupled mesh generated by Triangle and the decoupled ones generated

by our method. Figure 6 . 8 shows tha t the distribution is the same. The above results hold

as we scale the mesh size in our parallel experiments.

In summary, the decoupling method demonstrates merits even for sequential mesh gen­

eration. The gains in the performance from the better memory utilization cover the small

overheads due to decoupling and over-refinement, while the element quality is independent

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the decoupling, which shows tha t our method is stable regarding the quality of the mesh.

Parallel E xperim ents

We performed two sets of experiments in order to calculate the fixed and scaled speedup

using 8 , 16, 32, and 64 processors. W ith 64 processors we were able to generate 2.1 billion

(B) high quality elements for the Pipe in less than 3.5 minutes, while using Triangle [77] on

a single workstation we were able to generate 5.5 million (M) elements in about one minute

(see Tables 6.1 and 6.3).

In the rest of the section we present performance data for both the parallel medial axis

domain decomposition (PMADD) method and the parallel mesh generation. The PMADD

procedure is evaluated in terms of its total parallel execution time which includes some com­

munication and idle time and the maximum computation time spend on a single processor.

The parallel mesh generation phase does not require communication and its performance is

measured in terms of maximum and average computation time of processors. The ratio of

these two numbers is used to measure the load imbalance of the parallel meshing phase.

Finally, we evaluate the scalability of the method in terms of two performance criteria:

(1) the average tim e tha t it takes for one element to be created on a single processor,

over all the processors and elements tha t are created, and (2) the overhead cost (due

to decomposition and parallelism) for each processor we use. Both criteria indicate tha t

the parallel mesh generation method we present here is scalable and tha t we can generate

billions of elements with insignificant overheads (see Table 6.3).

Fixed Size M esh E xperim ents In the fixed size set of parallel experiments we used a

mesh of 40M elements for the Key domain and 50M for the cross section of the Pipe. For the

key domain we created 1 2 subdomains for each processor while for the pipe 16 subdomains.

The maximum triangle area is fixed throughout the experiments for each domain.

The results are presented in Table 6.2. The data again indicate an unimportant increase

in the number of elements for the different levels of over-decomposition, which shows tha t the

over-refinement we introduce is insignificant. The total execution time and the computation

time for the actual mesh generation are depicted in Figure 6.11. These times are very close,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pipe 50M, total time
Pipe 50M, meshing time
Key 40M, total time
Key 40M, meshing time

400

300

0 250

| 200

150

Number of Processors

» --» Pipe 50M
*—a Key 40M
— linear speed-up

Number of Processors

Figure 6.11: The performance for fixed size Figure 6.12: The speedup for fixed size
mesh. mesh.

No of processors 1 8 16 32 48 64
The Key Domain
No of subdomains 1 2 96 192 384 576 768
Mesh size (M) 43.32 43.34 43.37 43.41 43.43 43.45
PMADD time 0 . 2 0 0.37 0.44 0.60 0.83 1.05
Meshing time 386.32 42.35 20.72 1 0 .1 2 6.79 4.96
Total time 386.52 42.72 21.16 10.72 7.62 6 .0 1

The Pipe Domain
No of subdomains 16 128 256 512 768 1024
Mesh size (M) 50.93 50.97 51.00 51.05 51.08 51.11
PMADD time 0.27 0.51 0.60 0.89 1.07 1.47
Meshing time 374.15 48.80 24.03 11.80 7.93 5.74
Total time 374.42 49.29 24.63 12.69 9.00 7.21

Table 6.2: Performance data for the key and the pipe geometry for a fixed maximum element
area. All times are in seconds and mesh sizes are in millions (M).

because the PMADD overhead cost is very small. This cost is neutralized by the effect

of over-decomposition, which along with the good load balancing and zero communication

during the parallel meshing, lead to superlinear speedup, see Figure 6.12. The speedup

is calculated against the total time it takes to create the mesh on one processor, as it is

presented in Table 6.2.

Scaled Size M esh E x p e rim e n ts A more practical way to evaluate the scalability and

true performance of a parallel algorithm and software is to scale the size of the problem

in proportion to the number of processors used. In the following experimental data we

use the same level of decomposition for every configuration of processors, i.e., we keep the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average number of subdomains per processor constant, and thus we eliminate the effect of

over-decomposition in the resulting performance data. Theoretically we should be able to

achieve the same creation time per element per processor for all the parallel configurations

independently of the number of processors used. However, this is not feasible for the

following two reasons: (1) the decomposition overhead, which increases very slowly but

nevertheless there is an increase in the overhead as the number of processors increases and

(2) load imbalances due to unpredictable and variable computation of the mesh generation

kernel.

Table 6.3 shows some performance indicators for the two model problems we use, the

key and the pipe geometry. In the experiments for the key model we created 12 subdomains

per processor and generated on average 1.6M elements per subdomain i.e., total 20M per

processor. For the pipe model we created 20 subdomains per processor and generated on

average 1.6M elements per subdomain i.e., to tal 32M per processor. Small differences exist

in the size of the mesh because our stopping criteria are based on the quality and size of

elements, and thus the mesh size cannot be exactly predefined. It is clear from the Table 6.3

tha t for larger processor configurations, like 64 processors, the 99.5% of the total execution

time is spent in the meshing phase by the Triangle. This suggests tha t for realistic problems

the PMADD overhead is about 0.5% of the total execution time.

We observe that, while the max PMADD time on one processor remains almost con­

stant, the time for PMADD phase increases as the number of processors increases. This

is in agreement with the analysis in Section 6.4. As the number of processors increases,

the number of PMADD iterations increases, although the number of the subdomains per

processor is constant. In each PMADD iteration all the processors finish the decomposition,

before the next iteration begins. This synchronization imposes an additional cost in the

PMADD time. Moreover, the communication during this phase increases, as the number of

processors increases. Fortunately, the communication and synchronization cost is less than

0.02 secs per processor. In comparison with the total execution time this cost is very small.

The load imbalance is measured by the ratio of the maximum meshing time on one

processor and the average meshing time for all the processors. In Table 6.3 we observe that

the load balance for the pipe is very good, 1.14 for 64 procs, while for the key is satisfactory,

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No of processors 1 8 16 32 48 64
The Key Domain
No of subdomains 1 2 96 192 384 576 768
Mesh Size 20M 160M 320M 650M 860M 1.3B
Total time 152.43 177.31 192.41 213.91 166.10 205.26
Max meshing Time 152.23 176.92 191.93 213.26 165.25 204.19
Aver, meshing Time 152.23 165.75 168.04 170.31 137.70 163.14
Imbalance 1 1.067 1.142 1.252 1 .2 0 0 1.252
MADD Phase time 0 . 2 0 0.38 0.44 0.63 0.84 1.05
Max MADD time 0 . 2 0 0.14 0.13 0.13 0 . 1 2 0.13
Tot. time/(elem./procs) 7.33 8.73 9.47 10.54 9.20 1 0 .1 1

Additional Cost /procs 0 % 2.4% 1 .8 % 1.4% 0.5% 0 .6 %
The Pipe Domain
No of subdomains 2 0 160 320 640 960 1280
Mesh size 32M 240M 500M IB 1.4B 2.IB
Total time 236.00 247.10 245.32 279.59 246.59 294.39
Max meshing time 235.71 246.53 244.65 278.56 245.09 292.71
Aver, meshing time 235.71 226.78 231.15 253.59 218.56 255.87
Imbalance 1 1.087 1.058 1.098 1 .1 2 1 1.144
MADD phase time 0.29 0.55 0.67 1 .0 1 1.48 1 .6 6

Max MADD time 0.29 0.19 0.17 0.17 0.16 0.18
Tot. time/(elem ./procs) 7.30 8.23 7.94 8.51 8.45 8.96
Additional Cost /procs 0 % 1 .6 % 0 .6 % 0.5% 0.3% 0.4%

Table 6.3: Performance data for the key and the pipe geometry. The meshing time includes
the time of the decoupling procedure (MADD). The MADD phase includes the load bal­
ance estimation procedure and the distribution of the subdomains to the processors. The
imbalance is measured as ratio of the max meshing processor time over the average. All
times are in seconds except for the time/(elem ./procs) which is in microsecs.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pipe, 32M/prc
a Key, 20M/prc

 linear speed-up

Number o f Processors

0.06

Pipe angle distribution
0.05

0.04

0.03

0 .0 2 ,

0.01

0,0 20 40 60 80 100
A ngle (degrees)

120 140 160 180

Figure 6.13: Left: Top is presented the imbalance and down the speedup for the scaled
experiments. The speedup is measured against the sequential creation of 5M elements and
is based on the overall time it takes for one element to be created. Observe the direct
impact of the imbalance to the speedup. R ight: The angle distribution for scaled mesh
sizes of the pipe.

1.25. The load-balance is based on overdecomposing the domain and equidistributing the

areas, and although it depends on the size of the mesh as we saw in Section 6.4, it also

depends on the geometry and the number of the processors.

An im portant measure for evaluating the efficiency of a parallel meshing method is the

(total) time spent for creating one element on one processor. Let T ^ be the total time

running on P processors in order to create a mesh of size S^p \ Then, the time per element,

per processor is = T<̂(p)P ■ This measure eliminates the differences in the mesh size,

providing a more objective view of the scaled performance. We see in Table 6.3 tha t this

time is almost constant, and thus the method is scalable. The slight increase of this time

is mainly due to the imbalance increase, while the contribution of the overhead time cost is

very small. This is evident in Figure 6.13, where the imbalance is depicted on the top and
T s 'Pthe scaled speedup down. The scaled speedup for P processors is measured as Up = ^ p j ,

where T* is the time to create sequentially one element for a non-decomposed mesh of size

5M. We again observe the superlinear speedup for the same reasons as in the fixed size

experiments. It is obvious in this figure the direct impact of the imbalance to the speedup.

Another measure for evaluating the scalability is the additional cost time cost for each

processor tha t we use, relatively to the total time when running on one processor. The
t (p) _ t (i)

additional cost Cp per processor, when using P processors, is computed as Cp = r- (1) .Te •P
Taking into account tha t the mesh size is approximately proportional to the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of processors P , we have Cp ~ T y(i~)p"" ~ can consider the quantity as the ideal

time for creating on P processors a mesh of size — P ■ S ^ \ since the effect of over­

decomposition is eliminated. In this way the additional cost Cp measures the distance from

the ideal speedup, distributed to the number of processors used.
(P)The time Te is increasing as P increases, the reasons were explained above. This

increase though is small for the key and even smaller for the pipe domain. It is interesting

to observe tha t the additional cost Cp tends to decrease, as P increases. Although we have

to pay a (small) cost in the performance for each additional processor we use, this cost tends

to decrease, when measured in scale. This result underlines the scalability of the method.

Finally we should compare the quality of the elements of scaled meshes tha t the decou­

pling procedure produces. In Figure 6.13 right is depicted the distribution of the angles of

the elements, for meshes varying from 30M triangles to 2.IB. The quality is obviously the

same.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

The Graded Decoupling M ethod

7.1 Graded M esh Generation

Delaunay mesh generation procedures, as the ones proposed by Chew [17, 18], Ruppert

[71, 72], and further developed by Shewchuk [78, 81], create boundary conforming triangular

meshes of good quality. The area of the elements in Delaunay meshes can grow fast,

as we move away from the boundary, resulting meshes of optimal size (up to a constant

factor) [72, 60]. The gradation reflects the geometric properties of the domain, but it does

not reflect the computational characteristics of the model. Regions of the domain where is

harder to approximate the solution, or we desire hinger accuracy, should be meshed more

intensively. These parts can be determined in advance, based on the properties of the

geometry and the model, or as a result of an error estimation function from a previous

FEM procedure.

The problem of determining the element size, and thus the gradation of the mesh, during

the mesh generation and refinement has been studied extensively (cf. [10, 54, 62, 30, 90]).

Usually the size of the elements is computed as a function of: (a) the geometry of the

domain, (b) the distance from sources of activity in the model (like heat sources), (c) a

gradation control bound, and (d) error estimators, typically computed from a previous

solution over a coarse mesh. The common way to control the element size of a mesh is

to employ a sizing function tha t determines the element size. In the anisotropic case this

function can be viewed as a tensor field over the domain [1 0], while in the isotropic case as

a real function. In this work we consider only the isotropic case. The sizing function can be

defined over the whole domain, or over a background mesh of the domain (alternatively the

sizing function can be defined over a control space). The objectives of the sizing function

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are two-fold: to capture the complexity of the geometry, and to optimize the quality of the

mesh with regard to a specific model.

The complexity of the geometry lies on the properties of the boundary, which in turn can

be used to specify a sizing function. Some of these geometric properties used to determine

a sizing function are the angle variation between boundary faces [53, 54], the curvature of

the boundary [28, 62, 30, 63, 49, 90], and the proximity between different boundary entities

[90, 6 8 , 70].

The behavior of the model can be assessed based on previous experience and error

estimations. Sources of activity can be translated to geometrical entities, which in turn

give sizing functions [53, 54, 90] usually in terms of the distance from the source. Another

way is to utilize an initial, relatively coarse, mesh to obtain error estimations. This mesh

can be used as a background mesh for generating a new mesh, with element sizes governed

by the error estimations. The element size at each point of the domain can be determined

through an interpolation procedure [62, 63]. Alternatively, Cartesian [30], and octree based

background grids have been proposed to control the element sizes.

The final mesh should demonstrate bounded the gradation, in order to be of good quality,

and several methods have been proposed for smoothing the sizing function and bounding

the gradation. For the discrete cases the use of interpolation smoothing methods is common

[11, 62, 51], while for the continuous case gradient limiting methods can be applied [67].

7.2 The Graded Decoupling Approach

In Chapter 6 we described the decoupling procedure for uniform parallel guaranteed quality

Delaunay mesh generation. In this chapter we extend the decoupling method for generating

large graded Delaunay meshes in parallel. A continuous sizing function, or discrete function

on a background mesh, is used to control the mesh element size, and thus the gradation

of the mesh. The continuous sizing function is considered to be a real (hence isotropic)

positive function defined over the whole domain. On the other hand, the background mesh

consists of a set of nodes in the domain, tha t store the desired element size. As in the

uniform case, we target the elimination of the communication during the mesh generation

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure, by applying a sequential mesh generator independently on each subdomain.

The approach for the graded decoupling procedure is similar to the uniform decoupling

procedure. The separators are prerefined in a way tha t guarantees the conformity of the

subdomain meshes, when they are created independently. The refinement in the graded

case will be controlled by the sizing function. The notions of the decoupling zone and

decoupling path, as they are given in definitions 5 and 6 , will be used for the graded case

too, since they are independent of the way the mesh is created. Propositions 7 and 8 ,

which guarantee the mesh conformity, hold in general for any Delaunay mesh generation

procedure, and consequently are also true for the graded case. Thus it is sufficient to identify

and construct a decoupling path for the graded Delaunay mesh generation procedure. To

this end we will use the gradation of the mesh to control the decomposition procedure. This

will allow the refining size (i.e. the separator lengths) to be bounded along the boundary

of every subdomain.

In the next section we describe a gradation controlled domain decomposition tha t will

accommodate the graded decoupling method. In Section 7.4 the properties of the graded

decoupling path are identified, and in Section 7.5 we describe the construction of the de­

coupling path.

7.3 Gradation Controlled Domain Decom position

The gradation produced by the sizing function should be bounded, and, especially in the

case of large meshes, we expect the mesh to be locally near uniform. Our goal during the

domain decomposition is to identify bounded gradation regions of the domain. This can be

achieved by imposing a constant upper bound to the gradation of the sizing function inside

each subdomain. Moreover, neighboring parts of the mesh should not present large size

difference, and so the gradation among neighboring subdomains should also be bounded.

Decompositions with the above properties can be used to decouple the mesh generation

procedure.

We formulate the above two conditions as follows. For any subdomain D i , let r n (D i)

denote the minimum element area and M (Dj) the maximum element area inside Di, as

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these are defined by the sizing function or the background mesh.

C ondition 1. For a predefined constant R \ > 1 we should have

M (D i) < R i m (D i) ,

for all subdomains Di.

C ondition 2. For a predefined constant i ?2 > 1 we should have

m (A) < R2m(Dj),

for all neighboring (sharing a common internal boundary) subdomains D i and D j .

We expect the gradation inside a subdomain to be at most as large as among neighboring

subdomains, so we require R \ < i?2 - An interesting theoretical problem is to find an optimal

domain decomposition, in terms of the number of subdomains, tha t satisfies the above two

conditions.

In the following we describe a geometric domain decomposition procedure tha t satisfies

the conditions tha t where formulated above. The procedure is based on the Medial Axis

domain decomposition, which is applied iteratively until the conditions 1 and 2 are met.

We examine both the cases of a sizing function / and of a background mesh G as control

mechanisms for the maximum size of the elements. The sizing function / is considered to

be positive and continuous over the whole domain while the background mesh G is an

unstructured mesh over the domain.

D om ain D ecom position C ontrolled by a Sizing Function

We will apply the MADD procedure iteratively, so tha t the final decomposition satisfies

the conditions 1 and 2 . Given a decomposition V n, we identify the set Bn of subdomains

tha t do not satisfy either condition 1 or condition 2. Namely, if for some subdomain

D i G T>n we have M (D i) > R i m (D i) , then D i G B n , and if for two neighboring subdomains

D i , D j G D n we have tha t m (D i) > R 2m (D j) , then D i , D j G B n . The largest subdomain

of B n is decomposed using the MADD procedure, giving a new decomposition D n + i - The

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure is repeated until all subdomains satisfy these two conditions. Algorithm 7.1

outlines this iterative procedure.

A lgorithm 7.1.
1 . input initial decomposition T>\ = {11}
2. identify the set B\ C V\ of non-acceptable subdomains
3. i = 1
4. w hile Bi ^ 0 do
5. let B € Bi be the largest subdomain
6 . apply MADD to B
7. i = i + 1
8 . let T>i be the new decomposition
9. identify the set Bi C T>i of non-acceptable subdomains

10. endw hile

The termination of the algorithm will guarantee tha t the produced decomposition satis­

fies both the conditions 1 and 2. In order to prove the termination we will use the observation

tha t the MADD produces decomposition topologies equivalent to the Euclidian topology,

i.e., the maximum diameter of the subdomains tends to zero, when we apply iteratively the

MADD on the largest subdomain. This notion is formally expressed as follows: Let V n be

a sequence of decompositions, each produced from the previous by applying the MADD to

the largest subdomain. Then, max.DeT>n S(D) —* 0, where S(D) = max \\y — x\\,x , y E D is

the diameter of the subdomain D.

Commonly the objectives of graph partitioner are two-fold. The first objective is to

create balanced decompositions, a property th a t can be described as follows: There is a

constant b\ < 1, so tha t after we decompose any subdomain D into the subdomains D i,D j,

we have max{|Dj|, \ D j \ } < bi\D\. The second objective is the creation of small separators,

which is usually formulated as minimizing the ratio . These objectives allow us to prove

that the MADD produces decomposition topologies equivalent to the Euclidean.

L em m a 16. Let V n be a sequence of decompositions, each produced from the previous

by applying the M A D D to the largest subdomain, for which the following two conditions

hold: There is a constant b± E R, bi < 1, such that max{|Di|, \ D j \ } < &i|-D|, for any

subdomains D i , D j obtained by decomposing a subdomain D . There is a constant 62 G M

such that < &2 for any subdomain D i . Then we have max£>e£>n 5 (D) —► 0, where

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5(D) = max ||y — x \\ ,x ,y E D is th e d ia m e te r o f th e su b d o m a in D.

Proof. The proof is performed in three steps:

Step 1. Let An = m axog-pn \D\. We will show tha t A n —> 0. The sequence {A n} is

clearly decreasing, so we only need to find a subsequence {A 'n} C {A n}, such tha t A'n —> 0.

Let A'n — max£>gp 2„ \D\. We will prove by induction tha t A'n < 6"|f2|. For n — 0, and

V i = {fl}, the relation is obviously true. Suppose the claim is true for some n = m , we will

prove it is true for n = m + 1 .

For any subdomain D E Drim decomposed into two subdomains D i,D j we have

m ax{ |A |, \Dj\} < b\\D\ < = K +1\n \-

Next we will show tha t any subdomain D E T>2 mi with \D\ > |ff|, will be decom­

posed. Observe tha t the decomposition X>2 m contains \T>2 m\ — 2m subdomains, and any new

subdomain will have area less or equal to &™+ 1 |fl|. The decomposition V 2m+i is obtained

from T>2 m after decomposing 2m = |X>2m| subdomains. So, all the subdomains D E D 2 ”1,

with \D\ > 6̂ ”+1 |S7|, will be decomposed.

From the above we conclude tha t for any subdomain D E V2m + 1 we have |D| < 6™'+ 1 |0 |,

and thus A'n < bf l+ 1 |fl|.

From the induction we have A'n —> 0, and consequently An 0.

Step 2. It is easy to see that max£>ex>n \9D\ 0. For any subdomain D we have

\dD\ < 6 2 |D |, and so

max IjDI —> 0 => max \dD\ —> 0.
D e v n D e v n

Step 3. The subdomains are connected, so we have 5(D) < \8 D\. Consequently

max \dD\ —>• 0 => max 5(D) —> 0,
D e v n D&Vn

and the lemma is proved. □

There are no strict mathematical proofs, in general, tha t a graph partitioner will achieve

the two objectives mentioned above. In practice though, we have observed tha t state-of-art

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

partitioner, like Metis [57], will give decompositions tha t meet these two objectives for all

the geometries we have tested, and for very large scale decompositions. We proceed to give

a proof of termination of the algorithm under the conditions of the previous lemma.

Lem m a 17. I f fo r a sequence of decompositions V n we have maX£>evn S(D)) —► 0, then

there is a decomposition T>f; that satisfies the conditions 1 and 2 .

Proof. We have tha t / is continuous over a compact domain, and thus is uniformly contin­

uous. Moreover / is bounded below by a constant positive number. Then for any e > 0

ZM
fly)there is a 5 > 0, such tha t if ||a: — y|| < 5, we have < 1 + e. Let 5 be such tha t the

inequality is satisfied for 1 + e = min(i?i, i?2)-

If T> = {Di} is a decomposition such tha t max{(5(Dj)} < 5, then T> obviously satisfies

the conditions 1 and 2. Let T>k such tha t max.D&vk 8 (D) < 5. Such decomposition exists,

because maxflep n S(D) —> 0, and satisfies the conditions 1 and 2. □

Theorem 18. Under the conditions of Lemma 16, Algorithm 7.1 terminates, giving a

decomposition that satisfies the conditions 1 and 2 .

Proof. If Algorithm 7.1 terminates, then by the construction it will produce a decomposition

that satisfies the conditions 1 and 2. We will prove the termination by contradiction.

We observe tha t if B ' £ Bn+\, then B ' C B for some B € Bn. We have from Lemma

16 that maxBeBn 3(D) —»■ 0. Suppose tha t the algorithm does not terminate, then for some

k we will have max.B&Bk $(B) < S, where d is defined in Lemma 17. Then, from the same

lemma, Bk satisfies the conditions 1 and 2 , which contradicts the definition of Bk- □

D om ain D ecom position C ontrolled by a Background M esh

Another way for controlling the size of the elements is to use a background mesh. This

approach is common when error estimations on an existing mesh are used to govern the

creation of a new mesh. We use an unstructured background mesh G = {gi}, where each of

its nodes gi is assigned a sizing value f(g i). This value determines the element size at the

neighborhood of the node. In the cases where the sizing value is assigned to the elements,

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JSw■ ~~ iIwML JhHs«.»■*■_ --■■4 . •■* is* !

f

I ' J J j C .-—
r-T «e

'aâ h.
--: ' j x "- '"■■ f .V , -

'■iivV'-r-'-jx
.■>:,

r." ■* V'W mamm
—_ ■■"

1 - ' i - v8 -a-. w

#*§?1 SNs . -

" I .?1
= = -

j-J/ V
". . v ?

g -? 3 g $

, .=■ ■ \ = t .
_*■ ; ■+!‘ i . , ' r .

Figure 7.1: Left: The Pipe domain decomposed into 804 subdomains using a sizing
function tha t corresponds to sources at the centers of the holes. Right: The Pipe domain
decomposed into 487 subdomains using a background mesh, the element size being smaller
near the center.

instead of the nodes, of the background mesh, we can use an interpolation procedure to

obtain sizing values on the nodes.

As in the case of a function, we assign to each subdomain D two values, m (D) =

min{/(<7)| g <E D (~) G} and M {D) = max{/(7y)| g e D fl G). The decomposition should

satisfy the conditions 1 and 2, stated in the begginning of this section. The procedure

described by Algorithm 7.1 will produce such a decomposition for a background mesh.

There are though two questions we should answer, in order to show tha t this algorithm can

be used for a background mesh: 1. W hat the values m (D) and M (D) should be, when no

mesh nodes of G are in D I 2. The termination of the algorithm in the case of a continuous

function / is based on the continuity of / ; can it be guaranteed in the case of the background

mesh? Both questions are addressed by employing an interpolation scheme, which we use

when no node of G is contained in a subdomain D.

Subdom ain Interpolation Procedure. When no background node is contained in a

subdomain D, then the minimum and the maximum element size in D will be computed

using interpolation. Let D such a subdomain, with D fl G = 0. We compute the desirable

area of the elements in D by geometric interpolation, using the values of its neighboring sub-

domains. Let m i = m inm (D ') and m 2 = m axm (D '), where the minimum and maximum

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values are taken over all the neighboring (sharing common boundary) subdomains D ' of

D . Then we assign r r i (D) — M (D) = We choose the geometric mean to compute

the new values because it best complies with the nature of conditions 1 and 2. Specifically,

the value max where D \ , 6 { D , D 1} , is minimized when m (D) is obtained by the

geometric mean. Moreover, the geometric interpolation induces a continuous function in

the following sense: as the size of the decomposition grows, the values and ^ (1 1]

for neighboring subdomains tend to 1. In other words, the discrete sizing values given by

the geometric interpolation procedure approximate a continuous function, and following the

arguments in Section 7.3, Algorithm 7.1 terminates.

7.4 The Graded Delaunay Decoupling Path

Let H be the set of the piecewise linear separators produced by the domain decomposition

procedure. The decoupling path is constructed by refining the initial separators H, so

tha t they form a decoupling path V . The termination conditions of the Delaunay mesh

generation allow us to compute a length size tha t should be used for refining H into a

decoupling path V. For uniform meshes it is we have proved in 15 tha t a decoupling path

can be constructed, allowing the Delaunay meshes to be generated independently. We

restate the theorem in comprehensive form, which will be useful for developing the ideas on

the graded decoupling method.

T h e o re m 19. Let k = min{//sm i n \J~~^}> where lfsmiri(fln) is the minimum local

feature size ofLlU Tt and A is a constant bounding below the maximum triangle area. I f for

all the edges E & V of the refined separators we have < \E\ < 2k, \E\ being the length

of E , then V is a decoupling path with respect to Ruppert’s algorithm, under the constrains

of maximum circumradius to shortest edge ratio less or equal to \ [2 and maximum triangle

area bound greater or equal to A.

Theorem 19 assumes tha t the triangle area bound A is constant, and thus cannot be

applied as is in the case of graded meshes. It can still be used though in the graded case, for

the construction of the decoupling path in the following way. Let V — {D i} a decomposition

of fl and m (D i) as defined in Sections 7.3 and 7.3. We will assume tha t the sizing function

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

captures the minimum local feature size in the following way: ^ lfSmin{Di).

In Section 8.2 we describe a procedure tha t constructs such a sizing function1. In the

following we will discuss the decoupling procedure under a sizing function bound, omitting

the minimum local feature size. We can apply Theorem 19 on each individual subdomain

Di, obtaining the following result.

P roposition 20. Let ki = ■ U f or aU the edges E € V fl Di, that belong to

the internal boundary of D w e have < \E\ < 2ki, then the edges of V fl Di will

remain invariant after applying Ruppert’s algorithm on Di, with the constrains of maximum

circumradius-to-shortest-edge ratio equal to \p l and maximum triangle area bound greater

or equal to m{Df).

Each separator E of V is shared by two subdomains, and in order to prove tha t the whole

set of separators V forms a decoupling path, we have to examine if E remains invariant after

applying the mesh generator independently to both subdomains. By applying Proposition

2 0 to each of the neighboring subdomains we obtain the following result.

P roposition 21. Let E € V be any edge of the separators, with E € Di fl Dj and length

\E\ = I. I f both relations ki < I < 2ki and kj < I < 2kj hold (for ki, kj as defined in

Proposition 20), then V is a decoupling path.

Figure 7.2 depicts a graded Delaunay mesh created by decoupling the subdomains, and

also the decoupling zone for one subdomain.

We proceed to examine the prerequisites under which the hypothesis of the above propo­

sition is true. Let Di, D j be two neighboring subdomains; without loss of generality we

assume ki < kj. Then there exists I th a t satisfies both conditions of Proposition 21, if and

only if, < y/3. If > y/Z, it is obvious tha t no such I exists. On the other hand, if

< y/3, then there is such I th a t satisfies both conditions (for example we can choose

I = kj). More general, for any I = y/3ki — e, with 0 < e < %/3/c?; — kj, both conditions are

true. Prom the definition of ki, kj we observe that ^ < ^ 3 o j < 3 . Thus, by taking

i ?2 < 3 in Condition 2, Section 7.3, the relation j f < \/3 holds, and thus the decoupling

path V exists.

1 Constructions of sizing functions that capture the local feature have been studied in the past, mostly in
the context of advancing front methods. [90, 6 8 , 70].

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.2: L eft: Graded Delaunay mesh based on decoupling the subdomains. The
sizing function reflects sources at the centers of the holes. R igh t: Detail of the mesh; the
decoupling zone Ẑ > for one subdomain is depicted by the circles.

7.5 Construction of the Graded Delaunay Decoupling Path

The condition R 2 < 3 allows the theoretical existence of a decoupling path, but we have to

take into account tha t the decoupling path V will be constructed by refining the existing

separators H, which were created by the domain decomposition procedure. Let E ' 6 H be

an edge of the separator shared by the subdomains D i,D j, which must be refined, so that

the resulting subsegments satisfy the conditions of Proposition 21. The refining procedure

will break E ' into, say, v subsegments. Then the conditions ~ ^kj < <=> v < I and

^ < 2ki <=> v > must hold, where kj > k{. In other words, an integer value should

exist between the values and ^ k - ̂ ^ sufficient condition for the above relation to be

true is I — > 1. In result, we have for the length \E'\ the condition

1 , / • 2 kjki 2 k'i , .
\E \ > 3 = -------3-r r (7.1)
' [~ ^ h - k j V 3 - |

in order for the created separators to satisfy the above relation, we have to keep the de­

nominator of the right side fraction bounded below. This can be done by defining the R 2

constant to be small enough. In our experiments we use the value R 2 = 1.5, so tha t the

denominator is always greater than 0.5. Then, the relation 7.1 is satisfied if

\E'\ > 4kj.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The decomposition is controlled by the gradation of the sizing function, and not by the

sizing values, so it is invariant when we decrease the sizing function by a constant factor.

While the values \E'\ are kept invariant, the values kj decrease, and thus, for large meshes,

the relation 7.1 holds.

We sum our results for constructing the decoupling path in the following theorem.

T h eo re m 22. Let the relation 7.1 hold for all separators E ' G TL, which were created by

the domain decomposition procedure. Then the refined set of separators V is a decoupling

path for Ruppert’s algorithm, with the constrains o f maximum circumradius to shortest edge

ratio \ / 2 , and maximum triangle area bounded by the sizing function f .

Proof. The above discussion shows tha t relation 7.1 guarantees tha t the refinement of the

separators will satisfy the hypothesis of Proposition 21. The conclusion is driven by Propo­

sition 2 1 . □

The above theorem allows the creation of graded meshes in parallel and with no commu­

nication, since the subdomains can be meshed independently after they have been decoupled.

The final mesh will be globally Delaunay, satisfying the area constrains defined by the sizing

function, as well as the quality constrain of having maximum circumradius to shortest edge

ratio less or equal to \ / 2 .

7.6 The Graded Delaunay Decoupling Procedure

We implemented the graded decoupling method, as it is described in Sections 7.2 through

7.52. We use a master/worker scheme for the parallel decoupled Delaunay mesh generation

procedure. The master processor reads the domain fl and over-decomposes it (i.e. we

create N » P subdomains, where P is the number of processors). The subdomains are

queued in reverse order of their expected mesh size. The master controls the assignment

of the subdomains to the processors following a greedy approach. The next subdomain to

be processed is sent to the next free worker processor. The procedure is described by

Algorithm 7.2

2The sizing function is assumed to capture the geometric features of the domain.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 7.2.
M aster Processor:

1 . read the definition of the domain Q
2. create the gradation cotrolled MADD
3. create a sorted queue of the subdomains in reverse area order
4. w hile the queue id not empty do
5. send the next subdomain to the next free processor
6 . receive replies from completed meshes
7. endw hile
8 . w ait until all processors have finished
9. send termination requests

Worker Processors:
1 0 . w hile not term inate do
11. receive subdomain from Master
1 2 . decouple the subdomain
13. apply the sequential mesh generator on the subdomain
14. send completed reply to Master
15. endw hile

The subdomains structure contains the information (i.e. the ki) for the decoupling

procedure, so each worker processor can decouple independently the received subdomain.

A parameter allows the subdomains to be packed into groups, reducing the communication

(and the workload for the master processor). Moreover, each processor maintains a work

buffer allowing asynchronous communication, and thus minimizing the communication cost

The decomposition is performed sequentially by the master processor and is controlled

by the gradation as described in Section 7.3. An im portant parameter tha t affects the

parallel performance is the good balance of the work-loads among the processors. Over­

decomposition of the domain, i.e. creating much more subdomains than the number of

processors, has proved to be an effective approach [52]. This approach allows work-load

differences for processing each subdomain to be absorbed, by assigning a set of subdomains

to each processor. Over-decomposition though is less effective when the work-loads for

some of the subdomains are much larger than the average work-load of all the subdomains.

Moreover, the created meshes for each subdomain should fit into the avaliable memory.

An additional condition of bounding the subdomain area is applied, in order to bound

the workload for each subdomain and also the memory requirements. This condition is

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processor Processor

Figure 7.3: Load balance on heterogenous environment of 141 cpus. Left: The load
balance for the d function. The decomposition is 2,064 subdomains and the created mesh
is 5 billion elements. R ig h t: The load balance for the d4 function. The decomposition is
19,847 subdomains and the created mesh is 5 billion elements.

formulated as follows.

C o n d itio n 3. For a predefined constant T , that designates the maximum number of ele­

ments per subdomain, we should have

\D \ < m (D i) T ,

where Di is any subdomain, and \Di\ denotes the area of Di.

The above condition can be met by further decomposing the subdomains that do not sat­

isfy it. Following the arguments of Section 7.3, the decomposition procedure will terminate.

The constant T depends on the machines to be used.

The assignment of the subdomains is done on the fly in greedy way, resulting a dynamic

load-balance greedy scheme. This approach is effective, even for heterogenous environments,

provided we have a large enough over-decomposition. Figure 7.3 depicts the load balance

for two different decompositions. The load balance on the left is for 2,064 subdomains, and

although is good, it is not perfect. The load balance on the right figure is for a much larger

decomposition, 19,847 subdomains where used, and it is almost perfect. Of course, higher

over-decomposition implies a higher overhead cost, and also higher communication cost. A

study of optimal load balancing strategies, while keeping the overhead and communication

cost small, is part of our future work.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.7 Performance Evaluation

The meDDec software [56] implements the parallel graded Delaunay decoupling procedure.

It is written in c99 standard C using the LAM /M PI library. The Triangle library [77, 8 6] was

used for the creation of the Delaunay triangulation during the MADD procedure. Triangle

was also used as the off-the-shelf sequential mesh generator on each subdomain for the

parallel decoupled Delaunay mesh generation. The Metis library [45, 57] was used for the

graph partitioning step in the MADD procedure.

We ran three sets of experiments. A sequential set of experiments was performed to

assess the stability of the decoupling method, and specifically the resulting over-refinement.

A set of parallel experiments was performed on a homogenous environment in order to

assess the efficiency of the method, and in particular the parallel speedup. Another set of

parallel experiments was performed on a heterogenous environment in order to examine the

efficiency of the method on an environment consisting of machines with different processing

power and memory.

E x p e rim e n ta l S e t-u p . The domain used for our experiments is the Pipe model (Figs.

7.2, 7.4), which is an approximation of cross section of a rocket geometry. We tested the

performance for four sizing functions. The function f s reflects sources at the centers of the

holes and is analogous to fourth power of the distance of the centers (see Fig. 7.2 left).

The functions d,d 2 and d4 are analogous to the distance from the inner hole, raised to

the power of one (Fig. 7.4 left), two and four (Fig. 7.4 right), respectively. The gradation

constant R 2 was set to 1.5, while R i was set to 1.425.

Our experiments were performed on the SciClone cluster [74]. For the homogenous

environment experiments we used the tempest subcluster, consisting of 32 dual cpus at

2.4 GHz, 4 GB memory. The heterogenous environment is composed by the subclusters

whirlwind (64 single cpus, 650 MHz, 1 GB memory), twister (31 dual cpus, 900 MHz, 2 GB

memory) and vortex (4 quad cpus, 1.28 GHz, 8 GB memory), giving a total of 142 cpus.

S eq u en tia l E x p e rim en ts . We have ran a set of sequential experiments to observe the

number of additional elements created by the decoupling procedure for different sizing

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.4: Part of the Pipe domain meshed by the decoupling procedure according to
two sizing functions. Left: The element size is given by the function d, which is analogous
to the distance from the inner hole. R ig h t: The element size is governed by d4, which is
analogous to the fourth power of the distance from the inner hole.

functions. The results are described in Table 7.1. The over-refinement is analogous to

the length of the separators, which in turn is analogous to the number of the subdomains.

The gradation of the sizing function controls the decomposition, and the number of the

created subdomains increases, as the local gradation gets larger. The over-refinement is

relatively small, even for sizing functions tha t show large gradation. For the function d4,

the global gradation is 1/707281, while the additional elements after decoupling are 2.28%

of the non-decoupled sequentially generated mesh size.

Size Sub- Triangle Decouple % Add. Global Size
Function domains elements elements elements gradation

d 1310 69221990 69625612 0.58 1/29
d2 4965 70787036 71685252 1.27 1/841
d4 19448 69614458 71198934 2.28 1/707281
fs 10214 70761174 72032140 1.80 1/77

Table 7.1: The number of additional elements created by the decoupling procedure, as
compared to the elements created by the sequential, non-decoupled, procedure.

P a ra lle l E x p e rim e n ts . The time performance of the decoupled mesh generation proce­

dure in the heterogenous environment is depicted in Figure 7.5. The times are independent

of the sizing function, and appear to be linear in terms of the created mesh size.

The performance for the homogenous environment is presented in Table 7.2. The results

show tha t we can create 2 billion elements in less than one minute. The speedup is depicted

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500

400

300

H
200

100

0
4x10* 6xl09

Mesh size
8xl09 lxlO 106x10

Mesh

* e d
GH-B rfA2 <j*4
* - * f j s
— L in e a r

CO 32

Number of Processors

Figure 7.5: The time performance for the Figure 7.6: The speedup for the homoge-
heterogenous environment (142 cpus). nous environment.

Sizing function d d2 d4 fs
Mesh Size
Subdomains

10.4 B
2,526

10.6 B
5,086

10.4 B
19,839

10.6 B
10,404

Decomposition Time
Meshing Time

1.23
277.57

2.55
278.76

14.4
271.58

5.92025
288.801

Table 7.2: Performance results for the homogenous environment (64 cpus). The times are
in seconds and the mesh size is in billions of elements. The meshing time includes the
decomposition read and distribute time.

in Figure 7.6. We have created about 81 million elements per processor, and calculated the

speedup against the sequential run of Triangle for a mesh of 30 million elements (with no disk

swapping). The parallel times include the decomposition cost. The decoupling procedure

gives super-linear speedup, a result commonly observed for decoupling approaches. This is

due to the slightly non-linear time of the mesh generation procedure, and probably because

of the larger accumulative cache size. Moreover, we observe better speedup as we increase

the number of processors. This is explained by the fact tha t we always define one processor

to be the master, and dedicate it to control the mesh generation procedure.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

The Decoupling M ethod for Dom ains w ith

Small Angles

In our study of the graded decoupling method in the previous chapter we have assumed the

sizing function to capture the geometric features of the domain, namely the local feature

size. Furthermore, we have not addressed the problem of generating meshes for domains

with small angles. R uppert’s algorithm is guaranteed to terminate, if the angles of the

domain are larger than 60°. Modifications of the algorithm guarantee the termination of

the procedure when arbitrary small input angles are present. These modifications though

alter the behavior of the algorithm near the boundary, and also the termination conditions,

i.e. the minimum triangle edge size. In this chapter we address the problem of integrating

the geometric features of the domain into the sizing function, and we enable the graded

decoupling procedure to be applied for domains with small angles.

Ruppert describes in [72] the Delaunay refinement algorithm, and also a procedure to

handle small input angles. The geometry is pre-processed, and protecting circles with radius

lfs(p)/3 are centered at the vertices p of the small angles. The small angles are “shielded”

by shield edges defined by the protecting circles and the edges of the small angles. The

domain outside the shielded triangles can be meshed by the standard refining algorithm,

while the shielded triangles can be refined using templates. This procedure will work for

domains with holes1, which is this case in our study. Shewchuk describes a “Terminator”

algorithm [80] based an concentric circular cells, which always terminates and guarantees a

circumradius to shortest edge ratio lower bound of l / [\ / 2 sin(0 / 2)], where 6 is the smallest

input angle.

Tt may not work for domains with internal boundaries [80].

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cohen-Steiner et al. [26] describe a Delaunay triangulation procedure for 3D PLC

domains with possibly small angles (< 90° in the case of 3D). The procedure constructs

protecting balls centered on the vertices, or along the edges of the domain. No points are

inserted into the protecting balls, instead a “split-on-sphere” strategy is followed. Cheng

and Poon [15] propose an elaborative procedure for meshing 3D polyhedra with small angles.

A set of protecting spheres forms a protective buffer zone along the edges. The centers of

the protecting spheres are on the edges and are used to refine them. The determination

of these centers requires the calculation of their local feature size, and also their local gap

size, which is the radius of the smallest ball intersecting two entities of the domain. The

procedure provides quality and termination guarantees, but appears to be impractical [14].

A more practical algorithm for 3D Delaunay mesh generation is presented in [14] by Cheng

et al. Small angles are protected by balls, and as in [26], a split-on-sphere strategy is applied

to protect the elements defined by the vertex balls.

The above approaches require the computation of the local feature size. A 3D Delau­

nay mesh generation method, for domains with small angles, tha t does not require an a

priori computation of the local feature size, is described in [65] by Pav and Walkington.

The algorithm builds-up information about the local feature size, starting from an initial

Delaunay tetrahedralization, which provides the distances between closest input vertices. A

“grooming” procedure refines the input edges according to this information. A set of arcs

is constructed along the refined edges, so tha t adjacent arcs meet at obtuse angles. Finally,

the tetrahedralization is refined, while the arcs are split by a split-on-sphere strategy. The

edges may need to be refined further, creating new arcs.

8.1 A Shielding Procedure for Small Input Angles

The method we describe in this section shield the small input angles (< 60°), and is suitable

for geometric domain decomposition based parallel Delaunay 2D mesh generation. The

subdomains with small angles are preprocessed, and the small angles are shielded via shield

edges (see Fig. 8.1), in a similar way to R uppert’s approach. The shield edges form isosceles

triangles tha t include the small angles, and are guaranteed to be invariant when we apply

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V
Figure 8.1: A subdomain D , enclosed by a set of boundaries with small angles. The shielded
triangles Tp are depicted by the shaded areas. The remaining domain D — Tp does not
include angles less than 60°.

R uppert’s algorithm to the rest of the subdomain. For the construction of the shield edges

we follow an analogous approach to the decoupling procedure. The minimum local feature

size will be used to determine their size. In addition, a sizing function can be used to bound

the areas of the shielded triangles. The procedure we propose is embarrassingly parallel,

and provides termination and quality guarantees.

The decomposition T> = {D j} of the domain fl is the starting point of the algorithm.

Each subdomain D j will be preprocessed independently, and the small angles will be

shielded. Provided tha t the decomposition does not create angles less than 60°, as it is

the case for the MADD, we only have to consider subdomains Dj tha t include external

boundaries. Moreover, no subdomain can be a triangle with two small angles. Indeed, at

least one edge of a triangular subdomain must be a separator, thus the two angles it forms

will be greater than 60°. In the following discussion we will only consider subdomains tha t

are not triangles with two small angles. We remind the reader tha t the domain f2 may

include holes, but not internal boundaries (Definition 2).

An alternative definition of the minimum local feature size will be employed, which only

allows to take into account the features inside the domain.

D efin ition 7. The minimum local feature size lfsmin(D) of a domain fl is defined as the

minimum distance between two non incident entities, when the straight line connecting these

entities is in Q (including the boundary).

This definition does not alter the proof of termination of R uppert’s algorithm, neither

the previous proofs we have given. Let D be a subdomain tha t includes some small angles.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We first describe the algorithm when no sizing function is used for the mesh generation.

The initial step is to compute the minimum local feature size of D ,

I = lfs min(L>).

This can be done even by a 0 (n 2) brute force approach, since the size of the subdomain is

small2. Let 0 < 9 = bac < 60° be a small angle of D (see Fig. 8.2). We insert points b',c'

in the segments ab and ac respectively, such tha t

I \ac I 2 sin(0 / 2) (cos(0 / 2) + sin 0) ^ ^

We insert the shield edge b'c' in the subdomain D, which forms the shielded isosceles triangle

b'ac'. Observe tha t this insertion does not affect the decomposition, since ab and ac will

not be part of a separator. The procedure is repeated for all small angles in D, and for all

subdomains D tha t include external boundaries. We summarize the process in Algorithm

8.1

A lg o rith m 8.1.
1. for all subdomains D with external boundaries do
2 . calculate I = lfsmin(-D)
3. for all angles 9 = bac < 60° in D do
4. insert points b', d in the segments ab and ac such tha t

\a^ I = \ac I = 2 sin (0 /2) (c o s(0 /2)+ s in6)
6 . form the shielded triangle t = b'ac'
7. add triangle t to the list Tjj
8. endfor
9. form the new subdomain D' = D — Tp

10. endfor

Let Td the set of the shielded triangles, after we have processed all small angles of D.

Let D 1 = D — Td be the new subdomain, without the shielded triangles. Then the following

proposition holds.

L em m a 23. Let I = lfsmin(D) be the minimum local feature size, as defined in 1, of a

subdomain D. Let the subdomain D include some angles 9 < 60°. A fter applying Algorithm

2 Typically, the subdomains will not have more than a few hundred points.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 on D, we obtain a new subdomain D ', with no angles < 60°. Then, the minimum local

feature size I' = lfsmin (Dr) of the processed subdomain D' satisfies the following relations:

l' — min ---- } ----- ;—-, (8 .2)
d<6 0 ° cos(0 / 2) + sm 0

and

-±= < i' < i. (8.3)

Proof In order to compute the new minimum local feature we only have to examine the

new features induced by the points b' , d and the edge b'c' (see Fig. 8.2). These features will

be the edge b'c!, the edges b'b, c'c, or created from the edge b'c' and some point q not on

b'b, c'c. Finally we must examine the case of two inserted points tha t do not form a shield

edge.

Thus we need to (i) calculate the length \b'd\, (ii) calculate the lengths \b'b\, \dc\, (iii)

examine the case of a point q th a t may create with b'c' a new minimum local feature size,

and (iv) examine the distance between two inserted points which do not form a shield edge.

(i) T h e le n g th \b'c'\. We have (see Fig. 8.2 left)

\b'd\ = 2 sin(0 / 2) • \ab'\.

From the construction we have |a6 '| = \ac'\ = 2 sin (g /2) (co s(fl/2)+ sin6) (relafi°n 8.1), and so

\b'd\ = 2 sin(0 / 2) • 2 sin(0 / 2) (cos(0 / 2) + sin 9) ^

_______ I_______
(cos(0 / 2) + sin 0) '\b'd\ =

(ii) T h e le n g th s \b'b\, \dc\. W ithout loss of generality we assume tha t \b'b\ < \dc\. Let q

be the projection of b on AC. Then \bq\ > I. We have

I h\ \bq\ >> 1
\ a b \ = sm t) sin (

So,

\b'b\ = \ab\ - \ab'\ > - — 1
sin 0 2 sin(0 / 2) (cos(0 / 2) + sin 0)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a a

Figure 8.2: Left: The distance from b'c' of a point q inside b'bd[d,2 cd cannot be less than
\b'd\. Right: The distance from b'c' of a point q outside b'bdid^cc' cannot be less than
\b'd\.

\b'b\ > —— (1 ----------- ----------^ = — -------2 --—'
s in 9 V. 1 + 2 sin(g/2) / (sing) (1 + 2 sin(g/2))

^ ^ — cos(g/2) + s in g ’

Obviously the same relation holds for the length \dc\.

(iii) A rbitrary ex isting point q. We will show tha t no existing point q of the subdomain

D can be at distance less than (cos(g/2)+sin9) r̂om the shield edge b'c'. We will examine two

cases: (a) the point q is inside the area enclosed by b'bdid^cd (see Fig. 8.2 left), and (b) q

is outside this area (Fig. 8.2 right).

Case (a) Let q be a point exists inside the area enclosed by b 'b d ^cc '. Let p be the

projection of q onto b'c'. We will prove by contradiction that the distance \qp\ of q from

the shield edge b'c' must be greater than \b'c'\ = cos(g/2)+sin6>~ Suppose this is not true, and

1^1 — cos(6>/2)+sinfl' W ithout loss of generality, we assume th point q to be closer to to the

segment ab than to segment ac, or equidistant. Take the projection q' of q on the segment

ab, or ac, such tha t the distance \qq'\ is minimum. The length \qq'\ is maximized when the

segment aq bisects 6, and this is the case we will examine. Then the length \o,q\ is

M = M + M = cos(0/2)|a6'| + \pq\ < cos(0/2)\ab’\ + (cos(-fl/2) + sing) ^

la^l ~~ C° S^ ^ ^ 2 s in (g /2) (cos(g/2) + sing) (cos(g/2) + sing) ^

I f cos(g/2) \
— cos(g/2) + sing \2 s in (g /2) J '

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Calculating the length \qq'\ we get

i /i /« /r.M i lsm (8 /2) (cos(0/2)
|9, | = Sm (# /2)M < cos(„/2) + s in (, + 1

i /i ̂ / cos(0/2) . \
l<" ' 1 £ cosO/2) + sir, i? + Sm(®/2)J '

For 0 < 6 < 60° we observe that

cos(#/2) .
 + sm(0/2) < 1,

and also

1 < cos(0/2) + sin0 < \/3. (8.4)

So we get

\qq’\ < I,

which contradicts the fact tha t I = lfsmin(D). Thus \qp\ > \b'c'\ = cos(g/2)+sing~

Case (b)Next we examine the case of a point outside the area b'bdid^cd. We will show

that pbq > bpq, and thus, from the law of sines, \pq\ > \bq\. Indeed, observe that b'bq > 7t/2,

and also from the result in (ii), b'bp < b'pb. So

pbq > 7t/ 2 — b'bp > ir/2 — b'pb = bpq.

We conclude using relation 8.4,

W > M - ‘ > cos{0/2) -f sin#

(iv) Inserted points th a t do not form a sh ield edge. For inserted points tha t do

not form a shield edge we have to examine three cases:

(a) If two inserted points are not on incident lines, it is obvious tha t their distance will

be greater than I = lfsmin CD).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a, b b’ cd2ta.a,5 4

Figure 8.3: Left: The distance \a"ci'4\ is greater than \a'^a^\. Right: The distance |aic| is
less than the distance la^a^.

(b) If two inserted points belong on two incident lines, and do not form a shield edge,

then their distance will be obviously greater than the length of the shield edge (see Fig.

8.3 left), and thus do not create the smallest feature. Here we note tha t we only consider

distances inside the domain (Definition 7), and we do not have to examine distances like

\a!za'i\ in Fig- 8-3 left.

(c) We will examine the case when two points will be inserted on the same boundary

edge (see Fig. 8.3 right). Let c be the intersection3 of the line from ai parallel to the

segment 012(2 3 . We will prove tha t |<2-2^1 > Vw1'?} and 10.3 ^/1 > |a3 a'2|. First we observe tha t

|a i6 | = \cb'\ > I. We have for |a2 &|

|«2&| = |ai6|cot($2) > I ■ cot(#2)-

We examine the right hand part.

I ■ cot(0 2) > 1012(231 4+
I 1

2 _ 2 s in (0 2 /2) (c o s (0 2 /2) + s in 0 2) ^

rn^ L (cos(fl2/2) + sin) > 1
COS(c/ 2 / 2)

cos02(l + 2sin(02/2)) > 1 4+

(1 — 2sin2(02/2))(l + 2sin(02/2)) > 1 4+

1 — 2sin2(02/2) + 2sin(02/2) — 4sin3(02/2) > 1 4+

— sin($2 / 2) + 1 — 2 sin2 (#2 / 2) > 04+

3One of the two parallels, either from a\ or from <2 4 , will intersect the opposite segment.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cos 02 — sin(02/2) > 0 .

Observe tha t cos 02 ~ sin(02/2) is a decreasing function, and equals zero at 02 = 60°. Thus

the last inequality is true for 0 < 02 < 60°. We obtain tha t

|«2 0 | > I ■ cot(0 2) > |a2«31•

In a similar way we get

|a36'| > I • cot(03) > \a^a'2\-

Since \bb'\ > I, we conclude

a3®2 ^ bb' ^ ^

W e sum m arize our results. From the relation 8.4 we have

— 1
y/3 < (cos(0/2) + sin0) <

From (i) we have that the shield edges have length (cos(g/2)+sin6>) i while from (ii), (iii) and

(iv), no new local feature size will be less than this value. So, V = min0ejr> cos(g//2)+sin6> an(l

-j= < I' < I. The proof of the lemma is complete.

□

The new subdomain D', without the shielded triangles, includes no angles less than 60°.

So Ruppert’s algorithm can be applied with the same quality and termination guarantees

(Theorem 1, Section 1.1). Moreover, from relation 8.3 we have for any shield edge b'c'

I' < \b'c'\ < V31'.

Following the same argument as in the case of the decoupling procedure, no shield edges will

be splitted. Thus, the resulting mesh will be a conforming Delaunay mesh with circumradius

to shortest edge ratio at most \[2 for all the triangles tha t do not include a small input

angle.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The circumradius to shortest edge ratio for the shield triangles is

|a#'|/[2cos(#/2)] _ 1
\b'c'\ 2 s in # ’

if # > 20.7°, we have < \/2, and the quality of the whole mesh is the same as the one

tha t R uppert’s algorithm guarantees.

Triangle area controlled by a sizing function. The circumradius to shortest edge

ratio criterion corresponds to the smallest angle of the triangle in 2D, and thus cannot be

controlled in the shielded triangles, for which the input angle cannot be improved. The

only improvement tha t can be applied to the shielded triangles is to reduce their area by

enforcing a sizing function. In the rest of the section we will expand the procedure of

preprocessing the subdomains with small input angles, so that the all triangle areas are

bound by a sizing function f (x) .

The area £ of a shielded triangle b'ad is E = \ap\ • \db'\/2 (see Fig. 8.2 left). We

calculated the length \b'd\ in (i) of Lemma 23 as

\b'd\ = 1
(cos(#/2) + sin#)

From the same lemma in (iii) we calculated |ap| as

i i /„ ,/i cos(#/2)|ap| = cos(#/2)|a6 | = — -
2sin(#/2) (cos(#/2) + sin#) ’

We have for the area E of the shielded triangle ab'd

E = I__________cos(#/2)__________I_______
(cos(#/2) + sin #) 4 sin(#/2) (cos(#/2) + sin #)

_ I2 cos(#/2) 1
2 2cos2(#/2) sin(#/2) [1 + 2 sin(#/2)]2

ll _ L i
2 sin# [1 + 2sin(#/2)]2 '

We obtain

l = [1 + 2 sin(#/2)] ■ V 2E sin#. (8.5)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An upper area bound to the triangle area can be enforced, by enforcing an upper bound

to I through the relation 8.5. If A is a constant upper bound to the triangle area, we know

from Theorem 15 that no edge less than J As will be split by R uppert’s algorithm (unlessy/2
it is greater or equal of two times the minimum local feature size)

If we take

I = min < [1 + 2 sin(0/2)l • V2Asin#, < / —= > ,
0<eo° 1 L w 'J > y y / 2 I

then the area E of the shielded triangle will be at most A, and the shield edges will be less

than Simpler formulas can be obtained tha t satisfy both conditions, although they

will not be tight4.

A lg o rith m 8.2.
1. let V = {Di} be a decomposition of Q
2. let m (D i) = minxeo, f (x) , where f {x) is a sizing function
3. let V = {Di e D / Zb,has external boundaries forming some angles < 60°}
4. for all subdomains Di G V do
5. set k = min0<6o°{[l + 2sin(£?/2)] • yj2m(D i) sin 6,

lfS m ir^ A)}.

6. for all angles 6 = bac < 60° in Di do
7. insert points 6', d in the segments ab and A C such tha t

8 ' \ah'\ = la c / | = 2sin(V/2) (cos(0/2)+sin6»)
9. form shielded triangle t = Vad

10. add triangle t to the list T(Di)
11. en d fo r
12. form the new subdomain D^ = Di — T(Di)
13. V = V - {Di} U {£>'}
14. en d fo r

Let f (x) be a sizing function defining a maximum triangle area in the subdomain D,

and m(D) = minx€d f (x) . We will take A = m(D), and also

I = min | [1 + 2 sin((9/2)] • y ^ D j ^ e , ĵ > lfsmin (D) | ■ (8.6)

The previous proofs for Lemma 23 remain valid for this new value of I, since it will be less

or equal to lfsmin(.D). In addition, the areas of the shielded triangles will be bounded by

4For example, we have %/2sin(0/2) < [1 + 2sin (0/2)]2 • 2sin0, and also \J'd2sm(6/2) < when

0 < 60°. So a value I = yjA'/2sm(6/2) would satisfy both the area bound and the edge no-splitting bound.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m(D). The shield edges b'c' will not be split, since we have

m (D)

~ W '

We restate Algorithm 8.1 in Algorithm 8.2, to include an area bound enforced by an

area function / . The preprocessing of the subdomains with small angles can obviously be

done in parallel. Each subdomain Di € V can be processed independently, executing the

steps 5 to 12 of Algorithm 8.2.

We summarize the results of this section in the following theorem.

T h e o re m 24. Let Di be a subdomain created by the MADD, which includes some angles

angles 9 < 60°. Apply the steps 4-14 of Algorithm 8.2 on Di, obtaining a subdomain D\.

Define li as in line 5 of Algorithm 8.2, and l[= //.sinin(Il-). Then the following propositions

hold:

1. All angles in D[are > 60°, and thus Ruppert’s algorithm can be applied on D^, with

largest circumradius to shortest edge ratio \/2 , and maximum triangle area defined by

the sizing function f (x) .

2. l[= min0<6Oo cos(g/ 2)+sin6>'

3■ li-

4■ For any shield edge b'c' we have

l[< \b'c'\ < I'iVs.

5. No shield edge will be split by Ruppert’s algorithm.

6. All shielded triangles will have area less, or equal to m{Dj) = minx6£ii f (x) , where

f (x) is a sizing function.

7. The circumradius to shortest edge ratio for any shielded triangle having an angle

9 < 60° is
1

2 sin#

98

\b'c'\ < 2 -lfsmin(L>) and \b'c'\<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This ratio is less than \[2, i f 9 > 20.7°.

8.2 Construction of the Sizing Function

In the discussion of the graded decoupling procedure we assumed the sizing function to

capture the geometric features of the domain. In this section describe a smoothing procedure

for constructing a new sizing function F(x) from an existing one /(x) , so tha t F(x) is less or

equal to f (x) and also takes into account the geometric features (the minimum local feature

size and the small input angles). F(x) is constructed so tha t it has bounded gradation inside

each subdomain and along neighboring subdomains.

Let f(pc) be an initial sizing function, and T> = { D i } the decomposition of the domain Q,

as described in Section 7.3. We define mf(Di) — minx€£>i f (x) and Mf(Di) = max x<=Di f{x) .

Then, the decomposition will satisfy the gradation conditions

M f (D i) < R i m f (D i) , (8.7)

and

r n j (D i) < R.2m f (D j), for any neighboring subdomains D %, D j , (8.8)

with Ri < R'2 - These conditions allow the existence of a graded decoupling path when

i ?2 < 3 (Section 7.4).

Our goal is to construct a new sizing function F{x) such that (i) F(x) < f (x) , (ii)

F(x) captures the the geometric features of the subdomains (the minimum local feature

size and existing small angles), (iii) F(x) has bounded gradation inside each subdomain,

and (iv) has bounded gradation along neighboring subdomains. While it is straightforward

to express conditions (i), (iii) and (iv) mathematically, some calculation is required for

condition (ii). The first step is to compute a lower bound for the minimum Delaunay edges

for each subdomain, taking into account the sizing function f (x) and the presence of small

angles. We define

= lfSmin̂ } - (8-9)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Having in mind the discusion in the previous section, and specifically the definition of I

(relation 8.6), we further define

. ([1 + 2 sin(0/2)] • y / 2 m f { P i) sin 9 mi \
e i = mm < — ------------------ -=--------------------- ,--- —-----— - > (8.10)

0<6O° 1 y/3 cos(0 /2) + s m # J

when small angles < 60° are present, and

ei = mi, (8 .11)

when no small angles are present in D i . We have constructed e* so tha t no Delaunay edge

less than e* will be created in the subdomain Z?j, when the mesh is generated taking into

account the sizing function / and the geometric features of Di (and not those of neighboring

subdomains). Let m F (D i) = rnin3.g p . F (x) , and M F (D i) = max2:g/j)) F (x) , be the extremes

of our new sizing function inside a subdomain D i . Then, from Proposition 20, the sizes of

the Delaunay edges in D i will be bounded below by

1 m F (D i)
2 y \/2

In order for the new sizing function to capture both / and the geometric features, it is

sufficient to take ki < e,. Thus, we will require

m F (D i) < 4V2 ■ e l (8.12)

We now can express the four conditions for the new sizing function F (x) in a mathe­

matical formulation. F (x) should satisfy the following relations.

(*) F (x) < f (x) .

(ii) m F (D i) < 4\/2 • ef.

(iii) M F (D i) < R i m F (D i) .

(iv) m F (D i) < R,2m F (D j) , for any neighboring subdomains D i , D j .

We will transform locally f (x) in each subdomain, obtaining a new sizing function F (x) .

so that the above relations hold. Let F i (x) — F \ F i (x) and f i (x) = f \ o i (x) be the restriction

on D i of F (x) and f (x) respectively. Define

gi = 4 y / 2 - e l (8.13)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and also

Ft (x) = (8-14)

By the construction, Ffix) will satisfy relations (*), (ii). and (iii). Indeed, we have tha t

m F (P i) = r r i f (D i) — y — = = 4\/2 • e-, (8.15)

and condition (ii) is satisfied. Condition (iii) is satisfied, because the same relation holds

for / ,

M F (D i) = M f (D i) — y — < R i m f (D i) — ^ — = R i m F (D i) . (8.16)

Finally, condition (i) is satisfied from the definition of e*,

F , (x)= - M x ,,^ m =/i(x)- (8-17)
More work is needed in order for F to satisfy condition (iv). The construction of F is

local for each domain, and no guarantees are provided for F along neighboring subdomains.

A procedure tha t checks neighboring subdomains, and reconstructs F in the cases where

condition (iv) does not hold, is required.

The subdomains Di with the smaller sizes F{ may force neighboring subdomains Dj to

decrease their required value gj, in order to maintain the gradation bound. Since the prop­

agation of small sizes can only happen from smaller to larger sizes, it implies a procedure

tha t will result bounded gradation among neighboring subdomains. Let us order the sub-

domains Di in decreasing order of gi. Modification of the smaller area gj will only be forced

by neighboring subdomains Di, with i < j . This fact is the basis of our algorithm. Let

V — [Di] be the sorted list of the subdomains in increasing order of the values g %. For each

subdomain Di, in increasing order, let Dj be a subdomain adjacent to Di with gj > R^gi-

Obviously j > i. We set a new value g j = RiQi, and we reposition D j in the ordered list,

according to its new value. Still we have j < i, beacause R 2 > 1. We repeated the procedure

until we have scanned all of the list. The procedure is described by Algorithm 8.3.

P ro p o s itio n 25. The constructed function F(x) by Algorithm 8.3 satisfies conditions (i)

- (i v)-

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 8.3.
/ / compute the values gi

1. let T> = {Di / i = 1 , A} be a decomposition of
satisfying the conditions 8.7 and 8.8

2. set gi = 4-\/2 • e?
3. sort X> = {Di / i = 1,.., A}, so tha t gi < gj when i < j
4. for i = 1 to A — 1 do
5. for all adjacent to Di subdomains D j with i < j do
6. if gj > R-2 ■ g% do
7. set gj = R 2 -gi
8. reposition Dj in the list V according to the new gj
9. end if

10. endfor
11. endfor

/ / compute the sizing function F
12. Set F\Di {x) = f \ Di(x) T̂

Proof. The value of gi can only being changed in step 7 of the algorithm, and in this case

will only be decreased. So, the Algorithm may only reduce the values of F . Thus, the

relations obtained in 8.17 and 8.15 still hold, and the conditions (i) and (ii) are satisfied.

As was shown by the calculation in 8.16, condition (in) is true.

If a value gj is changed in step 7, say when examining subdomain D r in step 4, then it

will not be changed again, because all the consequent subdomains Di, i > r, examined in

step 4 will have gi > g r . Now, for any subdomain D i scanned in step 4, its value gi will

not be changed in the remaining steps. Also, from steps 6 and 7, all its neighbors will have

values gi < R igj • In the next steps, the values gj will remain unchanged. So, after step 11,

we will have for any neighboring subdomains Di, Dj

m F (D i) = g i < R i g j = R 2 m F (D j) ,

and condition (iv) is satisfied. □

Steps 7 and 8 in Algorithm 8.3 will be executed at most once for each subdomain. The

repositioning in step 8 will take at most O (N) operations, So, Algorithm 8.3 is of O (N 2)

complexity, where N is the number of subdomains5.

®The calculation of the e, is a pre-processing step, and is not included in the analysis of the algorithm.
The calculation of the e,; can be done in parallel, independently for each subdomain. The complexity of this

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 The Decoupling M ethod for Domains w ith Small Angles

The construction of the sizing function F(x) in previous section targets the graded decou­

pling procedure, as it was described in Chapter 7. In this section we will verify tha t the

decoupling method can be applied for the constructed sizing function F(x). As previously,

let mp{Dj) = m m xeo i F(x) , and M F(Di) = maxxeD, F(x). Then F satisfies the conditions

(iii)

Mp(Di) < R \ m F(Di),

and (iv)

m F (Di) < R 2m F(Dj),

for any neighboring subdomains Di, Dj. When R 2 < 3, we can construct a decoupling path

for the sizing function F(x), with an additional condition for the size of the separators6

(Theorem 22). The only remaining issue tha t we have to check is tha t the sizing function

indeed captures the minimum local feature size, and also allows the small input angles to

be shielded in a way that does compromise the decoupling method.

First we confirm that the sizing function captures the minimum local feature size of the

subdomains, i.e.,

< Iftmin(A).

We know tha t F(x) satisfies condition (ii), and so we obtain

m F(Di) < 4\/2 • e'2 => - e'1 - rn'L - lfsmin(A),

as we wanted.

We also need to verify tha t the small angles can be shielded, in the way described

in Section 8.1, without compromising the decoupling procedure. The shielding procedure

should satisfy the following properties, (a) The parameter k in step 5 of Algorithm 8.3 for

calculation depends on the way we evaluate the sizing function f(x) , and on the complexity of finding the
lfS m in (A).

eThis condition can also be captured by the sizing function. We describe this more general construction
of the sizing function for simplicity.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shielding the angles is not greater than the minimum local feature size of the subdomain,

(b) The shield edges will not be split under the sizing function, (c) The shield edges will

not create features not captured by the sizing function.

Let Di be a subdomain with some small angles 6 < 60°. Let <f>,t = maxg<6o° 0 be the

larger of the smallest angles in D i. We define

cos(<&j/2) + sin m F (D i)

,i = ----------- 2 ----------- V W T '

We are reminded tha t in the presence of small angles the parameter e; is defined by the

relation 8.10

I [1 + 2sin(0/2)] • J 2 m t { D i) sin6 m*
e,- = mm J

0 <6O° 1 1 / 3 ’ cos(0/2) + sin# J ’

and also tha t F (x) satisfies condition (ii)

mp(Di) < Ay/2 ■ ef.

(a) From condition (ii) we have

cos($i/2) + sin <f>j m F(Di)
'• = — 2 —

< [cos($i/2 + sin $j] • ei

mi
< [cos($j/2) + sin$ j

cos($,/2) + sin

= mi

< lfemi n (A) -

So, the parameter lt is less or equal to lfSmm (Di).

(b) The shield edges will not be split under the sizing function if their length is less than

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ J mF̂ }1- We have for a shield edge b'c' of a small angle 9 that

co s (^ /2) + sin mp(Di)
2(cos(0/2) + sin 0) V y/2

I

m F(Di)

y/2 ’

as we wanted.

(c) In order to ensure tha t a shield edge b'c' will not create smaller features than the

sizing function indicates, we have to show tha t \b'c'\ > We have

as we wanted.

Finally, from the left part of the definition of ej we observe tha t the area E of the

shielded triangle is bounded by the initial sizing function f (x) , E < r n f (D i) .

We summarize our conclusions:

T h eo re m 26. Let F (x) be the sizing function constructed by Algorithm 8.3. Let V — {Di}

be the set of subdomains, after they have been processed by Algorithm 8.2 for shielding the

small angles, using

The graded decoupling procedure is applicable to the decomposition T>, using the sizing func­

tion F(x).

Then for any subdomain Di we have that all its angles will be > 60°, and

< ^ m i n (A)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions and Future Work

The Delaunay refinement procedure is memory intensive, with unpredictable computa­

tional behavior which depends on the input geometry and the element size requirements.

The decoupling approach is a geometric decomposition based, parallel mesh generation

method, tha t allows a sequential Delaunay mesh generator to be applied independently

on each subdomain. The method allows the creation of large Delaunay meshes on par­

allel distributed memory environments, and at the same time eliminates the communica­

tion/synchronization. The decoupling method is effective and efficient, resulting super-

linear speedups.

Parallel mesh generation procedures tha t are based on geometric domain decompositions

require the permenant separators to be of good quality (in terms of their angles and length),

in order to maintain the mesh quality. The Medial Axis domain decomposition we describe

in this work provides domain decomposition of high quality, and it presents for the first

time a decomposition method suitable for parallel meshing procedures.

Decoupling approaches have been studied in the past. However, the methods previously

proposed lucked completeness; they either did not provide termination or quality guaran­

tees, or they had to introduce communication. In this work we provide a mathematical

formulation of the decoupling method that guarantees the termination of the procedure,

and also the conformity and quality of the final mesh, without introducing communication.

This formulation, initially given for uniform meshes on domains with no small angles, is

extended for parallel graded mesh generation on domains with possibly small angles. The

experimental results confirm the efficiency and stability of the decoupling procedure.

The procedure described in this work addresses the problem of parallel Delaunay mesh

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generation for 2D domains. The notions though of the decoupling path and the decoupling

zone are defined for any dimesions, and their conformity and invariance properties (Propo­

sitions 7 and 8) remain true. Thus, these notions can form the basis for a 3D decoupling

procedure. As we have mentioned above, 3D decoupling approaches have been described in

the past, but with no quality guarantees. A procedure tha t guarantees the conformity and

the quality of the mesh, based on the notion of the decoupling path, is feasible.

The two problems tha t we face in 2D also need to be addressed in 3D. The 3D domain

decomposition should be of good quality in terms of the formed angles in order not to

distort the mesh quality. The extention to 3D of the core medial axis domain decomposition

algorithm is straight forward. Additional work though is required to obtain some theoretical

indications about the angles formed, both with the boundary and among the faces of the

separators. More challenging will be the extention of the smoothing procedure to 3D, as the

optimization objectives for a separator need to take into account multiple faces. Moreover,

the theoretical angle bound for the 3D version of R uppert’s algorithm is 90°. It is unrealistic

to expect a decomposer to achieve this bound, at least for discrete approaches. In real life

simulations the input domain is also unlikely to comform with this bound. Therefore, the

parallel procedure has to be constructed targeting a 3D meshing procedure tha t can address

the problem of the small input angles.

The second problem is to develop a premeshing procedure for the separating surfaces

tha t will guarantee the conformity and quality of the mesh. While computing the the

required sizes does not appear to be problematic, the premeshing procedure is likeley to

create entities with distance less than the minimum local feature size. This will result a

dead loop, since a new iteration will be needed to capture the new minimum local feature

size. The resolution of this problem lies on establishing a termination criterion in terms of

face areas rather than the length of the edges.

3D Delaunay mesh generation procedures tha t can cope with small input angles have

been studied in the last few years, and are still a subject of study (a short description of the

related bibliography is given in the beginning of Chapter 8). Some of these procedures, like

the one described by Cheng and Poon [15], premesh the boundary, and protect the boundary

edges and faces. Such approaches naturally extend to parallel decoupling procedures. I

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider this parallelization approach most attractive, as it relaxes the angle requirements

of the separators. At the same time, theoretical guarantees of conformity and quality

can be derived. The parallel version of such algorithms may allow improvements, like

independently calculating the local feature size for each subdomain. The known sequential

procedures though are fairly complicated, and more simple methods may be developed in

the future.

The problems of domain decomposition and mesh generation are increasingly revealed

to be coupled with the related models. Anisotropic, and in general adaptive, methods

are subject of current and future research. In the context of parallel computing these

approaches have to be applied locally, and the availability of decoupling methods for these

adaptive approaches would allow efficient parallel adaptive mesh generation procedures to

be developed.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Cecil G. Armstrong, Desmond J. Robinson, Mike McKeag, T. Li, S. Bridgett, R. Don-
aghy, and C. McGleenan, Medials for meshing and more, Proceedings of 4th Interna­
tional Meshing Roundtable, Sandia National Laboratories, 1995, pp. 277-288.

[2] Kevin Barker, Nikos Chrisochoides, Andrey Chernikov, and Keshav Pingali, A load
balancing framework for adaptive and asynchronous applications, IEEE Trans. Parallel
and Distributed Systems 15 (2004), no. 2, 183-192.

[3] Kevin Barker, Nikos Chrisochoides, Jeffrey Dobbelaere, Demian Nave, and Keshav
Pingali, Data movement and control substrate for parallel adaptive applications, Con­
currency and Computation Practice and Experience 14 (2002), 77-101.

[4] Stephen T. Barnard and Horst D. Simon, A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems, Concurrency: Practice and
Experience 6 (1994), 101-107.

[5] Marsha Berger and Shahid Bokhari, A partitioning strategy for pdes across multiproces­
sors., Proceedings of the 1985 International Conference on Parallel Processing, August
1985.

[6] Marshall Bern, David Eppstein, and John R. Gilbert, Provably good mesh generation,
Proc. 31st IEEE Symp. Foundations of Computer Science, 1990, To appear in J. Comp.
System Science, pp. 231-241.

[7] Marshall Bern and Paul Plassmann, Mesh generation, Handbook of Computational
Geometry (Jorg Sack and Jorge Urrutia, eds.), Elsevier Science, 1999.

[8] Guy E. Blelloch, Garry L. Miller, Jonathan C. Hardwick, and Dafna Talmor, Design
and implementation of a practical parallel Delaunay algorithm, Algorithmica 24 (1999),
no. 3/4, 243-269.

[9] Harry Blum, A transformation for extracting new descriptors of shape, Models for the
Perception of speech and Visual Form, MIT Press, 1967, pp. 362-380.

[10] Houman Borouchaki, Paul-Louis George, Frederic Hecht, Patrick Laug, and Eric Saltel,
Delaunay mesh generation governed by metric specifications, Part I. Algorithms and
Part II. Applications, Finite Elements in Analysis and Design 25 (1997), 61-83 and
85-109.

[11] Houman Borouchaki, Frediric Hecht, and Pascal J. Frey, Mesh gradation control, 6th
International Meshing Roundtable, Sandia National Laboratories, Oct. 1997, pp. 131—
141.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

13

14

15

16

17

18

19

20

21

22

23

24

Jonathan Brandt, Convergence and continuity criteria for discrete approximations of
the continuous planar skeleton, CVGIP:Image Understanding 59 (1994), 116-124.

Jonathan Brandt and Ralph Algazi, Continuous skeleton computation by Voronoi di­
agram, Comput. Vision, Graphics, Image Process. 55 (1992), 329-338.

Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Tathagata Ray, Quality meshing
for polyhedra with small angles, Proc. 20th Annu. Sympos. Computational Geometry,
2004, pp. 290-299.

Siu-Wing Cheng and Sheung-Hung Poon, Graded conforming Delaunay tetrahedraliza-
tion with bounded radius-edge ratio, 14th annual ACM-SIAM symposium on Discrete
algorithms (Baltimore, Maryland), 2003, pp. 295 - 304.

Andrey Chernikov and Nikos Chrisochoides, Practical and efficient point insertion
scheduling method for parallel guaranteed quality Delaunay refinement, Proceedings
of the 18th annual international conference on Supercomputing (Malo, Prance), 2004,
pp. 48-57.

L. Paul Chew, Guaranteed quality triangular meshes, Tech. Report TR-89-983, Depart­
ment of Computer Science, Cornell University, 1989.

______ , Guaranteed-quality mesh generation for curved surfaces, 9th Annual Sympo­
sium on Computational Geometry (San Diego, California), ACM, 1993, pp. 274-280.

L. Paul Chew, Nikos Chrisochoides, and Florian Sukup, Parallel constrained Delaunay
triangulation, ASME/ASCE/SES Special Symposium on Trends in Unstructured Mesh
Generation (Evanston, IL), 1997, pp. 89-96.

Hyeong In Choi, Sung Woo Choi, and Hwan Pyo Moon, Mathematical theory o f medial
axis transform, Pacific Journal of Mathematics 181 (1997), 57-88.

N. Chrisochoides, An alternative to data mapping for parallel PDE solvers: parallel
grid generation, Scalable Parallel Libraries Conference (Mississippi State University,
Mississippi), IEEE, 1993.

Nikos Chrisochoides, Multithreaded model for the dynamic load-balancing of parallel
adaptive pde computations, Applied Numerical Mathematics 20 (1996), 349-365.

 , Parallel mesh generation., Numerical Solution of Partial Differential Equations
on Parallel Computers (Are Magnus Bruaset, Petter Bjorstad, and Aslak Tveito, eds.),
Springer-Verlag, 2005.

Nikos Chrisochoides and Demian Nave, Parallel Delaunay mesh generation kernel, In­
ternational Journal for Numerical Methods in Engineering 58 (2003), no. 2, 161-176.

25] Carlos A. Coello Coello, A Short Tutorial on Evolutionary Multiobjective Optimization,
First International Conference on Evolutionary Multi-Criterion Optimization (Eckart
Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, and David Corne,
eds.), Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001, pp. 21-40.

[26] David Cohen-Steiner, Eric Colin de Verdiere, and Mariette Yvinec, Conforming Delau­
nay triangulations in 3d, SCG ’02: Proceedings of the eighteenth annual symposium
on Computational geometry (New York, NY, USA), ACM Press, 2002, pp. 199-208.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Hugues L. de Cougny and Mark S. Shephard., Parallel unstructured grid generation.,
CRC Handbook of Grid Generation (J. F. Thompson, B. K. Soni, and Nigel P. Weath-
erill, eds.), CRC Press, Inc., Boca Raton,, 199, pp. 24-1 - 24-18.

[28] Hugues L. de Cougny and Mark S. Shephard, Surface meshing using vertex insertion,
Proceedings of the 5th International Meshing Roundtable, 1996, pp. 243-256.

[29] ______, Parallel volume meshing using face removals and hierarchical repartitioning,
Computer Methods in Applied Mechanics and Engineering 174 (1999), no. 3-4, 275-
298.

[30] Frank Deister, Udo Tremel, Oubay Hasan, and Nigel P. Weatherill, Fully automatic
and fast mesh size specification for unstructured mesh generation, Engineering with
Computers 20 (2004), 237-248.

[31] Boris N. Delaunay, Sur la Sphere Vide, Izvestia Akademia Nauk SSSR, VII Seria,
Otdelenie Matematicheski i Estestvennyka Nauk 7 (1934), 793-800.

[32] Ralf Diekmann, Derk Meyer, and Burkhard Monien, Parallel decomposition of unstruc­
tured FEM-meshes, Concurrency: Practice and Experience 10 (1998), no. 1, 53-72.

[33] Suchuan Dong and George E. Karniadakis, DNS of flow past a stationary and oscil­
lating rigid cylinder at re = 10,000, Journal of Fluids and Structures 20(4) (2005),
519-531.

[34] Herbert Edelsbrunner, Geometry and topology for meshing, Cambridge University
Press, 2001.

[35] Pascal Jean Frey and Paul-Louis George, Mesh generation, Hermes Science Publishing,
2000 .

[36] Adam Gaither, Dave Marcum, Donna Reese, and Nigel Weatherill, A paradigm for
parallel unstructured grid generation, 5th International Conference on Numerical Grid
Generation in Computational Field Simmulations (Mississippi State University), April
1996, pp. 731-740.

[37] Jerome Galtier and Paul-Louis George, Prepartitioning as a way to mesh subdomains
in parallel, 5th International Meshing Roundtable (Pittsburgh, Pennsylvania), 1996,
p p .107-122.

[38] Paul-Louis George and Houman Borouchaki, Delaunay triangulation and meshing: A p­
plications to finite element, Hermis, Paris, 1998.

[39] H. Nebi Gursoy and Nicholas M. Patrikalakis, An automatic coarse and fine surface
mesh generation scheme based on medial axis transform: Part I algorithms, Engineering
W ith Computers 8 (1992), 121-137.

[40] Bruce Hendrickson and Robert W. Leland, The Chaco user’s guide version 2.0, Tech.
Report SAND95-2344, Sandia National Laboratories, 1995.

[41] ______, A n improved spectral graph partitioning algorithm for mapping parallel com­
putations, SIAM Journal on Scientific Computing 16 (1995), no. 2, 452-469.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] ______, A multi-level algorithm for partitioning graphs, ACM /IEEE Conference on
Supercomputing (San Diego, CA), 1995.

[43] Clemens Kadow and Noel Walkington, Design of a projection-based parallel Delaunay
mesh generation and refinement algorithm, 4th Symposium on Trends in Unstructured
Mesh Generation, 2003.

[44] George Karypis and Vipin Kumar, A fast and high quality multilevel scheme for par­
titioning irregular graphs, Tech. Report TR 95-035, Department of Computer Science,
University of Minnesota, Minneapolis, 1995.

[45] ______, MeTis: Unstructured graph partitioning and sparse matrix ordering system,
version 2.0, 1995.

[46] Brian W. Kernighan and Shen Lin, An efficient heuristic procedure for partitioning
graphs, Bell Systems Technical Journal 4 9 (2) (1970), 291-307.

[47] Ravi Konuru, Jeremy Casas, Robert Prouty, Steve Oto, and Jonathan Walpore, A
user level process package for pvm, Scalable High-Performance Computing Conferene,
IEEE, 1997, pp. 48-55.

[48] B. G. Larwood, Nigel P. Weatherill, O. Hassan, and K. Morgan, Domain decomposition
approach for parallel unstructured mesh generation, International Journal for Numerical
Methods in Engineering 58 (2003), 177-188.

[49] C. K. Lee, On curvuture element-size control in metric surface mesh generation, Inter­
national Journal for Numerical Methods in Engineering 50 (2001), 787-807.

[50] D. T. Lee, Medial axis transformation of a planar shape, IEEE Transactions on Pattern
Analysis and Machine Intelligence P A M I 4 (1982), no. 4, 363-369.

[51] Xiangrong Li, Jean-Francois Remade, Nicolas Chevaugeon, and Mark S. Shep­
hard, Anisotropic mesh gradation control, Proceedings, 13th International Meshing
Roundtable (Williamsburg, VA), Sandia National Laboratories, 2004, pp. 401-412.

[52] Leonidas Linardakis and Nikos Chrisochoides, Delaunay Decoupling Method for parallel
guaranteed quality planar mesh refinement, SIAM Journal on Scientific Computing 27
(2006), no. 4, 1394-1423.

[53] Rainald Lohner, Extensions and improvements of the advancing front grid generation
technique, Communications in Numerical Methods in Engineering 12 (1996), 683-702.

[54] Rainald Lohner, Automatic unstructued grid generators, Finite Elements in Analysis
and Design 25 (1997), 111-135.

[55] Rainald Lohner and Juan Raul Cebral, Parallel advancing front grid generation, Inter­
national Meshing Roundtable, Sandia National Labs, 1999.

[56] meDDec, h ttp ://w w w .cs.w m .edu/~ leonl01/m eddec/m eddec.htm l.

[57] Metis, h ttp ://w w w -u se rs .c s .u m n .e d u /~ k a ry p is /m e tis /in d e x .h tm l.

[58] Garry L. Miller, Steven E. Pav, and Noel J. Walkington, Fully incremental 3D Delaunay
mesh generation, 11th International Meshing Roundtable, Sandia National Laboratory,
September 2002, p. 7586.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.wm.edu/~leonl01/meddec/meddec.html
http://www-users.cs.umn.edu/~karypis/metis/index.html

[59] ______ , When and why Ruppert’s algorithm works, 12th International Meshing
Roundtable, Sandia National Laboratory, September 2003, pp. 91-102.

[60] Scott A. Mitchell, Cardinality bounds for triangulations with bounded minimum angle,
Sixth Canadian Conference on Computational Geometry, 1994, pp. 326-331.

[61] B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving finite element equations on con­
current computers, American Soc. Mech. Eng (1986), 291-307.

[62] Steven J. Owen and Sunil Saigal, Neighborhood-based element sizing control for finite
element surface meshing, 6th International Meshing Roundtable (Park City, UT), 1997.

[63] ______ , Surface mesh sizing control, International Journal for Numerical Methods in
Engineering 47 (2000), 497-511.

[64] Steven E. Pav, Delaunay refinement algorithms, Ph.D. thesis, Carnegie Mellon Univer­
sity, May 2003.

[65] Steven E. Pav and Noel J. Walkington, Robust three dimensional Delaunay refinement,
13th International Meshing Roundtable (Williamsburg, VA), September. 2004.

[66] Philippe P. Pebay and J. Frey Pascal, A-priori Delaunay-conformity, 7th International
Meshing Roundtable, 1998, pp. 321-333.

[67] Per-Olof Persson, PDE-based gradient limiting for mesh size functions, Proc. of the
13th Int. Meshing Roundtable, August 2004, pp. 377-387.

[68] ______ , Mesh size functions for implicit geometries and PDE-based gradient limiting,
Engineering with Computers 22 (2006), no. 2, 95-109.

[69] Mark A. Price, Clive Stops, and Geoffrey Butlin, A medial object toolkit for meshing
and other applications, Proceedings of 4th International Meshing Roundtable, 1995,
pp. 219-229.

[70] William Roshan Quadros, Steven James Owen, Mike Brewer, and Kenji Shimada,
Finite element mesh sizing for surfaces using skeleton, 13th International Meshing
Roundtable (Williamsburg, VA,), Sandia National Laboratories, 2004, pp. 389-400.

[71] Jim Ruppert, A new and simple algorithm for quality 2-dimensional mesh generation,
4th ACM-SIAM Symp. on Discrete Algorithms, 1993, pp. 83-92.

[72] ______ , A Delaunay refinement algorithm for quality 2-dimensional mesh generation,
J. Algorithms 18 (1995), no. 3, 548-585.

[73] R. Said, Nigel Weatherill, K. Morgan, and N. Verhoeven, Distributed parallel Delaunay
mesh generation, Comp. Methods Appl. Mech. Engrg. 177 (1999), 109-125.

[74] SciClone, h ttp ://w w w .com psci.w m .edu /SciC lone/index .h tm l.

[75] Mark Shephard, J. Flaherty, Hugues de Cougny, C. Ozturan, C. Bottasso, and M. Beall,
Parallel automated adaptive procedures for unstructured meshes, Parallel Computing
in CFD, (1995), no. R-807, 6.1-6.49.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.compsci.wm.edu/SciClone/index.html

[76] Evan C. Sherbrooke, Nicholas M. Patrikalakis, and Franz-Erich Wolter, Differential
and topological properties o f medial axis transforms, Graphical Models and Image Pro­
cessing 55 (1996), no. 1, 574-592.

[77] Jonathan Richard Shewchuk, Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator, Applied Computational Geometry: Towards Geometric Engi­
neering (Ming C. Lin and Dinesh Manocha, eds.), Lecture Notes in Computer Science,
vol. 1148, Springer-Verlag, May 1996, From the First ACM Workshop on Applied
Computational Geometry, pp. 203-222.

[78] ______, Delaunay refinement mesh generation, Ph.D. thesis, School of Computer Sci­
ence, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1997, Available as
Technical Report CMU-CS-97-137.

[79] ______, Tetrahedral mesh generation by Delaunay refinement generation, Fourteenth
Annual Symposium on Computational Geometry, ACM, June 1998, pp. 86-95.

[80] ______, Mesh generation for domains with small angles, Proceedings of the sixteenth
annual symposium on Computational geometry, 2000, pp. 1-10.

[81] ______ , Delaunay refinement algorithms for triangular mesh generation, Computa­
tional Geometry: Theory and Applications 22 (1-3) (2002), 21-74.

[82] Robin Sibson, Locally equiangular triangulations, The Computer Journal 21 (1978),
no. 3, 243-245.

[83] Barry Smith, Petter Bjprstad, and William Gropp, Domain decomposition: paral­
lel multilevel methods for elliptic partial differential equations, Cambridge University
Press, New York, 1996.

[84] T. K. H. Tam and Cecil G. Armstrong, 2D finite element mesh generation by medial
axis subdivision, Advances in Engineering Software and Workstations 13 (1991), no. 5-
6, 313-324.

[85] T. K. H. Tam, Cecil G. Armstrong, and Mike McKeag, Computing the critical points
on the medial axis o f a planar object using a Delaunay point triangulation algorithm,
Tech. report, Mesh generation Group, Dept. Mech. Eng., the Queen’s University of
Belfast., 1991.

[86] Triangle, h t t p : //www. c s . emu. e d u /~ q u a k e /tr ia n g le . html.

[87] Chris Walshaw and Mark Cross, Mesh partitioning: A multilevel balancing and refine­
ment algorithm, SIAM Journal on Scientific Computing 22 (2000), no. 1, 63-80.

[88] Chris Walshaw, Mark Cross, and M. G. Everett, Parallel dynamic graph partitioning
for adaptive unstructured meshes, Journal of Parallel and Distributed Computing 47
(1997), no. 2, 102-108.

[89] Franz-Erich Wolter, Cut locus and medial axis in global shape interrogation and repre-
senation, Tech. report, MIT, Department of Ocean Engeneering, Design Laboratory,
1993.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[90] Jin Zhu, Ted Blacker, and Rich Smith, Background overlay grid size functions, 11th
International Meshing Roundtable, Sandia National Laboratories, September 2002,
pp. 65-74.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Leonidas Linardakis

Leonidas Linardakis received a B.S. and M.S. degree in Mathematics, in 1997 and 1999
respectively, from the University of Ioannina, Greece. In 2003 he earned an M.S. degree in
Computer Science from the College of William and Mary.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Decoupling method for parallel Delaunay two-dimensional mesh generation
	Recommended Citation

	tmp.1539734415.pdf.OZ1Co

