2,493 research outputs found

    Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results

    Full text link
    We review some recent attempts to extract information about the nature of quantum gravity, with and without matter, by quantum field theoretical methods. More specifically, we work within a covariant lattice approach where the individual space-time geometries are constructed from fundamental simplicial building blocks, and the path integral over geometries is approximated by summing over a class of piece-wise linear geometries. This method of ``dynamical triangulations'' is very powerful in 2d, where the regularized theory can be solved explicitly, and gives us more insights into the quantum nature of 2d space-time than continuum methods are presently able to provide. It also allows us to establish an explicit relation between the Lorentzian- and Euclidean-signature quantum theories. Analogous regularized gravitational models can be set up in higher dimensions. Some analytic tools exist to study their state sums, but, unlike in 2d, no complete analytic solutions have yet been constructed. However, a great advantage of our approach is the fact that it is well-suited for numerical simulations. In the second part of this review we describe the relevant Monte Carlo techniques, as well as some of the physical results that have been obtained from the simulations of Euclidean gravity. We also explain why the Lorentzian version of dynamical triangulations is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde

    Quantum Gravity, or The Art of Building Spacetime

    Get PDF
    The method of four-dimensional Causal Dynamical Triangulations provides a background-independent definition of the sum over geometries in quantum gravity, in the presence of a positive cosmological constant. We present the evidence accumulated to date that a macroscopic four-dimensional world can emerge from this theory dynamically. Using computer simulations we observe in the Euclidean sector a universe whose scale factor exhibits the same dynamics as that of the simplest mini-superspace models in quantum cosmology, with the distinction that in the case of causal dynamical triangulations the effective action for the scale factor is not put in by hand but obtained by integrating out {\it in the quantum theory} the full set of dynamical degrees of freedom except for the scale factor itself.Comment: 22 pages, 6 figures. Contribution to the book "Approaches to Quantum Gravity", ed. D. Oriti, Cambridge University Pres

    On directed interacting animals and directed percolation

    Full text link
    We study the phase diagram of fully directed lattice animals with nearest-neighbour interactions on the square lattice. This model comprises several interesting ensembles (directed site and bond trees, bond animals, strongly embeddable animals) as special cases and its collapse transition is equivalent to a directed bond percolation threshold. Precise estimates for the animal size exponents in the different phases and for the critical fugacities of these special ensembles are obtained from a phenomenological renormalization group analysis of the correlation lengths for strips of width up to n=17. The crossover region in the vicinity of the collapse transition is analyzed in detail and the crossover exponent ϕ\phi is determined directly from the singular part of the free energy. We show using scaling arguments and an exact relation due to Dhar that ϕ\phi is equal to the Fisher exponent σ\sigma governing the size distribution of large directed percolation clusters.Comment: 23 pages, 3 figures; J. Phys. A 35 (2002) 272

    (D+1)(D+1)-Colored Graphs - a Review of Sundry Properties

    Get PDF
    We review the combinatorial, topological, algebraic and metric properties supported by (D+1)(D+1)-colored graphs, with a focus on those that are pertinent to the study of tensor model theories. We show how to extract a limiting continuum metric space from this set of graphs and detail properties of this limit through the calculation of exponents at criticality

    Geodesics on Flat Surfaces

    Full text link
    This short survey illustrates the ideas of Teichmuller dynamics. As a model application we consider the asymptotic topology of generic geodesics on a "flat" surface and count closed geodesics and saddle connections. This survey is based on the joint papers with A.Eskin and H.Masur and with M.Kontsevich.Comment: (25 pages, 5 figures) Based on the talk at ICM 2006 at Madrid; see Proceedings of the ICM, Madrid, Spain, 2006, EMS, 121-146 for the final version. For a more detailed survey see the paper "Flat Surfaces", arXiv.math.DS/060939
    corecore