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Abstract. We review the combinatorial, topological, algebraic and metric properties sup-
ported by (D + 1)-colored graphs, with a focus on those that are pertinent to the study
of tensor model theories. We show how to extract a limiting continuum metric space from
this set of graphs and detail properties of this limit through the calculation of exponents at
criticality.
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1 Introduction

This review focusses on the set of (D+ 1)-colored graphs, examining their combinatorial, topo-
logical, algebraic and metric properties. Such graphs form a subset of (D + 1)-regular bipartite
multigraphs distinguished by their admission of a specific edge-labelling. These labels or colors
are the key to their rich structure and the subsequent structural analysis.

Colored graphs arise mainly in two areas of the literature. Historically, they were first deve-
loped as a graph-theoretic tool to address challenges in piecewise-linear topology. See [13] for
an interesting review. More recently, they have experienced a resurgence of attention in the
context of quantum gravity. As the Feynman graphs of tensor models/tensorial group field
theories [22, 28], they may form the groundwork for the systematic definition of a non-trivial,
physically interesting probability measure over quantum geometries.

From the tensor model perspective, the reason to concentrate a review purely on graph-
theoretic properties is clearly motivated. Despite their striking similarities, tensors lack many of
the powerful tools that are available for matrices [11]. Thus, tensor model calculations rely for
the moment quite heavily on one’s ability to control and analyze the properties of sufficiently
interesting subsets of (D + 1)-colored graphs.

The review falls into two parts. Sections 2 and 3 introduce and analyse the combinatorial,
topological and algebraic properties on the whole set of (D + 1)-colored graphs. Afterwards,
Section 4 narrows the scope to the melonic subset, which permits a more in-depth analysis of
their metric properties.

In Section 2, we shall begin by carefully detailing the structure of (D + 1)-colored graphs.
From there, we use the colors to construct a topology on each graph. As a by-product of this con-
struction, we demonstrate that such graphs encode D-dimensional simplicial pseudomanifolds.
Thereafter, we show that the set of (D + 1)-colored graphs admits several equivalence struc-
tures, one of which is known as combinatorial core equivalence. Each such class has preferred

?This paper is a contribution to the Special Issue on Tensor Models, Formalism and Applications. The full
collection is available at http://www.emis.de/journals/SIGMA/Tensor Models.html
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2 J.P. Ryan

representatives, known as combinatorial core graphs and we present an algorithm that reduces
a given graph to an equivalent core graph. To finish this section, we identify a graph’s jackets:
specific embedded Riemann surfaces. They can be used to define an important combinatorial
invariant, known as the degree. We detail some properties of the degree and its significance for
the identification of melonic spheres.

In Section 3, we define the Lie algebraic structure supported by (D + 1)-colored graphs. In
Section 4, we focus entirely on one combinatorial core equivalence class: the (rooted) melonic
graphs. We examine a metric structure thereon and most interestingly a continuum limit within
this set of graphs. This limit has associated numbers, known as exponents, that help identify the
limiting continuum metric space. We focus on three exponents: the susceptibility, Hausdorff
dimension and spectral dimension. All three indicate that continuum metric space coincides
with that of branched polymers spacetimes.

As hinted above, this review rarely mentions its roots in either piecewise linear topology or
tensor models. However, we take more care to highlight connections to the latter, while rarely,
if ever, mention the former. Having said that, this is by no means a comprehensive review of all
tensor model inspired, graph-theoretic properties. We make no effort to detail the properties of
(D + 1)-colored graphs with additional labels, which may be identified as matter [7, 9], dual-
weighting [6], richly-geometric [4, 5]. We refrain from mentioning graph-theoretic properties
pertaining to other core equivalence classes [10, 24] or to multi-orientiable models [30, 31].

1.1 Notation

With such intricately labelled structures, a careful notation is required to decode the richly
layered information. The colors associated to the edges are drawn from {0, 1, . . . , D}. We shall
be often interested in subsets {i, j, . . . , k} and their complements {̂i, ĵ, . . . , k̂} = {0, . . . , D} \
{i, j, . . . , k}.

2 Combinatorial and topological properties

2.1 Closed, open and boundary graphs

Colored graphs are regular bipartite graphs that admit a specific labelling of the edges. Such
graphs come in three varieties – closed, open and boundary. Such qualifiers hint at a topological
structure that we shall detail in due course. For the moment, we shall content ourselves with
providing the following rather dry definitions:

Definition 2.1 (closed graph). A closed (D+1)-colored graph is a graph G = (V, E) with vertex
set V and edge set E such that:

• V is bipartite, that is, there is a partition of the vertex set V = V ∪ V̄ , such that for
any element l ∈ E , then l = {v, v̄} where v ∈ V and v̄ ∈ V̄ . Their cardinalities satisfy
|V| = 2|V | = 2|V̄ |.
• The edge set is partitioned into D+1 subsets E =

⋃D
i=0E

i, where Ei is the subset of edges
with color i.

• It is (D+ 1)-regular (i.e., all vertices are (D+ 1)-valent) with all edges incident to a given
vertex having distinct colors.

The elements v ∈ V (v̄ ∈ V̄ ) are commonly referred to as the positive (negative) vertices.
Given a projection of the graph onto a plane, one arranges the colors consistently in a clock-
wise (anti-clockwise) manner. Moreover, it is worth noticing that the bipartition induces an
orientation on the edges, say from v to v̄. See Fig. 1 for an example.
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Figure 1. A closed (D + 1)-colored graph (D = 3).

Definition 2.2 (open graph). An open (D + 1)-colored graph is a graph G satisfying some
additional constraints:

• It is bipartite, that is, there is a partition of the vertex set V = V ∪ V̄ , such that for any
element l ∈ E , then l = {v, v̄} where v ∈ V and v̄ ∈ V̄ . Moreover, their cardinalities also
satisfy |V| = 2|V | = 2|V̄ |.
• The positive vertices are of two types V = Vint + V∂ , where Vint is the set of (D + 1)-

valent internal vertices and the elements of V∂ are 1-valent boundary vertices. A similar
distinction holds for negative vertices.

• The edge set is partitioned into D+1 subsets E =
⋃D
i=0E

i, where Ei is the subset of edges
with color i. Furthermore, each Ei = Eiint ∪ Eiext, such that internal edges Eiint join two
internal vertices, while external edges Eiext join an internal vertex to a boundary vertex.

Remark 2.3. In this text, we consider only connected closed and open graphs. This is not just
for the convenience of subsequent analysis, but is well motivated by their usage in tensor model
theories; the terms in the perturbative expansion of tensor model cumulants are neatly labelled
by connected graphs.

The open graphs induce a boundary graph structure [15] as follows:

Definition 2.4 (boundary graph). The boundary graph G∂ of an open (D+ 1)-colored graph G
comprises of:

• the vertex set V∂ = V∂ ∪ V̄∂ . We stress that it is not bipartite with respect to this splitting.
The vertices inherit the color from the external edges of G upon which they lie, so that
a more appropriate partition is V∂ =

⋃D
i=0 V i∂ , where V i∂ denotes the set of boundary

vertices with color i.

• the edge set E∂ =
⋃
i 6=j E

ij
∂ , where lij = {v, w} ∈ Eij∂ exists if there is a bi-colored path

from v to w in G consisting of colors i and j. Thus, the lines Eij∂ inherit the colors of the
path in G.

A cursory investigation of these boundary graphs reveals that they possess a number of
additional properties. The edge lij ∈ Eij∂ can only exist if lij = {vi, wi} or {vi, wj} or {vj , wi} or

{vj , wj}, where vi, wi ∈ V i∂ and vj , wj ∈ Vj∂ . Each boundary vertex is D-valent and for vi ∈ V i∂ ,

the incident boundary edges are lij where j = î. Several examples are presented in Fig. 2.

Remark 2.5. A priori, the boundary graph G∂ is a very different beast from the initial graph G;
afterall, it has colored vertices and bicolored edges. Moreover, a connected open graph can have
a boundary with several connected components. However, from a topological perspective, these
disparate structures dovetail elegantly. We shall return to this later.
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Figure 2. Open 4-color graphs and their corresponding boundary graphs.

2.2 Cellular structure and pseudomanifolds

Such heavily labelled graphs display a beautiful hierarchy that is key to their utility [14, 16].
Importantly, it supports a D-dimensional topological structure. We shall now expose this for
a generic (D + 1)-colored graph G.

Definition 2.6 (d-bubble). The d-bubble of G is the maximally connected subgraph comprising
of edges with d fixed colors.

Obviously, d ∈ {0, . . . , D}. The d-bubbles are denoted by Bi1...id(ρ) ; the color indices are ordered
i1 < i2 < · · · < id to uniquely identify the particular species of d-bubble, while ρ distinguishes
connected components of the same species. We denote the number of d-bubbles of the graph
by B[d]. One should note that the 0-bubbles are the vertices of G, the 1-bubbles are the edges
of G. The 2-bubbles are the faces of G.

In Fig. 3, we present the 3-bubbles associated to the graph given in Fig. 1. The 3-bubbles
are indexed by the colors of their lines, namely from left to right 123, 023, 013 and 012. The
2-bubbles are the subgraphs catalogued by color pairs 01, 02, 03, 12, 13 and 23. The 1-bubbles
are the lines 0, 1, 2 and 3, while the 0-bubbles are the vertices.

Constructing the dual complex. These d-bubbles are key to defining a topology, in
particular, a D-dimensional cellular complex structure. To this end, we shall construct the dual
finite abstract simplicial complex. Quite clearly, the graph complex and the dual complex are
the same topological space. Note that we write H ⊂ G, if H is a subgraph of G. To construct
the dual complex [14]:

• We first assemble all the D-bubbles of G into a set A:

A =
{
Bî(ρ) : i ∈ {0, . . . , D}, ρ unrestricted

}
.

• For each (D + 1 − d)-bubble within G, d ∈ {1, . . . , D + 1}, we form the following subset
of A:

σ
Bî1 î2...̂id

(κ) =
{
Bîk(ρ) : Bî1 î2...̂id(κ) ⊂ Bîk(ρ), k ∈ {1, . . . , d}

}
⊂ A.
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Figure 3. 3-bubbles of a graph in D = 3.

In fact, for a given (D + 1− d)-bubble Bî1 î2...̂id(κ) , there is, for each k ∈ {1, . . . , d}, a unique

D-bubble Bîk(ρ) ⊃ B
î1 î2...̂id
(κ) . This is the maximal connected component (in G) obtained

by starting from Bî1 î2...̂id(κ) and adding edges of all colors except ik. Thus, the cardinality

of σ
Bî1 î2...̂id

(κ) is d.

• As a result, any subset τ ∈ σB
î1 î2...̂id
(κ) is indexed by a choice of subset S ⊂ {1, . . . , d}:

τ =
{
Bîk(ρ) | B

î1 î2...̂id
(κ) ⊂ Bîk(ρ), k ∈ {1, . . . , d} \ S

}
.

So τ = σ
B
î1 î2...̂id−|S|
(ξ) , where Bî1 î2...̂id−|S|(ξ) is the unique subgraph obtained by adding the

colors is, s ∈ S, to the subgraph Bî1 î2...̂id(κ) .

• The final crucial detail is that the sets σ
Bî1 î2...̂id

(κ) are the (d−1)-simplices of a finite abstract
simplicial complex, defined as

∆ =
{
σ
Bî1 î2...̂id

(κ) | Bî1 î2...̂id(κ) ⊂ G
}
.

It is straightforward to verify the defining property of an abstract simplicial complex: that
for all σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆. The cardinality of σ ∈ ∆ is d (it corresponds to
a (D + 1− d)-bubble) and so its dimension is d− 1.

• In fact, since ∆ is non-branching, strongly connected and pure, it is a D-dimensional
simplicial pseudomanifold [14].

Remark 2.7 (duality). The vertices of the graph correspond to the D-simplices of the simplicial
complex. The half-lines of a vertex represent the (D − 1)-simplices bounding a D-simplex and
have a color. Any lower-dimensional sub-simplex is colored by the colors of the D− 1 simplices
sharing it. In Fig. 4 we sketched the dual complex in D = 3 dimensions. The vertices are dual
to tetrahedra. A triangle (say 3) is dual to a line (of color 3) and separates two tetrahedra.
An edge (say common to the triangles 2 and 3) is dual to a face (2-bubble of colors 2 and 3).
A vertex (say common to the triangles 0, 2 and 3) is dual to a 3-bubble (of colors 0, 2 and 3).
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Figure 4. The dual complex in D = 3.

Remark 2.8 (boundary graph). Let us return for a moment to examine the structure of a boun-
dary graph G∂ . Such a graph may have multiple connected components but each component has
a cellular complex structure. For d ≥ 1 the boundary d-bubbles (B∂)

i1...id+1

(ρ) are the maximally

connected components of G∂ formed by boundary vertices via and boundary edges libic , where
ia, ib, ic ∈ {i1, . . . , id+1}. Following an analogous construction to that outlined above, but taking
into account that the boundary d-bubbles have d+ 1 colors, one can show that each connected
component of G∂ is dual to a simplicial complex (and is a pseudomanifold). In fact, the simplicial
complex dual to G∂ is the boundary of the simplicial complex dual to G.

Consequently, this motivates the study of these structures homological properties.

2.3 Colored homology

The topological spaces defined by (D + 1)-colored graphs are amenable to both a homological
and homotopical analysis. The colored homology is defined for the graph complex [16] as follows:

Definition 2.9 (chain group). The d-th chain group is the group finitely generated by the
d-bubbles

αd =
∑

Bi1...id
(ρ)

⊂G

ci1...id(ρ) B
i1...id
(ρ) , ci1...id(ρ) ∈ Z.

The chain groups define homology groups via a boundary operator:

Definition 2.10 (boundary operator). The d-th boundary operator ∂d acting on a d-bubble
Bi1...id(ρ) is:

• For d ≥ 2,

∂d(Bi1...id(ρ) ) =
d∑
q=1

(−1)q+1
∑

Bi1...îq...id
(κ)

⊂Bi1...id
(ρ)

Bi1...îq ...id(κ) ,

which associates to a d-bubble the alternating sum of all (d−1)-bubbles formed by subsets
of its vertices.

• For d = 1, since the edges Bi(ρ) connect a positive vertex v to a negative one v̄:

∂dBi(ρ) = v − v̄.

• For d = 0, ∂0v = ∂0v̄ = 0.
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Figure 5. The process of k-dipole contraction/creation in the case ip = p− 1 for all p ∈ {1, . . . , k}.

The colored boundary operators extend linearly over chains and thereafter define a ho-
mology as ∂d−1 ◦ ∂d = 0 [16]. Thus we define the d-th colored homology group to be Hd ≡
ker(∂d)/ Im(∂d+1).

These graphs also facilitate a finite presentation of their fundamental group by associating
a generator to all edges of G (apart from those edges lying on a maximal tree) and a relation to
all faces of G.

2.4 Equivalence: combinatorial and topological

Colored graphs support a class of moves, termed k-dipole moves [18, 19, 21], that have a well
controlled effect on their bubble structure. A priori, these are combinatorial in nature and allow
one to set up the notion of combinatorial equivalence. However, a subset are homeomorphisms
of the graph complex, thus setting the stage for topological equivalence.

Definition 2.11 (k-dipole). A k-dipole dk is a subset of G comprising of two vertices v, v̄ such
that:

• v and v̄ share k edges colored by i1, . . . , ik ∈ ZD+1;

• v and v̄ lie in distinct (D + 1− k)-bubbles: B î1...̂ik
(α) 6= B î1...̂ik

(β) .

We say that dk separates the bubbles B î1...̂ik
(α) and B î1...̂ik

(β) . Yet more important is how one
manipulates the graph structure with respect to these subsets.

Definition 2.12 (k-dipole moves). The process of k-dipole contraction:

• deletes the vertices v1 and v2;

• deletes the edges i1, . . . , ik;

• connects the remaining edges respecting coloring, see Fig. 5.

The process of k-dipole creation is precisely the inverse. We denote by G/dk the graph obtained
from G by contracting dk. Note that the separation property makes the identification and
creation of k-dipoles somewhat subtle.

Definition 2.13 (combinatorial equivalence). Two graphs as said to be combinatorially equi-
valent, denoted ∼(c), if they are related by a sequence of k-dipole contractions and creations.

Together with combinatorial equivalence, comes the idea of combinatorial equivalence class.
With the variety of moves available, these classes may have more or less restrictive membership
requirements. One particularly useful set of classes respects 1-dipole moves. These are known
as the combinatorial core equivalence classes.

Definition 2.14 (combinatorial core graph). A combinatorial core graph at order p, deno-

ted G(c)
p , is a (D + 1)-colored graph with 2p vertices, such that for all colors i, it has a unique

D-bubble Rî(1).
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Combinatorial bubble routing algorithm. What is more, every colored graph is combi-
natorially equivalent to (at least) one combinatorial core graph via the contraction of a maximal
set of 1-dipoles:

• Designate a root. For a given color i, we pick one of the D-bubbles Bî(ρ) as a root Rî(1)

bubble. The total number of roots of a graph is R[D] = D + 1.

• Identify î-connectivity graph. We associate to the bubbles î of G an î-connectivity graph.

Its vertices represent the various bubbles Bî(ρ). Its lines are the lines of color i in G. They

either start and end on the same bubble Bî(α), known as tadpole lines in the connectivity

graph, or they do not. A particularly simple way to picture the î-connectivity graph is to
draw G with the lines j 6= i much shorter than the lines i.

• Choose a tree. We chose a tree T i in the î-connectivity graph, such that its root is Rî(1).
We refer to the rest of the lines of color i as loop lines.

• Contract. All the B[̂i] − 1 lines of T i are 1-dipoles and we contract them. We end up

with a connectivity graph with only one vertex corresponding to the root bubble Rî(1).

The remaining lines of color i cannot be contracted further (they are tadpole lines in the
connectivity graph). The number of the D-bubbles of the other colors is unchanged under
these contractions.

• Repeat. We iterate the previous three points for all colors starting with D. The routing
tree T j is chosen in the graph obtained after contracting T j+1, . . . , T D. The number of
bubbles of colors q > j are constant under contractions of 1-dipoles of color j, hence the
latter cannot create new 1-dipoles of color q. Reducing a full set of 1-dipoles indexed by
D + 1 routing trees T 0, . . . , T D we obtain a graph in which all bubbles are roots. This is
precisely a combinatorial core graph.

This gives rise to:

Definition 2.15 (combinatorial core equivalence class). A combinatorial core equivalence class
is a set of graphs related by sequences of 1-dipole moves.

Remark 2.16 (non-uniqueness of rooting). The rooting algorithm allows us to pick a repre-
sentative for each core equivalence class. However, the combinatorial core graph one obtains by
the above routing procedure is not independent of the routing trees. The same graph leads to
several equivalent core graphs, all at the same order p.

We now briefly mention the topological analogue. We shall utilize a fundamental result from
combinatorial topology [12, 27]:

Theorem 2.17 (topological k-dipole). Two pseudomanifolds dual to G and G/dk are homeo-

morphic if one of the (D+ 1− k)-bubbles Bî0...̂ik−1

(α) or Bî0...̂ik−1

(β) separated by the dipole is dual to

a sphere SD−k.

This allows us to propose another equivalence relation on the set of colored graphs:

Definition 2.18 (topological equivalence). Two graphs are said to be topologically equivalent,
denoted ∼(t), if they are related by a sequence of topological dipole contraction and creation
moves.

With appropriate modifications, one can define topological core graph, topological core
equivalence class and topological bubble rooting algorithm. We relinquish the details to other
sources [21, 22].
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Moreover, (D + 1)-colored graphs representing manifolds are related, through the combina-
torial/topological bubble routing algorithms to core graphs that are called crystallizations in
the graph-encoded manifold literature [13]. The combinatorial and topological bubble routing
algorithms coincide for manifolds, since all D-bubbles are homeomorphic to spheres and the
routing algorithms only involve dipole contraction1.

2.5 Jackets and degree

As we have seen, the bubble structure captures the rich topology supported by these colored
graphs. As a result, it tends to be rather intricate and subtle. We should also like to have
a somewhat blunter tool that captures only some of the information encoded by the colors.

This tool is provided by the jackets. Their main advantage is that they are just ribbon
graphs, like those generated by matrix models. As such they are Riemann surfaces embedded in
the cellular complex and thus the subset of topological information that they capture is nicely
encapsulated by their genera.

Definition 2.19 (jacket). A colored jacket J is a 2-subcomplex of G, labeled by a (D + 1)-
cycle τ , such that:

• J and G have identical vertex sets, VJ = VG ;

• J and G have identical edge sets, EJ = EG ;

• the face set of J is a subset of the face set of G: FJ = {f ∈ FG | f = (τ q(0), τ q+1(0)), q ∈
ZD+1}.

Remark 2.20 (connectivity and abundance). It is evident that J and G have the same con-
nectivity. In actual fact, a given jacket is independent of the overall orientation of the cycle,
meaning that the number of jackets is in one-to-two correspondence with (D+ 1)-cycles. There-
fore, the number of independent jackets is D!/2 and the number of jackets containing a given
face is (D − 1)!.

Remark 2.21 (jackets as ribbon graphs). The jacket has the structure of a ribbon graph. Note
that each edge of J lies on the boundary of two of its faces. Thus, it corresponds to a ribbon
line in the ribbon graph. As we said, the ribbon lines separate two faces, (τ−1(i), i) and (i, τ(i))
and inherit the color i of the line in J . Ribbon graphs are well-known to correspond to Riemann
surfaces, and so the same holds for jackets. Given this, we can define the Euler characteristic
of the jacket as: χ(J ) = |FJ | − |EJ |+ |VJ | = 2− 2gJ , where gJ is the genus of the jacket2.

Remark 2.22 (examples). In D = 2, the (unique) jacket of a (2+1)-colored graph is the graph
itself. An example of a graph and its jackets (and their associated cycles) is given in Fig. 6. For
instance the leftmost jacket corresponding to the cycle τ = (0123) contains only the faces 01,
12, 23 and 30.

Remark 2.23 (jackets and d-bubbles). For a (D + 1)-colored graph G, its D-bubbles are D-

colored graphs Bî(ρ). Thus, they also possess jackets, which we denote by J î(ρ). It is rather

elementary to construct the J î(ρ) from the J . Let us construct the ribbon graph J î consisting
of vertex, edge and face sets:

VJ î = VJ , EJ î = EJ \ Ei, and

FJ î =
(
FJ \

{(
τ−1(i), i

)
, (i, τ(i))

})
∪
{(
τ−1(i), τ(i)

)}
,

1Combinatorial 1-dipole insertion may produce two non-spherical D-bubbles from an initial spherical one.
2A moment’s reflection reveals that the jackets necessarily represent orientable surfaces.
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Figure 6. A vacuum 4-colored graph and its jackets.

that is having all vertices of G, all lines of G of colors different from i and some faces. Given
that the face set of J is specified by a (D + 1)-cycle τ , the first thing to notice is that the

face set of J î is specified by a D-cycle obtained from τ by deleting the color i. The ribbon

subgraph J î is the union of several connected components, J î(ρ). Each J î(ρ) is a jacket of the

D-bubble Bî(ρ). Conversely, every jacket of Bî(ρ) is obtained from exactly D jackets of G. To

realize this, consider a jacket J î(ρ). It is specified by a D-cycle (missing the color i). On can

insert the color i anywhere along the cycle and thus get D independent (D + 1)-cycles.
More generally, the d-bubbles are d-colored graphs and they also possess jackets which can

be obtained from the jackets of G.
Consider once again Fig. 6. Applying our procedure to the jacket (0123) leads to the three

jackets (123), (023) and (012). Each of these jackets corresponds to a bubble of Fig. 3 and is
a 3-colored graph.

Definition 2.24 (degree). We define:

• the (convergence) degree of a graph G is ω(G) =
∑
J gJ , where the sum runs over all the

jackets J of G,

• the degree of a k-dipole dk is the lesser of the degrees of the two (D+ 1− k)-bubbles that
it separates.

Remark 2.25 (properties of the degree). The degree displays a number of pertinent properties:

• The degree is a non-negative integer that is readily computable from the graph (as it is
the sum of the genera of the embedded jackets).

• The degree of a graph ω(G) and its D-bubbles ω
(
Bî(ρ)

)
are not independent, that is, they

respect

ω(G) =
(D − 1)!

2

(
p+D − B[D]

)
+
∑
i;ρ

ω
(
Bî(ρ)

)
,

where 2p is the number of vertices in G and B[D] is the total number of D-bubbles of all
colors.

• The degree of a graph changes under k-dipole contraction G → G/dk. The degree of G
and G/dk are related by

ω(G) =
(D − 1)!

2

(
(D + 1)k − k2 −D

)
+ ω(G/dk).

In particular, the degree is unchanged by any 1-dipole move. As a consequence, all graphs
in a combinatorial core equivalence class have the same degree.
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Figure 7. The supermelon (left) and an elementary melon (right).

• Let G be a D + 1 colored graph and BD̂(ρ) its D-bubbles with colors D̂. Then

ω(G) ≥ D
∑
ρ

ω
(
BD̂(ρ)

)
.

Remark 2.26 (ramifications of vanishing degree: melonic graphs). One particular core equiv-
alence class is distinguished by vanishing degree ω(G) = 0. Of course, the fact that all graphs
with vanishing degree lie in the same core equivalence class must be shown explicitly. This
cannot be taken for granted.

• A simple argument yields that p + D − B[D] ≥ 0.3 Thus, one has that ω(G) = 0 =⇒
ω(Bî(ρ)) = 0 for all i and all ρ, as well as p+D − B[D] = 0.

• Since a core graph has precisely B[D] = D+ 1, one with vanishing degree must have p = 1.
There is a unique core graph with 2 vertices, known affectionately as the supermelon. It
is illustrated in Fig. 7.

• In D = 2, the 1-dipole moves allow one to explore the full set of colored planar graphs.
Our interested lies with higher values of D, however, so we shall not explore this further.

• In D ≥ 3, ω(G) = 0 implies that G contains an elementary melon, illustrated in Fig. 7. Such
a sub-graph can be removed trivially through 1-dipole reduction. Iterating this process on
the resulting graph means that all graphs with vanishing degree root to the supermelon
through the removal of a sequence of elementary melons. Hence this core equivalence class
is referred to as the class of melonic graphs.

• If ω(G) = 0 then G is dual to a sphere SD. The reciprocal holds in D = 2. Thus, in all
melonic graphs are spheres.

Remark 2.27 (some further results in D = 3). Let us focus briefly on the case when D = 3,
where we can readily utilize this machinery to uncover some further results about the topology
of the 4-colored graphs.

• The jacket structure can tell us more about the topology of the full graph, namely: if G
possesses a spherical jacket then G is spherical.

• The jackets have a special significance as splitting surfaces [29]: if G is a manifold, then
its jackets J are Heegaard surfaces, where a Heegaard splitting of a compact connected
oriented 3-manifoldM is an ordered triple (Σ,H1,H2)M consisting of a compact connected
oriented surface Σ and two handlebodies H1, H2 such that ∂H1 = ∂H2 = Σ. Σ is known
as the Heegaard surface of the splitting.

3The quantity p − B[D] is conserved by 1-dipole moves. A core graph has at least two vertices (p ≥ 1) and
B[D] = D+1. Thus, p+D−B[D] ≥ 0 for core graphs. Since every graph roots to a core graphs, the result follows.
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3 Algebraic properties

Colored graphs support a very nuanced algebraic structure [17, 20]. Its importance for the
understanding of tensor models cannot be overstressed. In principle, it provides a bridge between
the apparent discrete world inhabited by the tensor representation and any potential continuum
representation. In reality, work on this facet of the theory has gone little further than its
definition and the demonstration of its self-consistency.

To begin, we need some basic graph-theoretic concepts:

Definition 3.1 (marked graph). A marked graph (B, v̄) is a D-colored graph B paired together
with one of its negative vertices v̄.

Definition 3.2 (graph contraction). Consider two D-colored graphs B1 and B2 and a positive-
negative vertex pair (v1, v̄2) ∈ B1 × B2 (or (v̄1, v2)). Contraction of B1 and B2 at (v1, v̄2) is
obtained in a two-step process:

• delete v1 and v̄2 along with the half-edges emanating from them;

• reconnect the surviving half-edges in the (unique) manner that preserves the color struc-
ture.

One denotes the resulting D-colored graph by B1 ?(v1,v̄2) B2. Note that this definition coincides
with that of 0-dipole contraction for D-colored graphs.

Remark 3.3 (property). Note also that graph contraction has one vital property

(B1 ?(v,v̄2) B2) ?(w,v̄3) B3 = B1 ?(v,v̄2) (B2 ?(w,v̄3) B3). (3.1)

Constructing the bubble algebra:

• Consider the set S = {L(B,v̄)} of elements indexed by marked D-colored graphs.

• Construct an (infinite-dimensional) vector space over the reals using the elements of S as
basis vectors. Denote this vector space by X.

• Endow X with the following non-associative multiplication[
L(B1,v̄1),L(B2,v̄2)

]
≡
∑
v∈B1

L(B1?(v,v̄2)B2,v̄1) −
∑
v∈B2

L(B2?(v,v̄1)B1,v̄2).

• Impose bilinearity in the first argument by fiat[
aL(B1,v̄1) + bL(B2,v̄2),L(B,v̄)

]
≡ a

[
L(B1,v̄1),L(B,v̄)

]
+ b
[
L(B2,v̄2),L(B,v̄)

]
along with a similar relation for the second argument.

• This bracket is clearly anticommutative, since[
L(B1,v̄1),L(B2,v̄2)

]
= −

[
L(B2,v̄2),L(B1,v̄1)

]
,

and this extends to all of X using bilinearity of the bracket.

In fact, with the help of (3.1), the bracket satisfies the Jacobi identity[[
L(B1,v̄1),L(B2,v̄2)

]
,L(B3,v̄3)

]
+
[[
L(B2,v̄2),L(B3,v̄3)

]
,L(B1,v̄1)

]
+
[[
L(B3,v̄3),L(B1,v̄1)

]
,L(B2,v̄2)

]
= 0.

In the end, we have the following neat result:
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Figure 8. An elementary melon of color 2 inserted along the active edge of color 2 (for D = 3). The

active edges are drawn using full lines.

Theorem 3.4 (bubble algebra). The pair (X, [·, ·]) form a Lie algebra.

The next step is to look for representations of this algebra. One such is given by the tensor
model D-bubble observables of a (D+ 1)-colored tensor model, hence the rather nomenclature.
This algebra underpins the symmetries of the tensor model theory.

Important for the representation theory is the identification of subalgebras, from which one
can induce representations of the full algebra. In this direction, one has:

Theorem 3.5 (melonic subalgebra). The marked melonic D-colored graphs form a subalgebra
of the D-colored bubble algebra.

4 Melonic graphs: probing deeper into their combinatorial
and metric structures

In order to perform a more detailed analysis, let us restrict ourselves to a single core equivalence
class: the melonic graphs that we introduced earlier. This is the sole core equivalence class con-
tributing to the leading order of generic tensor model theories and so a thorough understanding
of its combinatorial and metric properties is of utmost importance.

By definition, melonic graphs are those that reduce to the supermelon core graph. Thus, they
have vanishing degree and differ from the supermelon by a sequence of 1-dipole moves. But this
is a rather redundant prescription as many sequences lead to the same melonic graph. However,
as laid out in Remark 2.26, melonic graphs reduce to the supermelon through the iterative
removal of elementary melons. This provides a parsimonious prescription for melonic graphs.

Rooted melonic graphs. To be precise, we shall construct rooted melonic graphs. A rooted
melonic graph is a melonic graph with one edge singled out. Such rooting is common in com-
binatorial graph theory, as it simplifies counting problems. Marking an edge of the supermelon
graph essentially yields an elementary melon of some color i (the color of the distinguished edge).
In the following we shall always root the graphs along an edge of color 0.

The elementary melons also act as the fundamental building blocks of generic melonic graphs.
To add a bit more nomenclature, an elementary melon consists of two vertices connected by D
edges. Both vertices have one external edge. Obviously, both external edges possess the same
color, say i. An elementary melon has two features: i) an external edge of color i incident to
the white vertex, which is known as the root edge; ii) D + 1 edges incident at the black vertex,
which are known as active edges, having distinct colors from {0, 1, . . . , D}.

Rooted melonic graph construction algorithm. One can construct the class rooted
melonic graphs iteratively.

p = 1: There is a unique rooted melonic graph with two vertices. It is illustrated in the bottom
left of Fig. 8 and is the elementary melon of color 0.
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Figure 9. The elementary vertex of color 2 replacing a leaf of color 2 (for D = 3).

p = 2: There are D + 1 melonic graphs with four vertices. One obtains them from the graph
at p = 1 by replacing an active edge of a given color by an elementary melon of the same
color (as shown in Fig. 8).

p = k: One obtains these graphs from those at p = k − 1 by replacing some active edge by an
elementary melon of the appropriate color.

The need for a precise prescription cannot be overstressed, since all the ensemble properties
of these graphs, stem from being able to count them precisely.

As mentioned earlier, the abstract structure of rooted melonic graphs coincides with that of
several other objects, which we shall describe presently.

Rooted melonic graphs as colored rooted (D + 1)-ary trees. There is a simple
bijection between the set of rooted melonic graphs and colored rooted (D + 1)-ary trees. The
fundamental building blocks of any colored rooted (D+ 1)-ary tree are the elementary vertices.
An elementary vertex of color i is (D+ 2)-valent with two distinguished features: i) a root edge
of color i; ii) D + 1 active leaves each with a distinct color from {0, . . . , D}. These correspond
to the root edge and the active edges of the elementary melon, respectively. Since this class of
trees is also constructed in an iterative manner, the map is self-evident:

p = 1: There is a unique colored rooted (D + 1)-ary tree with a single elementary vertex. This
is the elementary vertex of color 0. It is illustrated in the bottom left of Fig. 9.

p = 2: There are D + 1 such trees with two elementary vertices. One obtains them from the
tree at p = 1 by replacing a leaf of a given color with an elementary vertex of the same
color (as shown in Fig. 9).

p = k: One obtains these trees from those at p = k − 1 by replacing a leaf with an elementary
vertex of the same color.

Rooted melonic graphs as colored simplicial D-balls. The description of how any
given (D + 1)-colored graph is dual, in a precise topological sense, to a unique D-dimensional
abstract simplicial pseudomanifold was provided earlier.

Consider cutting a closed (D + 1)-colored graph along one edge. This results in an open
graph whose dual is a simplicial complex with boundary. This boundary is a (D − 1)-sphere
constructed from two (D − 1)-simplices.

Melonic graphs are dual to simplicial D-spheres. Rooted melonic graphs, which are melonic
graphs with one edge cut, are dual to simplicial D-balls with the boundary just mentioned. For
the want of a better name, we shall call them melonic D-balls. One can define them iteratively.
The fundamental building blocks are the elementary melonic D-balls. These consist of two D-
simplices sharing D of their (D − 1)-simplices. There are two more (D − 1)-simplices forming
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Figure 10. The melonic D-ball at p = 2 (for D = 3), obtained by adding an elementary D-ball of

color 2.

the boundary (D − 1)-sphere. In the manner outlined above, the two D-simplices are dual to
the two vertices of the elementary melon, while the (D − 1)-simplices are dual to the edges.
Thus, the (D − 1)-simplices inherit a single color. An elementary melonic D-ball of color i has
two distinguished features: i) an external root (D − 1)-simplex of color i; ii) D + 1 active
(D − 1)-simplices (one of which is on the boundary), each with a distinct color. The iterative
definition proceeds as follows:

p = 1: There is a unique D-ball comprised of two D-simplices. It is the elementary melonic
D-ball of color 0. It is illustrated in the bottom left of Fig. 10.

p = 2: There are D + 1 melonic D-balls with four D-simplices. One obtains them from the
melonic D-ball at p = 1 by adding an elementary melonic D-ball of a given color (shown
in Fig. 10). More precisely, one splits the melonic D-ball arising at p = 1 along an active
(D − 1)-simplex (or one selects the active boundary (D − 1)-simplex). One then glues
an elementary melonic D-ball of the appropriate color along the split (or simply on the
boundary (D − 1)-simplex).

p = k: One obtains them from those at p = k − 1 by adding an elementary melonic D-ball at
some active (D − 1)-simplex.

Remark 4.1 (vertex correspondance). Let us denote a colored rooted (D + 1)-ary tree with p
elementary vertices by Tp and its set of elementary vertices by tp.

Noting that an elementary D-ball has precisely one internal vertex before it is inserted,
one notes that a melonic D-ball constructed form p elementary D-balls has precisely p internal
vertices. We shall denote such a melonic D-ball by Mp and its internal vertex set by mp.

Moreover, given such melonic D-ball Mp, along with its associated (D + 1)-ary tree Tp,
one notes that their respective vertex sets are in bijective correspondence, since an elementary
tree vertex corresponds to an elementary D-ball, which in turn has one internal vertex (before
insertion).

Branches, words and vertex ordering. Consider again an associated pair Mp and Tp.
As a tree, Tp has branches, joining the root tree vertex to each of the elementary vertices in tp.
(Note that the root tree vertex is not in tp. Rather it is the other endpoint of the root edge in
the first elementary tree vertex of color 0.)

To each elementary tree vertex, one may associate a word drawn from the alphabet ΣD+1 =
{0, 1, . . . , D}. This word is constructed by listing left-to-right the colors encountered as one
traverses the branch from the root vertex to the elementary vertex in question. As examples,
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Figure 11. The words associated to some vertices of a colored rooted (D + 1)-ary tree.

the word associated to the root vertex is (0; ), indicating the root edge of color 0, while the
word associated to the generic example given in Fig. 11 is (0; 10132120312). In turn, these
words have a natural (lexicographical) ordering, which may be used to convert tp into an ordered
set.

Due to the bijection relating mp to tp, the internal vertices of the melonic D-ball are ordered.
Moreover, each element of mp also inherits a word from its associated tree vertex. That word is
not meaningless in this context. On the contrary, it captures the sequence of elementary D-balls,
each one nested inside the preceding, on route to inserting that internal vertex.

4.1 Generating rooted melonic D-balls and the continuum limit

Ultimately, finite melonic D-balls hold only a limited amount of interest for us. We wish to know
about the configurations in the large-p limit, where one might conceivably formulate a meaning-
ful continuum limit [8]. Näıvely, one could imagine that this limit is arrived at by considering
configurations with increasingly large numbers of tetrahedra of diminishing individual size.

Our aim here is to make this initial idea more precise. In that respect, let us partition the set
of melonic D-balls according to the number of internal vertices. At a given value of p, we want
a method to examine the properties, on average, of that subset of melonic D-balls. A convenient
method is to utilize a generating function approach

G(z) =
∑
M

zpM =

∞∑
p=0

C(D+1)
p zp, where C(D+1)

p =
∑

M : pM=p

1, z ∈ C.

The first sum is over all melonic D-balls, weighted according to the number of internal vertices.
Thus, the subset of melonic D-balls with p internal vertices are all weighted equally allowing

the reduction to the second sum, where C
(D+1)
p is the cardinality of that subset.
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z

Figure 12. Consistency equation for the generating function G(z).

One can expect that G(z) has a finite radius of convergence zc. As a result, one can examine
properties of the large-p limit by tuning the coupling constant z to its critical value zc, as it is
the large-p coefficients that determine the behaviour of G(z) in that region.

Thus, our first task is to gain control over the coefficients C
(D+1)
p . In this regard, it is worth

remembering that melonic D-balls are in a precise correspondence with colored rooted (D+ 1)-
ary trees and experts have been counting trees since time immemoriam. A convenient way to
count trees is to develop a consistency relation for the generating function G(z). This is,

G(z) = 1 + z[G(z)]D+1,

which is illustrated in Fig. 12. It sums up the fact that the trees comprising G(z) consist of
the tree with just one root edge (and no elementary vertex) along with those with at least
one elementary vertex (weighted by z), along any whose D + 1 active edges one can insert an
arbitrary colored rooted (D + 1)-ary tree.

Expanding the terms and equating the coefficients for the various powers of z, one finds

a recurrence relation for the C
(D+1)
p . This recurrence relation is satisfied by the (D+1)-Catalan

numbers

C(D+1)
p =

1

(D + 1)p+ 1

(
(D + 1)p+ 1

p

)
.

Applying Stirling’s formula to the series coefficients, one determines the large order behaviour

G(z) ∼ β(zc)
−pp−3/2, where β =

e√
2π

√
D + 1

D3
, zc =

DD

(D + 1)D+1
.

As expected, the above series has a finite radius of convergence and the behaviour of the series
in the vicinity of zc is

G(z) ∼
(

1− z

zc

)1−γ
, where γ =

1

2
.

The exponent γ is known as the susceptibility and is the first example of a quantity that deter-
mines the properties of the continuum limit.

To this point, however, we have only analysed the large-p limit. To obtain a continuum limit,
we need to endow each melonic D-ball with a metric. We shall develop that in more detail later.
But for now, all we need is that under this metric, each melonic D-ball becomes an equilateral
triangulation. This means that each tetrahedron has equal volume, known as the microscopic
volume ν. Meanwhile, for a melonic D-ball with p internal vertices, and thus 2p tetrahedra, the
macroscopic volume is VM = 2pν. Thus, we may obtain a finite macroscopic volume if ν → 0
as p→∞ in some balanced fashion.
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To do this meaningfully, remember that we are interested in the properties of melonic D-balls
on average. Thus, it is worth analyzing

V (z) ≡
∑
M

(2pMν)zpM =

∞∑
p=0

(2pν)C(D+1)
p zp = 2νz

∂G

∂z
(z) ∼

z∼zc
νz

(
1− z

zc

)−1/2

.

If we consider taking the microscopic volume ν → 0 and z → zc in a balanced fashion such
that the macroscopic volume V (zc−) remains finite. Then, we can realistically call such a limit
a continuum limit.

Remark 4.2 (melonic D-balls and branched polymer spacetimes). In total, we shall extract
three exponents associated with the continuum limit of melonic D-balls: the susceptibility
γ = 1/2, the Hausdorff dimension dH = 2 and the spectral dimension dS = 4/3 (although
strictly speaking, the last refers to the dual rooted melonic graphs). These coincide with the
exponents calculated for so-called branched polymer spacetimes arising in the dynamical trian-
gulations approach to quantum gravity [2]. These have undesirable physical properties, among
them the non-physical Hausdorff and spectral dimensions. As a result, one concludes that
melonic D-balls possess an uninteresting continuum limit from a physical spacetime viewpoint.
However, these exponents are one of the major ways for testing the physical viability of any
particular phase of a tensor model theory.

4.2 Hausdorff dimension

The next exponent pertaining to the continuum limit of melonic D-balls is the Hausdorff di-
mension:

Definition 4.3 (Hausdorff dimension). For a metric space X, the Hausdorff dimension dH
captures how the volume of a ball scales with respect to its geodesic radius. More formally, it is
defined as

dH = inf{d ≥ 0: Hd(X) = 0},

where Hd(X) is the d-dimensional Hausdorff measure on X, that is

Hd(X) = inf

{
δ =

∑
i

rdi : the indexed collection of balls of radius ri covers X

}
.

Obviously, for the simple example of flat D-dimensional Euclidean space: VD ∼ rD. Thus

dH = D.

It is clear, however, that some work must be done to extract this dimension for the class of
melonic D-balls. One may follow the arguments in [1, 23] for the full picture, which would be
too laborious a task to reproduce in its entirety here. In fact, a detailed statement of the result
already takes some considerable ink. So, with no further ado, the main result is:

Theorem 4.4. Under the uniform distribution, the family of melonic D-balls converges in the
Gromov–Hausdorff topology on compact metric spaces to the continuum random treemp,

dmp

Λ∆

√
(D+1)p
D

 −→
p→∞

(T2e, d2e).
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In turn, the Hausdorff dimension of the limiting continuum metric space, the continuum
random tree, is well known to be

dH = 2,

although this may be read off directly from the above theorem, as we shall see presently.
Melonic D-balls as metric spaces. Consider a melonic D-ball with p internal vertices and

its associated (D+1)-ary tree, denoted by Mp and Tp, respectively. As noted earlier, the ordered
set of internal vertices mp is in bijective correspondence with the ordered set of elementary tree
vertices tp.

Both of these sets have a natural metric structure inherited from their respective graphs,
namely the graph distance:

Definition 4.5 (graph distance). For any connected graph, the graph distance d(vs, vt) between
two vertices vs and vt is the minimal number edges in any contiguous path journeying from vs
to vt.

The graph distance is a discrete metric and in order to examine the large-p limit as a con-
tinuum limit, we need to extend it to a continuum metric. To do so, one utilizes the order on
the set mp (tp) to arrange pairs mp ×mp (tp × tp) as the integer points on [0, p− 1]× [0, p− 1].
One then interpolates between these integer points using a piecewise linear interpolation on the
triangles with integer co-ordinates (v1, v2), (v1 +1, v2), (v1, v2 +1) and (v1 +1, v2 +1), (v1 +1, v2),
(v1, v2 + 1). We denote this metrics by dmp (dtp).

To retain a compact space in the large-p limit, rather than just letting the structure get
infinitely large, one requires an p-dependent rescaling of the metric. This motivates the factor√

(D + 1)p/D. Of course, it is the exponent of this factor that determines the Hausdorff di-
mension. Afterall, the volume of the melonic D-ball, with respect to dmp , is proportional to p

and thus, it is the precisely the rescaling dmp → dmp/(volume)1/dH required to keep the limiting
metric space compact that determines the Hausdorff dimension.

The final factor Λ∆ requires a little more explanation.
Calculating Λ∆. Consider an associated pair Mp and Tp, along with their vertex sets mp

and tp. Since the vertex sets are in bijective correspondence, we shall refer to their vertices using
the same label v. Associated to a rooted graph is the notion of depth:

Definition 4.6 (depth). The tree depth of v is the distance, with respect to dtp , of the associated
elementary vertex to the root vertex. The depth of v is the distance, with respect to dmp , of the
associated internal vertex to the internal vertex associated to the first elementary D-ball.

The tree depth of v is just length of the branch joining it to the root, that is, the number of
characters in its associated word w. Denoting the quantity by Λ̃, one finds for example:

Λ̃(0; 10132120312) = 12.

The depth, on the other hand, is not so simple to calculate. However, it can also be deciphered
from the associated word in the following manner. As explained earlier, a branch within the
(D + 1)-ary tree corresponds to a nested sequence of elementary D-balls within the melonic
D-ball. As a result of this nesting, the path of minimal graph distance leading from this internal
vertex to the initial internal vertex lies within this sequence of elementary D-balls. However, the
connectivity of the graph causes its value to deviate form that of the tree depth; the insertion
of a D-ball does not mean that the new vertex is necessarily further away from the root vertex.
In fact, consider a nested sequence of elementary D-balls and their associated internal vertices.
Pick out the last elementary D-ball inserted. Say it has color i and assume that its associated
internal vertex is the first internal vertex in the sequence that is at depth r. All other internal
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vertices in that sequence have depth less than l.4 Now, within this latest D-ball, insert an
arbitrary nested sequence containing at least one elementary D-ball of each color except some
color j 6= i. It emerges that the internal vertices associated to this newly inserted sequence
all have depth r. Now insert a elementary D-ball of color j. Its associated internal vertex has
depth r+ 1. We do not elaborate further on the reasoning here. However, the interested reader
can convince oneself quite readily by drawing out the example given here or by looking in [23].

Now its a matter of laying out an algorithm for calculating the depth from the associated word.
In this regard, let us denote by WD+1 the set of words containing every letter of the alphabet
ΣD+1 = {0, 1, . . . , D} at least once. Consider a vertex v labelled by the word w = (0;u1u2 . . . un).
The depth of v corresponds to division of w into disjoint adjacent subwords τr, comprised of
letters of depth r. Thus, τ0 = 0. Then, τ1 = u1 . . . ua1 , with u1, u2, . . . , ua1 6= 0 and ua1+1 = 0.
Furthermore, τr, for r > 1, may be one of two forms: i) τr = uar−1+1 . . . uar such that τr /∈WD+1

but τruar+1 ∈ WD+1; ii) τr = uar−1+1 . . . un if uar−1+1 . . . un /∈ WD+1. This second possibility
accounts for the fact that the last subword might be incomplete.

The depth of a vertex v with word w = τ0τ1 . . . τk is

Λ(w) = k.

As an example, take the branch of a (3 + 1)-ary tree illustrated in Fig. 11. The division in
subwords goes as follows

w = (0; 10132120312) = (0)(1)(013)(2120)(312).

Thus, Λ(0; 10132120312) = 4.

The distance, with respect to dmp , between any two vertices can be well estimated from
their respective depths with respect to their latest common ancestor. Consider two vertices v1

and v2 with associated words ww1 and ww2. Thus, the two words have w in common, but lie
on different sub-branches thereafter. The following inequality holds:

|dmp(v1, v2)− Λ(w1)− Λ(w2)| ≤ 6.

Since the right hand side is p-independent, the rescaled inequality becomes increasingly strict
as p increases.

Finally for the factor Λ∆, which is just the average ratio Λ(w)/Λ̃(w) as p becomes large:

Lemma 4.7. Let u1, . . . , up be a sequence of random variables uniformly drawn from ΣD+1, and
denote w = 0u1 . . . up. One has

1

p
Λ(w) →

p→∞
Λ∆, Λ−1

∆ = (D + 1)
∑

0≤r≤D
(−1)D−r

(
D

r

)
r

(D + 1− r)2
.

Lemma 4.7 declares that, on average, the depth of an internal vertex in a melonic D-ball is,
up to a constant rescaling by Λ∆, just the tree depth in the associated (D+ 1)-ary tree. Loosely
speaking, this factor occurs in Theorem 4.4 to take into account the connectivity of the melonic
D-balls, given that the limiting space has a tree-like structure.

Melonic D-balls as random variables. In the context of Theorem 4.4, Mp is to be viewed
as a random variable with uniform distribution upon the space of melonic D-balls with p inter-
nal vertices. Thus, by association, the metric space

(
mp, dmp/Λ∆

√
(D + 1)p/D

)
is a random

variable. Thus, the sequence above is a sequence of random variables and convergence means
convergence in distribution, that is, the (cumulative) distribution functions associated to the

4Internal vertices inserted earlier certainly do not have depth greater than r.
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Figure 13. A defoliated (D + 1)-ary tree and its associated contour walk.

melonic D-ball metric spaces random variables converge to that of the continuum random tree
in the large-p limit.

Note that the generating function mentioned earlier (as well as the tensor model generating
function) weights all melonic D-balls with the same number of internal vertices equally. Thus,
a uniform distribution is motivated from that context.

Continuum random tree. A continuum random tree (CRT) (T2e, d2e) is defined as a rooted
real tree encoded by twice a normalized Brownian excursion e and endowed with a metric d2e.

One is probably more familiar with rooted discrete trees, of which the colored rooted (D+1)-
ary trees are examples. Colored rooted (D+1)-ary trees (like all discrete trees) have an associated
contour walk. Consider such a tree with p (elementary) vertices. (For simplicity, we shall consider
its defoliated version, that is, all leaves removed.) Starting from the base of the tree, one traverses
the perimeter of the tree, passing from one vertex to the next in unit time-steps. One considers
the following continuous function f(t), with f(0) = 0. As one travels, f(i) = dtp(v) + 1, where v
is the vertex one encounters at the ith time-step. (For the value at intermediate times, one
linearly interpolates between the time-steps.) The procedure is illustrated in Fig. 13. Given the
construction, one has that the journey ends at time-step 2p, with f(2p) = 0 and f(t) > 0 for
0 < t < 2p. One has thus associated to any tree some (fixed) walk f . For random trees with 2p
vertices, the contour walk becomes a random walk with 2p steps.

Any real continuous function f(t), such that f(0) = f(1) = 0 and f(t) > 0 for 0 < t < 1,
encodes a rooted real tree Tf . To get to the tree, one must set up the following equivalence. For
all s, t ∈ [0, 1], set mf (s, t) = infmin(s,t)≤r≤max(s,t) f(r). Then

s ∼
f
t ⇐⇒ f(s) = f(t) = mf (s, t).

Then, the rooted real tree is the quotient: Tf = [0, 1]/ ∼
f

. The distance on the tree is given by5

df (s, t) = f(s) + f(t)− 2mf (s, t).

One can pick out the branching vertices of the tree as those values in [0, 1] that are congruent
to two or more other values. This real tree differs from a discrete tree in that one has precise
distance information along the edges of the tree.

The Wiener process is a stochastic process Wt (that is a random variable for every time t)
such that W0 = 0, t → Wt is almost surely continuous, Wt has independent increments and
Wt−Ws is distributed on a normal distribution of mean 0 and variance σ2 = t−s for s ≤ t. The

5In the interests of clarity, let us calculate the distance between two points in the tree of Fig. 13. Examining
the associated contour walk, the heights of the 4th and 9th points encountered are f(4) = 4 and f(9) = 3,
respectively. Meanwhile, the minimal height along the intervening contour is mf (4, 9) = 2. Then, the distance
between these two points is really the sum of their respective vertical heights above this minimum df (4, 9) =
(f(4)−mf (4, 9)) + (f(9)−mf (4, 9)) = 3.
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normalized Brownian excursion et is a Wiener process conditioned to be positive for 0 < t < 1
and be at 0 at time 1. It is formally represented by the path integral measure

dµe =
1

Z

[
dq(t)

]∣∣∣∣∣q(0)=q(1)=0
q(t)>0

e−
1
2

∫ 1
0 [q̇(t)]2dt,

with Z a normalization constant.
The CRT (T2e, d2e) is the random tree associated to twice a normalized Brownian excur-

sion 2e.
Gromov–Hausdorff topology and convergence. Since one considers the convergence

of a sequence of random metric spaces, one must endow the space of metric spaces along with
an appropriate topology. This is provided by the Gromov–Hausdorff topology on the space of
isometry classes of compact metric spaces.

To begin, one considers a metric space (E, dE). The Hausdorff distance between two compact
sets, K1 and K2, in E is

dHaus(E)(K1,K2) = inf
{
r |K1 ⊂ Kr

2 , K2 ⊂ Kr
1

}
,

where Kr
i =

⋃
x∈Ki BE(x, r) is the union of open balls of radius r centered on the points of Ki.

Now, given two compact metric spaces (Ei, di), the Gromov–Hausdorff distance between
them is

dGH(E1, E2) = inf{dHaus(E)(φ1(E1), φ2(E2))},

where the infimum is taken on all metric spaces E and all isometric embeddings φ1 and φ2 from
(E1, d1) and (E2, d2) into (E, dE).

It emerges that K, the set of all isometry classes of compact metric spaces, endowed with
the Gromov–Hausdorff distance dGH is a complete metric space in its own right. Therefore, one
may study the convergence (in distribution) of K-valued random variables.

Of course, the Gromov–Haudorff topology is not the exclusive topology for these metric
spaces, but fortuitously, it is well-adapted to the study of quantities that are dependent on the
size of the melonic D-balls, quantities such as the diameter, the depth, the distance between
two random points and so forth.

4.3 Spectral dimension

The third and final exponent that we would like to examine for melonic D-balls is the spectral
dimension. The spectral dimension of a manifold is the dimension experienced by a diffusion
process and is extracted by evaluating the logarithmic derivative of the return probability with
respect to diffusion time

dS = −2
d logP (t)

d log t
.

To make this more concrete, let us consider the simple case of diffusion on D-dimensional
Euclidean space. The associated heat equation6 gives rise to a heat kernel

K(t, x, y) =
1

4πtD/2
e−|x−y|

2/4t.

6In more generality, consider a Riemannian manifold M and a temperature distribution f0 : M → R. The
heat equation evolves f0, in the sense that there exists f : M × (0, T ) → R that solves

(
∂
∂t
−∇

)
f = 0, and

f(x, 0) = f0(x). The heat kernel is K : M ×M × (0, T ) → R, which satisfies
(
∂
∂t
−∇x

)
K = 0, which initial

condition lim
t→0

K(x, y, t) = δ(x, y).
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Figure 14. A rooted melonic graph M with sub-melons Mi.

The spatial coincidence limit gives rise to the return probability

P (t) =
1

4πtD/2
,

from which the result dS = D follows readily. Obviously, the spectral dimension coincides with
the Hausdorff dimension in this elementary case, but this is not true in general.

Diffusion on graphs. On graphical structures, the diffusion process may be modelled using
a random walker taking one step per unit time, where a step takes the walker from a vertex to
one of its neighbours. The return probability P (t) is then simply the probability that the walker
returns to her starting point at time t.

As one might imagine, the spectral dimension depends non-trivially on the connectivity of
the graph. Moreover, the connectivity of the graph can make the computation of the return
probability very involved. In our case, we wish to compute the return probability for a generic
melonic D-ball, which seems rather intractable. So we are motivated to examine the other
representations. The spectral dimension of colored rooted (D+1)-ary trees is a simple extension
of the result in [25]. However, the rooted melonic graphs bear a closer relationship to the melonic
D-balls, as they are their topological dual spaces.

To proceed, consider a rooted melonic graph, with external color 0. Such a graph is drawn
in Fig. 14.

One denotes it by M. It is worth recounting how M was constructed. One started from an
initial elementary melon of color 0, that is, two vertices sharing D edges. These two original
vertices are denoted by A and B, Fig. 14. Thereafter, one repeatedly inserted elementary melons
of various colors. Some were inserted along the active edge of color 0 at B or nested within
earlier insertions. Meanwhile, others were inserted along the active edges of color i ∈ {1, . . . , D}
joining A to B or nested within earlier insertions. Due to this iterative construction, excising
vertices A and B results in D + 1 disconnected subgraphs that are themselves rooted melonic
graphs, each with a distinct external color. One denotes this property byM =M1∪M2∪ · · ·∪
MD ∪M0, where Mi labelled the rooted melonic graph with external edges of color i.

Any rooted melonic graph has two external vertices, labelled I and O. The rest are the
familiar (D+ 1)-valent internal vertices. To calculate the return probability for a generic graph,
one should average over the return probabilities attached to each vertex. However, rooted
melonic graphs possess a recurrent connectivity structure that renders this unnecessary and
ultimately, we wish to investigate return probabilities to the vertex I. To this end, we shall deal
with the return probabilities (I → I and O → O) and transit probabilities (I → O and O → I).
Utilizing this matrix of probabilities, the recurrent connectivity permits us to set up a recurrence
relation satisfied by these return/transit probabilities. We shall detail this presently.

Generating functions. As usual, we are interested in properties on average (this time over
the set of rooted melonic graphs) at large p. Thus, we utilize the convenience of a generating
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function for the return probabilities to I at a given t, over the set of rooted melonic graphs.
Moreover, is it simpler to extract the spectral dimension by considering the generating function
for return probabilities over the set of all t. Thus, we define the quantity

P II(z, y) :=
∞∑
p=0

∞∑
t=0

P̃ IIp (t)ytzp, where P̃ IIp (t) :=
∑

M : pM=p

P IIM(t).

We may extract the spectral dimension by examining P II(z, y) in the vicinity of z ∼ zc and
y ∼ 1.

Theorem 4.8. The return probability generating function on the set of rooted melonic graphs
satisfies

∂P II

∂z
(z, y) = (1− z/zc)∆(dS/2−1)−γ

[
Φ

(
1− y

(1− z/zc)∆

)
+ Φ

(
1 + y

(1− z/zc)∆

)]
,

within the disc |y| < 1, zc = DD/(D + 1)D+1, γ = 1/2, ∆ = 3/2 and

dS = 4/3.

Random walks on a melon. Consider a random walk on a rooted melonic graphM. The
walker takes one step per unit time. If the walker is at one of the external points, one can see
from Fig. 14 that it steps with probability one to its unique neighbor. Meanwhile, if the walker
is at any of the internal (D+ 1)-valent vertices, it steps with equal probability, 1

D+1 , to any one
of its D + 1 neighbors.

Thus, any given walk with t steps takes place with a probability that is simply the product
of the probabilities from each of its t constituent jumps.

Return/transit random walks. Return walks are walks that start and finish at the
external vertex. Transit walks start at one external vertex and finish at the other external vertex.
Such return/transit random walks have a generating function, the return/transit probability ge-
nerating function: PXYM (y), where X ∈ {I,O}, Y ∈ {I,O} and y ∈ C. This may be expanded as

PXYM (y) =
∞∑
t=0

ytPXYM (t),

where PXYM (t) is the probability that the walker arrives at external vertex Y at time t, given
that it starts at external vertex X at time 0. This probability is simply a probability weighted
sum over relevant return/transit random walks.

1st-return/1st-transit random walks. 1st-return walks are return walks that spend the
intervening period internal vertices. 1st-transit walks are transit walks that spend the intervening
period at internal vertices. Again such 1st-return/1st-transit random walks have a generating
function, the 1st-return/1st-transit probability generating function: P 1,XY

M (y), where X ∈ {I,O},
Y ∈ {I,O} and y ∈ C. This may be expanded as

P 1,XY
M (y) =

∞∑
t=0

ytP 1,XY
M (t),

where P 1,XY
M (t) is the probability that the walker arrives at external vertex Y at time t, given

that it starts at external vertex X at time 0 and spends the intervening time period at internal
vertices. This probability is simply a probability weighted sum over relevant 1st-return/1st-
transit random walks.
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Remark 4.9 (initial condition). The simplest rooted melonic graph consists of two external
vertices connected by a line. It will be denoted byM(0) and its 1st-return/1st-transit probability
generating function is

P 1
M(0)

(y) =

(
0 y
y 0

)
.

Consistency relations. There are then two important relations:

• Any return/transit walk can be decomposed as a sequence of 1st-return/1st-transit walks.
As a result, the return/transit probability generating function can be expressed in terms
of the 1st-return/1st-transit probability generating function

PXYM (y) =

[
1

1− P 1
M(y)

]XY
.

• Any 1st-return/1st-transit walks on M can be decomposed as a sequence of 1st-return/1st-
transit walks on its sub-melons Mi, where i ∈ {0, . . . , D}. Again, this relation is mirrored
in the generating functions

P 1
M = E22P 1

M0E
22 +

(
E12y + E22P 1

M0E
11
)

× 1

D + 1−
D∑
i=1

P 1
Mi − E11P 1

M0E11

(
yE21 + E11P 1

M0E
22
)
,

P 1
M(0)

=

(
0 y
y 0

)
,

where

Eabαβ = δaαδ
b
β, a, b, α, β ∈ {1, 2}.

Return/transit probability matrix. Finally, consider the space of rooted melonic graphs.
We are interested in computing the return probability of a random walker, starting from some
specified point, with respect to this set of graphs. We shall specify this point as the external
vertex I for every rooted melonic graph. This return probability is just one element of the
return/transit probability matrix

PXY (z, y) =
∑
M

PXYM (y)zpM .

To prove Theorem 4.8, one must solve the consistency relations above. For details of the argu-
ment, we refer the reader to [23, 25].

5 Conclusion

We finish up with a quick word about the future study of (D+1)-colored graphs. Clearly, we have
just scratched the surface here. The combinatorial, topological, algebraic and metric properties
deserve a much more extensive analysis. This could have many benefits: by analyzing a broader
set of graphs, one would hopefully escape the branched polymer phase in the continuum limit.
(In fact, such work has begun [10, 24], but branched polymers have so far proved resilient.)

One such space is the so-called Brownian sphere [26]. A long-standing open question is to pin
down precisely its spectral dimension (there is a large amount of evidence that it equals two).
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Were the Brownian sphere to occur as the limiting metric space of a sufficiently amenable set of
colored graphs, then one might be able to tackle the problem as we did above for the continuum
random tree.

Of course, from a quantum gravity perspective, one would like to escape branched polymers
in favour of some continuum metric space that has physically interesting characteristics, as they
have done in the causal dynamical triangulations approach to quantum gravity [3]. In particular,
one would like to recover a macroscopic 4-dimensional universe in some limit. Were this possible,
then the colored graph approach would have a significant advantage in that one has the bubble
Lie algebra (or some subalgebra thereof) at one’s disposal, from which one could aim to extract
the underlying symmetries of the continuum limit.
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