666 research outputs found

    PhoneMD: Learning to Diagnose Parkinson's Disease from Smartphone Data

    Full text link
    Parkinson's disease is a neurodegenerative disease that can affect a person's movement, speech, dexterity, and cognition. Clinicians primarily diagnose Parkinson's disease by performing a clinical assessment of symptoms. However, misdiagnoses are common. One factor that contributes to misdiagnoses is that the symptoms of Parkinson's disease may not be prominent at the time the clinical assessment is performed. Here, we present a machine-learning approach towards distinguishing between people with and without Parkinson's disease using long-term data from smartphone-based walking, voice, tapping and memory tests. We demonstrate that our attentive deep-learning models achieve significant improvements in predictive performance over strong baselines (area under the receiver operating characteristic curve = 0.85) in data from a cohort of 1853 participants. We also show that our models identify meaningful features in the input data. Our results confirm that smartphone data collected over extended periods of time could in the future potentially be used as a digital biomarker for the diagnosis of Parkinson's disease.Comment: AAAI Conference on Artificial Intelligence 201

    A double closed loop to enhance the quality of life of Parkinson's disease patients: REMPARK system

    Get PDF
    This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated.Postprint (published version

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Analysis of Parkinson\u27s Disease Data

    Get PDF
    In this paper, we investigate the diagnostic data from patients suffering with Parkinson\u27s disease (PD) and design classification/prediction model to simplify the diagnosis. The main aim of this research is to open possibilities to be able to apply deep learning algorithms to help better understand and diagnose the disease. To our knowledge, the capabilities of deep learning algorithms have not yet been completely utilized in the field of Parkinson\u27s research and we believe that by having an in-depth understanding of data, we can create a platform to apply different algorithms to automate the Parkinson\u27s Disease diagnosis to certain extent. We use Parkinson\u27s Progression Markers Initiative (PPMI) dataset provided by Michael J. Fox Foundation to perform our analysis

    Artificial Intelligence Applications for Assessment, Monitoring, and Management of Parkinson Disease Symptoms: Protocol for a Systematic Review

    Get PDF
    \ua9 2023 The authors.Background: Parkinson disease (PD) is the second most prevalent neurodegenerative disease, with around 10 million people with PD worldwide. Current assessments of PD symptoms are conducted by questionnaires and clinician assessments and have many limitations, including unreliable reporting of symptoms, little autonomy for patients over their disease management, and standard clinical review intervals regardless of disease status or clinical need. To address these limitations, digital technologies including wearable sensors, smartphone apps, and artificial intelligence (AI) methods have been implemented for this population. Many reviews have explored the use of AI in the diagnosis of PD and management of specific symptoms; however, there is limited research on the application of AI to the monitoring and management of the range of PD symptoms. A comprehensive review of the application of AI methods is necessary to address the gap of high-quality reviews and highlight the developments of the use of AI within PD care. Objective: The purpose of this protocol is to guide a systematic review to identify and summarize the current applications of AI applied to the assessment, monitoring, and management of PD symptoms. Methods: This review protocol was structured using the PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols) and the Population, Intervention, Comparator, Outcome, and Study (PICOS) frameworks. The following 5 databases will be systematically searched: PubMed, IEEE Xplore, Institute for Scientific Information’s Web of Science, Scopus, and the Cochrane Library. Title and abstract screening, full-text review, and data extraction will be conducted by 2 independent reviewers. Data will be extracted into a predetermined form, and any disagreements in screening or extraction will be discussed. Risk of bias will be assessed using the Cochrane Collaboration Risk of Bias 2 tool for randomized trials and the Mixed Methods Appraisal Tool for nonrandomized trials. Results: As of April 2023, this systematic review has not yet been started. It is expected to begin in May 2023, with the aim to complete by September 2023. Conclusions: The systematic review subsequently conducted as a product of this protocol will provide an overview of the AI methods being used for the assessment, monitoring, and management of PD symptoms. This will identify areas for further research in which AI methods can be applied to the assessment or management of PD symptoms and could support the future implementation of AI-based tools for the effective management of PD

    Machine learning for large-scale wearable sensor data in Parkinson disease:concepts, promises, pitfalls, and futures

    Get PDF
    For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    Identification of Motor Symptoms Related to Parkinson Disease Using Motion-Tracking Sensors at Home (KAVELI) : Protocol for an Observational Case-Control Study

    Get PDF
    Background: Clinical characterization of motion in patients with Parkinson disease (PD) is challenging: symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments. Objective: The primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns. Methods: This paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings. Results: Data collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD. Conclusions: This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life and outside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.Peer reviewe
    corecore