8,845 research outputs found

    Deep and self-taught learning for protein accessible surface area prediction

    Get PDF
    ASA captures the degree of burial or surface accessibility of a protein residue. It is a very important indicator of the behavior of amino acids within a protein as well. It can be used to find protein interactions, interfaces, folding states, etc. Calculation of the ASA requires the presence of the structure of the protein. However, structure determination for proteins is expensive and requires significant technical effort. As a consequence, the prediction of ASA is a very important and fundamental problem in Bioinformatics and Proteomics. In this work, we have investigated self-taught machine learning methods along with deep neural network to predict the residue level accessible surface area (ASA) of a protein. We have found that deep learning neural networks can predict the ASA of the residues in a protein accurately. Furthermore, the proposed deep learning based method does not require the use of computationally demanding features such as the position specific scoring matrix (PSSM) which have been used in previous works. A simple Blosum62 matrix based position dependent representation of amino acids in a sequence window gives comparable performance. This is particularly attractive for proteome wide prediction of ASA. We have used various self-taught learning schemes for obtaining an optimal feature representation from unlabeled data. These include a sparse and regularized autoencoder neural network and a dictionary based learning scheme. We have used unlabeled data from the protein universe in an attempt to improve the feature representation. We have also evaluated the performance of a stochastic gradient based predictor of accessible surface area for different feature representations

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery

    Using physical features of protein core packing to distinguish real proteins from decoys

    Get PDF
    The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. As a dataset of decoys to compare with real protein structures, we studied submissions to the bi-annual CASP competition (specifically CASP11, 12, and 13), in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence. Our analysis reveals that many of the submissions possess cores that do not recapitulate the features that define real proteins. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a deep learning method, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoys from the CASP competitions equally well, if not better than, state-of-the-art methods that incorporate many additional features.Comment: 7 pages, 5 figure

    Role of artificial intelligence in drug development

    Get PDF
    In the last decade, artificial intelligence (AI) has revolutionised the field of drug research. Staff abilities (55 percent), data structure (52 percent), and resources were all factors in AI deployment (49 percent ). Nearly 60% of respondents said they expected to hire more people in the next two years to assist AI usage or adoption in drug development. AI in areas like as drug research and development, drug repurposing, boosting pharmaceutical productivity, and clinical trials, among others, minimises human effort and allows for the achievement of objectives in a short amount of time. On the one hand, AI techniques used in drug development bring the drug development process and the use of various models closer to medicinal chemists, while on the other hand, AI methods used in drug development bring the drug development process and the use of various models closer to mathematicians

    Machine Learning Guided Exploration of an Empirical Ribozyme Fitness Landscape

    Get PDF
    Okinawa Institute of Science and Technology Graduate UniversityDoctor of PhilosophyFitness landscape of a biomolecule is a representation of its activity as a function of its sequence. Properties of a fitness landscape determine how evolution proceeds. Therefore, the distribution of functional variants and more importantly, the connectivity of these variants within the sequence space are important scientific questions. Exploration of these spaces, however, is impeded by the combinatorial explosion of the sequence space. High-throughput experimental methods have recently reduced this impediment but only modestly. Better computational methods are needed to fully utilize the rich information from these experimental data to better understand the properties of the fitness landscape. In this work, I seek to improve this exploration process by combining data from massively parallel experimental assay with smart library design using advanced computational techniques. I focus on an artificial RNA enzyme or ribozyme that can catalyze a ligation reaction between two RNA fragments. This chemistry is analogous to that of the modern RNA polymeraseenzymes, therefore, represents an important reaction in the origin of life. In the first chapter, I discuss the background to this work in the context of evolutionary theory of fitness landscape and its implications in biotechnology. In chapter 2, I explore the use of processes borrowed from the field of evolutionary computation to solve optimization problems using real experimental sequence-activity data. In chapter 3, I investigate the use of supervised machine learning models to extract information on epistatic interactions from the dataset collected during multiple rounds of directed evolution. I investigate and experimentally validate the extent to which a deep learning model can be used to guide a completely computational evolutionary algorithm towards distant regions of the fitness landscape. In the final chapter, I perform a comprehensive experimental assay of the combinatorial region explored by the deep learning-guided evolutionary algorithm. Using this dataset, I analyze higher-order epistasis and attempt to explain the increased predictability of the region sampled by the algorithm. Finally, I provide the first experimental evidence of a large RNA ‘neutral network’. Altogether, this work represents the most comprehensive experimental and computational study of the RNA ligase ribozyme fitness landscape to date, providing important insights into the evolutionary search space possibly explored during the earliest stages of life.doctoral thesi

    Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction

    Get PDF
    Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop machine learning based effective tools to predict disordered protein, its properties and dynamics, and interaction paradigm by systematically mining and analyzing large-scale biological data. In this dissertation, we propose a robust framework to predict disordered proteins given only sequence information, using an optimized SVM with RBF kernel. Through appropriate reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein residues, a useful structural property that defines protein’s exposure to partners, using regularized regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of this research, we then introduce a novel method to extract position specific energy (PSEE) of protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the peptide-protein transient interactions that involve the induced folding of short peptides through disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors is developed to identify the residue-patterns of Peptide-Recognition Domains from protein sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using the stacked generalization ensemble technique. The involved biologically relevant case-studies demonstrate possibilities of discovering new knowledge using the developed tools

    Deep learning and embeddings for problems of computational biology

    Get PDF
    The development of Next Generation Sequencing promotes Biology in the Big Data era. The ever-increasing gap between proteins with known sequences and those with a complete functional annotation requires computational methods for automatic structure and functional annotation. My research has been focusing on proteins and led so far to the development of three novel tools, DeepREx, E-SNPs&GO and ISPRED-SEQ, based on Machine and Deep Learning approaches. DeepREx computes the solvent exposure of residues in a protein chain. This problem is relevant for the definition of structural constraints regarding the possible folding of the protein. DeepREx exploits Long Short-Term Memory layers to capture residue-level interactions between positions distant in the sequence, achieving state-of-the-art performances. With DeepRex, I conducted a large-scale analysis investigating the relationship between solvent exposure of a residue and its probability to be pathogenic upon mutation. E-SNPs&GO predicts the pathogenicity of a Single Residue Variation. Variations occurring on a protein sequence can have different effects, possibly leading to the onset of diseases. E-SNPs&GO exploits protein embeddings generated by two novel Protein Language Models (PLMs), as well as a new way of representing functional information coming from the Gene Ontology. The method achieves state-of-the-art performances and is extremely time-efficient when compared to traditional approaches. ISPRED-SEQ predicts the presence of Protein-Protein Interaction sites in a protein sequence. Knowing how a protein interacts with other molecules is crucial for accurate functional characterization. ISPRED-SEQ exploits a convolutional layer to parse local context after embedding the protein sequence with two novel PLMs, greatly surpassing the current state-of-the-art. All methods are published in international journals and are available as user-friendly web servers. They have been developed keeping in mind standard guidelines for FAIRness (FAIR: Findable, Accessible, Interoperable, Reusable) and are integrated into the public collection of tools provided by ELIXIR, the European infrastructure for Bioinformatics

    Graph Neural Networks for Molecular Data

    Get PDF
    • …
    corecore