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Abstract 

The development of Next Generation Sequencing promotes Biology in the Big Data era.  The 

ever-increasing gap between proteins with known sequences and those with a complete 

functional annotation requires computational methods for automatic structure and functional 

annotation. My research has been focusing on proteins and led so far to the development of 

three novel tools, DeepREx, E-SNPs&GO and ISPRED-SEQ, based on Machine and Deep 

Learning approaches. 

DeepREx computes the solvent exposure of residues in a protein chain. This problem is 

relevant for the definition of structural constraints regarding the possible folding of the protein. 

DeepREx exploits Long Short-Term Memory layers to capture residue-level interactions 

between positions distant in the sequence, achieving state-of-the-art performances. With 

DeepRex, I conducted a large-scale analysis investigating the relationship between solvent 

exposure of a residue and its probability to be pathogenic upon mutation. 

E-SNPs&GO predicts the pathogenicity of a Single Residue Variation. Variations occurring on 

a protein sequence can have different effects, possibly leading to the onset of diseases. E-

SNPs&GO exploits protein embeddings generated by two novel Protein Language Models 

(PLMs), as well as a new way of representing functional information coming from the Gene 

Ontology. The method achieves state-of-the-art performances and is extremely time-efficient 

when compared to traditional approaches. 

ISPRED-SEQ predicts the presence of Protein-Protein Interaction sites in a protein sequence. 

Knowing how a protein interacts with other molecules is crucial for accurate functional 

characterization. ISPRED-SEQ exploits a convolutional layer to parse local context after 

embedding the protein sequence with two novel PLMs, greatly surpassing the current state-of-

the-art. 
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All methods are published in international journals and are available as user-friendly web 

servers. They have been developed keeping in mind standard guidelines for FAIRness (FAIR: 

Findable, Accessible, Interoperable, Reusable) and are integrated into the public collection of 

tools provided by ELIXIR, the European infrastructure for Bioinformatics.  
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1. Introduction 

1.1. Protein biosynthesis  

Proteins are involved in every process which takes place inside a living cell, including their 

own biosynthesis, regulatory activities and stimuli response. Furthermore, they confer structure 

to cells and generate transmembrane channels for the selective transport of ions and other 

molecules. Proteins involved in biocatalysis are called enzymes. They enable important 

reactions whose products power life processes. Protein synthesis is a fundamental biological 

process that stems out of the genetic information included in the DeoxyriboNucleic Acid 

(DNA) structure. The biological process as a whole is composed of several intermediate steps 

including transcription, where the information encoded into DNA is transcribed into messenger 

RiboNucleic Acid (mRNA) molecules, and translation, where mRNA encodes protein 

synthesis at the level of the ribosomes. Encoding is made possible through a  redundant and 

species-specific genetic code which relies on nucleotide triplets. Therefore, the genetic material 

of both prokaryotes and eukaryotes is at the origin of the flow of chemical information which 

promotes protein biosynthesis (Voet and Voet, 2011; Nelson and Cox, 2021). 

1.2. Protein composition, folding and misfolding 

At the level of the ribosomes, twenty different amino acids, each bound to specific RNA 

transfer molecules, such as transfer aminoacyl RNAs (aa-tRNAs), are selected from the cell 

cytoplasm on the basis of the codon (exposed in the mRNA-ribosome complex) -anticodon 

(exposed in the aa-tRNA) base-pairing principle. By this, and thanks to specific enzymes in the 

ribosomes, a peptide bond is formed among different amino acids. A protein can therefore be 

regarded as a heteropolymer of twenty different residues, which differs by the presence of a  
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Figure 1. Venn diagram showing the classification of residues based on the physicochemical properties 

of their lateral side chains. The rightmost column reports the one-letter code, the full name and the 

three-letter code of each residue (Esquivel et al., 2013). 

 

peculiar side chain. Based on this, all residues have different physicochemical properties. As 

shown in Figure 1, they are routinely classified into apolar (Glycine/G, Alanine/A, Valine/V, 

Proline/P, Leucine/L, Isoleucine/I, Methionine/M), aromatic (Phenylalanine/F, Tryptophan/W, 

Tyrosine/Y), polar (Serine/S, Threonine/T, Cysteine/C, Asparagine/N, Glutamine/Q, 

Histidine/H) and charged (Aspartic Acid/D, Glutamic Acid/E, Lysine/K, Arginine/R) residues. 

The peculiar sequence of residues is what differentiates a protein and it is known as protein 

primary structure (1D structure). The heteropolymer in a polar environment tends to acquire a 

stable structure that ultimately is due to a balancing of the different residue propensities to 

interact with the water dipoles. 

The process that leads proteins to assume a stable three-dimensional structure (3D) in polar 

solvents, and therefore to assume the conformation with the lowest Gibbs free energy 

(ΔGfolding), is called protein folding (Anfinsen, 1973). The folding process is spontaneous and 

is characterised by ΔG values ranging from 0 to -50 kcal/mole, depending on the protein (Voet 
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and Voet, 2011; Nelson and Cox, 2021). The correct folding, or 3D structure, is important due 

to the structure-function relationship which implies that if residues are changed in the wild-

type protein, the overall structure can be compromised. Sequence, structure and function are 

therefore tightly correlated and alterations at the level of the sequence can lead to changes in 

the 3D structure, possibly altering the functionality of the protein. In humans, this may be 

associated with genetic and/or somatic diseases. 

Since proteins are gene products, such alterations can derive from errors during DNA 

replication, namely mutations. A mutation in a protein-coding portion of the gene can modify 

the translation of the protein, leading to a different residue in the corresponding position called 

variation. Variations in a protein can be neutral to its final behaviour, especially when they 

interest a region which is not related to the function. Otherwise, the final activity of the 

molecule can be altered. Given the crucial role of proteins in all pathways inside cells, 

disruptive mutations can in some cases lead to severe diseases (Krebs et al., 2017). 

1.3. Proteins in the Next Generation Sequencing era 

In the era of Next Generation Sequencing (NGS), an increasing number of protein-coding genes 

have been sequenced. Nonetheless, experimental methods for resolving the three-dimensional 

structure of a protein can hardly cope with the number of new sequences published in public 

databases. The two main sources for protein sequences and structures are UniProt (UniProt 

Consortium, 2023) and the Protein Data Bank (PDB) (Berman et al., 2000), respectively. 

UniProt is split into two sections, Swiss-Prot containing the protein sequences that are 

manually annotated and TrEMBL containing all known sequences lacking manual annotation. 

A gap is evident when comparing the number of entries in the three datasets. Indeed, Swiss-

Prot accounts for 568,744 sequences (20,404 of which are human), TrEMBL accounts for 

229,580,745 sequences (187,001 of which are human), and PDB accounts for 200,375 protein 
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structures (of which 60,808 are human). Provided that knowledge of the structure of a protein 

is crucial for its functional annotation, there is a strong urgency to develop computational 

methods suited to perform it automatically starting from the sequence alone. Moreover, it is of 

the utmost importance to make these tools easily available to the scientific community through 

public infrastructures such as ELIXIR, the European infrastructure for Bioinformatics 

(https://elixir-europe.org/). 

One of the most prominent breakthroughs of recent years in the field of structure prediction 

from the sequence is the development of AlphaFold (Jumper et al., 2021). This machine 

learning-based method solves the problem of inferring the most likely three-dimensional 

protein conformation given its sequence, learning Multiple Sequence Alignments, residue 

contact maps and correlated mutations of all the structures available in PDB. AlphaFold 

achieved very high results in the 14th Critical Assessment of Protein Structure Prediction 

(CASP14) (Kryshtafovych et al., 2021). Despite its undeniable success,  AlphaFold is still 

unable to produce acceptable results for many proteins. Research in the field is still very active. 

Indeed, even when the structure of a protein is experimentally known, many questions can still 

arise, such as those that I’m addressing in this work, including the understanding of the effect 

of protein variations, especially in relation to the onset of pathological conditions. 
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2. Problems of Computational Biology 

2.1. Solvent-Accessible Surface Area 

The Solvent-Accessible Surface Area (SASA) or Accessible Surface Area (ASA) in a folded 

protein is the surface that the molecule exposes to the polar solvent including all the exposed 

lateral side chains (Lee and Richards, 1971). The value, expressed in Ångströms2, can be 

accurately computed when the structure of the protein is known, by adopting several 

computational methods (Ausaf Ali et al., 2014). The most widely used is called Define 

Secondary Structure of Proteins (DSSP) (Touw et al., 2015), which is based on the rolling ball 

algorithm developed by Shrake and Rupley (Shrake and Rupley, 1973). ASA values are 

routinely transformed into relative ones, denoted as Relative Solvent Accessibility (RSA), 

allowing for a better comparison between different residue types as well as providing values 

scaled between 0 and 1. This conversion is done by dividing the ASA of a residue by its 

theoretical maximal accessibility, routinely computed by considering it into the tripeptide Gly-

X-Gly. Several scales have been proposed in the literature (Rost and Sander, 1994; Tien et al., 

2013; Rose et al., 1985). For our studies, we adopted the one compiled by Rost and Sanders, 

1994. 

When a protein is missing its experimentally solved 3D structure, it can be helpful to know the 

exposure of its residues for determining folding and stability (Miller et al., 1987),  This 

knowledge can also help in determining possible interaction interfaces (Savojardo et al., 2017; 

Porollo and Meller, 2007) and in characterizing structural and functional motifs (Savojardo, 

Manfredi, et al., 2020; Martelli et al., 2016; Savojardo et al., 2019). With the advent of machine 

learning in Bioinformatics, many tools have been developed for RSA prediction. The methods 

can produce as output a putative value for the residue RSA (Klausen et al., 2019; Hanson et 

al., 2019; Singh et al., 2021) and/or eventually a classification into two (Drozdetskiy et al., 
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2015; Wu et al., 2017) or more (Deng et al., 2017; Kaleel et al., 2019) classes of exposure. 

Methods of the first type score with Pearson Correlation Coefficient (PCC) values up to 0.82, 

while methods of the second type score with Matthews Correlation Coefficient (MCC) values 

up to 0.65. 

Due to the high correlation of RSA to other residue-level characteristics, many tools are also 

trained to compute multiple outputs, including secondary structure (Drozdetskiy et al., 2015; 

Klausen et al., 2019; Hanson et al., 2019), coiled-coil regions (Drozdetskiy et al., 2015), 

contact numbers (Deng et al., 2017; Hanson et al., 2019), structural disorder (Klausen et al., 

2019) or backbone dihedral angles (Klausen et al., 2019; Hanson et al., 2019). In other cases, 

external tools predicting features are exploited to construct the input for the prediction of RSA 

(Wu et al., 2017; Fan et al., 2016; Tarafder et al., 2018). Recent methods routinely employ 

deep architectures that proved very effective, especially when adopting complex architectures 

of neural networks that can capture context information from the whole sequence (Kaleel et 

al., 2019; Deng et al., 2017; Hanson et al., 2019). More details regarding different types of 

architectures are given in Section 3.1. 

2.2. Single Residue Variations and Pathogenicity 

Single Nucleotide Polymorphisms (SNPs) occurring in protein-coding regions can lead to 

Single Residue Variations (SRVs) on the protein residue sequence. These variations may have 

several effects on the protein function, changing its abundance, activity, specificity and/or 

affinity towards the interaction with other molecules (Vihinen, 2021). Residue changes in the 

sequence of a protein are not necessarily harmful, but they lead in some cases to the onset of a 

pathological condition (Lappalainen and MacArthur, 2021). Public databases such as 

HUMSAVAR (UniProt Consortium, 2023) and ClinVar (Landrum et al., 2018) include this 

information, classifying SRVs into neutral (or benign) and disease-related (or pathogenic). 
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However, most known variations remain of Uncertain Significance (VUS) lacking a correlation 

with specific diseases. The task of discriminating between pathogenic and neutral variations 

has been tackled computationally. Several methods have been proposed in the past and recent 

years to solve this problem. 

Early methods such as SIFT (Ng and Henikoff, 2001) and PROVEAN (Choi et al., 2012) were 

based on a statistical analysis of the conservation of residues in a set of homologous sequences 

from different organisms, as derived from Multiple Sequence Alignments (MSAs). The higher 

the level of conservation, the less the probability of being disease-associated. Although this 

simple strategy allowed them to reach satisfactory results (Matthews Correlation Coefficient 

values of 0.57) and MSA-based features are still widely adopted, recent methods exploit 

different machine learning architectures for the discriminative task (Adzhubei et al., 2010; 

Calabrese et al., 2009; Carter et al., 2013; Jagadeesh et al., 2016; Li et al., 2009; Niroula et al., 

2015; Pejaver et al., 2020; Raimondi et al., 2017; Schwarz et al., 2010; Yang et al., 2022). 

Smart representations of different features of the protein and/or of the involved variations can 

improve method scores. Most notably, SNPs&GO (Calabrese et al., 2009) was the first method 

to propose a way to encode functional annotations derived from Gene Ontology (GO) 

(Ashburner et al., 2000) as a log-odd score,  demonstrating that knowing the protein function 

could improve the overall performances. More recent methods are based on canonical 

approaches such as random forests (Raimondi et al., 2017) and gradient tree boosting (Yang et 

al., 2022), with very few examples of successful training with complex architectures (Pejaver 

et al., 2020). 

2.3. Protein-Protein Interaction Sites 

Knowing how proteins interact with other biological entities is of extreme importance for 

understanding their function in the context of cell complexity. It is known that functional 
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membraneless protein aggregates play a role in metabolic biological processes (Savojardo, 

Martelli, et al., 2020). In particular, the identification of residues involved in protein 

interactions, referred to as Protein-Protein Interaction (PPI) sites, can help in characterising 

molecular mechanisms at the basis of important biological processes. A common strategy relies 

on deriving from existing protein-protein interfaces, like those known with atomic resolution, 

the knowledge that needs to be transferred to other proteins in order to compute whether they 

can be part of a complex. Protein-protein interfaces are derived from protein complexes solved 

with X-ray crystallography, Nuclear Magnetic Resonance (NMR), alanine scanning 

mutagenesis or chemical cross-linking (Rodrigues et al., 2015). Nevertheless, experimental 

methods can be too costly to be applied to large-scale studies and it is important to develop 

different computational tools to complement their applicability. 

When the interacting partner is known, docking programs are routinely used to run accurate 

simulations, allowing the identification of the most likely interface. Machine learning-based 

approaches can identify pairs of interacting partners (Pan et al., 2010). Alternatively, non-

partner-specific PPI sites can be directly identified (Casadio et al., 2022).  Amongst these, some 

methods adopt structure-derived features to encode the input (Li et al., 2012; Liu et al., 2009; 

Savojardo et al., 2012; Šikić et al., 2009; Dong et al., 2014). This makes them generally more 

accurate but limits their potential application. Other tools do not require as input the protein 

3D structure and are more suited for large-scale analysis of proteomes, although with overall 

lower performances (Dhole et al., 2014; Hosseini and Ilie, 2022; Li et al., 2021; Stringer et al., 

2022; Wei et al., 2016, 2015; B. Zhang et al., 2019; Zhang and Kurgan, 2019). Most of these 

methods routinely employ external predictors to include putative structural properties in the 

input features, including Relative Surface Accessibility (Dhole et al., 2014; Li et al., 2021; 

Stringer et al., 2022; Wei et al., 2016, 2015; B. Zhang et al., 2019; Zhang and Kurgan, 2019), 



13 
 

disorder (Li et al., 2021; Zhang and Kurgan, 2019), secondary structure (Zhang and Kurgan, 

2019; Stringer et al., 2022) and/or protrusion indices (B. Zhang et al., 2019). 
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3. Machine Learning for Computational Biology 

Machine Learning (ML) is part of the field of Artificial Intelligence. It is based on models that 

can learn rules from data and/or experience in an automated way, surpassing the need to 

explicitly encode them (Bishop, 2006). ML research began in the early 1950s and was at its 

core based on statistical methods. Following important technological advancements, the 

complexity of models that were available for training kept increasing, leading in recent years 

to the advent of Deep Learning (DL). Nowadays, ML is adopted in an increasing number of 

research areas (Baldi, 2021). ML models can be classified into three main frameworks that use 

different training methods based on the availability of data and the type of task we want to 

perform, namely i) reinforcement learning, ii) supervised learning and iii) unsupervised 

learning. 

Reinforcement learning is suited for learning optimal strategies to achieve a given goal 

(Kaelbling et al., 1996). This requires a clear definition of all possible states of the model, 

including feedback that rewards the machine for reaching positive states. In this case, training 

is not carried out using curated datasets, but through exploration of the space of possible 

actions. The model is asked to try several (initially) random actions with the goal of maximizing 

positive rewards and adjusting the parameters that regulate its decision-making process. A clear 

example of the application of reinforcement learning is game theory, where a machine can learn 

how to optimally play a game after experiencing all possible scenarios and learning to prioritize 

actions that lead to a win. 

Supervised Learning is mainly used to make statistical predictions based on known data, 

mostly for discriminative tasks, in particular, classification or regression (Mohri et al., 2018). 

It is necessary to have large enough datasets of labelled data, i.e. data for which we know 

experimentally what the correct output should be. Models can be considered as functions that 
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take input data and use internal parameters to produce an output. During the training phase, 

models see the labelled dataset and perform (initially) random predictions that are compared 

with the real labels. The discrepancies between expected and computed values are iteratively 

used to adjust the set of internal parameters until the error rate drops under a certain threshold. 

In this way, general rules can be learnt and stored in the internal parameter values, allowing 

the model to annotate new data for which labels are not known. 

Finally, unsupervised learning is the main approach for situations where the goal is 

discovering internal patterns within unclassified data (Hinton and Sejnowski, 1999). In this 

case, the main applications are clustering tasks and generative tasks, where models are asked 

to produce new data that mimic the one observed in training. For generative tasks, similarly to 

supervised learning, produced data are initially random and internal parameters are adjusted 

based on the dissimilarities to real data.  

As research in the ML field advances, new approaches often integrate ideas from different 

training paradigms. An important example is self-supervised learning, a hybrid approach 

between supervised and unsupervised learning that aims to learn new representations of 

unlabelled data which can be used to perform downstream supervised learning tasks (Raina et 

al., 2007). Regardless of the selected approach, all models are characterized by a number of 

free parameters and hyperparameters. The firsts represent the learning potential of the model 

and are adjusted during the training procedure. The latter are selected when the model is defined 

and they are routinely optimized through a grid search where many possible combinations are 

tested. Recent technological advancements focus on the optimization of high-throughput 

techniques. This allows the generation of huge amounts of data involving all different “omics” 

sciences (Pal et al., 2020). In this scenario, data-driven ML-based methods become an efficient 

approach to exploit data available in public databases. 
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3.1. Models of Supervised Learning 

In the field of supervised learning, several models have been proposed in the literature for 

solving different problems, ranging from statistical and shallow to complex ones. We propose 

in the following a list of the most adopted, including the ones we developed for solving our 

Computational Biology problems. 

Naive Bayes classifiers are models based on the application of the Bayes theorem under the 

“naive” assumption that all features used to represent the input are conditionally independent. 

While this assumption is generally not true, this class of models proved to perform surprisingly 

well in several real-world situations (Zhang, May 17-19 2004). Even when this is not the case, 

they are often employed to set baselines that more complex models should surpass to prove 

they are indeed useful for the task. 

Regression methods are based on fitting mathematical functions to model a relationship 

between input data and their expected output. The two most widely used methods are linear 

regression (Seber and Lee, 2003) and logistic regression (Menard, 2002). Both are linear 

models. This makes them very easy to train and interpret for simple problems. 

Hidden Markov Models (HMMs) are probabilistic graphical models routinely used to model 

protein families starting from multiple sequence alignments (Durbin et al., 1998). The 

graphical representation is composed of "state" nodes and "transition" edges, both modelled as 

probability distributions. Given a sequence of input symbols (residues), HMMs can emit a 

sequence of output symbols (features or labels). It is then possible to adopt them in supervised 

learning settings, adjusting the transition and emission probabilities based on available data. 

Common applications involve the prediction of residue-level protein features such as 

transmembrane topologies (Bystroff and Krogh, 2008; Martelli et al., 2002) and sorting signals 

(Käll et al., 2004). 
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Decision trees are models that learn to iteratively use features of the input to branch into a tree-

like structure until it can generate a proper output. During the training phase, a decision tree 

learns from the dataset which features carry the most information gain, prioritizing those in the 

early stages of the predictions and setting appropriate thresholds to perform decisions. The 

main advantage of decision trees is their easy interpretability since the final tree provides 

meaningful information regarding the importance of the input features. This is especially 

helpful for selecting the most relevant features that can sufficiently characterize a dataset, 

reducing the dimensionality of the representation. Conversely, their main drawback is a 

prominent tendency to overfit, so that small changes in the training dataset will generate very 

different models, reducing their ability to generalize to new data. 

Random Forests are ensemble methods based on a set of decision trees (Ho, 1995), offering a 

trade-off between interpretability and overfitting (Hastie et al., 2009). In this case, the strategy 

is to build many decision trees and iteratively sample from the training dataset to train them. 

Each tree will learn from different data to generate different outputs. The final discrimination 

is made through a consensus of all the trained trees. Random Forests are more stable than 

Decision Trees. However, the number of trees may reduce the interpretability of the final 

results. 

Support Vector Machines are models which can perform binary classification tasks by 

learning the optimal separating hyperplane in the space of the input features (Cortes and 

Vapnik, 1995). When data are linearly separable, the hyperplane maximizes the margin 

between the two classes, given by the distance from the plane of the closest data points from 

both sides, called support vectors. Learning is performed considering iteratively training 

examples and adjusting the internal parameters which define the position of the hyperplane. 

When the problem is not linearly separable, a different approach is adopted called soft margin.  
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Figure 2. A kernel transformation to map a non-linearly separable two-dimensional problem into a 

linearly-separable problem in three-dimension. ɸ is an example of a transformation that defines a kernel, 

as the scalar product in the mapped space ["($, &) 	= 	ɸ($) × ɸ($)]. 
 

Soft margin adopts a different loss function that maximizes the margin while minimizing the 

number of incorrect classifications. As displayed in Figure 2, it is also possible to include an 

approach called kernel trick, based on a kernel function which transforms the input space into 

a new space where a linear classification can solve the task (Boser et al., 1992). Common 

kernels include polynomial, gaussian or sigmoid functions. This mathematical approach makes 

Support Vector Machines widely applicable. When adopting SVMs, the type of kernel 

function, the parameters of the kernel and the trade-off for the soft margin should always be 

extensively fine-tuned through a grid search. Due to their implementation, SVMs cannot be 

directly tuned to perform a multilabel classification, although it is possible to build an ensemble 

of models in which each SVM learns to discriminate one class from all the others. 

3.1.1. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are models based on the connection between several basic 

computational units, referred to as artificial neurons. Initially developed to mimic biological 

neurons and their connections, artificial neurons are simple units which take one or more inputs 

and combine them through an activation function to produce an output. During the training  
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Figure 3. Representation of a perceptron. Features of the input (xi) are multiplied by weights (wi, free 

parameters of the model) and summed together (Σ). An activation function (,) then produces the output. 

 

phase, weights corresponding to the connections between neurons are updated, adjusting the 

output produced by the network (Krogh, 2008). The type of neurons, the activation functions 

they use and the way they are combined determine the type of Neural Network we use. 

Perceptrons are the simplest form of ANN. A perceptron, depicted in Figure 3, is a simple 

linear classifier that computes a weighted sum of the inputs and uses an activation function to 

produce an output. During training, the weights corresponding to the input features are adjusted 

with the goal of reducing the error (Rosenblatt, 1958). Similarly to the SVM, strategies are 

needed to allow the network to solve non-linearly separable problems. 

Multilayer Perceptrons (MLPs) are networks composed of i) an input layer with as many 

neurons as the input dimension, ii) one or more hidden layers with a variable number of hidden 

neurons and iii) an output layer with as many neurons as the number of classes to be 

discriminated. This kind of network is also called feed-forward fully connected because each 

node receives the output of all the neurons from the previous layer and broadcasts its output to 

all neurons of the following layer. The presence of the hidden layers allows the model to map 

input data in a new space which can be used to better discriminate the output (Hornik et al., 
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1989). Following technological advancements, including better-performing hardware 

infrastructures and algorithmic innovations (such as the inclusion of different loss and 

activation functions), it is now possible to properly train more complex network architectures 

with two or more hidden layers. These are referred to as Deep Learning procedures 

(Goodfellow et al., 2016). Given large enough training datasets, Deep Learning can be 

employed to extract patterns that are impossible to capture with simple networks, referred to 

as shallow networks. 

Convolutional Neural Network. Following the huge success of ANNs, researchers developed 

specialized networks for processing different types of data. Convolutional Neural Networks 

(CNNs) were specifically designed to analyze images, although they have been shown to 

perform very well even for sequence analysis (Abdel-Hamid et al., 2014). Images are 

composed of adjacent pixels, each represented with a vector of colour intensities. Using a fully 

connected perceptron, we would need one neuron for each feature of each pixel, resulting in an 

exploding number of trainable parameters. Moreover, we would not exploit any information 

regarding the proximity of pixels to one another. The idea of CNNs is to use filters of fixed 

size to slide over the image (Lecun et al., 1998), effectively sharing the same set of weights to 

process different parts of the input. While greatly reducing the number of needed parameters, 

the filter learns to pick up the presence of patterns in the image. In this way, several CNN layers 

using filters of different sizes can be stacked together, each learning to represent different kinds 

of local patterns and features. Not limited to the analysis of images, CNN can be successfully 

applied to sequential data (1-dimensional CNN, 1D CNN) to highlight specific patterns in the 

sequence (Kiranyaz et al., 2021). 1D CNNs can be particularly useful when working with 

proteins. The use of a convolutional filter sliding over the length of the chain can mimic the 

widely adopted approach of sliding windows centred on the target residue. Each residue is thus 

encoded with a variable number of features (channels), similar to how pixels of an image are 
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encoded with their colour intensities. The filter iteratively processes groups of contiguous 

residues, capturing information relative to the local context in the protein sequence. 

Recurrent Neural Network. MLPs and CNNs are both examples of feedforward neural 

networks. Alternatively, Recurrent Neural Networks (RNNs) adopt node cycles to generate an 

internal state which allows them to process data of variable length. This allows for taking into 

consideration the evolution in time of the analysed system. Similarly to convolution, a weight-

sharing strategy allows reusing the same set of weights to parse sequential data. In the case of 

RNNs, neurons have feedback loops that keep track of analysed data by updating the internal 

weights after every timestep. In this way, the produced output will not only depend on features 

of the current timestep but rather on the whole series of observations. When considering protein 

sequences each residue is taken as a different timestep and two networks processing the 

sequence in both directions (bidirectional RNNs) are routinely combined together. This allows 

the network to produce an output at each position which depends on the whole sequence 

context, capturing even long-range dependencies. A very popular and powerful type of  RNN 

is called Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTMs 

adopt architectures based on so-called gated cells, complex neurons with an internal state which 

adjust the information flow, learning to “remember” or to “forget” in order to capture the most 

meaningful associations. 

Transformer. Similarly to RNNs, Transformers are networks mainly built to process 

sequential data (Vaswani et al., 2017). Their main advantage is the ability to process the whole 

input at the same time using a procedure called Attention which enables them to learn which 

parts of the input should be prioritized in order to optimize the output. As shown in Figure 4, 

Transformers are composed of two main components, a stack of encoder layers and a stack of 

decoder layers. The encoders generate representations which cast correlations between  
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Figure 4. Model architecture of the Transformer, showing the encoder (left block) and the decoder 

(right block) (Vaswani et al., 2017). 

 

different parts of the input. Each decoder layer does the reverse operation, exploiting the 

information represented in the encodings to generate an output sequence. Transformers are 

particularly prone to parallelization, allowing full exploitation of the capabilities of modern 

Graphical Processing Units (GPUs) and/or Tensor Processing Units (TPUs). Transformers 
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have a major influence on the field of Natural Language Processing (NLP) and their application 

has been recently successful in developing Protein Language Models (PLMs) (Elnaggar et al., 

2020). 

3.2. Encoding Protein Sequences 

One of the main challenges in the application of machine learning-based methods to biological 

problems is representing input data. In the case of protein sequences, this requires the 

generation of vectors encoding each residue in the sequence. The simplest way to do this is by 

using a one-hot encoding representation. In this way, every residue is represented with a 20-

dimensional vector where the position corresponding to the specific residue type (total of 20 

different types) is set to 1, 0 otherwise. The one-hot encoding representation represents the 20 

residues in the same way without taking into consideration the different physicochemical 

properties, which can be added as additional features. Moreover, it does not take into 

consideration the local context. 

A major step forward is the introduction of the so-called evolutionary information, in the form 

of Position-Specific Scoring Matrices (PSSMs) or sequence profiles derived from the 

comparison of homologous proteins with a Multiple Sequence Alignment (MSA) procedure. 

As shown in Figure 5, from each column in the MSA, corresponding to a different residue 

position in the target sequence, a 20-dimensional vector is extracted, where each component is 

the frequency of a given residue type in the alignment position. This allows the inclusion in the 

input representation of the residue conservation at a given position in the sequence, possibly 

related to functionally relevant sites. The choice of the reference database is of the utmost 

importance for the quality of the MSA. The UniProt Reference Clusters (UniRef) (Suzek et al., 

2015) provide databases which are clustered at various levels of sequence identity, limiting 

their overall size while ensuring a balanced distribution between different protein families. 
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Figure 5. Example of a sequence profile (bottom) computed from a Multiple Sequence Alignment 

(MSA, top). In the MSA, 10 sequences are aligned and the sequence profile reports, position by position, 

the frequency of each residue type (in percentage). 

 

While proving extremely successful for many different applications, sequence profiles have 

two main drawbacks. First, computing MSAs is a time-consuming procedure that scales 

linearly with the number of sequences and this affects the time needed in large-scale analysis. 

Second, the performance of a method adopting PSSMs to encode sequences is very dependent 

on the quality of the MSA. 
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3.3. Protein Language Models 

Taking inspiration from recent successes in the Natural Language Processing (NLP) field (Ofer 

et al., 2021), Protein Language Models (PLMs) leverage the huge amount of proteins stored in 

public databases for learning mathematical representations (embeddings) of protein sequences 

and residues. PLMs require very deep neural network architectures to be trained on hundreds 

of millions of protein sequences, an effort needing huge resource investments and weeks, if not 

months, of computation on high-performance Tensor Processing Units (TPUs) and/or 

Graphical Processing Units (GPUs) (Elnaggar et al., 2020; Rives et al., 2021). While this is 

indeed a huge limiting factor for their development, the main advantage is that, once trained, 

PLMs are extremely fast in the generation of new embeddings, requiring seconds of 

computation for a single sequence, or at most hours for whole proteomes, even on a single 

consumer-grade desktop machine. Embeddings generated by PLMs have been proven to be 

effective in encoding important properties regarding the evolution and the syntax of proteins 

(Bepler and Berger, 2021). For this reason, representations based on PLMs can be adopted in 

place of traditional PSSMs or other hand-crafted features. 

Several pre-trained PLMs are available in the literature (Alley et al., 2019; Asgari and Mofrad, 

2015; Elnaggar et al., 2020; Heinzinger et al., 2019; Rives et al., 2021; Strodthoff et al., 2020; 

Meier et al., 2021; Lin et al., 2022), mainly differing in the type of architecture and in the 

training dataset (Bepler and Berger, 2021). Most models are based on Transformers (see 

Section 3.1.1 for a brief description), with three prominent strategies. The first utilizes decoder-

only layers characterized by an attention method where each position in the decoder is 

connected to all positions of the previous layer up to that point (Figure 6, left). These models, 

called auto-regressive, are able to generate protein-like sequences. This allows a training 

procedure based on the prediction of the next residue in a sequence and the comparison with 
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Figure 6. Diagram showing the differences between a decoder-only auto-regressive model (left) and an 

encoder-only model (right) (adapted from (Bepler and Berger, 2021). The latter considers the whole 

context information, producing more meaningful representations. However, it requires a more complex 

training strategy where parts of the input are masked, and an additional layer reconstructs the missing 

information. 

 

 the real one.  Conversely, the second strategy adopts encoder-only layers characterized by a 

self-attention method where each position in the encoder is connected to all positions of the 

previous layer (Figure 6, right). This allows embedding the input very efficiently. The model 

is not able to generate new sequences and therefore training requires different strategies. The 

most commonly adopted is mask reconstruction, where parts of the training sequences are 

masked and the model has to exploit the generated embeddings to recognize the missing 

residues (Vaswani et al., 2017). Encoder-only PLMs are mostly based on a very successful 

model for Natural Language Processing called Bidirectional Encoder Representations from 
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Transformers (BERT) (Devlin et al., 2018). The third possible approach, although less 

common, is based on Text-to-Text models that adopt encoder and decoder layers together 

(Raffel et al., 2019). Leveraging the best of both methodologies, these models generate high-

quality encoder embeddings while retaining some generative abilities (Elnaggar et al., 2020, 

2023). 

3.4. Training and validating machine-learning models 

A critical point in the development of any machine learning-based method is ensuring a fair 

and unbiased evaluation of its generalization performances (Walsh et al., 2021). To this aim, 

different strategies can be pursued; the most common is the execution of statistical procedures 

such as N-fold cross-validation and the adoption of independent blind test sets to evaluate the 

model generalization performance, simulating the never-seen-before condition.  

N-fold cross-validation is a statistical resampling procedure routinely adopted to evaluate the 

performance of machine-learning models on limited datasets. Moreover, N-fold cross-

validation is also used to select the optimal values of the model hyper-parameters and/or to 

compare different model architectures and input encodings. In general terms, the procedure 

consists of first partitioning the dataset into N groups or subsets. Therefore, a single subset is 

retained as testing data and the remaining N-1 subsets are used for training the model. The 

procedure is repeated N times, using each of the N subsets as a test set exactly once. The 

number of subsets (N) is set according to the size of the dataset. Routinely, cross-validation is 

performed by setting N equal to 5 or 10.  

In the context of training neural networks, it is useful to further identify, during each cross-

validation run, an additional subset referred to as validation set. This set is used, during each 

training phase, to evaluate the model error rate and stop the training when the error starts 
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increasing on validation data. This procedure is referred to as early stopping and it is adopted 

for avoiding overfitting on training data.  

A blind test set is also adopted to test the final generalization performance of a machine-

learning model. This procedure consists in holding out a significant fraction of the initial 

dataset (routinely in the range of 10-20% of the available data) and using it to assess the 

performance of the final model. The remaining fraction (80-90% of the data) is used for model 

training and selection using N-fold cross-validation. In this way, the never-seen-before 

condition is ensured, since all the model hyper-parameters are optimized and selected by means 

of N-fold cross-validation on a fraction of data which is different and independent of the one 

used for testing the final model.  

A graphical representation of a 5-fold cross-validation procedure in combination with a blind 

test set is shown in Figure 7. 

A key issue when performing any data split (either cross-validation or blind test data splits), is 

ensuring a sufficient level of independence between data used for training and testing the model 

(Walsh et al., 2021). When dealing with biological sequences, independence can be achieved 

by ensuring that sequences included in the training data are sufficiently different from those 

used for testing the model. To this aim, pairwise sequence similarity must be computed among 

all pairs of sequences included in a dataset and data splits performed consistently, such that no 

training/testing sequences share sequence similarity above a predefined threshold. Routinely, 

to ensure proper independence, the sequence similarity threshold is chosen in the range of 25-

30% pairwise sequence identity. 
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Figure 7. A schematic representation of a 5-fold cross-validation coupled with a blind test set. The 

blind test set is firstly isolated from the initial dataset, considering about 10-20% of the data. The 

remaining data (about 80-90%) are used for 5-fold cross-validation. All data splits are performed by 

ensuring that pairwise sequence similarity between training/testing sequences is below a predefined 

threshold (25-30% pairwise sequence identity).  After performing a grid search to optimize the 

hyperparameters, the best model is retrained on the full dataset used for cross-validation (80-90% of the 

data) and tested on the blind test set. 

3.5. Scoring indexes 

Several scoring indexes can be computed for assessing the quality of an ML-based method. 

Here, we report a list of the most popular metrics used for the evaluation of classification 
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algorithms.  Equations 3.1 to 3.5 are computed from a confusion matrix, obtained by counting 

the number of True Positives (TP), True Negatives (TN), False Positives (FP) and False 

Negatives (FN). 

- Accuracy (Q2): 

!2	 = 	 !"	$	!%
!"	$	!%	$	&"	$	&%      (3.1) 

- Precision: 

$%&'()(*+	 = 	 !"
!"	$	&"      (3.2) 

- Recall: 

,&'-..	 = 	 !"
!"	$	&%       (3.3) 

- F1 score, the harmonic mean of precision and recall: 

/1	 = 	 2	×	"()*+,+-.	×	/)*011"()*+,+-.	$	/)*011       (3.4) 

- Area under the receiver operating characteristic curve (ROC-AUC). 

- Matthews Correlation Coefficient (MCC): 

011	 = 	 !"	×	!%	2	&"	×	&%
3(!"	$	&")	×	(!"	$	&%)	×	(!%	$	&")	×	(!%	$	&%)   (3.5) 

3.6. Deployment of a new tool 

Once a new tool has been developed, it is important to make it accessible to the scientific 

community. This can be done in several ways, the most common including i) the release of a 

web server application, ii) the release of the source code and iii) the release of a containerized 

version of the tool. When creating a web server, it should be made with an intuitive user 

interface and clear user guides should be available explaining its functionality. Output data 

should be visualized in a clear and concise form, and made easily available for download and 

integration into pipelines.  
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Source code is routinely released in public repositories such as GitHub or GitLab. In this case, 

special care should be made to list all dependencies and versions of programs needed to run 

the code, alongside clear instructions on how to install them. Proper usage should be well 

documented, and scripts for recreating the training procedure as well as for using the method 

on new data should be available.  

Platforms such as Docker or Singularity for the deployment of containerized applications are 

extremely useful as they allow replication of the same environment requested by the program 

without additional effort on the user end. Independently of the chosen strategies, it is of the 

utmost importance to release original datasets used for training, testing and benchmarking, 

enabling  reproducibility for the research community  (Walsh et al., 2021).  

When deploying a web application, the stability of the server during the years following the 

release should also be monitored, together with the proper increase in the training data set. 

Finally, released methods should follow standard guidelines, such as the ones decided by 

ELIXIR, the European infrastructure for bioinformatics, ensuring FAIRness (FAIR: Findable, 

Accessible, Interoperable, Reusable) of the tool, and be included in public collections of 

methods for specific communities, such as Bio.tools. 

With all this in mind, I faced the Computational biology problems detailed in Chapter 2 and I 

successfully developed three predictors which score at the state-of-the-art. All methods have 

been described in international journals and are available to the community as web servers 

which are freely accessible at http://www.biocomp.unibo.it/predictors.html. A detailed 

description of the methods and uses of each predictor is given in the following chapters. 
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4. DeepREx: Prediction of protein solvent 

accessibility from sequence 

DeepREx (Manfredi et al., 2021) is a machine learning-based method for the prediction of the 

Accessible Surface Area of residues starting from the protein sequence. It performs a binary 

classification distinguishing into Buried or Accessible residues, based on a threshold of 20% 

of Relative Solvent Accessibility. The method, based on a deep architecture mainly composed 

of Long Short-Term Memory layers, achieves an MCC value of 0.63 when tested on a blind 

set, reaching the level of the state-of-the-art. DeepREx is freely available as a web server at 

https://deeprex.biocomp.unibo.it, as a standalone source code at 

https://github.com/BolognaBiocomp/deeprex or as a Docker container at 

https://hub.docker.com/r/bolognabiocomp/deeprex. 

4.1. Materials and Methods 

4.1.1. Datasets 

For training and testing DeepREx, we extracted protein chains from the Protein Data Bank 

(PDB) (Berman et al., 2000) (accessed October 15, 2019) that are obtained through X-ray 

crystallography at a resolution lesser or equal to 2.5 Å and that are declared by the authors to 

be functional monomers. We then used SIFTS (Dana et al., 2019) to map all chains to the 

corresponding UniProt (UniProt Consortium, 2023) sequence and we removed those with a 

coverage lesser or equal to 70%. We further removed all remaining proteins that are cross-

annotated on the Orientations of Proteins in Membranes (OPM) (Lomize et al., 2012) database, 

so as not to include membrane proteins. Finally, we clustered all proteins using MMseqs2 
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Table 1. Composition of training and blind test sets used for DeepREx. 

Dataset N. Proteins N. Residues N. Buried N. Exposed 

Training set 2,332 636,440 327,118 309,322 

Blind test set 200 56,206 29,068 27,138 

Total 2,552 692,646 356,186 336,460 
 

(Steinegger and Söding, 2017) with single-linkage clustering, a threshold of 30% of sequence 

identity and no threshold for coverage, to remove any internal redundancy. Retaining only one 

sequence per cluster, we ended up with 2,532 monomeric proteins. Amongst those, 200 were 

randomly selected to create a blind test set, while the remaining 2,332 were randomly split into 

10 equally sized subsets for cross-validation. 

For more accurate benchmarking, we also created a second blind test set composed of 9 targets 

from the CASP14 experiment belonging to the free modelling category, meaning that they have 

no homologous sequences. 

For each chain in the dataset, we computed the Solvent Accessible Surface Area (SASA) of 

each residue with the program DSSP (Touw et al., 2015). Absolute values were then converted 

into relative ones using the Sander and Rost scale (Rost and Sander, 1994). To perform a binary 

classification, we adopted a threshold of 20% to differentiate between buried and exposed 

residues. As shown in Table 1, this allowed us to have a very balanced dataset. 

4.1.2. Model Architecture 

DeepREx takes in input a protein sequence and classifies each residue as either buried or 

exposed. A schema of the whole architecture is shown in Figure 8. The first step of the model 

computes a Multiple Sequence Alignment (MSA) using HHblits version 3 (Steinegger et al., 

2019) with two iterations and default parameters, against the Uniclust30 (Mirdita et al., 2017)  
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Figure 8. Schema of the architecture adopted for implementing DeepREx. Each residue of the input 

protein is encoded as a vector of 71 features. The whole sequence is then processed by three cascading 

Bidirectional Long Short-Term Memory (LSTM) layers, generating an output value for each position. 

Each output is then converted into a binary classification (Buried if the output is lower than 0.5; Exposed 

if the output is greater than or equal to 0.5) and a corresponding Reliability Index (Equation 4.1) is 

computed. 
 

database. Using this MSA, an Lx71 input matrix is generated, where L is the length of the 

protein. For each residue, the 71 included features are i) 20 values for the canonical one-hot 

encoding of the residue, ii) 21 values for the sequence profile consisting of the relative 

frequencies of each residue type, plus the gaps, in the corresponding position, iii) 20 values for 

the HMM emission probabilities obtained from the match state in the corresponding position, 

iv) 7 values for the HMM transition probabilities in the corresponding position, and v) 3 values 

for the Neff_Match, Neff_Insertion and Neff_Deletion scores computed by HHblits. 
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In the second step, the input matrix is processed by three cascading Bidirectional Long-Short 

Term Memory (BLSTM) layers with 32 activation units each, followed by a time-distributed 

fully-connected layer with a sigmoid activation function, producing a real value between 0 and 

1 for each residue of the input sequence. 

Finally, output values are used for performing a binary classification using a threshold of 0.5 

where lower and higher values are respectively associated with the buried and exposed classes. 

A corresponding reliability index between 0 and 1 is also computed using Equation 4.1. 

,2	 = 	2	 × 	 |*	 − 	0.5|      (4.1) 

4.2. Results and Discussion 

4.2.1. Evaluation and Benchmarking 

DeepREx was optimized with 10-fold cross-validation and only the best-scoring model was 

tested on our blind test set. Results are reported in Table 2, alongside the performances of two 

state-of-the-art methods for the same task, namely PaleAle5.0 (Kaleel et al., 2019) and 

NetSurfP-2.0 (Klausen et al., 2019). It is important to mention that while our blind test set was 

constructed to be non-redundant with respect to our training set, it could share some similarities 

with the training sets of other tools, leading to a possible overestimation of their performances. 

Overall, we can observe that the performances of DeepREx do not decrease when tested on a 

blind test set, meaning that the method is very robust to generalization. The three tested 

methods have comparable performances on both test sets, with DeepREx having the most 

balanced results with close values of precision and recall. Remarkably, our method achieves 

the same levels with a smaller model adopting the lowest number of parameters. 
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Table 2. Benchmarking of DeepREx. 

Dataset Method Q2 Precision Recall F1 MCC 

CrossValidation DeepREx 0.81 0.82 0.80 0.81 0.62 

BlindTest DeepREx 0.82 0.82 0.80 0.82 0.63 

BlindTest PaleAle5.01 0.82 0.78 0.85 0.82 0.65 

BlindTest NetSurfP2.02 0.83 0.92 0.77 0.82 0.66 

CASP14 DeepREx 0.79 0.87 0.76 0.81 0.57 

CASP14 PaleAle5.01 0.78 0.90 0.72 0.80 0.58 

CASP14 NetSurfP2.02 0.81 0.81 0.89 0.85 0.59 
See Section 3.5 for a definition of all the metrics reported in the table. 
1 (Kaleel et al., 2019), 2 (Klausen et al., 2019). 

4.2.2. DeepREx-WS to assist surface engineering 

We decided to build a case study for testing the possible application of the DeepREx web 

server. In particular, we focused on an example from the field of protein surface charge 

engineering. In a recent study (Warden et al., 2015), authors were interested in conferring 

halotolerance to the bovine carbonic anhydrase II (bCAII, UniProtKB: P00921) via the increase 

of the abundance of acidic residues in the protein surface. Specifically, they studied the 

available PDB structure (1V9E) to select 18 positions to mutate into negative residues by 

considering amongst other properties their solvent accessibility and conservation. Our goal was 

to understand if the use of our web server could help in a hypothetical scenario in which the 

experimental 3D structure was not available. Most notably, after submission of a query 

sequence, DeepREx-WS provides, along with the predicted RSA, a set of additional features 

including i) the Kyte-Doolittle hydropathy score (Kyte and Doolittle, 1982) averaged over a 

window of five residues, ii) a conservation index computed from the MSA used for the input 

of DeepREx, iii) the three-class secondary structure as predicted by PYTHIA (Cretin et al., 

2021), iv) the five-class flexibility as predicted by MEDUSA (Meersche et al., 2021) and v) 
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the classification of intrinsically disordered regions as predicted by MobiDB-lite3.0 (Necci et 

al., 2020). 

When looking at the results for bCAII, the first thing we notice is that the predictions achieve 

a high MCC value of 0.81 and that all of the 18 residues chosen by the authors are correctly 

classified as exposed with high values of reliability. Moreover, looking only at residues 

predicted as exposed and excluding Glutamic Acids or Aspartic Acids, we are able to reduce 

the search space to only 43% of the 260 residues in the protein sequence. This can be further 

reduced by considering filters based on the computed conservation or the predicted flexibility, 

both being criteria that are routinely used for this task. In the first case, filtering out residues 

with a conservation score higher than the median of the protein (0.20) leaves only 78 target 

exposed and lowly conserved residues (30% of the sequence). Amongst those, five of the 18 

positions are left out, two of which have a conservation score slightly above the average (0.22) 

and three of which are declared by the author to not be lowly conserved, but are nonetheless 

selected based on other criteria. In the second case, filtering out positions with low flexibility 

(MEDUSA score lower than 3), only 66 exposed and highly flexible target residues remain 

(25% of the sequence). In this case, we would exclude six out of 18 positions. Remarkably, 

none are predicted as rigid. 

The aforementioned considerations all point to the fact that DeepREx-WS can be helpful in 

scenarios where the structure is unknown and the consideration of a set of predicted features 

can guide our choices. 

4.2.3. Linking RSA and pathogenicity of SRV 

Knowing the Accessible Surface Area of a residue in a protein sequence can be important for 

functionally annotating variations occurring at that position. Despite this, RSA is rarely  
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Figure 9. Fraction of disease-related and neutral variations that are classified as Buried or Exposed 

using a 20% threshold of Relative Surface Accessibility as computed on HVAR3D-2.0. 

 

adopted amongst features used to encode input proteins in methods predicting the effect of 

Single Residue Variations (SRVs) (Chen and Zhou, 2005; Martelli et al., 2016; Savojardo et 

al., 2019). Following the development of DeepREx, we investigated the correlation between 

the pathogenicity of an SRV and the exposure of the residue undergoing variation. 

For this purpose, we curated two datasets. The first, referred to as HVARSEQ, was obtained 

by collecting all SRVs from HUMSAVAR (UniProt Consortium, 2023) (accessed August 

2020) and filtering out all variations labelled as “Unclassified”, as well as all disease-related 

SRVs not associated with diseases included in OMIM (McKusick, 1998). In total, we included 

69,385 variations mapped on 12,494 distinct protein sequences, 29,949 of which are disease-

related and 39,436 are neutral. The second, referred to as HVAR3D-2.0, is a subsect of 

HVARSEQ including variations mapped on proteins with a PDB structure that i) was 

experimentally resolved with X-ray crystallography, ii) has a resolution lower or equal to 3Å 

and iii) has a coverage of the corresponding UniProt sequence of at least 70%. This subset 

accounts for 10,760 SRVs mapped on 1,255 unique proteins, 6,778 of which are disease-related 
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and 3,982 are neutral. For each SRV included in HVAR3D-2.0, we first divided residues into 

Buried and Exposed classes following the same procedure described in Section 4.1.1. Figure 9 

shows that disease-related variations have a tendency to occur in positions buried in the 

structure. Conversely, neutral variations tend to be located on the surface of the protein. After 

that, for each of the 20 residue types, we decided to analyze how their probability of leading to 

the onset of diseases when variated would vary when the residue is known to be either buried 

or exposed. In order to do so, we computed the following conditional probabilities: 

- The number of residues that are disease-related when variated over the total number of 

residues in the dataset is the conditional probability of a residue to be disease-related 

when variated 

$6 	= 	 .!%         (4.2) 

- The number of residues of type R that are disease-related when variated over the total 

number of residues of type R in the dataset is the conditional probability of a residue of 

type R to be disease-related when variated 

$6|/ 	= 	 .!"."
        (4.3) 

- The number of buried residues of type R that are disease-related when variated over the 

total number of buried residues of type R in the dataset is the conditional probability of 

a residue of type R to be disease-related when variated given that it is buried 

$6|8,/ 	= 	 .!#".#"
       (4.4) 

- The number of exposed residues of type R that are disease-related when variated over 

the total number of exposed residues of type R in the dataset is the conditional 

probability of a residue of type R to be disease-related when variated given that it is 

exposed 

$6|:,/ 	= 	 .!$".$"
       (4.5) 
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Figure 10. Conditional probabilities of the 20 residue types to be disease-related when variated as 

computed on HVAR3D-2.0. PD, PD|R, PD|B,R and PD|E,R are all defined in Section 4.2.3. 

 

Figure 10 shows that, although different residue types have different propensities, it is always 

the case that knowing that a residue is buried increases its a priori probability to be associated 

with a disease. Conversely, knowing that a residue is exposed lowers it. This difference appears 

to be particularly marked for asparagine (N), glutamine (Q), histidine (H), and lysine (K), all 

residues that are polar and that in our dataset are abundant on the protein surface. We also 

observe that, independently of their exposure status, three residue types [tryptophan (W), 

tyrosine (Y) and cysteine (C)] have a probability to be disease-related when variated higher 

than the baseline, while two [valine (V) and isoleucine (I)] are lower. 

Similarly, we computed the same statistics on the extended dataset HVARSEQ after running 

DeepREx on all of its sequences, considering putative classifications into Buried or Exposed 

residues. Results are reported in Figures 11 and 12. Interestingly, these findings agree with data 

computed on the structural dataset, showing an abundance of buried residues for disease-related 

SRVs and of exposed residues for neutral SRVs. When looking at individual conditional 

probabilities, the relation PD|B,R > PD|R > PD|E,R still holds for all 20 residue types. The main 

observable difference is relative to tryptophan (W), tyrosine (Y) and cysteine (C), which now 

present values of PD|E,R lower than the baseline. However, this is most likely due to prediction 

errors given their low abundance in the datasets. 
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Figure 11. Fraction of disease-related and neutral variations that are classified as Buried or Exposed 

using a 20% threshold of Relative Surface Accessibility as computed on HVARSEQ. 

Figure 12. Conditional probabilities of the 20 residue types to be disease-related when variated as 

computed on HVARSEQ. PD, PD|R, PD|B,R and PD|E,R are all defined in Section 4.2.3. 

 

Overall, these findings show a remarkable correlation between the pathogenicity of an SRV 

and its exposure and they indicate that accurate predicting tools like DeepREx can be adopted 

for large-scale analysis without the limitation of using only proteins with an experimentally 

resolved structure (Savojardo, Manfredi, et al., 2020). 
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5. E-SNPs&GO: Prediction of variant pathogenicity 

E-SNPs&GO (Manfredi et al., 2022) is a machine learning-based method for the prediction of 

the Pathogenicity of Single Residue Variations starting from the protein sequence. It performs 

a binary classification distinguishing into Pathogenic/Likely Pathogenic or Benign/Likely 

Benign variations. The method, based on a Support Vector Machine and adopting Protein 

Language Models for embedding the input, achieves an MCC of 0.86 when tested on a blind 

set, reaching the level of the state-of-the-art. E-SNPs&GO is freely available as a web server 

at https://esnpsandgo.biocomp.unibo.it. 

5.1. Materials and Methods 

5.1.1. Datasets 

For training and testing E-SNPs&GO, we extracted Single Residue Variations from two 

sources, HUMSAVAR (UniProt Consortium, 2023) (accessed on August 4, 2021) and ClinVar 

(Landrum et al., 2018) (accessed on March 29, 2021). We then removed all Pathogenic/Likely 

Pathogenic (P/LP) variations that were not clearly associated with diseases catalogued in either 

OMIM (McKusick, 1998) or MONDO (Shefchek et al., 2020), as well as all variations that 

were either of Uncertain Significance (US), somatic or with contrasting annotations in the two 

source databases. This resulted in 111,412 SRVs annotated on 13,661 unique protein 

sequences. To avoid biases during both training and benchmarking, we then clustered all 

proteins using MMseqs2 (Steinegger and Söding, 2017) with connected-component clustering 

and a threshold of 25% of sequence identity over an alignment coverage of at least 40%. We 

then generated 11 equally sized subsets, making sure that for every pair of proteins taken from 

two different subsets they belong to different clusters, thus reducing any cross-redundancy.  
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Table 3. Composition of training and blind test sets used for E-SNPs&GO. 

Dataset Proteins N. SRV N. P/LP SRV N. B/LB SRV 

Training set 12,347 101,146 39,812 61,334 

Blind test set 1,314 10,266 4,083 6,183 

Total 13,661 111,412 43,895 67,517 
SRV: Single Residue Variations. 

P/LP: Pathogenic/Likely Pathogenic, B/LB: Benign/Likely Benign. 

 

One of the subsets was then randomly selected to be used as a blind test set for benchmarking 

purposes, while the other 10 were used in cross-validation. 

Because the dataset is slightly unbalanced in favour of Benign/Likely Benign (B/LB) variations 

(data shown in Table 3), we also made sure that the sampling of the subsets would keep the 

same proportion of P/LP to B/LB variations in each subset. 

Finally, for each protein in the dataset, we also extracted Gene Ontology (Ashburner et al., 

2000) terms annotated in the corresponding UniProt entry, including a total of 17,076 GO 

annotations divided into 11,476 Biological Process (BP), 3,955 Molecular Function (MF) and 

1,645 Cellular Component (CC). 

5.1.2. Model Architecture 

E-SNPs&GO takes in input a protein sequence and an SRV mapped onto it and classifies it as 

either P/LP or B/LB. Figure 13 shows a schema of the whole architecture. 

The first step is input encoding. Here, the protein is embedded using two different models, 

ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar et al., 2020), generating respectively 1,280 

and 1,024 features for each residue. The same procedure is done with the variant sequence, 

generated by substituting the variation in the corresponding position. Most notably, because  
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Figure 13. Schema of the architecture adopted for implementing E-SNPs&GO. In the Input encoding 

phase, both the variant and the wildtype sequences are embedded using ESM-1v and ProtT5 and the 

vectors encoding the variated residue are extracted (red and green boxes). GO annotations are extracted 

for the target protein and Anc2Vec is used to obtain a vectorial representation of each term. Terms 

belonging to the same subontology (MF = Molecular Function, CC = Cellular Component, BP = 

Biological Process) are averaged together (blue, purple and pink boxes). In the Predictor phase, the final 

encoding consisting of 5208 features is processed by a Principal Component Analysis (PCA) and a 

Support Vector Machine (SVM). In the Output phase, the score computed by the SVM is transformed 

into a binary prediction (Benign/Likely Benign if the output is lower than 0; Pathogenic/Likely 

Pathogenic if the output is greater than or equal to 0) and an Isotonic Regression is adopted to compute 

a calibrated pathogenicity probability. 

 

protein embedding models are context-dependent, we can expect the encoding of all residues 

to change with respect to the original sequence. Subsequently, all GO annotations are extracted 

for the input protein. Each term is then embedded with Anc2Vec (Edera et al., 2022), a model 

trained to generate a vectorial embedding for each term in the Gene Ontology by taking into 

account their ancestry in the tree-like structure of the ontology. This generates corresponding 

vectors of 200 features that, for each of the three existing sub-ontologies, are then averaged. 

Finally, we concatenate the 4 vectors (2 models times 2 sequences) corresponding to the 

variated residue with the 3 vectors obtained from the GO terms to generate an input vector of 

1280x2+1024x2+200x3=5208 features. 
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In the second step, a Principal Component Analysis (PCA) is first applied to the input vector 

to reduce its dimensionality from 5208 to 2400. This is then processed by a Support Vector 

Machine (SVM) classifier generating a real value. 

Finally, the output value is used for performing a binary classification using a threshold of 0, 

where lower and higher values are respectively associated with the B/LB (negative) and P/LP 

(positive) classes. An Isotonic Regression (Niculescu-Mizil and Caruana, 2005) is also used to 

compute a calibrated pathogenicity probability, which we can use to obtain an integer reliability 

index between 1 and 10 using Equation 5.1. 

,2	 = 	%*7+8920	 × 	 :$"/<" 	− 	0.5:;    (5.1) 

5.2. Results and Discussion 

5.2.1. Evaluation and Benchmarking 

DeepREx was optimized in a 10-fold cross-validation and only the best-scoring model was 

tested on our blind test set. Results are reported in Table 4, alongside the performances of other 

state-of-the-art methods for the same task. In particular, we confront ourselves with SNPs&GO 

(Calabrese et al., 2009), a previous version of this method, with three tools widely used in the 

literature, namely PROVEAN (Choi et al., 2012), SIFT (Ng and Henikoff, 2001) and 

PolyPhen-2 (Adzhubei et al., 2010), and with the best-performing method to date, MutPred2.0 

(Pejaver et al., 2020). It is important to mention that while our blind test set was constructed to 

be non-redundant with respect to our training set, it could share some similarities with the 

training sets of other tools, leading to a possible overestimation of their performances. 

Overall, we can see that E-SNPs&GO and MutPred2.0 have comparable results, while both 

performing notably better than the other methods proposed for the benchmark. The two 

methods also appear to be complementary, as the first has a much higher precision and the 

second has a much higher recall. 
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Table 4. Benchmarking of E-SNPs&GO. 

Dataset Method Q2 Precision Recall F1 MCC AUC 

CrossValidation E-SNPs&GO 0.85 0.82 0.79 0.81 0.69 0.84 

BlindTest E-SNPs&GO 0.87 0.86 0.80 0.83 0.72 0.86 

BlindTest SNPs&GO1 0.80 0.85 0.63 0.72 0.58 0.78 

BlindTest MutPred2.02 0.86 0.79 0.88 0.83 0.71 0.86 

BlindTest PROVEAN3 0.78 0.69 0.83 0.75 0.57 0.79 

BlindTest SIFT4 0.74 0.63 0.88 0.73 0.53 0.77 

BlindTest PolyPhen-25 0.72 0.61 0.90 0.72 0.50 0.75 
See Section 3.5 for a definition of all the metrics reported in the table. 
1 (Calabrese et al., 2009), 2 (Pejaver et al., 2020), 3 (Choi et al., 2012), 4 (Ng and Henikoff, 2001), 5 

(Adzhubei et al., 2010). 

 

The main advantage of our tool is however the use of protein embedding models for encoding 

the input, which allows us to avoid the costly computation of MSAs, making E-SNPs&GO 

much faster than any other proposed method. 

With E-SNPs&GO, we first introduce the idea of adopting two different models, ProtT5 

(Elnaggar et al., 2020) and ESM-1v (Meier et al., 2021), for embedding input proteins. Table 

5 reports the results of an ablation study confronting the performances of the final method with 

an identical architecture that utilizes only one or the other PLM to embed the input. We argue 

that this effect could be due to the two different PLMs learning complementary features that 

our model learns to pick up and combine. Most notably, thanks to the general efficiency of 

PLMs, using two for constructing the input representation has a negligible effect on the time 

efficiency. 
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Table 5. Comparison of performances for E-SNPs&GO when using two different embedding methods 

vs using their combination. 

Method Input Q2 Precision Recall F1 MCC AUC 

E-SNPs&GO ESM-1v1 0.83 0.82 0.78 0.80 0.66 0.83 

E-SNPs&GO ProtT52 0.84 0.82 0.79 0.81 0.67 0.83 

E-SNPs&GO ESM-1v1 
+ ProtT52 

0.85 0.82 0.79 0.81 0.69 0.84 

See Section 3.5 for a definition of all the metrics reported in the table. 
1 (Elnaggar et al., 2020), 2 (Meier et al., 2021). 

5.2.2. Predictions on Variations of Uncertain Significance 

For further evaluation of our method, we decided to classify a dataset of 9,165 Variations of 

Uncertain Significance (VUS) extracted from HUMSAVAR (accessed on May 12, 2022). 

Since their possible correlation to the onset of diseases is not experimentally annotated, we 

cannot verify the correctness of our predictions. Nonetheless, thanks to the calibration 

procedure we adopt when computing the pathogenicity probabilities, we can have a fair 

estimate (Benevenuta et al., 2021). Figure 14 shows that 67% of all VUS are predicted with a 

Reliability Index greater or equal to 6. Assuming that the corresponding probabilities are 

correct (e.g. a VUS with a predicted pathogenicity probability of 0.8 is a true positive 80% of 

the time and a false positive 20% of the time), we can compute an estimated MCC of 0.67 and 

an estimated Q2 of 0.85. These results are in line with the performances computed on the blind 

test set and show that E-SNPs&GO has a good level of confidence even when predicting 

variants that are difficult to annotate. 
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Figure 14. Distribution of predicted pathogenicity probabilities and corresponding Reliability Indices 

for the dataset of Variants of Uncertain Significance. 
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6. ISPRED-SEQ: Prediction of Protein-Protein 

Interaction sites 

ISPRED-SEQ (Manfredi et al., 2023) is a machine learning-based method for the prediction of 

Interaction Sites for non-partner-specific Protein-Protein Binding starting from the protein 

sequence. It performs a binary classification for each residue in the target chain marking 

putative interaction sites. The method, based on a deep architecture adopting a Convolutional 

Layer and Protein Language Models for embedding the input, achieves an MCC of 0.38 when 

tested on a blind set, surpassing the next best-performing method by 6 percentage points. 

ISPRED-SEQ is freely available as a web server at https://ispredws.biocomp.unibo.it. 

6.1. Materials and Methods 

6.1.1. Datasets 

For training and testing ISPRED-SEQ, we extracted datasets from the literature. For the 

training set, we adopted the same one used by DELPHI (Li et al., 2021), composed of 9,982 

protein sequences filtered from a previous study (J. Zhang et al., 2019). All sequences are 

guaranteed by the authors to have less than 25% of sequence identity with one another, as well 

as with all of the test sets. For our purposes, we further decided to curate the dataset by 

removing all proteins with less than 80% coverage of the corresponding PDB (Berman et al., 

2000) structures, ending up with 6,066 sequences. 

For benchmarking, we also adopted four datasets widely used in the literature. The first one, 

referred to as Dset448, comprises 448 sequences used for comparing state-of-the-art methods 

for the prediction of interaction sites from the sequence. The second one, referred to as Dset335,  
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Table 6. Composition of training and blind test sets used for ISPRED-SEQ. 

Dataset Proteins Residues Interaction Sites Non-Interaction Sites 

Training set 6,066 1,757,296 285,751 1,471,545 

Dset448 448 116,500 15,810 100,690 

Dset335 355 95,940 11,467 84,473 

Homo_TE 95 24,766 5,564 19,202 

Hetero_TE 48 14,056 1,313 12,743 

 

is a subset of the first one obtained by removing all proteins with sequence identity higher than 

25% against the training set of DLPred (B. Zhang et al., 2019). The other two, namely HomoTE 

and HeteroTE, include respectively 479 and 48 protein chains from homomeric and 

heteromeric complexes. We use these to compare our method with the performance of PIPENN 

(Stringer et al., 2022), as well as to check our ability to make predictions for these two different 

kinds of protein complexes. Table 6 reports comprehensive details on all the datasets adopted. 

6.1.2. Model Architecture 

ISPRED-SEQ takes in input a protein sequence and classifies each residue as either being or 

not being an Interaction Site (IS) for protein-protein binding. Figure 15 shows a schema of the 

whole architecture. 

The first step is input encoding. Here, the protein is embedded using two different models, 

ESM-1b (Rives et al., 2021) and ProtT5 (Elnaggar et al., 2020), generating respectively 1,280 

and 1,024 features for each residue. We then consider as our input a matrix of size 31x2304 by 

taking the concatenated vectors in a padded window of 31 residues centred on every target 

residue. 
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Figure 15. Schema of the architecture adopted for implementing ISPRED-SEQ. Each residue in the 

protein sequence is embedded using ESM1-b and ProtT5, producing a vectorial representation of 2304 

features. For each position, a window of 31 residues is processed by a 1-D Convolutional layer and by 

three cascading fully connected layers. The output is then transformed into a binary classification 

(interaction site if the output is greater than or equal to 0.5, not interaction site if the output is lower 

than 0.5). 

 

In the second step, each input matrix is processed by a 1D Convolutional Layer with 2304 

filters and a filter width of 31, used to condense the window information over every feature 

into a single vector of length 2304. This is followed by two hidden fully-connected layers with 

128 and 32 activation units, and by a fully-connected layer using a sigmoid function to provide 

in output a real value between 0 and 1. 

Finally, output values are used for performing a binary classification using a threshold of 0.5 

where higher values are associated with ISs. 

2304 filt
ers

Le
ng

th
 o

f t
he

 p
ro

te
in

ESM1-b

ProtT5

1280 features 

1024 features 

window of 31  
residues 

1D-Convolutional layer 

Dense layer  
(128 hidden units) 

Dense layer  
(32 hidden units) 

Interaction
Site 

Not in
Interaction

Output  
(sigmoid) 

< 0.5

>= 0.5



54 
 

6.2. Results and Discussion 

6.2.1. Evaluation and Benchmarking 

ISPRED-SEQ was evaluated on four different test sets to guarantee a fair comparison with 

several state-of-the-art methods. In particular, we include in our benchmarking PITHIA 

(Hosseini and Ilie, 2022) (Dset448 and Dset335), DELPHI (Li et al., 2021) (Dset448 and 

Dset335), PIPENN (Stringer et al., 2022) (Dset448), SCRIBER (Zhang and Kurgan, 2019) 

(Dset448 and Dset335), SSWRF (Wei et al., 2016) (Dset448), CRFPPI (Wei et al., 2015) 

(Dset448), LORIS (Dhole et al., 2014) (Dset448), DLPred (B. Zhang et al., 2019) (Dset335) 

and PIPENN (Stringer et al., 2022) (Homo_TE and Hetero_TE). All methods, including ours, 

provide as output a numerical score and adopt a threshold to discriminate residues that are 

interaction sites for protein-protein interactions. As described in (Zhang and Kurgan, 2018), 

for this task performances are routinely computed by selecting a threshold such that the number 

of positive predictions (FP+TP) is equal to the number of real positive examples (TP+FN), 

from which follows that the number of residues incorrectly classified as interaction sites (FP) 

is equal to the number of real interaction sites incorrectly classified (FN). For the sake of a fair 

comparison, we decided to apply the same strategy, but we also report performances obtained 

by using the standard threshold of 0.5 that would be used when running predictions on the web 

server. 

Regardless of this choice, Table 7 shows that ISPRED-SEQ outperforms all state-of-the-art 

methods currently present in the literature by several percentage points for all metrics 

considered. It is worth mentioning that when adopting the standard threshold, the recall of our 

method is much higher than its precision, meaning that while we tend to overpredict residues 

as putative interaction sites, we miss very few of the real ones despite their low relative 

abundance. 

 



55 
 

Table 7. Benchmarking of ISPRED-SEQ. 

Dataset Method Q2 Precision Recall F1 MCC AUC 

Dset448 ISPRED-SEQ (th=0.5) 0.71 0.29 0.78 0.42 0.34 0.82 

Dset448 ISPRED-SEQ (th: FP=FN) 0.86 0.47 0.47 0.47 0.38 0.82 

Dset448 PITHIA1 0.84 0.41 0.41 0.41 0.32 0.78 

Dset448 DELPHI2 0.83 0.37 0.37 0.37 0.27 0.74 

Dset448 PIPENN3 0.79 0.39 0.39 0.39 0.25 0.72 

Dset448 SCRIBER4 0.82 0.29 0.29 0.29 0.23 0.72 

Dset448 SSWRF5 0.81 0.29 0.29 0.29 0.18 0.69 

Dset448 CRFPPI6 0.81 0.27 0.27 0.27 0.15 0.68 

Dset448 LORIS7 0.81 0.26 0.26 0.26 0.15 0.66 

Dset335 ISPRED-SEQ (th=0.5) 0.72 0.27 0.77 0.40 0.33 0.82 

Dset335 ISPRED-SEQ (th: FP=FN) 0.87 0.46 0.46 0.46 0.39 0.82 

Dset335 PITHIA1 0.85 0.38 0.38 0.38 0.30 0.76 

Dset335 DELPHI2 0.85 0.36 0.36 0.36 0.28 0.75 

Dset335 SCRIBER4 0.84 0.32 0.32 0.32 0.23 0.72 

Dset335 DLPred8 0.84 0.31 0.31 0.31 0.21 0.72 

Homo_TE ISPRED-SEQ (th=0.5) 0.71 0.42 0.83 0.56 0.42 0.84 

Homo_TE ISPRED-SEQ (th: FP=FN) 0.81 0.58 0.58 0.58 0.46 0.84 

Homo_TE PIPENN3 0.77 0.49 0.49 0.49 0.34 0.77 

Hetero_TE ISPRED-SEQ (th=0.5) 0.65 0.17 0.68 0.27 0.20 0.72 

Hetero_TE ISPRED-SEQ (th: FP=FN) 0.86 0.24 0.24 0.24 0.16 0.72 

Hetero_TE PIPENN3 0.85 0.29 0.29 0.29 0.11 0.66 
See Section 3.5 for a definition of all the metrics reported in the table. 
1 (Hosseini and Ilie, 2022), 2 (Li et al., 2021), 3 (Stringer et al., 2022), 4 (Zhang and Kurgan, 2019), 5 

(Wei et al., 2016), 6 (Wei et al., 2015), 7 (Dhole et al., 2014), 8 (B. Zhang et al., 2019). 
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Table 8. Comparison of performances for ISPRED-SEQ when using two different embedding methods 

vs using their combination. 

Method Input Q2 Precision Recall F1 MCC AUC 

ISPRED-SEQ ESM-1b1 0.68 0.30 0.70 0.42 0.30 0.74 

ISPRED-SEQ ProtT52 0.69 0.31 0.72 0.43 0.31 0.75 

ISPRED-SEQ ESM-1b1 
+ ProtT52 

0.70 0.32 0.75 0.45 0.34 0.80 

See Section 3.5 for a definition of all the metrics reported in the table. 
1 (Rives et al., 2021), 2 (Elnaggar et al., 2020). 

 

With ISPRED-SEQ we confirm what was observed during the development of E-SNPs&GO. 

As reported in Table 8, performances obtained using two different and complementary PLMs 

surpass identical networks adopting only one or the other to embed the input. Moreover, we 

argue that the use of both models does not impact the time efficiency of ISPRED-SEQ, 

especially when compared to other tools adopting traditional MSA-based input features. 
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7. Conclusions and perspectives 

During the three years of my PhD, I developed three novel machine learning-based methods 

addressing important problems in the field of Computational Biology: i) the prediction of 

residue Accessible Solvent Area, ii) the prediction of the pathogenicity of Single Residue 

Variations and iii) the prediction of protein-protein interaction sites. All tools perform at the 

level of the state-of-the-art and are currently published as well as available to the scientific 

community in the form of web servers. During my research activities, I focused on the 

following:  curation of datasets for fair training and evaluation of machine learning 

architectures, avoiding all possible biases; standardisation of procedures for optimizing the 

models while preserving their ability to transfer extracted knowledge to new data; developing 

of new techniques for efficiently embedding proteins into vectorial encoding suited for 

downstream predictive tasks, avoiding the need to construct costly canonical Position Scoring 

Specific Matrices (PSSMs) from Multiple Sequence Alignments (MSAs). I also investigated 

pathogenic Single Residue Variations (RSA) in relation to their Relative Solvent Accessibility 

(RSA) and to the possibility of being discriminated from benign ones. 

Research always opens new problems. For this reason, in my publications, I highlight the 

necessity of exploring other possible PLMs applications. During my internship abroad, I 

deepened my knowledge of training procedures and best practices to adopt when exploiting 

protein embeddings.  

The relationship between genetic variations and human diseases requires the integration of 

many sources of information to fill the gap between molecules and systemic behaviour. It is 

therefore desirable to include data related to different levels of complexity in order to generate 

a platform for structural and functional characterization of the relationship between variations 

and human diseases. This will require the curation of high-quality datasets of relations between 
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protein variations, diseases, and other phenotypic features, as well as the development of 

accurate predicting tools. 

Finally, for all topics here discussed, it will be important to investigate the potential 

contribution of three-dimensional models generated by AlphaFold. When the predictive target 

can be directly computed from the structure like in the case of solvent accessibility, models 

with high enough confidence scores could be directly adopted to increase the amount of 

available training data. In doing so, methods such as DeepREx could become much more 

accurate and generate better estimates for proteins where AlphaFold cannot compute high-

quality models. Other tasks like the prediction of interacting sites cannot be solved simply by 

knowing the structure of the protein. Nonetheless, it will be interesting to understand to which 

extent the combination of AlphaFold models and methods taking them as input is preferable to 

methods like ISPRED-SEQ adopting only sequence-based features. 
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Solvent accessibility (SASA) is a key feature of proteins for determining their folding

and stability. SASA is computed from protein structures with different algorithms, and

from protein sequences with machine-learning based approaches trained on solved

structures. Here we ask the question as to which extent solvent exposure of residues

can be associated to the pathogenicity of the variation. By this, SASA of the wild-type

residue acquires a role in the context of functional annotation of protein single-residue

variations (SRVs). By mapping variations on a curated database of human protein

structures, we found that residues targeted by disease related SRVs are less accessible

to solvent than residues involved in polymorphisms. The disease association is not

evenly distributed among the different residue types: SRVs targeting glycine, tryptophan,

tyrosine, and cysteine are more frequently disease associated than others. For all

residues, the proportion of disease related SRVs largely increases when the wild-type

residue is buried and decreases when it is exposed. The extent of the increase depends

on the residue type. With the aid of an in house developed predictor, based on a

deep learning procedure and performing at the state-of-the-art, we are able to confirm

the above tendency by analyzing a large data set of residues subjected to variations

and occurring in some 12,494 human protein sequences still lacking three-dimensional

structure (derived from HUMSAVAR). Our data support the notion that surface accessible

area is a distinguished property of residues that undergo variation and that pathogenicity

is more frequently associated to the buried property than to the exposed one.

Keywords: solvent accessible surface area, relative solvent accessibility, protein variations, prediction of solvent

accessible surface, pathogenic protein variations

INTRODUCTION

In structural bioinformatics, Solvent Accessible Surface Area (SASA) [or briefly Accessible Surface
Area (ASA)] of proteins has always been considered a main feature for determining protein folding
and stability. Early computational studies (Lee and Richards, 1971; Chothia, 1976; Miller et al.,
1987, and references therein) emphasized the role of solvent exposed vs. non-exposed amino
acid residues in determining the protein structure. Typically, ASA is defined as the polar solvent
accessible area of a given protein, and it is computed by means of a solvent molecule, which
probes the protein surface beyond the van der Waals radius. After the first rolling ball algorithm
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(Shrake and Rupley, 1973), many alternatives became available
for computing ASA from the atomic coordinates of the protein
in its folded and unfolded state [for review see Ali et al.
(2014)]. Evidently, ASA is a function of the three dimensional
structure of the protein and, based on ASA values, amino acid
residues of a protein can be classified as buried or exposed
(Kabsch and Sander, 1983), a property that is conserved through
evolution in protein families (Rost and Sander, 1994). ASA is
routinely computed as an absolute value or as Relative Solvent
Accessibility (RSA), when the ASA value is divided by the
maximum possible solvent accessible surface area of the residue
(Tien et al., 2013). ASA gained also a pivot role in detecting
protein-protein interfaces of molecular complexes in the Protein
Data Bank (PDB) [for review see Savojardo et al. (2020), and
references therein].

With the advent of machine and deep learning-based
approaches (Baldi, 2018), many methods became available for
predicting RSA and ASA. They differ mainly in the machine
learning approach, the volume of the database of protein
structures and the predicted output (ASA, RSA, or binary
classification) (Rost and Sander, 1994; Pollastri et al., 2002;
Drozdetskiy et al., 2015; Ma and Wang, 2015; Fan et al., 2016;
Wu et al., 2017; Kaleel et al., 2019; Klausen et al., 2019).

Surface accessible area of residues can be important also
for functional annotation of disease related protein variants.
However, this property has been rarely included into the
physico-chemical characteristics adopted to describe the residues
undergoing variations (Chen and Zhou, 2005; Martelli et al.,
2016; Savojardo et al., 2019).

In this study, we investigate the relation between the
pathogenicity of human protein variations and the solvent
exposure of the residues undergoing variation (wild-type
residues). To this aim, we provide an updated version of a
highly curated dataset of Single Residue Variations (SRVs)
occurring in human proteins that can be mapped in high-
quality structures deposited in the Protein Data Bank (PDB).
The dataset, here referred to as HVAR3D-2.0, is generated from
data available at the HUMASVAR database and builds on top of
data previously analyzed in a different study (Savojardo et al.,
2019). On this structural dataset, we explore the relationship
between pathogenicity of SRVs and the solvent accessibility of
the corresponding wild-type residues. In particular, we determine
that the majority (67%) of disease-related SRVs occur in buried
positions whereas neutral SRVs occur mostly (64.3%) in exposed
residues. Moreover, SRVs targeting specific residue types such as
glycine, tryptophan, tyrosine, and cysteine, are more frequently
associated with disease than others are. Finally, for all residues,
and in particular for asparagine, glutamine, histidine, and
lysine, the proportion of disease related SRVs largely increases
when the wild-type residue is buried, and decreases when it is
exposed, confirming that, among other factors, the context can
be associated to the pathogenicity of the variations (Casadio et al.,
2011).

We extended the above analysis to a larger set of variations
included in HUMSAVAR and collected in a dataset called
HVARSEQ. In order to estimate the solvent accessibility of all
residues undergoing disease-related or neutral SRVs in human

proteins, we developed an in-house method based on deep-
learning for predicting solvent exposure from sequence. Our
method performance is comparable to state-of-the-art methods.
We apply it to all the residues of human protein sequences,
undergoing pathogenic and neutral SRVs in HVARSEQ.

Results of the large-scale analysis on protein sequences
support what observed in protein structures and confirm
the different distribution buried/exposed wild-type residues in
disease-related and neutral SRVs. Our data suggest that solvent
accessibility is a distinguished property of wild type residues
undergoing pathogenic variations.

MATERIALS AND METHODS

Variation Databases
All human Single-Residue Variations (SRVs) were collected from
HUMASVAR version 2020_04 (Aug 2020). As a first filtering step,
we retained variations labeled as “Disease” and “Polymorphism,”
neglecting all variations labeled as “Unclassified.” Disease-related
SRVs not associated with OMIM diseases were excluded. After
this procedure we ended up with a large set of SRVs occurring
on human protein sequence. Here this dataset is referred to as
HVARSEQ (Human VARiations in SEQuences)

In order to build the structural dataset (here referred to
as HVAR3D-2.0, Human VARiations in three Dimensional
structures), we firstly identified, among all the sequences included
in HVARSEQ, the subset of proteins endowed with a PDB
structure meeting the following criteria:

• Coverage of the corresponding UniProtKB sequence is ≥70%;
• Experimental method is X-ray crystallography;
• Resolution is ≤ 3Å.

The mapping of SRV positions on protein structure was
performed using data from the Structure Integration with
Function, Taxonomy and Sequence (SIFTS) project1. Protein
structures having ambiguous or wrong SIFTS mapping files were
excluded from the dataset.

Computing Solvent Exposure
The absolute Accessible Surface Area (ASA) of each wild-type
residue undergoing variation has been computed using the
DSSP program (Kabsch and Sander, 1983). Relative Solvent
Accessibility (RSA) values were then obtained dividing absolute
ASA values in Å2 by residue-specificmaximal accessibility values,
as extracted from the Sander and Rost scale (Rost and Sander,
1994). Finally, each residue has been classified as buried (B) if its
RSA was below 20%, and exposed (E) otherwise.

Computing PD, PD|R, PD|B,R, and PD|E,R
In this study, the background probability of a wild-type residue
to be disease associated in a dataset of wild-type residues is
computed as follows:

PD =
nD
N

(1)

1https://www.ebi.ac.uk/pdbe/docs/sifts/.
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where nD andN are the number of wild-type residues undergoing
disease-related variations and the total number of wild-type
residues undergoing variations (disease related or not) in the
dataset, respectively.

The conditional probability of being disease related when
variated, given a wild-type residue R, is computed as follows:

PD|R =
nDR
nR

(2)

where nDR and nR are the number of wild-type residues of a given
R type, which are disease related upon variations, and the total
number of R residues in the whole dataset, respectively.

The conditional probability of a wild-type residue R to be
disease related upon variation when buried is computed as:

PD|B,R =
nDBR
nBR

(3)

where nDBR and nBR are the number of buried wild type R residue
in the set of wild type disease related upon variation and the total
number of buried R wild type residues, respectively.

Similarly, the conditional probability of a wild-type residue
R to be disease related upon variation when exposed is
computed as:

PD|E,R =
nDER
nER

(4)

where nDER and nER are the number of exposed wild type R
residue in the set of wild-type disease related upon variation and
the total number of exposed R wild type residues, respectively.

All the above probabilities are estimated considering the
structural dataset HVAR3D-2.0, and by computing the residue
solvent accessibility with the DSSP program. Moreover, we
extended the analysis to the whole HVARSEQ sequence dataset,
by estimating the residue exposure state (buried and exposed)
with a predictor implemented in-house and described in the
following section.

Predicting Solvent Accessibility From the
Protein Sequence
The method implements a deep-learning architecture processing
an input based on the following descriptors:

• The residue one-hot encoding, representing primary
sequence information;

• Evolutionary information encoded with a protein sequence
profile, as extracted from multiple sequence alignment
generated using the HHblits version 3 program (Steinegger
et al., 2019). We performed two search iterations with default
parameters against the Uniclust30 database (Mirdita et al.,
2017).

Our deep architecture processes the input using three cascading
Bidirectional Long-Short TermMemory (BLSTM) layers (Graves
and Schmidhuber, 2005). BLSTMs belong to the class of LSTM
(Hochreiter and Schmidhuber, 1997), a special recurrent neural
network architecture well-suited for processing protein sequence

data and extracting significant sequential relations between
elements of the sequence. BLSTMs are an extension of LSTMs
performing a double scanning of the input sequence, from
left to right and vice versa, in order to better capture the
sequential relations among sequence positions. The adoption
of the recurrent BLSTM allows the method to take into
consideration the local sequence context without the explicit use
of a fixed-size window centered on each residue.

The output of the third recurrent layer is then provided as
input to a time-distributed fully connected layer adopting a
sigmoid activation function. This layer is responsible for the final,
binary classification of each residue in the sequence into buried or
exposed classes. In particular, the numerical output value in the
range [0, 1] attached to each residue is interpreted as a probability
p of being exposed: all residues with p ≥ 0.5 are predicted as
exposed while those with p < 0.5 are classified as buried.

The dataset adopted to train and test the predictor presented
in this study has been extracted from the Protein Data
Bank (interrogated Oct 15, 2019) (Berman, 2000). Overall,
the dataset comprises 2532 non-redundant, author-declared
functional monomeric PDB structures, obtained with X-ray
crystallography at < 2.5 Å resolution and covering more than
70% of corresponding UniProtKB sequences. All proteins in the
dataset share <30% sequence identity. This dataset was then
randomly split into a training set, comprising 2,352 sequences,
and an independent blind test set including 200 sequences.
Proteins in the training set were further split into 10 equally-
sized sets for setting the values of hyperparameters with a cross-
validation procedure.

Solvent exposure for training/testing data has been computed
using DSSP as detailed in Section: Computing solvent exposure.
The residues were classified into buried and exposed using a
RSA threshold of 20%. Using this threshold, the set of residues
is roughly divided into equally sized subsets comprising 52%
and 48% of buried and exposed residues, respectively, providing
balanced datasets for training and testing.

RESULTS

HVAR3D-2.0: A Dataset of Variations
Covered by 3D Structure
The structural dataset collected in this work, here referred to
as HVAR3D-2.0, is an updated version of the dataset described
in a previous study (Savojardo et al., 2019). The dataset has
been derived by mapping on PDB structures OMIM-related and
neutral SRVs annotated in the HUMSAVAR database2, release
2020_08 (Aug, 2020). Only structures determined with X-ray
crystallography with resolution ≤3Å and covering ≥70% of
the corresponding UniProtKB sequences were selected. After
this stringent filtering, we ended-up with a high-quality dataset
comprising 10,760 human SRVs occurring on 1,255 PDB entries
(corresponding to 1,285 protein chains). The set includes 6,778
and 3,982 disease-related and neutral SRVs, respectively. Table 1
lists a summary of the HVAR3D-2.0 content. The HVAR3D-2.0
dataset is available in Supplementary Table 1 in TSV format.

2https://www.uniprot.org/docs/humasavar
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TABLE 1 | Statistics of HVAR3D 2.0 dataset.

Description Counts (#)

PDB structures 1,255

PDB chains 1,285

Distinct SRV positions 9,379

SRVs 10,760

Disease-related SRVs 6,778

Neutral SRVs 3,982

In the present study, we are interested in investigating the
relation between the pathogenicity of SRVs and the solvent
accessibility of the residue undergoing variation. For this reason,
we firstly computed Accessible Surface Area (ASA) values for
all 1,285 protein chains included in the HVAR3D dataset using
the DSSP program (Kabsch and Sander, 1983). Raw ASAs
were then converted into Relative Solvent Accessibility (RSA)
values using the Rost and Sander maximal accessibility scale
(Rost and Sander, 1994). Finally, all residues with RSA ≥

20% were labeled as exposed (E) or buried (B) otherwise.
This threshold (or similar ones, in the range of 15–25% RSA)
is routinely adopted for computing the protein surfaces and
deriving classification datasets in many studies (Thompson and
Goldstein, 1996; Mucchielli-Giorgi et al., 1999; Pollastri et al.,
2002; Kaleel et al., 2019), since it roughly divides the set of
residues in a protein in two equally-sized subsets. In HVAR3D,
using a 20% RSA threshold, we obtain 55% and 45% of residues
classified as buried and exposed, respectively, corresponding to
a realistic characterization of the protein interior (accounting
for completely and partially buried residues) and surface (Miller
et al., 1987). Preliminary analysis highlighted that the choice of
the RSA threshold (in the reasonable range of 15–25% RSA)
only minorly affects the conclusions drawn in this study (data
not shown). For this reason, all the subsequent analyses were
performed using the aforementioned threshold.

Focusing our attention to structure positions undergoing
SRVs, we firstly computed the different proportions of buried
and exposed wild-type residues associated to disease-related
and neutral SRVs. As shown in Figure 1, 67% of wild-type
residues undergoing disease-related variations are located in
buried positions and about 64% of wild-type residues involved
in neutral variations are exposed. This conclusion corroborates,
on a much larger structural database, results partially reported
in previous studies (Martelli et al., 2016; Savojardo et al., 2019).
The relative abundance of disease-related variations in buried
positions of the protein and of neutral ones in exposed positions
suggests that the solvent accessibility of the variated position is a
further property to consider when determining the pathogenicity
of a variation.

Analyzing Distributions of Variated
Wild-Type Residues in the Structure
Database
We tackle the problem of associating solvent exposure to
a specific wild-type residue as a characteristic feature to be

FIGURE 1 | Pie charts showing the fractions of buried/exposed wild-type

residues undergoing disease-related (left) and neutral (right) SRVs in the

HVAR3D-2.0 dataset, respectively.

FIGURE 2 | Composition of buried (A) and exposed (B) wild-type residues

undergoing disease-related and neutral variations in the HVAR3D-2.0 dataset.

associated to its variation type (neutral or disease related).
We compute the relative frequency of occurrence in the
buried and exposed sets of each residue undergoing a disease
related or neutral variation (Figures 2A,B). It is evident that
while some residue types are more often disease related when
variated in the buried state (Q, H, D, E, K), others (including
G, W, C, and R) are disease related upon variation in
either state.
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FIGURE 3 | Probabilities of the 20 wild-type residues undergoing disease-related variations, depending on the wild type residue and the exposure state in

HVAR3D-2.0. Buried and exposure state of each residue position are estimated with DSSP as described in Section: Analyzing distributions of variated wild-type

residues in the structure database. PD: the probability of a wild-type residue (position) to be disease associated in the HVAR3D-2.0 dataset [see Equation (1)]. PD|R:

the conditional probability of being disease related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue

to be disease related upon variation when buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue to be disease related upon variation when

exposed [see Equation (4)].

However, when we compute the conditional probabilities per
residue type, clearly the tendency of the majority of the wild-
type residues is that of being disease-related upon variation when
buried (red squares in Figure 3). Indeed, in Figure 3 we show
to which extent the knowledge of the solvent exposure changes
the a priori probability of a given residue type to be associated
with disease. For each residue type R, we report the conditional
probability of being associated to disease (PD|R, black squares)
and how the two conditional probabilities (PD|B,R and PD|E,R
in red and blue squares, respectively) change, given that the
variated residue is buried or exposed. We contrast these values
to the baseline frequency of disease related variations in the
HVAR3D-2.0 dataset, referred to as PD and equal to 0.62.

In Figure 3, when comparing PD|R of each residue R (black
squares) with the baseline value PD, it is evident that not all the
residues are equally likely to be associated with disease when
variated. Residues like glycine (G), leucine (L) tryptophan (W),
tyrosine (Y), and cysteine (C) show values of PD|R that are higher
than the baseline, indicating that their variations are frequently
associated to disease in the database. Furthermore, for all residues
the relation PD|B,R > PD|R > PD|E,R holds. This means that for all
residue types, the probability that SRVs are related to disease is
higher when the wild-type residue is buried (red squares) than
when it is exposed (blue squares). The extent of this difference
depends on the residue type and it is remarkable for asparagine
(N), glutamine (Q), histidine (H), and lysine (K). All these
residues are polar and abundant on the protein surface (data
not shown). On average, when variated, they are associated to
disease with a frequency comparable or lower than the baseline
0.62. However, when variations of these residue types occur in
buried positions, the frequency of disease related variations raises
to values around 0.8, reaching 0.85 in the case of glutamine (Q)
and lysine (K). Remarkably, for three residues [tryptophan (W),
tyrosine (Y) and cysteine (C)] the frequency of disease-related
variation is higher than the baseline, rather independently of

the exposure state. Conversely, the fraction of disease-related
variations of valine (V) and isoleucine (I) is lower than the
baseline, independently of their accessibility.

Overall, these findings highlight a relation between the
pathogenicity of the variation and the solvent accessibility of the
wild-type residue and show that the extent of the association
depends on the residue type. In all cases, variations occurring
in buried positions are more likely to be disease-related. This is
particularly so for charged residues, for polar residues such as
asparagine (N), glutamine (Q) and histidine (H), and for proline
(P), cysteine (C), and tryptophan (W).

HVARSEQ: A Dataset of Protein Sequences
With Variations
Here we make use of computational prediction of solvent
accessibility to extend our analysis to all the positions
undergoing variations contained in HUMSAVAR. From the
HUMSAVAR database, release 2020_08 (Aug, 2020), we collected
all polymorphisms and all OMIM-related SRVs occurring in
protein sequences. Unclassified SRVs were filtered-out from the
set. Overall, 69,385 SRVs were collected. 29,949 and 39,436 SRVs
are disease-related and neutral, respectively, occurring on 12,494
protein sequences. Here, this extended set of protein sequences
is referred to as HVARSEQ. In Table 2 we summarize the basic
statistics of the dataset. The HVARSEQ dataset is available in
Supplementary Table 2 in TSV format.

Predicting Solvent Accessibility
For computing solvent accessibility from protein sequences,
we implemented an in-house method for predicting solvent
exposure from sequence. The method is based on deep-learning
processing of several input features, which encode the protein
sequence and the sequence profile (seeMaterials andMethods for
more details on the method). Our method classifies each residue
of the sequence into two classes: buried (B), corresponding
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TABLE 2 | Statistics of HVARSEQ dataset.

Description Counts (#)

UniProtKB sequences 12,494

Distinct SRV positions 64,869

SRVs 69,385

Disease-related SRVs 29,949

Neutral SRVs 39,436

TABLE 3 | Performance of our deep learning-based method for predicting solvent

exposure from protein sequence.

Scoring index Dataset

Cross-validation Blind test HVAR3D-2.0

MCC 0.63 0.63 0.60

Q2 (accuracy) 81% 82% 80%

F1 81% 82% 80%

TABLE 4 | Performance of different methods for solvent accessibility prediction on

the blind test set described in this study comprising 200 protein sequences.

Method MCC Q2 % F1 %

PaleAle 5.0 0.65 82 84

NetSurfP-2.0 0.67 83 81

Our method 0.63 82 82

to residues whose RSA is lower than 20%, and exposed (E),
corresponding to residues with RSA ≥ 20%.

Performances are listed in Table 3 and are evaluated adopting
three different testing sets (by adopting a cross validation
procedure (leftmost column); on the blind test (central column);
on our HVAR3D-2.0 dataset, for which solvent exposure can
be directly computed using DSSP). Comparing the first two
columns, it is evident that our method is robust, achieving
generalization performances that are as good and even better
than cross-validation results. Overall, our method is able to
discriminate buried from exposed residues with Q2 (accuracy),
MCC (Matthew Correlation Coefficient) and F1 equal to 82%,
0.63 and 82%, respectively. When scored on the HVAR3D-2.0
dataset, the performance is almost unchanged, suggesting that
our method is quite stable across different datasets.

We also performed a side-by-side comparison between our
method and two state-of-the-art approaches, namely PaleAle5.0
(Kaleel et al., 2019) and NetSurfP-2.0 (Klausen et al., 2019).
Results are reported in Table 4. All methods perform quite well,
with comparable scoring indexes. It is worth mentioning that the
testing set used in this benchmark is non-redundant only with
respect to our training set: this condition is not guaranteed for
the other two methods evaluated, which adopt different training
sets. In general, we can conclude that our method well-compares
with recent tools at the state-of-the-art.

FIGURE 4 | Pie charts showing the fractions of predicted buried/exposed

positions disease-related (left) and neutral (right) upon variations in the

HVARSEQ dataset, respectively.

Analyzing Distributions of Variated
Wild-Type Residues in the Sequence
Dataset
After computing solvent accessibility over HVARSEQ, we
assessed the proportions of buried and exposed predictions
separately on the subsets of residues undergoing disease-related
and neutral variations. Results are in Figure 4.

As to the prediction, 72% of disease related SRVs occurs in
buried positions and 58% of neutral SRVs affect exposed residues.
Interestingly, the proportions of buried/exposed positions for
disease and neutral SRVs are in agreement with those assessed
on the structural dataset (67% and 64.3%, respectively: compare
Figures 1, 4). The result further corroborates the notion that
residues undergoing disease-related variations are mainly in
buried positions.

We then evaluated PD|R, PD|B,R, and PD|E,R for all the
residue types and results are reported in Figure 5. We also
show the baseline probability PD (0.43), which represents the
proportion of positions that undergo disease-related variations
in the HVARSEQ dataset.

The comparison between PD|R and PD, which are both
independent from predictions, confirms the finding obtained
on the HVAR3D-2.0 dataset: residues such as glycine (G),
tryptophan (W), tyrosine (Y), and cysteine (C), when undergoing
variation, are more frequently associated to disease than expected
from the baseline. In the sequence set, this behavior characterizes
also arginine (R) and aspartic acid (D).

Similarly to the structural case, for all residues we have
that PD|B,R > PD|R > PD|E,R, highlighting that for all residue
types, SRVs are more frequently associated to disease when
occurring in buried positions than in exposed ones. The tendency
is remarkable for the majority of residues, already identified
from HVAR3D-2.0 and including asparagine (N), lysine (K), and
histidine (H). The analysis on HVARSEQ highlights a difference
between PD|B,R and PD|E,R for tryptophan (W) and cysteine (C).
However, this discrepancy can be due to prediction errors on
these two less abundant (rare) residues in the database. Similarly,
to what described for HVAR3D-2.0 (Figure 3), the frequency
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FIGURE 5 | Frequency of disease-related SRVs, depending on the wild type residue and the exposure state in HVARSEQ. Here, buried and exposure states of each

residue position have been predicted using the method described in Section Analyzing distributions of variated wild-type residues in the sequence database. PD: the

probability of a wild-type residue (position) to be disease associated in the HVARSEQ dataset [see Equation (1)]. PD|R: the conditional probability of being disease

related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue to be disease related upon variation when

buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue R to be disease related upon variation when exposed [see Equation (4)].

FIGURE 6 | Mapping SASA predictions on a protein model. The model is that of human Dimethylaniline monooxygenase 3 (UniProtKB: P31513) derived from the

SWISS-MODEL Repository. Solvent exposure is computed from the available 3D protein model using DSSP. Variation (SVR) positions are highlighted using the

spacefill view. In red, buried positions associated to disease-related SRVs and correctly predicted as buried by our method. In magenta, buried disease-related

positions wrongly predicted as exposed. In orange, exposed disease-related positions wrongly predicted as buried. In blue, exposed neutral SRV positions correctly

predicted as exposed. In yellow, exposed neutral positions wrongly predicted as buried. In green, buried neutral positions correctly predicted as buried.
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of disease-related SRVs occurring at valine (V) and isoleucine
(I) residues is lower than the baseline, independently of the
exposure state.

Case Study
Many human protein sequences, without any associated three-
dimensional (3D) structure, are endowed with models that
can be derived from the SWISS-MODEL Repository3, directly
linked to the protein UniProtKB file. For sake of curiosity, we
took advantage of an example to show the 3D location of our
sequence-based prediction. In particular, in Figure 6 we show
the model of the human Dimethylaniline monooxygenase 3
protein (UniProtKB: P31513)4. This protein has 19 SRVs in
HVARSEQ, eight of which are disease-related and 11 are neutral.
Disease-related SRVs are all associated to Trimethylaminuria
(OMIM:602079)5, a disease condition resulting from the
abnormal presence of large amounts of volatile and malodorous
trimethylamine within the body. In Figure 6, we map all the
solvent exposure predictions for all SRV positions into the
3D model.

It is evident that the vast majority of disease-related SRVs
(6 out of 8) are in buried positions. Of these, five are correctly
predicted as buried by our method (in red) while only one
is wrongly predicted as exposed (in magenta). Neutral SRVs
are mostly exposed (10 out of 11): eight of these are correctly
predicted in exposed regions (in blue).

Results illustrate the general trend of what we observed in the
structural data set and are consistent with the accuracy of the
prediction method.

CONCLUSION AND PERSPECTIVE

In this paper, we focus on the solvent accessible surface area, a
property of protein residues, firstly described and computed in
several biophysical studies, to which Cyrus Chothia contributed
(Chothia, 1976). The property, which nowadays can be computed
with machine learning based methods, is here exploited in

3https://swissmodel.expasy.org/repository
4https://www.uniprot.org/uniprot/P31513.
5https://www.omim.org/entry/60207

relation to another important problem: the annotation of
variations in human proteins as disease related or not. We took
advantage of an ample set of human protein structures to observe
that indeed disease related variations occur more frequently
in buried regions of the proteins than in solvent accessible
surfaces. In turn, neutral polymorphisms are characterized by
a more frequent solvent exposure. We then proved that with
a deep learning method performing at the state of art, the
tendency is observable also in the majority of all the wild-
type residues undergoing variations that are presently listed in
HUMSAVAR. We suggest that the solvent accessible surface
area of wild type residues is a distinguished property to be
included among those necessary to annotate pathogenic from
non-pathogenic variations.
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a b s t r a c t

Protein–solvent interaction provides important features for protein surface engineering when the struc-
ture is absent or partially solved. Presently, we can integrate the notion of solvent exposed/buried resi-
dues with that of their flexibility and intrinsic disorder to highlight regions where mutations may
increase or decrease protein stability in order to modify proteins for biotechnological reasons, while pre-
serving their functional integrity. Here we describe a web server, which provides the unique possibility of
integrating knowledge of solvent and non-solvent exposure with that of residue conservation, flexibility
and disorder of a protein sequence, for a better understanding of which regions are relevant for protein
integrity. The core of the webserver is DeepREx, a novel deep learning-based tool that classifies each resi-
due in the sequence as buried or exposed. DeepREx is trained on a high-quality, non-redundant dataset
derived from the Protein Data Bank comprising 2332 monomeric protein chains and benchmarked on a
blind test set including 200 protein sequences unrelated with the training set. Results show that DeepREx
performs at the state-of-the-art in the field. In turn, the Web Server, DeepREx-WS, supplements the pre-
dictions of DeepREx with features that allow a better characterisation of exposed and buried regions: i)
residue conservation derived from multiple sequence alignment; ii) local sequence hydrophobicity; iii)
residue flexibility computed with MEDUSA; iv) a predictor of secondary structure; v) the presence of dis-
ordered regions as derived from MobiDB-Lite3.0. The web server allows browsing, selecting and inter-
secting the different features. We demonstrate a possible application of the DeepREx-WS for assisting
the identification of residues to be variated in protein surface engineering processes.

! 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Knowledge of the exposure of a residue in the context of a
folded protein allows defining the protein folding core and identi-
fying residues that interact with the solvent and other molecules in
physiological or artificial environments [1]. Solvent exposure is
routinely measured by residue Solvent Accessible Surface Area
(SASA) or its Relative Solvent Accessibility (RSA), in which the
maximum surface area for each residue type is the normalizing
factor [2–4]. Residues in any protein can be therefore classified
as buried or exposed by defining a threshold on the RSA value, rou-
tinely set equal to 20%. Programs like DSSP [5] or PSAIA [6] esti-
mate RSA starting from the Protein Data Bank (PDB) coordinates
of a protein structure. When the three-dimensional structure of a

protein is not or partially available, computational methods can
predict solvent exposure from the protein sequence.

Different prediction tools, mainly based on machine-learning
approaches, provide RSA estimation, classifying residues into bur-
ied or exposed [7–9]. Finer-grained predictions into three or four
classes of solvent exposure are possible [10]. Recently, solvent
exposure is computed with deep-learning approaches [10,11].

New developments in the protein structure prediction field led
to the release of AlphaFold2 [12], a very powerful deep-learning
based tool for the ab-initio prediction of protein three-
dimensional (3D) structure from sequence. AlphaFold2 optimally
scored in the most recent edition of the Critical Assessment of
Structure Prediction (CASP, predictioncenter.org), although the
accuracy is not uniform across all CASP target categories and still
limited on difficult targets (e.g., the free-modelling ones). Despite
the success of AlphaFold2, the availability of sequence-based pre-
dictors of protein features, like solvent exposure, are still impor-
tant for many reasons. Accurate predictions of protein features

https://doi.org/10.1016/j.csbj.2021.10.016
2001-0370/! 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
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can be useful to validate models generated with AlphaFold2 (or
with others ab-initio methods), particularly in those regions where
the models are expected to be low quality. Moreover, predictions
of solvent exposure can be helpful also in the perspective of being
integrated into end-to-end deep-learning methods, even during
the learning phase, to guide and refine the training process. Tools
like AlphaFold2 are very demanding in terms of computational
resources, whereas simple predictors of protein structural features
can be easily adopted in the presence of time/resource constraints
for the preliminary structural/functional characterization of large
datasets of proteins. This allows the quick identification of
interesting cases on which focusing the attention and, possibly,
applying more sophisticated (and computationally demanding)
approaches.

Computation of solvent exposure provides valuable information
in different problems, which include defining constraints for ab-
initio protein structure prediction tools, refining protein–protein
interface predictors [13,14], and structurally and functionally
characterizing sequence positions, which undergo pathogenic
single-residue variations [15–17]. In biotechnological applications,
knowledge of residue solvent exposure is of prominent impor-
tance. Rational surface engineering i.e., the chemical modification
of key positions on the protein surface, is an effective tool for tai-
loring protein features to specific industrial and biotechnological
demands [18,19] and references therein]. Applications of protein
surface (re-)engineering include the improvement of protein solu-
bility in different solvents [20,21], immobilization [22], and stabi-
lization in aqueous or organic solvents [23,24]. In all these
applications, computational prediction of protein solvent accessi-
bility from sequence can provide constrains for screening the can-
didate sites to be considered for modifications when the
experimental protein three-dimensional structure (or a validated
structural model) is not available [19]. Other features, such as resi-
due conservation in multiple sequence alignment, local protein
flexibility, protein secondary structure and possibly the presence
of intrinsically disordered regions can further reduce the search
space, identifying residues not essential for protein function and/
or located in external loops.

Here, we present DeepREx-WS, a web server providing a multi-
dimensional characterization of exposed and buried positions of a
protein starting from its residue sequence. A two-class prediction
of protein solvent exposure is provided with a novel deep
learning-based method, DeepREx. The new predictor described in
this paper has been trained and tested on high-quality structures
extracted from the PDB and performs at the state-of-the-art, when
benchmarked against other methods available for the same task.

The server DeepREx-WS, for each position, supplements the
exposure prediction of DeepREx with the Kyte-Doolittle hydropho-
bicity and residue conservation obtained from a multiple sequence
alignment. Furthermore, three external resources, MEDUSA [25],
PYTHIA [26] and MobiDB-Lite3.0 [27], are present to estimate, for
each residue position, protein flexibility, protein secondary struc-
ture and the presence of intrinsically disordered regions,
respectively.

We release DeepREx as both Python stand-alone program and
Docker image.

2. Material and methods

2.1. DeepREx implementation

2.1.1. Datasets
DeepREx is trained and tested on a dataset extracted from the

Protein Data Bank (PDB) [28] (accessed Oct 15, 2019), which
includes 692,646 residues from 2532 non-redundant, monomeric

proteins with an X-ray crystallographic structure at a
resolution ! 2.5 Å and a coverage " 70% of the corresponding Uni-
Prot sequence [29]. Mapping between PDB and UniProt sequences
was retrieved with SIFTS [30]. Membrane proteins were excluded
via a cross-check on the Orientations of Proteins in Membranes
(OPM) database [31].

All proteins are declared by authors of the crystallography to be
functional as monomers. The dataset was reduced by similarity, so
that all protein sequences share ! 30% pairwise identity. The clus-
tering and representative sequence selection have been performed
using the MMseqs2 program [32]. Specifically, we used cluster
mode 1 (single-linkage clustering) and 30% sequence identity
threshold. No threshold has been set for coverage, allowing to clus-
ter also sequences with very local sequence similarity. More details
on the dataset collection are available in Supplementary Materials.

The absolute Solvent Accessible Surface Area (SASA) of each
residue in the PDB file is computed using DSSP [5]. Relative Solvent
Accessibility (RSA) values are then obtained dividing absolute SASA
values by residue-specific maximal accessibility values, as
extracted from the Sander and Rost scale [2]. Finally, each residue
is classified as buried (B) if its RSA is ! 20%, and exposed (E) other-
wise. This threshold divides the set of residues into two almost
equally sized subsets, with 52% buried and 48% exposed residues
and therefore provides a balanced dataset for training and testing.

The non-redundant dataset was then randomly split into a
training set, comprising 2332 sequences, and a blind test set
including 200 sequences. Proteins in the training set were further
split into 10 equally sized sets for cross validation.

The blind test set includes 200 protein sequences (and their
structures) from different organisms: 124 monomeric proteins
from Bacteria, 56 from Eukaryotes, 15 from Archaea and 5 from
Viruses. Moreover, these proteins cover a wide range of 3D SCOP/
CATH [33,34] classes including 30 all-alpha proteins, 37 all-beta,
84 alpha/beta (a/b) and 16 alpha + beta (a + b) (32 proteins are
unclassified). Overall, the 200 protein sequences contain 56,206
residues, 29,068 and 27,138 of which are buried and exposed,
respectively, in the experimental 3D structure (for details, refer
to Supplementary Table 1S).

Finally, we performed an additional comparative benchmark
using 9 targets from the CASP14 experiment and previously used
in literature for the evaluation of sequence-based prediction of
protein features [26]. In particular, the chosen targets belong to
the free modelling category i.e., no homologous sequences can be
found for them and for this reason they are particularly challenging
for structure prediction.

2.1.2. Input encoding
DeepREx is trained on 71 features, encoding for each position

the protein sequence and information derived from Multiple
Sequence Alignments (MSA).

MSA for each sequence in our dataset is generated with HHblits
version 3 [35], setting two iterations and default parameters.
Search is executed against the Uniclust30 database [36]. HHblits
provides MSA and Hidden Markov Models (HMMs) adopted to
guide the search of related sequences and from which we derived
some of the features.

The 71-valued vector encoding each position i includes:

# The canonical residue one-hot encoding, representing primary-
sequence information and accounting for 20 values.

# The protein sequence profile, computed from MSA and consist-
ing of 21 values that account for the relative frequencies of each
residue type (plus the gap) in the corresponding aligned posi-
tion of the MSA.

# The HMM emission probabilities obtained from the match state
in position i (20 values).
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# The HMM transition probabilities (7 values), corresponding to
all possible transitions between HMM states in position i.

# The 3 values of Neff_Match, Neff_Insertion and Neff_Deletion
[35] computed by HHblits and encoding for the MSA local diver-
sity around position i. These values provide the number of effec-
tive sequences (i.e., a sequence diversity estimation) for the
subalignments comprising sequences having a match, an inser-
tion and a deletion at position i of the full alignment,
respectively.

2.1.3. The deep-learning architecture
Fig. 1 shows the deep architecture implemented in DeepREx.
Each sequence in the dataset is encoded as a Lx71 matrix, where

L is the protein length and 71 is the dimension of the encoding, as
detailed in the previous section.

This input is firstly processed by three cascading Bidirectional
Long-Short Term Memory (BLSTM) layers [37]. BLSTMs belong to
the class of Long-Short Term Memory (LSTM) networks [38], a spe-
cial recurrent neural network architecture well-suited for process-
ing sequence data (e.g., protein sequences) and extracting relevant
relations between elements of the sequence. Moreover, LSTMs
have several advantages over traditional recurrent architectures
in terms of stability of training and the proper handling of the van-
ishing gradient problem [39]. BLSTMs perform a double scanning
of the input sequence, from left to right and vice versa, in order
to better capture the sequential relations among sequence posi-
tions. Here, each BLSTM layer includes 32 activation units.

The output of the third recurrent layer is then provided as input
to a time-distributed, fully-connected layer adopting a sigmoid
activation function. This layer provides the final, binary classifica-
tion of each residue in the sequence into buried or exposed classes.
It computes a numerical output in the range [0,1] for each residue
that can be interpreted as a probability for the residue to be
exposed: all residues with p"0.5 are predicted as exposed while
those with p < 0.5 are classified as buried.

The method has been implemented with the Keras deep-
learning Python library [40]. The total number of trainable param-
eters in the model is 76,353.

The output value o has been used to estimate the reliability
index (RI) of the prediction:

RI ¼ 2% o& 0:5j j ð1Þ

If o is close to 0.5 (uncertain classification), RI is close to 0. If o is
close to 0 (strong classification in the buried class) or 1 (strong
classification in the exposed class), RI is close to 1.

2.1.4. DeepREx training and evaluation
Training is performed by adopting a 10-fold cross-validation

procedure, using 8 sets for training, one set for validation and early
stopping (to avoid overfitting), and one for testing. Cross-validation
results are reported as the average over performances computed
on the testing sets. This training phase sets the optimal values of
the architecture hyperparameters. Each model is trained for at
most 1000 epochs. An early stopping procedure is adopted to
reduce overfitting: the training procedure is stopped after 50 con-
secutive epochs when the error computed on the validation set
does not decrease. The presence of sequences of variable length
is handled using mini-batches of 64 sequences and zero-padding
each sequence in the batch to the same length (i.e., the maximal
length in the mini-batch). A masking layer, placed after the input
layer, is used to ignore padded values. The ADAM optimizer [41]
is adopted for gradient descent on the binary cross-entropy loss
function. We run several complete cross-validations to select the
optimal set of hyperparameters (number of activation units in
LSTM layers, minibatch size, ADAM optimizer parameters). We
chose the set of hyperparameters maximizing the performance of
the method on the cross-validation validation sets.

Once the hyperparameters are fixed, the final DeepREx model
for testing the blind set is obtained after training over the whole
training set with the routinary procedure: 9/10 subsets are for

Fig. 1. Architecture of the deep neural network implemented in DeepREx to predict residue solvent exposure.
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the actual training, while one random set among the 10 is adopted
as validation set for early stopping. This final model is then tested
on the 200 proteins of the blind test set and excluded from the
training set to evaluate its performance.

2.1.5. Scoring indexes
The performance of the binary solvent accessibility classifiers is

assessed with the following standard scores. Without loss of gener-
ality, we assume the exposed (E) and the buried (B) classes to be
the positive and negative classes, respectively. In what follows,
TP, TN, FP and FN are true positive, true negative, false positive
and false negative predictions, respectively. The following scoring
measures are computed:

# Accuracy (Q2), defined as:

Q2 ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

# Precision:

Prec ¼ TP
TP þ FP

ð4Þ

# Recall:

Rec ¼ TP
TP þ FN

ð5Þ

# F1, the harmonic mean of the precision and recall, defined as:

F1 ¼
2 * Prec * Rec
Prec þ Rec

ð6Þ

# Matthews Correlation Coefficient (MCC), defined as:

MCC ¼ TP % TN & FP % FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ % ðTP þ FNÞ % ðTN þ FPÞ % ðTN þ FNÞ

p ð7Þ

2.2. The Web Server (DeepREx-WS) implementation

DeepREx-WS integrates DeepREx predictions with external
resources. We include predictions obtained with MEDUSA [25],
estimating residue flexibility of the proteins across five classes
(0 = rigid, 4 = flexible). MEDUSA is based on a deep convolutional
neural network architecture processing an input comprising evolu-
tionary information, derived from MSAs and residue physicochem-
ical properties [25].

We provide secondary structure prediction by means of PYTHIA,
a protein local conformation prediction tool [26]. Specifically,
PYTHIA (released in 2021, [26]) can be easily integrated in our
web server, being released as a docker container. Furthermore, it
runs fast, and it takes multiple sequence alignments as inputs. It
is designed to predict local conformation in terms of Protein Blocks
(PB). Overall, 16 PDB classes (labelled with lower-case letters, from
a to p) are provided by PYTHIA: PB labels a, b, c, d, e and f represent
different beta-strand regions (c is for the core of strand, a, b and d, e
for N- anc C-terminal caps, respectively), PB labels g, h, i and j are
all representing random coils while labels k, l, m, n, o and p map

into alpha-helices (m for the helix core, k, l and n, o for N- and C-
terminal caps, respectively). Here we mapped PB to secondary
structure as follows: c to beta-strand (E), m to alpha-helix (H)
and the remaining labels to random coil (C).

We integrate intrinsically disordered regions as predicted with
MobiDB-Lite3.0 [27], providing a binary prediction for each residue
(disordered/structured). MobiDB-Lite3.0 computes a consensus
derived from the outputs of eight different predictors of disordered
regions and applies a filtering procedure to get rid of spurious dis-
order predictions. All the three methods have been downloaded
and are executed in-house.

Finally, DeepREx-WS also includes for each residue a hydropho-
bicity index, computed by averaging the Kyte-Doolittle hydropathy
scale [42] over a window of 5 residues, and a conservation index
computed from the MSA with the following equation:

CI ið Þ ¼ 1:0& & 1
log 20ð Þ

X20

a¼1

f a ið Þ % log
"
f a ið Þ

# !
ð2Þ

where fa(i) is the frequency of the residue type a in the position i of
the MSA. The CI ranges between 0 (not conserved) and 1 (fully con-
served). The MSA used for computing the CI is the same provided in
input to the DeepREx predictor and built for the input sequence
using HHblits as detailed in section 2.1.2. The CI is only computed
for MSA positions having at most 70% of gaps in the aligned column.
For position with more than 70% gaps a default conservation of 0 is
reported.

The web server is implemented using the Python Django appli-
cation server (version 2.2.5), Apache (version 2) and Postgresql
(version 11). The user interface is designed using Bootstrap (ver-
sion 4), DataTable (version 1.10.22), the neXtProt feature viewer
(version 1.0, https://github.com/calipho-sib/feature-viewer) and
custom JavaScript-based validators for input data.

3. Results

3.1. Performance of the solvent accessibility DeepREx prediction

3.1.1. Cross-validation and blind test performance
DeepREx performance is scored using a 10-fold cross-validation

procedure on our training dataset comprising 2332 proteins
sequences and a blind set with 200 protein sequences, compiled
to be non-redundant with respect to our training dataset. Results
are reported in Table 1. DeepREx is quite robust, achieving similar
performances in the two validation procedures. Overall, our
method discriminates buried from exposed residues with 82%
accuracy, 82% F1 and 0.63 MCC.

We further compared DeepREx with two recent state-of-the-art
tools, both based on deep-learning approaches: PaleAle5 [10] and
NetSurfP-2.0 [11]. PaleAle5, predicts exposure into 4 classes: E (ex-
posed), e (partially exposed), b (partially buried) and B (buried).
The threshold used by PaleAle5 authors to separate exposed (either
E or e) from buried (either b or B) residues is 25% RSA, very close to
the threshold adopted in this work. NetSurfP-2.0 directly predicts

Table 1
DeepREx performance in a 10-fold cross-validation and on the blind test set.

Scoring index Cross-validation Blind test

Precision 0.820 ± 0.002 0.82
Recall 0.800 ± 0.001 0.80
F1 0.810 ± 0.001 0.82
Q2 0.810 ± 0.001 0.82
MCC 0.620 ± 0.002 0.63

For index definition see section 2.1.5.
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RSA real values: in this case we used our 20% RSA threshold to
transform these values into a binary classification.

Comparative results on the blind test and on the CASP14 dataset
are reported in Table 2. We should remark that the blind test set
may not be blind for the other methods. Remarkably, all methods
achieve a similar performance on both testing sets. DeepREx
reports the most balanced results in the blind test set, as shown
by the close values of precision and recall. When tested on the
CASP14 dataset comprising 9 free-modelling targets, performances
of all methods drop to lower values. The 9 targets are difficult to
predict since they do belong to the free-modelling CASP category,
without or with very few homologous in the data base. Nonethe-
less, the three approaches seem to have very close performances,
as highlighted by the only small differences in the MCC values.

The three methods (DeepREx, PaleAle5 and NetSurfP-2) are all
based on similar neural network architectures involving LSTMs
and/or convolutional layers. Among the three, DeepREx adopts
the simplest architecture, with only three cascading BiLSTM layers.
This ensures the lowest number of parameters for the resulting
model without affecting prediction performances that are compa-
rable among the three approaches.

Differently from the other two methods, our DeepREx predictor
has been trained on functional monomeric protein chains. This
allows to properly define solvent exposure in physiological condi-
tions and to avoid the introduction of biases in solvent exposure
computation due to conformational changes at the interfaces upon
protein complex formation. However, training only on monomers
does not limit the adoption of our model for predicting solvent
exposure of multimeric protein chains. To prove this, we per-
formed an additional experiment testing DeepREx on a set of 984
multimeric protein chains extracted from the PaleAle5 indepen-
dent dataset [10]. In this test, we registered only a slight decrease
in the accuracy. The performances of both methods are listed in
Table 2S (Supplementary Materials). This suggests that the exclu-
sion of multimeric chains from our training dataset has a very lim-
ited impact on the overall performance of DeepREx.

Finally, a reliability index (RI) can be associated to each predic-
tion by applying Eq. (1). RI close to 0 indicates a prediction output
close to 0.5 while RI close to 1 indicates that the output is close to 0
(buried) or 1 (exposed). We performed tests to assess whether the
RI value can be adopted to discriminate accurate from poor predic-
tions. Results are reported in Supplementary Table 3S and indicate
that the higher the RI value the most accurate is the prediction.
Notably, most predictions have RI values higher than 0.6. Predic-
tions with low RI values (<0.2) mostly pertain to proteins with very
few sequences in the corresponding MSA and, therefore, with a
poor input information.

3.2. The web server: DeepREx-WS

DeepREx-WS is available at https://deeprex.biocomp.unibo.it.
The server input interface accepts a single sequence in FASTA for-
mat with length ranging between 50 and 5000 residues. Upon sub-
mission the user is redirected to the page where results will be

available after job completion. This page automatically refreshes
every 60 s and shows to the user the current status of the job
(queued or running). The server also provides the user with a uni-
versal job identifier, which can be thereafter used to retrieve job
results. The result page (Fig. 2) provides information about the
job, including i) the identifier, ii) submission and completion time,
iii) protein ID, iv) protein length and v) counts of buried and
exposed predictions. After that, the output of the predictor is
shown using an interactive viewer along the submitted protein
sequence as well as in tabular format.

The following information is reported both in track and tabular
form:

i) DeepREx output as two-class prediction of solvent exposure
(E = exposed, B = buried).

ii) The RI associated to the DeepREx prediction.
iii) The Kyte-Doolittle hydropathy score [42], averaged over a

window of five residues.
iv) The conservation index computed as in Equation (2).
v) The three-class prediction of secondary structure by PYTHIA

[26].
vi) The five-class flexibility prediction provided by MEDUSA

(0 = rigid, 4 = flexible) [25].
vii) The two-class prediction of intrinsically disordered regions

provided by MobiDB-lite3.0 (S = structured, D = disordered)
[27].

The feature viewer allows to navigate the sequence, visualizing
the different predicted features along it. The user can zoom to
specific regions and export a picture of the current visualization
in PNG format.

Tabular data can be sorted according to any one of the reported
outputs. Moreover, users can activate and combine filters for resi-
due type, exposed or buried positions, reliability index, conserva-
tion index, flexibility level, secondary structure and disordered
regions.

All results can be downloaded in Tab-Separated Values (TSV)
format. If one or more filters are active, the downloaded TSV will
report only results for selected residues.

3.3. DeepREx-WS output features

In this section we analyze the relation between solvent expo-
sure and other features included in the DeepREx-WS output, com-
prising, as detailed above, hydrophobicity (Kyte-Doolittle),
conservation index from MSA, flexibility (MEDUSA [25]), sec-
ondary structure (PYTHIA [26]) and disorder (MobiDB-Lite3.0
[27]).

All the correlation analyses (except for protein disorder) were
performed on the 200 protein sequences included in our blind test
(Table 3). Overall, the 200 proteins contain 56,206 residues, 29,068
and 27,138 of which are buried and exposed, respectively, in their
experimental 3D structure. On this set DeepREx performs quite
well, achieving a prediction accuracy of 82% and a MCC of 0.63

Table 2
Comparison of DeepREx and other protein solvent accessibility predictors on the blind test set and CASP14 targets.

Method Dataset Precision Recall F1 Q2 MCC

DeepREx BlindTest 0.82 0.80 0.82 0.82 0.63
PaleAle5.0 [10] BlindTest 0.78 0.85 0.82 0.82 0.65
NetSurfP2.0 [11] BlindTest 0.92 0.77 0.82 0.83 0.66
DeepREx CASP14 0.87 0.76 0.81 0.79 0.57
PaleAle5.0 [10] CASP14 0.90 0.72 0.80 0.78 0.58
NetSurfP2.0 [11] CASP14 0.81 0.89 0.85 0.81 0.59

For index definition see section 2.1.5.
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(Table 2). The 200 proteins have a negligible disorder content
according to MobiDB (less than 1%).

For the evaluation of the correlation between exposure and dis-
order we collected a dataset of 88 human proteins extracted from
the DisProt database [43] and endowed with a disorder content
ranging from 10% to 30%. We only compute correlation with

respect to predicted exposure, since for disordered regions which,
by definition, lack PDB structures, we cannot compute real solvent
accessibility.

For what concerns secondary structure predictions, we report
three different correlations between exposure and alpha-helix,
beta-strand and coil predicted content, respectively.

Fig. 2. A screenshot of the DeepREx-WS result page.
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All correlation results are shown in Table 3 and are calculated
per protein and then averaged.

Residue flexibility as predicted by MEDUSA well correlates with
both real and predicted solvent exposure values (in Table 3, first
line, average PCCs are 0.58 and 0.56, respectively). This can be par-
tially explained by considering that MEDUSA adopts crystallo-
graphic B-factors as proxies for residue flexibility, and that these
values tend to be higher at the protein surface. However, the cor-
relation is not perfect, suggesting that the two features (i.e., resi-
due solvent accessibility and flexibility) provide complementary
information which can be profitably merged for a better under-
standing of residue structural properties from sequence.

Average correlation coefficients between exposure and helix
and strand motifs are negative and close to 0, considering the sig-
nificant deviations from the mean (in Table 3, second and third
lines, respectively). This may indicate that exposed residues (both
real and predicted) are not preferentially placed in helix or strand
regions. Correlations with coils are slightly positive (in Table 3,
fourth line), suggesting a weak propensity of exposed residues
for coil regions.

Exposed residues (either real or predicted) tend to be localized
in non-conserved positions, as highlighted by moderate anti-
correlation reported in Table 3 between predicted and real solvent
accessibility and conservation index (fifth line, average PCCs are
&0.39 and &0.37, respectively). Moreover, as expected, solvent
exposure anti-correlates with respect to hydrophobicity (in Table 3,
sixth line, average PCCs are &0.24 and &0.23). Again, these results
suggest that solvent accessibility cannot be completely explained
by conservation or residue hydrophobicity alone, justifying the
integration/combination of the different features for residue struc-
tural/functional characterization.

Finally, a modest correlation (PCC = 0.26) of exposure is also
observed with protein disorder on a dataset of 88 proteins
extracted from DisProt [43]. This may indicate a slight propensity
of disordered regions for exposed positions.

Although the size of our protein sets is limited, the results pre-
sented in this section suggest that protein solvent exposure posi-
tively correlates with protein flexibility and negatively correlates
with hydrophobicity and conservation. In general, all these fea-
tures provide complementary information on residues and can be
then combined to characterize proteins from a structural and func-
tional point of view. This can be useful in many contexts such as
protein surface engineering, where one looks for residues placed
at the protein surface to be selected as candidate for site-specific
mutagenesis. Routinely, selected positions are exposed residues
characterized by low conservation indexes (in order to avoid func-
tionally important sites) and placed in flexible loops. Starting from
protein sequence, the combination of predicted exposure, flexibil-
ity and conservation can be helpful to reduce the search space in

protein surface engineering. For instance, in our dataset of 200 pro-
teins, selecting residues predicted as exposed, having a low conser-
vation index (residue conservation lower than the median for each
protein) and flexible (MEDUSA value " 3) we obtain 12,068 resi-
dues, representing 21% of the total number of residues. This allows
to significantly restrict the search space of candidate positions for
surface engineering particularly when 3D structure is lacking.

3.4. Case study: DeepREx-WS to assist surface engineering

In this section, we benchmark DeepREx-WS in the context of
protein surface charge engineering with an example. Surface
charge engineering is particularly important for the industrial
use of biocatalyst. Recently, much attention has been focused on
halophilic enzymes that can be adopted in hypersaline environ-
ments (e.g., brines, ionic liquids or ionic detergents) [21]. Putative
enzymes for the use in high-salt conditions have been traditionally
identified among those available in natural systems. An alternative
approach consists in the induction of halotolerance into an existing
biocatalyst possessing the required features in terms of catalytic
activity. Following this trend, in a recent study [21], authors con-
sidered the bovine carbonic anhydrase II (bCAII, UniProtKB:
P00921) for the rational design of halotolerance by protein surface
engineering. Specifically, in order to enhance bCAII halotolerance,
authors adopted one of the possible mechanisms present in natural
halophilic enzymes: the increase of the abundance of acidic resi-
dues in the protein surface. By this, 18 positions were identified
and mutated into negative residues, after a rational choice proce-
dure based on the available PDB bCAII structure (1V9E). The selec-
tion of positions to be mutated is not exhaustive and integrates
considerations on solvent accessibility and/or side-chain steric
bulks, and on the residue conservation in a multiple sequence
alignment generated using 50 homologous sequences. The avail-
ability of the three-dimensional structure provides a large amount
of information. However, what if the structure is not available as it
is for many proteins? DeepREx-WS can assist the choice of residues
to be mutated without the help of the structure. We submitted the
260-residue long sequence of the bCAII to the server and filtered
the results to select possible positions for mutation into negative
residues (Glutamic or Aspartic acid). Remarkably, the exposure
prediction reaches a high MCC value (0.81). Mimicking the rational
procedure described in [21] and considering the DeepREx-WS out-
put for the whole protein sequence, we can select residues pre-
dicted as exposed, obtaining 139 positions, 112 of which are
different from Glutamic or Aspartic acid, and then reducing the
search space to 43% of the protein residues. All the 18 positions
from [21] are included in this set. If we add a filter on protein con-
servation, selecting only lowly conserved residues (CI lower than
the median on the protein equal to 0.2), we can further restrict
to 78 possible target positions (30% of the sequence). Out of the
18 positions considered in [21], 13 are included in the set of 78
positions selected. Five out of 18 positions are not retained in
our selection. Two of them (G8 and N24) have a conservation index
(0.22) only slightly higher than the threshold used here (0.20). The
remaining 3 positions (N62, N252 and Q254) are weakly variable in
the MSA used in [21] and their selection in the study does not take
into consideration conservation.

If exposed positions are intersected with most flexible ones
(MEDUSA score equal to 3 or 4), 66 positions are selected, corre-
sponding to 25% of the sequence. This set contains 12 out of 18
positions selected in [21]. Out of the 6 not included positions, 3
are predicted with a medium flexibility level (MEDUSA score equal
to 2) and 3 are predicted with limited flexibility (MEDUSA score 1).
Remarkably, none of them are predicted as rigid (MEDUSA score 0).

In Table 4 we report the complete output of DeepREx-WS for
the 18 positions of interest reported in [20]. Interestingly, all the

Table 3
Pairwise Pearson’s Correlation Coefficients (PCC) between predicted solvent exposure
and the other features.

Feature PCC with real
solvent
exposure (a)

PCC with
predicted solvent
exposure (a)

Flexibility (MEDUSA [25]) 0.56+0.06 0.58+0.08
Alpha-helix (PYTHIA [26]) &0.10+0.10 &0.11+0.11
Beta-strand (PYTHIA [26]) &0.20+0.10 &0.21+0.10
Coil (PYTHIA [26]) 0.24+0.08 0.25+0.08
Conservation from MSA &0.37+0.11 &0.39+0.11
Hydrophobicity (Kyte-Doolittle [42]) &0.23+0.09 &0.24+0.10
Disorder (MobiDB-Lite3.0 [27]) (b) – 0.27+0.11

(a) Average PCC computed per-protein and associated Standard Deviation values.
(b) Correlation computed on 88 proteins from DisProt [43] with disorder content
ranging from 10% to 30%.
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positions are correctly predicted as exposed, most of them with
high reliability. Moreover, they are all characterized by a low con-
servation index (between 0.09 and 0.32), while most of them (12
out of 18) are predicted as localized in flexible regions (MEDUSA
" 3). Altogether, these features are in line with those required by
the rational design performed in [21] and show that the
DeepREx-WS prediction can reconstruct them starting from the
protein sequence alone.

4. Conclusion

In this paper, we develop DeepREx, a novel deep-learning based
tool for annotating residue solvent exposure into two classes (bur-
ied and exposed). DeepREx performance is evaluated on a blind
dataset comprising 200 proteins and on a selected set of difficult
targets from CASP14. Results show that DeepREx is competitive
with other tools at the state-of-the-art. The method is made avail-
able as a web server (DeepREx-WS) and as a standalone tool,
including a containerized version. This makes DeepREx well-
suited for applications on large datasets and for easy integration
into higher-level workflows. The web server which integrates the
predictor of solvent accessibility (DeepREx-WS) is implemented
to allow the intersection of DeepREx outputs with other protein
features such as residue flexibility, conservation, hydrophobicity
and inclusion in intrinsically disordered regions. Our results on
200 proteins indicate that solvent accessibility well correlates with
flexibility and negatively correlates with conservation and
hydrophobicity. Disorder is apparently negligible for this analysis.
Furthermore, with the example of the bovine carbonic anhydrase II
[21] and comparing with residue selection done directly on the
protein structure, we confirm that the integration of the server
outputs can profitably allow a primary selection of candidate posi-
tions for surface residue modification starting from the protein
sequence alone. We propose our web server to highlight likely
positions in protein sequence for surface engineering and as a valu-
able alternative when protein structure is not or partially available.

5. Data and method availability

The DeepREx web server and datasets are available at https://
deeprex.biocomp.unibo.it.

The DeepREx standalone tool Python source code is available at
https://github.com/BolognaBiocomp/deeprex. The program has
been tested with Python version 3.8. External dependencies
include the Biopython package (tested version 1.78), the Keras
(tested version 2.4.3) deep-learning library as well as a working
installation of the HHsuite (tested version 3.3.0) for multiple
sequence alignment building.

DeepREx has been also released as a Docker container available
at https://hub.docker.com/r/bolognabiocomp/deeprex. In both
cases, the program takes in input: i) a FASTA file containing one
or more sequences; ii) a valid sequence database for HHblits align-
ments; iii) a file name where an output TSV file will be written
after termination.
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Table 4
Analysis of relevant positions of the bovine carbonic anhydrase II protein (UniProtKB:P00921) reported in [21] with the DeepREx-WSs.

Pos Res SE(a) RI(b) HP(c) CI(d) Flexibility(e) Disorder(f)

8 G E 0.10 &1.84 0.22 3 S
18 K E 0.98 &1.74 0.13 3 S
24 N E 0.95 &0.22 0.22 4 S
36 K E 0.98 &0.42 0.10 3 S
39 V E 0.62 0.64 0.12 3 S
50 V E 0.23 1.62 0.13 1 S
57 R E 0.48 &1.72 0.09 1 S
62 N E 0.54 &1.28 0.32 1 S
74 Q E 0.76 &3.04 0.12 4 S
85 T E 0.95 0.08 0.16 4 S
136 Q E 0.11 &2.06 0.11 4 S
169 K E 0.96 &2.56 0.1 4 S
177 N E 0.78 &0.6 0.13 3 S
186 N E 0.91 1.34 0.14 3 S
220 Q E 0.95 &1.34 0.18 2 S
238 L E 0.17 0.88 0.16 2 S
252 N E 0.94 &2.32 0.28 3 S
254 Q E 0.75 &2.36 0.25 2 S

(a) SE = Solvent Exposure, as predicted by DeepREx. E = Exposed, B = Buried.
(b) RI = DeepREx Reliability Index, as defined in Eq. (1).
(c) HP = Kyte-Doolittle Hydrophobicity [42].
(d) CI = Conservation Index, computed as in Eq. (2).
(e) Flexibility value, as predicted by Medusa [25]. It goes from 0 (rigid) to 4 (highly flexible).
(f) Disorder annotation as retrieved from MobiDB-Lite3.0 [27]. S = Structured, D = Disordered.
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Abstract

Motivation: The advent of massive DNA sequencing technologies is producing a huge number of human single-
nucleotide polymorphisms occurring in protein-coding regions and possibly changing their sequences.
Discriminating harmful protein variations from neutral ones is one of the crucial challenges in precision medicine.
Computational tools based on artificial intelligence provide models for protein sequence encoding, bypassing data-
base searches for evolutionary information. We leverage the new encoding schemes for an efficient annotation of
protein variants.
Results: E-SNPs&GO is a novel method that, given an input protein sequence and a single amino acid variation, can
predict whether the variation is related to diseases or not. The proposed method adopts an input encoding com-
pletely based on protein language models and embedding techniques, specifically devised to encode protein
sequences and GO functional annotations. We trained our model on a newly generated dataset of 101 146 human
protein single amino acid variants in 13 661 proteins, derived from public resources. When tested on a blind set com-
prising 10 266 variants, our method well compares to recent approaches released in literature for the same task,
reaching a Matthews Correlation Coefficient score of 0.72. We propose E-SNPs&GO as a suitable, efficient and ac-
curate large-scale annotator of protein variant datasets.
Availability and implementation: The method is available as a webserver at https://esnpsandgo.biocomp.unibo.it.
Datasets and predictions are available at https://esnpsandgo.biocomp.unibo.it/datasets.
Contact: pierluigi.martelli@unibo.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-nucleotide polymorphisms (SNPs) are major sources of
human evolution. In many cases, these variations can be directly
associated with the onset of genetic diseases. Specifically, SNPs
occurring in protein-coding regions often lead to observable changes
in the protein residue sequence. Single amino acid variations (SAVs)
may have an impact at different levels, hampering protein structure,
function, stability, localization and interaction with other proteins
and/or nucleotides, hence setting the basis for the onset of patho-
logic conditions (Lappalainen and MacArthur, 2021; Vihinen, 2021
and references therein).

Public databases, such as HUMSAVAR (The UniProt Consortium,
2021) and ClinVar (Landrum et al., 2018), store a compendium of
known SAVs and provide, when available, information about the

variant clinical significance. However, clear associations to diseases are
still unknown for many SAVs, which substantially remain of Uncertain
Significance (US). Therefore, SAV annotation is an issue, and effective
computational tools are needed to provide large-scale annotation of
uncharacterized human variation data.

In the past years, several computational approaches have been
implemented, with the aim of annotating whether a protein vari-
ation is or not disease associated (Adzhubei et al., 2010; Calabrese
et al., 2009; Carter et al., 2013; Choi et al., 2012; Jagadeesh et al.,
2016; Li et al., 2009; Ng and Henikoff, 2001; Niroula et al., 2015;
Pejaver et al., 2020; Raimondi et al., 2017; Schwarz et al., 2010;
Yang et al., 2022). Methods like SIFT (Ng and Henikoff, 2001) or
PROVEAN (Choi et al., 2012) are based on the conservation ana-
lysis in multiple sequence alignments. More complex approaches
stand on different types of machine-learning frameworks. These
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include neural networks (Pejaver et al., 2020), random forests
(Carter et al., 2013; Li et al., 2009; Niroula et al., 2015; Raimondi
et al., 2017), gradient tree boosting (Jagadeesh et al., 2016; Yang
et al., 2022), support vector machines (SVMs) (Calabrese et al.,
2009) and naive Bayes classifiers (Adzhubei et al., 2010; Schwarz
et al., 2010). Each method is trained/tested on different datasets of
SAVs, either extracted directly from public resources like
HUMSAVAR (The UniProt Consortium, 2021) and/or ClinVar
(Landrum et al., 2018), or taking advantage of pre-compiled data-
sets of variations, like VariBench (Nair and Vihinen, 2013).
Different types of descriptors extract salient features of the protein
sequence and/or the local sequence context surrounding the variant
position, including physicochemical properties, sequence profiles,
conservation scores, predicted structural motifs and functional
annotations. SNPs&GO (Calabrese et al., 2009) firstly recognized
the importance of functional annotations for the prediction of vari-
ant pathogenicity and introduced the LGO feature, a score of associ-
ation between Gene Ontology (GO) (Ashburner et al., 2000)
annotations and the variant pathogenicity. The incorporation of the
LGO feature significantly improved the prediction performance of
SNPs&GO (Calabrese et al., 2009).

Recent developments in the field of deep learning focus on the
definition of new ways of representing protein sequences. Large-
scale protein language models (PLMs) are inspired and derived from
the natural language processing (NLP) field (Ofer et al, 2021). They
learn numerical vector representations of protein sequences, con-
taining important features that are reflected in the evolutionary con-
servation and in the sequence syntax (Bepler and Berger, 2021).
These numerical vectors are then adopted to encode protein se-
quence and/or individual residues in place of canonical, hand-
crafted features, such as physicochemical properties or evolutionary
information. These distributed protein representations emerge from
the application of learning models trained on large databases of se-
quence data (Bepler and Berger, 2021; Ofer et al., 2021).

Successful PLMs are routinely trained on databases composed of
hundreds of millions of unique sequences with hundreds of billions
of residues. Training is computationally demanding, routinely
requiring weeks or months of computations on high-performance
Tensor Processing Units (TPUs) and/or Graphical Processing Units
(GPUs) (Elnaggar et al., 2021; Rives et al., 2021). However, the ad-
vantage is that most of the computational cost is concentrated on
the training phase, and once models are trained they can be adopted
to embed new sequences with limited resources in terms of time,
memory and computational power.

Embeddings obtained with language models have been recently
employed for many different applications with great success, includ-
ing the prediction of protein function and localization (Littmann
et al., 2021; Stärk et al., 2021; Teufel et al. 2022), of protein contact
maps (Singh et al., 2022) and binding sites (Mahbub and Bayzid,
2022).

Several pre-trained language models currently exist in the litera-
ture (Alley et al., 2019; Asgari and Mofrad, 2015; Elnaggar et al.,
2021; Heinzinger et al., 2019; Rives et al., 2021; Strodthoff et al.,
2020), mainly differing in their specific architectures [autoregres-
sive, bidirectional, masked; see for review Bepler and Berger (2021)]
and in the datasets adopted for training.

Not limited to the encoding of protein sequence data, embedding
techniques are also applied to model the relationships existing with-
in more complex structures, such as graphs, networks, or biological
ontologies (Edera et al., 2022; Grover and Leskovec, 2016;
Kandathil et al., 2022; Perozzi et al., 2014; Zhong et al., 2019).

In this article, we attempt to fully exploit the power of language
models and embeddings for the prediction of variant pathogenicity
from the human protein sequence. On the methodological side, two
major contributions can be highlighted. Firstly, we adopt two differ-
ent and complementary embedding procedures, ProtT5 (Elnaggar
et al., 2021) and ESM-1v (Meier et al., 2021), to directly encode an
input variation without introducing any hand-crafted feature as pre-
viously done. Secondly, leveraging the idea introduced in
SNPs&GO (Calabrese et al., 2009), we explore a new way of encod-
ing functional annotations by adopting a model called Anc2Vec

(Edera et al., 2022), specifically designed for the embedding of GO
terms (Ashburner et al., 2000).

We trained an SVM using the above input encoding on a newly
generated dataset of 101 146 human disease-related and benign var-
iations obtained from the rational merging of data deposited in two
databases, HUMSAVAR (The UniProt Consortium, 2021) and
ClinVar (Landrum et al., 2018). The method is tested on an inde-
pendent, non-redundant blind set comprising 10 266 variations,
adopting stringent homology reduction and evaluation procedures.
Results obtained in a comparative benchmark and including one of
the most recent and effective methods (Pejaver et al., 2020), demon-
strate that our model performs at the level or even better than the
state-of-the-art (when available for comparison) reaching a
Matthews Correlation Coefficient (MCC) of 0.72. Based on an in-
put encoding derived solely from embedding models, our method is
fast: this makes it suitable for large-scale annotation of human
pathogenic variants.

We release our tool as a webserver at https://esnpsandgo.bio
comp.unibo.it.

2 Materials and methods

2.1 Dataset
We obtained the dataset of SAVs by merging information extracted
from two resources: HUMSAVAR (accessed on August 4, 2021),
listing all missense variants annotated in human UniProt/SwissProt
(The UniProt Consortium, 2021) entries, and ClinVar (accessed on
March 29, 2021), the NCBI resource of relationships among human
variations and disease phenotypes (Landrum et al., 2018).

Both databases classify the effect of SAVs into different classes:
Pathogenic or Likely Pathogenic (P/LP), Benign or Likely Benign (B/
LB) and of US. We retained only P/LP SAVs clearly associated with
the diseases catalogued in OMIM (Amberger et al., 2019) or in
MONDO (Shefchek et al., 2020). We collected also all the B/LB var-
iations and excluded SAVs labelled as US, somatic, or with contrast-
ing annotations of the effect.

Overall, the dataset consists of 13 661 protein sequences
endowed with 111 412 SAVs, including 43 895 P/LP SAVs in 3603
proteins and 67 517 B/LB SAVs in 13 229 proteins (Table 1, last
row).

For all proteins in the dataset, we extracted GO (Ashburner
et al., 2000) annotations from the corresponding entry in UniProt.
Overall, our dataset is annotated with 17 076 GO terms, including
11 476 Biological Process (BP), 3955 Molecular Function (MF) and
1645 Cellular Component (CC). The complete dataset is available
at https://esnpsandgo.biocomp.unibo.it/datasets.

2.1.1 Cross-validation procedure and generation of the blind test

set
To avoid biases between training and testing sets, we adopted a
stringent clustering procedure to generate cross-validation sets.
Firstly, we clustered protein sequences with the MMseqs2 program
(Steinegger and Söding, 2017), by constraining a minimum sequence
identity of 25% over a pairwise alignment coverage of at least 40%.
We used a connected component clustering strategy so that if two
proteins are clustered with a third one, they both end up in the same
set. In this way, we limit sequence redundancy between training and
testing sets, enabling a fair evaluation of the results. We selected
10% of the data to construct the blind test set for assessing the gen-
eralization performance of our approach and for benchmarking it

Table 1. The dataset of SAVs adopted in this study

Dataset No. of pathogenic

SAVs

No. of neutral

SAVs

No. of proteins

Training set 39 812 61 334 12 347

Blind test set 4083 6183 1314

Total 43 895 67 517 13 661
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with other popular methods available. The remaining 90% of the
dataset was further split into 10 equally distributed subsets that
were used in a 10-fold cross-validation procedure for optimizing the
input encoding and for fixing the model hyperparameters. We also
tried a 20–80% split (20% of the data for the blind test set and 80%
for training with the 10-fold cross-validation procedure) and
obtained a very similar performance. For this reason, we list results
corresponding to the 10% blind test. When performing cross-
validation, we took care of preserving the balancing of positive and
negative examples in each subset (Supplementary Table S1).

It is worth noticing that the blind test can share similarity with
proteins included in the training sets of the other benchmarked
methods.

2.2 General overview of the approach
Figure 1 depicts the architecture of E-SNPs&GO, including three
major blocks: an Input encoding, a Predictor and an Output. The in-
put consists of a human protein sequence and a SAV occurring at a
specific position along the sequence. In the input encoding phase,
the sequence and its variant are embedded with two different proce-
dures, ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar et al.,
2021), generating for each sequence 1280 and 1024 features, re-
spectively. In order to embed the functional protein annotation of
the wild-type protein, we adopt Anc2Vec (Edera et al., 2022), com-
puting three sets of 200 features corresponding to the different
subontologies.

In the predictor, the vector representation generated in the input
encoding is then processed using a principal component analysis
(PCA), which reduces the dimensionality of the input from 5208 fea-
tures to 2400. The output feeds a SVM classifier performing the
final labelling as Pathogenic (P/LP) or Benign (B/LB). A given input
variant is predicted as pathogenic when the SVM output score !0,
benign otherwise. A final calibration step allows to convert scores
into probabilities for a variant to be pathogenic. Details of the meth-
ods included in E-SNPs&GO, are listed in the following sections.

2.3 Input encoding: embeddings of protein sequence,
its variant and GO terms
2.3.1 Transformers for embedding of protein sequences and their

variants
Several prominent language models and corresponding embedding
generation schemes in NLP are available, and some of these have
been adapted to protein sequences to perform specific prediction
tasks (Bepler and Berger, 2021). Large-scale PLMs aim at learning a
numerical vector representation that allows reconstructing the input
sequence.

Among PLMs, transformer-based models (Vaswani et al., 2017)
aim to solve the problem of efficiently capturing long-distance inter-
actions in the sequence. Transformers are architectures that include
a self-attention mechanism to extract the context information from
the whole sequence (Vaswani et al., 2017). In general, a transformer
language model builds on top of an encoder–decoder architecture.
However, the different transformer-based PLMs only utilize either
the encoder or the decoder part. In this respect, transformer-based
PLMs can be classified in three different categories: (i) encoder-only
models use only the encoder part of the transformer accessing the
whole input sequence and are trained to reconstruct a somewhat
corrupted version of the input (e.g. masking random positions along
the sequence); (ii) decoder-only models (also called autoregressive
models) use only the decoder part accessing, at each position, all the
residues placed before the current one in the sequence and are usual-
ly trained to predict the next residue in the sequence; (iii) sequence-
to-sequence models use both the encoder and the decoder and are
trained to reconstruct a masked input sequence (Vaswani et al.,
2017).

The learned representation captures important features of the
proteins, including physicochemical, structural, functional and evo-
lutionary features (Bepler and Berger, 2021; Ofer et al., 2021). By
transfer learning, the embedded schemes are provided as input to
Predictor block (Fig. 1).

In this article, we adopt two different protein embedding
schemes, based on two different transformers models: ESM-1v
(Meier et al., 2021), an encoder-only model, and ProtT5 (Elnaggar

Fig. 1. General overview of the architecture of E-SNPs&GO. Inputs (wild-type sequence, variation and variation position) are in yellow. The architecture includes three major
blocks: an Input encoding, a Predictor and an Output. During the Input encoding, three embedding models are adopted to generate vector representations. The wild-type se-
quence (green) and the variant sequence (red) are modelled with ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar et al., 2021). The GO functional annotations (blue MF,
purple CC and pink BP) are modelled with Anc2Vec (Edera et al., 2022). The vectors within the dashed box (marked with different colors), representing the variation position
and the averaged (Avg) GO terms of the wild-type sequence, are then concatenated together to obtain a final representation consisting of 1280"2þ1024"2þ 200"3¼5208
features. This vector is fed to the Predictor, which includes a PCA to reduce the input dimensionality (from 5208 to 2400) and a SVM providing as a final output a binary clas-
sification into B/LB (negative class, Score <0) or P/LP (positive class, Score !0). We apply an Isotonic Regression (Calibration) to obtain a calibrated probability (A color ver-
sion of this figure appears in the online version of this article.)

5170 M.Manfredi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/23/5168/6760258 by U
niversita di Bologna user on 27 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac678#supplementary-data


et al., 2021), a sequence-to-sequence model. The major difference
stands in the volume of the sequence datasets used for generating the
embedding schemes and in the adoption of different training proce-
dures. ESM-1v was trained on a single run using a dataset of 98 mil-
lion unique sequences extracted from UniRef90 (Suzek et al., 2015).
ESM-1v releases five models generated by training with five differ-
ent random seeds (Meier et al., 2021). Apparently, only a small dif-
ference in performance is obtained when the ensemble is compared
to a single model (Meier et al., 2021). Therefore, to reduce the com-
putational cost, we adopted only one model (the first one). ProtT5
(version XL U50) was trained using a two-step procedure: in a first
pass, training was performed using the large BFD database
(Steinegger et al., 2019; Steinegger and Söding, 2018), comprising
the whole UniProt as well as protein sequences translated from mul-
tiple metagenomic sequencing projects, and consisting of about 2.1
billion unique sequences. In the second pass, a fine-tuning of the
model was obtained using a smaller database derived from
UniRef50 (Suzek et al., 2015) and including 45 million unique
sequences.

2.3.2 Embedding of biological ontologies
The concept of embedding can be generalized to any kind of data
with different underlying structures, such as graphs or networks
(Grover and Leskovec, 2016; Perozzi et al., 2014). In particular, sev-
eral embedding models have been defined to provide a numerical
representation of nodes in ontologies (Chen et al., 2021; Zhong
et al., 2019). Here, we adopt Anc2Vec (Edera et al., 2022), a
method that learns a vector representation for GO terms, by preserv-
ing ancestor relationships.

Because the embedding is not context-dependent, we precom-
pute the vector representation for each possible GO term.

2.4 Predictor
2.4.1 Predictor input
For encoding variations, we firstly perform a full-sequence gener-
ation of embeddings using both the ESM-1v (Meier et al., 2021) and
the ProtT5 XL U50 (Elnaggar et al., 2021) models. Given a protein
sequence with L residues, this provides protein encodings of dimen-
sions L"1280 and L"1024, respectively. Sequence embeddings are
carried out independently on both the wild-type and the variant
sequence.

For a variation at position i in a protein sequence, we compute a
vector of 4608 features, including:

• 1280 features corresponding to ESM-1v embedding in position i

of the variated sequence.
• 1280 features corresponding to ESM-1v embedding in position i

of the wild-type sequence.
• 1024 features corresponding to ProtT5 (version XL U50) embed-

ding in position i of the variated sequence.
• 1024 features corresponding to ProtT5 (version XL U50) embed-

ding in position i of the wild-type sequence.

The ESM-1v embedding model constrains the maximal protein
length (L) to 1024 residues. For this reason, variations occurring on
longer sequences were encoded using a 201 long sequence window
centred on the variant position.

After this step, we extract all the GO terms annotated in the
UniProt entry of the wild-type protein carrying the variation.
Potential term redundancy is removed by retaining only leaf terms.
Terms from the three different GO sub-ontologies (MF, CC and BP)
are processed independently. Each annotated GO term is then
embedded as a vector of 200 features using the Anc2Vec model
(Edera et al., 2022). To obtain a single vector representation inde-
pendent of the number of terms of a given protein, we average all
the vector encodings (Fig. 1). Three final average vectors, one for
each GO sub-ontology, are concatenated obtaining a protein func-
tion encoding of 600 components.

The final variation encoding comprises 5208 features, obtained
by merging the local positional embedding (4608 features from
ESM-1V þ ProtT5 XL U50) described above and the Anc2Vec func-
tional encoding (600 features). Eventually, we encode the different
embeddings separately (see Section 3 and Table 2).

2.4.2 Model selection and implementation
The predictor includes two cascading components (Fig. 1): a PCA
for reducing the dimensionality of the input features and a binary
SVM with a Radial Basis Function (RBF) kernel, which performs the
variant classification into pathogenic or not. We optimized the
hyperparameters of both methods (such as the number of compo-
nents of PCA, the SVM cost parameter C and the gamma coefficient
of the RBF kernel) with a grid search procedure. A complete list of
hyperparameters tested and their optimal values are available in
Supplementary Table S2.

It is worth clarifying that, during both cross-validation and blind
testing, the execution of the PCA step is always computed on the
training set and then applied for projecting vectors of the testing set
in the reduced space.

All methods are implemented in Python3 using the scikit-learn
library (Pedregosa et al., 2011). ESM-1v and ProtT5 embeddings
are computed with the bio-embeddings package (Dallago et al.,
2021).

The complete machine-learning workflow is compliant with the
DOME recommendation checklist (Walsh et al., 2021), as reported
in Supplementary Table S3.

2.5 Output
The SVM adopted for classification computes a decision function
that represents the distance of the point mapping the input from the
discrimination boundary. We use this value to estimate the reliabil-
ity of the prediction, in terms of the probability of the input vari-
ation to be pathogenic (Fig. 1).

In a perfectly calibrated method, when a set of predictions scored
with probability P is tested on real data, we expect that the fraction
of true positives is exactly P. In this work, we adopt a procedure pre-
viously described (Benevenuta et al., 2021) to obtain a calibrated
probability that we provide in output alongside the predicted class.
In particular, we fit an Isotonic Regression (Niculescu-Mizil and
Caruana, 2005) in cross-validation and we use it to obtain a prob-
ability score on the blind test. Supplementary Figure S1 shows that
E-SNPs&GO output probabilities are very close to being perfectly
calibrated, more than other popular methods.

Keeping as a reference the probability of being P/PL, the
probability score (PP/PL) gives an integer Reliability Index from 0
(random prediction) to 10 (certain prediction) using the formula:

RI ¼ round 20" PP=LP % 0:5
!! !!

" #
: (1)

2.6 Scoring indexes
We assess the performance with the following scores. P/LP varia-
tions are assumed to be the positive class, B/LB variations are the
negative class. In what follows, TP, TN, FP and FN are true positive,
true negative, false positive and false negative predictions,
respectively.

We compute the following scoring measures:

• Accuracy (Q2):

Q2 ¼
TPþ TN

TPþ TNþ FPþ FN
: (2)

• Precision:

Precision ¼ TP

TPþ FP
: (3)
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• Recall:

Recall ¼ TP

TPþ FN
: (4)

• F1-score, the harmonic mean of precision and recall:

F1 ¼ 2" Precision" Recall

Precisionþ Recall
: (5)

• Area under the receiver operating characteristic curve (ROC-

AUC).
• MCC:

MCC ¼ TP" TN% FP" FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ " ðTPþ FNÞ " ðTNþ FPÞ " ðTNþ FNÞ

p :

(6)

3 Results

3.1 Assessing the contribution of different input
encodings
To select the optimal input encoding, we performed different experi-
ments to test various combinations of input features. To this aim,
we trained in cross-validation several independent SVMþPCA mod-
els using different input features and using the MCC to score and se-
lect the optimal model.

GO terms provide global protein information. Their embedding
does not consider the specific variant position. If the prediction is
run considering only averaged embedded GO terms vector (Fig. 1),
the predictor performance is very low (MCC¼0.27, data not
shown). Different input encodings, corresponding to different pre-
dictors, perform differently (Table 2). The inclusion of GO embed-
dings in the final input is always beneficial, improving MCC by 2 or
3 percentage points in all cases (compare ESM-1v, ProtT5 and ESM-
1vþProtT5 with or without GO, respectively in Table 2).
Considering the two protein sequence embeddings, ProtT5 outper-
forms ESM-1v both with and without the additional GO informa-
tion. Most notably, the model trained on data from ProtT5 alone is
the most balanced, reaching equal precision and recall. Finally, the
concatenation of both sequence encodings and the GO embedding
provides the best performance (MCC¼0.69), leading to an increase
in precision without a corresponding decrease in recall.

Based on these results, we select the model trained with ESM-
1vþProtT5þGO as the optimal one.

3.2 Benchmark on the blind test set
We test our method adopting both a 10-fold cross-validation
procedure and an independent blind test set constructed to be
non-redundant with respect to the training dataset (see Section 2.1).
Table 3 lists the results. E-SNPs&GO obtains similar results in
cross-validation and blind test, making it very robust to generaliza-
tion. Concerning individual indexes, our method seems to be slightly
more precise than sensitive (compare Precision and Recall).

Table 3 includes also a comparative benchmark of our method
with other state-of-the-art tools, including our SNPs&GO
(Calabrese et al., 2009), SIFT (Ng and Henikoff, 2001), PolyPhen-2
(Adzhubei et al., 2010), PROVEAN (Choi et al., 2012) and
MutPred2 (Pejaver et al., 2020), one of the most recent and best-
performing approaches in the field. Methods are scored adopting
our blind test set (Section 2.1), ensuring a fair evaluation of the per-
formance of our method. However, this does not completely exclude
the presence of biases in the evaluation of the other tools (with the
exception of our SNPs&GO), since variations included in our blind
test may be present in the respective training sets, leading to poten-
tial overestimation of their performance.

In Table 3, it appears that in this benchmark our method is per-
forming at the state-of-the-art. Among tested approaches,
PROVEAN, SIFT and PolyPhen-2, reporting MCCs of 0.57, 0.53
and 0.50, respectively, are scoring lower than our previous
SNPs&GO (that achieves an MCC of 0.58). Our E-SNPs&GO and
MutPred2, score with significantly higher MCC values of 0.72 and
0.71, respectively. Noticeably the embedding procedure seems to
grasp all the properties extracted by an ensemble of different predic-
tors of functional, structural and physicochemical properties, such
as the one used by MutPred2 (including over 50 tools). Looking at
individual scoring measures, MutPred2 appears more sensitive while
our method reports a higher precision.

A detailed ablation study performed to evaluate the effect of the
GO terms on the prediction scores (Supplementary Table S4), indi-
cates that the CC sub-ontology slightly outperforms the others.

3.3 Prediction of variants of uncertain significance
We tested E-SNPs&GO on a dataset of 2588 proteins annotated
with 9165 variants of uncertain significance (VUS) extracted from
HUMSAVAR (accessed on May 12, 2022). Given that they are un-
certain, we cannot assess our performances on this dataset.
However, we can sample our predicted annotation in terms of
probability and reliability [Equation (6)]. Setting as a reference the
probability of being P/LP, Figure 2 shows the distribution of E-
SNPs&GO predictions over the whole VUS set as a function of
probability and reliability index. A total of 4537 variations are P/LP
(pathogenicity probability !0.5), while 4628 are B/LB

Table 2. Performance of different embedding schemes

Input encoding Q2 (%) Precision (%) Recall (%) F1-score (%) ROC-AUC (%) MCC

ESM-1v 82.4 (61.5) 80.4 (62.6) 77.0 (62.8) 78.6 (61.9) 81.6 (61.5) 0.64 (60.03)

ESM-1vþGO 83.3 (61.4) 81.7 (62.5) 78.1 (62.7) 79.8 (61.8) 82.6 (61.4) 0.66 (60.03)

ProtT5 83.0 (61.3) 79.8 (61.9) 80.0 (62.8) 79.9 (61.7) 82.6 (61.4) 0.65 (60.03)

ProtT5þGO 83.7 (61.1) 81.8 (61.9) 79.2 (62.5) 80.5 (61.5) 83.1 (61.3) 0.67 (60.02)

ESM-1vþProtT5 83.6 (61.4) 81.8 (62.3) 78.6 (62.9) 80.1 (61.8) 82.9 (61.5) 0.66 (60.03)

ESM-1vþProtT5þGO(-PCA) 83.1 (60.8) 81.0 (61.4) 78.0 (61.5) 79.4 (61.1) 82.8 (60.8) 0.66 (60.02)

ESM-1vþProtT5þGO(þPCA) 85.1 (60.9) 82.4 (61.7) 79.1 (61.7) 80.7 (61.1) 84.1 (60.9) 0.69 (60.02)

Note: We adopted a 10-fold cross-validation on a training set comprising 101 146 human variations (Table 1) for testing the effect of different input encodings

on the performances of the method. Standard deviation (between brackets) is computed over the 10 cross-validation sets and scoring indexes (defined in Section

2.6) are average values.

ESM-1v (2"1280¼ 2560 features).

ESM-1v þ GO (2"1280þ 3"200¼ 3160 features).

ProtT5 (2"1024¼2048 features).

ProtT5þGO (2"1024þ 3"200¼ 2648 features).

ESM-1v þ ProtT5 (2"1280þ 2"1024¼ 4608 features).

ESM-1v þ ProtT5þGO (%PCA) (2"1280þ 2"1024þ 3"200¼ 5208 features), no PCA used.

ESM-1v þ ProtT5þGO (þPCA) (2"1280þ 2"1024þ 3"200¼ 5208 features), PCA used to reduce dimensionality.
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(pathogenicity probability <0.5). The reliability index increases as
the probability goes towards 1 or 0 for P/LP and B/LB predictions,
respectively [Equation (6)]. In the dataset, 3210 P/LP and 2908 B/LB
predictions score with a reliability [RI, Equation (6)] !6, accounting
for the 67% of VUS. The remaining 33% is predicted with RI lower
than 6. For further validation, VUS predictions are available at
https://esnpsandgo.biocomp.unibo.it/datasets.

3.4 E-SNP&GO web server
E-SNPs&GO web server is available at https://esnpsandgo.biocomp.
unibo.it. The server allows users to submit up to 1000 variations per
single job. Upon job completion, the results can be visualized on the
web page and downloaded in either a tab-separated or a JSON file.

We measured the average E-SNPs&GO runtime by submitting
100 different jobs each including 1000 variations randomly selected
from the blind test set. In order to estimate the real execution time

for the end user, this experiment was performed in the machine host-
ing the web server, equipped with one AMD EPYC 7301 CPU with
12 cores, 48 GB of RAM and no GPU available. On average, we ob-
tain a running time of 12.4 6 4.4 s per variation, when submitting
the maximum allowed number of variations per job (1000 varia-
tions). This highlights a significant improvement over time-
consuming approaches using canonical features such as evolutionary
information extracted from multiple sequence alignments.

4 Conclusions

We introduce E-SNPs&GO, a method based on language models for
annotating whether a single-nucleotide variation is or is not P/LP.
We adopt two different protein embedding procedures based on
transformers, ESM-1v (Meier et al., 2021) and ProtT5 (Elnaggar
et al., 2021). Both embedding methods have been developed and
tested on protein variant related problems, such as deep mutational
scanning (Marquet et al., 2021; Meier et al., 2021). Here, we ad-
dress the problem of annotating pathogenic versus benign varia-
tions. To this aim, we also add an embedding scheme for functional
annotations of wild-type proteins, Anc2Vec (Edera et al., 2022), a
method that learns a vector representation for GO terms by preserv-
ing ancestor relationships. When benchmarked towards state-of-the-
art methods available, E-SNPs&GO well compares to the recently
developed MutPred2.0 (Pejaver et al., 2020), which includes as in-
put sequence features derived from some 50 predictors and outper-
forms previously published methods. Evidently, protein language
models learn all the relevant information that can be eventually
introduced as input by predictors addressing different tasks.

We prove that embedding models overpass the problem of hav-
ing as input thousands of different features in order to collect all the
relevant features for a reliable annotation of the human pathogenic
variations.
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Table 3. Benchmark of our and other top scoring methods available in literature

Input encoding Q2 (%) Precision (%) Recall (%) F1-score (%) ROC-AUC (%) MCC

E-SNPs&GOa Cross-validation 85.1 (60.9) 82.4 (61.7) 79.1 (61.7) 80.7 (61.1) 84.1 (60.9) 0.69 (60.018)

E-SNPs&GOa Blind test set 86.8 85.7 80.1 82.8 85.6 0.72

SNPs&GOa Blind test set 79.8 84.8 63.2 72.4 77.5 0.58

MutPred2.0b Blind test set 85.6 78.6 87.7 82.9 85.9 0.71

PROVEANc Blind test set 78.2 68.7 83.0 75.2 79.0 0.57

SIFTd Blind test set 74.4 62.7 88.0 73.2 76.7 0.53

PolyPhen-2e Blind test set 72.3 60.6 89.5 72.2 75.1 0.50

Note: The benchmark is performed on a test set comprising 10 266 human variations (Table 1, 10% of the total number of SAVs) that is blind with respect to

our training set. It could be redundant with respect to the training sets of other methods, leading to a possible overestimation of their performances. We also re-

port our performances in cross-validation for comparison. We increased the size of the blind test set up to 20% of the number of SAVs and the E-SNPs&GO

MCC score values were negligibly affected (0.5%, data not shown).
aE-SNPs&GO: this article; SNPs&GO (Calabrese et al., 2009).
bMutPred2.0 (Pejaver et al., 2020).
cPROVEAN (Choi et al., 2012).
dSIFT (Ng and Henikoff, 2001).
ePolyPhen-2 (Adzhubei et al., 2010).

Fig. 2. Distribution of predicted pathogenicity probabilities for the dataset of VUS.
The value 0.5 discriminates between B/LB and P/LP prediction. Probability values
close to either 0 or 1 correspond to prediction with a high reliability index
[Equation (1)]
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Abstract

The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here
we address the problem focusing on the prediction of putative PPIs considering as input protein
sequences. The issue is important given the huge volume of protein sequences compared to experimental
and/or computed structures. Taking advantage of protein language models, recently developed, and Deep
Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors address-
ing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.

! 2023 The Author(s). Published by Elsevier Ltd.

Introduction

Proteins are key players in most biological
processes. Proteins are social entities and interact
with membranes, within themselves or with other
proteins, and/or biomolecules (including nucleic
acids) to accomplish their functions within the cell.
Among all the different features that protein
functional annotation requires, it is also important
to determine the likelihood of protein–protein
interaction. Therefore, effective computational
tools for the prediction of protein–protein
interactions are important to characterize protein
function and to expand interactomes of different
species.1–3

The identification of Protein-Protein Interaction
(PPI) sites, namely protein residues involved in
physical interactions within interacting proteins,
can be addressed using two complementary
approaches. On one hand, different biochemical
and biophysical experimental methods (such as X-
ray crystallography, nuclear magnetic resonance ,
alanine scanning mutagenesis and chemical
cross-linking) can be applied to determine protein–
protein interfaces at the atomic or residue level.4

Although very accurate, the applicability of these

methods to large-scale characterization of PPI is
still hampered by economical and technical issues.
On the other hand, computational methods are

cost-effective solutions to complement
experimental approaches in identifying and
characterizing PPI sites. Docking programs are
the major class of computational tools to study
PPIs [for review, see ref 2]. Very accurate models
can be obtained through docking when the two
interacting partners are known in advance.
However, when the interacting partner/s is/are not

known, machine-learning approaches can compute
PPI sites on unbound protein chains. Historically,
these methods have been relying on several
physicochemical features extracted from protein
sequence and/or structure and they can
discriminate between interacting and non-
interacting residues.2

The most accurate approaches are based on
information extracted from protein 3D structures.
Very informative features include protein solvent
accessibility, protrusion, depth indexes, secondary
structures, B-factors, and general geometrical
features.5

Prediction of PPI sites from protein sequence
alone is still challenging and methods developed
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for this specific task are less performing than those
based on 3D structures. Methods implemented so
far for PPI prediction from protein sequence
include in input evolutionary information,
conservation scores and physical–chemical
properties of amino acids (e.g., hydrophobicity,
polarity, charge and/or conformational
propensities). Additionally, structural features
computed from protein sequence with specific
classifiers, such as predicted solvent accessibility
and secondary structure, are also included with
the aim of filling the scoring gap with structure-
based approaches. Several methods have been
developed in the past and recent years,2 based
mainly on different types of machine learning,
including shallow and deep neural networks.6–15

Recently, protein language models trained on
large volumes of sequence datasets have been
proven to be effective in providing protein/residue
representations that are alternative and
competitive with canonical hand-crafted features
such as evolutionary information and
physicochemical properties.17–20 Representations/
embeddings provided by these models have been
successfully adopted in many prediction tasks.21–25

Here we present ISPRED-SEQ, a novel
webserver based on a deep-learning model to
predict PPI-sites from protein sequence encoded
with an embedding procedure. The method stands
on a deep architecture combining convolutional
blocks and three cascading fully connected layers.
ISPRED-SEQ is trained on a dataset of 6,066
protein chains derived from a dataset available in
literature14. The main novelty of ISPRED-SEQ is
the input generation, obtained using two state-of-
the-art protein language models, ESM1-b17 and
ProtT5.18

We benchmark ISPRED-SEQ on four different
independent test data derived from literature.9,14–
15,26–27 All proteins included in the training dataset
have less than 25% sequence similarity with
sequences in the testing sets, adopting a stringent
homology-reduction procedure. Results show that
ISPRED-SEQ performs at the state-of-the-art,
reporting MCC scores higher than those obtained
by other approaches in all the benchmarks
performed.
The ISPRED-SEQweb server is freely accessible

at https://ispredws.biocomp.unibo.it.

Materials and Methods

Datasets

Training dataset. For training the ISPRED-SEQ
network we used a set of protein chains derived
from a dataset available in literature28 and already
adopted, after some filtering steps, to train the DEL-
PHI method.14 The DELPHI dataset comprises
9,982 protein chain sequences extracted from the
PDB and sharing no more than 25% pairwise

sequence identity. Moreover, the sequences in the
training set are also non-redundant (25% identity)
with respect to all the sequences included in the
independent test datasets (see next section). Start-
ing from this set, we further restricted the number of
protein sequences by filtering out all the chains (as
in the correspondent UniProt file) having a coverage
with the associated PDB structure/s less than 80%,
in order to validate PPI annotation on structural
experimental evidence. After this filtering step, we
ended up with 6,066 protein sequences comprising
1,757,296 residues.
Annotation of PPI sites was then retrieved from

the original data available from28 and manually
curated. Starting from the PDB structure of the com-
plex, a residue of a given chain is defined in interac-
tion if the distance between an atom of the residue
and an atom of another residue in a different chain
is below a given distance threshold, which routinely
is set equal to the total sum of the van der Waals’
radii of the two atoms plus 0.5!A28. PPI annotations
are available for the complete UniProt protein
sequences after combining all interaction sites
obtained from multiple protein complexes in which
each protein is represented, adopting SIFTS29 for
the relative mapping of PDB and UniProt.28 Overall,
our dataset comprises 285,751 interaction sites,
corresponding to about 16% of the whole set of
residues.
We split the training dataset into 10 different

subsets for performing the 10-fold cross validation
procedure. Before splitting, we further clustered
the sequences at 25% sequence identity and 40%
alignment coverage using MMseqs2.30 The cross-
validation split was then performed by randomly dis-
tributing complete clusters (instead of individual
sequences) among the different subsets. This step
is required to capture residual local redundancies
between pair of sequences that could have survived
the first redundancy reduction performed during
dataset construction.

Independent test datasets. To evaluate
generalization performance of ISPRED-SEQ and
to compare it with other state-of-the-art
approaches we used four different independent
test sets widely used in literature for comparative
evaluation of tools.9,14–15,26–27 Supplementary
Table 1 provide an overview of all datasets used
in this study.
The first dataset comprises 448 protein chains

used in a review comparing different tools for
protein interaction site prediction from sequence.27

The aim of the authors was to collect data including
not only protein–protein interaction sites, but also
annotations for DNA, RNA and small-ligand binding
sites. For this reason, the dataset was obtained
starting from the BioLip database,31 collecting
nucleic-acid and ligand binding site annotations.
For the set of proteins retrieved fromBioLip, authors
also extracted protein–protein interaction sites by
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analyzing corresponding protein complexes avail-
able in the PDB. Protein interaction sites are identi-
fied using the same definition adopted for the
training set (see above). Internal redundancy of
the dataset was set to 25% pairwise sequence iden-
tity using the Blastclust tool.32 We refer to this data-
set to as the Dset448.
The second dataset used here is referred to as

the Dset335 and it is a subset of the Dset448
introduced in14 for sake of comparing the methods
DELPHI and DLPred.33 The 335 sequences
included in the dataset are indeed selected such
that they are non-redundant at 25% sequence iden-
tity with the DLPred training set, hence enabling a
fair comparison with this method. We used Dset335
to also include DLPred in our benchmark.
The third and fourth datasets, referred to as

HomoTE and HeteroTE, respectively, were
introduced by Hou and coauthors9,26. Recently,
these sets were also used for evaluating the perfor-
mance of the PIPENN prediction tool.15 HomoTE
and HeteroTE include 479 and 48 protein chains
from homomeric and heteromeric complexes,
respectively. Interface residues are defined in
HomoTE and HeteroTE using a slightly different
definition based on the computation of Accessible
Surface Area (ASA) before and after complex for-
mation: interacting residues are those whose ASA
value undergoes a change upon complex forma-
tion26. Nevertheless, as highlighted in literature,34

this definition provides very similar or equal interac-
tion interfaces as those based on inter-chain
distances.

ISPRED-SEQ implementation

The ISPRED-SEQ general architecture is
depicted in Figure 1. Starting from a protein
sequence, ISPRED-SEQ input is constructed
using two alternative protein language models: i)
ESM1-b17, an encoder-only transformer model
trained on about 27 million sequences from
UniRef5035, and ii) ProtT518, a sequence-to-
sequencemodel derived from the T5 architecture36,
trained on the large Big Fantastic Database (BFD)37

comprising 2.1 billion sequences and fine-tuned on
the UniRef50 database.
For each residue in the input sequence, ESM1-b

and ProtT5 provide embeddings of dimension
1280 and 1024, respectively. These are then
concatenated to form a single vector comprising
2304 components for each residue.
Since ESM1-b can only accept input sequences

of length lower than 1022, all longer sequences
are split into non-overlapping chunks of equal
length. After this step, the sequence embedding is
reconstructed by concatenating all the chunks.
The joint embedding (ESM1-b + ProtT5) is then

processed using a four-layer network. The first
layer is a 1-dimensional convolutional neural
network with 2304 filters (the number of filters is
set as to be equal to the input dimension) and a

filter width of 31, corresponding to a window
comprising 31 flanking residues and centered at
each residue position. The positional output of the
convolutional layers is processed by two dense,
fully connected layers with 128 and 32 hidden
units, respectively. The final output consists of a
single unit with a sigmoid activation function. Each
residue is classified as interaction site if the output
value is greater or equal to 0.5, as not in
interaction otherwise.
For sake of assessing the contribution of the input

encoding, we also trained alternative models based
on different types of inputs, including: the sequence
one-hot encoding, providing 20 values per residue,
the position-specific scoring matrix (PSSM),
computed using two runs of HHblits38 against the
UniClust30 database39 and providing 20 values
per residues, ESM1-b embedding only (1280 val-
ues per residue) and ProtT5 embedding only
(1024 values per residue). For all the models
trained, we adopted the same architecture shown
in Figure 1, and changing the number of convolu-
tional filters to be equal to the input dimension (20
for one-hot and PSSMs, 1280 for ESM1-b and
1024 for ProtT5).
Training is performed using minibatches of 64

residues adopting an early stopping procedure
that halts the training after 10 epochs without a
decrease in the validation loss. The loss that we
implemented is a binary cross-entropy and we
adopted an Adam optimizer.40

To fix all the hyperparameters of the model we
performed a grid search using a strict 10-fold
cross validation. After that, we retrained the final
model on the whole training dataset, and we
evaluated it on the different benchmark sets.

Scoring measures

The following measures were used to score
performance of the different methods:

! Accuracy (Q2):

Q2 ¼
TP þ TN

TP þ TN þ FP þ FN
ð1Þ

! Precision:

Precision ¼ TP

TP þ FP
ð2Þ

! Recall:

Recall ¼ TP

TP þ FN
ð3Þ

! F1-score, the harmonic mean of precision and recall:
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F1 ¼ 2& Precision & Recall

Precision þ Recall
ð4Þ

! Area Under the Receiver Operating Characteristic
Curve (ROC-AUC).

! Matthews Correlation Coefficient (MCC):

MCC ¼ TP & TN ' FP & FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ & ðTP þ FNÞ & ðTN þ FPÞ & ðTN þ FNÞ

p

ð5Þ

Routinely, the probability value discriminating
between positive and negative predictions is set to
0.5. For benchmarking on blind test sets ISPRED-
SEQ towards other approaches14–15,27, we adopted
a methodological strategy previously described.27

According to this procedure, for each of the different
methods, a method-specific threshold is introduced
to set the number of positive predictions equal to the
number of real positive examples.14–15,27 This pro-
cedure allows comparing different methods on the
same number of predictions.27 AUC values are
however independent of this procedure.

Results

ISPRED-SEQ performance

For fine tuning ISPRED-SEQ, we tested the
network architecture using a 10-fold cross-
validation procedure to compare different input
encodings. Specifically, we evaluated five different
models trained on different inputs, including: i) the
sequence one-hot encoding, ii) the sequence
profile, iii) the ESM1-b embedding only, iv) the
ProtT5 embedding only and v) the joint
embedding obtained combining ESM1-b and
ProtT5. Supplementary Table 2 lists the results.
Models incorporating canonical features (one-hot

and sequence profiles) are both outperformed by
embedding-based approaches. MCCs obtained
with embedding-based approaches score with
values above 0.30 and higher that the 0.14 value
obtained with only the sequence profile as input
(Supplementary Table 2). Data are shown in
Supplementary Table 2, obtained adopting a cross
validation procedure. This highlights the
effectiveness of language model representations
in the task of predicting PPI sites. The two
different language models (ESM1-b and ProtT5)
provide similar contributions individually achieving

Figure 1. The ISPRED-SEQ deep network architecture. The input sequence is encoded using the two language
models (ESM1-b[17] and ProtT518), producing a joint embedding of 2304 features. These are processed using a 1D-
Convolutional layer with 2304 filters of size 31. The convolutional output is then processed by two fully connected
Dense layers with 128 and 32 hidden units, respectively. The final output is a single unit with sigmoid activation
function: each residue is classified as Interaction Site when the output value is greater or equal to 0.5, non-interaction
site otherwise (see Materials and Methods for details).
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comparable MCC scores (0.30 and 0.31,
respectively). When combined, the value of MCC
is 0.34 (adopting a threshold for positive
predictions equal to 0.5), suggesting that the
ESM1-b and ProtT5 are complementary, and their
combination is advantageous for the problem at
hand. This conclusion is further supported by data
shown in Supplementary Table 3, where we can
observe that predictions made using the two
models disagree on roughly 25% of the data (on
14.9% ProtT5 is correct, on 9.3% ESM1-b is
correct).
We compared ISPRED-SEQ with state-of-the-art

tools, including DELPHI14, PIPENN,15 PITHIA16,
SCRIBER11, SSRWF8, CRFPPI41 and LORIS.42

Table 1 shows the results, and Supplementary
Table 4 shows more details regarding the tools
adopted for the comparison.
Performance of all methods, with the exclusion of

ISPRED-SEQ, are extracted from literature14–15.
Specifically, performance on Dset448 and Dset335
for DELPHI, SCRIBER, SSRWF, CRFPPI and
LORIS are derived from14, results of PIPENN in all
datasets are taken from the original reference
paper,15 and results fro PITHIA are taken from.16

All the benchmarked methods provide numerical
prediction scores representing the propensity of
each input residue to be a PPI site. A threshold
must be set to obtain a binary prediction. To
compare ISPRED-SEQ performance with other

state-of-the-art tools, we adopted the same
strategy described in14–15 and defined in27 by which
binary predictions are obtained using a different
threshold for each method so that the number of
positive predictions (FP + TP) is equal to the num-
ber of real positive examples (TP + FN), or equiva-
lently FP = FN. For our ISPRED-SEQ, performance
measures obtained using this strategy are labelled
as “th)FP = FN” in Table. 1. A direct comparison
with the state-of-the-art methods is therefore possi-
ble. For sake of completeness, we also show
ISPRED-SEQ score obtained using the threshold
of 0.5 on the output prediction score. This threshold
assumes a probability meaning for the output of
ISPRED-SEQ and it is the one adopted in the web
server.
Regardless of the method adopted for choosing

the threshold, Table 1 indicates that ISPRED-SEQ
outperforms all the methods in all the considered
datasets. In the Dset448 (the most recent and
complete dataset released in literature so far27),
ISPRED-SEQ achieves aMCC value of 0.39, seven
percentage points higher than the one obtained by
the second top-performing method, PITHIA.
In the Homo-TE dataset containing homomeric

interfaces, ISPRED-SEQ reaches a MCC value of
0.46, again significantly higher than the one
registered by PIPENN. Performance on the small
Hetero-TE, containing only 48 chains, are lower.
However, also in this case, ISPRED-SEQ

Table 1 Comparative benchmark on different independent test sets.

Method Dataset MCC F1 Precision Recall Q2 AUC

ISPRED-SEQ (th = 0.5)" Dset448 0.34 0.42 0.29 0.78 0.71 0.82

ISPRED-SEQ (th)FP = FN)" Dset448 0.39 0.47 0.47 0.47 0.86 0.82

PITHIA16 * Dset448 0.32 0.41 0.41 0.41 0.84 0.78

DELPHI14 † Dset448 0.27 0.37 0.37 0.37 0.83 0.74

PIPENN15 ! Dset448 0.25 0.39 0.39 0.39 0.79 0.73

SCRIBER11 † Dset448 0.23 0.33 0.33 0.33 0.82 0.72

SSWRF8 † Dset448 0.18 0.29 0.29 0.29 0.81 0.69

CRFPPI41 † Dset448 0.15 0.27 0.26 0.27 0.81 0.68

LORIS42 † Dset448 0.15 0.27 0.26 0.26 0.81 0.66

ISPRED-SEQ (th = 0.5)" Dset335 0.33 0.40 0.27 0.77 0.72 0.82

ISPRED-SEQ (th)FP = FN)" Dset335 0.39 0.46 0.46 0.46 0.87 0.82

PITHIA16 * Dset335 0.30 0.38 0.38 0.38 0.85 0.76

DELPHI14 † Dset335 0.28 0.36 0.36 0.36 0.85 0.75

SCRIBER11 † Dset335 0.23 0.32 0.32 0.32 0.84 0.72

DLPred33 † Dset335 0.21 0.31 0.31 0.31 0.84 0.72

ISPRED-SEQ (th = 0.5)" Homo_TE 0.42 0.56 0.42 0.83 0.71 0.84

ISPRED-SEQ (th)FP = FN)" Homo_TE 0.46 0.58 0.58 0.58 0.81 0.84

PIPENN15 ! Homo_TE 0.34 0.49 0.49 0.49 0.77 0.77

ISPRED-SEQ (th = 0.5)" Hetero_TE 0.20 0.27 0.17 0.68 0.65 0.72

ISPRED-SEQ (th)FP = FN)" Hetero_TE 0.16 0.24 0.24 0.24 0.86 0.72

PIPENN15 ! Hetero_TE 0.11 0.20 0.20 0.20 0.85 0.66

* Data taken from.16
† Data taken from.14
! Data taken from.15
" th, threshold value (see Materials and Methods). Performance of all methods different from ISPRED-SEQ are reported considering
a prediction threshold that makes equal the numbers of false positive and false negative predictions.27 Results of ISPRED-SEQ
adopting the same strategy are reported (th) FP = FN) as well as those obtained adopting a probability threshold equal to 0.5
(th = 0.5).
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outperforms the other testedmethod (PIPENN) by 5
percentage points, considering the MCC value.
Independently of the procedure adopted for

evaluating the scoring indexes, ISPRED-SEQ
overpasses the performance of all other methods.
This is also evident when considering the AUC
values reported in Table 1, totally independent of
the strategy adopted for the other scoring indexes.

The ISPRED-SEQ web server

ISPRED-SEQ webserver is available at https://
ispredws.biocomp.unibo.it/. The server input
interface accepts a single protein sequence in

FASTA format with length ranging between 50
and 5000 residues. Upon submission, the user is
redirected to the page where results will be
available after job completion. The page
automatically refreshes every 60s and shows to
the user the current status of the job (queued or
running). The server also provides the user with a
universal job identifier, which can be thereafter
used to retrieve job results. The result page
(Figure 2) provides information about the job,
including i) the identifier, ii) submission and
completion time, iii) protein ID, iv) protein length
and v) counts of positive and negative predictions.
After that, the output of the predictor is shown

Figure 2. The ISPRED-SEQ web server output page.
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using an interactive viewer. This allows to visualize
the whole PPI-site probability profile computed for
each residue during the procedure. The page
highlights in yellow the predicted PPIs along the
sequence. Results are as well summarized in
tabular format (Figure 2).

Conclusions

In this paper we present ISPRED-SEQ, a novel
method for the prediction of PPI sites from
sequence. ISPRED-SEQ novelty is the adoption
of input encodings based on embeddings
generated by two state-of-the-art protein language
models, ESM1-b and ProtT5. In our tests, residue
representations based on embeddings outperform
canonical feature descriptors such as one-hot
encoding and sequence profiles. The scoring
index values, although good, still need
improvement. However, the major bias is due to
the fact that still we do not have a complete
picture of all the possible PPIs in a cell, as
discussed before.1–2

We evaluated ISPRED-SEQ using several
independent datasets released in literature and
compared its performances against recently state-
of-the-art approaches, also based on deep-
learning algorithms. In all the tests performed,
ISPRED-SEQ significantly outperforms top-
scoring methods, reaching MCC scores of 0.39 on
recent benchmark datasets containing more than
300 proteins.
We propose ISPRED-SEQ as a valuable tool for

the characterization of protein interface residues
starting from the protein primary sequence.
We released ISPRED-SEQ as a publicly

accessible web server available at https://
ispredws.biocomp.unibo.it.
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Haunsberger, S.J., Söding, J., (2019). HH-suite3 for fast

remote homology detection and deep protein annotation.

BMC Bioinf. 20, 473. https://doi.org/10.1186/s12859-019-
3019-7.

39. Mirdita, M., von den Driesch, L., Galiez, C., Martin, M.J.,
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