
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/129175                            
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/237395804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/129175
mailto:wrap@warwick.ac.uk


Self-Taught Learning of the Accessible Surface Area
of Proteins

∗Fahad ul Hassan, Dr. Fayyaz ul Amir Afsar Minhas†
∗D.I. Khan Institute of Nuclear Medicine and Radiotherapy, D.I.Khan

Email: fahadalhassan1@gmail.com
†Department of Computer and Information Sciences

Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad
Email: afsar@pieas.edu.pk

Abstract—In this work, We have investigated self-taught
learning methods along with deep neural network to predict
one very important property of proteins from protein sequences,
i.e., accessible surface area and to solve the problem of feature
selection using a comparatively new machine learning concept i.e
self-taught learning. Accessible surface area (ASA) is predicted
using Support Vector Regression (SVR). Two SVR optimization
methods with three different types of features including position
dependent k-spectrum, Blosum 62 substitution matrix and posi-
tion specific scoring matrix (PSSM) are used separately to predict
ASA. Optimization methods used are quadratic programming
(QP) solver to solve dual form of SVR with Radial Basis
Function (RBF) kernel and stochastic sub-gradient optimization
(SSGO) algorithm to optimize a linear SVR. QP based solver
produced better results with PSSM features as compared to SSGO
algorithm but SSGO algorithm is significantly time efficient as
compared to first method. Two self-taught learning algorithms
are used to learn better representations of data which are
Sparse autoencoder and dictionary learning. These algorithms
are trained using unlabeled data extracted from non-redundant
protein database. Labeled examples are transformed into new
representations using trained algorithms and SSGO based re-
gressor is used to predict ASA. We have used these algorithms
with position dependent k-spectrum and Blosum 62 substitution
matrix based features as these are easier to compute as compared
to PSSM which uses a lot of data and time. We got comparable
results with these algorithms as those of using simple data without
using these algorithms. A feed forward deep neural network
having three layers has been used for comparison purposes. This
model is trained and tested using labeled data. It produced better
results than self-taught learning algorithms with Blosum features.

Keywords—Accessible Surface Area, Self-Taught Learning,
Sparse Autoencoder, Dictionary Learning, Stochastic Subgradient
Optimization based Regressor

I. INTRODUCTION

ASA of residues in a protein sequence is important because
it allows prediction of many other properties of proteins
like secondary structure, residue depth, hydrophobicity, trans-
membrane topology, and binding associated conformational
changes. ASA is also a good measure of folding state of a
protein. Because active sites of proteins are often located at
their surface, the prediction of exposed residues is important
for understanding the conformational changes of proteins upon
binding. Marsh et al. [1] have shown that ASA of buried
residues in protein structure is associated with protein flexi-
bility and it can be used to predict protein flexibility. Liu et

al. [2] have suggested the use of ASA and residue depth along
with other sequence and structure based features can improve
the sensitivity and accuracy of fold recognition of proteins. Xia
et al. [3] have used solvent accessibility to predict hot spots
in protein structure. Hot spots are residues which have major
contribution of binding free energy of protein interactions.

There are many methods to predict solvent accessibility of
proteins. Earlier methods treat solvent accessibility as multi-
state classification problem and solved it using SVM [4], two
stage SVM [5], neural networks [6] and bidirectional recurrent
neural networks [7].

For the first time Ahmad et al. [8] have treated solvent
accessibility prediction as regression problem because real
value of ASA gives more meaningful information than to
classify the residues as buried and exposed types. Real value
of ASA gives direct measure of area of a residue exposed
to surrounding solvent. Later on, several other methods have
been proposed to predict continuous real value of ASA using
different features which include support vector regression
using neighborhood information [9] [10], feed forward and
recurrent neural networks using PSSM based features [11] and
neural network based method using evolutionary information
in the form of multiple sequence alignment [12].

Recently, machine learning strategies has been proposed to
predict multiple properties of proteins simultaneously. Adam-
czak et al. [13] have predicted secondary structure and sol-
vent accessibility simultaneously. Deep neural networks have
been used for prediction of local structural properties of
proteins. Deep neural networks are artificial neural networks
with multiple layers. Qi et al. [14] proposed unified multi-
task architecture of deep neural networks using PSSM and
neighborhood information to predict multiple local properties
of proteins including solvent accessibility but they treated
it as classification problem. Recently Heffernan et al. [15]
developed a method using iterative deep neural network to
predict secondary structure, solvent accessibility and torsional
angles. They used PSSM based features as input to neural
network. These methods have improved prediction results
using deep neural networks but they have not taken care of
timing complexity as it is time consuming task to compute
PSSM.

To tackle above mentioned problems, we have used simple
features based on neighborhood information and Blosum 62
substitution matrix extracted from unlabeled data to train self-



taught learning [16] algorithms including sparse autoencoder
[17], dictionary learning algorithm [18] and PCA. These
methods give better feature representations which are used
as input to stochastic sub-gradient based regressor to predict
ASA. Again stochastic regressor is chosen keeping in view its
timing efficiency.

II. MATERIALS & METHODS

We have used two optimization methods to solve SVR
problem to predict ASA of residues. First one is quadratic
programming solver to solve dual form of SVR and second
one is stochastic sub-gradient optimization algorithm. we have
used simple features based on neighborhood information and
Blosum62 substitution matrix extracted from unlabeled data
to train self-taught learning [16] algorithms including sparse
autoencoder [17], dictionary learning algorithm [18] and PCA.
These methods give better feature representations which are
used as input to stochastic sub-gradient based regressor to
predict ASA. Again stochastic regressor is chosen keeping in
view its timing efficiency. Deep neural network has also been
used for comparison purposes.

A. Dataset and Preprocessing

Protein-Protein Docking Benchmark 4.0 [22] is selected to
get protein sequences used for feature extraction. This dataset
has separate PDB files for both bound and unbound structure
of same protein. Also separate files for ligand and receptor
proteins are available. We have used 343 protein sequences
of unbound state for ASA prediction. STRIDE tool is used
to compute ASA which are used as target values [23]. All
protein sequences shorter than 30 amino acids in length are
removed from dataset as they don’t provide enough neigh-
borhood information to feature set. Proteins having pairwise
sequence similarity of more than 30% are excluded using CD
hit tool. Some PDB files contain more than one chains. Those
chains are separated and each PDB file input to STRIDE
contains single chain as presence of second chain affects the
ASA area. Before ASA calculation using Stride PDB files
are cleaned using Pymol to remove HETATM (heterogeneous
atoms) which are not part of protein sequence. Also some
PDB files contain residues other than 20 standard amino acids
called as unclassified residues. These residues are removed as
presence of HETATM and unclassified residues pose errors
while computing ASA using STRIDE. To perform 10-fold
cross-validation, we divided the dataset into ten groups each
containing equal number of data and target values. One group
was chosen as testing set while nine groups are merged to
form training set. To measure the performance of SVR in this
application, Pearsons correlation coefficient between predicted
and observed RASA values were calculated. The Pearsons
correlation coefficient is defined as the ratio of the covariance
between the predicted and observed ASA values per residue
to the product of the standard deviations.

B. Feature Extraction

The feature vector xi representing a residue is extracted
by a sliding window method using single protein sequence
as input. The window size is set at 21 residues. Increasing
the window size can provide more local information. It is
reasonable to expect that prediction accuracy would increase

with the enlargement of the window size. However, we found
that window size has a very limited effect on prediction
accuracy. The ASA value is computed for the central residue.
In the sliding window, each residue is coded by a 20-
dimensional vector, representing the 20 types of amino acids.
Therefore, a residue is represented by a (20 × 21) = 420-
dimensional vector. The absolute ASA value for each residue
is obtained using Stride. Stride takes a PDB file as input
and returns residue location in protein sequence, its torsional
angles, secondary structure elements and ASA. RASA values
are obtained by Normalizing ASA values by dividing with
value of ASA obtained by extended Ala-X-Ala conformation
where X is the corresponding residue.This value is used as
Alanine is the residue with shortest chain among all amino
acids. So surrounding of an amino acid by Alanine will give
almost maximum value of ASA. It is important to note that
the normalization step can simplify the handling of data, as
the ASA values of different amino acids are at the same scale.
The SVR algorithm is trained on RASA values and, therefore,
predicted values also will be RASA values which can be
converted into ASA values by multiplying with corresponding
normalizing values.

Three different data representations are used to compare
their effects on prediction of ASA values.

• First representation is a binary vector with presence of
a particular residue at particular location in window of
21 residues marked as 1 and its absence marked as 0.
It is totally based on neighborhood information of a
residue.

• In second method each residue in window is repre-
sented by corresponding row in Blosum 62 matrix.
Blosum 62 is a 20×20 dimensional substitution matrix
for sequence alignment in which score for substitution
of one amino acid in place of another amino acid
is given. Similar amino acids have higher score as
compared to dissimilar ones. Obtained feature vectors
are normalized to have unit norm.

• In third method position specific scoring matrix is
computed for each protein sequence. Size of PSSM
is 20×l where l is the length of protein sequence. A
window of 21 residues from this PSSM is picked and
normalized to unit norm to be used as feature. PSSM
is obtained by performing Multiple Sequence Align-
ment. Frequency count of each residue at particular
location is obtained and logarithm of its frequency
with respect to background frequency is computed.
It is a measure of presence of a specific amino acid
at specific location. PSSM features are better features
but it took longer time to perform MSA and compute
these features.

C. Sparse Autoencoder

Sparse autoencoder [17] is one of the approaches to use
unlabeled data to learn important features automatically. It
has outperformed best sophisticated hand-engineered features
representations in case of images, audio and text data. It is
implemented using feed forward neural network. It tries to
learn a function approximate to identity function which gives
similar value of output as that of input. A sparsity constraint is



imposed to limit the number of active hidden nodes to reduce
redundancy in data to learn important structures in data.

There is no specific rule about number of hidden units but
mostly for image classification task number of hidden units are
less than input units i.e. to learn compressed representation of
data similar to PCA. Even if number of hidden units are larger
than number of input units, presence of sparsity constraint will
try to eliminate the redundant units and will find improved
representation of data. Sparse autoencoder will learn a set of
basis vectors φi such that we can represent input vector x as
linear combination of those basis vectors.

x =

k∑
i=1

aiφi (1)

Then vector of activations ai's is used as new feature vector.
Cost function for sparse autoencoder consists of three terms
given unlabeled data x(1)u , x

(2)
u , ...., x

(k)
u is as follows:

f(W, b;xu) =
1

k

∑
i

‖x(i)u − hW,b(xiu)‖2 + λW
∑
j

‖wj‖2+

λsparsity
∑
j

KL(p‖pj) (2)

First term is the average of the squares of reconstruction
error where hW,b is logistic activation function. The second
one is regularization term which will decrease the magnitude
of weights and prevents overfitting. λw is regularization pa-
rameter to control relative importance of weight decay term.
Third term is sparsity term which is Kullback-Leibler (KL)
divergence between two bernoulli random variables with mean
p and pj respectively. It is given as:

KL(p‖pj) = plog(
p

pj
) + (1− p)log(

1− p
1− pj

) (3)

It measures the difference between two distributions and tries
to minimize that difference. Here p is the sparsity parameter
set to value very close to 0 and pj is average activation of
hidden unit j averaged over whole training set. This function
has the property that it is equal to 0 if pj = p and otherwise
it increases monotonically as p deviates from pj . λsparsity
is sparsity controlling parameter which controls the relative
importance of sparsity term in cost function.

Code is written using python programming language to
implement sparse autoencoder and its performance is verified
using built-in sparse autoencoder in theanets [24] package for
neural network which has support for both CPU and GPU.
In our code, we trained sparse autoencoder with 420 input
nodes, 1680 hidden nodes, 420 output nodes and using 16869
unlabeled examples. Cost function is optimized using gradient
based L-BFGS algorithm. Bias terms bi are initialized to zero
while weights wij are initialized to random numbers drawn
from interval [−

√
6

i+o+1 ,
√

6
i+o+1 ] where i is number of

inputs to a node and o is number of outputs from a node [17].
Desired average activation of hidden units p = 0.01, sparsity
controlling parameter λsparsity = 0.00003 and regularization
parameter λw = 0.003 have produced best results. After
training sparse autoencoder, we forward propagated the labeled
data to represent it as activation of hidden units and used that
new data as features to SSGO based regressor to predict ASA.

D. Dictionary Learning

Dictionary learning [18] is another method for model-
ing sparse representations of data. In this method any n-
dimensional input vector x is represented as a linear combina-
tion x ≈ Dw of m-dimensional codes defined in a dictionary
D = [d1, d2, ...., dm]. While computing dictionary an addi-
tional constraint is imposed that weight vector w is sparse. As
w is sparse it means x can only be represented as linear combi-
nation of few codes from dictionary. So the problem can be for-
mulated as follows: Given k data points each of n-dimensions
represented as X = [x1, x2, ...., xk]n×k, we want to extract
an m-dimensional dictionary D = [d1, d2, ...., dm]n×m along
with sparse weights W = [w1, w2, ...., wk]m×k from input data
points. Purpose of this dictionary formulation is to represent
each input data point xi as xi = Dwi where wi is a sparse
weight vector. So the cost function is

minD,W
1

2
‖X −DW‖2 + α‖W‖1

s.t.‖di‖22 ≤ 1∀i = 1, 2, ....,m.

Built-in dictionary learning module of Scikit learn package
[25] is used for ASA prediction. First we computed dictionary
of size 420×1680 using unlabeled data of size 420×16869.
We have total of 63942 examples of labeled data. After
dictionary is computed, labeled data is transformed using this
pre-computed dictionary. Transformed data is of dimensions
1680×63942. Only tuning parameter is regularization param-
eter α which is set to be 0.05 using grid search method.
Transformed data is fed as feature vectors to SSGO based
regressor to predict accessible surface area of proteins.

E. Principal Component Analysis

Principal component analysis(PCA) is a data modeling
technique to reduce dimensions of data. It is also used to
rotate data to achieve simple structure of data which is useful
from classification or regression point of view. As it reduces
the dimensions as well as redundancy in data, so it increases
speed as well as accuracy for unsupervised feature learning
algorithms. Suppose you are training your algorithm on some
kind of data which has redundancy due to correlation among
adjacent data points PCA will help to get a better representa-
tion of data which is lower dimensional with very little error
as only redundant dimensions are removed.

First step of PCA is to merge all data points or feature
vectors in a single matrix as class labels are not required for
PCA.Then compute the n-dimensional mean vector where n
is the dimension of each feature vector.

m =
1

k

k∑
i=1

xi (4)

Next step is to compute the co-variance matrix using following
equation:

C =
1

k − 1

k∑
i=1

(xi −m)(xi −m)T (5)

Then compute the eigen vectors and corresponding eigen
values of co-variance matrix. Next step is to sort the eigen
values from highest to lowest and choose the eigen vectors



corresponding to top p eigen values. Eigen values define
the length of eigen vectors or amount of variance in the
direction of corresponding eigen vectors. Place the p selected
eigen vectors into projection matrix T . Transform original n-
dimensional data matrix X into new m-dimensional subspace
Y using Y = WTX .

We have implemented PCA using Scikit learn package.
Input data matrix consists of 63942 data points with each
of dimension 420. Dimensionality of input data points is
preserved as all the eigen values are very small and close
with one another. We have selected all the 420 eigen vectors
and transform our data to new subspace using this projection
matrix. The projected data is used as feature vectors to SSGO
based regressor and ASA of proteins is predicted.

F. Deep Neural Network

Deep learning is a new area of machine learning with pur-
pose of learning higher level abstractions in data using complex
structures or multiple nonlinear transformations. One of the
simplest example of deep learning is multilayer perceptron
or feedforward neural network with multiple layers [21]. In
a deep neural network, each layer trains on a distinct set of
features based on the previous layers output. The further you
advance into the network, the more complex and improved
features your nodes can recognize, since the features learned
from the previous layers are used as input to next layers.
These algorithms can be both supervised and unsupervised.
For supervised learning tasks, deep learning algorithms learn
better representation of data reducing redundancy in data.

We have implemented a deep neural network based regres-
sor using Theanets package for neural networks. Only labeled
data is used to train the network. Network consists of three
hidden layers each having 1500 nodes, input layer having 420
nodes and output layer has single node. Learning algorithm
used is rmsprop which is gradient decent based algorithm with
adaptive learning rate. Regularization parameter and learning
rate are set to 0.01 and 0.0001 respectively. All of these
parameters are selected using some rules of thumb available
in literature and grid search.

G. Support vector Regression

ASA prediction problem is formulated as a support vector
regression problem. Each residue in the proteins in the training
set is encoded into a feature vector xi . Then, xi is mapped
(non-linearly) onto an m-dimensional feature space. A linear
model is constructed in this feature space. The predicted ASA
value will be given by

f(x) =

n∑
k=1

wkΦ(x) + b (6)

Here, Φ(x) is the non-linear mapping of feature vectors and b
is the bias. The regression parameters wj and b are estimated
by minimizing the norm of the weights,‖w‖2, and the empiri-
cal risk function on the training samples. In particular Vapnik's
ε-insensitive loss function is used here to minimize the errors.

It is defined by

Lε(y − f(x)) =

{
0, if |(y − f(x))| ≤ ε
|(y − f(x))| − ε, otherwise

(7)

This term sets the tolerance to error in loss function. Errors
smaller than ε are not considered as errors. So overall risk
function to estimate wj has two terms given as:

1

2
‖w‖2 +

C

n

n∑
k=1

Lε(yk − f(xk)) (8)

Where C is a user-settable regularization constant and n is
the total number of training examples. Regularization constant
is to set trade-off between prediction error and complexity of
model. Smaller value of C will simplify the model while larger
value of C will cause overfitting.

Problem can be transformed into constrained optimization
problem by using slack variables. This constrained optimiza-
tion problem is solved by adding Langrange multipliers and
dual form of the problem is developed. If data is not linearly
separable, it can be transformed to some higher dimensional
space using some nonlinear kernel function. We have tried
Radial Basis Function (RBF) to map input data to some higher
dimensional feature space. RBF kernel between two input
features xi and xj is defined as:

K(xi, xj) = exp(−γ‖xi − xj‖2) (9)

Where parameter γ is user settable and it defines the spread
of data. Dual form of above mentioned problem is solved by
using quadratic programming solver [19]. It is implemented
using Scikit-learn. Scikit-learn is simple and efficient toolbox
for Machine learning in Python.

H. Stochastic Subgradient Optimization based Regressor

Quadratic optimization problem formulated above is time
consuming for larger datasets so stochastic sub-gradient de-
scent algorithm [20] is used which is simple and effective
for solving the optimization problem cast by Support Vector
Machines (SVM). It has an edge over other convex opti-
mization algorithms that its time complexity is linear and
independent of number of data points [20]. For linear kernels,
the total run-time of this algorithm is O( dλε ), where d is a
bound on the number of non-zero features in each example
and λ is the regularization parameter of SVM. Input to this
algorithm is data values, target values, number of iterations and
regularization constant while it outputs parameters of regressor.
On each iteration it operates as follow. Initially, we set weight
vector w to the zero vector. On iteration t of the algorithm, we
first choose a random training example (xit, yit) by picking an
index it ∈ {1, 2, ....,m} uniformly at random. Sub-gradient
of objective function in expression 8 at chosen example is
evaluated and added to previous value of w to update it for
next iteration.

Pseudo code for linear form of SSGO algorithm is shown
in Algorithm 1.

Where S is set of data and target values, λ is regularization
constant, T is number of iterations and η = 1

λt is called
learning rate. It is implemented using numpy package for array
operations of Python programming language.



Fig. 1. (a) Scatter plot between actual and predicted ASA using PSSM based features and SSGO algorithm (b) Scatter plot between actual and predicted ASA
for deep neural network with Blosum 62 based features

Algorithm 1: Stochastic Sub-gradient Optimization Al-
gorithm

Input: S, λ, T
1 INITIALIZE W1 = 0
2 for t = 1, 2, ......, T do
3 Choose it ∈ {1, 2, ...., |S|} uniformly at random
4 SET ηt = 1

λt
5 if 〈Wt, Xit〉 − yit > ε then
6 Wt+1 = (1− ηλ)Wt − ηXit;
7 else if yit − 〈Wt, Xit〉 > ε then
8 Wt+1 = (1− ηλ)Wt + ηXit;
9 else

10 Wt+1 = (1− ηλ)Wt

11 end
12 end

III. RESULTS AND DISCUSSION

After cleaning PDB files and removing files shorter than
30 residues length, we were left with a dataset of 63942
examples from 343 unbound protein chains. The parameter
of Vapnik's ε-insensitive loss function was set as 0.01 for
SVR. RBF kernel is used and various values of C and γ
were tried and got best results for C = 0.1 and γ = 0.1.
As quadratic programming based solver was much slower, so
we used stochastic sub-gradient algorithm which is compu-
tationally much faster as compared to first method and gave
prediction accuracy comparable with quadratic programming
based solver. Scatter plot between predicted and actual RASA
is shown in Figure 1(a) for PSSM based features. All the
results using two types of optimization algorithm, three types
of features and three self-taught learning algorithms are men-
tioned in Table I. Among the three types of features used,
PSSM based features are superior features as they include more
information of presence of a residue at a particular location
as well as neighborhood information and almost whole of
the protein universe is traversed to compute these features.

It took about 10 hours to optimize dual form of SVR using
quadratic programming based solver whereas stochastic sub-
gradient based regressor took only 10 minutes to optimize
the basic optimization problem of SVR. We have tried linear,
polynomial and RBF kernel for both methods. First method
produced best results using RBF kernel while second method
linearly solved the problem and produced comparable results.
So SSGO regressor with PSSM features is the finding of
this work. Pearson's correlation coefficient obtained for all

TABLE I. PREDICTION RESULTS SHOWING PEARSON'S CORRELATION
COEFFICIENT BETWEEN PREDICTED AND TRUE ASA VALUES USING

10-FOLD CROSS VALIDATION

self-taught learning algorithms is also presented in Table I.
Results are same using all self-taught learning algorithms.
Self-taught learning algorithms have shown comparable results
with methods without these algorithms which is an indication
that data is already sparse and there is no redundancy in
the data. Our objective was to achieve prediction accuracy
comparable with PSSM based features using Blosum62 and
position dependent k-spectrum based features. Deep neural
network with Blosum62 features has shown improvement in
prediction accuracy as these features are based on similarity
information of residues. Position dependent k-spectrum has not
shown any improvement because of its sensitivity to position of
residues in protein sequence. Shifting of residues in sequence
causes significant changes in these features. PSSM based
features are much superior as compared to other two features
as it requires traversal of almost whole of protein universe
to compute these features. It requires lot of data and time
to compute these features so we have not considered these
features for self-taught or deep learning implementation. On



other hand, Blosum62 features are simple features and easy
to compute. So the improvement in prediction accuracy with
Blosum62 based features is mainly due to the use of deep
neural network. Scatter plot between predicted and actual ASA
values for deep neural network is shown in Figure 1(b).

IV. CONCLUSION & FUTURE WORK

We have used quadratic programming to solve dual form
of kernelized SVR to predict ASA which is time consuming
but use of SSGO algorithm for prediction of ASA has given
comparable results with first method with much lesser time
complexity. SSGO algorithm has an advantage over other
methods that its computation complexity does not depend upon
number of data points rather it depends upon dimensions of
feature vectors and the learning rate used. It has been shown
that using Position Specific Scoring Matrix (PSSM) as feature
has significantly improved the prediction accuracy of SVR as
compared to other two types of features. In the end we can
conclude that using SSGO based regressor along with PSSM
based features is time efficient and reasonably accurate method
to cope up the problem of big data for ASA prediction of
proteins. One very important finding of this research work is
use of deep learning and self-taught learning algorithms to
predict ASA of proteins as a large amount of unlabeled data of
proteins is available. It will also solve the problem of suitable
feature selection stage for prediction of protein properties.

Using self-taught learning algorithms, we got same results
as with simple SSGO regressor but one very important finding
of the work is use of unlabeled data to learn protein universe.
Large amount of unlabeled data is available in the form of
protein sequences. According to statistics, about 30 million
protein sequences are available in non redundant database but
structural information of only 1,12,561 proteins is available
[26]. It can urge researchers to use these algorithms and
unlabeled data to solve problems in Bioinformatics. In future
these algorithms can be used to predict multiple properties
simultaneously as it has shown improvement in performance
of predictors using deep neural networks [13] [15] [14].

REFERENCES

[1] Joseph A. Marsh, “Buried and Accessible Surface Area Control Intrinsic
Protein Flexibility,” Journal of Molecular Biology, vol. 425, no. 17, pp.
3250–3263, Sept. 2013.

[2] Song Liu, Chi Zhang, Shide Liang, and Yaoqi Zhou, “Fold recognition
by concurrent use of solvent accessibility and residue depth,” Proteins:
Structure, Function, and Bioinformatics, vol. 68, no. 3, pp. 636–645,
2007.

[3] Jun-Feng Xia, Xing-Ming Zhao, Jiangning Song, and De-Shuang
Huang, “Apis: accurate prediction of hot spots in protein interfaces
by combining protrusion index with solvent accessibility,” BMC
bioinformatics, vol. 11, no. 1, pp. 174, 2010.

[4] Zheng Yuan, Kevin Burrage, and John S. Mattick, “Prediction of
protein solvent accessibility using support vector machines,” Proteins:
Structure, Function, and Bioinformatics, vol. 48, no. 3, pp. 566–570,
Aug. 2002.

[5] Minh N. Nguyen and Jagath C. Rajapakse, “Prediction of Protein
Relative Solvent Accessibility with a Two-Stage SVM,” Approach,
Proteins: Structure, Function, and Bioinformatics, pp. 30–37, 2005.

[6] Stephen R Holbrook, Steven M Muskal, and Sung-Hou Kim, “Predict-
ing surface exposure of amino acids from protein sequence,” Protein
Engineering, vol. 3, no. 8, pp. 659–665, 1990.

[7] Gianluca Pollastri, Pierre Baldi, Pietro Fariselli, and Rita Casadio,
“Prediction of coordination number and relative solvent accessibility
in proteins,” Proteins: Structure, Function, and Bioinformatics, vol. 47,
no. 2, pp. 142–153, 2002.

[8] Shandar Ahmad, M. Michael Gromiha, and Akinori Sarai, “Real value
prediction of solvent accessibility from amino acid sequence,” Proteins:
Structure, Function, and Bioinformatics, vol. 50, no. 4, pp. 629–635,
Feb. 2003.

[9] Zheng Yuan and Bixing Huang, “Prediction of protein accessible surface
areas by support vector regression,” Proteins, vol. 57, no. 3, pp. 558–
564, Nov. 2004.

[10] Zheng Yuan and Timothy L. Bailey, “Prediction of protein solvent
profile using SVR,” Conference proceedings: ... Annual International
Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Conference,
vol. 4, pp. 2889–2892, 2004.

[11] Rafa Adamczak, Aleksey Porollo, and Jarosaw Meller, “Accurate pre-
diction of solvent accessibility using neural networksbased regression,”
Proteins: Structure, Function, and Bioinformatics, vol. 56, no. 4, pp.
753–767, Sept. 2004.

[12] Aarti Garg, Harpreet Kaur, and GPS Raghava, “Real value prediction of
solvent accessibility in proteins using multiple sequence alignment and
secondary structure,” Proteins: Structure, Function, and Bioinformatics,
vol. 61, no. 2, pp. 318–324, 2005.

[13] Rafał Adamczak, Aleksey Porollo, and Jarosław Meller, “Combining
prediction of secondary structure and solvent accessibility in proteins,”
Proteins: Structure, Function, and Bioinformatics, vol. 59, no. 3, pp.
467–475, 2005.

[14] Yanjun Qi, Merja Oja, Jason Weston, and William Stafford Noble, “A
Unified Multitask Architecture for Predicting Local Protein Properties,”
PLoS ONE, vol. 7, no. 3, pp. e32235, Mar. 2012.

[15] Rhys Heffernan, Kuldip Paliwal, James Lyons, Abdollah Dehzangi,
Alok Sharma, Jihua Wang, Abdul Sattar, Yuedong Yang, and Yaoqi
Zhou, “Improving prediction of secondary structure, local backbone
angles, and solvent accessible surface area of proteins by iterative deep
learning,” Scientific reports, vol. 5, 2015.

[16] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and An-
drew Y Ng, “Self-taught learning: transfer learning from unlabeled
data,” in Proceedings of the 24th international conference on Machine
learning. ACM, 2007.

[17] Andrew Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72,
2011.

[18] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro, “Online
dictionary learning for sparse coding,” in Proceedings of the 26th
Annual International Conference on Machine Learning. ACM, 2009.

[19] Chih-Chung Chang and Chih-Jen Lin, “Libsvm: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 3, pp. 27, 2011.

[20] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter,
“Pegasos: primal estimated sub-gradient solver for SVM,” Mathematical
Programming, vol. 127, no. 1, pp. 3–30, Oct. 2010.

[21] Yoshua Bengio, “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[22] Howook Hwang, Thom Vreven, Jol Janin, and Zhiping Weng, “Protein-
Protein Docking Benchmark Version 4.0,” Proteins, vol. 78, no. 15, pp.
3111–3114, Nov. 2010.

[23] Matthias Heinig and Dmitrij Frishman, “STRIDE: a web server for
secondary structure assignment from known atomic coordinates of
proteins,” Nucleic Acids Research, vol. 32, no. Web Server issue, pp.
W500–502, July 2004.

[24] Leif Johnson, “Theanets 0.6.2,” 2015.
[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al., “Scikit-learn: Machine
learning in python,” The Journal of Machine Learning Research, vol.
12, pp. 2825–2830, 2011.

[26] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland,
TN Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne, “The
protein data bank,” Nucleic acids research, vol. 28, no. 1, pp. 235–242,
2000.


