
University of Florence
Department of Information Engineering

Ph.D. Program in Smart Computing

Graph Neural Networks for

Molecular Data

Candidate

Pietro Bongini

Supervisors

Prof. Monica Bianchini

Prof. Franco Scarselli

PhD Coordinator

Prof. Stefano Berretti

Cycle XXXIV, years 2018-2022

Ph.D. Program in Smart Computing

Unversity of Florence, University of Pisa, University of Siena

PhD Thesis Committee:

Prof. Alessandro Di Stefano

Prof. Markus Hagenbuchner

Prof. Marco Maggini

Prof. Stefano Cagnoni

Prof. Battista Biggio

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Smart Computing.

Abstract

Graphs are a very important and common form of data representation, pro-

viding information on data entities and their relationships. Deep Learning

techniques, and in particular Deep Neural Networks have recently known a

great development and have been employed in solving tasks of increasing

complexity and variety. Graph Neural Networks are Deep Neural Networks

capable of processing graph structured data with minimal loss of informa-

tion. They have recently known a steady growth, and have been applied to

an increasing number of problems of different nature, leading to the devel-

opment of new theories, models, and techniques. In particular, molecular

data proved to be a very suitable application field for Graph Neural Net-

works, as many biological entities are naturally represented as nodes, edges,

or graphs. In this thesis, three applications of Graph Neural Networks to

molecular data, relevant both from the point of view of Deep Learning and

from that of bioinformatics, are discussed. Molecular graph generation is

an innovative task, in which Graph Neural Networks could help design the

structures of new drug candidates for drug discovery research. Drug side–

effect prediction is another challenging task: predictions are based on het-

erogeneous and complex data that can be processed with Composite Graph

Neural Networks. Protein–protein interfaces can be detected by identify-

ing the maximum clique in a correspondence graph of protein secondary

structures, a problem that can be solved with Layered Graph Neural Net-

works. Moreover, a software framework for the model implementation was

developed. These applications, inspired by real–world problems, constitute

a very good testing ground for the development and evaluation of Graph

Neural Network models. Very promising experimental results provide use-

ful insights and allow to draw interesting conclusions on the capabilities of

Graph Neural Networks in analyzing and generating molecular data.

3

4

Contents

1 Introduction 11

1.1 Graph Neural Networks in Bioinformatics 11

1.2 Thesis Summary . 12

1.2.1 Main Contributions of the Thesis 15

1.2.2 Structure of the Thesis 16

2 Deep Learning on Structured Data 19

2.1 Deep Learning . 20

2.1.1 From Machine Learning to Deep Learning 20

2.1.2 Deep Neural Networks 21

2.1.3 Learning with Deep Models 22

2.2 Machine Learning on Structured Data 23

2.2.1 Structured Data Types 23

2.2.2 Structure–Oriented Models 24

2.3 Graph Neural Networks . 26

2.3.1 The Graph Neural Network Model 27

2.3.2 Learning with Graph Neural Networks 29

2.3.3 Composite Graph Neural Networks 30

2.3.4 Approximation Power of Graph Neural Networks . . 31

2.3.5 Models and Applications of Graph–based Models . . 33

2.4 Biological Problems on Graphs 34

2.4.1 Graph Data in Biology 34

2.4.2 Graphs in Drug Discovery 35

2.4.3 Bioinformatics and Graph Neural Networks 35

3 ML Applications to Molecular Data 37

3.1 Machine Learning in Drug Discovery 37

3.2 Molecular Graph Generation 38

5

6 CONTENTS

3.3 Drug Side–Effect Prediction 39

3.4 Prediction of Protein–Protein Interfaces 40

4 GNN keras 43

4.1 Motivation and Significance 43

4.2 Software Description . 44

4.3 Conclusions . 46

5 Molecular GNN for Drug Discovery 49

5.1 Model Implementation . 50

5.2 Method . 51

5.2.1 Generative Algorithm 51

5.2.2 Implementation with Graph Neural Networks 52

5.2.3 Graph Preprocessing 55

5.2.4 Node Ordering . 56

5.3 Experiments and Results . 57

5.3.1 Dataset Description 57

5.3.2 Experimental Setup 58

5.3.3 Evaluation . 59

5.3.4 Results and Discussion 61

5.4 Conclusions . 68

6 Drug Side–Effect Prediction with GNN 69

6.1 Dataset . 71

6.2 Method . 75

6.2.1 Model Implementation 75

6.2.2 Inductive–transductive learning scheme 76

6.2.3 Experimental setup 76

6.3 Results and Discussion . 78

6.3.1 Ablation Studies . 78

6.3.2 Comparison with Other Models 80

6.3.3 Usability of DruGNN 81

6.4 Conclusions and Future Work 83

7 GNN for the prediction of PPI 85

7.1 Materials and Methods . 86

7.1.1 Dataset Construction 86

7.1.2 GNN Implementation 88

CONTENTS 7

7.1.3 Experimental Setup 89

7.2 Experimental Results . 90

7.3 Conclusions . 91

8 Other Works 93

8.1 Towards smart learning on graphs 94

8.2 GlyPipe: Opening New Protein Surface Pockets 94

8.2.1 Glycine–induced formation and druggability score pre-

diction of protein surface pockets 94

8.2.2 Structural bioinformatics survey on disease inducing

missense mutations 97

8.2.3 Structural bioinformatic survey of protein–small molecule

interfaces delineates the role of glycine in surface pocket

formation . 99

8.3 Structured Data in Covid–19 research 100

8.3.1 Interfering with Covid–19 Spike Glycoprotein Trimer-

ization . 100

8.3.2 A bioinformatic approach to investigate structural and

non–structural proteins in human coronaviruses . . . 102

8.4 Predicting the Formation of Alpha–helices 103

8.5 Caregiver–Matcher . 106

8.6 DL Applications to Image Analysis 107

8.6.1 Deep Learning Techniques for Dragonfly Action Recog-

nition . 108

8.6.2 Fusion of Visual and Anamnestic Data for the Classi-

fication of Skin Lesions with Deep Learning 109

9 Conclusions and Future Developments 111

8 CONTENTS

List of acronyms used in the

Thesis

AI : Artificial Intelligence

ANN : Artificial Neural Network

ASA : Accessible Surface Area

CGNN : Composite Graph Neural Network

CNN : Convolutional Neural Network

DL : Deep Learning

DNN : Deep Neural Network

DSE : Drug Side–Effect

GAN : Generative Adversarial Network

GAT : Graph Attention neTwork

GCN : Graph Convolution Network

GNN : Graph Neural Network

LGNN : Layered Graph Neural Network

LSTM : Long Short Term Memory

MG2N2 : Molecular Generative Graph Neural Network

ML : Machine Learning

MLP : Multi–Layer Perceptron

MPNN : Message Passing Neural Network

RL : Reinforcement Learning

RNN : Recurrent Neural Network

SSE : Secondary Structure Element

SVM : Support Vector Machine

VAE : Variational AutoEncoder

9

10 CONTENTS

Chapter 1

Introduction

Machine Learning (ML) is a research field in constant and steady growth,

where solutions are found for problems of increasing variety and complexity.

In the last decades, many breakthrough discoveries have opened new direc-

tions, most of which are far from being fully explored. In this thesis, the

attention is focused on deep supervised learning on structured data, and,

in particular, on the application of Graph Neural Networks (GNNs) [1] to

biological tasks inspired by real–world problems.

1.1 Graph Neural Networks in Bioinformat-

ics

Graph structured data are nowadays ubiquitous, covering topics ranging as

far as social network analysis [2] and molecular property prediction [3], pro-

tein folding [4] and power network analysis [5]. The graph structure itself is

an important part of the information, with graph nodes representing entities

and graph edges accounting for relations between entities [6]. With tradi-

tional ML methods, though, it is not possible to process the graph structure

in its native form. In order to feed a graph to a neural network, it is manda-

tory to obtain a Euclidean version of the data, to then feed the vectors to

an unstructured model. Various methods to encode graphs, graph nodes, or

graph edges, into vectors have been devised, but even the more conservative

ones imply a relevant loss of information, concerning particularly the rela-

tional part of the data. GNNs, instead, can process the graph natively, with

minimal loss of information [7]. Since they were first introduced [8], many

11

12 CHAPTER 1. INTRODUCTION

different model versions have been devised, and their successful applications

to graph structured data have become countless [9].

Biological and chemical data are one of the most trending fields of appli-

cation of graph–structured models [10]. Graphs describe very well many

different aspects of chemistry, biology, and bioinformatics. For instance, the

structural formulas of molecules are traditionally represented as graphs, in

which each node represents an atom and each edge a chemical bond between

two atoms. Larger molecules, such as polymers, can be described by graphs

in which each node corresponds to a group of atoms. Protein structures

are also represented as graphs, in which nodes correspond to aminoacids or

secondary structures, depending on the scale of representation. Interaction

graphs of genes, transcripts, or proteins, metabolic networks, pathways, and

many other graph data can be cited along with these examples.

GNNs can be applied on any graph dataset, going from sets composed of

many small graphs (e.g. drug structure databases) to a single graph repre-

senting a large network of entities (e.g. a gene interaction network). They

can solve various types of problems: graph property prediction, edge prop-

erty prediction, and node property prediction, each in both regression and

classification settings. This makes these models extremely adaptable and,

given also the aforementioned properties, capable to match the extraordinary

variety of biological problems on graphs. GNNs can also be modified in order

to solve even more specific tasks: they can be used to develop graph gen-

erative models [11]; attention mechanisms can make the models explainable

[12]; hierarchical versions can process large graphs with complex structures

[13]; composite GNNs can process heterogeneous graphs [14].

1.2 Thesis Summary

This thesis is focused on GNN applications to molecular data, solving biolog-

ical tasks inspired by real–world problems. A broader view on ML algorithms

for structured data is provided. Biological problems on structured data are

presented and discussed, in the scope of applying the previously mentioned

ML algorithms, with a particular focus on GNNs. The relevant literature in

this field is reviewed, in order to put the foundations for the presentation

and discussion of the work.

The development of a software framework for the implementation of GNNs

is discussed. The software is based on the well–known Keras ML library,

1.2. THESIS SUMMARY 13

and it has been used in all the other research works presented in this thesis.

It constitutes a key tool for the implementation of the original GNN model

for a wide variety of possible scientific applications, including classification,

regression, and generation tasks, that can be either node, edge, or graph

focused. Three applications, which are relevant from the point of view of

ML as well as from that of bioinformatics, are then illustrated.

The first is a GNN model for the generation of molecular structures: Molec-

ular Generative Graph Neural Networks for drug discovery (MG2N2). This

approach explores the possibility of generating molecular graphs sequentially

and with GNNs. Generating molecular graphs of potential drugs can be a

fundamental help for drug discovery processes, exploring the space of pos-

sible new compounds way farther from existing molecules than traditional

techniques do. From the point of view of machine learning, graph genera-

tion is a challenging problem, and a less explored direction when compared

to classification and regression tasks. Generating graphs is difficult because

models have to deal with multiple decisions involving discrete entities (e.g.

does a node exist or not?). Generative algorithms for molecular graphs are

based on recurrent models and Reinforcement Learning (RL), while GNN–

based generators are a promising but yet to be explored solution. Sequential

generation consists of building the graph one step at a time, adding nodes

and edges progressively, in contrast to single–step generation, in which a

graph’s adjacency and feature matrices are generated in one go. Sequential

generation, though bringing issues related to node ordering and training bi-

ases, is generally more efficient for small compounds, and more explainable

(the construction of single nodes can be analyzed). Sequential generative

models for graphs are usually based on Recurrent Neural Networks (RNNs)

or RL models, which respectively analyze the sequence of steps, or the se-

quence of decisions, needed to create the graph, instead of the graph itself.

This work explores the possibility of developing a molecular graph genera-

tive model based on GNNs. The results demonstrate the advantages of using

GNNs, that are capable of re–analyzing the graph at each step, exploiting all

the available structural information for taking the next decision, obtaining

relevant results in terms of quality and novelty of the compounds.

The second application consists in the prediction of Drug Side–Effects (DSE)

with GNNs. Predicting side–effects is a key problem in drug discovery: an

efficient method for anticipating their occurrence could cut the costs of the

experimentation on new drug compounds, avoiding predictable failures dur-

14 CHAPTER 1. INTRODUCTION

ing clinical trials. A dataset is built for this task, including relevant heteroge-

neous information coming from multiple well known and publicly available

resources. The dataset consists of a single graph, composed of drug and

gene nodes, and their interactions. Drug nodes are associated to a set of 360

common side–effects, in a multi–class multi–label node classification setting,

exploiting a composite GNN model, specialized on heterogeneous graph–

structured data. Since the purpose of the model is that of predicting DSEs

of new drugs based on those of previously known compounds, we exploit

transductive learning to better adapt the model to this setup. Given its na-

ture, the problem is particularly interesting in the ML scope, providing an

interesting application case of GNNs to a complex task (multiple non–mutual

exclusive classes to be predicted in parallel), on heterogeneous data, and in a

mixed inductive–transductive setting. The results show that encoding these

data in a graph structure brings an advantage over unstructured data, and

that GNNs exploit the given information better than concurrent models.

The third application consists in the prediction of protein–protein interfaces

with GNNs. Simulating the structural conformation of a protein in silico

is complex and resource demanding. A reliable method for predicting in-

terfaces could improve the prediction of quaternary structures and of the

functionality of a protein. Representing the interacting peptides as graphs,

a correspondence graph describing their interaction can be built. The corre-

spondence graph is then analyzed in search of cliques, that mark the position

of interfaces. Clique detection is a challenging problem in this setting, as the

data distribution is imbalanced (only few nodes belong to cliques) and be-

cause of the complex nature of the data structures. GNNs provide a viable

solution for dealing with this task, with their capability of approximating

functions on graphs. The experimental results show that this solution is

very promising, also compared to other methods available in the literature.

These three applications, additionally to their relevance from the point of

view of research on molecular data, are a good testing ground for GNNs.

This thesis presents them in order of importance: the first application is

the most innovative and challenging, since molecular graph generation is a

complex problem and GNNs have not been employed in this task yet; the

second application demonstrates the capabilities of GNNs on a heteroge-

neous relational dataset, built from multiple different data sources; the third

application is more classical, yet it allows to face a relevant biological task,

and to test GNNs in clique detection on an unbalanced dataset. Therefore

1.2. THESIS SUMMARY 15

these three problems allow to obtain relevant results, and to draw interesting

conclusions, from the point of view of ML.

Other works, mainly related to bioinformatics and structured data, are then

briefly sketched and discussed. The rest of this Section summarizes the

contributions of the thesis, presented in Subsection 1.2.1, and the thesis

structure, described in Subsection 1.2.2.

1.2.1 Main Contributions of the Thesis

The main contributions of the thesis are summarized below:

1. A software framework, based on Keras, for the implementation of

GNNs in multiple application scenarios, described in publication [P03].

2. A generative model for molecular graphs based on GNNs, described in

publication [P01].

(a) MG2N2, a modular, GNN–based framework for the sequential gen-

eration of molecular graphs.

(b) Experimental results on two drug discovery benchmarks, placing

the model among the state–of–the–art approaches.

(c) An evaluation metric for the generation performances that aggre-

gates pre–existing evaluation scores, accounting for both validity,

novelty, and uniqueness of the generated compounds.

3. A GNN predictor of the occurrence of DSEs, described in publication

[P02].

(a) A relational dataset that integrates multiple information sources

into a network of drugs and genes, with different types of features

and connections.

(b) A predictor based on GNNs and developed on our dataset, that

deals with a multi–class multi–label classification task on hetero-

geneous data, in a mixed inductive–transductive setting.

(c) Experimental validation of the predictor, with interesting results

highlighting the gap with a non–graph–based method.

(d) Ablation studies on DSEs and data sources, that underline their

importance for the learning process.

16 CHAPTER 1. INTRODUCTION

4. A GNN–based method for the identification of protein–protein inter-

faces, described in publication [P11]

(a) A dataset of graphs describing protein–protein interactions, built

on reliable and publicly available sources.

(b) A GNN predictor trained on our dataset, that successfully detects

cliques (corresponding to interactions) in a highly unbalanced set-

ting, with very promising results.

1.2.2 Structure of the Thesis

The thesis is organized in chapters, sections, and subsections, in order to

provide a clear structure for the explanation of the relevant aspects of Deep

Learning (DL), methods for structured data, application examples of GNNs,

and the other works carried out during the Ph.D.

After this introductive Chapter 1, Chapter 2 describes the general concepts

of DL, its application to graphs and other data structures. A detailed de-

scription of the GNN model is given, along with its applications to biological

problems, with a particular focus on drug discovery and bioinformatics.

Chapter 3 gives a review of the literature regarding the research fields rele-

vant in the scope of this thesis, giving insights on theoretical and practical

works concerning the application of GNNs to biological problems, and on

the classical methodologies and state of the art in the tasks addressed in this

thesis.

Chapter 4 presents one of the main contributions of the thesis: a software

framework for the implementation of GNNs on a wide variety of possible

problems. The framework is built on Keras, a well–known and efficient li-

brary for the implementation of DL models, belonging to the Tensorflow

environment. Our framework provides a easy to use and lightweight tool for

implementing the original GNN model in scientific applications, such as the

other contributions described in this thesis.

Chapter 5 presents the most important contribution of the thesis: the de-

velopment of a generative model for molecular graphs based on GNNs, and

its application to two relevant drug discovery datasets. Insights on various

aspects of the methodology, also concerning open problems in the field, are

given. The experimental results are presented and compared to other state of

the art methods, leading to interesting conclusions and future developments

1.2. THESIS SUMMARY 17

of the presented approach.

Chapter 6 describes another main contribution of this thesis. It corresponds

to the development of a framework based on GNNs for the prediction of

DSEs. A relational dataset of drugs and human genes is built, in order to

take into account all the heterogeneous data relevant for the prediction of

DSEs. Well known publicly available reliable data sources are used in the

dataset construction process. A GNN predictor is then trained and tested

on this dataset, leading to very promising results.

Chapter 7 presents the last contribution of this thesis: a GNN model for the

prediction of protein–protein interfaces. Given the graphs describing the two

structures of a pair of peptides, a correspondence graph is built accounting

for structural similarities and contacts. Clique detection on the correspon-

dence graph is a reliable method for finding the interfaces between the two

peptides. A GNN model capable of predicting cliques in this setting is pre-

sented, with interesting experimental results.

Chapter 8 briefly sketches the other works carried out during the Ph.D.,

not related to the main contributions of this thesis, yet still relevant to ML

and bioinformatics. These include the development of an algorithm for the

prediction of glycine–mutations of protein structures, in order to induce the

formation of transient pockets that could interact with drug molecules. This

approach is also exploited for the prediction of possible mutations that could

disrupt the coronavirus spike protein structure.

Finally, Chapter 9 draws the conclusions of this thesis, suggesting the fu-

ture developments of the works presented, and discussing their relevance

and meaning.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Deep Learning on Structured

Data

This chapter introduces the basic concepts of DL, the applicability of DL

techniques to structured data, and, in particular, to graphs. An insight on

biological data for which DL approaches are particularly suitable is provided,

introducing the three main applications described in this thesis. Section 2.1

describes DL in the wider framework of Artificial Intelligence (AI), gives an

introduction to ML in general in Subsection 2.1.1, with a focus on Artificial

Neural Networks (ANNs), and in particular Deep Neural Networks (DNNs),

in Subsection 2.1.2, and the learning algorithms for training these models

in Subsection 2.1.3. Section 2.2 introduces models and algorithms for str-

uctured data, describing the data types in Subsection 2.2.1, and the models

in Subsection 2.2.2. Section 2.3 defines GNNs, sketching a general model in

Subsection 2.3.1, how it learns in Subsection 2.3.2, a composite model for

heterogeneous graphs in 2.3.3, a theoretical analysis of the approximation

capabilities of GNNs in Subsection 2.3.4, and an overview of the principal

models and their applications in Subsection 2.3.5. Finally, Section 2.4 de-

scribes how GNNs are applied to molecular data: Subsection 2.4.1 reviews

biological problems involving graph data, Subsection 2.4.2 gives a deeper

view on graph–based drug discovery tasks, and Subsection 2.4.3 introduces

the applications of GNNs to these bioinformatics problems.

19

20 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

2.1 Deep Learning

DL is the branch of AI that studies how ML models with deep architectures

learn to solve complex tasks. AI is the discipline that broadly studies com-

puters that behave in an intelligent way, ranging from systems that simply

replicate solutions designed by human experts, to ML models that learn their

solutions from experience. From a mathematical point of view, a ML model

learns a function f associating an output y to an input x, according to its

parameters θ, as described in Eq. (2.1):

f(x, θ) = y (2.1)

The training can be either supervised, when the correct value ŷ of f(x) is

known, or unsupervised, when the ML model learns from unlabeled data,

using only the information attached to the examples themselves.

2.1.1 From Machine Learning to Deep Learning

The concept of ML was first introduced in a 1959 study [15], which can

be considered one of the first works on learning algorithms. The initial

works, though defining the basic concepts and ideas behind learning ma-

chines, lacked an efficient learning mechanism. As a consequence, the real

breakthrough didn’t come before the 1980s, with the introduction of the

BackPropagation algorithm [16]. ML encompasses many different paradigms

of learning machines:

• RL [17] studies how agents can learn to take actions for solving a

problem, through a mechanism based on rewards (reinforcements);

• Support Vector Machines (SVMs) learn weights to discriminate data

linearly, or with kernels that account for non–linearity [18];

• ANNs combine artificial neurons [19] to approximate non–linear func-

tions of variable complexity.

• Self–Organizing Maps are a special type of ANN, based on competitive

learning rather than inductive learning. They are an unsupervised

model: neurons are organized into a regular grid (map) and learn to

activate based on the input and on the activation of their neighbors

[20].

2.1. DEEP LEARNING 21

• Clustering methods are unsupervised learning algorithms that can be

trained to associate data entities by distance in the feature space [21].

• Random forests [22] learn to build ensembles of decision trees that fit

training data according to supervisions.

• Gradient boosting techniques [23] realize a strong decision model by

building an ensemble of several weak decision models (usually decision

trees).

DL is based on early theoretical works that date back to the 1970s and 1980s.

Before DL could know the fast and revolutionary development it has known

in the 2010s (and is still ongoing at the present day), the issue to be solved

were long–term dependencies, and the consequent vanishing gradient prob-

lem [24]. Many different solutions were proposed, with the development of

models based on different paradigms, and designed for different data struc-

tures that will be overviewed in Subsection 2.2.2.

2.1.2 Deep Neural Networks

In the last decades, a particular class of supervised ML models, namely

ANNs, became very popular for solving tasks of increasing complexity, out-

performing other ML techniques more and more often. ANNs exploit the

concept of artificial neuron: a simple processing unit that applies a linear

or non–linear function to the weighted sum of its inputs [19]. Artificial neu-

rons serve as building blocks of ANNs, which, depending on the number of

neurons and their organization, can solve problems of variable complexity.

The architecture of an ANN defines this organization, with the units being

usually arranged into subsequent layers. A higher number of layers, and of

units in each layer, increases the computational capabilities of ANNs, but

also make training harder. In particular, the number of layers can be referred

to as the depth of a network, and networks with more than one hidden layer

(i.e. any layer which is not observable from outside, not being the input

layer or the output layer) are called DNNs. The simpler type of ANN is the

Multi–Layer Perceptron (MLP), which takes in input a vector of features

and calculates an output function defined according to the problem under

analysis. It was proved that MLPs are universal approximators on Euclidean

data [25, 26, 27], meaning that any association between input and output

vectors can be learned by an MLP with a sufficient quantity of units [26] and

22 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

at least one hidden layer. The four–layered Cognitron can be considered the

first example of DNN [28]. More complex ANNs, and DNNs, were developed

in order to process structured data, and will be examined in Section 2.2.

2.1.3 Learning with Deep Models

Feedforward models are the simplest type of ANNs, where the input signal is

propagated through the N layers L1, L2, ...LN , from input to output, obtain-

ing the network output y. The output y is then compared to the supervision

ŷ, by the means of an error function E(y, ŷ) (also called loss function, or

cost function). E can be derived with respect to the outputs of the single

neurons, obtaining the contribution to the error of each unit. The model is

therefore optimized with an algorithm of the gradient descent family. The

process starts from the calculation of the derivative δE/δyi for each unit i of

the output layer LN . These gradients can then be used to calculate the con-

tribution to the error of the units belonging to the last hidden layer δE/δyj
for each unit j of the hidden layer LN−1, as shown in Eq. (2.2):

δE

δxj

=
∑
i∈LN

δE

δyi

δyi
δxj

(2.2)

This process is repeated in cascade, down to the input layer, as a backward

calculation of the contributions of each unit in the network, and is there-

fore called BackPropagation [16]. These contributions are then exploited

to update the network parameters θ, in order to learn a better configura-

tion according to the error. DNNs, where the number of layers N is large,

are characterized by the long–term dependency problem [24]. Actually, it

is extremely difficult to learn the dependencies between neurons located in

distant layers due to the so called vanishing gradient problem: the deriva-

tive of the error gets smaller when backpropagating to lower network layers,

up to the point in which the layers closer to the input cannot be trained

from experience. This prevents traditional ML algorithms, like standard

BackPropagation, from successfully training DNN models [24]. These issues

were resolved by introducing ad–hoc backpropagation methods, activation

functions like REctified Linear Unit (RELU), and batch normalization.

2.2. MACHINE LEARNING ON STRUCTURED DATA 23

2.2 Machine Learning on Structured Data

Structured data are ubiquitous and have a role of increasing importance in

our daily lives. As the world becomes more interconnected, the amount

and heterogeneity of data regarding each single problem tends to increase,

making relational data and data structures more important every day [9].

2.2.1 Structured Data Types

Euclidean data, in which each entity is described by a simple Euclidean

vector of feature values, is the traditional data type processed by ML models

and ANNs. Real–world data, though, can have a wide variety of different

structures, yet they can be represented by some main categories:

• Sequences are the simpler type of data structure, representing each

entity as part of a temporal or spatial succession of similar entities.

Each entity can be followed by one and only other entity, and can

follow one and only other entity.

• Trees are a generalization of sequences, in which each entity can be

followed by more than one entity, yet each entity follows only one

other (parent) entity.

• Graphs are a generalization of trees, in which entities are represented

as nodes, and relationships of any type between entities are represented

as edges.

• Images are regular grids, a particular type of graph, in which each

pixel can be seen as a node, and edges are present only between nearby

pixels.

These categories describe almost every type of data that can be found in the

real world and online. Just to make some examples:

• Nucleic acids, proteins, temporal sequences of weather observations,

item queues, are naturally represented as sequences.

• Phylogenetic trees, decision trees, hierarchies of entities are trees.

• Protein structures, metabolic networks, molecules, power grids, traffic

systems, citation networks, knowledge graphs, social networks, and the

internet are all examples of graphs.

24 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

• Images can represent almost anything. Radiography and skin images

help the identification of tumors, images of vehicles are exploited to

analyze road usage, photos of human faces can be analyzed to detect

emotions.

Visual examples of these structured data types are provided in Fig. 2.1.

Often, combinations and hierarchies of these structures are found. Just to

make some examples: videos are sequences of images, networks of interact-

ing compounds can be seen as graphs of graphs, phylogenetic trees based on

DNA are trees of sequences, the weather can be analyzed using sequences of

graphs.

Using traditional methods, entities belonging to structures, or belonging to

structures of structures, are encoded into Euclidean feature vectors, exploit-

ing ad–hoc algorithms. Even if these algorithms are usually optimized in

order to retain as much information as possible, they all imply a certain loss.

In Subsection 2.2.2, instead, we will analyze DL solutions for exploiting str-

uctured data in their natural form.

2.2.2 Structure–Oriented Models

DNNs can be defined with complex architectures, in order to adapt the model

to the structure of the data it has to process. The first approaches in this

direction date back to the early days of research on training neural networks

with BackPropagation, as the BackPropagation Through Time algorithm

(BPTT) [29] was published in 1990, just four years after the seminal work

on BackPropagation for feedforward neural networks [16]. The first type of

structured data to be processed with ANNs, as suggested by the concept of

BPTT, were sequences, with the introduction of RNNs [30]. RNNs exploit

the concept of recursion, replicating the same layer (or group of layers) over

each element of the input sequence. The introduction of Long Short–Term

Memories (LSTMs) in 1997 revolutionized this category of models, introduc-

ing the concept of cell gates: special units that can switch on and off signal

(and therefore gradient) propagation, allowing the network to store infor-

mation (memory) spanning an arbitrary number of time steps [31]. Gated

Recurrent Units (GRU) are similar to LSTMs, but only have one gate per

unit (the forget gate) [32]. RNNs can be used for tasks including: natural lan-

guage processing [33], protein secondary structure prediction [34, 35], stock

market prediction [36], motion recognition [37], and speech recognition [38].

2.2. MACHINE LEARNING ON STRUCTURED DATA 25

(a) Sequence (b) Tree

.
(c) Graph (d) Image

Figure 2.1: Some structured data examples. (A) Sequences: The two strands of a DNA

double helix. (B) Tree: a cladogram. (C) Graph: the structural formula of a molecule.

(D) Image: a photo is a collection of numerical values of pixel colour levels.

The same application fields have been explored also with one–dimensional

Convolutional Neural Networks (CNN-1D) [39], and with Transformers [40].

Transformers have revolutionized the field, by introducing an attention mech-

anism that can weigh the sequence elements by importance and overcome

sequence ordering biases [40].

Images are traditionally more complex to process, as they can be a large

input, with a size in the order of the number of pixels. Learning on images

with an MLP is not efficient, as slicing the image to fit into a vector has a

considerable cost in terms of structural information loss. Moreover, process-

ing an image with dense layers is often impossible due to the size of the input

(and consequently of the upper layers). To reduce the number of parameters

and make a trainable ANN model that can process the pixel grid without

slicing it, the breakthrough discovery was the concept of convolutional filter,

employed for the first time in 2012 [41], and based on a theory from 1989

26 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

[42]. The convolutional filter takes in input a small patch of pixels, returning

one single value, in an operation that can be repeated over the whole image.

The operation can be carried out by a neuron, and combined with other con-

volutional filters in a convolutional layer. A Convolutional Neural Network

(CNN) is formed by multiple convolutional layers, combined with pooling

layers for the reduction of the input dimension, and possibly dense layers. A

multitude of CNN architectures have been proposed, in order to apply them

to different tasks, introducing deeper models as the research goes on [43].

The applications include but are not limited to: image classification [41],

segmentation [44], object detection [45], image generation [46]. The depth

of these models have reached the order of hundreds of layers, in particular

after the introduction of networks with residual connections between layers.

These models change the paradigm of forward propagation: each residual

block (composed of a small number of layers) learns to refine the output of

the previous residual block, shortening the gradient path in BackPropaga-

tion [47]. CNNs are not limited to 2D images, and have been generalized to

process 1D sequences, 3D images, and videos (creating recurrent CNNs).

1D, 2D, and 3D grids are particular types of graphs, yet generalizing CNNs

to any kind of graph is impossible. Learning on graphs has always been a

tough problem. Many methods have been devised to extract Euclidean in-

formation from graphs, like, for instance, techniques based on random walks

[48]. A more advanced approach is that of learning kernels that can approxi-

mate functions on graphs [49], also with many applications to bioinformatics

[50]. Some particular cases, like trees and directed acyclic graphs can be pro-

cessed with models of the RNN family [51, 52]. The breakthrough discovery,

in this field, was the theorization of neural networks that can process graphs

by adapting their architecture to the input graph topology, namely GNNs

[1]. These models will be extensively described and discussed in Section 2.3.

2.3 Graph Neural Networks

GNNs were first theorized in 2005, as networks that replicate the topology

of the input graph, and exchange messages between neighbor nodes [8]. The

seminal work, presenting the original GNN model in a full mathematical

formulation dates back to 2009 [1]. GNNs typically act on a graph dataset

D that can be composed of one or more graphs. In any case, even if graphs

can be merged into batches for performance reasons, from the mathematical

2.3. GRAPH NEURAL NETWORKS 27

point of view, each graph is processed independently, and we can therefore

analyze the behaviour of the model on one generic graph G ∈ D at a time.

A graph G = (V,E) is composed of the following:

• A set of nodes N ,

• A set of edges E ⊆ N ×N ,

• Labels, ln ∀n ∈ N , describing the corresponding entities can be asso-

ciated to the nodes,

• Labels, em,n ∀(m,n) ∈ E, describing the corresponding relationships

can be associated to the edges.

• Moreover, it is useful to define a neighborhood function Ne, that, based

on the edges E, associates each node n to the set of its neighbor nodes

Ne(n) ⊂ N .

2.3.1 The Graph Neural Network Model

The GNN model approximates an output function gw, expressing a property

of the whole graph G, of its nodes or a subset of its nodes Nout ⊆ N , or of

its edges or a subset of its edges Eout ⊆ E. To do so, a state xn is associated

to each node n ∈ N , and iteratively updated by a learnable state updating

function fw. The state is a vector of dimension dx, set as a hyperparameter

of the GNN, and initialized by sampling from a random distribution usually

centered on the origin of Rdx . The number of state update iterations K is

determined as a hyperparameter of the model, as well. Given the randomly

sampled initial states x0
n, ∀n ∈ N , the state of any node n at iteration t can

be calculated with fw as in Eq. (2.3):

xt
n = fw(xt−1

n , ln, A({(M(n, m, t)) : m ∈ Ne(n)})). (2.3)

In Eq. (2.3), M is the function defining the message sent from each neighbor

m ∈ Ne(n) to node n, while A is the aggregation function of all the messages

coming from the neighbors Ne(n). In principle, M can be any function that

returns a vector (the message) based on the destination node n, the source

node m, and the label em,n of the edge (m,n) connecting the two nodes.

M could even be learned with a neural network. In the works concerning

this thesis, M always takes the general form defined in Eq. (2.4) with the

28 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

possibility of excluding lm or em,n (when edges are not labeled) from the

computation:

M(n, m, t) = (xt−1
m , lm, em,n) (2.4)

In principle, the aggregation function A can be any function defined on a set

of vectors (the messages), each having dimension dm and returning a single

vector of the same dimension dm. A is usually the sum, average, or maximum

of the single components of the message, but it could even be learned with

another neural network, as it is the case in the (convolutional) aggregations

of GraphSAGE [53]. In the works discussed in this thesis, A is either the

sum or average of the messages, as described by Eq. (2.5):

Asum =
∑

m∈Ne(n)

(xt−1
m , lm, em,n).

Aavg =
Asum

|Ne(n)|

(2.5)

Since the two aggregations are similar, the hyperparameter a can be defined

to select the aggregation function, that takes values 1/|Ne(vi)| or 1, for

obtaining the average or the sum, respectively. Combining all these concepts,

we can rewrite the state updating function in its general final form, as in Eq.

(2.6):

xt
n = fw(xt−1

n , ln, a
∑

m∈Ne(n)

(xt−1
m , lm, em,n)) (2.6)

Once the maximum number of iterations K is reached, the final versions

of the node states xK
n , ∀n ∈ N , are fed in input to the output network,

which approximates the output function gw. In the following, we will define

gw for the three types of problems addressed by GNNs (node based, edge

based, graph based). Once again, we define the general forms of gw, with the

possibility of excluding the labels from the calculation in some application

scenarios.

In node based problems, the output is defined for each node n ∈ Nout, as a

function of its state and label, as in Eq. (2.7):

yn = gw(xK
n , ln) (2.7)

2.3. GRAPH NEURAL NETWORKS 29

In edge based problems, the output is defined for each edge (m,n) ∈ Eout,

as a function of the states of source node m and destination node n, and the

label em,n, as in Eq. (2.8):

ym,n = gw(xK
n , xK

m, em,n) (2.8)

Finally, in graph based problems, the output is calculated over each node

n ∈ Nout as in node based problems, and then averaged over the output

nodes. This is defined in Eq. (2.9):

yG =
1

|Nout|
∑

n∈Nout

gw(xK
n , ln) (2.9)

2.3.2 Learning with Graph Neural Networks

The state updating function fw in Eq. (2.6) is learned and implemented

with an MLP, namely the state network. Another MLP, namely the output

network, learns to approximate gw. These two MLPs are used as building

blocks, and replicated over the topology of the graph in order to obtain the so

called encoding network. Weight sharing is exploited between all the copies

of the MLPs, allowing to manage long–term dependencies between distant

nodes in the graph.

The output network takes in input the node state after the last iteration

of state updating, and is therefore linked in cascade to the state network.

Moreover, copies of the state network are replicated over each state updating

iteration, and weight sharing is exploited also in this time dimension. As a

consequence, our encoding network can be unfolded in time, obtaining a

network with the same topology of the input graph, with K copies of the

state MLP on each node and a copy of the output MLP on each node (if the

problem is graph focused or node focused) or on each edge (if the problem

is edge focused). A sketch of the unfolded encoding network is provided in

Fig. 2.2.

Please note that the unfolded encoding network corresponds to a DNN with

recurrent layers. In particular, given the numbers of layers in the state MLP

Lf and in the output MLP Lg, the network has a depth of K × Lf + Lg

layers. Weight sharing in space and time makes the model scalable, invari-

ant in the number of parameters to graph size and number of iterations,

and less prone to overfitting. Consequently, to optimize the parameters of

30 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

Figure 2.2: Sketch of how the GNN model produces the encoding network and its unfolded

version on an example input graph (for a node focused problem).

the network, and therefore implement the learning process, it is sufficient to

apply a regular optimization algorithm based on BackPropagation. Typical

examples include stochastic gradient descent or the Adam optimizer [54]. A

loss function, depending on the problem under analysis (e.g. cross–entropy

for classification), is applied to the outputs and the targets, computing the

error. The error gradient is then calculated with respect to all of the param-

eters of the network, averaging the contribution over all the replicas of each

parameter, and applying the resulting weight differences.

2.3.3 Composite Graph Neural Networks

Composite Graph Neural Networks (CGNNs) are a particular type of GNN

that can process heterogeneous graphs [14]. Heterogeneous graphs are often

used to represent information about different types of entities interacting in

multiple modes. Typical examples of this setting are knowledge graphs, in

which entities of different types, and often with different features, need to

be encoded into a single relational graph. Molecular graphs can also be seen

as heterogeneous graphs, by distinguishing atom species as different node

types.

CGNNs label edges representing different types of relationships with the one–

hot encoding of the relationship type. If edge features are present, these are

concatenated to the edge labels. Node types instead are treated as subsets

of the node set N , and each type has a dedicated state network. As a

consequence, given the number of node types nt in the dataset, the model

employs nt different state networks to build its encoding network. Each

state network Fi learns its own version fw,i of the state updating function in

Eq. (2.6). The output dimension of each Fi is the same and corresponds to

the state dimension dx. To allow nodes to communicate through messages

2.3. GRAPH NEURAL NETWORKS 31

which are coherent between different types, the node label is not part of

the message, as it can assume different dimensions and meaning for different

node types. The state updating function fw,i can therefore be rewritten as

in Eq. (2.10):

xt
n = fw,i(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m , em,n)) : i = T [n] (2.10)

where, to select the correct fw,i, a vector T associating each node n ∈ N to

its type i is given to the GNN as part of the dataset. The output functions

described in Eq. (2.7, 2.8, 2.9), are still valid instead, as each node has the

same state dimension. The only modification consists in not sending the

node label ln in input to the network implementing gw. Please note that

this allows, in all the three cases (node, edge, or graph focused problems),

to use a unique output network even in the most general case, in which Nout

contains nodes of all the types defined in the dataset.

The learning process described in Subsection 2.3.2 still holds. The only

difference, in the heterogeneous setting, consists in the fact that the encoding

network, and consequently the unfolding network, are composed of nt state

networks and one output network as building blocks, as represented in Fig.

2.3. As a consequence, the parameters the GNN has to learn are distributed

in nt + 1 MLPs, in contrast to the two MLPs of the homogeneous setting.

Figure 2.3: Sketch of how the CGNN model produces the encoding network and its

unfolded version on an example input graph (for a node focused problem). Different node

types are represented by different versions of the state network (green and red).

2.3.4 Approximation Power of Graph Neural Networks

The approximation capabilities of DNNs, and in particular MLPs, have been

studied and described in various theoretical works [26, 25, 55]. GNNs,

32 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

though, operating on the graph domain, have to withstand different chal-

lenges, also concerning symmetries in the data structures. The computa-

tional power of GNNs was analyzed in a work [7] published in parallel with

the original model [1]. Given a graph G = (V,E), to analyze the computa-

tion of the state of a generic node n in the graph, the concept of unfolding

tree is introduced: the unfolding tree is built by taking n as the root, adding

its neighbors as child nodes, and then recursively adding the neighbors of

each child node as its children. The unfolding tree obtained is described in

Eq. (2.11):

T k
n = Tree(xn, {T k−1

m , ∀m ∈ Ne(n)}) if k > 1

T 1
n = Tree(xn)

(2.11)

The unfolding tree T k
n represents all the information on node n available to

the GNN after k iterations. Therefore, two nodes n and m with identical

unfolding trees T k
n = T k

m are indistinguishable to the network and are said

to be unfolding equivalent, for k larger or equal to the diameter of G. It

was demonstrated that GNNs are universal approximators for all functions

that preserve the unfolding equivalence (i.e. functions that produce the same

result on any pair of unfolding equivalent nodes) [7].

An alternative method to evaluate the computational power of GNN mod-

els was recently introduced in [56]. It is based on the Weisfeiler–Lehman

graph isomorphism test [57], which associates a canonical form (based on

node adjacency) to each graph, and recognizes two graphs as isomorphic

if they share the canonical form. The one dimensional Weisfeiler–Lehman

test (1–WL) cannot distinguish all the possible pairs of graphs, because

the same canonical form can correspond to multiple non–isomorphic graphs.

Therefore higher order tests are defined: the D–dimensional test (D–WL)

is based on tuples of nodes of dimension D. The capacity of distinguishing

non–isomorphic graphs grows with D.

GNN models can be classified according to their capability of simulating

the Weisfeiler–Lehman test. Models that can simulate the 1–WL test are

classified as 1–WL (at least as powerful as the one–dimensional Weisfeiler–

Lehman test). Many currently used models are less powerful than 1–WL, as

they fail to simulate the test. Interestingly, the 1–WL test is analogous to

an iteration of neighborhood aggregation in recurrent GNNs: consequently,

these models have been demonstrated to be all of class 1–WL, provided they

2.3. GRAPH NEURAL NETWORKS 33

use injective neighborhood aggregation and output functions [56]. Currently,

GNNs cannot simulate higher order Wesifeiler–Lehman tests, and no model

has been classified as 2–WL or greater [56], but some efforts have been made

in the direction of higher order GNNs, which require non–local neighborhood

aggregation [58]. Moreover, unfolding trees and the Weisfeiler–Lehman test

have been demonstrated to be equivalent methods for the evaluation of the

approximation power of GNNs [59].

2.3.5 Models and Applications of Graph–based Mod-

els

Since the original GNN model was introduced, in 2009, many models of this

class have been introduced [60]. Just the following year, the Layered Graph

Neural Network (LGNN) model was introduced: LGNNs are composed of

multiple GNNs connected in cascade, in order to progressively refine the

model’s output and obtain a greater learning capability with respect to a

single GNN [61]. Models of the GNN family can be classified in two broad

subfamilies: recurrent GNNs, and convolutional GNNs. The former, which

also include the original model [1], are based on message passing between

nodes and the recurrent calculation of node states. The latter, also known

as Graph Convolution Networks (GCNs), are based on the concept of graph

convolution: similarly to what happens in CNNs, a convolutional filter is

applied on each node (and its neighborhood) to calculate its label in the

subsequent layer, or its output.

Examples of recurrent GNNs are Graph Nets [62], Gated Graph Sequence

Neural Networks [63], Message Passing Neural Networks [64], and Graph

Isomorphism Networks [56]. The first convolutional GNNs to be introduced

were standard GCNs [65], followed by spectral convolution models [66, 67].

GraphSage generalized the concept of convolutional GNN by introducing dif-

ferent types of neighbor aggregation [53]. GCNs were also combined with at-

tention mechanisms in Graph Attention Networks [68] and subsequent works,

improving the predictions with information on important relationships [69]

and dealing with explainability issues [12].

Graph–based models can be applied on any type of graph, in real world or

synthetic problems. In the web domain, GNNs have carried out tasks of

spam detection [70], community detection [65], sentiment analysis [2], con-

tent interaction prediction [71]. GNNs can be employed to predict logical

34 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

relations in knowledge graphs and future links in citation networks [72], and

as recommendation systems [73, 74]. They have solved many node classi-

fication and regression tasks, as well as graph classification and regression

tasks [9], also in a heterogeneous setting [75]. Models of the GNN family

have showed performances at or close to the state of the art in problems of

graph matching [76], weather forecasting [77], power grid analysis [5], and

many others.

In the biological domain, GNNs can calculate molecule properties [64, 78],

predict protein–protein interfaces [4], and classify compounds according to

their mutagenicity [3] or activity against the HIV virus [79, 80].

2.4 Biological Problems on Graphs

The introduction of computational methods has opened new discovery routes

in biology and medicine, leading to the development of interdisciplinary fields

of research like bioinformatics and medical informatics. DL techniques are

increasingly popular in these fields, providing many interesting solutions to

previously untreatable problems, cutting the costs and times of traditional

methods, and rethinking existing processes in a more efficient way.

2.4.1 Graph Data in Biology

In the biological domain, graphs are a very useful and diffused form of data

representation. Just to start, structural formulas of molecules have always

been perceived as labeled graphs, in which each atom corresponds to a node,

whose label accounts for the atom type, and each chemical bond to an edge,

whose label is the type of bond. These structures are also known in the

literature as molecular graphs. The molecular graphs allow to predict many

properties of each molecule, such as mutagenicity, anti–HIV or anti–cancer

action, and other levels of activity.

More complex structures, such as polymers, proteins, and nucleic acids, are

also best represented as graphs. Nodes can correspond to different structural

levels, such as substructures, protein secondary structures, or DNA blocks. A

hierarchical model can also be exploited, in which each node can be expanded

into its substructure graph. Edges correspond to the interactions between

these components. These data are often fundamental for solving important

biological problems, such as predicting protein–ligand, protein–protein, and

2.4. BIOLOGICAL PROBLEMS ON GRAPHS 35

protein–nucleic acid interactions.

Graphs are also exploited to represent logical information (i.e. knowledge

graphs of biological entities). In this case, each node corresponds to an entity,

and each edge to a relationship between two entities, while models can be

trained to predict new biologically relevant relationships between entities

(typically in a heterogeneous setting) given the known ones.

2.4.2 Graphs in Drug Discovery

Drug discovery is the discipline that studies how to develop new drug com-

pounds. Discovering a new molecule is a long and expensive process [81],

often involving researchers, companies, and national agencies [82]. More-

over, new discoveries become rarer and more expensive every year [83]. As

a consequence, computational methods are required to innovate the process,

to reduce the costs of development, and even to allow the discovery of new

molecules that could not be devised with traditional methods [84]. In this

scope, AI techniques, and in particular DL methods, are increasingly em-

ployed to find new solutions for a variety of relevant problems. DNNs can be

used to predict the properties of new compounds in silico, to estimate their

activity levels in different settings, to predict their side–effects, and to gen-

erate candidate molecular structures [85]. Since drugs and other molecules

are efficiently represented with graphs, these tasks are all potential applica-

tions for GNNs. In this thesis we focus on a molecular graph generator, on a

drug side–effect predictor, and on a predictor of protein–protein interfaces,

all developed with GNNs, that will be presented in Chapter 5, Chapter 6,

and Chapter 7 respectively.

2.4.3 Bioinformatics and Graph Neural Networks

GNNs applications to bioinformatics problems go beyond the field of drug

discovery. As discussed in Subsection 2.4.1, graphs are ubiquitous in biol-

ogy and medicine, the potential applications of GNNs being therefore un-

countable. Some examples of relevant open problems, in which GNNs can

substantially contribute in the future, are listed in the following.

• Protein structure folding: GNNs can be employed to predict how pro-

tein 3D structures fold. This problem has a finite yet enormous solu-

tion space, which has been explored mainly with euristics so far. The

36 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

introduction of AI–based methods has already brought unexpected im-

provements [86].

• Protein–protein interaction prediction: this problem can be tackled

with different methods, like clique–detection on the interface graph, or

by analyzing the structural similarity of the two proteins.

• AI–driven molecular dynamics: molecular dynamics simulations are

incredibly complex, with high costs in terms of memory and time.

As a consequence, they usually span times in the order of fractions

of microseconds, but longer simulations would help understand and

replicate in silico many cellular processes. Exploiting a neural network,

and in particular a GNN, would reduce the memory and time costs of

the simulations, also allowing longer time spans.

• Multi–omics analyses: in this case, multiple graphs need to be pro-

cessed, one for each omics, in order to predict different properties of

an organism, or a tissue.

GNNs are versatile and can be considered an attractive option to modeling

many different biological problems [14]. Moreover, different models have

been employed on different tasks, such as different types of convolutional or

recurrent GNNs. Ad–hoc models can also be developed on a task specific

basis or on a broader biological setting [64].

Chapter 3

Machine Learning Applications

to Molecular Data

This chapter provides a thorough literature review concerning the research

applications that constitute the main focus of this thesis. Section 3.1 intro-

duces the relevant literature concerning the application of ML techniques to

drug discovery. Section 3.2 focuses on graph generation, and the works re-

lated to the contribution presented in Chapter 5. Section 3.3 describes drug

side–effect prediction and the works related to the contribution described in

Chapter 6. Section 3.4 deals with protein–protein interface prediction and

the works related to the contribution discussed in Chapter 7.

3.1 Machine Learning in Drug Discovery

In the last decades, the increasing complexity and cost of drug development

technologies, the rapidly growing availability of computational resources, and

the enormous progress of AI techniques on the spur of the development of

DL algorithms, have brought a novel approach into the field of drug discov-

ery [87]. This corresponds to an increasing employment of DL methods to

boost, and in some cases replace, traditional processes [10]. Obviously, this

revolution mainly concerns the in silico experimentation methods, such as

the identification of candidate drug compounds [88], the prediction of drug–

target interactions [89], virtual screening [90], the analysis of binding pockets

exploiting 3D CNNs [91] or druggability predictors based on ANNs [92], and

even reverse docking for the identification of target proteins using a library

37

38 CHAPTER 3. ML APPLICATIONS TO MOLECULAR DATA

of known drugs [93].

3.2 Molecular Graph Generation

One of the most important novelties brought by DL techniques is the possi-

bility of generating structural formulas of new drug compounds from scratch

[94]. This technique can be tailored to the objectives of a specific study by

optimizing the generated compounds according to the desired properties [95].

This new way of building potential candidate compounds is substantially dif-

ferent from the traditional techniques, which usually started from a similar

known molecule rather than generating structural formulas from scratch [10].

The generation of molecular graphs is a complex task, which can lead to the

development of new instruments for drug discovery, potentially cutting the

huge costs, in terms of both time and money, of this fundamental research

process [81].

Graph generation is a complex problem also from the ML point of view,

with several real–world applications, and many different approaches devised

for solving it. Classical methods resorted to random mathematical models:

The Erdös–Rényi model [96] was the first approach in this direction. Since

Erdös–Rényi graphs tend to have unrealistically low clustering coefficients,

especially with respect to community graphs, two methods were later de-

veloped, mainly to obtain more realistic small–world networks: the growth–

based Barabási–Albert model [97], and the Watts–Strogatz rewiring model

[98]. The recent developments in ML have stimulated its application to the

field of graph generation. DL techniques, indeed, can capture the charac-

teristics of a given domain from a set of examples, which are then exploited

to generate new graphs. Variational Auto–Encoders (VAEs) [99] were the

first neural network models to be employed for this purpose [100, 101]. The

success of Generative Adversarial Networks (GANs) [46] in image genera-

tion has led to replicate the same adversarial approach for graph–structured

data [102, 103]. This approach can be improved by adding constraints to the

adversarial learning [104]. The different nature of the problem, though, has

encouraged the development of alternative solutions as well. While VAEs,

by sampling representations from a continuous latent space, can generate

graphs as unitary entities, many methods tackle the problem with a sequen-

tial approach. The construction of a graph becomes, therefore, a sequence

of decisions, in which a node or a group of nodes is added to the graph at

3.3. DRUG SIDE–EFFECT PREDICTION 39

each step. On the one hand, many methods make use of RNNs to handle the

decision sequence [105, 106, 107]. On the other hand, GNNs [1], with their

capability of processing graph–structured data without loss of connectivity

information, allow to build very powerful generative models. In particular,

at each step, GNNs can exploit all the information contained in the partial

graph generated by the previous steps, while recurrent models typically rely

only on the sequence of previous decisions. In principle, this holds true for

any GNN model, but the GraphNets–based DeepGMG is the only explo-

rative approach in this direction [108], so far.

The space of molecular graphs is virtually infinite, and even constraining

the size of molecules to few atoms, the number of theoretically possible

compounds is overwhelming. Efficient automatic generative techniques are

required for the exploration of such huge space, and deep generative models

represent ideal candidates. Using SMILES notation [109], molecules can be

generated as sequential objects. This approach has been carried out with

VAE models [94], also exploiting the grammar of the SMILES language [110]

[111], or even using SMILES fragments as words [112]. However, SMILES

strings do not preserve the full connectivity information, as molecules are

more naturally represented as undirected graphs, with finite (and relatively

small) sets of vertex and edge types. Graph–based VAEs have been em-

ployed in the generation of molecular graphs [113]. Junction–Tree VAEs

build graphs by connecting pre–extracted structural motifs [95], an approach

which has been extended to larger molecules and polymers by making the

VAE hierarchical [114]. This approach can also be improved by exploiting

the valence histogram of each atom [115]. Recently, statistical flow models,

characterized by an invertible encoder/decoder, have been developed [116].

Graph GANs have been employed for the generation of molecules, handling

the decisions with RL techniques [117] [118]. Also the above mentioned

DeepGMG has been applied to this task with promising results [108].

3.3 Drug Side–Effect Prediction with Deep

Learning

Another interesting novelty brought by DL techniques to drug discovery is

represented by the prediction of the occurrence of DSEs in silico. From

simpler methods based on Euclidean data [119, 120], and similarity scores

40 CHAPTER 3. ML APPLICATIONS TO MOLECULAR DATA

between drugs [121], the approaches in this direction have increased the

quantity and heterogeneity of data, in search of information on which to

formulate more accurate predictions. This also implied applying ML tech-

niques. The first approaches were based on SVMs [122] and clustering [123].

Methods based on chemical fragments embed drug structural information

into Euclidean vectors [124]. These information were integrated and ana-

lyzed with predictors based on random forests [125] and deep MLPs [126].

Predicting the occurrence of DSEs involves knowledge on various types of

biological entities, such as genes, proteins, drugs, and pathways. This means

that data on which the predictions are based is inherently relational, and

graph–structured. GNNs perform very efficiently in this scenario, but we

are not aware of GNN–based approaches for the prediction of side–effects of

single drugs so far. They have been used, though, in a related yet different

setting: the prediction of polypharmacy side–effects. This task consists in

predicting the side–effects triggered by the combined administration of two

drugs. Two main GNN–based methods have been published in this scope:

one analyzes a subset of the possible pairs of drugs in the dataset, applying

GATs [68] to measure the graph co–attention on the molecular graphs of

the two drugs of each pair [127]; the other builds a graph accounting for the

interaction between protein targets and drugs, and the known side–effects of

the single drugs, which is then analyzed with a GCN [65] that predicts the

polypharmacy side–effects as links between drug nodes [128].

3.4 Prediction of Protein–Protein Interfaces

Detecting the interface of two monomers is fundamental to predict the qua-

ternary structure and functionality of proteins [129]. These two characteris-

tics are fundamental for studying the protein targets of drugs, and are diffi-

cult to simulate with traditional techniques. As a consequence, a reliable and

fast method to predict them would significantly enhance current drug dis-

covery techniques [130]. Protein–protein interfaces can be predicted with a

variety of approaches: based on sequence homology [131], Bayesian methods

[132], analyzing combined docking simulations [133], or using SVM predic-

tors [134]. Generalizing to molecular interactions, predictors have been very

recently developed based on GNNs [135, 136], but we are not aware of more

specific GNN methods for the detection of interfaces between monomers.

Protein–protein interface detection can be reformulated as a maximum clique

3.4. PREDICTION OF PROTEIN–PROTEIN INTERFACES 41

problem [137], by constructing a correspondence graph based on the graphs

of secondary structures of the two peptides [138]. The interface will then cor-

respond to the maximum clique in the correspondence graph [137]. Clique

detection problems have already been addressed with GNNs [139], and, more

recently, also in a transductive learning setup [140]. Finally, this strategy

was also further refined by exploiting LGNNs [61].

42 CHAPTER 3. ML APPLICATIONS TO MOLECULAR DATA

Chapter 4

GNNkeras: A Software

Framework for Graph Neural

Networks

In this Chapter, GNNkeras, a software framework for the implementation of

GNNs, presented in publication [P03], is described. GNNkeras is a flexible

tool: the implemented GNN models can be used for classification, regres-

sion, and clustering on nodes, edges or whole graphs. Additionally, GNN–

based graph generative models can be built with this framework. Moreover,

GNNkeras allows to build not only standard GNNs for processing homoge-

neous graphs, but also CGNNs for processing heterogeneous graphs (see Sub-

section 2.3.3), exploiting both inductive and mixed inductive–transductive

learning [140]. Finally, LGNNs [61] can be instantiated, in both the homoge-

neous and the heterogeneous settings. The rest of this Chapter is organized

as follows: Section 4.1 introduces the motivation behind the development of

GNNkeras, Section 4.2 describes the software and its usability, and Section

4.3 draws conclusions on this work.

4.1 Motivation and Significance

In the context of ML research on graphs, it is important for researchers

and software developers to have adequate and flexible tools that support the

development of applications with current GNN models and possibly favor

the study of new versions of GNNs. For this reason, a new Keras library was

43

44 CHAPTER 4. GNN KERAS

developed, based on the original GNN model [1], which allows to implement

the whole subclass of recurrent GNNs [60], and LGNNs [61].

GNNkeras users can easily access a huge number of ML features. This fact

is guaranteed by Keras itself, which is built on top of TensorFlow 2.x [141]

and is one of the most used and complete software libraries for ML. As far as

we know, GNNkeras is the first tool specifically designed for implementing

recurrent GNNs, while other tools exist for building models of the subclass

of convolutional GNNs. Finally, GNNkeras is flexible in that it permits to

manage a variety of activities, graph domains and learning approaches.

4.2 Software Description

The GNNkeras software is based on TensorFlow 2.x and Keras (TensorFlow

backend), one of the most used DL frameworks worldwide [141]. The soft-

ware implements the GNN model formulation described in Subsection 2.3.1,

and the CGNN model described in Subsection 2.3.3. Moreover, LGNNs [61]

can be implemented as well, by stacking GNNs one on top of the other, each

refining the output of the previous GNN layer.

Furthermore, the mixed inductive–transductive learning scheme [140] ap-

plied in publication [P02] (see Chapter 6) can be used. In some applications,

GNNs and LGNNs can take advantage of transductive learning [142], thanks

to the natural way the information flows and spreads across the graph. In

the mixed inductive–transductive framework, the training set nodes and their

targets are used in conjunction with the test patterns. In particular, the la-

bels of a subset of the training nodes, called transductive nodes, are enriched

with their targets, to be explicitly exploited in the diffusion process, yielding

a direct transductive contribution.

GNNkeras has been implemented as a module using the Python program-

ming language. It is based on NumPy, SciPy, and TensorFlow libraries.

NumPy and SciPy provide efficient numerical routines for dense and sparse

data, while TensorFlow and Keras provide a simple and smart way to define

and manage models, as well as to simplify the learning and evaluation pro-

cesses. Fig. 4.1 shows a graphical representation of the package directory

organization.

The software relies on a custom graph representation, named GraphObject.

For speeding up the learning procedure, a GraphObject is converted in an-

other custom graph representation, called GraphTensor, which contains a

4.2. SOFTWARE DESCRIPTION 45

Figure 4.1: Software architecture: the main GNN directory contains graph data represen-

tation classes; theModels sub–directory provides MLP, GNN, LGNN, CGNN and CLGNN

(Composite Layered GNN) implementations; the Sequencers sub–directory provides graph

sequencers for feeding models with GraphObject/CompositeGraphObject data. Note that

the MLP model is a function which returns a Keras Sequential model, meaning that every

Sequential model can be used for implementing the state transition network fw and the

output network gw.

tensor–based description of all the attributes for the graph to be correctly

processed by the GNN model. In the heterogeneous setting, another class

defined by CompositeGraphObject and CompositeGraphTensor is provided.

A GraphObject or a CompositeGraphObject can be saved in a single NumPy

npz file, or as a subdirectory of text files, which includes all the necessary

matrices for their complete representation. Given a dataset of graphs, in

the form of a list of graph data elements, these classes also provide a smart

way to save the entire dataset in a single directory, from which it can be

loaded when needed. In order to be correctly processed by the GNN mod-

els, GraphObjects and CompositeGraphObjects are required to be fed to a

special data handler, the GraphSequencer. A total of six versions of Graph-

Sequencer are provided: for multi–graph and single–graph–based datasets,

in the homogeneous and heterogeneous graph domains, and for inductive and

transductive learning approaches. It is worth noting that the transductive

one is a special class of GraphSequencers, which is fed with homogeneous

GraphObjects while generating heterogeneous graph data. For each epoch

and batch, it splits the graph training nodes into two subsets of inductive and

transductive nodes, thus generating two types of nodes being represented by

a CompositeGraphTensor for the CGNN learning process.

To parallelize software execution on modern CPUs and GPUs, all the op-

erations are based on matrix multiplications. Fig. 4.2 shows the process-

46 CHAPTER 4. GNN KERAS

ing scheme of a heterogeneous graph by a CGNN model implemented with

GNNkeras. The homogeneous case is analogous to a CGNN with a single

node type.

Figure 4.2: CGNN model software scheme. The GraphSequencer generates batches of

GraphTensor which are presented to the model as input. All quantities pass through

multiple operations (matrix multiplications, boolean mask filtering and concatenating

processes) to form the input to fw and gw.

4.3 Conclusions

In this Chapter, GNNkeras, a new general GNN programming framework

has been presented, which provides multiple Keras–based GNN models for

homogeneous and heterogeneous graph processing, for both inductive and

transductive learning approaches. GNNkeras has been designed with the

aim of simplifying the programming procedures in the scope of research on

recurrent GNNs. The expected impact of GNNkeras is mainly related to its

capability of helping its users in speeding up the proposal of new research and

the development of advanced software. We think that, due to the mentioned

characteristics, GNNkeras is a flexible and suitable tool to exploit ML for

graph data. The library can be used by researchers in ML to test new models

and to design new applications. It can also be used by software developers

4.3. CONCLUSIONS 47

from companies and organizations designing applications for relational data.

Finally, the exceptional interest in ML for graphs is a measure of the size and

growth of the community operating in the sector and for which GNNkeras

can be useful.

48 CHAPTER 4. GNN KERAS

Chapter 5

Molecular Generative Graph

Neural Networks for Drug

Discovery

In this Chapter, discussing the contribution described in publication [P01],

we present a sequential molecular graph generator based on GNNs [1], which

we call Molecular Generative Graph Neural Network (MG2N2). A single

node is added and connected to the graph, at each step. The method fo-

cuses on one node at a time, and generates its neighbors before processing

the following node, preventing disconnected components from being created.

Similarly to GraphRNN [105], we follow a Breadth First Search (BFS) or-

dering to decide which nodes to expand first. Edges are generated in parallel

rather than sequentially, making the approach less computationally demand-

ing. The control flow in MG2N2 depends on decisions implemented by three

GNN modules. The sequential and modular nature of our method makes it

interpretable. As previously mentioned, at each step, GNNs exploit all the

information contained in the subgraph generated until that step. Gumbel

softmax [143] output layers allow the networks to be trained over discrete

stochastic distributions. Moreover, the modules are trained independently of

each other: This feature simplifies the learning process and allows to retrain

each module independently. The GNN model used in this work was derived

from the original GNN approach [1], which was proved to be a universal

approximator on graphs [7], a property which ensures that the GNN model

is general enough to be able to make the complex decisions that the modules

must implement.

49

50 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

The contributions presented in this Chapter is a new sequential generative

model for molecular graphs, MG2N2, a new metric for molecular graph gen-

eration that combines into a single measure the scores accounting for validity,

uniqueness, and novelty of the generated compounds, and the experimental

evaluation of MG2N2 on two well–known benchmarks for the generation of

small organic molecules, the Quantum Machine 9 (QM9) and Zinc datasets.

The main novelty of the presented approach consists of using the GNN frame-

work for molecular graph generation, with a modular architecture, in order

to maximize the information and make the generative model flexible. The

results show that the proposed approach outperforms very competitive base-

lines in the task of unconditional generation. The experiments also clarify

the main properties of the method and show that MG2N2 is capable of gener-

ating molecules with chemical characteristics similar to those of the original

datasets.

The rest of this Chapter is organized as follows. Details on how the GNN

model described in Subsection 2.3.1 is implemented in MG2N2 are given in

Section 5.1. Section 5.2 presents and discusses the generative algorithm in

Subsection 5.2.1, its implementation with GNNs in Subsection 5.2.2, the

graph preprocessing steps in Subsection 5.2.3, and issues about node order-

ing in Subsection 5.2.4. The experiments and their results are described and

commented in Section 5.3: the datasets are described in Subsection 5.3.1,

the experimental setup in Subsection 5.3.2, Subsection 5.3.3 provides de-

tails of the evaluation procedure, and, finally, Subsection 5.3.4 discusses the

relevance and meaning of the results. Conclusions are drawn in Section 5.4.

5.1 Model Implementation

In this Section, we provide implementation details, for the study presented

in this Chapter, of the model described in Subsection 2.3.1.

In particular, given the problem under analysis, the GNNs process molec-

ular graphs, in which nodes correspond to atoms, and edges correspond to

chemical bonds. Each node is labeled with the one–hot encoding of the atom

type, and each edge is labeled with the one–hot encoding of the bond type.

Therefore, the state updating function fw takes in input both node and edge

labels, and is implemented exactly as in Eq. (2.6).

Both aggregation functions (sum and average) described in Eq. (2.5) are used

in the experimentation. In the experimentation described in this Chapter,

5.2. METHOD 51

the problem of graph generation is divided into three classification subtasks.

One of them is node–based while the other two are edge–based. The output

function for the node classification task is the one formulated in Eq. (2.7),

while the two edge classification tasks use the output function written in Eq.

(2.8).

5.2 Method

The method consists of a graph generation algorithm tailored to the pro-

duction of small organic molecules, and its implementation with GNNs. In

particular, we focus on unconditional generation, meaning that the com-

pounds are generated from scratch, without forcing particular properties.

The procedure is sequential, and can be divided in steps: Each graph is

generated one node at a time.

5.2.1 Generative Algorithm

The generation of a labeled graph G = (V,E) is handled as a sequential

process, starting with an initially empty E and with a single vertex V = {v0}.
The label l0 of v0 is sampled from a distribution of labels D0, which is learned

from the training set. Each step consists in adding a new node to the graph

and connecting it to the other nodes. The algorithm focuses on one node vi
at a time, generating all its neighbors before focusing on the following node:

i = i + 1. This process will be referred to as node expansion. Nodes are

indexed according to the order in which they have been generated, so that,

for instance, the third generated node v3 will always be the fourth node to

be expanded (v0 is the first). The process stops when all the nodes have

been expanded (i > |V |) or when the maximum number of nodes has been

reached (|V | = |Vmax|).
As a new node vj is generated, first it is connected to the node vi which

is being expanded, then it can be linked to the other vertices V \ {vi, vj}.
While the set of edges generated in the latter phase can be empty, the (vi, vj)

edge is always generated. This constraint ensures that the generated graph

is always connected, without impairing generality: any graph can still be

produced.

We can define three problems that must be solved to carry out a generative

52 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

step. Each problem corresponds to a function the model will provide: node

generation (P1), first edge classification (P2), additional node linking (P3).

• P1 decides whether to expand vi with a new neighbor node vj or to

stop its expansion. If vj is generated, P1 also returns its label lj.

• P2 is called after a new node vj has been generated. It determines the

label ei,j of the edge (vi, vj).

• P3 is called after a new node vj has been generated and connected to

vi. It determines the existence of any possible edge connecting vj to

any other vertex vk ∈ V \{vi, vj}. The labels of all the generated edges

are also returned. All the edges are processed in parallel. The main

drawback of this approach is that the dependencies between edges are

ignored, but it also brings the advantages of avoiding edge ordering

biases and of significantly reducing the time cost.

The generation algorithm is summarized in Algorithm 1.

5.2.2 Implementation with Graph Neural Networks

Each of the functions P1, P2, P3 described in Subsection 5.2.1 is imple-

mented by a dedicated GNN module, which will be referred to as M1, M2,

M3, respectively. Each of the modules is trained separately, and one step at

a time, assuming the other two modules’ decisions to always correspond to

the ground truth. This is a strong assumption, which will prevent the model

from exploring possible different solutions, but it dramatically simplifies the

training procedure. Another advantage of this paradigm is the fact that,

each being trained separately from the others, the modules can be recom-

bined to build new versions of the model. If a module needs to be optimized

there is no need of re–training the other two.

In order to generate labeled graphs, we need to make some assumptions on

the nature of node and edge labels. Three main cases can be identified: un-

labeled graphs, graphs with continuous node and edge labels, graphs with

a finite set of node and edge types. In this Chapter, we will focus on the

third case, which corresponds to the typical setting in molecule generation

problems. Thus, in the following, we assume that the label li of any node vi
belongs to a finite set li ∈ Tv, the label ei,j of any edge (vi, vj) belongs to a

finite set of types ei,j ∈ Te, and Tv and Te are defined by the dataset.

5.2. METHOD 53

Algorithm 1 Graph generation algorithm.

procedure Generate(G = (V,E))

V ← {v0}, l0 ∼ D0

E ← ∅
i← 0

j ← 1

while (i < |V |) ∧ (|V | ≤ |V |max) do

gd← P1(V,E, i)

while gd ̸= stop do

V ← V ∪ {vj}, lj ← gd

E ← E ∪ {(vi, vj)}
ei,j ← P2(V,E, i, j)

for k ∈ [0, j − 1], k ̸= i do ▷ Parallel Execution

ld← P3(V,E, k, j)

if ld ̸= disconnected then

E ← E ∪ {(vk, vj)}
ek,j ← ld

end if

end for

j ← j + 1

gd← GeneratorDecision(V,E, i)

end while

i← i + 1

end while

return G = (V,E)

end procedure

54 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

The GNN modules generate nodes and edges along with their labels. With

reference to Algorithm 1, the following holds.

• M1 faces a node–based classification problem, as it decides whether

to stop the expansion of the current node vi or to generate another

neighbor vj, and, in case, which label to assign to vj. The set of

output vertices of M1 consists only of vi: Vout = {vi}. The output

classes correspond to the union of the stop decision to the set of vertex

types {stop} ∪ Tv.

• M2 deals with an edge–based classification problem, since it generates

the label of the edge connecting the node being expanded vi and its

new neighbor vj. The set of output edges of M2 consists only of this

edge Eout = {(vi, vj)}. The output classes correspond to the set of edge

types Te.

• M3 works on an edge–based classification problem, since it predicts the

existence, and, in case, the label, of every possible edge connecting the

new node vj to the other nodes in the graph, except the node being

expanded vi. These calls are carried out in parallel and integrated in

a single prediction from M3. This idea has the drawback of consid-

ering each predictable edge as if it were independent from the other

predictable edges, but it also allows to avoid the biases introduced

by taking the decisions in sequence and it speeds up the procedure.

To do so, the graph G is extended with a set of provisional edges

Ep = {(vk, vj) : vk ∈ V \ {vi, vj}}. The module M3 takes in input the

new graph G′ = (V,E ′) : E ′ = E ∪ Ep. The set of output edges for

M3 is E ′
out = Ep. The output classes correspond to the union of the

disconnected decision to the set of edge types {disconnected} ∪ Te.

An example step of this algorithm is visually summarized as a flowchart in

Fig. 5.1.

To learn a stochastic behavior from the supervisions, which are samples

from a categorical distribution, we resorted to a Gumbel softmax output

layer [143], based on the Gumbel–Max method for sampling from discrete

distributions [144] [145]. This approach allows to backpropagate through an

arbitrarily close approximation of the categorical distribution. The softmax

can be annealed, by decreasing a temperature parameter τ , from a less ac-

curate approximation (which tends to a uniform distribution for τ → ∞)

5.2. METHOD 55

Figure 5.1: Flowchart of the generation algorithm. An example step is summarized, with

the three GNN modules (M1, M2, M3), the three problems they are assigned to (P1, P2,

P3), their inputs and their outputs. Grey nodes represent carbon atoms, while yellow

nodes represent hydrogen atoms. Green edges stand for candidate edges, while black

edges represent single bonds. C,H,N,O,F are the element symbols. Classes 1,2,3 represent

single, double, and triple bonds, respectively. Red octagons stand for the stop decision

(M1) or the do not generate this edge decision (M3)

to a closer approximation (which tends to the discrete distribution itself for

τ → 0). Lower temperatures come at the cost of an increasing gradient

variance. The choice of two parameters τmax and τmin, and a curve, will

determine the annealing path. Annealing while training has the positive ef-

fect of encouraging the exploration of alternatives to the decision with the

highest estimated probability in the early phases, to then converge to more

canonical decisions in the final training epochs, when the estimation of the

class probabilities has gained higher reliability. This is very important to

prevent the networks from learning repetitive patterns, and to avoid mode

collapse (i.e. generating always nodes of the same type, based on the highest

prior probability).

5.2.3 Graph Preprocessing

To build the training, validation, and test sets for M1, M2, M3, the molecules

from the dataset under analysis are pre–processed. For each generative step,

56 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

we need an input graph, the index of the focus node, and a supervision.

Each molecular graph G = (V,E) is decomposed in a sequence of incomplete

graphs, one for each generative step.

For M1, the sequence is composed of n = 2|V | − 1 graphs. The first graph

contains only one node G0 = (V0 = {v0}, E0 = {}), any intermediate graph

Gi = (Vi, Ei) corresponds to an incomplete subgraph of G, Gi = (Vi ⊂
V,Ei ⊂ E), and the last graph is complete Gn−1 = G. For M2 and M3, the

sequences are composed of n = |V | − 1 graphs, because M2 and M3 are not

called after the |V | stop decisions from M1 (see Algorithm 1). The graphs

Gi = (Vi ⊂ V,Ei ⊂ E) acquire nodes and edges as i grows.

The sets are built so that graphs from the same generative sequence (which

correspond to different levels of completion of the same original graph) belong

to the same set (and to the same batch). This is particularly important to

avoid evaluation biases deriving from testing or validating on examples which

have slightly different replicas in the training set.

5.2.4 Node Ordering

To define the generative sequences of the graphs, a node ordering needs to

be established. This will determine the order in which the nodes of each

graph must be generated, and, consequently, the sequences of input graphs

and supervisions described in Subsection 5.2.3. The model is expected to

learn this generative strategy from the training set, so that, for instance, a

training set in which carbon atoms have higher priority will teach the model

to generate carbon neighbors first. Theoretically, being V a set with no

given ordering, the model would benefit from being trained on any possible

node ordering. Since this is impossible from a computational point of view,

some constraints must be imposed to reduce the number of orderings from

o(|V |!) to a computationally feasible level. In this work we chose a Breadth

First Search (BFS) strategy, which has the additional benefit of reducing the

number of link predictions needed at each step [105]. Among the nodes at the

same depth level in the BFS tree, node types with lower average centrality

are expanded first. The average centrality of node types is measured on

the training set, according to the Freeman Betweenness Centrality [146].

This boosts both positive effects of the BFS strategy. To further reduce the

number of possible orderings of a factor |V |, we decided to always start from

the same node, which is node 0 of the original node numbering taken from the

5.3. EXPERIMENTS AND RESULTS 57

dataset. The other nodes are then re–numbered according to the previous

rules, making a random choice in any case in which multiple permutations

are still possible. The latter two assumptions allow us to retain one unique

ordering, coming at the cost of a loss of generality. Although this cost

would likely be critical for a truly recurrent model, it is sustainable in this

learning framework, in which the correlation between two steps is limited to

the output of the first shaping the input of the second. The only input to

the model, in fact, is represented by the graph itself, regardless to the many

possible sequences of steps that may have brought to its current shape.

5.3 Experiments and Results

A series of experiments were performed, testing MG2N2 on the QM9 [147],

and Zinc [148] datasets, two common benchmarks for the generation of

graphs representing small organic molecules, which are introduced in Sub-

section 5.3.1. The results of this experimentation are then discussed, as they

reveal interesting insights into the capabilities of GNNs as molecular graph

generators.

5.3.1 Dataset Description

To evaluate MG2N2, a set of experiments were run on the Quantum Machine

9 (QM9) dataset [147], which is a subset of GDB–17, a chemical universe of

166 billion molecules [149]. QM9 is an ideal benchmark for a new generative

model for molecular graphs, as most competitive methods in this area have

been tested on this dataset. It is composed of 133,885 compounds, made

of up to 9 heavy atoms (C,O,N,F), plus the hydrogens which are bound to

them, for a maximum size of 29 atoms. Each molecule is represented as

an undirected graph, in which each node corresponds to an atom and each

edge corresponds to a chemical bond. The label of each node represents the

corresponding atom type, through one–hot encoding, so that |Tv| = 5. The

label of each edge represents, through one–hot encoding, the type of chemical

bond, which can be either single, double or triple, so that |Te| = 3. The out-

put of the modules M1, M2, and M3, defined in Subsection 5.2.2 have dimen-

sions, respectively |{stop}∪Tv| = 6, |Te| = 3, and |{disconnected}∪Te| = 4.

A random splitting procedure is applied to the dataset, in order to obtain a

training set, a test set, and a validation set, composed of 120,000, 10,000 and

58 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

3,885 molecular graphs, respectively. The validation set is used, during the

training phase, to evaluate the performance of our models on data that are

not provided to them directly. The held–out test set allows us to compare

the statistics of our sets of generated graphs to the statistics of ground–truth

graphs which have never been seen by our generative model, assessing the

capability of the model of reproducing the chemical characteristics of QM9

compounds.

Inside each graph, the nodes are re–numbered according to the procedure

described in Subsection 5.2.4. To determine the order among the neighbors

Ne(vi) of a generic vi ∈ V , the average Freeman Betweenness Centrality

is measured on the 120,000 training graphs, obtaining the following val-

ues: FBC(Hydrogen) = 0.0, FBC(Fluorine) = 0.0, FBC(Oxygen) = 0.115,

FBC(Nitrogen) = 0.246, FBC(Carbon) = 0.382.

For a further assessment of the generative performance of the model, a second

set of experiments is carried out on the Zinc dataset [148]. This is composed

of 249,455 organic molecules of up to 38 heavy atoms (C,O,N,F,P,S,Cl,I,Br).

Ring bonds are explicitly labeled as aromatic when part of an aromatic ring.

As a consequence, in this setup, we have |Tv| = 10, and |Te| = 4. The dataset

is split into a training set, a test set, and a validation set of 230,000, 10,000,

9,455 molecular graphs, respectively. The training/validation/test procedure

is the same described for QM9. The nodes in each single molecular graph

are also re–numbered with the same algorithm.

5.3.2 Experimental Setup

The code for training the GNNs and generating graphs 1 was implemented

using Tensorflow [141]. The experiments on QM9, were carried out in the

following setup. All the training runs of module M1 were issued on a Nvidia

Tesla–V100 GPU, with 32 GB dedicated memory. Training runs of modules

M2 and M3 always took place on a Nvidia 2080–Ti GPU. The training set

was randomly split in 20 batches of 6,000 graphs each, to reduce the memory

requirements. All the experiments used the same split. During the genera-

tion of new graphs, even though all the three modules are kept in memory,

far less computational resources are needed. The generation sessions were

run on the Nvidia 2080–Ti GPU, but required only 0.5 GB of memory. The

experiments on Zinc were run on two Nvidia Titan–RTX GPUs, each with 24

1Code available at: https://github.com/PietroMSB/MG2N2

5.3. EXPERIMENTS AND RESULTS 59

GB dedicated memory. The training set was randomly split into 100 batches

of 2,300 graphs each to fit in memory.

Table 5.1 shows the configurations of the modules M1, M2, M3 used in

the QM9 experiments, which include the neighbor aggregation function, the

training epochs, the initial learning rate, the maximum number of iterations

for state convergence, and the number of hidden units of the state network

and the output network. Each GNN module is composed of a state and an

output network. The former is a two–layered MLP implementing the state

updating function described in Eq. (2.6). The latter is another two–layered

MLP, implementing Eq. (2.7) in M1, and Eq. (2.8) in M2 and M3. The

initial values M1(I), M2(I), and M3(I) in Table 5.1 were obtained through

a preliminary experimentation, with the goal of maximizing the accuracy

of the modules M1, M2, M3, each one independently from the others, on

the validation set. Just as if the modules had been classifiers, accuracy was

calculated as the percentage of correct outputs, according to the single step

supervision, and regardless of molecule validity.

For the Gumbel softmax annealing path, based on [143], we initially chose a

linear descent from τmax = 5.0 to τmin = 1.0 during training. Tests on differ-

ent linear configurations did not bring improvements. In particular, anneal-

ing to temperatures τ < 1.0 brought the model to an unwanted repetitive

behavior. Therefore, we kept the initial annealing path for all the successive

training runs. All the models were trained with an Adam optimizer [54]

and cross–entropy loss, which does not require adjustments to work with the

Gumbel softmax output layers.

5.3.3 Evaluation

The evaluation of generation performance is twofold. On the one hand, the

metrics for unconditional generation introduced in [113] are used to measure

the validity, uniqueness and novelty of the generated graphs. On the other

hand, the distributions of the chemical properties of the compounds can be

compared to those measured on the test set, assessing the model’s capability

of reproducing the characteristics of QM9 compounds. Both evaluations are

carried out on batches of 10,000 generated graphs.

Let Gen be the set2 of generated compounds, V al ⊆ Gen be the subset

2More precisely, here we are using the multiset, an extension of the standard set which

can contain multiple copies of the same instances.

60 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

Module Aggregation Epochs LR kmax HUstate HUout

M1(I) sum 700 4× 10−3 5 30 50

M1(II) sum 1500 2× 10−3 6 100 60

M1(III) sum 2000 1× 10−5 6 100 60

M2(I) avg 500 2× 10−3 3 20 50

M2(II) avg 1000 1× 10−3 4 40 60

M3(I) avg 500 2× 10−3 6 20 50

M3(II) sum 500 2× 10−3 6 20 50

M3(III)* avg 500 2× 10−3 6 20 50

M3(IV)* sum 500 2× 10−3 6 20 50

Table 5.1: Different module configurations for QM9 are identified by the module number

M1, M2, or M3 introduced in Subsection 5.2.2, and by a sequential version number (I,

II, ...). Hyperparameters correspond to: neighbor aggregation function (Aggregation),

training epochs (Epochs), initial learning rate (LR), maximum state convergence iterations

(kmax), hidden units of the state network (HUstate), and hidden units of the output network

(HUout). M3 versions marked with * were trained with class weights to balance the

supervisions.

of chemically valid compounds, and QM9 be the set of molecules in the

dataset. Validity is calculated as the fraction of chemically valid molecules

over the total generated molecules: V alidity = |V al|/|Gen|. Uniqueness

is the fraction of unique molecules among the valid ones: Uniqueness =

|uniq(V al)|/|V al|, where uniq is a function that takes in input a multiset

and returns the corresponding set, from which the duplicates are removed.

Novelty is the fraction of unique molecules which do not match any QM9

compound: Novelty = (|uniq(V al)| − |uniq(V al)∩QM9|)/|uniq(V al)|. We

also define an additional measure, that combines the three previous metrics

and accounts for the fraction of valid, unique and novel molecules over the

total generated ones: V UN = V alidity × Uniqueness×Novelty 3.

The chemical properties include the molecular weight of each compound, the

logarithmic octanol/water partition coefficient (logP) [150], and the quan-

titative estimate of drug–likeness (QED) score [151]. The logP coefficient

quantifies the solubility of a molecule in polar or non–polar solvents, while

the QED score assesses the drug–likeness of a compound, summarizing in a

single measure the following chemical descriptors: polar surface area, molec-

ular weight, logP, number of rotatable bonds, numbers of hydrogen bond

3The goals of optimizing validity, uniqueness or novelty are usually in contrast with

each other. For instance, improving novelty often comes at the cost of decreasing validity.

For this reason, we decided to introduce the new metric V UN , which, by combining the

three measures, may provide a more global view on the performance of a model.

5.3. EXPERIMENTS AND RESULTS 61

donors and acceptors, number of aromatic rings, potential structural issues.

The validity as well as the chemical properties of each compound are as-

sessed with the RDKit package 4. In order to determine the uniqueness and

novelty of a molecule, we resorted to the graph isomorphism function of the

NetworkX package [152].

5.3.4 Results and Discussion

The first experiment, which was carried out on the QM9 dataset, consisted

in a study of the role played in the algorithm by the hyperparameter |V |max,

which controls the maximum number of nodes in a generated graph. In

principle, our model, being trained step by step, can extend its generation

procedure for an arbitrary number of iterations, until it stops itself on a

complete molecule. This feature could be exploited to extend the generation

domain to molecules which are larger than those seen during training, while

retaining the same generic patterns. Using M1(I), M2(I), and M3(I), defined

in Table 5.1, we explored different thresholds for the maximum number of

generated nodes |V |max. The natural value for this dataset is |V |max = 29,

which corresponds to the largest graph size in the training set. As described

in Subsection 5.2.1, the generation procedure stops when the number of

vertices reaches |V |max. This means that any graph still incomplete at that

point will not correspond to a valid molecule. Intuitively, raising |V |max will

increase the amount of valid generated compounds. Even if this is confirmed

by the results reported in Table 5.2, the additional valid molecules, being

heavier than average, alter the property distributions of the batch. Moreover,

as shown in Fig. 5.2, their QED is below average. Falling in a region of

low to very low drug–likeness, these compounds are not useful in the scope

of generating new potential drugs. These considerations suggested to keep

|V |max = 29 for the subsequent experiments.

Starting from the baseline configuration C1 (see Table 5.4), in which the

modules are optimized separately and not on the evaluation metrics chosen

for our task, we explored the hyperparameter space in search of a better

configuration5. The first step consisted in increasing kmax and the number

4RDKit: Open–Source Cheminformatics Software, by Greg Landrum. URL:

https://www.rdkit.org/
5A systematic search on a grid of configurations was computationally infeasible. More-

over, since the generative models are evaluated with antagonist metrics, it is impossible to

62 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

Max size Validity Uniqueness Avg. QED Avg. Mol. Wt.

29 0.491 0.813 0.448 124.6

40 0.593 0.845 0.438 144.7

80 0.688 0.866 0.408 172.9

1000 0.781 0.879 0.366 231.3

Table 5.2: Higher values of |V |max on generation batches from the same model setup

produce more valid and unique compounds. The divergence of average QED and molecular

weight from the values taken on the validation set (0.478 and 127.5, respectively), however,

suggests that the best configuration is |V |max = 29.

Figure 5.2: Logarithm of the molecular weight (left) and QED (right) distributions of

generated graphs with different values of |V |max. It can be observed how higher thresholds

imply the generation of heavier compounds, with lower QED.

of hidden units in the first two modules, in order for them to better capture

complex molecular patterns during training. Using this new configuration

(M1(II) and M2(II)), we explored different setups for M3. In particular, to

establish the ideal neighborhood aggregation method, M3(I) was compared

to M3(II). Then, the same comparison was repeated on M3(III) and M3(IV),

which were trained with class weighted supervisions6. This latter measure

was meant to decrease the learning bias from the very unbalanced prior class

probability distribution, which could prevent the model from learning the

chemical rules (roughly, 97% of the examples belong to the disconnected

optimize the configuration for all of them. Thus, we have heuristically selected the most

promising solutions and reported those experiments which, in our opinion, are the most

interesting.
6The error on each pattern is multiplied by the inverse of the prior of its target class.

In this way, the GNN will tend to produce a balanced output over all the classes. At test

time, the output is re–multiplied by the vector of prior class probabilities, to restore this

important piece of information.

5.3. EXPERIMENTS AND RESULTS 63

M3 Module M3 Agg. M3 Wts. Validity Uniqueness Avg. QED Avg. Mol. Wt.

M3(I) avg no 0.511 0.888 0.461 134.8

M3(II) sum no 0.507 0.887 0.460 135.1

M3(III) avg yes 0.476 0.892 0.459 134.2

M3(IV) sum yes 0.499 0.888 0.460 134.3

Table 5.3: Alternative setups for M3 on QM9. Balancing weights bring no advantage on

model performance. The two aggregation functions show equivalent results.

Config. M1 M2 M3 Validity Uniqueness Avg. QED Avg. Mol. Wt.

C1 M1(I) M2(I) M3(I) 0.491 0.813 0.448 124.6

C2 M1(II) M2(II) M3(I) 0.511 0.888 0.461 134.8

C3 M1(III) M2(II) M3(II) 0.668 0.340 0.404 75.3

Table 5.4: Summary of the best configurations determined by preliminary experiments on

QM9. C3 produces more valid molecules, while the highest QED is obtained by C2. C1

has the closest average molecular weight to the validation set reference (127.5).

class, while the other 3% are distributed over the three bond types). The

results of these configurations can be observed in Table 5.3.

This balancing strategy for module M3 did not bring advantages, as it is

shown in Table 5.3. This suggests that the GNN can deal with the unbal-

anced distribution, and efforts to improve the generation performance should

focus on other parameters. Besides, the two neighbor aggregation methods

appear to be equivalent. A new version of the node generation module,

M1(III) was also trained, increasing the number of training epochs and de-

creasing the initial learning rate (see Table 5.1), in order to stabilize the

learning process and avoid early suboptimal solutions. The relevant setups

of our model, produced in these experiments, are summarized in Table 5.4.

Table 5.5 compares the results achieved by the most interesting configura-

tions of the proposed MG2N2 to various baselines, including the the state of

the art for unconditional generation on QM9 (see Subsection 5.3.3 for the

metrics). In particular, we compared to: ChemVAE [94], which is based on

SMILES strings, and represents a good baseline which does not exploit a

graph representation; GrammarVAE [110], which is also based on SMILES,

and exploits the grammar of this string representation of molecules; MolGAN

[117], which is the best sequential model on this dataset; GraphVAE [113],

which is a very competitive (VAE based) method; and MPGVAE [153], a

VAE approach in which both the encoder and the decoder are Message Pass-

ing Neural Networks [64]. The average values and standard deviations of the

chemical descriptors are compared to the equivalent measures from the test

64 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

set. As for the MolGAN approach [117], our model does not include the com-

putation of likelihood, nor is it optimized for the global reconstruction of the

training examples, as VAEs do 7. The lack of an explicit global reconstruc-

tion penalty is one of the reasons for the very high novelty of the material

produced by MG2N2: the model is not forced to perfectly reconstruct the

molecules on a global basis, but it is forced to correctly reconstruct the local

parts of the graph. This approach is expected to preserve a certain degree

of validity while encouraging the model to explore more different molecu-

lar patterns. Though GraphVAE and MolGAN have higher validity, our

model outperforms both of them in terms of uniqueness of the compounds.

MPGVAE almost reaches the validity shown by MolGAN, while also achiev-

ing good uniqueness, and novelty, and outperforming the other approaches.

This advantage is mainly due to the message passing steps performed on

the graph in the encoding/decoding pipeline. The aggregated VUN score

shows that MG2N2 generates the highest percentage of molecules which are

valid, unique, and novel at the same time. Notice that, differently to all of

the baselines, our method explicitly generates the hydrogen atoms, and all

of the hydrogens are required to have been explicitly generated to mark a

molecule as valid. This difference is one of the factors determining the lower

performance of our approach on the validity metric.

To further assess the chemical similarity between the generated material and

the test set of molecules from QM9, we plotted the distributions of the chem-

ical descriptors, which can be observed in Fig. 5.3. For a qualitative visual

comparison, showing the similarity between test set graphs and generated

graphs, we extracted some valid molecules at random from each set and plot-

ted their structural formulas with RDKit (see Fig. 5.4).

While achieving an acceptable logP distribution, configuration C3 fails to

reproduce the QED distribution of the test set. Configuration C2, instead,

generates compounds which have very similar logP and QED distributions

with respect to those of the test set. This is due to the further optimization

carried out on C3: while achieving the goal of building more valid com-

7VAEs learn to reconstruct the training examples as closely as possible. The recon-

struction penalty is calculated on a global basis, as the Kullback–Leibler divergence be-

tween the example graph and its reconstructed version. As the KL–divergence cannot be

directly optimized, due to the presence of intractable terms, VAEs optimize the Evidence

Lower BOund (ELBO) of these terms, which provides a valuable method to enforce a

good global reconstruction.

5.3. EXPERIMENTS AND RESULTS 65

Model Valid Unique Novel VUN Avg. QED Avg. logP Avg. Mol. Wt.

ChemVAE 0.103 0.675 0.900 0.063 - - -

MPGVAE 0.910 0.680 0.540 0.334 - - -

GrammarVAE 0.602 0.093 0.809 0.045 - - -

GraphVAE 0.557 0.760 0.616 0.261 - - -

MolGAN 0.981 0.104 0.942 0.096 - - -

Ours(C2) 0.511 0.888 1.000 0.454 0.461 (0.116) 0.272 (1.336) 134.8 (45.7)

Ours(C3) 0.668 0.340 1.000 0.227 0.404 (0.088) 0.238 (1.093) 75.3 (52.8)

Test - - - - 0.482 (0.096) 0.270 (1.325) 127.3 (7.6)

Table 5.5: Validity, Uniqueness, and Novelty of generated compounds assessing the quality

of our models and the baselines on the QM9 dataset. The average values of chemical

descriptors (Molecular Weight, logP, and QED) are compared to the same quantities

measured over the test set. Standard deviations are reported between parentheses. Metrics

for GrammarVAE, ChemVAE, and GraphVAE are taken from the GraphVAE article [113].

The performance of MolGAN [117] and MPGVAE [153] are taken from their respective

papers.

pounds, it actually went in contrast with the other objectives of generating

unique, novel molecules with QM9–like properties. The learning parame-

ters proved to have a role in determining the properties of the model, as we

can see by comparing C2 and C3. C2 can be considered as our best model

configuration for QM9.

Figure 5.3: logP (left) and QED (right) distributions of generated graphs and training/test

molecules. It can be observed how well C2 has generalized the chemical characteristics of

the compounds seen during training.

To further assess the performance of our model, a set of experiments was

carried out on the Zinc dataset. An optimization procedure analogous to

the one described in Subsection 5.3.2 for QM9 allowed to set up the three

modules independently. The hyperparameters were then optimized accord-

66 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

Figure 5.4: Grid representation of random samples of 14 valid molecular graphs generated

with configuration C2 (a), 14 valid molecular graphs generated with configuration C3 (b),

and 14 molecular graphs from the QM9 test set (c).

ing to the VUN aggregated score. The best model configuration, which was

used for the final experiment, is reported in Table 5.6.

To determine the best network parameters for the experiments on Zinc, we

started from the best model configuration on QM9, and performed a small

grid search in its vicinity, as a more extensive parameter search would have

had an infeasible time and computational cost. It can be noticed that mod-

ules M1 and M2 required an increased number of parameters to converge,

with respect to the QM9 case. This is due to the larger size of the Zinc

molecular graphs (up to 38 heavy atoms) compared to the QM9 ones (up

to 9 heavy atoms), and to the larger number of node and edge types. The

larger size of Zinc molecules also implies a longer generation sequence (on

wider graphs), which added to the larger number of examples, and to the

larger number of network parameters, multiplies the time and memory bur-

den of each experiment. For this reason, we limited the experimentation

5.3. EXPERIMENTS AND RESULTS 67

Module Aggregation Epochs LR kmax HUstate HUout

M1(Zinc) sum 2000 10−3 6 150 80

M2(Zinc) avg 1000 10−3 4 50 70

M3(Zinc) avg 500 2× 10−3 6 20 50

Table 5.6: Module configurations used in the Zinc experiment, identified by the module

number M1, M2, or M3 introduced in Subsection 5.2.2. Hyperparameters correspond to:

neighbor aggregation function (Aggregation), training epochs (Epochs), initial learning

rate (LR), maximum state convergence iterations (kmax), hidden units of the state network

(HUstate), and hidden units of the output network (HUout).

Model Valid Unique Novel VUN

GrammarVAE[110] 0.310 0.108 1.000 0.033

ChemVAE[94] 0.170 0.310 0.980 0.052

GraphVAE[113] 0.140 0.316 1.000 0.044

CGVAE[154] 1.000 0.998 1.000 0.998

Ours 0.753 0.107 1.000 0.081

Table 5.7: Validity, Uniqueness, and Novelty of generated compounds assessing the quality

of our model and the baselines on the Zinc dataset. The performance of the other models

are taken from the CGVAE article [154]

.

on Zinc to the comparison with other models in the literature. Table 5.7

reports the performance of competitive models which were tested for un-

conditional generation on Zinc, according to the Validity, Uniqueness, and

Novelty metrics defined in the GraphVAE paper [113] and to the VUN aggre-

gated score defined in Subsection 5.3.3. In particular, our model is compared

to GraphVAE, ChemVAE [94], GrammarVAE [110], and the state of the art

approach CGVAE [154]. The great difference in performance between CG-

VAE and the other methods is largely justified by the different approach to

the problem. In CGVAE, molecules are kekulized during the preprocessing

stage, thus aromatic bonds are reduced to either single or double bonds.

The other hard chemical laws, like valence rules, that would invalidate the

generated molecule if violated, are enforced as hard constraints, preventing

the possibility of generating invalid molecules [154]. In all the other reported

methods, including ours, these rules are learned by the model. Contrarily

to what happended on QM9, in this case our model outperforms the stan-

dard VAE baselines thanks to the higher validity. This suggests that, as

the number of atom types grows, the importance of generating the atoms

sequentially and re–examining the output graph at each step, also grows.

68 CHAPTER 5. MOLECULAR GNN FOR DRUG DISCOVERY

5.4 Conclusions

This Chapter introduced a generative model for molecular graphs: MG2N2,

and a sequential generation algorithm devised for this purpose. The novelty

of the presented approach is represented by the exploitation of the capabili-

ties of GNNs to natively process graph–structured data. This allows to use

the graph output of the previous step as the network input, which represents

an advantage with respect to other sequential methods, that mainly rely on

the sequence of previous decisions, rather than on the graph they produce.

The modularity of MG2N2 implies an easier, less resource demanding, learn-

ing process.

In line with all the other sequential methods, and contrarily to VAEs, the

generation process is easily interpretable: the steps in which errors occur, or

in which specific atoms and bonds are created, can be readily identified in

the generation sequence. This feature is very important as it simplifies any

process of improvement or repurposing of the model.

The model was tested on a benchmark generation task over the QM9 dataset.

The distributions of the chemical descriptors retraced those measured on the

held out test set. The quality of generated graphs proved to be very high,

allowing our model to outperform very competitive baselines. The same per-

formance level was observed also on the Zinc dataset, when comparing our

model to similar approaches.

Future work on this line of research could focus on generalizing MG2N2 or

a similar model to other molecular graph generation problems, and on ex-

tending the approach to conditional generation. A conditional generation

model could be implemented by concatenating a vector of desired properties

to the input of each module. The comparison with a completely different

approach, like CGVAE, which simplifies the generation problem by enforcing

chemical rules as hard constraints, suggests that a constrained, or fragment–

based, version of MG2N2 could improve the performance on datasets of larger

molecules, like Zinc. Moreover, studying a theoretical mathematical formu-

lation of sequential generation could also be an important matter of future

research.

Chapter 6

Drug Side–Effect Prediction

with Graph Neural Networks

This Chapter describes a predictor of DSEs based on GNNs, trained on a

heterogeneous relational dataset integrating multiple data sources, which is

the subject of publication [P02].

DSEs represent a common health risk, with an estimated 3.5% of all hospi-

tal admissions, and approximately 197,000 annual deaths, in Europe alone,

related to adverse drug reactions [155]. Such adverse outcomes turn out

to be extremely expensive for public care systems. Drug–related morbidity

and mortality are estimated to have cost nearly 177.4 billion in the United

States alone in the year 2000 [156]. As prescription drug use is increasing

[157], the numbers and costs related to DSEs are also expected to rise. DSEs

are a huge problem for pharmaceutical companies, as their occurrence during

clinical trials slows down drug discovery processes and prevents many can-

didate molecules from being selected as commercial drugs [82]. Therefore,

predicting DSEs before submitting a molecule to clinical trials is extremely

important to avoid health risks for participants and cut drug development

costs [120].

Computational prediction methods, and in particular DL methods, are tech-

niques of growing importance in this scope [126]. DSEs are, in fact, triggered

by complex biological mechanisms, involving interactions between different

entities, such as drug functional groups, proteins, genes, and metabolic pro-

cesses. As a consequence, an efficient predictor should be capable of pro-

cessing heterogeneous data, accounting for the relationships among different

data types [127]. Current ML methods for DSE prediction have increased

69

70 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

the number and variety of features considered for computing the predictions,

but they are still widely based on Euclidean (vectorial) data, whereas the

relevant information for DSE prediction is relational in nature. This is a

limit, since the relational information must undergo a preprocessing to be

transformed into vectors, with an inevitable loss of information. In addition,

preprocessing methods usually require re–thinking when new features are

added. GNNs, instead, can process relational data directly in graph form,

exploiting all the structural information.

In this Chapter, we describe a new method for single–drug side–effect pre-

diction based on GNNs, and a graph dataset built for this task, accounting

for drug–gene, drug–drug, and gene–gene relationships. To the best of our

knowledge, this is the first ML approach to be able to exploit directly graph

structured relational data, for the prediction of single–drug side–effects.

The main contributions discussed in the Chapter are as follows.

• The first contribution corresponds to the construction of a relational

dataset for the prediction of DSEs, made with data coming from well–

known publicly accessible resources. The dataset is a single heteroge-

neous graph, in which two types of nodes (drugs and genes) share three

types of edges (drug–gene, drug–drug, and gene–gene relationships).

Both drug and gene nodes have features, accounting respectively for

their chemical properties and for their characteristics and function.

• The second contribution consists of DruGNN, a GNN–based method

for the prediction of DSEs on the new dataset we constructed. The pre-

diction is set up as a multi–class multi–label node classification prob-

lem (applied only to drug nodes, and not to gene nodes), in which each

DSE corresponds to a class. We adopt a mixed inductive–transductive

learning scheme [140] that exploits both the features of drugs and genes

(induction path) and the information on the side–effects of known drugs

(transduction path), in order to predict the side–effects of new drugs.

The whole method is flexible, since the graph dataset can be easily ex-

tended to include other node features and further relationships without

changing the ML framework [142].

• The approach is assessed experimentally, with very promising results,

showing a good classification accuracy. The performance of DruGNN

are compared to those of similar graph–based models (using the same

6.1. DATASET 71

inductive–transductive scheme) and to those of a deep MLP that can-

not exploit relational information. The usability of DruGNN is dis-

cussed, as it can be exploited for the prediction of DSEs of new drugs

without retraining.

• Finally, two ablation studies, one over the set of side–effects, and the

other over the set of features, show the model robustness and the con-

tribution to learning brought by each single data source.

The rest of this Chapter is organized as follows. Section 6.1 describes the

dataset, its construction process, and the data sources. Section 6.2 sketches

the GNN–based prediction method, giving implementation details of the

GNN model specific of this application in Subsection 6.2.1, explaining the

inductive–transductive learning scheme in Subsection 6.2.2, and describing

the experimental setup in Subsection 6.2.3. Section 6.3 presents the results

obtained, and a discussion on their relevance and meaning: results of the

ablation studies are presented in Subsection 6.3.1, the comparison with other

models is carried out in Subsection 6.3.2, and Subsection 6.3.3 discusses the

expected use of the method. Finally, Section 6.4 draws conclusions on the

method and the results.

6.1 Dataset

Computational methods for the prediction of DSEs have mainly relied on

Euclidean derived features so far. Even methods, like [119], that do use

topological information (i.e. about the metabolic network), compress it into

a Euclidean space before processing. Since DSEs are triggered by complex

biological phenomena, data for predicting DSEs are heterogeneous and come

from multiple sources. Drug protein targets are of key importance, as high-

lighted by the good results of Sparse Canonical Correlation Analysis between

drug targets and DSEs [120]. Chemical drug features play an important role

too [124], as well as metabolic data [123]. Combining all these pieces of

information, even in Euclidean form, yields the best results when using DL

predictors [126]. As a consequence, to build our dataset, we integrated infor-

mation from all of these sources. The main novelty of the presented approach

consists in building a graph with these data, and processing the graph as it

is, without forcing data objects into Euclidean vectors of features.

72 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

The dataset consists of a single graph, in which each drug, as well as each

gene, is mapped to a node. Both drug nodes and gene nodes are described by

feature vectors. Edges represent drug–drug relationships, drug–gene interac-

tions, and gene–gene interactions. Side–effect labels are associated to each

drug node. These labels will be used, according to the inductive–transductive

scheme, as either transductive features for known drugs, or class supervisions

for new drugs. A sketch of the graph is provided in Fig. 6.1.

Figure 6.1: Illustration of the graph composition. Drug nodes are represented as blue

coloured circles, while gene nodes are represented as orange coloured circles. Blue and

orange rectangles account for drug and gene features, respectively. Red rectangles repre-

sent classes.

The associations between drugs and side–effects were downloaded from the

SIDER database [158], which collects DSE information by aggregating mul-

tiple public information sources, summing up to 5,868 side–effects occurring

on 1,430 drugs, with a total of 139,756 entries, each accounting for the as-

sociation of a single drug to a specific side–effect. In our graph, a node

was created for each drug. Each side–effect corresponds to a class. Our

set of gene nodes, as well as the gene–gene edges, representing the interac-

tions between two genes or their products, were constructed by downloading

protein–protein interactions (PPI) information from the Human Reference

Interactome (HuRI) [159], and mapping each protein to the gene it is a

product of. The product–gene associations were obtained from Biomart

[160]. Drug–protein interactions (DPI) were downloaded from the STITCH

database [161], one of the most complete and up–to–date DPI databases

available. Once again, using Biomart, each protein was mapped to the gene

6.1. DATASET 73

it is a product of, obtaining the links between drug nodes and gene nodes.

Drug features were retrieved from PubChem [162], which provides seven

chemical descriptors for each molecule in the dataset, as well as the SMILES

string describing its structure. The seven chemical descriptors consist in:

molecular weight (MW), polar surface area (PA), xlogp coefficient (LP),

heavy atom count (AC), number of hydrogen bond donors (HD), number

of hydrogen bond acceptors (HA), and number of rotatable bonds (RB). In

order to better describe each drug molecule, we also translated its SMILES

representation to the corresponding structural formula, and extracted its

substructure fingerprint, using RDKit software1. In order to keep the feature

vector size of drug nodes similar to that of gene nodes (gene feature vectors

are 140–dimensional and will be described in the following), we opted for

drug substructure fingerprints of size 128, bringing the total size of the drug

feature vector to 135.

Drug substructure fingerprints were also exploited to build the drug–drug

set of edges, accounting for similarity relationships between molecules. In

particular, the Tanimoto similarity [163] of the fingerprints of each pair of

drugs was measured, adding an edge only to those pairs which were above a

similarity threshold (which was set as a hyperparameter at graph construc-

tion). Fingerprints were extracted with RDKit again, but with size 2048, in

order to better estimate the Tanimoto similarity.

Gene features were obtained from two sources. Biomart [160] provided three

pieces of information: the chromosome, which was one–hot encoded for a

total of 25 features (22 regular chromosomes, plus X, Y, and mitochondrial

DNA); the strand the gene is codified on (+1 or −1); the percentage of GC

content. Gene ontology [164] provided the molecular function ontology terms

each gene is mapped to. These describe the molecular function of each gene,

which, combined to the gene–gene interaction links, allow to reconstruct the

metabolic network. Since Gene Ontology mapped our genes to a total of

3,422 terms, we clustered the terms to those appearing at the higher levels

of the molecular function ontology, using DAVID [165] [166]. This produced

113 unique terms, which were one–hot encoded and concatenated to the

gene features obtained from Biomart (for a total of 140 features on each

gene node).

We subsequently selected only side–effects with a sufficient number of occur-

1RDKit: Open–Source Cheminformatics Software, by Greg Landrum. URL:

https://www.rdkit.org/

74 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

rences in SIDER: In order for the network to be able to learn the associations

of each side–effect, we applied a minimum threshold of 100 occurrences, re-

ducing the number of side–effects in the dataset to 360. After this first

filtering step, drugs without side–effects were also removed, reducing the

number of drug nodes in the graph to 1,341. Genes with incomplete features

were also discarded, along with their gene–gene interactions, bringing the

number of gene nodes to 7,881. All the drugs have complete feature vectors,

and at least one DPI. DPIs and DSEs of removed drugs were also removed.

Drugs are mapped to 360 classes (one for each side–effect), with 96,477 total

positive occurrences, and 515,160 negative ones. In this sense, belonging to

the positive class for a drug means that it produces the particular side–effect.

The target for each drug must be evaluated in relation to every possible side

effect (360) since the addressed problem is both multi–class and multi–label.

A total of 331,623 edges is present in the final version of the graph: 12,002

gene–gene interaction links, 314,369 DPI, and 5,252 drug–drug similarity

links (with a minimum Tanimoto threshold of 0.7). The dataset construc-

tion, with all the source databases and preprocessing steps, is sketched in

Fig. 6.2.

Figure 6.2: Sketch of the dataset construction. Each data source is represented by an

orange rectangle. Cyan rectangles represent data pieces. Preprocessing steps are repre-

sented by green arrows, which can include feeding data in input to other sources to obtain

refined data. Graph node subsets are represented by purple rectangles, with their labels

sketched as pink rectangles. Green rectangles are subsets of graph edges, while the blue

rectangle represents the classes (side–effects). Red arrows represent the composition of

feature labels from data pieces, while blue arrows show the composition of graph entities

(nodes, edges, classes). The yellow arrow represents the association of drug nodes to

side–effect classes.

6.2. METHOD 75

6.2 Method

In the work presented in this Chapter, we build a GNN–based DSE predictor

called DruGNN. Application specific implementation details of the GNN

model are given in Subsection 6.2.1. The final task is to predict the label of

drug nodes only, solving a node–based classification problem, with multiple

classes (360 side–effects) and in a multi–label setting (each drug can cause

multiple side–effects). In order to provide repeatable and comparable results,

we set a random dataset split and always use that split throughout the

experimentation. The test set contains 10% of the drug nodes and is fed

to the network only at test time. In our experiments, we also retain a 10%

of the drug nodes as a validation set, in order to check overfitting and stop

the training procedure when this occurs. The rest of the nodes (80%) is

exploited as a training set.

6.2.1 Model Implementation

This subsection describes the application–specific implementation of the

GNN model formulated in Subsection 2.3.1. In particular, in the appli-

cation presented in this Chapter, the dataset is a heterogeneous graph, in

which there are two types of nodes (drugs and genes). Therefore, the GNN

model is a Composite GNN, the formulation of which is given in Subsection

2.3.3. The state updating functions are computed by two MLPs, one for

each node type. The general formulation given in Eq. (2.10) is specified for

this application in Eq. (6.1), where Nd and Ng represents the subsets of drug

and gene nodes, respectively. Edge labels are not used in this formulation,

as edges are not labeled in our dataset:

xt
n = fw,d(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m)) if n ∈ Nd ⊂ N

xt
n = fw,g(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m)) if n ∈ Ng ⊂ N

(6.1)

During the training phase, the two MLPs will learn two different versions

of the state updating function. Namely, fd
w will be applied to compute the

states of all drug nodes Nd ⊂ N , while f g
w will calculate the states of all

gene nodes Ng ⊂ N . The output network is applied to the subset of nodes

in the graph for which an output is requested. In our case, these correspond

76 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

to the drug nodes. Since this is a problem of node classification the output

function is exactly the one described in Eq. (2.7).

6.2.2 Inductive–transductive learning scheme

In the work presented in this Chapter, we make use of a mixed inductive–

transductive learning scheme [142], in which the network learns the node–

class associations exploiting a double mechanism. In standard inductive

learning, the GNN model would predict the side–effects of drugs based on

the node features of drugs and genes, and the graph connectivity. In a

transductive learning setup, the GNN model would make the predictions

based on the known side–effects of other drugs. In our mixed inductive–

transductive learning scheme, the GNN model exploits both mechanisms at

the same time.

The learning scheme entails splitting the training set into ten batches. The

network learns the input–supervision association on one training batch at

a time, while the other nine batches are exploited as a transduction set.

The features of each drug node in the transduction set are augmented with

the transductive features, corresponding to the occurrence of the 360 side

effects on that node. When analyzing the validation set, the full training set

is exploited, in the same way as described before, as the transduction set.

When analyzing the test set, the transduction set is composed of both the

validation set and the training set.

This scheme is particularly appropriate for the expected use of our dataset

and tool: the idea is to exploit the known DSE associations to predict the

DSEs of newly inserted drugs, and the mixed inductive–transductive scheme

simulates this behaviour at training, validation, and test times.

6.2.3 Experimental setup

The network hyperparameters were tuned with an extensive grid–search over

the validation set. In particular, we analyzed all the hyperparameter values

described in Table 6.1 and their combinations. Each element in the grid was

analyzed by measuring the average model accuracy in a training/validation

experiment with five repetitions.

After tuning the hyperparameters, in order to check the learning capabilities

of the DruGNN on the dataset, and in particular the effect on the learn-

6.2. METHOD 77

Hyperparameter Values Best Config.

Activation relu, selu, tanh, sigmoid relu

Initial Learning Rate 10−2,10−3,10−4 10−3

State Dimension 10,50,100,200 50

Hidden Units 100,200,500 200

Neighborhood Aggregation average, sum average

Dropout Rate 0.5, 0.3,0.1,0.0 0.0

Table 6.1: Hyperparameter values analyzed during the grid search procedure, and best

configuration obtained.

ing process of the reduction or expansion of the set of side–effects, we set

up a dedicated series of experiments. In this part of the experimentation,

which consists of an ablation study over the set of side–effects, our model

was trained and tested on versions of our dataset with progressively reduced

numbers of side–effects: only the k most common side–effects were retained,

with k assuming values {360, 240, 120, 80, 40, 20, 10, 5}.
To evaluate the importance of the contributions of the different data sources,

another ablation study was carried out. We grouped the features and the

edges by source and eliminated one feature/edge group at a time from the

dataset, evaluating the performance of the model in absence of that group.

The performance gap obtained gives an estimate of the importance of the

features that were kept out. There are seven feature/edge groups in our

dataset, each of which was analyzed in an experiment repeated five times.

Once again, we always used the same dataset split and the same transductive

learning scheme described for the previous experimentation (see Subsection

6.2.2).

Eventually, the DruGNN was compared to other competitive GNN models

with different characteristics, in order to assess its performance with respect

to the alternative solutions. In particular we focused on two powerful mod-

els: GCNs [65], which exploit convolutions to aggregate information com-

ing from different locations across the graph, and have shown competitive

performance on many different tasks; GraphSAGE [53], which are versatile

networks that can be configured with various aggregation and state updating

functions, being potentially competitive on every graph dataset. Addition-

ally, we also compared to a simple MLP, in order to assess the difference

78 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

between a graph–based model and a Euclidean predictor. In particular, af-

ter a small optimization over the validation set, we used a three–layered

MLP. It was not possible to include previously published DSE predictors in

the comparison, as our dataset is completely novel, and graph–structured,

making it impossible to adapt to the feature sets of the predictors avail-

able in the literature (see Subsection 3.3). We remind that no graph–based

predictor was published for this task so far.

6.3 Results and Discussion

The hyperparameter search described in Subsection 6.2.3 produced a model

with an accuracy over the validation set of 87.22%. The same model, evalu-

ated on the held–out test set obtained an accuracy of 86.30%.

6.3.1 Ablation Studies

Given the best model configuration obtained in this first set of experiments,

we investigated the contribution of the side–effects to the learning capability

of the network. We ranked the side–effects by occurrences, and then we

progressively reduced the size of the set of side–effects, by selecting only the

most common ones. The average accuracy over five repetitions was measured

over the held–out test set. Results are reported in Table 6.2.

DSE 360 240 120 80 40 20 10 5

Acc.% 86.3 81.5 73.2 68.5 63.0 61.8 67.1 74.7

Bal.% 58.1 58.6 60.0 60.5 62.1 59.9 57.7 56.2

Table 6.2: Average accuracy percentage (Acc.%), and average balanced accuracy percent-

age (Bal.%) obtained on the test set by training and testing the model on progressively

smaller sets of side–effects (DSEs).

Since we are dealing with a multi–class multi–label classification task, each

class membership can be seen as a problem to be learned independently and

in parallel with respect to all the other classes. As a consequence, the first

expectation would be that, increasing the number of classes, the network

would have to learn a more complex algorithm, needing to solve more prob-

lems in parallel. On the contrary, the results reported in Table 6.2 show a

6.3. RESULTS AND DISCUSSION 79

clear tendency of improvement of the performance for larger sets of side–

effects. This counter–intuitive behaviour can be ascribed to the network

ability of learning intermediate solutions, which are useful for all or large

subsets of the classes, with an effect very similar to transfer learning. This

can be particularly evident in our system, in which transfer learning between

classes is fundamental because of the relatively small dimension of the set

of drugs, with the additional bonus of avoiding overfitting. An inversion of

this behaviour can be observed at lower set dimensions (up to 20), where

transfer learning becomes less easy and convenient and the network learns

to treat each class independently.

The unbalanced nature of the problem also plays a role, though. The side–

effects with less occurrences are highly unbalanced in favour of the negative

class, while the side–effects with more occurrences are unbalanced in favour

of the positive class. The balance shift as less common side–effects are re-

moved likely plays an important role in this scope.

A second ablation study was carried out on the feature/edge groups coming

from different data sources. The accuracy of the model, trained and tested in

absence of the data group, was evaluated and averaged over five repetitions

of the same experiment. Since the groups of features are of different sizes, to

better weigh the importance of each, we also measured the DPF (Difference

Per Feature) score: this is the performance difference with respect to the

complete model, divided by the number of features in the group. The de-

scription, and the corresponding performance loss observed in the ablation

study, of each data group, are reported in Table 6.3.

Table 6.3 shows that each data source has a positive contribution on the

GNN learning process. In particular, deleting the drug fingerprints brings

the largest performance drop, which can be explained by the importance

of the drug substructures in determining the side–effects, but also by the

large number of features (128) assigned to this data group. Proportionally,

looking at the DPF score, the seven PubChem descriptors have the highest

contribution, as it could be expected given their chemical relevance. The

gene features also have a relevant impact on performance, with the Biomart

derived features having a DPF equal to that of drug fingerprints. Edges also

showed to be important, as deleting each edge set leads to a performance

drop. Results suggest that drug similarity relations are the less important,

likely because drug similarity can be inferred by the network on the basis of

the fingerprints and of the drug–gene interactions.

80 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

Group DPI PPI DDS FP PC GO BM

Type E E E DF DF GF GF

Acc.% 86.14 86.18 86.23 85.81 86.20 86.17 86.20

Diff. 0.16 0.12 0.07 0.49 0.10 0.13 0.10

Count - - - 128 7 113 27

DPF - - - 0.004 0.014 0.001 0.004

Table 6.3: Average accuracy percentage (Acc.%), and difference with respect to the model

trained on the complete feature set (Diff.), obtained on the test set by training and testing

the model on our dataset in absence of the corresponding feature/edge group (Group).

Each group is associated to a type: E (Edges), DF (Drug Features), GF (Gene Features).

For DF and GF data groups, the number of features (Count) and the difference per feature

(DPF) are reported: the latter is obtained by dividing the difference (Diff.) by the number

of features in the group (Count). Our data groups are: DPI (Drug–Protein Interactions),

PPI (Protein–Protein Interactions), DDS (Drug–Drug Similarity), FP (FingerPrints), PC

(PubChem), GO (Gene Ontology), and BM (BioMart).

Although each group of features and edges has a positive contribution to

model performance, the small performance drop obtained by switching them

off tells us that the model is robust. In fact, it works almost as well as

the complete version even when entire sets of edges or features are deleted.

We can therefore hypothesize the following. On the one hand, GNNs are ex-

pected to be robust, on the basis of previous systematic ablation studies that

demonstrated their capabilities on many types of graph datasets [56]. On the

other hand, the large quantity of features and edges, and the heterogeneous

nature of our data sources, likely boost the model’s robustness.

6.3.2 Comparison with Other Models

To assess the capabilities of DruGNN with respect to other GNN variants,

and with respect to non–graph–based Euclidean models, we also made a

comparison with GraphSage [53], GCNs [65], and with a simple MLP model

trained on a vectorized version of our drug data. The MLP gives a measure of

the results that can be achieved by applying a traditional Euclidean predictor

on our dataset. The GCN and the GraphSage are trained with the same

inductive–transductive scheme as DruGNN. All the models were trained with

the binary cross–entropy loss function, Adam optimizer [54], and an initial

6.3. RESULTS AND DISCUSSION 81

learning rate equal to 10−4. A maximum of 500 epochs was allowed for

each model, with early stopping on the validation loss, and recovery of the

best weights. As expected, all the graph–based models outperformed the

standard MLP, showing the advantage given by representing the dataset

as relationships on a graph and by learning directly on the graph structure.

Moreover, using a GraphSAGE or a GCN approach on this task did not allow

to reach the same results we obtained with DruGNN, as shown in Table 6.4.

This can be explained by the fact that our model is particularly efficient on

node property prediction tasks, as the one presented in this Chapter, while

the other GNN models tend to aggregate nodes on a larger scale, getting

an advantage on graph property prediction tasks. This is also in line with

theoretical studies on GNNs that demonstrate the processing capabilities

by simulating the Weisfeiler–Lehman test [56] (see Subsection 2.3.4). Model

evaluation is based on the average accuracy percentage obtained over 10 runs

of training and testing on the same dataset split.

Model Configuration Avg. Acc. %

DruGNN K = 6, SD = 50, DL = 1× 200 86.30%

GCN CL = 2× 36, DL = 116 82.94%

GraphSAGE CL = 2× 72, DL = 1× 168 83.11%

MLP DL = 3× 25 77.98%

Table 6.4: Comparison between different models of the GNN family. Model configuration

is reported; all of the models were optimized with a small hyperparameter search. K: max-

imum number of state update iterations for DruGNN; SD: state dimension for DruGNN;

DL: number of dense layers and units in each dense layer; CL: number of convolutional

layers and units in each convolutional layer. For GCN and GraphSage, the dense layer is

the last one before the output layer.

6.3.3 Usability of DruGNN

DruGNN is meant as a tool of real usage, that can help healthcare and phar-

macology professionals to predict side–effects of newly discovered drugs or

other compounds not yet classified as commercial drugs. The dataset and

the software are publicly available on github 2, so that both assets can be

2https://github.com/PietroMSB/DrugSideEffects

82 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

exploited in further scientific research and by the whole community. Fur-

thermore, both the dataset and the algorithm are scalable: adding new

compounds to predict their side–effects does not compromise the network

usability (i.e., the network does not need to be retrained from scratch).

An example of such usage is represented by the prediction of the side–effects

of Amoxicillin (PubChem CID: 2171), which is part of the held–out test set

(and therefore never seen during the training or validation phases). Amox-

icillin has been determined to be similar to the following drugs, listed by

PubChem CID: 2173, 2349, 2559, 4607, 4730, 4834, 8982, 15232, 22502,

6437075. It also interacts with 76 genes. No other information but the finger-

print and PubChem features of Amoxicillin are available to the model. The

network correctly predicts 22 side–effects, among which (listed by SIDER

id) quite common and expectable ones, like C0000737 (Abdominal pain) and

C0038362 (Stomatitis), but also non–obvious ones, like C0002871 (Anaemia)

and C0917801 (Insomnia). It fails to predict 6 side–effects: C0002994 (An-

gioedema), C0008370 (Cholestasis), C0009319 (Colitis), C0011606 (Dermati-

tis exfoliative), C0014457 (Eosinophilia), C0036572 (Convulsion). Please

notice that Angioedema, Colitis, Dermatitis exfoliative, and Convulsion are

indicated as very rare for Amoxicillin. Cholestasis has relatively few oc-

currences in the dataset, and is therefore difficult to predict. Moreover, the

network shows good predictive capabilities on side–effects which are common

in the whole drug class Amoxicillin belongs to (represented by the similar

compounds in the dataset). In addition, the network predicts only one side–

effect which is not associated to Amoxicillin in the supervision: C0035078

(Renal failure).

As shown in the example, to predict the side–effects of a new compound, it

is sufficient to retrieve information (coming from wet–lab studies and from

the literature) on its interactions with genes, and to know its structural for-

mula. RdKit can be used to calculate the fingerprint, and consequently the

similarity to other drugs in the dataset. The PubChem features can either

be obtained from a database, or calculated with RdKit. It is then sufficient

to insert the compound in the dataset and to predict its side–effects with

DruGNN. Visualisation of the DruGNN results and the excepts from the

database could then be directly used by doctors and pharmacists.

6.4. CONCLUSIONS AND FUTURE WORK 83

6.4 Conclusions and Future Work

Combining data from multiple sources is crucial for a DNN to learn complex

mechanisms regulating the occurrence of DSEs. In particular, the relational

information on the interactions of drugs and genes is well described by a

graph structure. Integrating these entities and their relations, we built a

graph dataset thought for training and testing graph–based DSE predictors.

GNNs showed very good learning capabilities on this dataset, suggesting that

a predictor based on this kind of model could help anticipate the occurrence

of side–effects. Furthermore, its application on new candidate drugs would

help saving time and money in drug discovery studies, also preventing health

issues for the participants to the clinical tests.

DruGNN is a modular approach to DSE prediction and is robust to ablation.

Moreover, it is easily usable on new drug compounds: it is sufficient to add

the new drug, with its features and gene interactions, as a node in the graph,

and to run the prediction of its classes. The model does not need retraining,

and the same inductive–transductive learning scheme can be used for future

additions of compounds and predictions of their side–effects. The prediction

relies on a modular multi–omics robust approach, based on information re-

trieved from publicly available sources. In principle, the same graph could

be exploited also to predict the drug–gene interactions of new compounds,

by applying link prediction over the gene set.

Since drug structures proved to be one of the most important parts of our

dataset for DL, an interesting future direction is represented by the develop-

ment of a GNN–based predictor that could analyse the structural formulas

of the molecules, represented as graphs. These molecular graphs could be

augmented with features coming from the gene side and drug–gene relations.

In this scope, the algorithm could even be combined with generative models,

like MG2N2 [11] (described in Chapter 5), that generate molecular graphs of

possible drug candidates in large quantities. The task of the DSE predictor

would be to screen out all the candidate compounds with high probabilities

of occurrence of particular side–effects.

Another very interesting direction is that of specializing the predictor pre-

sented in this work, in order to take into account tissue–specific data (i.e.

gene expression) and fine–tune a dedicated version of the model for each

tissue. This could be made possible by exploiting tissue specific side–effect

targets, leading to a more detailed prediction which could also be personal-

84 CHAPTER 6. DRUG SIDE–EFFECT PREDICTION WITH GNN

ized, given the gene expression values of each individual, as expected in the

context of precision medicine.

Chapter 7

Graph Neural Networks for the

Prediction of Protein–Protein

Interfaces

In this Chapter, a predictor of protein–protein interfaces based on GNNs,

corresponding to publication [P11] is presented.

Proteins are fundamental molecules for life. They are involved in any bio-

logical process that takes place in living beings, carrying out a huge variety

of different tasks. In these molecules, functionality and structural confor-

mation are strictly correlated [167]. Therefore, analyzing structural features

of proteins is often useful in understanding which biological processes they

are involved in, which ligands they bind to, and which molecular complexes

they form.

The structure of a protein can be described at three different levels: the pri-

mary structure corresponds to the sequence of amino acids it is composed of;

the secondary structure corresponds to the local conformation of the peptide

chain, in the shape of α–helices, β–sheets or coils; the tertiary structure rep-

resents the three–dimensional configuration of the molecule. Often, two or

more molecules bind together to form a protein complex, whose shape goes

under the name of quaternary structure. Dimers are the simplest protein

complexes, as they are composed of just two monomers.

To form such complexes, monomers interact through specialized parts of their

surface, called binding sites or interfaces. These interactions can be studied

with the help of graph theory. Indeed, each monomer can be represented as

a graph, with nodes corresponding to Secondary Structure Elements (SSEs),

85

86 CHAPTER 7. GNN FOR THE PREDICTION OF PPI

while edges stand for spatial relationships between adjacent SSEs, which can

be parallel, anti–parallel or mixed. Using graphs of two different monomers,

a correspondence graph can be built, whose nodes describe all the possible

pairs of SSEs from the two different subunits [138]. Based on the correspon-

dence graph, identifying binding sites on protein surfaces can be reformulated

as a maximum clique search problem [137].

The maximum clique problem is known to be an NP–complete problem,

meaning that, except for very small graphs, traditional operations research

algorithms [168] will employ a prohibitive amount of time before solving it.

From this consideration stemmed the idea of using a ML method to solve the

problem with reasonable computational costs. In particular, GNNs [1] look

like the perfect model, with their ability to process graph–structured inputs.

In this scope, the maximum clique problem consists of a binary classification

between the nodes which belong to the maximum clique and those which do

not. In particular, the solution proposed in this Chapter entails applying

LGNNs [61] to solve the maximum clique problem.

The rest of the Chapter is organized as follows. Section 7.1 illustrates the

method, sketching the data acquisition and processing operations in Sub-

section 7.1.1, giving implementation details on GNNs and LGNNs in Sub-

section 7.1.2, and describing the experimental methodology in Subsection

7.1.3. Section 7.2 presents and gives interesting insights on the results of the

work. Finally, Section 7.3 discusses the results of the approach and draws

conclusions.

7.1 Materials and Methods

The method described in this Chapter consists of building a dataset for

protein–protein interface prediction, in which pairs of monomers are asso-

ciated to a correspondence graph. This graph is analyzed with LGNNs in

search of the maximum clique.

7.1.1 Dataset Construction

To build the dataset, heterodimers (i.e. dimers formed by two different

monomers) characterized by the absence of disulfide bridges, the presence

of salt bridges, and protein–protein interaction sites were searched in the

Protein DataBank in Europe (PDBePISA) [169]. We obtained a database of

7.1. MATERIALS AND METHODS 87

6,695 known proteins for a total of 160,680 monomeric interfaces. To guar-

antee biological significance, some criteria were enforced: an area of at least

200 Å2, ⟨x, y, z⟩ symmetry, and only two interacting protein molecules. After

this operation, we obtained a set of 12,455 interfaces. For every interface,

two protein graphs were built, representing two polypeptide chains which

interact on the binding site.

The monomeric graphs were built using VPLG [170], with PDB [171] and

DSSP [172] files representing the whole protein. Each node v is labeled with

a feature vector lv which consists of: an ID number, the SSE type, the num-

ber of occurrences of cysteine and that of the aromatic amino acids (tyrosine,

tryptophan and phenylalanine), the percentage of amino acids taking part

in the interface and the overall hydrophobicity [173], the charge and Acces-

sible Surface Area (ASA) of the SSE, respectively as the sum of hydropathic

indexes, charges and accessible surface areas of each amino acid at pH 7.

Once the graph has been produced for both monomers, it is possible to build

the correspondence graph [137, 138]. Let G1 = (V1, E1) and G2 = (V2, E2)

be the graphs representing two protein chains and G = (VG, EG) be the

correspondence graph of G1 and G2. Let vi, ui ∈ Vi be two generic nodes

in Gi with i = 1, 2. Therefore, two nodes v = (v1, v2), u = (u1, u2) ∈ VG

are connected by an edge (v, u) ∈ EG if and only if ∃(v1, u1) ∈ E1 and

∃(v2, u2) ∈ E2. The edge label eu,v is a one–hot representation of the spatial

relationship between two adjacent nodes in G, which depends on the labels

ev1,u1 and ev2,u2 , so that ev,u is the same edge label if both the edge labels in

G1 and G2 are equal, mixed otherwise. The label of node v ∈ VG consists

of: an ID number, a one–hot representation of the SSE type, the differences

in the occurrences of cysteine and the aromatic amino acids, the arithmetic

mean of the two hydrophobicity values, the minimum of the ASAs and the

sum of the charges of the two SSEs. In particular, the SSE type of the node

v ∈ VG, which represents v1 ∈ V1 and v2 ∈ V2, is the same as that of the

nodes v1 and v2 if both belong to the same SSE class, while it is defined as

mixed if they belong to different SSE classes.

The node targets were generated with the Bron and Kerbosch algorithm

[174], which identified the cliques within each correspondence graph, with a

minimum size of three nodes. Subsequently, these cliques were analyzed, in

order to determine whether or not they were biologically significant. In this

context, a clique is defined as positive or biologically significant if and only

if all the nodes belonging to that clique represent pairs of SSEs of different

88 CHAPTER 7. GNN FOR THE PREDICTION OF PPI

monomeric graphs, that contain both at least one residue that is part of

the interface. Hence, the target attached to each node is a two–dimensional

vector containing a one–hot encoding of the two classes: positive if the node

belongs to a biologically significant clique, negative otherwise.

We obtained 512 correspondence graphs, each containing at least one bio-

logically significant clique (and any number of negative cliques) composed

of three or more nodes. These were not completely connected, often being

made of multiple separated connected components. Since many connected

components did not include cliques, a pruning strategy was adopted, in or-

der to clean the dataset. The correspondence graphs were split, obtaining a

graph for each connected component. We kept only those which contain at

least one clique, whether positive or not. This operation produced the final

dataset of 1044 connected graphs, 537 of which contain a positive clique,

while the remaining 507 contain only negative cliques. Table 7.1 provides

numerical information on the dataset, before and after the pruning process.

Dataset Graphs Edges Nodes Nodes0 Nodes1 %Nodes1

Before Pruning 512 441.203 328.629 325.798 2.831 0.86 %

After Pruning 1.044 274.608 166.424 163.593 2.831 1.7 %

Table 7.1: Dataset statistics before and after data cleaning (Nodes0/1 represent nega-

tive/positive nodes)

7.1.2 GNN Implementation

In the work described in this Chapter, GNNs are implemented as formulated

in Subsection 2.3.1, with the only difference represented by the fact that edge

labels are not taken into account, because edges are unlabeled in this dataset.

Moreover, the only neighborhood aggregation function used in this case is

the sum. Therefore the hyperparameter a will always have value a = 1. The

state updating function fw defined in Eq. (2.6) can be re–written as in Eq.

(7.1):

xt
n = fw(xt−1

n , ln,
∑

m∈Ne(n)

(xt−1
m , lm)) (7.1)

Since this is a node classification task, the output function gw is implemented

exactly as defined in Eq. (2.7).

7.1. MATERIALS AND METHODS 89

GNNs are stacked to build up a layered architecture, namely a LGNN [61],

in which each layer consists of a GNN. The first layer is a standard GNN

operating on the original input graphs. Each layer after the first is trained on

an enriched version of the graphs, in which the information obtained from the

previous layer is concatenated to the original node labels. This additional

information consists in, either, the node state, the node output, or both.

Formally, the label of node n in the i–th layer, i > 1, is lin = [ln, x
i−1
n] or

lin = [ln, x
i−1
n] or lin = [ln, x

i−1
n , oi−1

n], where xi−1
n , oi−1

n are, respectively, the

state and the output of node n at layer i − 1 of the cascaded architecture.

This scheme encourages each layer to refine the solution provided by the

previous layers, improving the performance with respect to a single–layered

GNN. LGNNs are trained step by step, one layer after the other, from the

first to the last. Each layer is trained using the same original targets. Given

the operation described for the labels, all the mathematical formulations

remain valid for each layer.

7.1.3 Experimental Setup

A binary GNN classifier was developed for the detection of maximum cliques

in the correspondence graphs, which addresses the problem as a node–based

classification task. Usually, in a classification task, the performance is mea-

sured in terms of accuracy. This metric, though, is not precise on unbalanced

datasets, like ours. Therefore, we decided to evaluate the model’s perfor-

mance using the F1–Score, which combines precision and recall to provide a

balanced measure.

The architecture of the MLP module dedicated to the output function gw
was kept fixed, using a single level MLP and the softmax activation func-

tion. On the contrary, a 10–fold cross–validation was performed in order

to determine the best hyperparameters for the MLP implementing the state

updating function fw. According to the cross–validation results, the MLP

architecture with better performance has got a single hidden–layer with logis-

tic sigmoid activation functions. This setup was used also to test a 5–layered

LGNN network, where each GNN layer shares the same architecture.

In order to evaluate the performance of the LGNN, a 10–fold cross–validation

was carried out. The LGNN is composed of 5 GNN layers, each with state

dimension equal to 3. The state is calculated by a one–layer MLP with lo-

gistic sigmoid activations, while the output is calculated with a one–layer

90 CHAPTER 7. GNN FOR THE PREDICTION OF PPI

MLP with softmax activation. Since the negative/positive examples ratio

is quite large, the weight of positive examples is fixed to the 10% of this

ratio, against a weight of 1 for negative examples, in order to balance the

learning procedure. The model is trained with the Adam optimizer [54] and

the cross–entropy loss function.

7.2 Experimental Results

The best performance is obtained with LGNNs integrating only the state

in the node labels. There are slight improvements in precision and more

tangible improvements in recall, which gains more than 10 percentage points

in the second GNN level, and then continues to grow and stabilize in the

following levels, as shown in Fig. 7.1. This architecture is the only one in

which we observe a significant increase of the F1–Score, getting more than 6

percentage points from nearly 35% of the first GNN level to more than 40%

in the final GNN level, as reported in Table 7.2.

Contrariwise, integrating in the node labels only the output or both the

state and the output, the F1–score decreases through the LGNN layers.

The other parameters remain almost stable, except for recall, which slightly

increases through the LGNN layers. However, the standard deviation of

the recall tends to grow, suffering from a marked dependence on the initial

conditions of the experiment. The results confirm the expectations based on

biological data and show good performance in determining the interaction

sites, recognizing on average about 60% of the interacting nodes.

Figure 7.1: 5 levels LGNN 10–fold cross validation results: F1–score

7.3. CONCLUSIONS 91

Output Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.319(0.069) 0.271(0.058) 0.287(0.049) 0.266(0.046) 0.295(0.07)

Recall 0.455(0.048) 0.447(0.111) 0.476(0.061) 0.446(0.101) 0.517(0.059)

F–Score 0.368(0.046) 0.331(0.062) 0.354(0.04) 0.329(0.062) 0.368(0.049)

State Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.31(0.061) 0.279(0.045) 0.322(0.052) 0.295(0.053) 0.328(0.061)

Recall 0.436(0.063) 0.558(0.056) 0.524(0.087) 0.585(0.08) 0.571(0.067)

F–Score 0.358(0.05) 0.368(0.039) 0.392(0.041) 0.387(0.053) 0.414(0.055)

Both Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.308(0.063) 0.273(0.052) 0.261(0.106) 0.301(0.064) 0.296(0.06)

Recall 0.46(0.056) 0.544(0.109) 0.52(0.185) 0.518(0.168) 0.597(0.096)

F–Score 0.364(0.047) 0.354(0.042) 0.342(0.125) 0.372(0.085) 0.392(0.063)

Table 7.2: Results obtained with three different LGNN settings: propagating the output,

the state or both from one layer to the next

7.3 Conclusions

We addressed the problem of protein–protein interface detection as a search

for the maximum clique in the interface correspondence graph. Although

the problem is NP–complete, our method, based on GNNs, can find the

maximum clique in affordable time. The performance of the model was

measured in terms of F1–score and shows that the approach described in

this Chapter is very promising, though it can be further improved. One key

idea in this direction is that of using graphs in which the nodes correspond to

single amino acids, rather than to SSEs. Although this latter approach would

increase the complexity of the problem, it would avoid the loss of information

we encounter in compressing amino acid features into SSE nodes. Moreover,

predictions obtained in this setting would be more accurate, describing the

binding site at the amino acid level.

92 CHAPTER 7. GNN FOR THE PREDICTION OF PPI

Chapter 8

Other Works

This Chapter provides an overview of the other activities carried out during

the Ph.D. and not strictly related to the content of the thesis. Section 8.1,

presents the participation into a theoretical activity focused on trustworthy,

automatic, interpretable, fair, and secure learning with GNNs [P06]. Section

8.2 describes GlyPipe, a software pipeline for the automatic prediction of

glycine mutations that can induce the formation of protein surface pockets,

the druggability of which is evaluated with an MLP, based on various types

of pocket features. The approach, which is the focus of publication [P07], is

described in Subsection 8.2.1, while its applications, corresponding to publi-

cations [P08] and [P09], are presented, respectively, in Subsection 8.2.2 and

in Subsection 8.2.3. Section 8.3 collects approaches that could help the scien-

tific research on Covid-19. Subsection 8.3.1 introduces a method to predict

binding sites on the surface of spike glycoprotein monomers that could host

molecules capable of impairing the formation of the quaternary structure of

the spike glycoprotein itself. This work lead to publications [P04] and [P15].

Subsection 8.3.2 presents a siamese LSTM for the fast estimation of align-

ment scores of human coronavirus sequences, and a consequent investigation

of similarity between Covid–19 and other human coronaviruses, presented in

publication [P10]. Section 8.4, instead, presents an attention–based LSTM

predictor of protein secondary structures [P05]. Section 8.5 presents a proof

of concept of a mechanism based on GNNs that could facilitate the exchange

of experience and support between caregivers of rare disease patients [P14].

Finally, Section 8.6 provides a description of two applications of DL tech-

niques to image analysis tasks coming from the real world: Subsection 8.6.1

describes a CNN model for dragonfly action recognition [P13], while Sub-

93

94 CHAPTER 8. OTHER WORKS

section 8.6.2 illustrates a deep CNN approach for the classification of skin

lesions [P12],

8.1 Towards Learning Trustworthily, Auto-

matically, and with Guarantees on Graphs

In this Section, the collaboration to a theoretical work, corresponding to pub-

lication [P06], is presented. The work is focused on surveying the possibility

of learning with GNNs in accordance with a variety of virtuous conditions.

These conditions include the possibility of learning in a trustworthy way,

and learning automatically. Fairness, security, safety, and robustness are

analyzed, as well as privacy and explainability [175]. In particular, the col-

laborative activity was mainly focused on defining the computational power

of GNNs, and surveying the existing methods for this task, as described in

Subsection 2.3.4. The unfolding tree method [7] was presented and mathe-

matically formulated. The alternative method [56], based on the Weisfeiler–

Lehman isomorphism test [57] was then described, along with the classifi-

cation of GNN models into tiers of different expressive power according to

the possibility of simulating the Weisfeiler–Lehman test. The equivalence

between the two methods [59] was discussed and the conditions under which

GNNs are universal approximators on graphs were defined.

8.2 GlyPipe: Opening New Protein Surface

Pockets

This Section describes GlyPipe: a predictor of mutations that can open new

pockets on the surface of protein structures, and the automatic evaluation

of the druggability score of the pockets formed with this approach. Two

relevant applications [176, 177] of this method are then presented.

8.2.1 Glycine–induced formation and druggability sc-

ore prediction of protein surface pockets

In this Subsection, a new idea is proposed for the realization of mutated

proteins, in order to form new transient pockets on their surface, capable of

8.2. GLYPIPE: OPENING NEW PROTEIN SURFACE POCKETS 95

hosting drugs. In particular, new allosteric sites are obtained by replacing

amino acids with bulky side chains with glycine, Gly, the smallest natural

amino acid. We also present a ML approach to evaluate the Druggability

Score (DS) of new (or enlarged) pockets. These features are implemented in

a software pipeline, called GlyPipe, for the prediction of glycine–mutations

that can induce the formation of druggable pockets. This approach is de-

scribed in publication [P07].

GlyPipe takes protein structure files, in PDB format [171], in input, searches

for the best glycine substitution and evaluates the DS of the resulting pocket,

returning the mutant structure, the pocket, and its predicted DS. The work-

ing steps of GlyPipe are represented in Fig. 8.1.

Figure 8.1: Steps of the GlyPipe software pipeline

The first module in the pipe makes use of the Simple Atom Depth Index

Calculator [178] and of the POPS software [179] to select residues which are

located on the surface, not excessively exposed, and with their side–chain

pointing outwards. The set of residues meeting these conditions is sequen-

tially scanned, in search of the amino acid which is most likely to produce

a druggable pocket, once substituted with a glycine. The best amino acid

types are Phe, Trp, and Tyr, but also other non–polar zero–charge amino

acids are considered. The glycine mutation is applied to the protein struc-

96 CHAPTER 8. OTHER WORKS

ture using PyMOL 1. The stability of the mutant structure is checked with

an energy minimization protocol provided by PyMOL. Once the mutated

structure has been minimized, it is analyzed with PockDrug [180]. The new

pocket can be detected by comparing the results of this analysis to those

obtained on the natural version of the structure. If a new pocket is found

in the vicinity of the mutated amino acid, the following step is applied to

evaluate its druggability. In some cases, a pocket exists, close to the mutated

amino acid, both before and after the mutation: in this case the druggability

is evaluated for both versions of the pocket, and compared.

GlyPipe is equipped with an MLP regressor, which takes the pocket descrip-

tors in input and predicts the pocket DS. Relevant descriptors correspond

to chemical and physical features of the pocket, such as: hydrophobicity

[173], fraction of polar residues, numbers of aromatic and aliphatic residues,

charge, diameter, and volume. In order to train and test the model, a dataset

of labeled pocket examples was built. We selected 1,200 protein structures,

by drawing them at random from a nonredundant list of proteins collected

from the PDB [171]. From the set of 1,200 proteins, 10,797 pocket examples

were collected. The supervision was provided by evaluating the DS of each

pocket with PockDrug. The pocket set was randomly split into a training set

(9717 examples) and a test set (1080 examples), with roughly the same ratio

of negative to positive examples. After a preliminary hyperparameter search

on a validation subset of the training data, the network achieved very good

performances in replicating the DS calculated by PockDrug, while being way

faster than PockDrug in the estimation, once trained.

An ablation study was also performed, allowing to determine which of the

features are more informative. This determined that a subset of 13 features

out of 17 allows to obtain the same prediction performances than the full

feature set. Moreover, a smaller subset of 8 features reaches slightly less

accurate results, while needing much less descriptor calculations. Following

this result, an ad–hoc feature extractor was built, that takes in input the

pocket file and calculates only those 8 features that are useful for the pre-

diction. This allows much faster DS predictions.

As a final experiment, the pipeline underwent a preliminary test. Sixty struc-

tures, none of which belongs to the dataset used for training and testing the

DS predictor, were downloaded from the PDB and submitted to GlyPipe.

The resulting mutant structures were manually checked and analyzed with

1The PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC.

8.2. GLYPIPE: OPENING NEW PROTEIN SURFACE POCKETS 97

PockDrug, obtaining the following results:

• 1 non–druggable pocket closed;

• 9 mutations did not open or close cavities;

• 7 modified pockets (2 of which became druggable);

• 43 new pockets (4 of which druggable).

In all these cases, the DS prediction was in agreement with the DS calcu-

lated by PockDrug. We can state that, in this experiment, a new pocket was

opened by 71.7% of the mutations. In total, six new druggable pockets were

obtained over sixty mutations. Therefore, 10% of the mutations proposed

by GlyPipe produced a new druggable pocket.

These preliminary experimental results are really promising, allowing for a

preparatory selection of those pockets that actually deserve to undergo a vir-

tual screening procedure in order to find potential ligands, and significantly

reducing the computational cost of the whole process. We are not aware of

other methods which explore the possibility of creating new protein surface

pockets by substituting a large amino acid with a smaller one.

8.2.2 Structural bioinformatics survey on disease in-

ducing missense mutations

In this Subsection, referring to publication [P08], a bioinformatic study on

the applicability of GlyPipe (see 8.2.1) is presented.

Understanding the molecular interactions between proteins, nucleic acids and

small molecules is fundamental to build reliable methods of genetic medicine

[181]. Genotype–phenotype associations in human diseases can be efficiently

explored by accessing mutation databases, such as ClinVar [182]. The fact

that missense mutations constitute the most common sequence alteration in

Mendelian disorders offers a good starting point to understand the mecha-

nisms of disease appearance due to amino acid variations in mutated pro-

teins [183]. Pathogenicity can occur whenever a missense mutation alters the

structural stability of the protein and, consequently, its function. The large

number of examples of this kind has driven the implementation of several

algorithms to predict functional damages caused by amino acid substitu-

tions [184, 185]. Moreover, the abundance of structures that are currently

98 CHAPTER 8. OTHER WORKS

available in the Protein Data Bank (PDB) [171] allows a detailed view of

the protein interactome. The missense mutations provided by ClinVar can

therefore undergo a structural analysis, obtaining interface data from the

PDBePISA resource [169].

Starting from a set of mutations corresponding to all the ClinVar entries

(789,266 as of June 10, 2020, when the study was conducted), we selected

only single nucleotide variations that cause protein missense mutations, which

had a minimum review status (one star), obtaining 308,326 entries. Exclud-

ing entries with intermediate levels of clinical significance, we built our sets of

benign (25,579 entries) and pathogenic (21,595 entries) missense mutations.

Each mutation was associated with a PDB structure using VarMap [186].

Discarding mutations without structural and/or interface data, we obtained

5,641 benign mutations and 3,018 pathogenic ones. The area around each

mutation was analyzed with a method similar to the technique described for

GlyPipe (see Subsection 8.2.1).

We investigated the possibility of learning to classify the mutations as either

benign or pathogenic with a ML model. We used all the mutations in the

benign and pathogenic datasets, which amount to a total of 8,659 exam-

ples. Each mutation is described by a 46–element feature vector composed

of: the native residue (20–bit one–hot encoding of the amino acid type),

the mutant residue (20–bit one–hot encoding of the amino acid type), and

a location vector (6–bit one–hot encoding) which indicates where the muta-

tion occurs: core, surface, protein–protein interface, protein–RNA interface,

protein–DNA interface, or protein–ligand interface. Reserving 1,000 muta-

tions for testing, we trained three ML binary classifiers on the other 7,659

examples: an MLP, a random forest, and a SVM. After training, the models

were tested on the held–out test set of 1,000 mutations, obtaining good ac-

curacy results: 76.0% for the MLP, 75.6% for the random forest, and 74.1%

for the SVM.

The experimental results suggest that missense mutations can be evaluated

with ML techniques, assessing their pathogenicity based on the wild–type

residue, the mutant residue, and the location inside the protein structure.

Moreover, a statistical analysis carried out in parallel with the ML study,

suggests that arginine and glycine have a special role in this kind of mutation.

In particular, the results of the latter analysis clearly indicate that arginine

mutations increase pathogenicity whenever they occur at PDBePISA–defined

interfaces and, particularly, at protein–DNA interfaces. In the protein–DNA

8.2. GLYPIPE: OPENING NEW PROTEIN SURFACE POCKETS 99

interfaces, arginine is more than six times more frequent in the benign set

than it is in the pathogenic set. This fact is in total agreement with the

very critical role that this amino acid has in the interaction with nucleic

acids [187]. Moreover, arginine benign mutations are not frequently found

in buried protein moieties or in protein–protein interfaces, while glycine be-

nign mutations exhibit the opposite trend. The latter glycine mutations are

more frequently found in protein–ligand interfaces, in agreement with the

suggested role of this amino acid in stabilizing concave moieties of the pro-

tein surface [92]. The prevalent localization of pathogenic glycine mutations

indicates that the substitution of glycine with amino acids having larger side

chains causes structural stress and, hence, functional changes in the mutated

proteins.

8.2.3 Structural bioinformatic survey of protein–small

molecule interfaces delineates the role of glycine

in surface pocket formation

Understanding the mechanisms of protein–small molecule interaction is a

fundamental step to increase our knowledge of life and to establish new

therapeutic approaches [188]. In previous studies, described in Subsection

8.2.1 and in Subsection 8.2.2, the role of glycine in interfaces between pro-

teins and ligands, other proteins, and nucleic acids, has been investigated.

In this Subsection, describing publication [P09], instead, we investigate the

amino acid composition of interfaces between proteins and small molecules,

searching for signals that could help designing additional protein binding

sites.

To build the dataset on which to carry out this investigation, protein–ligand

adducts were derived from the 163,141 structure files that were present in

the PDB [171] at the time of the study (April 24, 2020). Files that did

not contain exclusively proteins, files containing more than one chain in the

asymmetric unit, and files which did not contain ligands were excluded from

the dataset, resulting in a set of 45,580 structures. These were filtered in

order to eliminate files with 50% redundancy or higher, obtaining a final set

of 11,351 structures, which was split into two subsets: 4,947 enzymes and

6,404 non–enzymes. To delineate the amino acid composition of the protein–

ligand interface of each structure, we resorted to the PDBePISA interface

database [169].

100 CHAPTER 8. OTHER WORKS

This analysis allowed to count and characterize the occurrences of each amino

acid in a large amount of protein–ligand interfaces. This piece of information

is of fundamental importance in the scope of using GlyPipe (see Subsection

8.2.1) in order to modify existing protein surface pockets or open new ones

that could host ligands. In particular, the possibility of using GlyPipe ac-

cording to the previously derived amino acid compositions was investigated

in a case study on the Hen Egg White Lysozime (HEWL) structure (PDB

id: 1LZT). To this aim, GlyPipe was configured to substitute Glycine to the

three amino acids with the largest side–chains (Tryptophan, Phenylanine,

and Tyrosine). We found that, on the structure under analysis, only Tyr20,

Tyr23, Tyr53, Trp111, and Trp123 satisfied all the substitution criteria de-

fined by GlyPipe, and the additional requirement of being distant from the

natural binding pockets, in order not to impair the original protein function.

As expected, all five mutations produced new deep surface pockets in the re-

spective mutant HEWL structures. Molecular dynamics simulations allowed

to establish that none of the mutations altered protein behaviour and func-

tionality, and to verify that the pockets remained opened on a stable basis.

The druggability scores of the five pockets were calculated with GlyPipe. All

the pockets showed good to very good druggability scores.

The experimental results allowed to draw conclusions on the role of Glycine

and other amino acids in protein–ligand interfaces. Moreover, Glycine sub-

stitutions, more precisely guided by the information obtained on the compo-

sition of such interfaces, can effectively be used to open new ligand–hosting

surface pockets in an in silico experiment.

8.3 Structured Data in Covid–19 research

This Section collects two activities on Covid–19 data, carried out in order to

help the research against Covid–19 which is focusing the efforts of scientists

from a wide variety of different application fields worldwide.

8.3.1 Interfering with Covid–19 Spike Glycoprotein Tri-

merization

This Subsection discusses a work [189, 190], corresponding to publications

[P04] and [P15], on the possibility of impairing Covid–19 Spike glycopro-

tein (S) trimerization by inserting known drugs into ligand–binding pockets

8.3. STRUCTURED DATA IN COVID–19 RESEARCH 101

found in the interface regions of the spike protomers. The S glycoprotein,

indeed, is central for COVID–19 infection as it mediates attachment of viri-

ons to the host cell receptor, it is involved in cell–to–cell fusion and induces

neutralizing antibodies, bearing also virulence determinants [191]. Assem-

bly of protomers into the bioactive form of the trimeric structure of the S

glycoprotein has been experimentally proved to be the rate–limiting step for

the infecting cycle of the transmissible gastroenteritis coronavirus (TGEV)

[192]. The close similarity between S glycoprotein of TGEV and COVID–19,

as controlled in the present study, suggests that the same in vitro observa-

tions made on the TGEV S glycoprotein assembly [192] should also hold

in the COVID–19 case. Therefore, being the trimerization a relatively slow

process, this study tries to interfere with it, by finding surface pockets in the

interface regions to which ligands can bind, building a physical obstacle to

protomer–protomer interaction.

The quaternary structure of the Covid–19 S glycoprotein was downloaded

from the PDB [171], with structure PDB ID: 6VSB [193]. After removing all

the heteroatoms, depth indices were calculated with SADIC [178], and inter-

face residues obtained from PDBePISA [169]. Using an algorithm based on

GlyPipe [92] (see Section 8.2), pockets were located at protomer–protomer

interfaces, and their druggability evaluated. In particular, the pockets were

selected according to the following criteria: overlapping with interface sur-

face higher than 70%, pocket volume > 300 Å3, druggability score > 0.7,

located in the S2 domain of S glycoprotein, number of pocket residues > 10.

Six pockets were found to meet all these requirements. Before selecting pos-

sible ligands that can bind to the above–described protomer pockets, the

sequence conservation was checked by multiple sequence alignments using

Clustal Omega [194]. All residues belonging to COVID–19 S glycoprotein

S2 domain, encompassing 660–1273 sequence fragment, exhibited full iden-

tity.

After these preliminary results, an investigation was carried out on the ex-

istence of small molecules that can interfere with COVID–19 S glycoprotein

trimerization through binding to the pockets previously delineated on the

protomer surfaces. This task was achieved by downloading the content of

DrugBank 5.1.5 [195]. A docking simulation was carried out on the six pock-

ets found in the previous analysis, obtaining a large array of possible ligands.

The present analysis of protomer–protomer interfaces of COVID–19 S glyco-

protein can be a useful starting point for predicting ligands that are already

102 CHAPTER 8. OTHER WORKS

in use for other pathologies and, by interfering with quaternary structure as-

sembly of COVID–19 S glycoprotein, can exhibit therapeutic activity against

viral life cycle.

8.3.2 A bioinformatic approach to investigate struc-

tural and non–structural proteins in human coro-

naviruses

In this Subsection, the contribution relative to publication [P10] is summa-

rized and briefly discussed. Recent studies confirmed that people unexposed

to SARS–CoV2 can show some pre–existing reactivity. The immunological

mechanisms underlying this pre–existent reactivity seem to be linked to pre-

vious exposure to widely circulating common cold coronaviruses [196], and

comes from memory T cells able to specifically recognize a SARS–CoV2 epi-

tope of structural and non–structural proteins as well as the homologous epi-

tope from common cold coronaviruses [196]. Therefore, it is important to un-

derstand the SARS–CoV2 cross–reactivity by investigating protein sequence

similarities with other circulating coronaviruses. A deeper investigation of

cross–reactive T cell immunity to SARS–CoV2 has extensive implications in

differential COVID–19 clinical outcomes and can influence the performance

of COVID–19 vaccines. Thus, this work can be a starting point for further

studies about cross–reactive T cell recognition between circulating common

cold coronaviruses and SARS–CoV2.

To make such analysis easier, we implemented a siamese LSTM model for the

alignment of Covid–19 protein sequences. To train and validate the model,

we built a dataset of examples based on the NCBI [197] protein clusters.

The neural network hyperparameters were selected after a grid search. Each

Siamese module is composed of a single 32–unit LSTM layer, with input size

550×21. The representations coming from the two modules are combined

by a merge layer, followed by a normalization layer. Finally, a single dense

layer with ReLU activation estimates the distance between the two elements

of the pair. Supervisions are provided by BLAST [198]. Results showed that

the siamese LSTM can predict the alignment distance of pairs of proteins

with very low error rates, being faster than BLAST once trained.

8.4. PREDICTING THE FORMATION OF ALPHA–HELICES 103

8.4 A Deep Attention Network for Predict-

ing Amino Acid Signals in the Formation

of Alpha–helices

The knowledge of the secondary and tertiary structure of a protein is funda-

mental for understanding its function and its structure–function relation-

ships. It is now well established that protein structures are mainly de-

termined by their amino acid sequences [199]. Protein folding prediction

techniques have been based on this information for decades, but they have

not yet reached an acceptable level of accuracy. Methods to experimentally

determine the protein structure, like NMR spectroscopy, X–ray crystallogra-

phy, or cryo–electron tomography, are expensive and overly time consuming.

Recently, neural networks have been applied to the secondary structure pre-

diction task, showing promising results. In this scope, LSTMs can focus on

both local and global contextual features, and have already been applied to

predict secondary structures in proteins with very good results [200, 201].

In this Section, discussing publication [P05], the problem of finding helical

moieties in proteins is faced, searching for small conserved amino acid signals

that delimitate α–helices. To this aim, we first carried out a statistical an-

alysis, and then implemented and compared three different ML approaches

to identify such signals.

Sequences and secondary structure information were extracted using DSSP

[172]. In an α–helix, each turn is composed by an average number of 3.6

residues. Therefore, to ensure that each helix includes at least two turns,

helices shorter than eight residues were discarded. Since signals that trigger

the helix formation can also be located outside the helix sequence itself, we

analyzed the sequences, taking into account three amino acids before and

after each helix, and four amino acids inside the helix on both sides (as re-

ported in the CATH database [202]), for a total size of 14.

The statistical analysis consisted in measuring the percentage of occurrences

of each of the 20 common amino acids in these 14 positions. Known for not

being strong helix conformers, Glu, Lys and Arg residues were found to have

a low frequency of occurrence inside the helices. Charged amino acids play

structural roles in helices, and their frequencies in different positions met

the expectations. Pro and Gly have low frequencies in the central positions,

whereas they have high concentrations at the ends of the helix. Pro has a

104 CHAPTER 8. OTHER WORKS

very large side chain, and it is well known that Prolines break α–helix for-

mation. Finally, Ala, Leu, Glu and Met have an especially high propensity

to belong to the inner part of helices.

The results of the statistical investigation show that informative patterns

can be evidenced at the beginning and at the end of amino acid sequences

representing α–helices. In order to validate this assumption, we compared

three ML approaches: a random forest classifier, an MLP, and an LSTM.

The models rely only on sequence data, and are equipped with attention

modules, to decide if the short amino acid sequence of fixed–length previ-

ously described can reliably represent an α–helix. Amino acids are encoded

either using Word2Vec [203] or one–hot encodings. LSTM is the only model

with a true sequential input, while the other two rely on vectorial represen-

tations of the sequences (elements side by side). In the random forest model,

the attention mechanism is implemented in terms of the importance of each

sequence position with respect to the model decision that can be evaluated

as an average across the base decision tree classifiers. The MLP model, is

equipped with an attention mechanism applied directly on the input, while

the LSTM has its attention mechanism attached in two different positions

within the network: respectively, after and before the LSTM layer. A per-

mutation between input data axes in the attention mechanism allows us to

move the focus on each timestep rather than on each feature. Our primary

interest is, in fact, to measure the importance of each sequence position.

Secondarily, and only in the one–hot case, the focus on the single feature

in each timestep allows us to evaluate the importance of the presence of a

particular amino acid in a given position.

After tuning the hyperparameters of each model on a validation set, the

models were used in 20 different runs of 10–fold cross–validation in order

to measure a reliable average focus of attention. Additionally, a compari-

son experiment on the test set allowed to determine the model with higher

accuracy, which turned out to be the LSTM with the attention mechanism

positioned after the LSTM layer. Regardless of the ML model and the en-

coding used, the attention focuses principally on the last position upstream

with respect to the 5’ end of the helix, and on the three last positions inside

the helix. From the attention weights learned by the networks, it emerges

that most of the information which defines the presence of an α–helix is

contained in the helix itself. Furthermore, the information at the end of the

motif looks more relevant with respect to the previous amino acids. Atten-

8.4. PREDICTING THE FORMATION OF ALPHA–HELICES 105

tion heatmaps realized on the one–hot encoding input allow to detect the

importance of each amino acid in all the 14 positions under analysis. The

average attention heatmap obtained in the cross–validation experiment on

the LSTM is showed in Fig. 8.2.

Figure 8.2: Heatmap representing the attention weights learned by the LSTM model with

attention before the LSTM layer in the cross–validation experiment. Each row of the

heatmap corresponds to a sequence position (from top to bottom), while each column

corresponds to one amino acid (indicated by its one letter code).

The focus of attention on the last three positions of the helix is evident.

In particular, the LSTM concentrates on the occurrence of the amino acids

which are particularly abundant in those positions according to the statis-

tical analysis: Leucine, Alanine, and Valine. In general, the correlation

between the heatmap and the results of the previous analysis is evident.

The heatmap also underlines the key role of Leucine in α–helix stabilization:

The fact that Leucine is the least affected by translation errors, due to its

six different codons, seems to make it more preferable than other strong α–

helix conformers in the position where helices must collapse. Moreover, it is

interesting to notice how the attention is very low on the elements located

outside the helix.

106 CHAPTER 8. OTHER WORKS

The obtained experimental results demonstrate the power of ML techniques

in extracting information from protein data to make predictions on the pro-

tein structural features, based only on the amino acid sequence. Moreover,

having demonstrated that both the statistical and the ML approaches focus

on the same positions to ascertain the presence of an α–helix has a twofold

impact: on the one hand, it reinforces the biological intuition of the presence

of amino acid signals delimiting helical moieties; on the other hand, it en-

sures the interpretability of the results produced by ML approaches, showing

how what is reputed biologically significant is also important for the nework

decision.

8.5 Caregiver–Matcher: Graph Neural Net-

works for Connecting Caregivers of Rare

Disease Patients

Any disorder which has a low prevalence in the target population, typically

chronic and potentially life–threatening, is known as a rare disease. The

estimated number of rare diseases is higher than 6,000 and, depending on

the local definitions of rare disease, the prevalence of people suffering from

them varies between 3.5% and 5.9%. This results in 263–446 millions of af-

fected people worldwide [204]. Caregivers provide daily assistance to people

affected by rare diseases. They can be either members of the patient’s family,

or people hired for providing help. The constant attention to the patient’s

needs, and the social isolation that the role of being caregivers entails are at

the basis of the obstacles they have to deal with in the daily assistance [205].

In order to cope with the issues of isolation and poor communication with

healthcare professionals, a network of caregivers is extremely valuable [206].

In this Section, derived from publication [P14], the proof of concept of a

cross–platform application in support of the caregiver’s experience is pre-

sented. The proposal is called CaregiverMatcher [207], and its aim is to

create a network of caregivers of rare disease patients. This project was pre-

sented at the Rare Disease Hackathon 2020, organized by the Italian Forum

Sistema Salute, reaching the final stage reserved to the best 8 proposals,

among more than 250 projects. CaregiverMatcher exploits GNNs [1] to link

each caregiver with other caregivers that face similar issues in daily assis-

8.6. DL APPLICATIONS TO IMAGE ANALYSIS 107

tance, building a network of contacts, based on information on the assisted

patients. Informative sections are integrated into the application, to improve

the knowledge about rare diseases.

The core, and main novelty, of CaregiverMatcher is the idea of connect-

ing caregivers with GNNs. From a practical point of view, the application

builds links between caregivers based on both patient personal information

and health condition. The GNN model is asked to predict whether an edge

exists between each pair of caregiver nodes. The predicted presence or ab-

sence of an edge represents the existence of a caregiver–caregiver relationship,

and it is weighted according to a real–valued similarity score describing how

compatible their profiles are: the higher the score, the higher the compatibil-

ity between the connected users. Eventually, once the matching process has

been completed, the user is returned a list of similar caregivers, filtered as

needed by setting some parameters in a dedicated section. This application

is thought to be easy to use, and scientific information should be provided in

a simple didactic language. CaregiverMatcher has low implementation and

maintance costs, compatible with a free application. It is well established

that support groups for caregivers lead to improvements in psychological

well–being, caregiver burden, and social consequences [208]. Nevertheless, it

has to be pointed out that a high level of efficiency of the application can

be reached only after a variable (yet not quantifiable) amount of time. The

GNN model will require a consistent amount of registered users to learn and

efficiently perform a matching between the nodes of the network.

In conclusion, CaregiverMatcher may result in benefits in many aspects of

caregivers’ life, including mental health, by providing psychological and prac-

tical support, along with the possibility to easily access reliable educational

material offered by professionals and associations.

8.6 Deep Learning Applications to Image An-

alysis

This Section presents two DL techniques applied on image data. Sequences of

images representing dragonflies are analyzed in order to recognize the actions

the dragonflies are performing [209]. Then, a skin lesion classifier based on

CNNs is proposed, in order to help the diagnosis of melanoma [210].

108 CHAPTER 8. OTHER WORKS

8.6.1 Deep Learning Techniques for Dragonfly Action

Recognition

This Subsection presents a project, described in publication [P13], for the

development of a CNN–based classifier of images of dragonfly flight, capable

of recognizing the different phases of the flight. Dragonflies are very complex

and advanced flying organisms: their four wings, each of which can be moved

independently from the others, give them extraordinary agility. They can

fly fast, stand still in mid–air, land and take off in every condition, and they

can perform complex acrobatic movements while flying. All these features

make dragonfly flight very interesting to study, while also making dragonfly

action recognition a difficult task.

More specifically, the proposed model classifies video frames in five cate-

gories: take–off, flight, landing, stationary and absent (frames in which the

dragonfly is not present). DL requires a huge set of fully annotated data, but,

unfortunately, we were not aware of a publicly available labeled dataset of

dragonfly images. To train a DL architecture, a suitable number of samples

was collected from online videos, which were appropriately pre–processed

and labeled frame by frame. Then, two different classifier networks for ac-

tion recognition were compared: a standard CNN, elaborating one frame at

a time, and an LSTM, elaborating sequences of frames.

A first set of experiments was carried out with the aim of identifying a good

combination of hyperparameters, such as the number of convolutional blocks

or the number of feature maps. Transfer learning was then applied, exploit-

ing pre–trained models that could extract low–level image features efficiently

and with short training times. Three CNN models which are well known in

the literature were used for transfer learning: the MobileNet–v2 [211], the

VGG16 [212] and the DenseNet121 [213]. All of them are pre–trained on the

ImageNet dataset [214].

The experimentation on LSTMs was carried out on the same dataset, but

taking into account the sequentiality of frames. A CNN–based feature ex-

tractor was employed, in order to transform each frame into a feature vec-

tor. The sequence of vectors was then analyzed with the LSTM model. The

LSTM architecture is characterized by 2 dense layers composed of 100 and 5

neurons, respectively. To analyze the entire sequence, a sliding window with

a size of 7 frames was used.

The experimental results showed that both models (CNNs and LSTMs)

8.6. DL APPLICATIONS TO IMAGE ANALYSIS 109

reached good accuracy levels, yet with some difficulties in recognizing spe-

cific classes. This work demonstrated that DL techniques can be successfully

applied to the dragonfly action recognition task. In particular, a good set of

guidelines for the automatic analysis of dragonfly flight has been provided.

These guidelines include new instructions for setting up a dataset, as well as

useful considerations for the calibration, design and implementation of deep

models to face this complex task.

8.6.2 Fusion of Visual and Anamnestic Data for the

Classification of Skin Lesions with Deep Learn-

ing

This Subsection describes the collaboration to a project aimed at classify-

ing skin lesions with CNNs according to their malignancy, developing a tool

that could help dermatologists in the diagnosis of melanoma, one of the

most common and lethal forms of cancer [215]. The outcome of this project

is publication [P12].

More specifically, the study presented in this Section aimed at improving

the efficiency in the early detection of skin cancer, developing a classifier

capable of integrating information coming from both dermoscopic images

and anamnestic data. Experimental tests were carried out on the freely

downloadable International Skin Imaging Collaboration (ISIC) archive [216],

showing the importance of the exogenous patient data for the correct clas-

sification of lesions. The system developed in this work has got a composite

architecture that allows to process images and patient data separately and

in parallel, with a dedicated module for each one. The partial results are

then combined through a third logical unit. The dermoscopic images are

analyzed with the LesionNet, a deep CNN, while the clinical features are

processed by the MetaNet, a fully–connected MLP. The outputs of these two

networks are concatenated and provided as input to the MergedNet, which

is trained to classify the lesions by combining the two previous evaluations.

In particular, the LesionNet is a ResNet [47] with 50 layers, pretrained on

ImageNet [214]. The MetaNet is a three–layer MLP and processes the vector

of clinical features associated with each lesion, composed of: one–hot encod-

ing of the age group, one–hot encoding of lesion location, a patient’s gender

two–bit flag, and a two–bit code indicating if the lesion is melanocytic or

not. The final classification is carried out by the MergedNet. The input of

110 CHAPTER 8. OTHER WORKS

this network is built by concatenating the output of the last hidden layer of

the two specialized networks.

The results of the experimentation showed that, in this task, image–based

models perform better than models based only on anamnestic features. This

corresponds to the standard medical practice in the diagnosis of melanoma,

which is mainly based on the visual inspection of the lesion. The modu-

larity of the model allows to better combine the two approaches, with the

anamnestic features helping the decision of the CNN classifier.

Chapter 9

Conclusions and Future

Developments

This thesis is focused on GNNs and their applications in molecular data.

A software framework for designing and deploying GNNs for research ap-

plications has been developed (see Chapter 4). Three applications, relevant

both from the point of view of drug discovery and from that of DL, and

implemented with our software framework, are presented and discussed. In

particular, GNNs are employed for generating molecular graphs (see Chap-

ter 5), predicting the side–effects of drugs (see Chapter 6), and identifying

protein–protein interfaces (see Chapter 7). Some specific conclusions on each

of these works are drawn at the end of the respective chapters, and summa-

rized in the following.

MG2N2, a sequential model for molecular graph generation, is proposed in

Chapter 5. Its principal advantage with respect to other sequential models,

mainly based on RNNs or RL, is that it exploits a graph representation of the

molecule under construction, which is more informative than the sequence

of previous actions. The advantage of using a sequential generator, with

respect to VAE–based generators, is that sequential models are more inter-

pretable (f.i. errors can be precisely located in the generation steps). The

modularity of MG2N2 guarantees an easier training procedure, even more

precise interpretability (we know which module produced an atom or bond),

and the possibility to modify and re–train each module without having to

re–train the other ones. Moreover, exploiting the sequential nature of the

generative model, it could be possible to take into account the chemical re-

actions involved in the process, training the model to build only compounds

111

112 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

that can be produced with known chemical reactions. Interpretability has a

major role in this scope, as it would become a necessary feature of the model,

boosting the usability of sequential models in general, and of modular ap-

proaches like MG2N2 in particular. Our approach has two main limitations,

from which future research directions unfold. On the one hand, MG2N2

and similar approaches cannot generate large molecules efficiently: this is-

sue can be addressed with the development of hierarchical generators based

on MG2N2, that could build larger molecules, such as proteins or polymers.

On the other hand, the model generates molecules without specific condi-

tions, which are usually required for the purpose of drug discovery studies.

Therefore, an interesting topic of future work is to produce model versions

specialized on conditional generation, in which specific features of the com-

pounds to be generated are required in input to the generator.

DruGNN, a GNN–based DSE predictor, is discussed in Chapter 6. Com-

bining data from heterogeneous sources into a relational dataset allows to

represent the complex features and interactions involved into the occurrence

of DSEs. CGNNs are ideal to process this kind of dataset, following a mixed

inductive–transductive learning scheme, and produce accurate predictions

in this multi–class multi–label node classification task. Moreover, DruGNN

is modular: data can be added without having to re–train the model, and

robust to ablation. The proposed method can be easily used to predict the

side–effects of a candidate drug, by inserting the molecule and its interac-

tion data. A future research direction consists of specializing the predictor,

by taking into account tissue specific data and DSE supervisions, obtaining

more accurate and informative insights. Moreover, DruGNN is currently a

black–box approach, like many methods based on DNNs. Producing a more

interpretable and trustworthy future version of the model would boost the

usability of the approach. Another drawback consists of the approxima-

tion of structural information introduced by fingerprints. On the one hand,

structural embeddings could be extracted with a GNN from the structural

formulas of drug molecules. On the other hand, it is a very interesting matter

of future work to develop a similar predictor that takes in input the struc-

tural formulas of molecules, exploiting the full chemical graph information.

Features and interactions can then be added in the same shape used for

DruGNN, exploiting an approach based on a graph (the relational dataset)

of graphs (the structural formulas of drugs).

GNNs were also employed for predicting protein–protein interfaces, as de-

113

scribed in Chapter 7. This task was formulated as a maximum clique search

on the correspondence graph derived from the secondary structures of each

pair of proteins. The approach showed very promising results, individuating

the secondary structures that participate in each interface, and providing in-

teresting insights for future research. A first limitation is that current results

are preliminary: an improved version of the model could be developed based

on a more extensive experimentation, also taking into account more possi-

ble GNN models and architectures. The second drawback is represented by

the coarse scale of the interface representation predicted. In fact, the same

analysis could be refined to the amino acid scale, or even at the atom level,

more precisely identifying the residues that take part into protein–protein

interfaces.

These three applications constitute demonstrations of the capabilities of

GNNs for molecular data in different settings, relevant to the field of drug

discovery, such as graph generation, node classification in a classical yet im-

balanced setting, and node classification on a complex, heterogeneous rela-

tional dataset. Moreover, the properties of recurrent GNNs were made easily

available for research through the development of a software framework that

allows an easy Keras–based implementation. As a general conclusion, the

demonstrations obtained of GNN properties on these testing grounds, and

the general growth of the scientific interest and community related to graph–

based models, suggest that GNNs will continue to improve. New theories

and models will certainly be proposed, also concerning the possibility of

non–local GNNs, capable of reaching higher computational power (f.i. sim-

ulating higher order Weisfeiler–Lehman tests). New application fields, and

even more complex data settings, will be addressed with GNNs in the fu-

ture, providing fundamental contributions to many scientific fields, ranging

a wide variety of disciplines, such as biology, physics simulations, weather

prediction, and social network analysis.

114 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

Publications and Activities

Journal Articles

P01 Pietro Bongini, Monica Bianchini, Franco Scarselli. (2021). Molecu-

lar generative Graph Neural Networks for Drug Discovery. Neurocom-

puting, 450, 242–252.

https://doi.org/10.1016/j.neucom.2021.04.039

Candidate’s contributions: original idea (in collaboration), model

and algorithm design, software implementation, experimentation, orig-

inal manuscript draft, manuscript reviewing and editing.

Thesis relevance: primary contribution, presented in Chapter 5.

P02 Pietro Bongini, Franco Scarselli, Monica Bianchini, Giovanna Maria

Dimitri, Niccolò Pancino, Pietro Liò. (2022). Modular multi–source

prediction of drug side–effects with DruGNN. Published in early access

on IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics.

https://doi.org/10.1109/TCBB.2022.3175362

Candidate’s contributions: conceptualization, software implemen-

tation, dataset construction, experimentation, original manuscript draft,

manuscript reviewing and editing.

Thesis relevance: primary contribution, presented in Chapter 6.

P03 Niccolò Pancino, Pietro Bongini, Franco Scarselli, Monica Bianchini.

(2022). GNNkeras: A Keras–based library for Graph Neural Networks

and homogeneous and heterogeneous graph processing. SoftwareX, 18,

101061.

https://doi.org/10.1016/j.softx.2022.101061

Candidate’s contributions: software implementation (in collabora-

tion), manuscript reviewing and editing.

115

116 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

Thesis relevance: software contribution, presented in Chapter 4.

P04 Pietro Bongini, Alfonso Trezza, Monica Bianchini, Ottavia Spiga,

Neri Niccolai. (2020). A possible strategy to fight COVID-19: interfer-

ing with spike glycoprotein trimerization. Biochemical and biophysical

research communications, 528(1), 35–38.

https://doi.org/10.1016/j.bbrc.2020.04.007

Candidate’s contributions: algorithm design, software implemen-

tation, experimentation (protein structural analysis, transient pocket

detection and evaluation), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Subsection 8.3.1.

P05 Anna Visibelli, Pietro Bongini, Alberto Rossi, Neri Niccolai, Monica

Bianchini. (2020). A deep attention network for predicting amino acid

signals in the formation of α-helices. Journal of Bioinformatics and

Computational Biology, 18(5), 2050028.

https://doi.org/10.1142/S0219720020500286

Candidate’s contributions: model design (attention mechanisms),

experimentation (in collaboration), data visualization (attention graphs

and heatmaps), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 8.4.

P06 Luca Oneto, Nicolò Navarin, Battista Biggio, Federico Errica, Alessio

Micheli, Franco Scarselli, Monica Bianchini, Luca Demetrio, Pietro

Bongini, Armando Tacchella, Alessandro Sperduti. (2022). Towards

Learning Trustworthily, Automatically, and with Guarantees on Graphs:

an Overview. Neurocomputing, 493, 217–243.

https://doi.org/10.1016/j.neucom.2022.04.072

Candidate’s contributions: manuscript writing (section on the com-

putational capabilities of Graph Neural Networks), literature survey

and integration (in collaboration), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 8.1.

P07 Pietro Bongini, Neri Niccolai, Monica Bianchini. (2019). Glycine-

induced formation and druggability score prediction of protein surface

pockets. Journal of Bioinformatics and Computational Biology, 17(5),

1950026.

https://doi.org/10.1142/S0219720019500264

Candidate’s contributions: algorithm and model design, software

117

implementation, experimentation, original manuscript draft, manusc-

ript reviewing and editing.

Thesis relevance: other works, discussed in Subsection 8.2.1.

P08 Pietro Bongini, Simone Gardini, Monica Bianchini, Ottavia Spiga,

Neri Niccolai. (2021). Structural bioinformatics survey on disease-

inducing missense mutations. Journal of Bioinformatics and Compu-

tational Biology, 19(3), 2150008.

https://doi.org/10.1142/S0219720021500086

Candidate’s contributions: algorithm design, data analysis, soft-

ware implementation, experimentation, manuscript reviewing and edit-

ing.

Thesis relevance: other works, discussed in Subsection 8.2.2.

P09 Pietro Bongini, Neri Niccolai, Alfonso Trezza, Guido Mangiavac-

chi, Annalisa Santucci, Ottavia Spiga, Monica Bianchini, Simone Gar-

dini. (2020). Structural bioinformatic survey of protein-small molecule

interfaces delineates the role of glycine in surface pocket formation.

IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics.

https://doi.org/10.1109/TCBB.2020.3033384

Candidate’s contributions: data analysis, software implementation,

experimentation (in collaboration), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Subsection 8.2.3.

P10 Vittoria Cicaloni, Filippo Costanti, Arianna Pasqui, Monica Bianchini,

Neri Niccolai, Pietro Bongini. (2022). A bioinformatic approach

to investigate structural and non–structural proteins in human coron-

aviruses. Accepted for publication on Frontiers in Genetics.

https://doi.org/10.3389/fgene.2022.891418

Candidate’s contributions: supervision, software implementation

(in collaboration), original manuscript draft (computational part), ma-

nuscript reviewing and editing.

Thesis relevance: other works, discussed in Subsection 8.3.2.

118 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

Conference Papers

P11 Niccolò Pancino, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini, Si-

mone Bonechi, Paolo Andreini, Franco Scarselli, Monica Bianchini,

Pietro Bongini. (2020). Graph Neural Networks for the Predic-

tion of Protein-Protein Interfaces. In: 28th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN 2020), 127–132.

Candidate’s contributions: supervision, model and algorithm de-

sign (in collaboration with Niccolò Pancino), software implementation

(in collaboration with Niccolò Pancino), manuscript reviewing and

editing.

Thesis relevance: primary contribution, presented in Chapter 7.

P12 Simone Bonechi, Monica Bianchini, Pietro Bongini, Giorgio Ciano,

Giorgia Giacomini, Riccardo Rosai, Linda Tognetti, Alberto Rossi,

Paolo Andreini. (2019). Fusion of visual and anamnestic data for the

classification of skin lesions with deep learning. In: 20th International

Conference on Image Analysis and Processing (ICIAP 2019), 211–219.

Candidate’s contributions: conceptualization and discussion (in

collaboration), data analysis (in collaboration), manuscript reviewing

and editing.

Thesis relevance: other works, discussed in Subsection 8.6.2.

P13 Martina Monaci, Niccolò Pancino, Paolo Andreini, Simone Bonechi,

Pietro Bongini, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini,

Franco Scarselli, Monica Bianchini. (2020). Deep Learning Techniques

for Dragonfly Action Recognition. In: Proceedings of the 9th Interna-

tional Conference on Pattern Recognition Applications and Methods

(ICPRAM 2020), 1, 562–569.

Candidate’s contributions: conceptualization and discussion (in

collaboration), data analysis (in collaboration), manuscript reviewing

and editing.

Thesis relevance: other works, discussed in Subsection 8.6.1.

P14 Filippo Guerranti, Mirco Mannino, Federica Baccini, Pietro Bongini,

Niccolò Pancino, Anna Visibelli, Sara Marziali. (2021). Caregiver-

Matcher: graph neural networks for connecting caregivers of rare dis-

ease patients. In: 25th International Conference on Knowledge-Based

119

and Intelligent Information & Engineering Systems (KES 2021). Pro-

cedia Computer Science, 192, 1696–1704.

https://doi.org/10.1016/j.procs.2021.08.174

Candidate’s contributions: model and algorithm design (in collab-

oration), conceptualization and discussion (in collaboration), original

manuscript draft (sections on Graph Neural Networks and their appli-

cation), manuscript reviewing and editing, conference presentation.

Thesis relevance: other works, discussed in Section 8.5.

Book Chapters

P15 Pietro Bongini, Alfonso Trezza, Monica Bianchini, Ottavia Spiga,

Neri Niccolai. (2021). Structural Bioinformatics to Unveil Weaknesses

of Coronavirus Spike Glycoprotein Stability. In: Roy K. In Silico Mod-

eling of Drugs Against Coronaviruses. Methods in Pharmacology and

Toxicology. Humana, New York, NY.

https://doi.org/10.1007/7653 2020 59

Candidate’s contributions: original work, book chapter reviewing

and editing.

Thesis relevance: other works, discussed in Subsection 8.3.1.

P16 Pietro Bongini, Niccolò Pancino, Franco Scarselli, Monica Bianchini.

(2022). BioGNN: How Graph Neural Networks can solve biological

problems. In: Cheng Peng Lim et al. Handbook of Artificial Intelli-

gence in Healthcare. Intelligent Systems Reference Library. Springer

Nature Switzerland, Cham, CH.

120 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

Acknowledgements

First of all, I would like to express all my gratitude to my advisors Prof.

Monica Bianchini and Prof. Franco Scarselli: thank you very much for be-

lieving in me and for supporting me through all my projects. They showed

me how beautiful research is, and taught me how to make it. I am very

grateful to them for sharing their precious ideas and expertise, and for their

countless helpful suggestions.

I would like to deeply thank Prof. Pietro Liò, for the very stimulating collab-

oration we had. His ideas are always a spur for finding new ways of making

research and improving the existing methods.

My gratitude goes to Prof. Neri Niccolai. He has been a great guide to the

field of bioinformatics. Many of my projects would have never seen the light

without his deep knowledge of structural biology.

I would like to thank Prof. Fabio Aiolli and Prof. Andrea Passerini for being

part of my supervisory committee, and for all their suggestions and opinions.

A special thank you goes to all my fellow Ph.D. students at the Siena Artifi-

cial Intelligence Laboratory (SAILab): sharing these three years with them

was stimulating from the academic point of view, and a pleasurable experi-

ence all–round.

A particular mention goes to my friend and colleague Niccolò Pancino: it

was great to work together in many projects, a good part of which would

have not been possible without his ideas and his programming skills.

I want to thank the institutions who made these studies possible: the Ph.D

program in Smart Computing, co-financed by the Universities of Florence,

Siena, and Pisa, and by Regione Toscana under the European Social Fund;

the University of Florence, which hosts the Ph.D. program; the University

of Siena, and in particular the Department of Information Engineering and

Mathematics, where I carried out most of my research work.

My deepest gratitude goes to my family, for believing in me, supporting me

121

122 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

through every path I followed, and for helping me to shape my life and ca-

reer. I want to say a warm and hearty thank you to my mother Angela and

my father Antonio, to my brother Marco and to Erjona and to my nephew

Fabio, to my grandmother Leda, and to all the rest of the family.

My most special gratitude goes to Stella: her support, empathy, and love

are fundamental to me. Thank you with all my heart for believing in me, for

understanding me, and for encouraging me. I am very lucky, grateful, and

proud to have you.

Finally, I would like to thank all the friends and relatives who supported me

through my academic career and all the other aspects of my life.

Bibliography

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-

dini, “The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61–80, 2009.

[2] M. Wang and G. Hu, “A novel method for twitter sentiment anal-

ysis based on attentional–graph neural network,” Information, vol. 11,

no. 2, p. 92, 2020.

[3] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Hierarchical

representation learning in graph neural networks with node decima-

tion pooling,” IEEE Transactions on Neural Networks and Learning

Systems, 2020.

[4] N. Pancino, A. Rossi, G. Ciano, G. Giacomini, S. Bonechi, P. Andreini,

F. Scarselli, M. Bianchini, and P. Bongini, “Graph neural networks for

the prediction of protein–protein interfaces,” in ESANN, pp. 127–132,

2020.

[5] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph neural solver

for power systems,” in 2019 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, IEEE, 2019.

[6] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936.

Oxford University Press, 1986.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-

fardini, “Computational capabilities of graph neural networks,” IEEE

Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102, 2009.

[8] F. Scarselli, S. L. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and

M. Maggini, “Graph neural networks for ranking web pages,” in The

123

124 BIBLIOGRAPHY

2005 IEEE/WIC/ACM International Conference on Web Intelligence

(WI’05), pp. 666–672, IEEE, 2005.

[9] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,

and M. Sun, “Graph neural networks: A review of methods and appli-

cations,” AI Open, vol. 1, pp. 57–81, 2020.

[10] J. Kim, S. Park, D. Min, and W. Kim, “Comprehensive survey of

recent drug discovery using deep learning,” International Journal of

Molecular Sciences, vol. 22, no. 18, p. 9983, 2021.

[11] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative

graph neural networks for drug discovery,” Neurocomputing, vol. 450,

pp. 242–252, 2021.

[12] E. Dai and S. Wang, “Towards self–explainable graph neural network,”

in Proceedings of the 30th ACM International Conference on Informa-

tion & Knowledge Management, pp. 302–311, 2021.

[13] Z. Zhong, C.-T. Li, and J. Pang, “Hierarchical message-passing graph

neural networks,” 2020.

[14] N. Pancino, P. Bongini, F. Scarselli, and M. Bianchini, “Gnnkeras: A

keras-based library for graph neural networks and homogeneous and

heterogeneous graph processing,” SoftwareX, vol. 18, p. 101061, 2022.

[15] A. L. Samuel, “Some studies in machine learning using the game of

checkers,” IBM Journal of research and development, vol. 3, no. 3,

pp. 210–229, 1959.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-

resentations by back-propagating errors,” Nature, vol. 323, no. 6088,

pp. 533–536, 1986.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-

tion. MIT press, 2018.

[18] C. Cortes and V. Vapnik, “Support–vector networks,” Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.

BIBLIOGRAPHY 125

[19] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-

manent in nervous activity,” The bulletin of mathematical biophysics,

vol. 5, no. 4, pp. 115–133, 1943.

[20] T. Kohonen, “Self–organized formation of topologically correct feature

maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[21] J. A. Davis, “Clustering and structural balance in graphs,” Human

relations, vol. 20, no. 2, pp. 181–187, 1967.

[22] T. K. Ho, “Random decision forests,” in Proceedings of 3rd interna-

tional conference on document analysis and recognition, vol. 1, pp. 278–

282, IEEE, 1995.

[23] J. H. Friedman, “Greedy function approximation: a gradient boosting

machine,” Annals of statistics, pp. 1189–1232, 2001.

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning long–term depen-

dencies with gradient descent is difficult,” IEEE transactions on neural

networks, vol. 5, no. 2, pp. 157–166, 1994.

[25] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural networks, vol. 2, no. 5,

pp. 359–366, 1989.

[26] K. Hornik, “Approximation capabilities of multilayer feedforward net-

works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[27] G. Cybenko, “Approximation by superpositions of a sigmoidal func-

tion,” Mathematics of control, signals and systems, vol. 2, no. 4,

pp. 303–314, 1989.

[28] K. Fukushima, “Cognitron: A self-organizing multilayered neural net-

work,” Biological cybernetics, vol. 20, no. 3, pp. 121–136, 1975.

[29] P. J. Werbos, “Backpropagation through time: what it does and how

to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[30] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,

no. 2, pp. 179–211, 1990.

126 BIBLIOGRAPHY

[31] S. Hochreiter and J. Schmidhuber, “Long short–term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations us-

ing rnn encoder–decoder for statistical machine translation,” arXiv

preprint arXiv:1406.1078, 2014.

[33] K. M. Tarwani and S. Edem, “Survey on recurrent neural network

in natural language processing,” Int. J. Eng. Trends Technol, vol. 48,

pp. 301–304, 2017.

[34] S. K. Sønderby and O. Winther, “Protein secondary structure predic-

tion with long short term memory networks,” 2014.

[35] A. Visibelli, P. Bongini, A. Rossi, N. Niccolai, and M. Bianchini, “A

deep attention network for predicting amino acid signals in the for-

mation of α-helices,” Journal of Bioinformatics and Computational

Biology, vol. 18, no. 05, p. 2050028, 2020.

[36] K. Pawar, R. S. Jalem, and V. Tiwari, “Stock market price predic-

tion using lstm rnn,” in Emerging Trends in Expert Applications and

Security, pp. 493–503, Springer, 2019.

[37] M. Weber, M. Liwicki, D. Stricker, C. Scholzel, and S. Uchida, “Lstm–

based early recognition of motion patterns,” in 2014 22nd International

Conference on Pattern Recognition, pp. 3552–3557, IEEE, 2014.

[38] A. Graves, N. Jaitly, and A. rahman Mohamed, “Hybrid speech recog-

nition with deep bidirectional lstm,” in 2013 IEEE workshop on auto-

matic speech recognition and understanding, pp. 273–278, IEEE, 2013.

[39] J. Zhao, X. Mao, and L. Chen, “Speech emotion recognition using

deep 1d & 2d cnn lstm networks,” Biomedical Signal Processing and

Control, vol. 47, pp. 312–323, 2019.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”

in Advances in neural information processing systems, pp. 5998–6008,

2017.

BIBLIOGRAPHY 127

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Advances in neural infor-

mation processing systems, vol. 25, pp. 1097–1105, 2012.

[42] Y. LeCun et al., “Generalization and network design strategies,” Con-

nectionism in perspective, vol. 19, pp. 143–155, 1989.

[43] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the

recent architectures of deep convolutional neural networks,” Artificial

Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-

works for biomedical image segmentation,” in International Confer-

ence on Medical image computing and computer-assisted intervention,

pp. 234–241, Springer, 2015.

[45] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 779–788,

2016.

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”

Advances in neural information processing systems, vol. 27, 2014.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[48] D. Aldous and J. Fill, “Reversible markov chains and random walks

on graphs,” 2002.

[49] D. Haussler, “Convolution kernels on discrete structures,” tech. rep.,

Technical report, Department of Computer Science, University of Cal-

ifornia, 1999.

[50] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels

for chemical informatics,” Neural networks, vol. 18, no. 8, pp. 1093–

1110, 2005.

128 BIBLIOGRAPHY

[51] A. Sperduti and A. Starita, “Supervised neural networks for the classi-

fication of structures,” IEEE Transactions on Neural Networks, vol. 8,

no. 3, pp. 714–735, 1997.

[52] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adap-

tive processing of data structures,” IEEE transactions on Neural Net-

works, vol. 9, no. 5, pp. 768–786, 1998.

[53] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” in Advances in neural information processing

systems, pp. 1024–1034, 2017.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” 2014.

[55] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why

and when can deep–but not shallow–networks avoid the curse of dimen-

sionality: a review,” International Journal of Automation and Com-

puting, vol. 14, no. 5, pp. 503–519, 2017.

[56] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph

neural networks?,” in International Conference on Learning Represen-

tations, 2018.

[57] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical

form and the algebra which appears therein,” NTI Series, vol. 2, no. 9,

pp. 12–16, 1968.

[58] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rat-

tan, and M. Grohe, “Weisfeiler and leman go neural: Higher-order

graph neural networks,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, pp. 4602–4609, 2019.

[59] G. A. D’Inverno, M. Bianchini, M. L. Sampoli, and F. Scarselli, “An

unifying point of view on expressive power of gnns,” 2021.

[60] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-

prehensive survey on graph neural networks,” IEEE transactions on

neural networks and learning systems, 2020.

BIBLIOGRAPHY 129

[61] N. Bandinelli, M. Bianchini, and F. Scarselli, “Learning long–term

dependencies using layered graph neural networks,” in The 2010 In-

ternational Joint Conference on Neural Networks (IJCNN), pp. 1–8,

IEEE, 2010.

[62] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,

V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,

R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,

A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,

D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pas-

canu, “Relational inductive biases, deep learning, and graph networks,”

2018.

[63] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph se-

quence neural networks,” 2015.

[64] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,

“Neural message passing for quantum chemistry,” in Proceedings of the

34th International Conference on Machine Learning, vol. 70, pp. 1263–

1272, 2017.

[65] T. N. Kipf and M. Welling, “Semi–supervised classification with graph

convolutional networks,” in 5th International Conference on Learning

Representations, ICLR 2017, 2017.

[66] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks

and deep locally connected networks on graphs,” in 2nd International

Conference on Learning Representations, ICLR 2014, 2014.

[67] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neu-

ral networks on graphs with fast localized spectral filtering,” in Ad-

vances in neural information processing systems, pp. 3844–3852, 2016.

[68] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and

Y. Bengio, “Graph attention networks,” 2017.

[69] S. Munikoti, L. Das, and B. Natarajan, “Scalable graph neural

network-based framework for identifying critical nodes and links in

complex networks,” Neurocomputing, vol. 468, pp. 211–221, 2022.

130 BIBLIOGRAPHY

[70] F. Scarselli, A. C. Tsoi, M. Hagenbuchner, and L. Di Noi, “Solving

graph data issues using a layered architecture approach with applica-

tions to web spam detection,” Neural Networks, vol. 48, pp. 78–90,

2013.

[71] Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “Fi-gnn: Modeling

feature interactions via graph neural networks for ctr prediction,” in

Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, pp. 539–548, 2019.

[72] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and

J. Leskovec, “Open graph benchmark: Datasets for machine learning

on graphs,” 2020.

[73] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph

collaborative filtering,” in Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information Re-

trieval, pp. 165–174, 2019.

[74] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge

graph attention network for recommendation,” in Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 950–958, 2019.

[75] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Het-

erogeneous graph attention network,” in The World Wide Web Con-

ference, pp. 2022–2032, 2019.

[76] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching

networks for learning the similarity of graph structured objects,” in

International conference on machine learning, pp. 3835–3845, PMLR,

2019.

[77] A. M. Karimi, Y. Wu, M. Koyuturk, and R. H. French, “Spatiotem-

poral graph neural network for performance prediction of photovoltaic

power systems,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, pp. 15323–15330, 2021.

[78] G. Bécigneul, O.-E. Ganea, B. Chen, R. Barzilay, and T. Jaakkola,

“Optimal transport graph neural networks,” 2020.

BIBLIOGRAPHY 131

[79] B. Wu, Y. Liu, B. Lang, and L. Huang, “Dgcnn: Disordered graph

convolutional neural network based on the gaussian mixture model,”

Neurocomputing, vol. 321, pp. 346–356, 2018.

[80] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural

attention,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 1666–1674,

2018.

[81] O. J. Wouters, M. McKee, and J. Luyten, “Estimated research and

development investment needed to bring a new medicine to market,

2009-2018,” Jama, vol. 323, no. 9, pp. 844–853, 2020.

[82] M. L. Billingsley, “Druggable targets and targeted drugs: Enhancing

the development of new therapeutics,” Pharmacology, vol. 82, no. 4,

pp. 239–244, 2008.

[83] M. Dickson and J. P. Gagnon, “Key factors in the rising cost of

new drug discovery and development,” Nature reviews Drug discov-

ery, vol. 3, no. 5, pp. 417–429, 2004.

[84] S. J. Y. Macalino, V. Gosu, S. Hong, and S. Choi, “Role of computer-

aided drug design in modern drug discovery,” Archives of pharmacal

research, vol. 38, no. 9, pp. 1686–1701, 2015.

[85] J. S. Smith, A. E. Roitberg, and O. Isayev, “Transforming computa-

tional drug discovery with machine learning and ai,” ACS medicinal

chemistry letters, vol. 9, no. 11, pp. 1065–1069, 2018.

[86] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-

neberger, K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko,

et al., “Highly accurate protein structure prediction with alphafold,”

Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[87] C. F. Lipinski, V. G. Maltarollo, P. R. Oliveira, A. B. da Silva, and

K. M. Honorio, “Advances and perspectives in applying deep learning

for drug design and discovery,” Frontiers in Robotics and AI, vol. 6,

p. 108, 2019.

[88] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A.

Aladinskiy, A. V. Aladinskaya, V. A. Terentiev, D. A. Polykovskiy,

132 BIBLIOGRAPHY

M. D. Kuznetsov, A. Asadulaev, et al., “Deep learning enables rapid

identification of potent ddr1 kinase inhibitors,” Nature biotechnology,

vol. 37, no. 9, pp. 1038–1040, 2019.

[89] Q. Feng, E. Dueva, A. Cherkasov, and M. Ester, “Padme: A

deep learning-based framework for drug-target interaction prediction,”

2018.

[90] T. B. Kimber, Y. Chen, and A. Volkamer, “Deep learning in virtual

screening: Recent applications and developments,” International Jour-

nal of Molecular Sciences, vol. 22, no. 9, p. 4435, 2021.

[91] M. Skalic, A. Varela-Rial, J. Jiménez, G. Mart́ınez-Rosell, and G. De

Fabritiis, “Ligvoxel: inpainting binding pockets using 3d-convolutional

neural networks,” Bioinformatics, vol. 35, no. 2, pp. 243–250, 2019.

[92] P. Bongini, N. Niccolai, and M. Bianchini, “Glycine–induced formation

and druggability score prediction of protein surface pockets,” Journal

of bioinformatics and computational biology, vol. 17, no. 05, p. 1950026,

2019.

[93] X. Zeng, S. Zhu, W. Lu, Z. Liu, J. Huang, Y. Zhou, J. Fang, Y. Huang,

H. Guo, L. Li, et al., “Target identification among known drugs by

deep learning from heterogeneous networks,” Chemical Science, vol. 11,

no. 7, pp. 1775–1797, 2020.

[94] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-

Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre,

T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemi-

cal design using a data-driven continuous representation of molecules,”

ACS central science, vol. 4, no. 2, pp. 268–276, 2018.

[95] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational au-

toencoder for molecular graph generation,” in International conference

on machine learning, pp. 2323–2332, PMLR, 2018.

[96] P. ErdḦos and A. Rényi, “On random graphs I,” Publicationes Math-

ematicae Debrecen, vol. 6, pp. 290–297, 1959.

[97] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-

works,” Rev. Mod. Phys., vol. 74, pp. 47–97, 2002.

BIBLIOGRAPHY 133

[98] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small–world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[99] D. P. Kingma and M. Welling, “Auto–encoding variational bayes,”

2013.

[100] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in

NeurIPS Bayesian Deep Learning Workshop, 2016.

[101] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative

modeling of graphs,” in International Conference on Machine Learn-

ing, pp. 2434–2444, 2019.

[102] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,

and M. Guo, “GraphGAN: Graph representation learning with gener-

ative adversarial nets,” in Thirty-second AAAI conference on artificial

intelligence, pp. 2508–2515, 2018.

[103] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN:

Generating graphs via random walks,” in International Conference on

Machine Learning, pp. 610–619, 2018.

[104] L. Di Liello, P. Ardino, J. Gobbi, P. Morettin, S. Teso, and A. Passerini,

“Efficient generation of structured objects with constrained adversar-

ial networks,” in Advances in Neural Information Processing Systems

(H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

eds.), vol. 33, pp. 14663–14674, Curran Associates, Inc., 2020.

[105] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec,

“GraphRNN: Generating realistic graphs with deep auto–regressive

models,” in International Conference on Machine Learning, pp. 5708–

5717, 2018.

[106] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud,

R. Urtasun, and R. Zemel, “Efficient graph generation with graph re-

current attention networks,” in Advances in Neural Information Pro-

cessing Systems, pp. 4255–4265, 2019.

[107] D. Bacciu, A. Micheli, and M. Podda, “Edge–based sequential graph

generation with recurrent neural networks,” Neurocomputing, vol. 416,

pp. 177–189, 2020.

134 BIBLIOGRAPHY

[108] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning

deep generative models of graphs,” 2018.

[109] D. Weininger, “Smiles, a chemical language and information system. 1.

introduction to methodology and encoding rules,” Journal of chemical

information and computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[110] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar vari-

ational autoencoder,” in International Conference on Machine Learn-

ing, pp. 1945–1954, PMLR, 2017.

[111] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax–

directed variational autoencoder for structured data,” arXiv preprint

arXiv:1802.08786, 2018.

[112] X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, and K. Tsuda, “Chemts:

an efficient python library for de novo molecular generation,” Science

and technology of advanced materials, vol. 18, no. 1, pp. 972–976, 2017.

[113] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation

of small graphs using variational autoencoders,” in International Con-

ference on Artificial Neural Networks, pp. 412–422, Springer, 2018.

[114] W. Jin, R. Barzilay, and T. Jaakkola, “Hierarchical generation of

molecular graphs using structural motifs,” in International Conference

on Machine Learning, pp. 4839–4848, PMLR, 2020.

[115] D. Rigoni, N. Navarin, and A. Sperduti, “Conditional constrained

graph variational autoencoders for molecule design,” in 2020 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 729–736,

IEEE, 2020.

[116] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “GraphAF:

a flow–based autoregressive model for molecular graph generation,”

in 7th International Conference on Learning Representations (ICLR),

2019.

[117] N. De Cao and T. Kipf, “MolGAN: An implicit generative model for

small molecular graphs,” 2018.

BIBLIOGRAPHY 135

[118] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolu-

tional policy network for goal–directed molecular graph generation,”

in Advances in neural information processing systems, pp. 6410–6421,

2018.

[119] Y. Yamanishi, M. Kotera, M. Kanehisa, and S. Goto, “Drug–target in-

teraction prediction from chemical, genomic and pharmacological data

in an integrated framework,” Bioinformatics, vol. 26, no. 12, pp. i246–

i254, 2010.

[120] S. Mizutani, E. Pauwels, V. Stoven, S. Goto, and Y. Yamanishi, “Re-

lating drug–protein interaction network with drug side effects,” Bioin-

formatics, vol. 28, no. 18, pp. i522–i528, 2012.

[121] W. Zhang, Y. Chen, S. Tu, F. Liu, and Q. Qu, “Drug side effect

prediction through linear neighborhoods and multiple data source in-

tegration,” in 2016 IEEE international conference on bioinformatics

and biomedicine (BIBM), pp. 427–434, IEEE, 2016.

[122] I. Shaked, M. A. Oberhardt, N. Atias, R. Sharan, and E. Ruppin,

“Metabolic network prediction of drug side effects,” Cell systems,

vol. 2, no. 3, pp. 209–213, 2016.

[123] G. M. Dimitri and P. Liò, “DrugClust: A machine learning approach

for drugs side effects prediction,” Computational biology and chemistry,

vol. 68, pp. 204–210, 2017.

[124] E. Pauwels, V. Stoven, and Y. Yamanishi, “Predicting drug side–effect

profiles: A chemical fragment–based approach,” BMC bioinformatics,

vol. 12, no. 1, pp. 1–13, 2011.

[125] A. Cakir, M. Tuncer, H. Taymaz-Nikerel, and O. Ulucan, “Side effect

prediction based on drug–induced gene expression profiles and random

forest with iterative feature selection,” The Pharmacogenomics Jour-

nal, pp. 1–9, 2021.

[126] O. C. Uner, R. G. Cinbis, O. Tastan, and A. E. Cicek, “DeepSide: A

deep learning framework for drug side effect prediction,” 2019.

[127] A. Deac, Y.-H. Huang, P. Veličković, P. Liò, and J. Tang, “Drug–drug

adverse effect prediction with graph co–attention,” 2019.

136 BIBLIOGRAPHY

[128] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side

effects with graph convolutional networks,” Bioinformatics, vol. 34,

no. 13, pp. i457–i466, 2018.

[129] J. Janin, R. P. Bahadur, and P. Chakrabarti, “Protein–protein in-

teraction and quaternary structure,” Quarterly reviews of biophysics,

vol. 41, no. 2, pp. 133–180, 2008.

[130] T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande, “To mil-

liseconds and beyond: challenges in the simulation of protein folding,”

Current opinion in structural biology, vol. 23, no. 1, pp. 58–65, 2013.

[131] L. C. Xue, D. Dobbs, and V. Honavar, “Homppi: a class of sequence

homology based protein-protein interface prediction methods,” BMC

bioinformatics, vol. 12, no. 1, pp. 1–24, 2011.

[132] H. Hwang, D. Petrey, and B. Honig, “A hybrid method for protein–

protein interface prediction,” Protein Science, vol. 25, no. 1, pp. 159–

165, 2016.

[133] H. Hwang, T. Vreven, and Z. Weng, “Binding interface prediction

by combining protein–protein docking results,” Proteins: Structure,

Function, and Bioinformatics, vol. 82, no. 1, pp. 57–66, 2014.

[134] J. R. Bradford and D. R. Westhead, “Improved prediction of protein–

protein binding sites using a support vector machines approach,”

Bioinformatics, vol. 21, no. 8, pp. 1487–1494, 2005.

[135] K. Huang, C. Xiao, L. M. Glass, M. Zitnik, and J. Sun, “Skipgnn:

predicting molecular interactions with skip-graph networks,” Scientific

reports, vol. 10, no. 1, pp. 1–16, 2020.

[136] Y. Liu, H. Yuan, L. Cai, and S. Ji, “Deep learning of high–order in-

teractions for protein interface prediction,” in Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pp. 679–687, 2020.

[137] E. J. Gardiner, P. J. Artymiuk, and P. Willett, “Clique–detection algo-

rithms for matching three-dimensional molecular structures,” Journal

of Molecular Graphics and Modelling, vol. 15, no. 4, pp. 245–253, 1997.

BIBLIOGRAPHY 137

[138] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett, “Identi-

fication of tertiary structure resemblance in proteins using a maximal

common subgraph isomorphism algorithm,” Journal of molecular biol-

ogy, vol. 229, no. 3, pp. 707–721, 1993.

[139] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in

graph domains,” in Proceedings. 2005 IEEE International Joint Con-

ference on Neural Networks, 2005., vol. 2, pp. 729–734, IEEE, 2005.

[140] A. Rossi, M. Tiezzi, G. M. Dimitri, M. Bianchini, M. Maggini, and

F. Scarselli, “Inductive–transductive learning with graph neural net-

works,” in IAPR Workshop on Artificial Neural Networks in Pattern

Recognition, pp. 201–212, Springer, 2018.

[141] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for

large-scale machine learning,” in 12th {USENIX} symposium on oper-

ating systems design and implementation ({OSDI} 16), pp. 265–283,

2016.

[142] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, “On inductive–

transductive learning with graph neural networks,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2021.

[143] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with

gumbel–softmax,” in 5th International Conference on Learning Repre-

sentations (ICLR), 2017.

[144] E. J. Gumbel, “Statistical theory of extreme values and some practical

applications: a series of lectures,” 1954.

[145] C. J. Maddison, D. Tarlow, and T. Minka, “A* sampling,” in Advances

in Neural Information Processing Systems, pp. 3086–3094, 2014.

[146] L. C. Freeman, “A set of measures of centrality based on betweenness,”

Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[147] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld,

“Quantum chemistry structures and properties of 134 kilo molecules,”

Scientific Data, vol. 1, 2014.

138 BIBLIOGRAPHY

[148] J. J. Irwin and B. K. Shoichet, “Zinc – a free database of commer-

cially available compounds for virtual screening,” Journal of chemical

information and modeling, vol. 45, no. 1, pp. 177–182, 2005.

[149] L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond, “Enu-

meration of 166 billion organic small molecules in the chemical universe

database GDB–17,” J. Chem. Inf. Model., vol. 52, no. 11, pp. 2864–

2875, 2012.

[150] S. A. Wildman and G. M. Crippen, “Prediction of physicochemical

parameters by atomic contributions,” Journal of Chemical Information

and Computer Sciences, vol. 39, no. 5, pp. 868–873, 1999.

[151] G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hop-

kins, “Quantifying the chemical beauty of drugs,” Nature chemistry,

vol. 4, no. 2, pp. 90–98, 2012.

[152] A. Hagberg, P. Swart, and D. S. Chult, “Exploring network struc-

ture, dynamics, and function using networkX,” in In Proceedings of

the 7th Python in Science Conference (SciPy) (J. M. G. Varoquaux,

T. Vaught, ed.), pp. 11–15, 2008.

[153] D. Flam-Shepherd, T. Wu, and A. Aspuru-Guzik, “Graph deconvolu-

tional generation,” 2020.

[154] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained

graph variational autoencoders for molecule design,” Advances in Neu-

ral Information Processing Systems, vol. 31, pp. 7795–7804, 2018.

[155] H. Khalil and C. Huang, “Adverse drug reactions in primary care: A

scoping review,” BMC health services research, vol. 20, no. 1, pp. 1–13,

2020.

[156] F. R. Ernst and A. J. Grizzle, “Drug–related morbidity and mortality:

Updating the cost–of–illness model,” Journal of the American Phar-

maceutical Association, vol. 41, no. 2, pp. 192–199, 2001.

[157] E. D. Kantor, C. D. Rehm, J. S. Haas, A. T. Chan, and E. L. Gio-

vannucci, “Trends in prescription drug use among adults in the United

States from 1999–2012,” Jama, vol. 314, no. 17, pp. 1818–1830, 2015.

BIBLIOGRAPHY 139

[158] M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, “The SIDER database

of drugs and side effects,” Nucleic acids research, vol. 44, no. D1,

pp. D1075–D1079, 2016.

[159] K. Luck, D.-K. Kim, L. Lambourne, K. Spirohn, B. E. Begg, W. Bian,

R. Brignall, T. Cafarelli, F. J. Campos-Laborie, B. Charloteaux, et al.,

“A reference map of the human binary protein interactome,” Nature,

vol. 580, no. 7803, pp. 402–408, 2020.

[160] D. Smedley, S. Haider, S. Durinck, L. Pandini, P. Provero, J. Allen,

O. Arnaiz, M. H. Awedh, R. Baldock, G. Barbiera, et al., “The

BioMart community portal: An innovative alternative to large, cen-

tralized data repositories,” Nucleic acids research, vol. 43, no. W1,

pp. W589–W598, 2015.

[161] D. Szklarczyk, A. Santos, C. Von Mering, L. J. Jensen, P. Bork, and

M. Kuhn, “STITCH 5: Augmenting protein–chemical interaction net-

works with tissue and affinity data,” Nucleic acids research, vol. 44,

no. D1, pp. D380–D384, 2016.

[162] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A.

Shoemaker, P. A. Thiessen, B. Yu, et al., “PubChem in 2021: New

data content and improved web interfaces,” Nucleic acids research,

vol. 49, no. D1, pp. D1388–D1395, 2021.

[163] T. T. Tanimoto, “IBM internal report 17th,” tech. rep., IBM, 11 1957.

[164] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.

Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al.,

“Gene ontology: Tool for the unification of biology,” Nature genetics,

vol. 25, no. 1, pp. 25–29, 2000.

[165] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and

integrative analysis of large gene lists using DAVID bioinformatics re-

sources,” Nature protocols, vol. 4, no. 1, pp. 44–57, 2009.

[166] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics

enrichment tools: Paths toward the comprehensive functional analysis

of large gene lists,” Nucleic acids research, vol. 37, no. 1, pp. 1–13,

2009.

140 BIBLIOGRAPHY

[167] H. Hegyi and M. Gerstein, “The relationship between protein structure

and function: a comprehensive survey with application to the yeast

genome,” Journal of molecular biology, vol. 288, no. 1, pp. 147–164,

1999.

[168] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The

maximum clique problem,” in Handbook of combinatorial optimization,

pp. 1–74, Springer, 1999.

[169] E. Krissinel, “Crystal contacts as nature’s docking solutions,” Journal

of computational chemistry, vol. 31, no. 1, pp. 133–143, 2010.

[170] T. Schäfer, P. May, and I. Koch, “Computation and visualization

of protein topology graphs including ligand information,” in Ger-

man Conference on Bioinformatics 2012, Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2012.

[171] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,

H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data

bank,” Nucleic acids research, vol. 28, no. 1, pp. 235–242, 2000.

[172] W. Kabsch and C. Sander, “Dictionary of protein secondary struc-

ture: Pattern recognition of hydrogen–bonded and geometrical fea-

tures,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983.

[173] J. Kyte and R. F. Doolittle, “A simple method for displaying the hydro-

pathic character of a protein,” Journal of molecular biology, vol. 157,

no. 1, pp. 105–132, 1982.

[174] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of

an undirected graph,” Communications of the ACM, vol. 16, no. 9,

pp. 575–577, 1973.

[175] L. Oneto, N. Navarin, B. Biggio, F. Errica, A. Micheli, F. Scarselli,

M. Bianchini, L. Demetrio, P. Bongini, A. Tacchella, and A. Sperduti,

“Towards learning trustworthily, automatically, and with guarantees

on graphs: An overview,” Neurocomputing, vol. 493, pp. 217–243, 2022.

[176] P. Bongini, S. Gardini, M. Bianchini, O. Spiga, and N. Niccolai, “Struc-

tural bioinformatics survey on disease-inducing missense mutations,”

BIBLIOGRAPHY 141

Journal of Bioinformatics and Computational Biology, p. 2150008,

2021.

[177] P. Bongini, N. Niccolai, A. Trezza, G. Mangiavacchi, A. Santucci,

O. Spiga, M. Bianchini, and S. Gardini, “Structural bioinformatic sur-

vey of protein-small molecule interfaces delineates the role of glycine

in surface pocket formation,” IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics, 2020.

[178] D. Varrazzo, A. Bernini, O. Spiga, A. Ciutti, S. Chiellini, V. Ven-

ditti, L. Bracci, and N. Niccolai, “Three–dimensional computation of

atom depth in complex molecular structures,” Bioinformatics, vol. 21,

no. 12, pp. 2856–2860, 2005.

[179] F. Fraternali and L. Cavallo, “Parameter optimized surfaces (pops):

analysis of key interactions and conformational changes in the ribo-

some,” Nucleic Acids Research, vol. 30, no. 13, pp. 2950–2960, 2002.

[180] H. A. Hussein, A. Borrel, C. Geneix, M. Petitjean, L. Regad, and A.-C.

Camproux, “Pockdrug–server: a new web server for predicting pocket

druggability on holo and apo proteins,” Nucleic acids research, vol. 43,

no. W1, pp. W436–W442, 2015.

[181] R. H. Horton and A. M. Lucassen, “Recent developments in ge-

netic/genomic medicine,” Clinical Science, vol. 133, no. 5, pp. 697–708,

2019.

[182] M. J. Landrum, J. M. Lee, M. Benson, G. R. Brown, C. Chao, S. Chi-

tipiralla, B. Gu, J. Hart, D. Hoffman, W. Jang, et al., “Clinvar: im-

proving access to variant interpretations and supporting evidence,”

Nucleic acids research, vol. 46, no. D1, pp. D1062–D1067, 2018.

[183] P. D. Stenson, M. Mort, E. V. Ball, K. Shaw, A. D. Phillips, and D. N.

Cooper, “The human gene mutation database: building a comprehen-

sive mutation repository for clinical and molecular genetics, diagnostic

testing and personalized genomic medicine,” Human genetics, vol. 133,

no. 1, pp. 1–9, 2014.

[184] E. Capriotti, P. Fariselli, and R. Casadio, “A neural–network–based

method for predicting protein stability changes upon single point mu-

tations,” Bioinformatics, vol. 20, no. suppl 1, pp. i63–i68, 2004.

142 BIBLIOGRAPHY

[185] S. Kulshreshtha, V. Chaudhary, G. K. Goswami, and N. Mathur,

“Computational approaches for predicting mutant protein stability,”

Journal of computer-aided molecular design, vol. 30, no. 5, pp. 401–

412, 2016.

[186] J. D. Stephenson, R. A. Laskowski, A. Nightingale, M. E. Hurles, and

J. M. Thornton, “Varmap: a web tool for mapping genomic coordinates

to protein sequence and structure and retrieving protein structural

annotations,” Bioinformatics, vol. 35, no. 22, pp. 4854–4856, 2019.

[187] S. Gardini, S. Furini, A. Santucci, and N. Niccolai, “A structural

bioinformatics investigation on protein–dna complexes delineates their

modes of interaction,” Molecular BioSystems, vol. 13, no. 5, pp. 1010–

1017, 2017.

[188] H. Hwang, F. Dey, D. Petrey, and B. Honig, “Structure–based predic-

tion of ligand–protein interactions on a genome–wide scale,” Proceed-

ings of the National Academy of Sciences, vol. 114, no. 52, pp. 13685–

13690, 2017.

[189] P. Bongini, A. Trezza, M. Bianchini, O. Spiga, and N. Niccolai, “A

possible strategy to fight covid-19: interfering with spike glycoprotein

trimerization,” Biochemical and biophysical research communications,

vol. 528, no. 1, pp. 35–38, 2020.

[190] P. Bongini, A. Trezza, M. Bianchini, O. Spiga, and N. Niccolai, “Struc-

tural bioinformatics to unveil weaknesses of coronavirus spike glycopro-

tein stability,” in In Silico Modeling of Drugs Against Coronaviruses,

pp. 203–211, Springer, 2021.

[191] W. Spaan, D. Cavanagh, and M. Horzinek, “Coronaviruses: structure

and genome expression,” Journal of General Virology, vol. 69, no. 12,

pp. 2939–2952, 1988.

[192] B. Delmas and H. Laude, “Assembly of coronavirus spike protein into

trimers and its role in epitope expression,” Journal of virology, vol. 64,

no. 11, pp. 5367–5375, 1990.

[193] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh,

O. Abiona, B. S. Graham, and J. S. McLellan, “Cryo–em structure of

BIBLIOGRAPHY 143

the 2019–ncov spike in the prefusion conformation,” Science, vol. 367,

no. 6483, pp. 1260–1263, 2020.

[194] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,

R. Lopez, H. McWilliam, M. Remmert, J. Söding, et al., “Fast, scalable

generation of high-quality protein multiple sequence alignments using

clustal omega,” Molecular systems biology, vol. 7, no. 1, p. 539, 2011.

[195] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. lo, A. Marcu, J. R.

Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, et al., “Drugbank 5.0:

a major update to the drugbank database for 2018,” Nucleic acids

research, vol. 46, no. D1, pp. D1074–D1082, 2018.

[196] J. Mateus, A. Grifoni, A. Tarke, J. Sidney, S. I. Ramirez, J. M. Dan,

Z. C. Burger, S. A. Rawlings, D. M. Smith, E. Phillips, et al., “Selective

and cross-reactive sars-cov-2 t cell epitopes in unexposed humans,”

Science, vol. 370, no. 6512, pp. 89–94, 2020.

[197] D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese,

V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen,

et al., “Database resources of the national center for biotechnology

information,” Nucleic acids research, vol. 36, no. suppl 1, pp. D13–

D21, 2007.

[198] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lip-

man, “Basic local alignment search tool,” Journal of molecular biology,

vol. 215, no. 3, pp. 403–410, 1990.

[199] C. B. Anfinsen, “Principles that govern the folding of protein chains,”

Science, vol. 181, no. 4096, pp. 223–230, 1973.

[200] Z. Li and Y. Yu, “Protein secondary structure prediction using cas-

caded convolutional and recurrent neural networks,” in Proceedings of

the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence, pp. 2560–2567, 2016.

[201] R. Heffernan, Y. Yang, K. Paliwal, and Y. Zhou, “Capturing non–local

interactions by long short-term memory bidirectional recurrent neu-

ral networks for improving prediction of protein secondary structure,

backbone angles, contact numbers and solvent accessibility,” Bioinfor-

matics, vol. 33, no. 18, pp. 2842–2849, 2017.

144 BIBLIOGRAPHY

[202] F. M. Pearl, C. Bennett, J. E. Bray, A. P. Harrison, N. Martin,

A. Shepherd, I. Sillitoe, J. Thornton, and C. A. Orengo, “The cath

database: an extended protein family resource for structural and func-

tional genomics,” Nucleic acids research, vol. 31, no. 1, pp. 452–455,

2003.

[203] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” arXiv preprint arXiv:1301.3781,

2013.

[204] S. N. Wakap, D. M. Lambert, A. Olry, C. Rodwell, C. Gueydan,

V. Lanneau, D. Murphy, Y. Le Cam, and A. Rath, “Estimating cu-

mulative point prevalence of rare diseases: analysis of the orphanet

database,” European Journal of Human Genetics, vol. 28, no. 2,

pp. 165–173, 2020.

[205] M. Navaie-Waliser, P. H. Feldman, D. A. Gould, C. Levine, A. N.

Kuerbis, and K. Donelan, “When the caregiver needs care: The plight

of vulnerable caregivers,” American journal of public health, vol. 92,

no. 3, pp. 409–413, 2002.

[206] E. Palamaro Munsell, R. P. Kilmer, J. R. Cook, and C. L. Reeve, “The

effects of caregiver social connections on caregiver, child, and fam-

ily well-being.,” American Journal of Orthopsychiatry, vol. 82, no. 1,

p. 137, 2012.

[207] F. Guerranti, M. Mannino, F. Baccini, P. Bongini, N. Pancino, A. Vis-

ibelli, and S. Marziali, “Caregivermatcher: graph neural networks for

connecting caregivers of rare disease patients,” Procedia Computer Sci-

ence, vol. 192, pp. 1696–1704, 2021.

[208] L.-Y. Chien, H. Chu, J.-L. Guo, Y.-M. Liao, L.-I. Chang, C.-H. Chen,

and K.-R. Chou, “Caregiver support groups in patients with dementia:

a meta-analysis,” International journal of geriatric psychiatry, vol. 26,

no. 10, pp. 1089–1098, 2011.

[209] M. Monaci, N. Pancino, P. Andreini, S. Bonechi, P. Bongini, A. Rossi,

G. Ciano, G. Giacomini, F. Scarselli, and M. Bianchini, “Deep learning

techniques for dragonfly action recognition.,” in ICPRAM, pp. 562–

569, 2020.

BIBLIOGRAPHY 145

[210] S. Bonechi, M. Bianchini, P. Bongini, G. Ciano, G. Giacomini, R. Ro-

sai, L. Tognetti, A. Rossi, and P. Andreini, “Fusion of visual and

anamnestic data for the classification of skin lesions with deep learn-

ing,” in International Conference on Image Analysis and Processing,

pp. 211–219, Springer, 2019.

[211] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,

pp. 4510–4520, 2018.

[212] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014.

[213] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[214] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet

large scale visual recognition challenge,” International journal of com-

puter vision, vol. 115, no. 3, pp. 211–252, 2015.

[215] U. Leiter, T. Eigentler, and C. Garbe, “Epidemiology of skin cancer,”

Sunlight, vitamin D and skin cancer, pp. 120–140, 2014.

[216] N. C. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti,

S. W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, et al.,

“Skin lesion analysis toward melanoma detection: A challenge at the

2017 international symposium on biomedical imaging (isbi), hosted by

the international skin imaging collaboration (isic),” in 2018 IEEE 15th

international symposium on biomedical imaging (ISBI 2018), pp. 168–

172, IEEE, 2018.

	Introduction
	Graph Neural Networks in Bioinformatics
	Thesis Summary
	Main Contributions of the Thesis
	Structure of the Thesis

	Deep Learning on Structured Data
	Deep Learning
	From Machine Learning to Deep Learning
	Deep Neural Networks
	Learning with Deep Models

	Machine Learning on Structured Data
	Structured Data Types
	Structure–Oriented Models

	Graph Neural Networks
	The Graph Neural Network Model
	Learning with Graph Neural Networks
	Composite Graph Neural Networks
	Approximation Power of Graph Neural Networks
	Models and Applications of Graph–based Models

	Biological Problems on Graphs
	Graph Data in Biology
	Graphs in Drug Discovery
	Bioinformatics and Graph Neural Networks

	ML Applications to Molecular Data
	Machine Learning in Drug Discovery
	Molecular Graph Generation
	Drug Side–Effect Prediction
	Prediction of Protein–Protein Interfaces

	GNN keras
	Motivation and Significance
	Software Description
	Conclusions

	Molecular GNN for Drug Discovery
	Model Implementation
	Method
	Generative Algorithm
	Implementation with Graph Neural Networks
	Graph Preprocessing
	Node Ordering

	Experiments and Results
	Dataset Description
	Experimental Setup
	Evaluation
	Results and Discussion

	Conclusions

	Drug Side–Effect Prediction with GNN
	Dataset
	Method
	Model Implementation
	Inductive–transductive learning scheme
	Experimental setup

	Results and Discussion
	Ablation Studies
	Comparison with Other Models
	Usability of DruGNN

	Conclusions and Future Work

	GNN for the prediction of PPI
	Materials and Methods
	Dataset Construction
	GNN Implementation
	Experimental Setup

	Experimental Results
	Conclusions

	Other Works
	Towards smart learning on graphs
	GlyPipe: Opening New Protein Surface Pockets
	Glycine–induced formation and druggability score prediction of protein surface pockets
	Structural bioinformatics survey on disease inducing missense mutations
	Structural bioinformatic survey of protein–small molecule interfaces delineates the role of glycine in surface pocket formation

	Structured Data in Covid–19 research
	Interfering with Covid–19 Spike Glycoprotein Trimerization
	A bioinformatic approach to investigate structural and non–structural proteins in human coronaviruses

	Predicting the Formation of Alpha–helices
	Caregiver–Matcher
	DL Applications to Image Analysis
	Deep Learning Techniques for Dragonfly Action Recognition
	Fusion of Visual and Anamnestic Data for the Classification of Skin Lesions with Deep Learning

	Conclusions and Future Developments

