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Abstract 
Fitness landscape of a biomolecule is a representation of its activity as a function of its 
sequence. Properties of a fitness landscape determine how evolution proceeds. Therefore, 
the distribution of functional variants and more importantly, the connectivity of these 
variants within the sequence space are important scientific questions. Exploration of these 
spaces, however, is impeded by the combinatorial explosion of the sequence space. High-
throughput experimental methods have recently reduced this impediment but only modestly. 
Better computational methods are needed to fully utilize the rich information from these 
experimental data to better understand the properties of the fitness landscape. In this work, 
I seek to improve this exploration process by combining data from massively parallel 
experimental assay with smart library design using advanced computational techniques. I 
focus on an artificial RNA enzyme or ribozyme that can catalyze a ligation reaction between 
two RNA fragments. This chemistry is analogous to that of the modern RNA polymerase 
enzymes, therefore, represents an important reaction in the origin of life. In the first chapter, 
I discuss the background to this work in the context of evolutionary theory of fitness 
landscape and its implications in biotechnology. In chapter 2, I explore the use of processes 
borrowed from the field of evolutionary computation to solve optimization problems using 
real experimental sequence-activity data. In chapter 3, I investigate the use of supervised 
machine learning models to extract information on epistatic interactions from the dataset 
collected during multiple rounds of directed evolution. I investigate and experimentally 
validate the extent to which a deep learning model can be used to guide a completely 
computational evolutionary algorithm towards distant regions of the fitness landscape. In the 
final chapter, I perform a comprehensive experimental assay of the combinatorial region 
explored by the deep learning-guided evolutionary algorithm. Using this dataset, I analyze 
higher-order epistasis and attempt to explain the increased predictability of the region 
sampled by the algorithm. Finally, I provide the first experimental evidence of a large RNA 
‘neutral network’. Altogether, this work represents the most comprehensive experimental 
and computational study of the RNA ligase ribozyme fitness landscape to date, providing 
important insights into the evolutionary search space possibly explored during the earliest 
stages of life.  
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Fitness landscape was first introduced as a way to visualize evolutionary processes (Wright, 
1932) by displaying organismal reproductive success (fitness) as a function of its genotype 
space. This landscape is often presented with the genotype space in the horizontal plane 
while the vertical axis represents the fitness value (Figure 1-1). In this representation, 
evolution is a hill climbing process where natural selection moves the genotype towards 
regions of higher fitness or peaks in the landscape. This fitness landscape metaphor has been 
used to study many fundamental concepts of evolution including adaptation and innovation. 
Understanding the topology of the fitness landscape can lead to better understanding of how 
evolution can proceed. Mapping the topography of a fitness landscape can be done by 
assigning fitness value to every genotype in the landscape. However, this has proven difficult 
as the number of possible genotypes is astronomical (4L for nucleotides and 20L for proteins 
with L being the length of sequence). Furthermore, measurements of fitness are 
experimentally challenging for many systems, and many do not have high-throughput 
methods to do so. RNA emerged as an important system for large scale study of the fitness 
landscape (Pitt and Ferré-D’Amaré, 2010). The discovery of catalytic RNA or ribozyme 
reveals that RNA can both carry genotypic (nucleotide sequence) and phenotypic (catalytic 
activity) information (Kruger et al., 1982). At the same time, computational algorithms were 
being developed that can successfully predict secondary structure from RNA sequences 
(Zuker and Stiegler, 1981). Under the sequence-structure-function assumption, a new 
paradigm emerges. The study of the fitness landscape of the RNA sequence-structure map 
where secondary structure was used as proxy for fitness (Figure 1-1). 
  
Schuster and Fontana pioneered the use of RNA sequence-structure map to study evolution. 
Specifically they discovered that RNA sequence space contains extensive neutral network 
(Schuster et al., 1997). A neutral network is a group of genotypes within the sequence space 
that share the same phenotype and are connected to each other via single step mutations that 
maintain the phenotype (Figure 1-1). In the evolutionary hill climbing metaphor, neutral 
networks represent smooth ridges or plateaus that connect multiple fitness peaks allowing 
evolution to travel large distances within the fitness landscape without interruption. Using 
an inverse folding algorithm, Schuster and Fontana discovered that many neighboring RNA 
sequences are predicted to fold into the same structure forming a percolating neutral network 
within the RNA fitness landscape. This landmark discovery led to many subsequent studies 
that used RNA sequence-structure maps and the concept of neutral networks to better 
understand how evolutionary adaptation and innovation can happen (van Nimwegen, 
Crutchfield and Huynen, 1999; Kun, Santos and Szathmáry, 2005; Greenbury, Louis and 
Ahnert, 2022; Johnston et al., 2022).  
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Figure 1-1: Visualization of RNA fitness landscape and neutral network.  
The RNA sequence space is the total possible combination of bases for a given 
length of sequence (4L). The sequence space can be represented as a function of 
its fitness forming a fitness landscape. Many properties such as catalytic activity or 
ligand binding can be used as a proxy for fitness. Structure prediction algorithm 
suggests that many sequences in the fitness landscape that are connected by single 
mutations can be mapped onto the same secondary structure. This many-to-one 
mapping between the sequence space and the shape space resulted in a large 
neutral network that could facilitate evolution. In this schematics, neutral genotypes 
are represented by nodes with edges representing single mutations connecting 
each genotype. 
  
With the recent advancement in DNA synthesis and sequencing technology, an increasing 
number of studies has been done towards empirical mapping of RNA fitness landscape. Two 
most notable attempts were made by the Chen group, where they map almost the entire 
sequence space of aminoacylating ribozyme (Pressman et al., 2019) and a GTP binding RNA 
aptamer (Jiménez et al., 2013). Both studies reveal a highly sparse landscape with isolated 
fitness peaks separated by extensive regions of inactivity or fitness valleys (Figure 1-2). In 
these landscapes, functional genotypes are rare and sparsely distributed. Furthermore, these 
functional genotypes are not connected by neutral mutational steps and large-scale neural 
networks, as predicted by theoretical studies, are absent. Studies of other RNA fitness 
landscapes have further supported these findings (Pitt and Ferré-D’Amaré, 2010; Hayden, 
Bendixsen and Wagner, 2015; Kobori and Yokobayashi, 2016; Li et al., 2016; Domingo, 
Diss and Lehner, 2018; Bendixsen et al., 2019). With all these findings two key questions 
emerge. Firstly, is there indeed any empirical evidence for the kind of neutral network 
predicted by the sequence-structure map. Secondly, how does natural or artificial 
evolutionary processes find functional genotypes during its navigation of the fitness 
landscape if neutral networks rare or completely absent. 
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Figure 1-2: Visualization of sparse fitness landscape. 
Recent experimental evidence suggests that many fitness landscapes have isolated 
fitness peaks where 'fit’ genotypes are surrounded by regions of ‘unfit’ genotypes. 
Here, blue nodes represent ‘fit’ genotypes that can survive the selection threshold. 
To travel between any ‘fit’ nodes, evolution needs to pass by ‘unfit’ nodes (gray) 
which can lead to evolutionary constraint.  
 
In this thesis, I present a collection of experimental and computational works that enable 
efficient identification of functional genotypes within the fitness landscapes of a small, 
artificial ligase ribozyme (Figure 1-3). Combining high-throughput experimental assay and 
advanced machine learning, this work culminates in the first empirical evidence of a large-
scale RNA neutral network.  
  
In chapter 2, I describe how, inspired by the concept of evolutionary algorithms in computer 
science, I used computational genetic processes to design libraries of ligase ribozyme 
sequences that are enriched in activity. This precise design process was enabled by the ability 
to synthesize custom ribozyme libraries with on-chip DNA synthesis. Sequencing-based 
high-throughput experimental assay provides a direct measurement of activity for tens of 
thousands of ribozyme sequences in parallel. Combining the experimental assay and 
computational design, this approach enables efficient exploration of the functional sequence 
space of the ligase ribozyme. 
 
In chapter 3, I saw an opportunity in the dataset generated from the work done in chapter 2 
and was inspired by the recent success of deep learning in solving biological problems 
(Angermueller et al., 2016). I used the collected sequence-activity data to train a group of 
supervised machine learning models that learn the underlying fitness function governing the 
ligase ribozyme fitness landscape. I developed an evolutionary algorithm guided by a deep 
learning model to perform computational navigation of the ligase ribozyme fitness 
landscape. Using high throughput assay I confirmed that the algorithm was indeed able to 
identify functional genotypes in distant regions of the fitness landscape. 
  
In the final chapter, I analyzed one of the mutants discovered by the evolutionary algorithm 
in chapter 3 and revealed that the accumulation of neutral mutation leads to an increase in 
mutational robustness in one of the structural modules of the ribozyme. Experimental 
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screening of the entire combinatorial space between this mutant and the wildtype reveals an 
extensive neutral network. Many direct mutational paths connect the two genotypes while 
maintaining ligase activity. This is the first experimental evidence of a large-scale RNA 
neutral network discovered thus far. Further analysis of the mutational interactions within 
the network suggests that this network could increase ribozyme’s fitness landscape 
navigability and predictability. 
 
Fitness landscape is an elegant theoretical visualization of the evolutionary search space of 
organisms and biomolecules. The study and investigation of the theoretical fitness landscape 
has led to better understanding of many fundamental properties of evolution. The recent 
ability to push this study into the experimental realm has unveiled even more questions and 
surprising properties of evolution. The proof-of-concept studies that I have presented here 
could serve as a starting point for the use of high-throughput experimental techniques 
combined with state-of-art computational methods for guided exploration of the 
evolutionary search space. This could lead to even more significant discoveries such as the 
elusive RNA neutral network that I have discovered here almost 30 years since its first 
prediction. 

 
 
Figure 1-3: Overview of a hybrid evolutionary process combining 
computational model and high-throughput experiments. 
Exploration of the RNA fitness landscape can be accelerated by combining 
sequence design using genetic operators and machine learning models trained on 
high-throughput experimental assay data. This approach can enable efficient 
crossing of fitness valleys towards new and higher fitness peaks. 
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Chapter 2: Identification of functional ribozymes 
with high-throughput experimental assay and 
genetic algorithm 
 
Parts of this chapter, in particular the Methods section, have been duplicated or updated 
from a previously published article: Rotrattanadumrong, R. and Yokobayashi, Y. (2022) 
‘Experimental exploration of a ribozyme neutral network using evolutionary algorithm and 
deep learning’, Nature communications, 13(1), p. 4847. 
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Background 
In 1970, John Maynard Smith first proposed the idea of the protein sequence space as a 
network of discrete mutational paths for evolution to navigate (Maynard Smith, 1970). This 
extended the original idea of fitness landscape proposed by Wright (Wright, 1932) into the 
realm of molecular evolution. Smith’s work introduces the idea that evolution proceeds on 
units of mutation and that natural selection occurs through a series of single mutations that 
maintain protein function. This idea of a discrete protein space transforms the study of fitness 
landscape into one of sequence-fitness maps. The discrete nature of the protein sequence 
space means the topography of the landscape can be understood by looking at how fitness 
changes along a mutational path. The accessibility of these mutational paths then becomes a 
major determinant of evolution. Early study of this idea was necessarily theoretical 
(Kauffman and Levin, 1987) due to limited experimental methods available to survey large 
regions of protein sequence space. This changes when Weinreich and co-workers show 
experimentally (Weinreich et al., 2006) and theoretically (Weinreich, Watson and Chao, 
2005) that evolutionary path along the protein sequence space can be severely limited by a 
particular form of mutational interaction or epistasis called ‘sign epistasis. Epistasis occurs 
when effects of individual mutations combine in a non-additive way. Sign epistasis occurs 
when a mutation reverses the effect of another mutation (Figure 2-1a). In their seminal paper 
(Weinreich et al., 2006), Weinreich and team experimentally showed that sign epistasis 
significantly reduces the number of accessible paths from a wildtype to a high-fitness β-
lactamase enzyme (Figure 2-1b). They did so by synthesizing and evaluating all 2L possible 
combinations of 5 mutations that give rise to the higher fitness variant. This enabled them to 
assess all 120 possible mutational paths between the two genotypes. The consequence of this 
work is twofold. First, it suggests that evolutionary paths are highly constrained which 
means that evolution could be highly reproducible and predictable. Second, it introduces the 
idea of studying fitness landscape and evolutionary paths through experimental construction 
of the combinatorial sequence space.  
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Figure 2-1: Sign epistasis can constrain evolutionary paths. 
a) Pairwise reciprocal sign epistasis is observed when two genotypes differed by 
two mutations (00 and 11) both have higher or lower fitness than their two 
constituent single mutants (10 and 01) b) Accessible paths between different fitness 
peaks is defined as a smooth path involving mutational steps that either maintain or 
increase the fitness of the mutants relative to the previous step. Pairwise reciprocal 
sign epistasis can severely limit the number of accessible paths in the fitness 
landscape. 
 
However, this method is experimentally challenging due to combinatorial explosion of the 
sequence space. In a combinatorial map, where only a specific set of mutations are 
considered, the total possible number of mutants is 2L with L being the number of mutated 
positions. However, if the entire sequence space is to be considered where all possible 
substitution can occur then the total space becomes 4L in the case of DNA or RNA 
(nucleotide sequences) or 20L in the case of protein (amino acid sequences). In either case, 
the number of variants that needs to be assessed becomes experimentally intractable for any 
regular sized protein or oligonucleotide. However, this challenge has been alleviated 
somewhat with the advancement in DNA synthesis and sequencing. These technologies 
enable both generation of variants and fitness measurements in a rapid and high throughput 
way. It is now possible to obtain a large sequence-fitness dataset for many biomolecules. 
The first truly large-scale use of such a method to explore the biomolecular fitness landscape 
was not for protein but for an RNA enzyme. In 2010, Pitt and  Ferré-D'Amaré constructed a 
fitness landscape consisting of ~107 variants of an RNA ligase ribozyme (Pitt and Ferré-
D’Amaré, 2010). They did so through use of deep sequencing to monitor change in 
frequency of each mutant during selection (Figure 2-2).  RNA was the ideal candidate for 
large scale fitness landscape mapping for many reasons. One, the sequence space of RNA is 
much smaller than protein (4L vs 20L). Two, the process of in vitro transcription and reverse 
transcription allow RNA mutants to be easily synthesized and directly analyzed through 
sequencing. RNA may not be the fundamental catalyst of the current life form as proteins 
are but their unique role in the evolution of life means that their fitness landscape can provide 
important understanding of the fundamental concept of evolution.  
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Figure 2-2: Schematic of select-and-sequence based high-throughput assay. 
Schematic of the deep sequencing based methods presented by (Pitt and Ferré-
D’Amaré, 2010). Ligase ribozyme variants are mixed with magnetic bead bound 
substrates. Functional variants can self-ligate onto the substrate and can be 
selected using magnets allowing non-functional variants to be discarded. The 
frequency of each variant in the selected pool can be calculated by counting the 
number of reads from next-generation sequencing. Frequency of each variant can 
be compared from different reaction time points and change in frequency can be 
used as a proxy for fitness. 
 
The term RNA world was first coined by Walter Gilbert (Gilbert, 1986). In this theory, 
RNA is suggested as the original biomolecules that sustained life prior to the emergence of 
DNA and proteins. The primordial organisms in the RNA world relied on RNA to both 
carry genetic information and to catalyze chemical reactions that are necessary to sustain 
life, including replication of genetic information. This concept was further strengthened by 
the work of Thomas Cech who reported for the first time that RNA can possess catalytic 
properties, specifically self-splicing (Cech, Zaug and Grabowski, 1981). Since then, RNA 
enzymes or ribozymes with a wide range of catalytic properties have been discovered in 
both natural and artificial settings. One particularly important discovery is the artificial 
creation of a ligase ribozyme. Bartel and Szotak first isolated a ribozyme capable of 
joining two RNA fragments together from a pool of random sequences (Bartel and 
Szostak, 1993). The ribozymes they discovered catalyze the ligation between a 3′-hydroxyl 
and 5′-triphosphate termini in a similar fashion to the modern RNA polymerase enzymes. 
The fact that this catalytic process, that is so essential to life, can be performed by RNA 
provides strong evidence that ligase ribozymes might be one of the first biological catalysts 
that emerged at the beginning of life. It is therefore fortuitous that a ligase ribozyme 
became the first biomolecule with a sequence space mapped in a large scale (Pitt and 
Ferré-D’Amaré, 2010).  
 
Since then, many RNA sequence spaces have been empirically mapped. Two comprehensive 
RNA fitness landscapes were mapped by the Chen lab, one for a GTP binding RNA aptamer 
(Jiménez et al., 2013) and another for a self-aminoacylating ribozyme (Pressman et al., 
2019). In the GTP aptamer study, they used in vitro selection to infer the fitness of around 
1017 RNA sequences, representing the largest fitness landscape mapped at the time. 
However, this approach only infers fitness based on the survival of the variants through an 
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artificial selection criterion. As a result, the dataset only offers an indirect measurement of 
fitness and does not assess quantitative activity of the variants. In their next study, using 
self-aminoacylation ribozyme as the subject, they used kinetic sequencing to measure the 
catalytic activity of around 70-99% of the entire sequence space of a 21-nucleotide 
ribozyme. However, this method still relies on in vitro selection and the activity of sequences 
with very low abundance after selection cannot be estimated. As a result, activity was only 
estimated for 8.9x106 sequences while the rest of the 421 possible sequences were deemed to 
be inactive. Both studies reveal, for the first time, the approximation of the entire fitness 
landscape of RNA and yielded an interesting observation. Both landscapes appear to be very 
rugged with sparsely distributed fitness peaks separated by valleys of inactivity. This 
observation implies that even when starting from a known fitness peak, evolution or 
navigation away from this peak through mutational paths would be very difficult. Most paths 
would lead to evolutionary dead ends and accessing other fitness peaks would be very 
challenging. 
 
Other works have similarly shown that RNA fitness landscapes are populated mostly by 
inactive or deleterious genotypes (Pitt and Ferré-D’Amaré, 2010; Hayden, Bendixsen and 
Wagner, 2015; Li et al., 2016; Domingo, Diss and Lehner, 2018; Andreasson et al., 2020). 
A few mutational steps away from a known active genotype (wildtype) often leads to 
significant reduction in fitness. Development of better methods to identify functional 
genotypes within a sparse RNA fitness landscape has two important applications. Firstly, it 
will allow better understanding of the topography of the functional space within the fitness 
landscape and how evolution proceeds in this space during its search for a new fitness peak. 
This can elucidate how evolutionary adaptation or innovation can occur during the RNA 
world (Wagner, 2008) or even during the modern process of viral evolution (Lauring, 
Frydman and Andino, 2013). Secondly, directed evolution has been employed as a powerful 
experimental technique that can identify genotypes with new or improved functionality. 
RNA based technology such as aptamers and riboswitches have been engineered using this 
method. These synthetic RNA have been used as potential biosensors or genetic control 
devices for therapeutic and diagnostic application (Famulok, Hartig and Mayer, 2007). A 
better method to identify functional genotypes can greatly accelerate the discovery and 
engineering of novel RNA devices (Dykstra, Kaplan and Smolke, 2022) (Figure 2-3). 
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Figure 2-3: Benefits of identifying new peaks in the fitness landscape. 
Reaching new fitness peaks far away from the starting point (wildtype) can be 
beneficial for several reasons. Distant peaks can lead to discover of genotypes with 
improved enzymatic activity, discovery of new structural folds which could be useful 
for downstream engineering or identifying variants with completely new functions. 
 
Comprehensive screening of fitness landscapes allows researchers to determine the best 
variants from all possible sequences without the need to optimize across the frustrated and 
rugged landscape. However, this approach is only possible for a relatively short RNA with 
a small sequence space. In order to identify ribozymes with improved or novel catalytic 
function, a larger sequence space of longer RNA must be explored. Furthermore, increasing 
length has been shown to correlate with an increase in informational and structural 
complexity (Carothers et al., 2004). Therefore, the exploration of large RNA sequence space 
might yield new and better insight into the property of fitness landscape. However, the 
sequencing-based method is currently only experimentally tractable for comprehensive 
mapping of sequences with length less than around 27 nucleotides (Blanco et al., 2019). 
Therefore, in order to explore sequence space of larger sizes, we need a method to collect 
and infer information from sparse sampling of the landscape. In order to maximize the 
information gain from these sparse sampling, the fitness estimation method must also be 
quantitative. As mentioned previously, in vitro selection only offers indirect measurement 
of sequence fitness. Furthermore, such a method leads to loss of low activity variants which 
provide important information. Therefore, the goal is to develop a method that can measure 
the activity or fitness of RNA variants in both a quantitative and high-throughput manner 
(Figure 2-4). 
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Figure 2-4: Overview of ligase ribozyme high-throughput design cycle. 
This figure is adapted from (Nomura and Yokobayashi, 2019). Diverse DNA 
sequence pool with T7 promoter is first synthesized by using oligo pool synthesis or 
saturation mutagenesis. In vitro transcription generates a pool of ribozymes that 
then undergoes ligase reaction in bulk. Ligated and unligated populations of variants 
can be separated based on size by using polyacrylamide gel electrophoresis 
(PAGE). The populations are then separately extracted from the gel and barcode 
can be added using reverse transcription. Different barcodes are used to identify 
each population during downstream sequence analysis. The cDNA libraries are then 
pooled together, and PCR is used to add a sequencing adapter to the library. The 
library is then sequenced with next-generation sequencing platforms such as 
Illumina MiSeq or NovaSeq. The sequencing reads counts for each sequence in 
ligated and unligated populations are then counted and used as a surrogate for 
activity. The resulting sequence-activity dataset is then used to guide the design of 
the next set of ribozymes. 
 
Our lab previously developed a method to directly measure the activity of large ribozyme 
variant libraries in parallel (Kobori et al., 2015; Kobori and Yokobayashi, 2016, 2018; 
Dhamodharan, Kobori and Yokobayashi, 2017; Kobori, Takahashi and Yokobayashi, 2017; 
Nomura and Yokobayashi, 2019; Yokobayashi, 2019). By comparing the sequencing read 
counts of reacted and unreacted ribozyme variants that were synthesized using custom on-
chip DNA synthesis, we can directly measure the activity of each ribozyme variant (Figure 
2-4). Our lab have applied this method to analyze both a natural self-cleaving ribozyme 
(Kobori and Yokobayashi, 2016) and an artificial RNA ligase ribozyme (Nomura and 
Yokobayashi, 2019). So far, this method has only been used to explore variants which are 
only a few mutational steps away from the wildtype. Novel or improved phenotypes can 
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often be located much further away than single or double mutants. Identification of these 
distant genotypes using information from single or double mutants alone can be difficult due 
to the effect of higher-order epistasis (Weinreich et al., 2013). It is a well-known 
phenomenon that accumulation of mutation leads to rapid reduction in activity due to 
prevalence of negative epistasis (Bank et al., 2016; Bendixsen, Østman and Hayden, 2017). 
Random sampling of the sequence space will also yield mostly inactive variants due to the 
sparsity of fitness landscape as discussed above. Therefore, the aim of this study is to develop 
a method that can leverage the quantitative information gained from local sampling of a 
fitness landscape to identify functional genotypes from distant regions of the fitness 
landscape.  
 
To do this, I was inspired by the field of evolutionary computation (EC) which in turn was 
inspired by natural evolution itself (Miikkulainen and Forrest, 2021). EC goal is to find the 
best solution to a global optimization problem starting from a set of initial candidate 
solutions using biologically inspired processes such as mutation, selection and 
recombination. EC has found successes in many domains of computer science and recently 
have also been applied to synthetic evolution of biological systems (Yoshida et al., 2018; 
Boone et al., 2021). Genetic algorithm (GA) is the most popular and most basic form of 
evolutionary computation (Figure 2-5). It starts with an initial population, which is then 
selected according to the fitness determined by a fitness function. The selected population 
undergoes a diversification process involving mutation and recombination to create a new 
population. This new population is then again subjected to selection and the process is 
repeated until an optimal solution is found. GA is a powerful optimization algorithm for 
finding optimal solutions within the vast combinatorial space of possible solutions. Its 
strength lies in the ability to precisely control several parameters including selection and 
mutation rate. This enable the algorithm to be adapted to different topologies of fitness 
landscape where different rate of selection and mutation at different stages of the algorithm 
can enable the algorithm to avoid local optimums while maintaining efficient search for the 
global optimum. Therefore, GA could potentially aid in the identification of functional 
genotypes in a ribozyme fitness landscape as well.  
 
However, applying GA to solve optimization problems for real biological systems is limited 
by two main problems. First, identifying a computational fitness-function that best 
represents the real fitness of the system is difficult. There are no obvious properties of a 
ribozyme sequence that can be accurately calculated computationally that directly correlate 
with its experimental fitness. I solved this problem by using the high-throughput 
experimental methods to directly measure fitness. For every round of the algorithm, the new 
population is experimentally assayed, and the data are fed back into the algorithm, bypassing 
the need for a computational fitness function. This method offers a much more accurate 
reflection of the system’s fitness, allowing the algorithm to optimize the function from a real 
dataset. However, by estimating fitness directly with experiment a second problem occurred. 
How would I generate each new population with the precise positions of mutations that are 
required by the algorithm? Select-and-sequence methods often use doped oligonucleotide 
synthesis or error-prone PCR to create statistically mutated variant libraries. This only 
allows a global control of ribozyme mutation. However, in my systems, libraries are created 
using custom on-chip DNA synthesis that allows for the creation of variants with precise 
mutation. Therefore, I can control precisely where mutations will occur and can also control 
the location of recombination and crossover. Therefore, custom oligo pool synthesis and the 
direct quantitative screening method used here should offer a better way to fully exploit the 
analytical potential of a genetic algorithm than in vitro selection. 
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Figure 2-5: Overview of genetic algorithms. 
Genetic algorithms (GA) belong to a broader class of evolutionary algorithms (EA), 
a family of computational processes inspired by natural selection that are used to 
solve combinatorial optimization problems. GA starts with an initial population of 
possible solutions that are represented as a collection of genetic components. The 
set of possible solutions can be evaluated with a fitness function which essentially 
measures how close each solution is to the target objective. Selection is used to 
pick favorable solutions which then undergo a diversification process. New 
combinations of possible solutions can be created by using the process of mutation 
or recombination, these are collectively known as genetic operators. Mutation 
changes the value of individual solution components such as flipping a bit or varying 
real-number value. Recombination or crossover is done by picking random positions 
in the solution sequence and swapping the solution components with another 
solution sequence. This process is analogous to sexual reproduction in natural 
evolution. Designing an appropriate fitness function for a given task can be 
challenging. Therefore, computational fitness functions can be replaced by real 
experimental measurement enabling a hybrid approach that performs combinatorial 
optimization based on real data. 
 
For this study, I chose to use a particular variant of the RNA polymerase ribozyme, the F1 
ligase, as a proof-of-concept (Figure 2-6). The F1 ligase ribozyme was first isolated by the 
Joyce lab (Robertson and Joyce, 2014) and was used to create the first highly efficient self-
replicating RNA systems. The F1 ligase ribozyme catalyzes the phosphodiester bond 
formation through a nucleophilic attack by 3’-hydroxyl group of an RNA substrate on the 
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⍺-phosphate of the 5’-triphosphate group of the ribozyme. This reaction is guided by the 
template region within the ribozyme and is analogous to the reaction carried out by the 
modern RNA polymerase enzymes. The F1 ligase is particularly efficient with a measured 
kcat of  16.6 ± 0.4 min-1. Thus, this ligase was used to create a self-replicating system that 
exhibit an exponential growth rate of 0.14 min-1 when measured with 10 µM substrate at 48 
˚C (Robertson and Joyce, 2014). Self-replication is a major catalytic process that is an 
important determinant of a living system. Therefore, creating self-replicating RNA systems 
is a major goal in the study of the RNA world. Because of this, many variants and structural 
motifs have been discovered that can catalyze RNA ligation (Wachowius, Attwater and 
Holliger, 2017). The F1 ligase was a result of multiple evolutionary lineages and many 
variants of it exists. Our lab has shown that the F1 ligase ribozyme is surprisingly robust to 
mutations and deletions (Nomura and Yokobayashi, 2019). The robustness of the F1 ligase 
ribozyme to mutations could be attributed to the fact that the original ribozyme it was derived 
from, the R3 ligase, was evolved from a pool of random RNA sequence lacking cytidine 
(Rogers and Joyce, 2001). The lower available chemical diversity could explain why this 
structural motif is more tolerant to mutation. The secondary structure of the R3 ligase, which 
it shares with the F1 ligase, was determined through chemical probing, 3’-terminal deletion 
analysis and site-directed mutagenesis (Rogers and Joyce, 2001). The analysis showed that 
the R3 ligase forms a three-way junction structure with the substrate attaching to the 
ribozyme through Watson-Crick base paring at a complementary region in the ribozyme’s 
3’ terminus (Figure 2-6a). This aligns the 3′ end of the substrate with the 5′ end of the 
ribozyme at the ligation junction which is rich in purine bases. The study also suggests that 
substrate binding induces conformational change in the ribozyme causing some residues in 
the P3 stem to interact through hydrogen bonding. Although the 3D structures of the F1 or 
R3 ligase have not been solved, they do share a similar secondary structure to an unrelated 
L1 ligase ribozyme whose 3D crystal structure is available (Robertson and Scott, 2007). The 
structure of the L1 ligase shows an extensive network of tertiary interactions that stabilizes 
the transition-state and positions the functional groups for general base catalysis. These 
structural properties are akin to what are found in natural ribozymes suggesting that in vitro 
evolved ligase ribozyme could potentially be created through natural evolution. The 
existence of multiple sequences that share the same ligase activity and secondary structure 
implied that the sequence space of the F1 ligase ribozyme could be well populated with 
functional genotypes. Therefore, I chose the F1 ribozyme as the subject of this study to 
facilitate easier development of this method. Furthermore, dataset that reveals how 
functional genotypes are distributed within the fitness landscape of a system capable of 
efficient self-replication could provide insight into the evolutionary search space that led to 
such behavior in the beginning of life.  
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Figure 2-6: F1*U Ligase ribozyme and its secondary structure. 
a) Secondary structure of a self-ligated F1*U ribozyme as predicted by ViennaRNA. 
The F1 ligase ribozyme was first engineered by (Robertson and Joyce, 2014) as a 
highly efficient self-ligating ribozyme. The ligated F1*U contains U22A and G80U 
substitutions relative to F1. These mutations were introduced in a previous study 
(Nomura and Yokobayashi, 2019) to allow the analysis of the regiospecificity at the 
ligation junction. b) Schematics of the F1 ligase ribozyme in its self-replicating form. 
Self-replication is a highly studied phenomenon in the RNA world hypothesis. 
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Results & Discussion 

Local landscape analysis of F1*U ligase reveals mutationally 
robust positions 
Using random sampling of the sequence space as initial population for the genetic algorithm 
would yield mostly inactive sequences due to the sparsity of the fitness landscape. Therefore, 
I chose to sample the local fitness landscape around the F1*U wildtype (WT) as a starting 
point. I generated a library of all 105 single, all 5355 double, and 4540 randomly chosen 
triple mutants of the 35 nt catalytic cores of the ribozyme (Figure 2-6a). The local landscape 
around the highly active WT should be more likely to contain functional variants. 
Furthermore, a double mutant map could reveal important information about the epistasis 
within the landscape. I experimentally measured the ligation activity of all the variants using 
next-generation sequencing. Fraction ligated (FL) can be calculated by comparing the read 
counts of each variant in the ligated and unligated population (Figure 2-7a). Then the FL of 
each variant was divided by the FL of the WT, which was included in every library as a 
control, to calculate the relative activity (RA). Two repeats of the sequencing assay were 
done for each experiment and the mean RA values were calculated for each variant (Figure 
S1-1). The mean of RA is then used as a proxy for variant fitness and is referred to only as 
RA for subsequent discussion in the rest of this thesis. After every round of sequencing 
assay, some mutants in each library were also randomly selected and were individually 
synthesized. The RA of these mutants was also measured using PAGE assay to confirm 
agreement with sequencing-based assay (Figure 2-7b). 
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(Figure caption continues from the previous page) 
 
Figure 2-7: Overview of ribozyme activity calculation and PAGE confirmation 
experiments. 
a) Ligated and unligated sequences are separately extracted and reverse 
transcription is used to retrieve cDNA and to add a barcode. The frequency of each 
designed sequence is counted after deep sequencing. Ligated population, identified 
by the barcode, is divided by the total frequency (ligated + unligated) of that 
sequence to give fraction ligated (FL). The activity or fitness of each sequence is 
given as the FL divided by the FL of the wildtype sequence giving the relative activity 
(RA). b) For every population, a subset of sequences is selected, and PAGE is used 
to determine the RA of individual sequences (see Methods). The PAGE measured 
RA is compared with the RA measured using the sequencing method. The data 
points are presented as mean values +/− SD with n = 3 for the PAGE values and n 
= 2 for sequencing values. Square of Pearson's correlation coefficient (r2) measures 
correlation between RA values determined by the two methods and indicates good 
agreement between the two assays.  
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I first examined the RA of each single mutant to evaluate the mutational robustness of the 
catalytic core (Figure 2-8 diagonal). Mutations within the P4 and P2 are not tolerated and 
result in completely inactive ribozymes, while mutations within the P5 stems are well 
tolerated. Surprisingly, mutations between position 75 and 79 are also slightly tolerated 
despite being close to the ligation junction. These results are also supported by looking at 
the double mutant map (Figure 2-8 lower triangle). The most well tolerated double mutants 
are compensatory pairs that restore base pairing within the P5 stem of the ribozyme. Double 
mutants within the loop at the end of P5 are also well tolerated. However, double mutants 
with mutations in P4 and P2 stems are not tolerated at all. Even compensatory pairs within 
P4 result in mostly inactive ribozymes. Looking at the pairwise epistasis (EAB) calculated 
using the log-additive model (EAB = log(RAAB) – (log(RAA) + log(RAB))) from the 
experimental RA showed that strong positive epistasis occurs between positions that form 
the base pairing within the P5 stem (Figure 2-8 upper triangle). This suggests that the F1*U 
fitness is contingent on maintaining the P5 stem loop.  
 

 
 
Figure 2-8: The fitness and epistasis measurements of double and single 
mutants of F1*U.  
In the first generation, the relative activity (RA) of the complete set of single and 
double mutants of the F1*U ligase was measured. The RA of each variant is plotted 
in the lower triangle of the heatmap, with the diagonal showing the RA of single 
mutants. The upper triangle showed the pairwise epistasis (EAB) values calculated 
from the RA measurements using the log-additive model (EAB = log(RAAB) – 
(log(RAA) + log(RAB))). 
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So far, I have only looked at the minimum free energy (MFE) of the ribozyme. However, 
the ensemble of possible alternative structures can reveal how stable the MFE structure is 
and could potentially explain the observed mutational effects. I calculated the base-pair 
probabilities of all possible base pairs for the F1*U ligase using ViennaRNA web server 
(Figure 2-9). Overlaying the probabilities onto the MFE structure showed that the P4 stem 
has lower probabilities compared to the rest of the structure (Figure 2-9a). This explains why 
the P4 stem has low tolerance to mutation, even for compensatory double substitutions, as 
any substitution could easily disrupt the base-pairing leading to overall loss in activity. The 
rest of the ribozyme has relatively stable secondary structure. The dot plot shows little 
alternative structures around the MFE structure suggesting that the F1*U ligase occupies a 
single peak within the structural landscape (Figure 2-9b). This suggests that identifying 
functional variants within the ribozyme sequence space could be done by preserving the WT 
secondary structure. The agreements between experimental mutational effects and predicted 
secondary structure suggested that even a very local sampling of the fitness landscape can 
provide important information about the structural constraints of the F1*U ligase ribozyme 
which can hopefully be exploited for subsequent design processes. 
 

  
 
Figure 2-9: Base-pair probabilities of the F1*U ligase ribozyme.  
a) Base-pair probabilities were calculated using RNAfold WebServer and is 
overlayed as a colormap on the minimum free energy structure. B) Dot plot of the 
F1*U ligase ribozyme secondary structure with the lower triangle showing the 
minimum free energy structure and the upper triangle showing the probability of all 
possible base pairs with the area of each dot proportional to the pairing probabilities. 
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Epistatic information can be gained from inspection of the local 
landscape 
As mentioned earlier, the local landscape around the WT, although representing a minuscule 
fraction of the total sequence space, can contain rich information about the level of epistasis 
within the landscape. Epistasis is observed when the effects of mutation combine in a non-
linear manner. High level of epistasis increases the ruggedness of the landscape, constraining 
evolution and reducing the predictability of the landscape by models that only learn from 
small samples. Therefore, I evaluated epistasis level within the local landscape of the WT to 
assess how well the genetic algorithm will be able to traverse it. A simple measure of 
epistasis is to see how well effects of multiple mutations can be predicted from single 
mutants. I used the log-additive model of epistasis, where the expected ln(RA) of a mutant 
is the sum of ln(RA) of all its constituent single mutants. Coefficient of correlation (R2) is 
then calculated between the expected and observed RA, where a value of 1 indicates 
complete absence of epistasis. 
 
Looking at Figure 2-10a, the R2 of the double mutants indicates that most double mutants 
can be well predicted by single mutants (R2  = 0.759). The R2 between the triple mutants are 
also relatively high (R2  = 0.618, Figure 2-10b), however this is probably due to mostly 
inactive variants present in the population. Strong negative epistasis is a common feature 
within the RNA fitness landscape (Bendixsen, Østman and Hayden, 2017) where increasing 
the number of mutations leads to rapid reduction in fitness. However, the low level of 
pairwise epistasis suggests that the landscape around F1*U could be smoother than other 
observed landscapes. This could mean that genetic algorithms might be able to find 
evolutionary paths away from the WT peak.  
 

 
 

Figure 2-10: Comparison between experimentally measured relative activity 
(RA) and RA expected under the epistasis-free model. 
In an epistasis-free landscape, RA values of any variant can be calculated by 
summing the RA of all constituent single multinational effects in the log space. The 
RA values calculated from this epistasis-free approach (Expected RA) are 
compared to the experimentally measured RA values (Observed RA) of all a) double 
and b) triple mutants present in generation 1. 
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Genetic algorithm can increase proportion of neutral mutants  
Next, I investigated whether genetic algorithms (GA) can be used to design ribozyme 
variants and effectively identify neutral genotypes within the landscape. I defined neutrality 
as having an RA of at least 0.2. This is based on the following reasoning. First, most of the 
genotypes within the sequence space is assumed to be completely inactive. Rarity of 
functional genotypes have been observed multiple times in previous experimental studies 
(Bendixsen, Østman and Hayden, 2017). Similarly, I observed that most of the variants 
within this study have RA below 0.2 (Figure 2-11a). Therefore, activity at the level of  20% 
of the WT is considerably active given the rarity of these variants and evaluating the 
performance of the genetic algorithms at this threshold is considered sufficient. Secondly, 
evaluation of the sequencing data reveals that most of the variants has standard deviation 
below 0.2 when calculated from two replicates (Figure 2-11b). Furthermore, it was assumed 
that deviation between RA calculated from two replicates would correlate with the number 
of reads from the sequencing assay. This would mean that less active variants would have 
higher deviation due to lower frequency of reads in the ligated population. However, this is 
not the case, with standard deviation only weakly correlated to relative activity or the mean 
read counts (Figure 2-11c & d). Considering these analyses, any variants with RA above 0.2 
could be considered to have a reliably detected activity.  
 

 
 
Figure 2-11: Analysis of sequencing measurement errors for generation 1-6. 
Histogram showing the distribution of a) the mean relative activity (RA) and b) 
standard deviation (SD) of all 29,887 sequences in generation 1 to 6 after filtering 
for read counts and sequence quality. The SD was also plotted against the mean 
RA and mean read counts of each variant. The mean RA, standard deviation, and 
mean read counts are calculated from two independent sequencing assays. The 
total read count of each variant is calculated as the sum of the ligated and unligated 
read counts. 
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The choice of threshold for neutrality could be considered to be too arbitrary. However, the 
notion of neutrality and fitness is highly context dependent. Fitness of a variant is relative 
to the selective pressure imposed on it. Under the scenario where selection is done at the 
molecular level, then any variants with lower activity would be rapidly removed from the 
population. However, when the catalytic step is limited by another step, for example when 
the population exists in protocells which require replication of the compartment. Then any 
activity above a certain threshold would be considered selectively neutral. Correlation of 
activity to fitness in different evolutionary scenarios is an important topic of future studies. 
However, for the current study, where the goal is to assess how well a genetic algorithm 
can identify rare functional variants within vast sequence space, a minimal reliable 
threshold of 0.2 is considered sufficient.  
 
I used a genetic algorithm to design 5 more populations of ribozyme variants named 
generation 2 to 6 with each generation subjected to experimental assay. Briefly, I used RA 
as a proxy for variant fitness and starting from generation 1, I used computational 
selection, recombination, and mutation to successively design each generation which were 
then experimentally screened to determine fitness for the next round. (See Methods for 
details.) Selection is done using a method called tournament selection which maintains a 
small proportion of variants with low to medium activity. In generation 2 to 5, new 
variants are created from a mixture of recombination and point mutation (substitution) of 
selected parent variants (Figure S1-2). However, as visible on Figure 2-12a, this method 
leads to a low fraction of neutral mutants in the population. Therefore, I changed the 
strategy in generation 6, allowing a higher number of mutants that were created by 
recombining selected parents to be passed on to the final population without undergoing 
random substitution (Figure S1-3). Some recombinants and selected mutations from the 
previous generation still undergo point mutation to maintain diversity. This change in 
strategy leads to significant increase in the proportion of neutral mutants in generation 6 
(Figure 2-12a). The increase in the proportion of neutral mutants as a result of the 
increased contribution of recombination supports earlier observations from directed 
evolution experiments which shows recombination can better preserve structure and 
function of proteins than random substitution (Drummond et al., 2005).  
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Figure 2-12: Fraction of neutral mutants and distribution of mutant diversity 
in generation 1 to 6. 
a) Mutants are considered neutral if their relative activity (RA) is higher than or equal 
to 0.2. Fractions of neutral mutants are calculated from all mutants in each 
generation from 1 to 6. The dark blue area indicates the neutral mutants that are 
also neutral when RA values are calculated from the epistasis-free log additive 
model. b) The Hamming distance of mutants in each generation from the wildtype 
(WT) are plotted as probability distributions. 
 
I also calculated the expected activity of each variant in all the generations using the log-
additive model. Mutants that have the activity calculated by log-additive model above 0.2 
are classified as expected neutral mutants. As shown in Figure 2-12a, most neutral mutants 
identified in each generation are also expected to be neutral under the log-additive model. 
This means that the genetic algorithm is more efficient at identifying mutants that exhibit 
lower levels of epistasis. These properties could be intuitively explained considering that 
recombination of selected neutral mutants is more likely to result in another neutral mutant 
if the combination of each mutant exhibits a linear or non-epistatic effect. Neutral mutants 
that are a result of mutational effects that combine non-linearly would be harder to identify 
using only iterated rounds of selection and recombination. I also measured the diversity of 
each generation by looking at the Hamming distance of each sequence from the WT (Figure 
2-12b). A change in strategy during generation 6 results in slightly lower diversity compared 
to previous generations. This is expected, as recombination generates less overall diversity 
compared to random substitution. However, looking at the distribution of RA as a function 
of Hamming distance to the WT shows that generation 6 was able to identify variants with 
higher Hamming distance that retain considerably higher activity than mutants found in the 
same distance in previous generations (Figure 2-13). The strategy used in generation 6 was 
able to identify variants with 7 to 10 mutations that have much higher activity than all other 
mutants found with the same range of mutations.   
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Figure 2-13: The fitness landscape explored by the genetic operators. 
The relative activity (RA) of each variant is plotted against its Hamming distance 
from the wildtype (WT). Each generation explored mutants further and further away 
from the wildtype while increasing the proportion of variants with high activity. 
 
A strategy to increase the efficiency of the genetic algorithm could be a recombination 
method that maintains the secondary structure of the ribozyme. It is widely accepted that 
secondary structure of an RNA is important for its activity and function. I calculated the 
frequency of the MFE structure in the thermodynamic ensemble for the F1*U ligase using 
ViennaRNA package. The calculated frequency is 26.04% which indicates that there are 
few alternative structures for the F1*U sequence and that maintaining the MFE structure 
could be important for retaining catalytic activity. My current approach represents the 
ribozyme as linear sequence of bases, and no structural or base pairing information is 
given. In this representation, crossover occurs at a random position within the linear 
sequence and can occur in a way that breaks a local structural motif such as in the middle 
of a stem. This could be avoided if the ribozyme is represented in a way that provides 
information about substructures within the sequence. RNA secondary structure can be 
represented in a tree-like graph where each node represents an unpaired region such as 
internal loop and edges represent the base pair stem connecting these loops (Shapiro, 
1988). Using this representation, the crossover function can be specified to only occur 
between corresponding nodes preventing disruption of stem regions. This will enable 
efficient recombination of structural motif while preserving the overall secondary structure 
of the ribozyme. In fact, a similar approach has been used by earlier works to discover 
common structural motifs in genomic RNA sequences (Hu, 2002, 2003; Michal et al., 
2007). The GeRNAMo system utilizes RNAsubopt function within the ViennaRNA 
package to predict all possible structures of subsequences of a set of genomic RNA 
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sequences (Michal et al., 2007). The predicted structure is represented as a tree and an 
evolutionary algorithm was then used to find a set of common motifs amongst these 
genomic sequences. Although this approach has been successfully used for motif 
discovery, it has not been used for RNA sequence design. Future work could improve upon 
the approach I presented here by evaluating how different sequence representation 
strategies affect the efficiency of the genetic algorithm. 
  



 
 

 28 

Conclusion 
In this chapter, I presented a new approach to directed evolution that utilizes the precision 
of custom oligo pool synthesis combined with smart library design using genetic operators. 
Genetic operators are borrowed from the field of evolutionary computation (Miikkulainen 
and Forrest, 2021). Here, I showed that a combination of these processes with real 
experimental evaluation can be used to improve the efficiency of directed evolution 
processes. Directed evolution are powerful experimental tools that have been widely used to 
engineer new or improved proteins for biotechnology application. However, the ruggedness 
of the fitness landscape limits the success of this technique. Fitness valleys and isolated 
fitness peaks often constrain directed evolution towards local maxima. Optimization away 
from these maxima is difficult as these regions of low activity can be quite pervasive. 
Because most variants are inactive this means that most of the datapoints collected from high 
throughput assay provide little information about the functional regions of the sequence 
space and do not provide any starting point for further rounds of optimization. The works I 
have presented here provided a novel method that can increase the availability of these 
functional variants which can be used for further optimization. The pipeline I have developed 
can be used to efficiently collect functional variants as initial population for further directed 
evolution. Increasing selection stringency could lead to higher chance of getting more active 
ribozymes. This approach could potentially reduce the cost and experimental burden of 
directed evolution. Furthermore, the sequence-activity data collected in this chapter provide 
information about the topology of the F1*U ligase ribozyme fitness landscape. The statistical 
patterns of mutation within the neutral and deleterious population could be used to inform 
directed evolution to further increase its speed and efficiency. In the next chapter, I will 
discuss how I use machine learning to extract information from this dataset and create a 
predictive model for informed ribozyme library design. I investigate how this model can be 
used to augment experimental directed evolution for the exploration of distant functional 
regions within the fitness landscape. 
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Methods 
Preparation of ligase ribozyme libraries 

I used commercially available custom oligo pools from Twist Biosciences to construct 
dsDNA templates of ribozyme libraries for in vitro transcription. I ordered the oligo pools 
with the T7 promoter and ribozyme sequence and then amplified them through PCR using 
Phusion High-Fidelity PCR Master Mix with HF Buffer (New England Biolabs (NEB)) and 
primers Ligase-lib-f and Ligase-lib-r (Table S2-1). Afterward, I purified the PCR product 
using the DNA Clean & Concentrator-5 kit (Zymo Research). 
 
For in vitro transcription, I performed the reaction using a purified dsDNA template with a 
ScriptMAX Thermo T7 Transcription Kit (Toyobo) in a 10 µL volume. Once the 
transcription reaction was complete, I incubated the solution for 10 min at 37 °C with a 
DNase-I (NEB) solution consisting of 2 µL DNase I (2 U/μL), 2 µL 10× DNase I Reaction 
Buffer, and 6 µL nuclease-free water. Finally, I purified the RNA product using the RNA 
Clean & Concentrator-5 kit (Zymo Research). 
 
Ligation reactions of ribozyme libraries 

I mixed the ribozyme pool (0.8 μM) with substrate F1*subA (Table S2-1) at 8 μM in 
nuclease-free water, creating a reaction volume of 24 µL. After that, I heated the solution to 
72 °C for 3 min, and then cooled it down to 4 °C for 5 min. To continue, I separately 
incubated the RNA solution and the 4× reaction buffer (200 mM EPPS pH 7.5, 2.0 mM 
MgCl2, 8 U/μL RNase Inhibitor, Murine (NEB)) at 37 °C for 3 min. Once ready, I initiated 
the reaction by adding the RNA solution to 8 µL of reaction buffer, followed by an 
incubation of 60 min at 37 °C. Finally, I terminated the reaction by adding 72 µL of a cold 
stop solution (25 µL 0.5 M EDTA and 65 µL RNA Loading Dye (2×) (NEB)) and kept it on 
ice. 
 
Preparation of sequencing templates 
I heated the reaction solutions to 95 °C for 3 min and separated them on a 12% urea 
polyacrylamide gel. Then, I stained the gels with SYBR Gold (Thermo Fisher) and 
visualized them using a blue light transilluminator. I excised and crushed the ligated and 
unligated ribozyme bands and extract the RNA in Tris/NaCl buffer (30 mM Tris-HCl, pH 
7.5, 30 mM NaCl) by shaking at 1200 rpm and 4 °C for 18 h. Next, I precipitated RNAs by 
ethanol using Quick-Precip Plus Solution (EdgeBio), washed them twice with 70% ethanol, 
and resuspended them in nuclease-free water. Then, I dissolved the ligated and unligated 
RNA in 10 µL of nuclease-free water and used 5 μL for reverse-transcription reactions. I 
performed reverse-transcription reactions in a 10 µL volume with Maxima H Minus Reverse 
Transcriptase (Thermo Fisher) according to the manufacturer’s instructions. I used R1-
[barcode]-F1-lig (Tables S2-1) as the reverse-transcription primer, with different barcodes 
for unligated and ligated ribozymes. The reactions were allowed to proceed for 30 min at 
65 °C, and the enzyme was inactivated at 85 °C for 5 min. I added 1 µL of 20 U/µL 
exonuclease I (NEB) to the reverse-transcription solution to remove the primers and 
incubated it for 30 min at 37 °C followed by 15 min at 85 °C. I combined and diluted the 
solutions (ligated and unligated) for PCR analysis. Then, I used Primers R2-F1-lig and R1-
f2 (Tables S2-1) to amplify the cDNA mixture using the Phusion High-Fidelity PCR Master 
Mix with HF Buffer. I diluted the PCR product and used it in a second PCR with TruSeq-
i7-UDI000# and TruSeq-i5-UDI000# primers (Tables S2-1). Different UDIs were used to 
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identify different replicates if they were sequenced simultaneously. Finally, I purified the 
PCR products by agarose gel electrophoresis using the Zymoclean Gel DNA Recovery Kit 
(Zymo Research). I measured DNA concentration by real-time PCR (StepOnePlus, Thermo 
Fisher) using the NEBNext Library Quant Kit for Illumina (NEB). The DNA library was 
analyzed using Illumina NovaSeq or MiSeq by the Sequencing Section at OIST. 
 
Sequencing data analysis 
I used custom Python scripts to analyze the sequencing data. The script sorted each read in 
the FASTQ file into ligated or unligated pools based on the barcode sequence. Quality 
filtering is done by checking that all base calls within the variable catalytic core region have 
QS ≥ 20. For the F1*Um and WT/Mut libraries, a maximum of one base call in the variable 
region was allowed to have QS < 20. For each variant, the reads were counted for the ligated 
(Nligated) and unligated sequence (Nunligated), which were then used to calculate the FL 
(FL = Nligated/(Nligated + Nunligated)). Relative activity (RA) was calculated for each variant by 
dividing the FL by that of the WT, which was included in every generation as control. Each 
generation was assayed in duplicate, and variants were discarded if the total read count 
(Nligated + Nunligated) in either replicate was below 30 for the F1*Um library or below 100 for 
all other libraries. The mean RA was calculated from the two measurements for each variant 
and is referred to as the RA for subsequent analysis. 
 
PAGE analysis of individual ligase ribozymes 
I constructed DNA templates for individual ribozyme variants by annealing and extending 
two oligonucleotides using OneTaq 2X Master Mix with Standard Buffer (NEB). (Tables 
S2-2) I then purified the PCR products using DNA Clean & Concentrator-5 columns and the 
PCR products were transcribed in vitro as described above. I performed the ligation reactions 
using the same procedures as described above, except for using excess ligase ribozyme 
(2 μM) over the FAM-labeled substrate (FAM-F1*subA, 0.1 μM, FASMAC). I imaged the 
polyacrylamide gels using a Typhoon FLA9500 (GE Healthcare) and the band intensities 
were quantified using ImageJ 2.3.0 software. 
 
Computational selection, mutation, and recombination 
The evolutionary pipeline consisted of iterative cycles of oligo pool synthesis, experimental 
assay, computational selection, computational recombination, and computational mutation. 
Flowcharts describing the steps in the algorithm are shown in Figure S2-2 and S2-3. I used 
tournament selection as the selection method. In this method, a predetermined number of 
variants from the population are randomly selected, and the variant with the highest RA 
within this set is retained as a parent. The remaining variants (losers) are returned to the 
population, and the process is repeated until a predetermined number of variants are selected 
as parents. Using tournament selection allows a small percentage of medium to low RA 
variants to be selected along with high RA variants for the next generation. This approach 
could account for the epistatic nature of the fitness landscape, where less-active mutants 
might become more active later with additional mutations. 
 
In the first design of the algorithm (Figure S2-2), two parental sequences were picked at 
random and recombined using one-point crossover at a random position, and one of the 
resulting recombinants was randomly selected for substitution. Each position in the sequence 
has a 1/35 chance of mutating to one of the three remaining bases with an equal probability. 
Therefore, on average, each recombined mutant had one substitution. This process was 
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repeated until the total number of offspring was reached. Mutants were selected only if they 
had not been previously selected. Finally, some mutants were randomly replaced with the 
controls. This strategy was used to design generations 2–5. 
 
For generation 6, parents were picked by tournament selection. A set of pure recombinants 
was then generated from the parents. Next, a random variant was selected from the pool of 
recombinants and parents. This variant was then randomly mutated, and the process was 
repeated to create another set of point mutants that were generated by random substitution 
of parents or recombinants. The new generation consisted of a combination of pure 
recombinants and random point mutants (Figure S2-3). I prespecified the number of pure 
recombinants and random point mutants in the population. 
 
The parameters used in the computational algorithm, including tournament size, number of 
parents, number of pure recombinants, number of random mutants, and total population size, 
are listed in Table S2-2. From generation 3 onward, I increased the total population size to 
increase the chance of finding neutral mutants during each round of experimental screening. 
From generation 7 onward, I reduced the tournament size and increased the number of 
selected parents to account for the increased fraction of neutral mutants. This led to an 
overall reduction in selection stringency to ensure that some variants with lower activity 
were still being selected
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Chapter 3: Computational evolution of diverse 
ribozyme sequences with supervised machine 
learning models 
 
Parts of this chapter, in particular the Methods section, have been duplicated or updated 
from a previously published article: Rotrattanadumrong, R. and Yokobayashi, Y. (2022) 
‘Experimental exploration of a ribozyme neutral network using evolutionary algorithm and 
deep learning’, Nature communications, 13(1), p. 4847. 
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Background 
Advances in DNA sequencing and synthesis have had a wide-ranging impact across different 
fields of experimental biology. It has led to developments of ultra-high throughput 
experimental methods that lead to an unprecedented explosion of biological datasets ranging 
from splicing data (Jaganathan et al., 2019) to protein binding specificity (Alipanahi et al., 
2015). Studies of fitness landscapes is amongst the fields that has benefitted from these 
technical advancement the most (Blanco et al., 2019). Many works have recently been 
published that shed light on the high dimensionality and ruggedness of RNA fitness 
landscapes  (Jiménez et al., 2013; Li et al., 2016; Puchta et al., 2016; Domingo, Diss and 
Lehner, 2018; Li and Zhang, 2018; Pressman et al., 2019). My result from the previous 
chapter shows that navigation of such high-dimensional and rugged space can be made more 
efficient by leveraging a computational genetic process of selection, mutation and 
recombination. However, these processes maximize the chance of finding functional variants 
by combining mutations already known to be functional in a semi-random manner. The 
genetic operators themselves do not learn any rules, properties or topology of the underlying 
fitness landscape and therefore have very little predictive power when it comes to distant 
unseen regions of the sequence space. Because the combinatorial space is extremely large, 
it would be impossible to comprehensively investigate this space using just the genetic 
operators and high-throughput experiments. Complex epistatic relationships within the 
ligase ribozyme sequence space means that the dataset collected thus far contain rich 
information about the properties of fitness landscapes. A predictive model that can capture 
the complex properties of such high-dimensional and non-linear dataset could improve 
experimental evolutionary process and provide important insights into the fundamental 
properties of evolution. 
 
Machine learning (ML) has emerged as current state-of-the-art methods for analyzing 
patterns and relationships within complex high dimensional dataset (Greener et al., 2022). 
Machine learning is a broad class of computational algorithms that ‘learn’ to perform a 
predictive task from a set of sample data (Figure 3-1). These input data usually have a large 
number of features. ML models try to fit a function that can describe the relationship between 
these features and the output that indicate the specific task being modeled. The process of 
function fitting is done through minimization of a pre-specified loss function depending on 
the tasks which are most often categorized as either regression or classification. Regression 
tasks are one that make a prediction of continuous value such as predicting enzyme catalytic 
rate from sequence (Li et al., 2022). While classification tasks predict a class label either 
binary or multicategorical labels such as predicting carcinogenicity from skin lesion images 
(Esteva et al., 2017). The biggest bottleneck in utilizing ML models is data availability, 
which in the biological domain can be expensive and labor intensive to obtain. 
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Figure 3-1: High-level overview of machine learning. 
The field of machine learning (ML) aims to make predictive models about data to 
solve a variety of tasks which can be broadly categorized into either classification 
or regression. Regression involves predicting a continuous value like protein activity 
range. Classification task aims to assign discrete labels to a set of variables such 
as predicting protein families based on amino acid sequences. ML models perform 
these tasks by establishing relationships between features of the dataset the model 
is trained on. These models are trained to fit the function that best describes the 
feature relationship by using a training process that involves minimizing a task-
specific loss function. 
 
With the current era of big data, machine learning models, especially deep neural networks, 
have led to significant advancement in computer vision and natural language understanding. 
Similarly, with the arrival of high-throughput experimental methods for data collection, 
major breakthroughs in biology have also been solved with machine learning, with a notable 
example being the massive success of AlphaFold 2. AlphaFold 2 is a supervised deep neural 
network model that leverages the protein structure database as well as genomic data to 
predict protein three dimensional structure from sequence at experimental accuracy (Jumper 
et al., 2021). This technology represents a paradigm shifting method that is already 
transforming our understanding of cellular biology, drug discovery and protein engineering. 
The success of machine learning models in such wide-ranging fields meant that adoption of 
these models for exploring the molecular fitness landscape could lead to similar 
breakthroughs and success.  
 
Multiple approaches can be taken for the applications of machine learning to the study of 
fitness landscapes. The approach taken by different machine learning algorithms can be 
broadly categorized into supervised or semi/unsupervised models. Supervised models are 
trained on data with continuous labels such as protein thermostability or categorical labels 
such as enzyme family. Much more work has been done in using machine learning to explore 
the sequence space of proteins compared to RNA. The Arnold lab pioneered the use of 
machine learning combined with experimental evaluation to guide the directed evolution of 
proteins (Figure 3-2a). They applied a kernel based method called Gaussian process (GP) to 
explore the fitness landscape of cytochrome P450 (Romero, Krause and Arnold, 2013). The 
model was trained on hundreds of data points to guide a combinatorial library toward 
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sequences with higher thermostability. Later, similar models were used to engineer 
channelrhodopsin protein with higher light-sensitivity and acyl-ACP reductase with double 
the fatty alcohols yield compared to the wildtype (Bedbrook et al., 2019; Greenhalgh et al., 
2021). Gaussian processes were used for these works due to its data-efficiency. With 
Gaussian processes, a limited number of data points (in the hundreds) can yield successful 
model training and the Bayesian nature of GP models lend itself well to protein engineering 
tasks where knowledge of uncertainty can help guide experimental decisions (Hie, Bryson 
and Berger, 2020). Other supervised models, including deep neural networks (DNN) have 
also been successful in understanding protein sequence space (Wu et al., 2019; Gelman et 
al., 2021; Gonzalez Somermeyer et al., 2022). However, DNN models required very large 
experimental datasets that are only available for a few classes of proteins due to experimental 
limitations. To circumvent these limitations, there has recently been a surge in the 
development of large language models trained on all known protein sequences (Alley et al., 
2019; Bepler and Berger, 2021; Rives et al., 2021; Brandes et al., 2022; Ferruz, Schmidt and 
Höcker, 2022). These models use an unsupervised or self-supervised learning regime where 
millions of unlabeled natural protein sequences are used to train an extremely large language 
model. These models learn to encode the sequences into latent or hidden spaces that capture 
the protein sequences as continuous representation that has been shown to correspond to 
features like structure, phylogeny and biochemical properties (Figure 3-2c). These 
representations have been used to augment limited experimental dataset and improve 
prediction accuracy for a wide range of protein engineering and structure prediction tasks 
(Rao et al., 2020; Biswas et al., 2021; Meier et al., 2021; Chowdhury et al., 2022; Hsu et 
al., 2022). Because these models capture continuous representation of natural protein 
properties, an inverse design process has also been done to generate novel synthetic proteins 
by sampling from these natural representations (Madani et al., 2023). This generative 
approach can be used to design novel functional proteins such as antibodies (Shin et al., 
2021) for therapeutic and biotechnological application (Figure 2-3d) (Ferruz and Höcker, 
2022). 
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Figure 3-2: Applications of deep learning for biological sequence modeling. 
a) Supervised machine learning models have been used to fit a sequence-activity 
model by training on experimental mutagenesis data. The model can be used to 
prioritize sequences for directed evolution experiments. (Wu et al., 2019) b) Several 
deep learning models have been used to predict RNA and protein 3D structure from 
sequence (Jumper et al., 2021; Pearce, Omenn and Zhang, 2022). c) Large 
language models have been trained on protein or RNA sequence databases in a 
self-supervised manner. These models can encode sequences into a continuous 
representation or embedding space. These embeddings can be used to increase 
performance of downstream prediction tasks such as mutational effects prediction 
(Biswas et al., 2021). d) Sampling from these large language models can be used 
to design new functional protein sequences not found in nature (Ferruz, Schmidt 
and Höcker, 2022; Madani et al., 2023). 
 
Although machine learning based methods have seen great success for tasks in protein 
sequence analysis, much less work has been done into utilizing a similar model for RNA or 
ribozyme sequences. The ribozyme system offer a major advantage over protein in that much 
larger library of mutants can be constructed and experimentally labeling these sequences 
with activity value is relatively easy using high-throughput sequencing based assay (Pitt and 
Ferré-D’Amaré, 2010; Blanco et al., 2019). Therefore, ML based analysis of fitness 
landscapes could potentially benefit more through access to larger areas of the sequence 
space offered by the ribozyme systems. One of the earliest applications of the ML model to 
predict functional RNA behavior was from the Suess lab (Groher et al., 2019).  They used a 
random forest model combined with a convolutional neural network trained on a 
combinatorial library of a tetracycline riboswitch to predict a variant with high dynamic 
range, achieving over 40-fold increase in switching activity. Later works from the Church 
and Collins lab used a dataset of over 90,000 toehold riboswitch sequences to train CNN and 
long short-term memory (LSTM) recurrent neural network models that can accurately 
predict switching behaviors (Angenent-Mari et al., 2020; Valeri et al., 2020). More recent 
works have also used deep neural networks to predict the activity of self-cleaving ribozymes. 
Schmidt and Smolke used a CNN model to predict the in vivo regulatory activity of 
hammerhead ribozymes (Schmidt and Smolke, 2021) by incorporating predicted secondary 
structure information and using single-cell fluorescence measurement. Another study 
evaluated the performance of random forest and LSTM for the prediction of in vitro self-
cleaving activity of CPEB3 ribozyme (Beck et al., 2022). In this study, the author showed 
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that the predictive performance of the models decreases for sequence with higher Hamming 
distance from the wildtype. The likely reason for degradation in performance is the lack of 
data points for mutants with higher number of mutations due to combinatorial explosion. 
This highlights the major problem in using supervised models to predict the properties of 
RNA and protein sequences, that despite the performance gains from experimental dataset, 
that can be as much as hundreds of thousands of sequences, this still represent a minuscule 
portion of the total sequence space of any RNA or protein with meaningful length. How well 
the models trained on such a limited dataset will generalize to distant regions further away 
from the wildtype remain to be seen. The studies highlighted here used a dataset generated 
from a semi-random combinatorial library (Figure 3-3). Therefore, most of these libraries 
represent very local and sparse sampling of the sequence space. Random sampling of the 
sequence such as this will mostly yield deleterious variants that provide little information 
about the functional space of the landscape. Therefore, getting information about functional 
mutants further away from the wildtype is difficult without a smart strategy that can guide 
the sampling of the fitness landscape.  
 

 
 
Figure 3-3: Guided-sampling can generate a more balanced sequence-
activity dataset of a fitness landscape. 
Because peaks are isolated in the fitness landscape, random sampling can lead to 
an extreme case of class imbalance where most sequences have almost zero 
activity. Guided sampling of the fitness landscape using approaches such as 
experimental directed evolution or genetic algorithm can lead to a more balanced 
dataset. These datasets are more enriched in sequences with appreciable activity 
and can be used to train machine learning models more effectively. 
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Better ability to predict functional variants further for the wildtype is important for two 
reasons. Firstly, a better understanding of the overall topology of the fitness landscape can 
provide important insight about molecular evolution. Secondly, in molecular engineering 
variants with higher or novel activity might be in regions currently out of reach for current 
ML models. In the last chapter, I used genetic operators combined with high-throughput 
sequencing assay to obtain functional variants of the F1 ligase ribozyme. This dataset 
represents a much more balanced and informative sampling of the sequence compared to 
random sampling. The dataset contains a high proportion of functional mutants including 
ones with a high Hamming distance to the wildtype. Therefore, supervised model trains on 
this dataset should be able to capture information about distant regions better than models 
trained on random combinatorial libraries. Furthermore, the superior combinatorial 
optimization capability of genetic algorithms lend itself well to guiding ML predictions 
towards combinatorial regions more likely to contain the optimal solutions. There have been 
a few works that combined genetic operators with prediction of ML models to guide the 
exploration of biological sequence space. Some examples include designing 5’UTR with 
high ribosome load (Sample et al., 2019), predicting the effectiveness of DNA promoter 
sequences (Vaishnav et al., 2022) and antimicrobial peptide discovery (Boone et al., 2021). 
However, no studies so far have applied such a strategy to explore the fitness landscape of 
ribozymes. 
 
In this chapter, I evaluate the performance of supervised machine learning models on 
capturing the functional landscape of the F1*U ligase ribozyme. Using the large screening 
data obtained from the works done in chapter 2, I trained several supervised ML models to 
perform a binary classification task, categorizing unseen ribozyme sequences into neutral or 
deleterious mutants. I then validate the model predictions with further experimental assay. 
After experimentally confirming that the model could make predictions with high accuracy, 
I combined a deep neural network model with the genetic operators introduced in the 
previous chapter. By replacing the experimental assay step with model prediction, I 
computationally evolved the ligase ribozyme population and experimentally show that this 
population contains several functional ligase ribozymes that have as many as 17 mutations 
compared to the wildtype.  
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Results & Discussion 

Machine learning models can identify functional ribozyme variants 
In order to gain more insight into the functional space of fitness landscapes, we need an 
approach that can efficiently identify functional variants within distant regions. Although 
genetic operators can increase the proportion of functional mutants in the population, as 
shown in the previous chapter, the process is limited to identifying variants closer to the 
starting point, the wildtype. Genetic operators alone require certain elements of randomness 
where random combinations of mutations are created and expected to be functional based 
on the fact that their parents are functional. Genetic operators alone do not evaluate the 
degree of epistasis within the landscape. Epistasis is observed when mutational effects 
combine in a non-linear way resulting in rugged landscape with reduced predictability 
(Domingo, Baeza-Centurion and Lehner, 2019). Epistasis can occur at multiple orders 
according to how many mutations are interacting. Using deep sequencing, information about 
local epistasis such as pairwise epistasis can be evaluated relatively easily for small sequence 
spaces such as the catalytic core of the F1*U ligase ribozyme. However, several pieces of 
evidence have been presented that higher-order epistasis, involving 3 or more mutational 
interaction, is prevalent in fitness landscapes and contribute to the overall navigability of the 
sequence space (Weinreich, Watson and Chao, 2005; Poelwijk et al., 2011; Weinreich et al., 
2013; Domingo, Diss and Lehner, 2018). Therefore, in order to identify functional variants 
in the distant region of the fitness landscape, a navigation process needs to be able to evaluate 
epistasis at higher order. Relying on genetic operators alone, I would need several repeated 
rounds of experimental screening in order to gain enough activity information to assess 
higher-order epistasis (Figure 3-4). This can quickly become experimentally costly and 
intractable. Furthermore, because genetic operators have no notion of global fitness, it can 
quickly become trapped in a local optimum if that optimum is particularly well isolated. 
Therefore, better evaluation methods are needed that can identify patterns of epistasis from 
relatively local dataset that can hopefully be used to identify functional variants at distant 
regions. 
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Figure 3-4: Machine learning model can guide evolutionary process away 
from local optimums. 
Genetic operators do not have knowledge of the global fitness of the landscape. 
Therefore, the algorithm does not know how to sacrifice short term gain for long 
term fitness, as the fittest solution is only relative to the solution it has seen. As a 
result, genetic algorithms tend to converge to a local optimum if that optimum is 
particularly well isolated. In order to guide the genetic operators away from the local 
optimum and to minimize the amount of expensive experimental assay, machine 
learning models can be used as a fitness function. A machine learning model could 
possibly capture complex relationships between sequences and predict distant 
variants with higher fitness, guiding the algorithms towards a global fitness peak. 
 
Machine learning methods have been shown to capture complex high-dimensional patterns 
in images, language and protein sequences given enough training data. With my current 
dataset comprising 29,887 unique ribozyme sequences and their activity label collected over 
6 generations, I should have enough data to effectively train and evaluate supervised 
machine learning models. Because it is difficult to know at the beginning what type of 
models are suited to the type of fitness landscape being analyzed, I decided to evaluate 
several popular supervised models, with different degrees of complexity, for their ability to 
predict unseen parts of the sequence space using a held-out dataset. Five models were 
evaluated in total (Figure 3-5). As a baseline, logistic regression (LR) and support vector 
machine (SVM) with linear kernels were used. These models can only capture independent 
mutational effects and were selected as simple benchmarks. The k-nearest neighbor (k-NN) 
and gradient-boosted decision trees (GBDT) are powerful nonlinear models that can learn 
complex interactions, such as epistasis in the data. Finally, an MLP is a neural network 
model that can potentially learn complex nonlinearities, such as higher-order epistasis. These 
models were trained as binary classification models, where mutants are categorized into 
neutral or deleterious using a relative activity (RA) threshold of 0.2, as described in the 
previous chapter. I decided to train the models as binary classifiers as the goal of the study 
is to identify functional variants within the fitness landscape. As long as the variants have 
appreciable activity their absolute activity does not matter; that is why a regression model 
was deemed unnecessary. Each model was trained using a training dataset consisting of 
20,920 unique sequences and evaluated on a held-out dataset consisting of 8,967 sequences. 
Representing a 30/70 random split of the entire dataset from generation 1 to 6.  
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Figure 3-5: Overview of 5 machine learning models evaluated in this study. 
Schematic of the machine learning model evaluated in this study. Ribozyme 
sequences are first one-hot encoded into a 4xL vector. Logistic regression (LR), 
support vector machine with linear kernel (SVM), k-nearest neighbors (k-NN), 
gradient boosted decision trees (GBDT) and multilayer perceptron (MLP) were 
trained to to perform binary classification of the sequence into neutral or deleterious. 
 
To select the model to be incorporated into the algorithm, precision and recall were used as 
performance metrics. Precision is the fraction of positive (neutral) predictions that are true 
positive. This represents the probability that the variants predicted to be neutral are actually 
neutral when tested experimentally. Recall is the fraction of neutral mutants in the 
experimental data identified by the model. The precision-recall curve of each model is 
plotted in Figure 3-6a. SVM, GBDT and MLP all have comparable performance to each 
other when looking at the precision-recall curve.  Looking at the precision and recall scores 
of each model when the test dataset is separated by Hamming distance to the WT revealed 
that MLP narrowly beats other models at recalling mutants with higher Hamming distances 
while maintaining good precision (Figure 3-6b). Because of the rarity of functional mutants, 
especially at higher Hamming distances, I focused on recall as the main metrics while 
sacrificing precision. Therefore, the MLP model was selected for further evaluation. 
Although other models also perform comparably well, especially GBDT. The models 
evaluated here have varying degrees of complexity and use different approaches to model 
the dataset. The models were evaluated using the default hyperparameters from the scikit-
learn package, and the performances were compared using train-test split strategy. This 
approach does not guarantee that the selected MLP model is the best type of model for 
ribozyme landscape analysis. It is possible that the other four models that were evaluated 
simply have a default set of hyperparameters that is not yet optimized for ribozyme 
landscape analysis. Further optimization of these hyperparameters might yield improved 
performances that are comparable to the MLP. However, the goal of this current study is to 
find the best performing model that can guide evolutionary process towards distant 
functional region rather than a complete evaluation of ribozyme fitness landscape modelling 
strategy. Therefore, further optimization of the other models was deemed unnecessary at this 
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point. Furthermore, direct comparison between the five models with vastly different 
properties and complexity is a challenging task. If the goal is to select the least complex 
model that can best describe the fitness landscape, then probabilistic model selection criteria 
such as Akaike or Bayesian Information Criterion can be used to measure the tradeoff 
between model performance and complexity. Although these metrics can be used to select 
amongst parametric models such as logistic regression, its use for non-parametric models 
such as Decision Trees is not obvious. Decision Trees models are not fitted using maximum 
likelihood and do not have a well-defined number of parameters like a logistic regression 
model, where the number of parameters is simply the number of coefficients. The number 
of parameters and the likelihood function are required to calculate the Akaike or Bayesian 
Information Criterion. Therefore, direct application of these criteria to the five models 
presented here would not provide a very meaningful comparison. In the later section of this 
chapter, I provide an evaluation of three different neural network models that vary in the 
degree of complexity. I optimized the hyperparameters of the three models using an 
exhaustive grid search. This provides an initial comparison and evaluation of the effects of 
model complexity on the ability to capture the ribozyme fitness landscape. Nevertheless, the 
different models presented in this section could potentially be used to guide the navigation 
of fitness landscape as well and future works should focus on a systematic evaluation of 
model architectures which can best capture fitness landscape properties. 

 
Figure 3-6: Evaluation of machine learning models performance. 
a) Each model was trained with 20,920 variants from generations 1–6. Precision 
and recall curve was plotted by evaluating the model on a held-out testing set of 
8,967 variants. b) Precision and recall calculated separately for sequences in the 
held-out testing set sorted according to the Hamming distance from the wildtype. 
 
Next, I proceed to experimentally validate the MLP performance at identifying functional 
mutants within the fitness landscape. I designed three populations of variants named 
generation 7a, 7b and 7c. Generation 7a was designed using the genetic operators like 
generation 6 but with a higher proportion of variants created from recombination alone 
without any point substitution (See Methods). In generation 7a, 80% of the population 
were pure recombinants compared to 66% in generation 6. The reason for this is that I was 
confident that recombination would lead to a higher proportion of functional mutants. 
Generation 7b was created in the same way as generation 7a, except each variant was only 
picked if it was predicted to be neutral by the MLP model trained on the previous 6 
generations. Generation 7c was created by taking 7b and shuffling (recombining) the 
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population with itself with an average of 10 recombination events per variant. Each variant 
in generation 7c was again only picked if predicted to be neutral by the MLP. Generation 
7c was created to test the performance of MLP at identifying variants at higher Hamming 
distances.  
 
These 3 populations were then experimentally evaluated in the same way as the previous 
generations. As indicated in Figure 3-7a, the fraction of neutral mutants increased in 
generation 7a to 74%. This increase in neutral variants could potentially be explained by the 
higher pool of functional parents in generation 6 and increased in the proportion of pure 
recombinants in the population. The use of MLP increased the fraction of neutral mutants 
even further, to 89% in generation 7b. Impressively, even when the average Hamming 
distance in the population increases in generation 7c (Figure 3-7c), the fraction of neutral 
mutants is still very similar to generation 7b (Figure 3-7a), indicating that the MLP model 
was able to maintain performance and generalize well to unseen parts of the landscape. 
Furthermore, Figure 3-7b shows that the distribution of RA in generation 7a is bimodal with 
many mutants having RA values close to zero. In comparison, the variants in generation 7b 
and 7c have RA values closer to one, with much less ribozyme variants having RA values 
closer to zero. These results show that MLP models can be effectively used to eliminate low 
activity variants from the population. 
 

 
 
Figure 3-7: MLP-augmented genetic operators identify higher proportion of 
neutral variants which are distant from the wildtype. 
a) Fraction of neutral (RA ≥ 0.2) mutants identified by different design approaches. 
In Generation 7a, only computational selection, recombination, and mutation were 
utilized. In Generation 7b, on top of the computational genetic process, MLP model 
trained on generation 1 to 6 was used to select only variants predicted to be neutral. 
Generation 7c involved shuffling Generation 7b with a 10x recombination rate, and 
only variants predicted to be neutral by MLP were selected. The darker area 
indicates the fraction of neutral mutants that was also identified by the epistasis-free 
log-additive model. b) The distribution of RA in each of the populations indicates 
that MLP can significantly reduce the proportion of mutants with very low activity. c) 
Comparison of the diversity of the three populations as indicated by the distribution 
of sequences according to their Hamming distance from the wildtype (WT). 
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Accessing distant regions with ML-guided evolution 
Because of the enormity of the sequence space, navigating it by using only experiments 
would become costly and intractable. Therefore, it is desirable to have an automatic 
computational algorithm that can accelerate this process. The scale of the sequence space 
(435) means that simply using the model to predict all possible sequence combinations and 
picking the functional variants would be computationally intractable. Therefore, I need an 
optimization strategy that will guide the search towards the sequence space most likely to be 
functional. Genetic algorithms lend themselves naturally well to this task. Originally 
inspired by natural evolution itself, GA can balance the sequence diversification process of 
mutation, selection and recombination to adapt the searching process heuristically to regions 
of the sequence space it is exploring. Preserving sequence and structural constraint while 
exploring potentially new sequences. I have shown in the previous chapters that genetic 
operators can indeed be used to explore the landscape more effectively. Therefore, I chose 
to see if genetic operators can be combined with the trained MLP model and create a 
completely computational evolutionary algorithm to explore vast regions within the fitness 
landscape (Figure 3-8).  

 
Figure 3-8: Overview of MLP-guided computational evolution. 
Schematics of the computational evolutionary algorithm. Generation 7 was used as 
the initial population which then underwent 100 rounds of computational selection, 
mutation, recombination and classification by the MLP model. The final population 
is selected by ensuring all sequences are predicted to be neutral by the MLP model. 
This population was then experimentally evaluated and named generation 8. 
 
The MLP model was retrained using all the data collected from the previous 7 generations. 
I used the trained MLP model to replace the experimental evaluation step in the current 
procedure. Mutants are evaluated by the prediction of the MLP model, and the binary 
classification is used by the selection process (Figure 3-8). The detailed flow chart of this 
algorithm can be found in Figure S3-1. Using generation 7a, 7b and 7c as the starting 
population I performed 100 rounds of selection, recombination, mutation and MLP 
classification. In the final round, I picked 12,000 sequences classified as neutral by the MLP 
and experimentally evaluated this new library, naming it generation 8. Experimental results 
show that the fraction of neutral mutants in generation 8 is 0.28 (Figure 3-9a). This is a 
decrease in performance from generation 7. Furthermore, the average RA between variants 
in generation is also much lower than generation 7 (Figure 3-9b). However, generation 8 
occupies a sequence space that is much more distant than the previous generations, with an 
average Hamming distance to the WT of 13 mutations (Figure 3-9c). The model was trained 
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primarily on variants with average hamming distance of 8 and has only seen functional 
variants with a maximum of 12 mutations. The fact that the model was able to identify 
functional variants with as much as 17 mutations represents a good generalization capability 
(Figure 3-9d).  
 

 
Figure 3-9: Computational evolution identified neutral variants further away 
from the wildtype. 
a) The fraction of neutral (RA ≥ 0.2) mutants in generation 8 compared to all previous 
generations. b) The distribution of activity in each generation of ribozymes as 
determined by the sequencing assay. c) The diversity of each generation indicated 
by the distribution of each sequence according to their Hamming distance from the 
wildtype (WT). d) The RA of each sequence in generation 8 plotted against their 
Hamming distance from the wildtype. 
 
Additionally, I assessed the model performance by looking at the level of epistasis present 
within the landscape that was explored. Using a log-additive model introduced in the 
previous chapter, I calculated the fraction of neutral mutants within generation 7 and 8 that 
are also expected to be neutral if epistasis is absent. I can see that the fraction of expected 
neutral variants is high in generation 7 (Figure 3-9a). However, the expected fraction is 
almost zero in generation 8. This suggests that the presence of epistasis would have limited 
the ability of the genetic operators alone to identify neutral variants at further distance of the 
landscape without periodically feeding it more information from experimental assay. The 
introduction of MLP reduces this experimental burden and can help push the genetic 
operators toward further regions within the sequence space while maintaining good 
efficiency. The fact that the variants identified by the MLP in generation 8 are not possible 
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to identify with the log additive model also suggest that deep neural networks can capture 
higher-order epistatic information within the dataset to a certain degree. This offers a 
promising strategy to use deep neural networks to access regions within fitness landscapes 
not accessible with the current experimental capability. 

Post-hoc analysis of neural networks performance in capturing 
ribozyme sequence-activity relationship from experimental data 
The ability to predict activity of RNA or protein enzymes from sequence alone is important 
for both biotechnology and evolutionary biology. Deep learning models trained by examples 
obtained from experimental mutational scan data have shown promising results in reaching 
this goal (Romero, Krause and Arnold, 2013; Angenent-Mari et al., 2020; Valeri et al., 2020; 
Aghazadeh et al., 2021; Gelman et al., 2021; Luo et al., 2021; Schmidt and Smolke, 2021; 
Song et al., 2021; Beck et al., 2022). However, many studies, including this work, evaluate 
their models' performances by using random split of data into training, validation and testing 
sets. This means that the high performance as reported by these studies were often achieved 
by evaluating the model with sequences having the same distribution as the training data. 
Some studies attempt to evaluate their model generalization to unseen mutations either by 
training and testing on a specific subset of mutants with different Hamming distances to the 
reference sequence (Luo et al., 2021; Beck et al., 2022). Another approach is to test the 
model on a set of variants containing particular mutations or mutated positions which are 
not in the training set (Gelman et al., 2021). However, even these approaches fail to properly 
evaluate the generalization capability of the model because the available dataset often has 
relatively low diversity. Most mutants in the test dataset used by these studies have low 
Hamming distance to wildtype and the rare variants with high Hamming distance are often 
completely inactive. This lack of diverse and balanced dataset, as a result of the sparsity of 
fitness landscape, means that relatively little work has been done to assess how well 
supervised models generalize to diverse regions of the fitness landscape.  
 
The dataset I have produced during 8 rounds of high throughput experimental assay 
represent a diverse library of ribozymes with high quality and quantitative experimental 
labels. The guided process using genetic operators also helps the dataset to be relatively 
more balanced than many other sequence-activity datasets published thus far. Particularly, 
generation 8 contains a high proportion of active variants with average mutational distance 
much further away from other generations, providing a high-quality out-of-distribution 
testing set for supervised models. Therefore, I use this opportunity to do a proof-of-concept 
study on how well a neural network model can generalize beyond its training dataset. I 
follow a similar approach to the work done by Gelmen et al. on evaluating neural network 
performance on protein deep mutational scanning data (Gelman et al., 2021). Briefly, three 
different models were evaluated which are logistic regression (LR), multilayer perceptron 
(MLP) and convolutional neural network (CNN) representing varying degrees of complexity 
and capacity (Figure 3-10). Logistic regression model is used as a baseline as it can be 
thought of as a neural network with a single node connected to all the features in a variable 
(in this case is the identity and position of a one hot encoded ribozyme sequence). Because 
logistic regression is a linear model, it can only capture additive effects of mutations and 
would not perform well if there is a high prevalence of epistasis in the fitness landscape. On 
the other hand, multilayer perceptron can capture epistatic effects by using multiple layers 
of fully connected neural nodes with a non-linear activation function in each node. Finally, 
convolutional neural networks can capture high-level patterns of mutation by using and 
sharing convolutional filters. Convolution filters can capture general local patterns of 
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mutation and the fully connected layers can integrate this information to form a high-level 
understanding of the pattern of mutation in the dataset. In this way, CNN model could 
potentially generalize to unseen part of the sequence space than logistic regression or 
multilayer perceptron. 
 

 
 
 
Figure 3-10: Supervised neural network models. 
Schematics of the different architecture of three neural network models. 
Logistic/linear regression models capture additive effects of each feature which is 
the nucleotide identity in each position in a sequence. Multilayer perceptron 
integrates all the information and apply non-linearity through multiple hidden layers. 
Convolutional neural networks used sliding windows of convolution followed by 
pooling to extract high level features from the sequence.  
 
The three models were first designed by tuning hyperparameters such as number of layers, 
number of neural nodes or learning rate using a grid search. The total hyperparameter search 
space is listed in Table S3-1. Each set of hyperparameters is evaluated using stratified 5-fold 
cross validation on a binary classification task, which was predicting neutral (RA ≥ 0.2) vs 
deleterious mutants. The training data consist of all the sequences in generation 1 to 7 and 
mean F1 score (F1=2 * (precision * recall) / (precision + recall)) across the 5 folds was used 
to pick the best performing set of hyperparameters. After hyperparameter tuning, each model 
was retrained on the entire training dataset using the selected hyperparameters. Finally, the 
models were evaluated on the held-out testing set consisting of the entire generation 8. 
Evaluation of the model performances is shown in Figure 3-11. Evaluation of the model 
using area under curve (AUC) for precision-recall curve and receiver operating characteristic 
(ROC) curve shows that CNN outperforms all the other models (Figure 3-11 a, b and c). The 
CNN model outperforms the MLP model by a small margin when looking only at the AUC 
scores. However, when looking at the accuracy score the CNN model performs better than 
MLP by almost 20%. This can be explained by evaluating the confusion matrices for both 
models (Figure 3-11e & f) The confusion matrices show that MLP model has higher rate of 
false positives than CNN model leading to small overall accuracy. The CNN model's higher 
abstraction capacity could potentially enable it to generalize better to unseen dataset which 
could potentially explain its higher accuracy compared to the MLP. The confusion matrix 
for the logistic regression model also reveals a very high rate of false negatives. Logistic 
regression could only model the additive contribution of mutational effects. Considering that 
most mutations in a fitness landscape led to complete loss in activity, it is conceivable that 
a logistic regression model would predict most mutants to be non-functional. Additionally, 
I binned the testing dataset (generation 8) by Hamming distance to the wildtype and 
evaluated the model’s performance using F1 score on each subset. As evident in figure 3-
11g, the F1 score decreases as a function of Hamming distance indicating that the models 
struggle to generalize to distant parts of the fitness landscape. The F1 score of CNN model 
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is higher than the other models at almost all Hamming distances, confirming its superior 
predictive performance. 
 

 
 
Figure 3-11: Evaluation of classification neural network model performance. 
Models were trained on data from generation 1 to 7 to perform binary classification 
of sequence into neutral (RA ≥ 0.2) or deleterious. Each model was evaluated on 
the entire generation 8 which was held out as a testing set. a) Precision-recall and 
b) receiver operating characteristics (ROC) curve were plotted for each model using 
varying classification thresholds. c) Comparison of the accuracy and area under 
curve (AUC) for both the precision-recall and ROC. Confusion matrices were plotted 
using a classification threshold of 0.5 for d) LR e) MLP and f) CNN. g) Sequences 
in generation 8 were binned according to their Hamming distance from the wildtype 
(WT). F1 score were calculated separately for each bin of sequences. The marker 
size and the annotation indicate the total number of sequences in each bin. 
Calculation for sequences which are 18 or 19 Hamming distances away from the 
WT are not shown as no neutral sequences are found for these Hamming distances. 
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In many cases, there is a need to distinguish between sequences with very similar activity. 
For example, finding the most highly active variants in enzyme engineering tasks. In this 
scenario a regression model will be more useful than a binary classification model. 
Therefore, I also evaluated the three models on a task of directly predicting the relative 
activity (RA) from sequence. The same parameter tuning scheme as for the classification 
model was used to select the best regression model. The models’ performances were 
evaluated using Spearman's rank correlation when comparing the predicted RA and 
experimentally measured RA. Spearman’s rank correlation was used as a performance 
metric to reflect the potential use case of these models for enzyme engineering tasks. In these 
tasks the main goal is to find the best variants relative to other variants and therefore 
prediction of absolute activity is not necessary. Looking at Figure 3-12 a, b and c shows that 
the CNN model performs the best. Looking at the mean squared errors when the test data is 
sorted into Hamming distance to the wildtype again show that performance decreases with 
Hamming distance, with the CNN model performing best at almost all Hamming distances 
(Figure 3-12d). However, the overall regression model performance is quite poor with 
Spearman's rank score of 0.47 for the CNN model.  
 
The variants present in generation 8 have higher Hamming distance range than the training 
data and their activity is likely influenced by a complex network of higher-order epistasis 
which is hard for the models to capture. Some studies have been done which try to improve 
the generalization ability of machine learning models towards distant regions. One 
interesting approach incorporate the sparsity of epistasis directly into the loss function 
(Aghazadeh et al., 2021). Another recent work uses information on how correlation of 
activity changes as a function of mutational distance as statistical priors for a model (Zhou 
et al., 2022). This gives the model prior understanding of how the same mutation has 
different effects in different genotypic backgrounds. Both works provide important steps 
towards better predictive performance for higher order mutations. But as mentioned 
previously, these models lack high quality and diverse dataset that provide information about 
the distant part of the landscape. The approach I have presented here using genetic operators 
combined with high-throughput assay offers an effective strategy to collect better and 
diverse dataset. Generation 8, although occupying a much more distant region of the 
sequence space than the generation that was used to train the models, was still designed 
based on mutations present in the training dataset. Therefore, generation 8 might not be a 
truly out-of-distribution testing data. However, a more systematic utilization of genetic 
operators could produce a focused but diverse dataset that can be used to effectively train 
and evaluate models. This could lead to significant improvement in our ability to predict 
fitness landscape based on sparse sampling of the sequence space. 
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Figure 3-12: Evaluation of regression neural network model performance. 
The relative activity (RA) predicted by a) a linear regression model b) a multilayer 
perceptron and c) convolutional neural network are plotted against the 
experimentally measured values. The models were trained on data from generation 
1 to 7 to perform a regression task of predicting RA from one-hot encoded 
sequence. Each model was evaluated on the entire generation 8 which was held 
out as a testing set. d) Sequences in generation 8 were binned according to their 
Hamming distance from the wildtype (WT). Mean squared errors were calculated 
separately for each bin of sequence. The marker size and the annotation indicate 
the total number of sequences in each bin. Calculation for sequences which are 18 
or 19 Hamming distances away from the WT are not shown as no neutral sequences 
are found for these Hamming distances. 
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Conclusion 
In this chapter, I evaluated the use of supervised machine learning models to learn the 
sequence-activity relationship of the F1 ligase ribozyme. I showed that by using genetic 
operators as a search strategy, deep neural networks can be used to efficiently navigate the 
fitness landscape of RNA by learning epistatic patterns within the dataset. These results add 
to the growing list of work that showed that machine guided directed evolution can be used 
to optimize protein and RNA engineering efforts for biotechnology applications. However, 
in this work I have also shown that this process can be used to explore the general properties 
of the fitness landscape.  An ability to map the entire sequence space of a full-length RNA 
or protein can offer major insights in the evolutionary process and can lead to better 
understanding of how life originally evolved. One major goal in the study of the fitness 
landscape is to see how well we can predict future trajectories of evolution. Having this 
ability can solve many problems such as predicting cancer cell metastasis or to see how 
viruses will evolve and even predicting the trajectory of a pandemic. The works I have shown 
here that deep neural networks can be generalized beyond its training data towards distant 
epistatic regions of the sequence space offer an important step towards this goal. The 
predictability of fitness landscape is influence by many of its fundamental properties 
including evolvability, robustness and the size and distribution of its neutral network. In 
order to successfully adopt machine learning strategy within this domain, the field need a 
better understanding of how these different properties increases or limit the accuracy of the 
model predictions. In the next chapter, I investigate the connectivity of the mutational paths 
underlying the region explored by the ML-guided evolutionary algorithm. I evaluate the 
degrees of epistasis within this region and discuss how higher-order epistatic interactions 
effects the model accuracy and influence landscape navigability within the context of 
evolvability and robustness.  
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Methods 

Machine learning models 
Five machine-learning models for binary classification were trained using data from 
generations 1–6. All models made predictions by trying to fit a function that describes the 
relationship between the input features, which in this case is the position and identity of the 
nucleotide in each ribozyme sequence, and the class labels that are either neutral or 
deleterious. Each model is briefly described below. 

Logistic regression (LR) is a linear model that assigns different weights to the input features. 
Predictions are made using a linear combination of the input features and their weights, 
followed by a sigmoid function that outputs the class probability. LR can only model the 
additive contribution of each mutation to fitness and therefore cannot model nonlinear 
interactions between positions. 

A support vector machine (SVM) with a linear kernel assumes that the classes in the data 
are linearly separable in the feature space and attempts to draw a boundary line to separate 
them. The optimal solution was achieved by maximizing the distance between each class 
and the boundary line. SVM with a linear kernel can only model a linear combination of 
mutations, similar to LR, although the tendency to overfit with SVM is lower. Overfitting is 
observed when a model accurately predicts the training data but creates poor predictions for 
new data points. 

The k-nearest neighbor (k-NN) method does not assume a linear separation of classes. The 
prediction for a new input is made based on the majority class of the k number of neighboring 
training points closest to the new input in the feature space. This allows k-NN to model 
nonlinearity better than SVM or LR, but it is more affected by noise in the data and is more 
likely to become overfit. 

Gradient-boosted decision trees (GBDT) makes predictions by constructing a group of 
“trees” that branch out each time a condition for a feature is met (e.g., is position 23 in the 
sequence a guanosine?). The tree depth determines the complexity of these conditions for 
making the final decision regarding the class label. Gradient boosting is a technique that 
builds a large group of weak trees with shallow depths in an iterative fashion based on 
residuals from the previous tree. The final prediction is made by votes from the ensemble of 
trees on the final class label. This typically enables a higher prediction accuracy and less 
overfitting than individual trees or a small group of very deep trees like a random forest. The 
GBDT can model more complex nonlinear interactions than LR and SVM. 

Multilayer perceptron (MLP) is a simple neural network model. A neural network consists 
of a group of individual “neurons” that take an input value and transform them using a 
nonlinear activation function. These neurons are arranged in fully connected layers, meaning 
that the output of one neuron becomes the input of the other neuron. This architecture allows 
a neural network to approximate any function. This means that MLP can potentially model 
mutational interactions or epistasis at a very high order better than the other models. 
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However, neural networks require substantially more data to accurately learn a function 
without overfitting. 

Additionally, linear regression and convolutional neural networks were also evaluated in a 
post-hoc analysis of the dataset. Linear regression has essentially the same architecture as 
the logistic regression model but without the sigmoid activation function. Convolutional 
neural network (CNN) is essentially a regularized version of MLP that employs convolution 
operations to extract higher-level data from a dataset. Combining multiple layers of 
convolution followed by fully connected layers allows CNN model to achieve an 
increasingly abstract understanding of the sequence dataset. In this way CNN models could 
potentially achieve better generalization on unseen sequences than MLP models. 

For training, the sequences were one-hot encoded and flattened (except in the case of CNN 
where the data is fed as a 35 × 4 binary vectors) into 1 × 140 binary vectors. Thirty percent 
of the dataset was used as the testing set, and the rest was used as the training set. The LR, 
k-NN, SVM, and GBDT were trained using the Python scikit-learn package. k-NN, LR, and 
SVM were trained using the default hyperparameters for the binary classification of 
sequences into neutral (RA ≥ 0.2) or deleterious (RA < 0.2). The GBDT was trained in the 
same manner using a maximum tree depth of 10. The MLP was written using the TensorFlow 
2 Python library. The model consisted of three dense layers with rectified linear unit (ReLU) 
activation, batch normalization, and 20% dropout. The dense layers consisted of 128, 64, 
and 32 neurons, respectively. This was followed by a final dense layer with sigmoid 
activation for the classification output. The model was compiled using the Adam optimizer, 
with a learning rate of 0.005. Binary cross-entropy was used as the loss function. During 
training, 10% of the training set was used as a validation set, and the model was trained for 
100 epochs with a batch size of 1024. All the trained model performances were evaluated 
on the test dataset using precision and recall as metrics. All codes were written in Python 
3.9. The software libraries used were pandas 1.4.4, numpy 1.21.2, tqdm 4.62.3, scipy 1.7.3, 
matplotlib 3.5.1, seaborn 0.11.2, scikit-learn 1.0.2 and tensorflow 2.8.0. 

Computational evolutionary algorithm 
The MLP model was retrained using data from generations 1–7 in the same manner as 
described for Machine learning models. Model performances were also tested using 10-
fold cross-validation (Figure S3-2). To account for class imbalance, I adjusted the prediction 
threshold using the receiver operating characteristic (ROC) curve. Prediction threshold that 
produced the largest geometric mean ( ) was used for 
subsequent classification by the model. Generation 7 was used as the starting parent 
population or the computational evolution. Tournament selection was used to select variants 
as parents. If more than one variant in the tournament was classified as neutral, then a 
random variant was selected. In each generation, 80% of the variants were created by 
recombination, and the remainder were created by point mutations. These variants were 
classified as neutral or deleterious mutants using MLP (Figure S3-1). This was repeated over 
100 rounds, and the average Hamming distance in each round was tracked to ensure an 
increase in diversity (Figure S3-3). After 100 rounds of evolution, the mean Hamming 
distance plateaued at around 13. Increasing the number of rounds of computational evolution 
might lead to an increased average Hamming distance; however, this was slowed by the 
increased search space and a likely increase in false positives. For the last round, the total 
number of variants was increased to 12,000 to maximize the coverage of the sequence space 
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for experimental screening, and only variants that were predicted to be neutral by the MLP 
were selected as generation 8. The parameters of the computational evolutionary algorithm 
are listed in Table S2-2. 

Hyperparameter tuning for post-hoc analysis of neural network 
Linear/logistic regression (LR), multilayer perceptron (MLP) and convolutional neural 
network (CNN) were designed for binary classification and regression tasks. Model 
hyperparameters were selected using the scikit-learn function GridSearchCV. In this 
scheme, the entire possible combination of selected parameters was tested for each model. 
The parameters and range used in the grid search are listed in Table S3-1. The combinatorial 
sets of parameters tested totaled 9 for LR, 81 for MLP and 72 for CNN. For each set of 
parameters each model was fitted 5 times in a 5-fold cross validation scheme. The training 
dataset, which includes the entire data from generation 1 to 7 after sequence reads and quality 
filtering totaling 39,864 unique sequences, was randomly split into 5 subsets. For each 
training the model is trained on 4 of the data subsets and validated on the one remaining 
subset. F1 and mean squared error score were used to validate the model performance for 
classification and regression task respectively. The best set of parameters was selected as the 
set with the highest average score across all 5 folds. The architecture of the final logistic 
regression model is one Flatten layer, one output Dense (Fully connected) layer with one 
hidden unit , learning rate of 0.001 and batch size of 128. The linear regression model has 
the same architecture as logistic regression except the one hidden unit in the output Dense 
layer has a sigmoid activation and the best learning rate was identified as 0.0001. For the 
MLP classification model the best architecture found was one Flatten layer, one hidden 
Dense layer with 128 hidden units with ReLU activation function, a Dropout layer with 20% 
dropout rate, an output Dense layer with one hidden unit and sigmoid activation, learning 
rate of 0.0001 and batch size of 32. For the MLP regression model the best architecture 
found was one Flatten layer, three hidden Dense layers with 128 hidden units with ReLU 
activation function, each hidden Dense layer is followed by a Dropout layer with 20% 
dropout rate, an output Dense layer with one hidden unit, learning rate of 0.0001 and batch 
size of 128. For the CNN classification model, the best architecture found was one 1D 
convolution layer with 128 filters of width 6 and ReLU activation function, one Max Pooling 
layer, one Flatten layer, one hidden Dense layer with 100 hidden units and ReLU activation, 
one Dropout layer with 20% dropout rate, one output Dense layer with sigmoid activation, 
learning rate of 0.0001 and batch size 128. Finally, the best architecture found for the CNN 
regression model was two 1D convolution layer with 128 filters of width 6 and ReLU 
activation function, each conclusion filter is followed by one Max Pooling layer, one Flatten 
layer, one hidden Dense layer with 100 hidden units and ReLU activation, one Dropout layer 
with 20% dropout rate, one output Dense layer, learning rate of 0.0001 and batch size 32. 
Each model training was done with an early stop callback with a patience of 15 epochs and 
minimum change in the loss (binary cross entropy for classification and mean squared error 
for regression) of 0.0001. The maximum epoch was set to 300 for all model training. The 
final model is generated by retraining the model using the selected parameters on the entire 
training dataset. Finally, each tuned model performance was tested and compared using a 
held-out dataset consisting of the entire generation 8 totaling 11,960 unique sequences. 

Experimental measurements of ribozyme activity 
The same experimental protocols were used as described in chapter 2 Methods section. The 
reproducibility between sequencing repeats is shown in Figure S2-1 and reproducibility 
between sequencing and PAGE are shown in Figure S3-4. 
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Chapter 4: Experimental RNA neutral network 
reveals many accessible paths towards a robust 
genotype 
 
Parts of this chapter, in particular the Methods section, have been duplicated or updated 
from a previously published article: Rotrattanadumrong, R. and Yokobayashi, Y. (2022) 
‘Experimental exploration of a ribozyme neutral network using evolutionary algorithm and 
deep learning’, Nature communications, 13(1), p. 4847. 
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Background 
In the previous chapter, I investigated the use of ML-guided evolution to navigate the 
fitness landscape of a ligase ribozyme. The success of this process or any evolutionary 
process, artificial or natural, is highly dependent on the evolvability of the molecule which 
in turn is influenced by the topology and connectivity of the underlying fitness landscape. 
In particular, the presence or absence of a ‘neutral network’ has historically been an 
important indication of the accessibility of an RNA fitness landscape. In this chapter, I 
seek to understand how these key properties influences the predictability and navigability 
of the F1*U ligase ribozyme fitness landscape and whether the regions explored by the 
evolutionary algorithm in the previous chapter provide any important new insight into the 
general properties of RNA fitness landscape. 
 
Evolvability can be defined as the ability of biological systems to produce selectively viable 
phenotypes for adaptive evolution (Payne and Wagner, 2019). The more evolvable a system 
is the more likely it is to be able to adapt or innovate. Evolvability research is very broad, 
with implications in fields ranging from cancer biology to population genetics. 
Understanding the cause and consequences of evolvability can lead to better ways to tackle 
antibiotic resistance (Sánchez-Romero and Casadesús, 2014) or engineering new 
biocatalysts (Bloom, Romero, et al., 2007). Here, I focused on the role of evolvability in 
biomolecular evolution. As mentioned in the beginning of this thesis, molecular evolution 
can be conceptualized as mutational walks along the fitness landscape. In this scenario, the 
concept of evolvability is intrinsically linked to mutational robustness (Figure 4-1a). A 
molecule like RNA is considered robust if, given a certain selective pressure imposed by 
environmental conditions, it possesses many selectively accessible mutations within its 
fitness landscape. A mutation is accessible if it is connected to other mutations that maintain 
fitness via a single mutational step. In evolutionary theory study fitness refers to reproductive 
success. In the molecular realms, properties such as catalytic activities can be a proxy for 
‘fitness’ if selective advantage is influenced by the ability to perform those catalysis. A 
population of biomolecules can gain selective advantage in a dynamic environment if they 
can rapidly acquire beneficial mutations for adaptive change. In a fitness landscape, this 
means that the population can quickly find and climb fitness peaks within the landscape 
(Figure 4-1b). The chance of finding fitness peaks can be increased by diversifying the 
population across the landscape, occupying various regions within the sequence space. By 
spreading out across different combinatorial regions a population could prepare for future 
adaptive events by maximizing the chance of locating close to a fitness peak. Therefore, an 
evolving molecular population that is robust should also have higher evolvability. 
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Figure 4-1: Robustness and evolvability enable adaptation in fitness 
landscape. 
a) Schematic of the link between mutational robustness and evolvability adapted 
from (Whitacre, 2010). Each node represents a genotype and edge represent single 
step mutation. Node color represents different phenotypes. White nodes represent 
non-functional genotypes. When a functional genotype is surrounded by non-
functional genotypes this means that the system has low robustness. While a highly 
robust genotype is surrounded by many functional genotypes that can be reached 
by single mutation. Higher robustness can lead to higher evolvability if functional 
genotypes form a single mutational network that can reach other new phenotypes 
without crossing a non-functional genotype. b) A large fitness plateau representing 
a robust network of functional or ‘neutral’ genotypes enables a population of 
evolving biomolecules to reach diverse regions of the landscape. When the 
environment changes, genotypes that are close to the new fitness peaks can rapidly 
adapt to this new landscape. 
 
However, in order to access distant regions within the landscape, the population needs to 
acquire mutations that do not adversely affect its fitness in order to remain viable under the 
current selective environment. These mutations that are neither deleterious or beneficial, but 
maintain the current fitness are called ‘neutral’ mutations. The concept of neutral evolution, 
first formalized by Motoo Kimura (Kimura, 1968), postulates that evolution occurs at the 
molecular level and that most mutations are neutral. This theory emphasized the role of 
random genetic drift in driving genetic diversity. Genetic drift is an important cause of 
evolvability as a more diverse gene pool will be more ready for adaptation upon changes in 
the environment. Given that gaining neutral mutations directly affects the diversity of a 
population, understanding the availability and accessibility of neutral mutations in a fitness 
landscape therefore has important implications for the study of evolvability.  
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Fitness landscape provides a useful framework for the study of neutral mutations. Given a 
starting point in the sequence space, a population can travel far from this starting point by 
sequentially acquiring neutral mutations. These neutral mutations are accessible if they are 
connected to each other forming a ‘neutral network’ (van Nimwegen, Crutchfield and 
Huynen, 1999). The size, quantity and distribution of neutral networks determine how 
accessible a fitness landscape of a given molecule is and how easily diversification can 
happen. The larger and more connected the neutral networks are, the more quickly fitness 
peaks can be reached and the more evolvable the molecule becomes. In this way, the concept 
of neutral network reconciles the theory of neutral evolution, evolvability, robustness and 
fitness landscape in a useful and meaningful way (Wagner, 2008).  
 
To map the neutral network, many genotypes need to have their fitness values assigned. 
Doing this experimentally for even a small protein or RNA is difficult and can quickly 
become intractable due to the combinatorial explosion of the sequence space. Therefore, 
until very recently, the study of neutral networks has been limited to computational and 
theoretical studies. An important technological milestone in this field is the invention of 
accurate RNA secondary structure prediction algorithms (Zuker and Stiegler, 1981). Given 
the sequence structure activity relationship of RNA, an assumption can be made that 
evolution that maintains the activity of a ribozyme also acts to maintain its structure. 
Therefore, the structure of an RNA can be reasonably used as a proxy for its fitness. RNA 
secondary structure prediction algorithms and packages such as ViennaRNA (Hofacker et 
al., 1994) enable rapid and relatively accurate prediction for a large number of RNA 
sequences. This enables the determination of fitness for large regions of RNA sequence 
space, establishing RNA sequence-structure map as an powerful model for the study of 
neutral networks (Schuster et al., 1997; van Nimwegen, Crutchfield and Huynen, 1999).  

 
Figure 4-2: RNA sequence space forms connecting and overlapping neutral 
network that shares the same secondary structures. 
Invention of relatively accurate and fast RNA secondary structure prediction 
algorithms enable large scale mapping of RNA sequence-structure maps. Many 
RNA sequences (represented by nodes in the schematics) are connected by single 
mutation (represented by edges) to other sequences that are predicted to fold into 
the same secondary structure (represented by node color).  
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Schuster and Fontana pioneered the use of predicted RNA sequence structure maps to test 
and simulate many theories of evolutionary and fitness landscape predictability. They show 
that many sequences in an RNA sequence space fold into similar secondary structures and 
that these sequences are connected by single mutations forming a percolating neutral 
network in the sequence space (Schuster et al., 1997) (Figure 4-2). RNA neutral networks 
have led to better understanding of how robustness, plasticity and innovation influence 
evolution (Ancel and Fontana, 2000). Kun et al. used a secondary structure model of real 
ribozyme to provide a plausible solution to the Eigen paradox (Kun, Santos and Szathmáry, 
2005). The Eigen paradox involves the concept of error threshold, which suggests that there 
is an upper limit to the length of genetic molecule, like RNA, can reach before mutation will 
destroy the information encoded in the sequence. The Eigen paradox suggests that because 
replication is error-prone, early self-replicating systems can only maintain a relatively short 
RNA. In order to evolve more genetic complexity, high-fidelity replication systems have to 
be evolved (Eigen, 1971). But to evolve this sophisticated machinery a large genome is 
needed to encode its information, larger than the error threshold. Kun et al. suggests a way 
to overcome this error threshold by using a predicted neutral network of real ribozymes 
(Kun, Santos and Szathmáry, 2005). Given that many ribozymes’ sequences fold into the 
same secondary structure, many mutations that could lead to information meltdown 
according to Eigen’s theory, in fact have no deleterious effects on the structure and are 
neutral. The neutrality of the RNA sequence space provides a buffering effect to mutational 
meltdown and leads to a more relaxed error threshold. This could enable early ribozymes to 
maintain larger genome size than previously thought, from few hundreds to over 7000 bases, 
large enough to encode rudimentary error correction mechanisms. The work form Kun et al. 
highlight the influence RNA secondary structure model has on the study of key evolutionary 
concepts.  
 
Experimental studies of neutral networks present several key challenges. As highlighted 
several times in this thesis, the enormous size of the sequence space limits the comprehensive 
mapping of the fitness landscape to only very small RNA. As a result, early experimental 
works on RNA neutral networks were done in low throughput manners. In a seminal work, 
Schultes and Bartel present one of the earliest experimental evidence that two functionally 
and structurally distinct ribozyme folds are possibly connected through a neutral network 
(Schultes and Bartel, 2000). In this work, an RNA sequence was designed that satisfied the 
secondary structure of both an HDV self-cleaving ribozyme and a ligase ribozyme. This 
intersecting sequence was shown to possess both ligation and self-cleaving activity. 
Furthermore, they showed that a long mutational path can be designed that change more than 
half of the bases in the two prototype ribozymes that maintain considerable activity. This 
mutational pathway brings the two ribozymes very close in the sequence space, whereby 
wildtype level activity for either function is separated by 14 mutational steps that go through 
the intersecting sequence that possesses both functionalities, albeit with significant reduction 
in either activity. This work suggests that neural networks can facilitate evolutionary 
innovation and adaptation by bringing the evolving population closer to regions that lie close 
to another neutral network that can lead to rapid acquisition of new functions or adaptive 
traits upon changes in the environment. Following the advancement of deep DNA 
sequencing technology, a larger region of the RNA fitness landscape could be studied for 
the first time (Pitt and Ferré-D’Amaré, 2010). This led to works that both reaffirms and 
denies earlier theory of RNA neutral networks. Hayden et al. works present high-throughput 
evidence that neutral drift can lead to accumulation of  ‘cryptic’ genetic variation in 
Azoarcus group I intron ribozyme (Hayden, Ferrada and Wagner, 2011). These cryptic 
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mutations had no effects in the current chemical environment except to make the population 
more diverse. However, upon changes in the environment, where the ribozymes were 
presented with a new substrate, the population that contains higher cryptic variation were 
able to adapt more rapidly to this new environment compared to population with lower level 
of cryptic variation. Precise, high throughput experiments enable the group to reconstruct 
the mutational pathway that led to this new adaptation and was able to show that the 
adaptation is a direct consequence of the previously cryptic mutation. This work further 
highlighted the important role of neutral mutation and neutral network in molecular 
adaptation. 
 
Although much evidence supporting the existence and role of neutral network in RNA 
sequence space have been presented using high throughput experiment, many works have 
also pointed toward the absence of large neutral networks. Petrie and Joyce subjected two 
ligase ribozyme populations to continuous evolution and assessed how far genetic drift alone 
can be used to access distant regions of the sequence space (Petrie and Joyce, 2014). They 
observe that both populations remain close to the original fitness peaks with no more than 
16 or 12 mutations away from the type with most mutants having less than 7 to 10 mutations. 
These results point toward the idea that RNA fitness landscapes are sparse with isolated 
fitness peaks and many deleterious mutants. This idea is further supported by two works 
from the Chen group. They published comprehensive sequence-activity maps of a ribozyme 
(Pressman et al., 2019) and an aptamer (Jiménez et al., 2013). These works represent the 
first time the entire sequence space of a reasonably sized biomolecule was mapped and 
remains the largest empirical fitness landscape mapped so far. Despite large-scale mapping, 
no evidence of large neutral networks was presented in either landscape. Many fitness peaks 
are well separated by large expanse of deleterious combinatorial space. Another recent study 
comprehensively mapped the entire combinatorial space between the two HDV and ligase 
ribozymes differed by 14 mutations originally identified by Schultes and Bartel and was 
previously mentioned (Schultes and Bartel, 2000; Bendixsen et al., 2019). This work shows 
the direct mutational path between the two functions is inaccessible and therefore 
evolutionary innovation might still require a way to leap over large fitness valleys. These 
works show that despite suggestions by early theoretical works, RNA sequence spaces do 
not always contain large percolating neutral networks. If the existence of RNA neutral 
networks is not given, then questions remain as to where and when neutral networks can be 
formed and what kind of evolutionary mechanisms are employed in the absence of such 
networks. To even begin to answer these questions, we must first confirm whether these 
neutral networks can even exist in the RNA sequence space at all. Therefore, in the final part 
of my thesis work, I seek to present the first ever experimental evidence of an RNA neutral 
network.  
 
In this chapter, I present the results of a comprehensive assay of the combinatorial space 
between the wildtype F1*U ligase ribozyme and a mutant with 16 substitutions identified by 
the computational evolutionary algorithm presented in the previous chapter. I showed that 
these two mutants are functionally neutral with comparable activity and are connected by an 
extensive network of neutral mutations. Many direct accessible pathways exist that enable 
the ribozyme population to traverse large regions of the fitness landscape using this neutral 
network. Furthermore, the high-quality dataset enabled by the sequencing assay allows me 
to directly analyze the complete epistatic interactions within the network. I performed a 
quantitative measurement of mutational interactions up to 16th order, the largest analysis of 
its kind. These measurements reveal that the topography of the neutral networks is largely 
governed by second and third order epistasis suggesting a higher level of predictability 
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within this region of the fitness landscape. Finally, I assayed the complete single and double 
mutants’ landscape of this new variant and revealed that this variant evolved a more 
mutational robust structural module. This supports an early theoretical work that evolution 
along a neutral network leads to increased mutational robustness  (van Nimwegen, 
Crutchfield and Huynen, 1999). Overall, these results present the first experimental evidence 
supporting the existence of a large neutral network within RNA sequence space and suggest 
the role of epistasis in determining the accessibility and predictability of RNA fitness 
landscape. 
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Results & Discussion 
Exploring the neutral network between F1*U and F1*Um 
variants through combinatorial library analysis 
In the last generation of the evolutionary algorithm, many mutants were identified with 
comparable activity to the wildtype F1*U ligase. To investigate the outcome of this 
evolutionary process, I picked a mutant with the highest Hamming distance (16) that retains 
comparable catalytic activity to the WT (RA = 0.63). I individually tested the activity of this 
mutant, named F1*Um using PAGE and confirmed its relative activity to be 0.7 (Figure 4-
3a). The predicted secondary structure of this mutant using ViennaRNA also reveals a very 
similar secondary structure to the WT ribozyme (Figure 4-3b). The mutated positions of the 
F1*Um are almost exclusively within the P5 stem-loop, with one mutation at position 76 
close to the ligation site. The robustness of the P5 stem region is consistent with previous 
reports that this region can be replaced with an aptamer sequence or completely remove and 
still retain catalytic activity (Lam and Joyce, 2009; Nomura and Yokobayashi, 2019).  
 

 
 
Figure 4-3: Secondary structure and activity of F1*Um ligase ribozyme. 
a) RA values of F1*Um determined by PAGE and sequencing. PAGE experiments 
were performed in three replicates, and sequencing experiments were performed in 
duplicate. Data are presented as mean value +/− SD. b) Predicted secondary 
structure of F1*Um ligase ribozyme as predicted by ViennaRNA. F1*Um contains 16 
mutations as indicated by position colored in pink. Blue color indicates the other 
variable positions. 
 
Because the F1*U and F1*Um are structurally and functionally neutral, it is possible the two 
variants lie within the same neutral networks and are connected by many accessible 
mutational pathways. In order to confirm this, I generated the complete combinatorial library 
between the two variants containing 65,536 (216) sequences using on-chip oligo pool 
synthesis. High-throughput experimental assay reveals that this combinatorial library has 
much higher density of variants with high relative activity compared to generation 1 which 
explore the local landscape (mostly single and double mutants) around the WT (Figure 4-
4a). Looking at the fraction of neutral mutants using the RA threshold of 0.2, same as during 
the evolutionary process, also shows that the fraction is 0.6 in this library compared to 0.11 
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in generation 1 (Figure 4-4b). Many variants in this library across all Hamming distances 
also have similar RA values to the WT (Figure 4-4c). Because I have a complete set of 
mutational combinations, I can in theory map every possible direct mutational pathway 
between the two variants. However, because the library is so large, mapping every possible 
path (16!) would be computationally intractable. Therefore, I randomly sampled 106 paths. 
Under the strong selection, weak mutation regime, where at each generation the population 
can only gain one mutation which is fixed if the RA is above 0.2, almost 10% of the paths 
sampled would be selectively accessible (Figure 4-4b). Even after increasing the selection 
threshold to 0.6, I still found 39 accessible paths (Figure 4-4d). These results confirmed that 
the variant F1*Um is indeed connected to the WT by an extensive neutral network allowing 
evolution to traverse the landscape without significant loss in activity.  
 

 
 
Figure 4-4: Combinatorial space between F1*U and F1*Um contains many 
neutral mutants and many accessible mutational paths. 
a) The distribution of relative activity (RA) of all sequences in generation 1 compared 
to the combinatorial library (WT/Mut) between F1*U and F1*Um. b) Fraction of 
neutral mutants in the WT/Mut library and in generation 1 according to different 
neutrality thresholds. A total of 106 unique mutational paths were randomly sampled 
that could transform the WT sequence to F1*Um in 16 direct mutational steps. Paths 
were considered neutral if none of the steps resulted in a mutant with RA lower than 
the neutrality threshold. c) The relative activity of all sequences in the combinatorial 
library plotted as a function of Hamming distance from the F1*U wildtype. d) All 39 
paths identified from the 106 randomly sampled paths that maintain RA values 
above 0.6. Each node represents a single mutational step and the opacity of paths 
are varied for better clarity.  
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F1*Um neutral network was predictable by multilayer 
perceptron  
Because of the increased accessibility of this neutral network compared to the rest of the 
landscape, it is possible that the multilayer perceptron (MLP) model could identify the 
F1*Um variants more efficiently by using these paths.  If this is the case, then the original 
model should be able to predict the variants in the combinatorial library with high accuracy. 
To confirm this, I used the original model trained on generation 1 to 7 with no additional 
training to make predictions for the combinatorial library. Using the RA threshold of 0.2 as 
in the original evolutionary regime, the classification accuracy of the model is 0.71, much 
higher than the accuracy for the prediction of generation 8 (0.28 accuracy) (Figure 4-5a). 
The high accuracy of the model despite having only 441 of the mutants within this 
combinatorial library (~0.7%) presented in the training set, suggests that the model was able 
to generalize well to this neutral network. It is also possible that the model overfitted to these 
combinations of mutants as the mutants in the P5 stem regions are particularly well tolerated 
as evident from the first generation of assay. However, the accuracy is higher than the null 
accuracy which is 0.6 (the null accuracy is the accuracy if the model predicts all variants to 
be the majority (positive) class). The model also achieved balanced recall and precisions (F1 
score = 0.77) suggesting that the models are discriminating well between neutral and 
deleterious combinations of mutations even within this particularly well tolerated region. 
The performance of the MLP also remains consistent when evaluated on variants sorted by 
Hamming distance to the WT (Figure 4-5b & c). The improvement in accuracy in this 
combinatorial library could also be attributed to the reduced diversity of this library 
compared to generation 8 (average Hamming distance = 8 vs. 13). 
 

 
 
Figure 4-5: The multilayer perceptron (MLP) model trained on generation 1 to 
7 was able to predict most neutral variants in the WT/Mut combinatorial 
library. 
a) Performance metrics of MLP trained on data from generations 1–7 when used to 
classify the entire WT/Mut library. b) Fraction of neutral mutants at each Hamming 
distance in the WT/Mut library as measured by experimental assay (dark blue). The 
light blue area indicates the fraction of the neutral mutants that was also identified 
by MLP. c) Performance metrics of MLP when evaluated on sequences that are 
binned according to Hamming distance from the wildtype (WT). 
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F1*Um neutral network is less rugged than other regions 
sampled by the evolutionary algorithm 
Predictability of the fitness landscape is largely determined by the level epistasis presents 
(de Visser and Krug, 2014; Bank et al., 2016). Epistasis is the nonlinear effects observed 
when different mutations are combined. High level of epistasis means that mutational effects 
change depending on the genotype background these mutations are introduced, preventing 
prediction of these effects without data of the complete sequence space and the landscape is 
rugged. Smoother landscapes have lower levels of epistasis, meaning that combinatorial 
mutation effects can be predicted by linear combination of individual mutations. Epistasis 
can be categorized in hierarchical order depending on the number of interacting mutations. 
Higher-order epistasis involving three or more mutations have been shown to influence RNA 
landscape ruggedness (Domingo, Diss and Lehner, 2018) and are important to determining 
evolvability and predictability of the landscape. Therefore, I decided to evaluate the amount 
of epistasis in the WT/Mut combinatorial library and landscape surrounding it to assess 
whether a neutral network is more accessible and predictable because of the lower level of 
epistasis or not. In theory, higher-order epistasis can be quantitatively measured if we have 
the complete combinatorial dataset like the one I  have for the F1*Um. However, generation 
1 to 8 is a biased and incomplete sampling of the fitness landscape by the evolutionary 
algorithm. Therefore, direct comparison of higher-order epistasis between the two libraries 
is not possible. A good estimation of level of ruggedness can be achieved, however, by 
looking at the level of pairwise reciprocal sign epistasis (Szendro et al., 2013; Song and 
Zhang, 2021). Pairwise reciprocal sign epistasis occurs when a double mutant and the 
background variant both exhibit lower or higher fitness than their two intermediate single 
mutants (Figure 4-6a). Reciprocal sign epistasis reverses the effects of individual mutational 
effects effectively forming local minima within the evolutionary path. Indeed, this form of 
epistasis has been shown to constrain evolution and is the direct cause of multiple peaks in 
the fitness landscape (Weinreich, Watson and Chao, 2005; Weinreich et al., 2006; Poelwijk 
et al., 2011). Given the effects on ruggedness, I can use the fraction of reciprocal sign 
epistasis to compare the accessibility and predictability between generation 1 to 8 and the 
combinatorial library. 
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Figure 4-6: Reciprocal sign epistasis increases the ruggedness surrounding 
the neutral network. 
a) Illustration of reciprocal sign epistasis involving two genotypes that differ by two 
substitutions (00 and 11). Reciprocal sign epistasis is observed when both the 
reference genotype (00) and the double mutant (11) has higher or lower fitness than 
both intermediate single mutants (01 and 10). This leads to landscape ruggedness 
and can restrict evolutionary paths. b) Fraction of pairwise reciprocal sign epistasis 
in generation 1 to 8 (blue) and WT/Mut library (pink) categorized by the Hamming 
distance of the reference genotype 00 from the WT. Higher fractions indicate higher 
ruggedness of the landscape. 
 
To measure fraction of reciprocal sign epistasis, all 22 subgraphs representing a double 
mutant, its background sequence and two constituent single mutants are searched in both 
libraries. In total 214,068 subgraphs were found for generation 1-8 and all 3,932,160 
possible subgraphs were obtained from the combinatorial library. The Hamming distance 
between each background sequence to the wildtype F1*U was used to assess the level of 
epistasis at each mutational order. The fraction of reciprocal sign epistasis is calculated by 
dividing the number of subgraphs exhibiting reciprocity to the total number of subgraphs 
found at each Hamming distance. The calculations showed that generation 1-8 exhibit higher 
fraction of reciprocal sign epistasis at higher Hamming distance compared to the 
combinatorial library (Figure 4-6b). This suggests that evolution within the region sampled 
by the evolutionary algorithm would be more constrained, while the F1*Um neutral networks 
have smoother paths.  

The epistatic landscape of the F1*Um neutral network is sparse 
with lower-order interactions dominating its predictability 
The results from pairwise epistasis measurement suggest that the neutral network should be 
more predictable using mostly information from lower order mutational effects. To assess 
this possibility further, I decided to calculate the level of epistasis at all orders within the 
neutral network. Mutational effects can be quantified by mapping the RA values of each 
mutant into the log space. In this space, a combination of mutations that increase or decrease 
the activity of the WT will have a log(RA) higher or lower than zero respectively. As 
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mentioned, epistasis is observed when there is a non-linear combination of mutational 
effects. Therefore, the degree of pairwise or second-order epistasis can be calculated by 
measuring the difference between the observed log(RA) of a double mutant and the sum of 
the log(RA) of the two constituent single mutants. To calculate the level of third order 
epistasis, I can take the difference between the observed log(RA) of a triple mutant and the 
sum of all second order epistasis terms and the three constituent single mutant effects (which 
can also be considered the first order epistasis terms). This calculation is visualized in Figure 
4-7a. This calculation can be extended to an arbitrary order of epistasis if there is a 
combinatorial complete dataset. For the F1*Um neutral network, I can calculate the epistasis 
level up to 16th order. The calculation for an arbitrary order of epistasis can be generalized 
as a Walsh-Hadamard (WH) transform (Figure 4-7b). This transformation essentially 
performs the same calculation as outlined above except that for each order of epistasis, 
instead of calculating the epistatic terms relative to one background, the WH transform 
averages these terms across all genotype backgrounds. These background-averaged epistatic 
terms are more informative than using a single reference method because they show epistatic 
terms that have the strongest effects across all backgrounds. Another important feature of 
the WH transform is that it is a linear operation that converts RA values into the non-additive 
effects of mutations or epistatic terms. This operation can be inverse to retrieve the RA 
values back from the epistatic values. By controlling which epistatic terms are used for these 
reconstructions, I can assess the influence of epistatic terms on the predictability of the whole 
landscape. 
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Figure 4-7: Visual diagram of the Walsh-Hadamard transform for the analysis 
of arbitrary order of epistasis. 
a) These schematics are adapted from (Poelwijk, Krishna and Ranganathan, 2016) 
and shows the mutational effects relative to a single background genotype. First 
order epistasis (E1) is equal to the effects of a single mutation on the reference 
genotype as denoted by the pink arrow. Second order epistasis (11) equal the 
double mutational effects minus the sum of the two single mutational effects (01 and 
10) in the log space. This calculation can be extended to third and higher order 
terms if there is a complete combinatorial data available. b) This schematic, adapted 
from (Weinreich et al., 2013), shows the calculation of third order epistasis using a 
Walsh-Hadamard transform. A Hadamard matrix can be constructed for any 
sequence of length, L and can be multiplied by the fitness vector, W (this example 
shows the thermal stability of an avian lysozyme from (Malcolm et al., 1990).) which 
is sorted according to the binary string order of each mutant. The resulting product 
vector can be normalized by the number of total possible interactions, 2L to derive 
the matrix of epistatic terms, E.  
 
Applying the WH transform on the F1*Um neutral network reveals that the strongest epistatic 
terms are mostly lower-order ones (Figure 4-8a). The mean squared magnitude of epistasis 
is higher for epistatic terms with order 1 or 2 away from the WT or F1*Um. The magnitude 
of epistatic effects in the order 6 to 9 are lower suggesting that on average, higher-order 
epistatic effects are weaker in this neutral network. However, the deviation of magnitude 
within most epistatic orders is high suggesting that the neutral network is governed by a few 
key epistatic terms across all orders. To assess the contribution of lower order epistasis to 
the topography of the neutral network, I reconstructed the RA values by applying the inverse 
transform to the epistatic terms, with all terms higher than second order set to zero. The R2 
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between the reconstructed RA and the observed RA values is 0.54 (Figure 4-8b), indicating 
that over half the landscape can be reconstructed from first and second order epistasis alone. 
Repeating this analysis by successively increasing the order of epistatic terms being included 
reveals the contribution of higher-order epistasis. Although in theory there could be epistasis 
up to the 16th order, only epistasis up to the 7th order is needed to achieve almost perfect 
reconstruction of the neutral network (Figure 4-8c). Measuring epistasis up to the 7th order 
would be intractable for most experimental set-ups. However, relatively accurate prediction 
of the neutral network can be achieved by analyzing only the 3rd or 4th order background-
averaged epistatic terms. In fact, only the 3rd order terms were required to achieve an 
accuracy like that of the current MLP model (R2 ≈ 0.72). Earlier studies have shown that 
fitness landscapes can be encoded into sparse background-averaged interaction terms and 
can be determined from a small fraction of key mutational interactions (Poelwijk, Socolich 
and Ranganathan, 2019). Similarly, my results showed that the topography of this neutral 
network is largely encoded within lower-order background-averaged interaction terms with 
a few higher-order terms possessing stronger magnitude than the rest. Other studies have 
leveraged this sparsity alongside knowledge from the field of compressed sensing (CS) to 
better predict fitness values from small sample sizes (Poelwijk, Socolich and Ranganathan, 
2019; Aghazadeh et al., 2021). In my algorithm, successive rounds of selection, 
recombination, and mutation could potentially facilitate this process without the knowledge 
of the complete landscape. By retaining mutational combinations that were persistently 
neutral after rounds of diversification, MLP could learn which combinations of mutational 
effects remained significant in different genetic backgrounds. These and earlier results 
suggest that learning background average epistatic terms from a sparse dataset could be a 
promising direction for the field of landscape predictability. 

 
 
Figure 4-8: Higher order epistasis is prevalent in the WT/Mut library. 
a) The magnitude of backgrounds averaged epistasis (could be positive or negative) 
calculated by the Walsh-Hadamard transform plot as mean squared values as 
categorized by their epistatic order. The error bars represent standard deviation 
calculated from terms at each order. b) The ln(RA) as measured by the sequencing 
assay plotted against the expected ln(RA) that is calculated by inverse Walsh-
Hadamard transform using only the first and second-order background averaged 
epistatic terms while all other terms are set to zero. R2 indicates the coefficient of 
determination between the two values. Pink line indicates perfect agreement. c) 
Coefficients of determination (R2) values between the observed ln(RA) and the 
expected ln(RA). Expected ln(RA) was calculated at each step by cumulatively 
adding background averaged epistatic terms of successively higher order. For each 
step, R2 scores were calculated using all the variants in the library. The fraction of 
all epistatic terms used to calculate the expected ln(RA) at each step is shown by 
the pink line. 
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Evolution along the neutral network increased mutational 
robustness of the F1*Um P5 stem 
Theoretical (van Nimwegen, Crutchfield and Huynen, 1999; LaBar and Adami, 2017) and 
experimental (Bloom, Lu, et al., 2007; Bershtein, Goldin and Tawfik, 2008) evidence has 
suggested that evolution along a neutral network will lead to the center of the network, 
corresponding to regions with increased mutational robustness. I suspected that the F1*Um 
variant evolved by an algorithm that are programmed to accumulate neutral mutations would 
also exhibit increased mutational robustness. A common measure of mutational robustness 
is to count the number of single neutral mutants of a genotype. With the capacity of my 
assay, I could go beyond this and measure mutational robustness for higher mutational order. 
Therefore, I generated all single, double and some triple mutants of the F1*Um and measured 
their activities using the sequencing assay. Because this dataset is equivalent to generation 
1 dataset for the wildtype F1*U, I can directly compare the mutational robustness between 
the two variants. A better way to measure the mutational robustness for a dataset with 
multiple mutations is to fit the data to the directional epistasis model (Wilke and Adami, 
2001). In this model, the fraction of neutral mutants is fitted as a function of Hamming 
distance to the reference sequence (WT or F1*Um) with the parameter α and β which are 
mutational robustness and directional epistasis respectively. (See Methods) The fitted α 
showed that both variants exhibited similar mutational robustness (Figure 4-9a). And the 
fitted β are greater than 1 for both, indicating an excess of negative epistasis. The excess of 
negative epistasis is consistent with analysis of previous experimental studies of the fitness 
landscape (Bendixsen, Østman and Hayden, 2017). However, the α parameters for both 
ligase ribozymes are lower than for the other natural ribozyme landscape reviewed by 
Bendixsen et al. A possible explanation was given in the study which suggests that artificial 
ribozymes such as the ligase ribozyme might not have been extensively evolved to increase 
mutational robustness which could be the predominant properties selected for by natural 
evolution. This is supported by the fact that similar α values were obtained in computational 
studies of predicted RNA secondary structure (Wilke, Lenski and Adami, 2003). The 
consistency between the structural model and the artificial ligase ribozyme robustness 
supports this theory. 
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Figure 4-9: The P5 stem of F1*Um has higher mutational robustness than the 
wildtype ribozyme. 
a) The fraction neutral mutants at each Hamming distance from the wildtype 
calculated from assay data of the local landscape around F1*U and F1*Um. The 
directional epistasis model ( ) was fitted to the data using the nonlinear 
least square method. Small decay parameter α indicates higher mutational 
robustness. Parameter β indicates the strength and direction of epistasis. β greater 
or less than 1 indicate an excess of negative or positive epistasis respectively. When 
β is equal to 1, there is a balance of epistasis in both directions or there is no 
epistasis. b) The fraction of neutral mutants calculated from variants with mutations 
only in the P5 stem (position 52 to 63 in the ligated ribozyme) for both F1*U and 
F1*Um. c) Heatmap showing the relative activity of double mutants with mutations 
in the P5 stem for F1*U (lower triangle) and F1*Um (upper triangle). 
 
However, plotting the double mutant heatmap of the F1*Um shows that the P5 stem 
regions seem to be more tolerant to single and double mutation than the wildtype (Figure 
4-9b & c). Indeed, plotting the fraction neutral mutants within this P5 stem loop shows the 
fraction is higher for F1*Um than for the wildtype (Figure 4-9b). Most of the mutations 
acquired by the F1*Um are contiguously located within the P5 region, suggesting that this 
variant has acquired localized mutational robustness. Looking at the base-pair probabilities 
of the F1*Um, I can see that the secondary structure of this variant is less stable than the 
WT (Figure 4-10a). The destabilization of the structure could explain why the F1*Um 
variant has a lower activity than the WT. The dot plot also shows several possible 
alternative base-pairing around the P4 and P5 stem (Figure 4-10b). The overall mutational 
robustness of the P4 and P5 stem region might also be explained by the observation that 
many of the alternative structures within this region could form without disrupting the P3 
and P2 stems. This offers many alternative structural pathways that could maintain the 
overall catalytic activity of the ribozymes suggesting a possible explanation for the 
existence of a highly connected neutral paths between the WT and F1*Um. The localized 
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nature of mutational robustness and the high connectivity of this region suggest that the P5 
stems could potentially act as a starting region for evolutionary innovation. Previous 
studies of Azoarcus ribozymes have demonstrated similar effects where mutations are 
accumulated to localized modules within the ribozyme structure (Hayden, Bendixsen and 
Wagner, 2015). This study suggests that the structural module can act as a mutational 
buffer and accumulate cryptic neutral mutations which could prepare the ribozyme for 
rapid adaptation or innovation upon environmental changes. These results coupled with the 
lack of large neutral network observe so far for ribozymes with mutation across the whole 
structure (Bendixsen et al., 2019) suggest that expansion of small local motif rather than 
sudden global structural changes might be a more effective strategy for evolutionary 
innovation and adaptation (Popović et al., 2021). 
 

 
 
Figure 4-10: Base-pair probabilities of the F1*Um ligase ribozyme.  
a) Base-pair probabilities were calculated using RNAfold WebServer and is 
overlayed as a colormap on the minimum free energy structure. B) Dot plot of the 
F1*Um ligase ribozyme secondary structure with the lower triangle showing the 
minimum free energy structure and the upper triangle showing the probability of all 
possible base pairs with the area of each dot proportional to the pairing probabilities. 
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Conclusion 
The absence of large-scale neutral network in global mapping of fitness landscape combined 
with the evidence of neutral network in a confined structural region presented in this chapter 
suggests that global network of direct mutational paths might not be the primary mechanism 
for adaptation and innovation in RNA evolution. Fitness landscape theory, although an 
elegant way to visualize evolution, is too simplistic and in the era of high-throughput 
experimental methods might be too limited for the study of evolution. The biomolecular 
sequence space is too high dimensional to be thought of as a 3-dimensional mountainous 
landscape. Greenbury et al. recently showed that the accessibility of functional genotype 
increases as a function of landscape dimensionality which they defined as the proportion of 
mutable sites in a given length of sequence (Greenbury, Louis and Ahnert, 2022). They 
showed that mutational bypass, indirect alternative mutational paths, could enable evolution 
to navigate around fitness valley enabling fitness peaks to be reached from almost any point 
within the landscape. However, like earlier works, they have only investigated the predicted 
secondary structure map of RNA. Mutational bypass has been observed in experimental 
sequence-function maps (Wu et al., 2016) but little works have been done trying to reconcile 
experimental evidence with theoretical study. Real evolutionary processes and properties 
such as dynamic selective environments (Hayden and Wagner, 2012; Steinberg and 
Ostermeier, 2016; Peri et al., 2022), insertion/deletion (Martin and Ahnert, 2021) and 
recombination (Klug, Park and Krug, 2019) have all been theoretically implicated in 
increasing fitness landscape navigability. Furthermore, natural evolution of RNA sequences 
have been suggested to follow a compensatory evolution model (Kimura, 1985). Because 
maintaining the base pair structure is important for RNA function, any single substitution on 
one of the paired residues is thought to be very deleterious. Under this scenario, RNA 
evolution will primarily act on the level of secondary structure and compensatory 
substitutions occurred simultaneously or sequentially through a G-U intermediate (Zhang et 
al., 2020). Subsequently, strong reciprocal sign epistasis, observed when substitutions occur 
independently in the paired regions, will have a weaker effect on evolutionary trajectories 
(Chen et al., 1999). Therefore, RNA fitness landscape such as the one explored in this study 
could appear more neutral with more accessible paths if mutations are restricted to only 
compensatory substitutions. Although this scheme seems too stringent, the observation that 
genomic RNA sequence are much more conserved at the secondary structure level than at 
the primary sequence level suggests that natural evolution also follows this mechanism 
(Dutheil, Jossinet and Westhof, 2010). The combination of genetic operators with high 
throughput DNA synthesis, sequencing and experimental assay presented in this study could 
be used to systematically study all these mechanisms on real sequence-function maps. The 
approach presented here provides an important starting point towards a shift in the study of 
fitness landscape from simplistic low dimensional landscape to complex multidimensional 
landscape that better reflects the dynamic process of natural evolution. Adaptation and 
innovation on fitness landscape underlies so many important biological phenomena that 
better studies of these processes could lead to new understanding in a wide range of fields, 
from viral evolution (Koelle et al., 2006) to drug resistance in cancer (Shaffer et al., 2017). 
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Methods 

Robustness Calculation 

Equation  was fitted using the nonlinear least-squares curve fitting function 
in the SciPy Python library. ω(n) is the fraction of neutral mutants (RA ≥ 0.2) at Hamming 
distance n from the reference sequence (WT or F1*Um). α is the decay parameter, where a 
lower α indicates higher mutational robustness. β is the strength of directional epistasis. 
When β > 1, there is an excess of negative epistasis, when β < 1 there is an excess of positive 
epistasis. If β is equal to one, there is a balanced mix of positive and negative epistasis, or 
there is no epistasis. 

Estimation of the fraction of reciprocal sign epistasis 
For generations 1–8 and the WT/Mut library, I separately identified all unique pairs of 
mutants that differed by two substitutions. Of these, pairs of mutants in which both 
intermediate single mutants were present in the dataset were retained. For each pair of 
sequences, reciprocal sign epistasis was identified if both the RA values were higher or lower 
than those of the intermediate single mutants. For each set of sequences, the sequence with 
the lowest Hamming distance to the WT was used as the reference sequence. This was only 
used to measure reciprocal sign epistasis at each mutational step (Hamming distance) from 
the WT. The identification of reciprocal sign epistasis is not affected by the choice of the 
reference sequence. The fraction of reciprocal sign epistasis was calculated by dividing the 
number of reciprocal sign epistasis by the total number of 22 genotype subgraphs identified 
at each Hamming distance from the WT. 

Analyzing epistasis within a combinatorial complete landscape 
A combinatorial complete landscape consists of 2N possible variants with N being the 
number of mutable sites. In the case of the WT/Mut library, this equaled 65,336 possible 
combinations for 16 mutations (216). Each variant can be represented as a 16-bit binary with 
1 or 0 as each digit, indicating the presence or absence of each mutation. The ln(RA) value 
of each variant can be sorted according to the binary order to give vector w. To calculate the 
background-averaged epistatic terms, eavg I use the equation eavg = VHw. H is the Hadamard 
matrix which can be defined recursively as: 

 

(1) 

V is a weighting matrix that can be defined recursively as: 
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(2) 

Multiplying w by VH yields the weighted Walsh–Hadamard transform of the ln(RA) values. 
w can be reconstructed from eavg by multiplying with the inverse of the matrix VH. (w = 
(VH)-1eavg) More detailed explanations of the theory can be found in (Poelwijk, Krishna and 
Ranganathan, 2016).  

Experimental measurements of ribozyme activity 
The same experimental protocols were used as described in chapter 2 Methods section. The 
reproducibility between sequencing repeats and between sequencing and PAGE are shown 
in Figure S4-1 for the WT/Mut library and in Figure S4-2 for the F1*Um local landscape 
library. 
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Chapter 5: Conclusion and outlook 
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Fitness landscape was first used to describe the relationship between the phenotype and 
genotype and how it influences evolutionary processes and trajectories. Molecular biologists 
adopt this concept to study how sequence of protein, DNA and RNA influences its function. 
This sequence-function relationship has been used as a roadmap for a wide range of studies 
such as designing new and better enzymes or predicting gene expression level. Fitness 
landscape provide an elegant way to reconcile many properties that influences how a 
biomolecule will behave upon changes in its sequences. The multidimensionality of the 
genotype space and our own limited understanding in the navigation of this kind of space 
means that early description of fitness landscape is necessarily simplistic with smooth 
surface and ridges connecting fitness peaks. However, it has become increasingly evident 
that this framework is too simplistic to capture the complexity of evolutionary process 
especially in this new high-throughput era. Throughout this thesis, I used RNA, specifically 
a ligase ribozyme, to highlight how sparsity, epistasis and high dimensionality of the 
sequence space can lead to frustrated navigation process during artificial and natural 
evolution. However, this frustration only holds true if evolution can only proceed in forward 
direction along smooth ridges within the landscape. But this regime is simply not true in 
many realistic evolutionary systems. High-dimensional sequence space increases 
connectivity of mutational paths (Greenbury, Louis and Ahnert, 2022), changing selection 
and recombination enables fitness valley crossing (Steinberg and Ostermeier, 2016; Klug, 
Park and Krug, 2019), cryptic mutation enabling rapid adaptation (Hayden, Ferrada and 
Wagner, 2011), these are some of the many processes natural evolution can utilize to 
efficiently navigate the seemingly rugged terrain of the fitness landscape. Under this view, 
ruggedness might not be a natural property but stem from oversimplification of the 
experimental and theoretical tools used by the field to investigate and understand the fitness 
landscape. Therefore, I have presented in this thesis a new set of tools that are informed by 
experimental data and reflect the dynamic quality of real evolutionary processes. 
 
In chapter 2, I showed that computational genetic processes specifically, selection, mutation 
and recombination can successfully navigate functional regions within the ligase ribozyme 
sequence space. The customizability of the oligo pools and the information provided by the 
high-throughput assay can be used to adjust the parameters of these computational processes 
for adaptive navigation that can be used to investigate evolution under multiple conditions. 
Furthermore, in chapter 3, I showed that the experimental limitation imposed by the 
combinatorial explosion of the sequence space can be potentially overcome by data driven 
computational model such as deep learning.  I showed that deep neural network model 
trained on experimental data can accurately predict the activity of unseen ribozyme 
sequences. I then showed that this predictive model can be used to guide evolutionary 
algorithm towards new functional regions. Finally in chapter 4, I showed that the machine 
learning-guided computational evolution followed neutral mutational pathways towards 
regions of higher robustness. I experimentally confirmed that the mutational paths explored 
by this process form a large connecting network of neutral paths. This is the first large scale 
experimental evidence of such a network. Altogether, I presented a novel hybrid approach 
combining high-throughput experiments with data-driven computational model and 
experimentally showed that this approach can lead to discovery of new evidence for an 
important theoretical property of the fitness landscape.  
 
I believe that this work will serve as inspiration and guide the development of similar 
approaches that will employ even more advanced computational model coupled with better 
experimental methods. Future works could develop a machine learning algorithm with better 
capability by incorporating known biological priors such as sparsity of epistasis (Aghazadeh 
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et al., 2021) or RNA structure (Schmidt and Smolke, 2021). The customizability and 
adaptability of the experimental method presented here would easily enable design of the 
model and experiments to be done in a synergistic manner. Training and testing dataset could 
be designed and collected in a way that ensure good generalization by the model for a given 
task. When the model is deployed, the experiments could also be adjusted to collect data that 
will maximize the model performance and correct the model’s mistakes in an active learning 
approach (Borkowski et al., 2020; Hie, Bryson and Berger, 2020; Greenhalgh et al., 2021). 
These methods could lead to the understanding of many more unanswered questions about 
the nature of fitness landscapes. For instance, is there a relationship between the size of the 
sequence space and the emergence of neutral network or how duplication or recombination 
influence the accessibility of such network from distant regions. I envisioned that systematic 
evaluation of real fitness landscape using data-informed strategy will be the key to answering 
these and many more questions about evolution, one of, if not the most important process in 
the natural world. 
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Chapter 2 
 

 
 
Figure S2-1: Reproducibility of sequencing assay for generation 1 to 8. 
Two independent experimental assays of ribozyme activities were performed for 
each generation. Relative activity (RA) values calculated in each repeat are 
compared by the square of Pearson's correlation coefficient (r2) values. 
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Figure S2-2: Overview of the algorithm used to design generation 2 to 5. 
In this algorithm, selected parents undergo both crossover and mutation to produce 
the offspring. 
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Name Sequence (5’ to 3’) 
Ligase-lib-f CCTAATACGACTCACTATAGAGACCGCA 
Ligase-lib-r GCCTTTTGCTTCTACGTGCAGAA 
F1*subA GAGACCAAGAAACGUGCAGAAA 

R1-bc5-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCTCGC
CTTTTGCTTCTACGTGCA 

R1-bc6-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAACGGG
CCTTTTGCTTCTACGTGCA 

R1-bc7-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACGCAG
GCCTTTTGCTTCTACGTGCA 

R1-bc8-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTTATTATGC
CTTTTGCTTCTACGTGCA 

R1-bc9-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTACTT
TGCCTTTTGCTTCTACGTGCA 

R1-bc10-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGGATAG
CCTTTTGCTTCTACGTGCA 

R1-bc11-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTGAAGC
CTTTTGCTTCTACGTGCA 

R1-bc12-F1-lig ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATATCC
GCCTTTTGCTTCTACGTGCA 

R1-f2 ACACTCTTTCCCTACACGACGCTCT 

R2-F1-lig GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAGACC
GCAACTGAAAAGTTG 

TruSeq-i7-UDI0004 CAAGCAGAAGACGGCATACGAGATTTGGACTTGTGACTGG
AGTTCAGACGTGTG 

TruSeq-i5-UDI0004 AATGATACGGCGACCACCGAGATCTACACTATGAGTAACA
CTCTTTCCCTACACGACGC 

TruSeq-i7-UDI0005 CAAGCAGAAGACGGCATACGAGATCAGTGGATGTGACTGG
AGTTCAGACGTGTG 

TruSeq-i5-UDI0005 AATGATACGGCGACCACCGAGATCTACACAGGTGCGTACA
CTCTTTCCCTACACGACGC 

TruSeq-i7-UDI0006 CAAGCAGAAGACGGCATACGAGATTGACAAGCGTGACTGG
AGTTCAGACGTGTG 

TruSeq-i5-UDI0006 AATGATACGGCGACCACCGAGATCTACACGAACATACACA
CTCTTTCCCTACACGACGC 

 
Table S2-1: List of oligonucleotides and primers used in this study. 
This table lists the name and sequences of oligonucleotide primers used for 
experimental procedure in this study including library construction, reverse 
transcription and sequencing. The role of each primer is described in the Methods 
section of their corresponding chapter. 
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Figure S2-3: Overview of the algorithm used to design generation 6 and 7. 
In this algorithm, the offspring population is made up of purely recombined variants 
and recombinants or selected parents that have also undergone point mutation. In 
generation 7, the offspring population consists only of mutants that are predicted to 
be functional by a multilayer perceptron (MLP) model that was trained on data from 
generation 1 to 6. 
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Name Sequence (5’ to 3’) 

Template CCTAATACGACTCACTATAGAGACCGCAACTGAAATAG 
TTG [catalytic core] TTTCTGCACGTAGAAGCAAAAGGC 

M01 GATCACTTGTCGTAAGACACTGTGGATGGGTCGAA 
M02 GATCACTTGTCGTCAGACACATTGGATGGGTTGAA 
M03 GATCACTTGTCGTGAGGGACTTTGGATGGGTTGAA 
M04 TATCACTTGACGTCAGACACTTTGGATGGGTCGAA 
M05 GATCACTTGTCGCACGACACTCTGGATGGGTTGAA 
M06 GATCACTTGTCGTAAAGCACTTTGGATGGGTTGAA 
M07 TATCACCTGTCTTAAGACATTTTGGATGGGTTGAA 
M08 TATCACTTGCCTTAAGACATTTTGGATGGGTTGAA 
M09 GATCACTTATCGGATGATACTTTGGATGGGTTGAA 
M10 TATCACTTGCCTTCGGTCACTTTGGATGGGTCGAA 
M11 TATCTCTGGTATTATGACACTATGGATGGGTTGAA 
M12 GATCACAGGTCGGCAGACTCAATGGATGGGTTGAA 
M13 TATCTCAGGTGGTTAGACGCTTTGGATGGGTCGAA 
M14 GATCACAGGTCCTACGATACTATGGATGGGTTGAA 
M15 TATCACTTGTCTTACGACACTATGGATGGGTTGAA 
M16 GATCACTTGTCGTTAGGCACTTTGGATGGGTTGAA 
M17 GATCACTTGTCTTCAGACACTTTGGATGGGTTGAA 
M18 GATCACTTGTCGTTATACACTTTGGATGGGTTGAA 
M19 TATCACTTGTCGTAGAATACAATGGATGGGTTGAA 
M20 TATCACTTGCCGTATGACACTGTGGATGAGTAGAA 
M21 GATCACTTGTCGTATGACACTTTGAATGGGTTGAA 
M22 TATCACTTGTCGAAAGACACTTTGGATGGGTTGAA 
M23 TATCACTTGTCATAAGACACTTTGGATGGGTTGAA 
M24 GATCACTTGGCGTAGGACACTTTGGATGGGTTGAA 
M25 TATCACTTGTCGTACGACACTTTGGATGGGTTGAC 
M26 TATCACTTGTCGTCGGGCACTTTGGATGGGTTGAA 
M27 TATCACTTGTCGAAGGACACTTTGGATGGGTTGAA 
M28 TATCACTAGTCGTAAGACTCTTTGGATGGGTTGAA 
M29 GATCACTTGTTGAAAGACACTTTGGATGGGTTGAA 
M30 TATCACTTGCCGTAAGACAGTTTGGATGGGTTGAA 

WT F1*U TATCACTTGTCGTAAGACACTTTGGATGGGTTGAA 
F1*Um TATCACAGCGTTTTGACGGTAATGGATGGGTCGAA 

 
Table S2-2: Sequences of the variants that were individually assayed by 
PAGE. 
Each mutant is synthesized with the catalytic core in template replaced by the 
listed mutant sequences. Two oligos are synthesized with overlapping region and 
template is synthesized through anneal and extend PCR.  
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Generation Tournament 
size 

Number of 
parents 

Number of pure 
recombinants 

Number of 
mutants 

Population size 
(Number of 
offspring) 

1 N/A N/A N/A N/A 10000 

2 300 200 N/A N/A 2000 

3 300 200 N/A N/A 2000 

4 300 200 N/A N/A 4000 

5 300 200 N/A N/A 6000 

6 300 200 4000 2000 6000 

7a 50 1000 8000 2000 10000 

7b 50 1000 800 200 1000 

7c Generated by shuffling generation 7b 1000 

Computational 
evolution 32 1000 4800 1200 6000 

8 32 1000 9600 2400 12000 

 
Table S2-3: List of parameters used to design the genetic algorithms 
employed in this study. 
The parameters were varied for each generation of sequence design to reflect 
different stages of fitness landscape exploration and algorithms evaluation. More 
detailed explanation of the choice of parameters can be found in each chapter.  
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Chapter 3 

 

 
 
 
Figure S3-1: Overview of the algorithm used to design generation 8. 
Generation 8 was designed by 100 rounds of computational selection, mutation, 
recombination and multilayer perceptron (MLP) model classification. The MLP 
model was trained by data from generation 1 to 7. After computational evolution, the 
final population was selected by ensuring all variants are classified as neutral by the 
MLP.  
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Logistic/Linear regression 

Hyperparameter Range 

Learning rate 0.01,0.001,0.0001 

Batch size 32,64,128 

Multilayer perceptron 

Hyperparameter Range 

Learning rate 0.01,0.001,0.0001 

Batch size 32,64,128 

Hidden units per layer 32, 64, 128 

Number of layers 1, 3, 5 

Convolutional neural network 

Hyperparameter Range 

Learning rate 0.01,0.001,0.0001 

Batch size 32,64,128 

Number of filters in 1D convolution layer 32, 128 

Number of 1 D convolution layer 1 , 2 

Width of convolution kernel 3, 6 

 
Table S3-1: Range of hyperparameters tuned by grid search for neural 
network. 
Logistic/Linear regression, multilayer perceptron (MLP) and convolutional neural 
network (CNN) were designed using grid search of the hyperparameters listed in 
this table. More detailed description of the tuning procedure can be found in the 
Methods section of Chapter 3. 
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Figure S3-2: Training and evaluation of multilayer perceptron (MLP) model. 
Model was trained on a total of 26,374 variants and 2,930 variants were used for 
validation at the end of each epoch. Training was conducted for 100 epochs and 
tracked by a) binary cross-entropy loss b) area under curve (AUC), c) precision 
and d) recall. e) Precision and recall of each fold during 10-fold cross validation on 
a total of 41,863 variants from generations 1–7. 
 
 
 



 
 

 100 

 
 
Figure S3-3: Computational evolution of generation 8. 
During the MLP-guided computational evolution, the mean Hamming distance and 
percentage of the population predicted to be neutral by MLP were tracked after 
each generation. In generation 100, the variants were picked only if predicted to 
be neutral by the MLP. 
  



 
 

 101 

 

 
 
Figure S3-4: Reproducibility between sequencing assay and PAGE for 
generation 7 and 8. 
The PAGE measured RA is compared with the RA measured using the sequencing 
method. The data points are presented as mean values +/− SD with n = 3 for the 
PAGE values and n=2 for sequencing values.  
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Chapter 4 
 

 
 
Figure S4-1: Reproducibility of WT/Mut combinatorial library. 
a) Reproducibility of RA calculated by two independent sequencing experiments. 
b) Correlation between RA values from sequencing and PAGE assays. Data are 
presented as mean values +/− SD with n = 3. c) RA values of 441 variants 
screened in both WT/Mut library and generations 1 to 8. 
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Figure S4-2: F1*Um Reproducibility of F1*Um combinatorial library. 
a) Reproducibility of RA calculated by two independent sequencing experiments. 
b) Correlation between RA values from sequencing and PAGE assays. Data are 
presented as mean values +/− SD with n = 3. 


