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Abstract 

Proteins are the fundamental macromolecules within a cell that carry out most of the biological 

functions. The computational study of protein structure and its functions, using machine learning 

and data analytics, is elemental in advancing the life-science research due to the fast-growing 

biological data and the extensive complexities involved in their analyses towards discovering 

meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we 

extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in 

proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex 

interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop 

machine learning based effective tools to predict disordered protein, its properties and dynamics, 

and interaction paradigm by systematically mining and analyzing large-scale biological data.  

In this dissertation, we propose a robust framework to predict disordered proteins given 

only sequence information, using an optimized SVM with RBF kernel. Through appropriate 

reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. 

Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein 

residues, a useful structural property that defines protein’s exposure to partners, using regularized 

regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of 

this research, we then introduce a novel method to extract position specific energy (PSEE) of 

protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. 

PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a 

protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the 

peptide-protein transient interactions that involve the induced folding of short peptides through 

disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors 

is developed to identify the residue-patterns of Peptide-Recognition Domains from protein 

sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-

translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using 

the stacked generalization ensemble technique. The involved biologically relevant case-studies 

demonstrate possibilities of discovering new knowledge using the developed tools. 

 

Machine Learning; Large-Scale Data Analysis; Bioinformatics; Intrinsically Disordered Protein; 

Predictor Framework; Protein-Protein Interaction
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Chapter 1 

Introduction  

Proteins, made up of smaller units called amino acids, are the fundamental macromolecules within a cell 

that carry out most of the biological functions and regulations according to the information encoded in the 

genes. Proteins are responsible for nearly every task of cellular life, including cell shape and inner 

organization, product manufacturing, waste cleanup, and routine maintenance. Proteins also receive signals 

from outside the cell and mobilize an intracellular response. They are the workhorse molecules of the cell 

and perform diverse set of functionalities. Proteins act as enzymes that carry out almost all of the chemical 

reactions that take place in cells as well as assist with the formation of new molecules by reading the genetic 

information stored in deoxyribonucleic acid (DNA). Moreover, they may bind to specific foreign particles, 

such as viruses and bacteria to help protect the body as antibodies. Proteins may serve as hormones, which 

transmit signals to coordinate biological processes between different cells, tissues, and organs, and as 

transcription factors that guide the differentiation of the cell and its responses to signals, and participate in 

the formation of tissues and muscular fiber.  

It is widely believed that the protein structures play key roles in determining their functions [1]. 

However, in the first place, the way to know the structure experimentally is extremely labor intensive, and 

sometimes it is even impossible to determine the structure of a protein. Besides, there exist protein 

sequences in nature that do not adopt well-defined stable three-dimensional (3D) structure under normal 

physiological environments in vitro, however actively participate in molecular recognition functions [2]. 

As the distinct sequence of amino acids encode all the information about the three-dimensional 

conformation to express its functions [3], it becomes essential, as an alternative way, to design effective 

computational methods that can map the protein sequence to its structural properties, which is one of the 

major focus of the thesis. The research carried out in this thesis, not only effectively maps protein’s primary 
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sequence to its structure, but also identifies the disordered (or unstructured) component, which helps explain 

complex interaction within a cell that was otherwise obscured.  

Proteins are often described as the building block of smaller substructures in a hierarchical manner. 

Based on the various level of conformational complexities, the proteins are defined in four different levels: 

(1) Primary structure: It is the simplest level of protein structure and is the linear sequence of amino 

acid residues in a polypeptide chain. The sequence of a protein is encoded by the base-pair pattern of the 

gene of a DNA. A single nucleotide change in the DNA sequence may lead to a change in the amino acid 

sequence of the protein, and subsequently may alter the structure and function of the corresponding protein. 

(2) Secondary structure: The local conformation of protein structures is determined by the pattern of 

hydrogen bonds in the biopolymer. There are three types of major secondary structures, known as alpha-

helix, beta-pleated sheet sand coils (or loops), having different pattern of hydrogen bond between carbonyl 

and amino groups. 

(3) Tertiary structure: This is the overall three-dimensional structure of a polypeptide. The formation 

is primarily due to the interactions between the side chains (known as R groups) of the amino acids that 

make up the protein. Side chain interactions that contribute to tertiary structure include hydrogen bonding, 

ionic bonding, dipole-dipole interactions, and van der Walls forces. Moreover, a net force that determines 

the core of the 3D structure is the hydrophobic effect by which hydrophobic R groups cluster together on 

the inside of the protein, leaving hydrophilic amino acids on the outside to interact with surrounding water 

(solvent) molecules. 

(4) Quaternary structure: It is made up of multiple polypeptide chains, formed as a result of hydrogen 

bonds between multiple proteins as subunits. The interaction between multiple chains in a complex is the 

primary determinant of the signal transmission and reception within a cell.  

However, there is another important class of proteins that do not adopt a stable structure in vitro, called 

Intrinsically Disordered Proteins. The critical property of disordered proteins or regions in proteins is that 

they can undergo conformational changes in the presence of an appropriate binding partner. Thus, in the 

bound state, disordered protein regions can transiently interaction with globular partner proteins and can 

participate in crucial functions related to pathogenesis. Fig 1 shows a sample illustration of the hierarchy 

of protein structures as well as the unstructured or disordered state of proteins.   
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(a) Protein Primary Structure 

 
(b) Protein Secondary Structure – helix and beta 

 
(c) Protein Tertiary Structure 

 
(d) Protein Quaternary Structure 

 
(e) Protein Disorder State 

Fig 1. Different levels of protein structures and unstructured state. (a) Primary structure, linear sequence 
of amino acid residues. (b) Two secondary structure types, helix (red) and beta sheets (yellow), 
created by different hydrogen bond pattern. (c) Tertiary structure, the tree dimensional state of protein 
(d) The quaternary structure, complex of two protein chains (cyan and green). (c) The disordered 
state (random coil-like) of a protein. 
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In this thesis, we focus on predicting different structural properties of protein residues from protein 

sequence alone via machine learning approaches, ranging from protein disorder prediction and protein 

accessible surface area prediction to identification of binding regions in proteins that interact with other 

proteins (specifically, short peptides) in a complex. Another major contribution of this thesis is to extract 

energy-like quantities from protein sequence anole that can characterize the structural stability of protein 

residue, hence can serve as critical feature for protein structure and interaction prediction. 

1.1 Thesis Overview 

With the exponential growth of proteomic data and the enormous complexities involved in their modeling, 

bioinformatics becomes essential for the management and mining of biological data in modern biology, 

medicine and drug discovery. Development of computational tools demands expertise from several core 

dimensions of computer science discipline, such as i) Data Science in data collection, mining and 

preparation, ii) Scientific Computing to extract useful knowledge from large sets of data and mathematically 

quantify the knowledge as characteristics features, iii) Machine Learning to develop of novel algorithms to 

model the data using features, and iv) Statistical and Probabilistic Analysis to empirically evaluate the 

model by comparative analysis and visualize the outputs. Over the course of this thesis, we have developed 

and implemented several tools to predict structural properties of proteins from its sequence using the above-

listed areas of expertise. 

1.2.1 Statement of Research Problem 

The three-dimensional structures of proteins have the major association with their functional activities [1, 

4]. Proteins may misfold when exposed to extreme conditions, however, many protein regions and some 

entire proteins do not adopt well-defined three-dimensional (3D) structures in an isolated state and under 

physiological condition [5-7]. These proteins or partial regions of proteins are called intrinsically disordered 

proteins (IDPs) or disordered regions in proteins (IDRs), respectively, also known as natively unstructured, 

denatured or unfolded. Intrinsically disordered proteins (or regions) undergo several conformational 

changes. The coordinates of their backbone atoms have no specific equilibrium states and can vary largely 

due to variable physiological conditions, and thus adopt dynamic structural ensembles. Recognition of these 

protein disordered regions is important for appropriate protein structure prediction, disease causing protein 

identification, proper annotation of function, induced folding and binding region prediction. However, due 

to highly flexible characteristics of the residues of IDRs or, IDPs [8]), experimentally verified annotation 

of intrinsic disorder is growing slowly. Thus, to keep pace with this faster growth of the protein database, 
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effective computational methods for correct identification of disordered residues in IDPs or, IDRs become 

indispensable. 

It is found that the primary protein sequence alone has the essential information needed to determine 

its corresponding secondary and tertiary structures [3]. Therefore, the three-dimensional structures for 

proteins can be determined by their one-dimensional sequence of amino acid residues, called ab initio 

protein structure prediction, which is challenging as it requires an efficient sampling algorithm to search in 

astronomically large conformational space and an accurate energy function to rank the protein structures 

and guide the conformational search. Thus, development of energy functions and search algorithms are 

highly demanding in the research area of proteomics.  

The thermodynamic hypothesis of Anfinsen [3] explains that a protein in its natively stable structure, 

gains the lowest free energy. The structural stability of proteins requires large number of inter-residual 

interactions that contributes to gain in energy, required for protein folding. Therefore, a structured protein 

usually stay in a favorable (negative) energy state, while an unstable protein cannot gain favorable energy. 

While most of the available energy functions are based on the structural information, extraction of energy 

score from sequence only will have higher implication as it will be a useful feature in sequence-based 

structure prediction.  

Both the protein structure prediction and structural state (order or, disorder) identification problems are 

highly complex but crucial, thus it is essential to use the outputs of many smaller sub-problems to solve the 

ultimate big problems. A feature that can map one dimensional sequence information into three-

dimensional information and guide a machine learning algorithm to learn about the states to be predicted is 

crucial in developing predictive tools for this research problem. These smaller sub-problems include 

secondary (SS) prediction, Accessible Surface Area (ASA) prediction, backbone torsion angle ( and ) 

prediction, and residue exposure. An accurate prediction of these structure properties from protein sequence 

alone has wide application in the field of bioinformatics and computational biology.  

IDPs and IDRs have interesting characteristics of going through disorder-to-order transitions, and 

interacting with multiple partners to fold into different conformations when bound to different partners. 

Protein with peptide-recognition domains (PRDs) can recognize short peptide motifs that are usually 

present with IDPs/IDRs and can promote induced-folding of the peptides in disordered regions. It is crucial 

and challenging to computationally identify the peptide-binding regions in proteins that can promote 

coupled-binding with peptides as the tools can be utilized to assemble potential peptide-protein interactome. 

Additionally, identification of the residues of peptide motifs that primarily contribute in the enthalpy-gain 

necessary for the induced-binding and to investigate their complex biological functions in critical human 
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disease and drug discovery, offer an essential research dimension in the study of recent bioinformatics and 

computational biology. 

1.1.1 Contribution of The Thesis 

Given a primary sequence of protein as input, prediction of structural descriptors or properties of protein, 

such as its secondary structure, tertiary structure, accessible surface area, torsion angles and flexibilities, 

thermal factor, contact map, and state of interaction-energy using computational methods, has further 

implications in the study of the proteins’ functions. The computational tools can recognize patterns within 

inscrutable datasets, and can generate predictive-solutions fast for these challenging problems with 

reasonable accuracy, thus became an emerging research area in bioinformatics. Problems in computational 

and systems biology further vary from understanding sequence data to the analysis of protein shapes and 

protein classification to well-segregate and better understand their functions. 

For some problems, the need of these computational efforts are essential. For instance, to understand 

the functions of proteins that are Intrinsically Disordered Proteins (IDPs) or have Disordered Regions 

(IDRs) a computational model can help capture the dynamics which would otherwise unmanageable to 

surmise. IDPs/IDRs do not adopt well-defined structure; however, they can change their states and fold 

through binding, and can perform important biological functions. Therefore, experimental investigation of 

IDPs/IDRs can reveal little information about their possible structures and functionalities. On the other 

hand, computational tools can provide a supplementary way for large-scale IDPs/IDRs analysis. Besides, 

the ultimate goal in the description of a protein is essentially to determine its structural properties as well 

as to determine the state of interactions with other proteins to perform function within a complex cellular 

network of living cell.   

The objective of this dissertation is to develop effective in silico methods and tools to predict disordered 

protein and it dynamics, interaction paradigm by systematically mining and analyzing large-scale biological 

data. The involved case studies demonstrate possibilities of discovering new knowledge using the 

developed tools. The key outcome includes prediction of intrinsically disordered proteins (IDPs), prediction 

of protein accessible surface area (ASA), extraction of position specific energy (PSEE) of protein residues 

to score their stability, development of novel genetic algorithm variants for numerical optimization 

including protein conformational sampling, and identification of peptide-binding region of proteins that can 

recognize post translational modifications (PTMs) of amino acid, responsible for critical human diseases, 

within peptide motifs. 
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We started our work on the above-mentioned research problems from a hypothesis, which was then 

evolved through theoretical modeling and logical analysis, and eventually proven effective by empirical 

modeling and simulations. Therefore, the research methodologies described in this thesis is a fusion of 

theory, model and method development, evaluations and useful applications of the developed methods. 

Further, the tools developed under this dissertation-works are established as standalone software and has 

been published online to be utilized by broader scientific community.  

1.2 Technical Results of the Thesis 

1.2.1 An Optimized SVM for Protein Disorder Prediction 

We have developed a framework to predict intrinsically disordered proteins (IDPs), DisPredict [9-11]. In 

this research, we performed large scale proteomic data collection, purification and analysis from multiple 

sources such as PDB, DisProt and IDEAL. To develop the predictors, we exercised machine learning 

algorithms, such as Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel and Deep 

Neural network (DNN). The final SVM-based predictor was optimized, specifically the cost of SVM and 

the mode of RBF, using grid search. Such optimized parameter set made the predictor competitive. 

Moreover, we used three new features, Monogram and Bigram, giving high-dimensional evolutionary 

profile in DisPredict to predict disorder for the first time.  

We developed a residue-wise potential score (PSEE) that can be computed from protein sequence 

alone and can be utilized for structure prediction from sequence. Towards an application of IDPs/IDRs 

prediction using the PSEE feature, we developed DisPredict2 [12] using RBF kernel SVM, in which we 

included PSEE in the feature space and optimized the threshold to segregate the disordered and ordered 

residues.  DisPredict2 performed very well in comparison to several other state-of-the-art predictors. Both 

DisPredict and DisPredict2 are implemented as a standalone tool in C, and are freely available from GitHub 

repositories1,2 and Bioinformatics and Machine Learning (BML) lab website3 of Computer Science 

department, UNO. 

                                                      
1 DisPredict 1.0: https://github.com/tamjidul/DisPredict_v1.0 
2 https://github.com/tamjidul/DisPredict2_PSEE  
3 BML Lab: http://biomall.cs.uno.edu/software/ 
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1.2.2 Extraction of Energy Scores from Protein Sequence 

Computational tools for existing protein structure prediction problems require features that can capture the 

complexity of molecular level interactions. With a view to doing this, I proposed a novel approach to 

quantify position specific estimated energy (PSEE) [11, 13] of a residue using the pairwise thermodynamic 

interaction energy and solvent accessibility of the residue in local neighborhood. Here, the pairwise 

interaction captures the sequential environment, whereas the predicted solvent accessibility, which is 

eventually used to compute relative burial of a residue, includes the hydrophobic effect and captures the 

respective structural environment in PSEE. It has been verified empirically that PSEE can effectively 

classify disorder versus ordered residues, can segregate different secondary structure type residues by 

computing the constituent energies, and the PSEE value for each amino acid strongly correlates with the 

hydrophobicity value of the corresponding amino acid.  

We have further utilized PSEE to compute residue-wise binding energy, position specific binding 

energy (PSBE) [14] from sequence alone. We performed alanine scanning on protein scanning to 

recomputed PSEE and the induced gap is formulated as PSBE. The PSBE was found effective in identifying 

the amino acid residues that gives higher contribution in binding energy.  

1.2.3 A Reinforced Regression for Accessible Surface Area Prediction  

We have developed a predictor of accessible surface area (ASA) of protein residues as real value. In this 

research work, we developed a new predictor paradigm, namely REGAd3p [15], for real value prediction 

through Regularized Exact regression and Genetic Algorithm (GA). GA was used to optimize both Mean 

Absolute Error (MAE) and Pearson Correlation Coefficient (PCC). Further, the kernel of the exact 

regression was extended to degree 3 polynomial as this kernel was found to be the best to predict ASA 

while testing with large datasets collected from PDB. However, the framework is general for any real-value 

prediction work and the kernel can easily be tuned for a particular application. The predictor is developed 

in C programming language and it is available online4.  

Further, we have applied my tool in several other applications of bioinformatics. I modeled the error 

between actual and predicted ASA in terms of Energy to discriminate native proteins from their decoys. 

We combined this ASA based energy linearly with the components of an existing energy function, 

3DIGARS [16], using Genetic Algorithm to develop two improved versions subsequently, 3DIGARS2.0 

                                                      
4 REGAd3p: http://cs.uno.edu/~tamjid/Software/REGAd3p/REGAd3p.tar.gz 
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[17] and 3DIGARS3.0 [18]. I have further utilized my own ASA predictor to quantify the relative exposure 

(or burial) component in PSEE. 

1.2.4 A Stacked Model for Peptide-Binding Residue Prediction 

We have proposed a new computational tool to predict peptide-binding residues of receptor proteins 

in peptide-protein complex from sequence alone, named PBRpredict. A set of protein complexes with 

wide range of peptide-binding domains, such as MHC I and II, PDZ, SH2, SH3, WW, 14-3-3, Chromo and 

Bromo, Polo-Box, PTB, enzyme inhibitor, were collected from PDB and were annotated with interaction 

information based on atomic distances from peptide residues in the structure. Using a comprehensive set of 

sequence-based features including chemical and evolutionary profile, secondary structure, surface area and 

local backbone profile, flexibility and an energy based profile, we guide our predictor to learn about peptide-

binding residues using model-stacking approach. To develop the model, we explored six different machine-

learning algorithms as base learners, and those are support vector machine, gradient boosting, bagging, 

random forest, extra tree and k-nearest neighbor classifier. The outputs of the base learners were aggregated 

using a meta-learner, logistic regression (classifier).  

We carried-out a rigorous performance evaluation using statistical metrics and case studies. After 

careful analysis of the prediction performance, we tuned the classification thresholds of the base-level and 

the meta-level learners of the stacking approach to trade-off between the true positive rate and false positive 

rate.  Finally, we established three different PBRpredict models of a similar framework that apply different 

thresholds for segregating binding and non-binding residue under the name PBRpredict-Suite5. The results 

manifest that PBRpredict-Suite models provide well-balanced and biologically relevant outputs for proteins 

of different lengths and with a wide variety of PRDs. As an important outcome, one of the models 

recognized potential peptide-binding sites in the Gid4 subunit of the ubiquitin ligase GID in the yeast 

Saccharomyces cerevisiae for which no structure is available to date.    

1.3 Thesis Organization 

In this thesis, our primary goal is to develop in silico tools that can map protein sequence to its structural 

properties using machine learning algorithms. In addition, we target at extracting new biological knowledge 

                                                      
5 PBRpredict-Suite: http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredict.zip 

http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredict.zip
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that can serve as features to best capture the properties of protein structures so that we can contribute both 

computationally and biologically. Following this guideline, we organize the rest of the thesis as follows:  

In Chapter 2, we describe the design and development of DisPredict, a predictor of intrinsically 

disordered protein. The framework is based on an optimized SVM with RBF kernel. In addition to the 

development of the predictor, we executed an analysis of the structural features of experimentally annotated 

disordered and ordered regions of proteins using feature correlation plot. We have also discussed that a 

post-processing of probabilities can further improve the prediction accuracy of the predictor. 

In Chapter 3, we develop a general framework for real-value prediction using regularized exact 

regression with degree 3 polynomial as kernel, which is further optimized using genetic algorithm, named 

REGAd3p and tuned specifically for protein accessible surface area (ASA) prediction. The framework is 

rigorously evaluated, compared and analyzed. Moreover, we modeled the actual and predicted ASA to 

develop an energy component, which is integrated in an existing energy function and found effective in 

improving the performance of the energy function.   

In Chapter 4, we describe the formulation of a novel score, position specific estimated energy (PSEE), 

extracted from protein sequence information only. Computation of PSEE utilizes our previously developed 

tool, REGAd3p to compute ASA from sequence. Further, we included contact energy in the computation of 

PSEE. PSEE is applied as an important feature application for disorder prediction and to develop an 

improved version of DisPredict, called DisPredcit2. DisPredcit2 is also described and evaluated in the same 

chapter.    

In Chapter 5, we study the complex induced-binding between modular proteins and short peptide-

motifs. Specifically, we develop a set of tools to predict the peptide-binding regions of proteins with 

peptide-recognition domains. The tools are found to be effective for a wide range of peptide-binding 

domains, which is evaluated through case studies. On the other hand, in this chapter, we have described the 

extraction of position specific binding energy (PSBE) from protein sequence that can approximate the 

higher binding energy contribution of peptide hot spots.  

In Chapter 6, we conclude the thesis work, state its major contributions and provide brief future directions. 

1.4 Related Publications 

Parts of this thesis work have been published in journals, conferences and workshops of bioinformatics and 

computational biology, as well as under preparation for submission. Below is the list of the publications: 
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Chapter 2 

DisPredict: A Predictor of Disordered Protein 

 A Framework using optimized RBF kernel SVM  

Intrinsically Disordered Proteins (or unstructured proteins) constitute a unique class of the protein kingdom, 

and have been recently recognized as a key player in the functional proteomics. Intrinsically disordered 

proteins or regions in proteins (IDPs/IDRs) lack rigid three-dimensional (3D) structure under physiological 

conditions in vitro [2]. However, IDPs, in full or in regions of the sequence, possess important biological 

functions despite their extremely flexible, essentially non-compact (or extended) structures. While the 

molecular recognition functions of IDPs/IDRs include pathways to carry out cell division, signaling, 

recognition and regulation [19], the structural heterogeneity of IDPs are highly linked to the amyloid 

aggregation that is involved in critical human diseases such as cancers, Parkinson’s disease, Alzheimer’s 

disease, type II diabetes and others [20]. Accurate identification of IDPs has significant implications in 

proper annotation of protein function and further understanding of drug design to combat disorder-

associated diseases. Fast growing protein sequence repository [21] demands for high throughput 

computational techniques for identification of disordered residues from protein sequence, which is regarded 

as an imperative area of research in bioinformatics and computational biology. 

In this chapter, we introduce our proposed disorder predictor framework, called DisPredict (Disorder 

Predictor) [10] that classifies ordered and disordered residues from protein sequence alone. DisPredict 

employs a support vector machine with RBF kernel. With an optimal set of parameters for RBF kernel and 

a unique set of features including several novel features for reliable characterization of protein structure, 

DisPredict yields promising performance in both order versus disorder, i.e., binary classification as well as 
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per-residue probability prediction, specifically in terms of Mathews Correlation Coefficient (MCC) and 

Area Under the receiver operating characteristics Curve (AUC).  

DisPredict is evaluated using a 10-fold cross validation as well as tested with independent test datasets. 

The use of multiple data sources makes the predictor generic. Moreover, by comparison with other state-

of-the-art approaches and case studies, DisPredict is found to be a useful tool with competitive performance. 

In addition to the development of the predictor, we performed an analysis of the structural features of 

experimentally annotated disordered and ordered regions of proteins using feature correlation plot. This 

experiment gave us insight of the collected overlapping annotation of the ordered and disordered segments 

of proteins in their feature space. The result of this experiment indicates the possible noise in the annotation 

of disordered and ordered residues in the available databases and instigates to formulate new characteristic 

feature to segregate disordered and ordered residues more clearly – in this direction, the outline of the rest 

if the chapter is given as follows.  

• We start by giving the background information about intrinsically disordered proteins and their 

functions, and motivation behind developing a new predictor in Section 2.1.  

• Next, we review existing disordered protein predictors in Section 2.2 along with our contribution.  

• In Section 2.3, we describe the experimental materials, such as data sources, data collection and mining 

processes, input features used to train the predictor, and the criteria to evaluate and compare the 

predictor.  

• Section 2.4 describes the first version of the predictor, DisPredict (version 1.0). In this thesis, by 

‘DisPredict1.0’ or just by ‘DisPredict’, we refer to the first version of our disorder predictor.  

• We described the performance evaluation related to optimal window size and parameter selection and 

for the comparison of the performance of DisPredict1.0 with existing predictors in Section 2.5. 

• The analyses of the results and datasets as well as the feature correlation are presented in Section 2.6.  

• In Section 2.7, we discuss an investigative strategy to make an improvement over DisPredict1.0. 

Keeping the similar framework and features to build the predictor, we included a post-processing of 

the output probabilities generated by DisPredci1.0 to develop DisPredic1.1, which improves the 

accuracy of prediction.  

• Finally, we conclude in Section 2.8 with future research directions.  

2.1 Background and Motivations 

Proteins are the primary building block of the living cell. While proteins participate in almost all biological 

functions, abnormality in their functions can cause different pathological conditions. Therefore, to 
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understand the mechanism of protein function is of utmost importance in the study of protein science. The 

well-known protein-structure function paradigm, i.e., “sequence  structure  function”, states that the 

amino acid sequence of a protein specifies a unique (mostly) spatial structure, which represents a kinetically 

accessible and an energetically favorable state (local or, global minimum energy conformation of the 

protein). This conformation is usually refer to as the native state of a protein and is a precondition for a 

protein to be able to perform important biological functions [22]. Existing ample research-works support 

this view for more than 100 years since Emil Fischer proposed the lock-and-key hypothesis after performing 

the experimentation  with enzyme and glucoside [1, 23], which essentially states that only a correctly shaped 

substrate (like a key) can fit into the key-hole (active site) of a particular enzyme (lock) to exert a chemical 

effect on each other. Later, Hsien Wu proposed the theory of protein denaturation [24, 25] that explains that 

proteins can lose its ordered state (i.e., structure), and then lose its ability to carry out functions due to their 

exposure to different non-physiological conditions, such as acid, urea or high temperature. In 1950s, Linus 

Pauling postulated the structural modeling of protein polypeptide chain [26, 27], which was followed by 

the first crystal structures of globular proteins (myglobin) [28, 29] and of an enzyme (lysozyme) [30]. 

Consequently, 3D structure was considered as an obligatory form for protein to function, until the early 

1990. 

The classic experiments of Anfinsen revealed that all the necessary information for the correct folding 

of protein is included in its amino acid sequence [3] and the kinetics behind the unfolding of proteins due 

to environmental perturbation and refolding after restoration of physiological state [31, 32]. Many proteins 

unfold in different non-physiochemical circumstances, such as extreme pH [33] whereas some proteins do 

not unfold in extreme conditions [34]. While the charge-charge repulsion is found to be the driving force 

behind the former phenomenon, later is governed by the strong hydrophobic interactions over charge 

repulsion [2]. Unlike these proteins, the intrinsically disordered proteins do not adopt ordered structure 

under physiological condition (neutral pH) in vitro or in the absence of a binding partner [2, 6, 7, 35, 36].  

During the development of describing proteins or their regions that fail to form specific 3D structure 

and preliminarily to understand the functionalities of the flexible proteins, since 1940s [37-41], the 

disordered proteins were called using different terms, like floppy, pliable, rheomorphic, flexible, mobile, 

partially folded, vulnerable, chameleon, malleable, 4D, protein clouds, dancing proteins, proteins waiting 

for partners [42], and several names, such as combinations of  “natively/naturally/inherently/intrinsically” 

with “unfolded/unstructured/disordered/denatured” [43]. However, it has been argued later that the native 

state of a protein is analogous to an active and functional form of a protein [42, 44]. On the other hand, 

disordered proteins (or regions) do not adopt well-defined structure in the normal physiological state, and 

therefore called “intrinsically” disordered proteins or IDPs [45] in recent years.  



 

 

16 

 

Although the major contribution of this thesis is to develop in silico framework for mining proteomic 

data to characterize disordered protein residues and segregate them from the ordered residues in a sequence, 

before digging into the details of prediction algorithms, in the following sections, we describe the basic 

characteristics of the IDPs, their abundance and functions, and the role of computational methods in the 

study of disordered protein.  

 Intrinsically Disordered Proteins  Types and Characteristics 

The intrinsically disordered regions (IDRs) of proteins exist as dynamic ensembles in which the coordinates 

of the atoms and the backbone Ramachandran angles vary largely over time. In the ordered regions, the 

coordinates of the atoms can fluctuate due to the random thermal change or conformational change of the 

local sequence neighborhood. However, this small-amplitude motions of the Ramachandran angles of the 

ordered residues can be characterized by the equilibrium positions defined by the time-averaged values.  

On the other hand, the atom positions and dihedral angles of the disordered residues cannot be characterized 

by an equilibrium state around which the residues stay most of the time, rather the IDRs undergo 

heterogeneous conformational changes that are random.  

The residues in IDPs or IDRs possess several characteristics in terms of structural conformation and 

sequence composition [6, 8, 36, 46]. In [2], Uversky et al. discussed that the combination of low mean 

hydrophobicity and relatively large net charge is an important prerequisite for the absence of regular 

structure in proteins under physiologic conditions, which was further verified using charge-hydropathy 

(CH) plot [7, 36], showing a linear boundary line to separate ordered and disordered proteins based on their 

mean net charge and mean hydrophobicity, in early 2000s. The IDPs or IDRs are also found to have a 

compositional bias in their amino-acid residues; for example, they are depleted in Trp, (W) Tyr (Y), Phe 

(F), Ile (I), Leu (L), Val (V), Cys (C) and Asn (N), so-called order-promoting amino acids, whereas they 

are enriched in Ala, Arg (R), Gly (G), Gln (Q), Ser (S), Glu (E), Lys (K) and Pro (P), so-called as disorder-

promoting residues. The general properties of IDPs/IDRs are listed as below.  

• Sequence based properties 

o Presence of charged amino acid residues (especially negative) 

o Low content of hydrophobic amino acids residues 

o Low sequence complexity (use of reduced alphabet out of 20 amino acid) 

• Structure based properties 

o Low compactness 

o Absence of globularity 
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o Low content of secondary structure 

o High amount of flexibility (no specific equilibrium state of the backbone atoms) 

 IDPs can adopt different conformations under various environmental conditions, such as effects of 

temperature change, pH change, and presence of ions and ligands [36]. Various degree of disorder has been 

observed in nature [44]. Fig 2 portrays three samples of intrinsic disorder in monomer and complex 

structures.  

 
(a) PDB ID: 2JU4 

 

(b) PDB ID: 3J4Q 
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(c) PDB ID: 5SVE 

Fig 2. Intrinsically disordered proteins or regions in proteins. (a) PDB ID: 2JU4 [47], NMR structure 
of intrinsically disordered gamma-subunit (PDEgamma) of cGMP phosphodiesterase. It has extended-
disordered N-terminal region (red), whereas residues 46 – 87 (yellow) shows loose structural 
features, bound to alpha(t) in the transition-state complex. (b) PDB ID: 3J4Q [48], intrinsic disorder 
within an AKAP-protein kinase A complex. The complex has disorder linker (red) between each PKA 
regulatory subunit. (b) PDB ID: 5SVE [49], disordered regions in human Calcineurin interaction 
network with LxVP short linear motif (pink). The complex has Serine/threonine-protein phosphatase 
2B catalytic subunit as chain A (green) and Calcineurin subunit as chain B (cyan). Both chains 
have disordered N-terminals (red). For chain A (green), structure of residues 1 – 10 and that of 
residues 1 – 4 for chain B are missing in the electron density due to their flexibility. We used PyMOL 
[50] to view the structures and DSSP to assign the secondary structures [51]. 

 

IDPs challenge the classical structure-to-function relationship of protein [8, 20, 46, 52]. Disordered 

proteins, having no rigid structure can show larger plasticity, can interact with different targets, such as 

ligands, small molecules, substrates, cofactors, other proteins, peptides, membranes etc. and participate in 

most of the key biological and disease-associated processes [5, 46, 49]. Some disordered regions are not 

known to bind to any partner, but they still carry out important functions such as providing flexible linkers 

between structured domains (see Fig 2 (b), red colored regions) or providing flexible tails that regulate the 

structured domains [35, 46]. 

Together with ordered state of the proteins, two different protein structurefunction paradigms were 

proposed considering the disordered states and the transitions between these states, called Protein Trinity 

[53] by Dunker et al. (2001) and Protein Quartet [35] by Uversky (2002), shown in Fig 3. Various structural 

forms of IDPs, discussed in the literature, have been listed below. 

• Collapsed disorder (molten globules) [6, 53, 54], which contain stable but highly dynamic side-

chains and well-developed secondary structure elements [52, 53, 55-57].  
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• Semi-collapsed disorder (pre-molten globules) [56], like polyglutamine regions [58] and polar 

sequences [59, 60], which  arise due to the presence of rapidly exchanging backbone side-chain 

hydrogen bonds that make the region fail to form specific secondary structure [35, 36, 44]. 

• Extended disorder (random-coils), like intrinsic coils [20, 53, 54], which are formed by the 

combination of low hydrophobicity and high net charge that result only marginal level of residual 

secondary structure [35, 36, 46]. 

 

 
(a) Protein Trinity (b) Protein Quartet 

Fig 3. Two protein structurefunction paradigms, which emphasize the ordered state of a functional protein 
as well as consider three possible dynamic states occurred by intrinsic disorder phenomenon. (a) Protein 
trinity, includes two different states, fully extended (or random coil) and collapsed (or molten globule), 
of protein disorder. (b) Protein quartet, includes an additional state of disorder, semi-collapsed or 
pre-molten globule like state.  

 Abundance of Protein Disorder 

The disordered proteins or residues have been found abundant in nature. Approximately 70% of the 

structures released by Protein Data Bank (PDB) [61, 62] contain some disordered residues [63]. Significant 

proportion of some genomes (such as, Eukaryota) encode the proteins with regions of disordered residues 

[54]. In humans, roughly one-third of all proteins is intrinsically disordered, of which, approximately 50% 

of these proteins are more than 30 residues long, and 25% of them are fully disordered [64]. 

At proteome level, approximately 33% of eukaryotic proteins are found to have IDRs, having length 

greater than 30 residues and 19.6% of them have IDRs with greater than 50 residues long. For bacterial 

proteins, 4.2% and 1.6% of the them hold IDRs, having length greater than 30 and 50 residues, respectively 

[65-67]. Further, 6.8% of the archaea proteins have disordered residues [68].  
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 Protein Disorderedness and Functions 

Intrinsically disordered proteins participate in numerous biological functions by exhibiting a multitude of 

structural conformations and dynamics, such as cell cycle control and cellular signal transduction, 

transcriptional and translational regulation, membrane fusion and control pathways [5, 69, 70]. Disordered 

regions in proteins are found to be evolutionary conserved [36], which further confirms their intriguing role 

in biological processes. Moreover, IDPs are more frequent in eukaryotic genomes in comparison to bacteria 

and archaea, which supports the need of IDPs/IDRs recognition or prediction in signaling and regulation in 

nucleated cells [53, 69, 71, 72] as well as its potential involvement in human diseases.  

Intrinsic disorder enables a number of capabilities of a protein [36, 44, 73, 74] which are crucial for 

molecular recognition, such as (i) separation of specificity and affinity due to the free energy penalty paid 

to fold disordered state; (ii) “binding diversity”, by which a region can fold differently to be recognized by 

different shaped partners, (iii) “binding commonality”, by which a sequence can fold differently but is 

recognized by a common surface of a partner; (iv)  formation of large interaction surfaces; (v) faster rates 

of association and disassociation; (vi) reduced life-time in vivo and rapid turnover of regulatory molecules 

and so on. Besides molecular recognition, IDPs/IDRs participate in molecular assembly and protein 

modification [70, 75] via protein-protein, protein-nucleic acid and protein-ligand interactions [76-80].  

In addition, being rich in binding sites for various partners, IDRs are found to be important loci for 

alternative splicing [81] and for enzyme-driven posttranslational modifications (PTM) such as 

phosphorylation, methylation, or acetylation [79]. Furthermore, intrinsic disorder plays a fundamental role 

in the functionality of proteins with PEST sequence, hub proteins, transcription factors, 14-3-3 protein and 

scaffold proteins [20, 82].  

Disorder proteins are also associated with critical human diseases [82-85]. Structural disorder was 

confirmed and studied in great detail in many other important disease-associated proteins, such as p53, T 

protein, and cystic fibrosis transmembrane conductance regulator [83]. IDPs are involved in cancer, 

amyloidoses, cardiovascular diseases, neurodegenerative disorders (i.e. Alzheimer’s diseases, Nieman-Pick 

disease type C, Down’s syndrome, Parkinson’s disease, Hallervorden-Spatz disease), genetic diseases, 

prion diseases, accelerated fibrillation, and protein deposition diseases as well as in drug development [19, 

83, 86-88]. Thus, locating the disordered regions in a protein and identifying their dynamic conformations 

for better understanding of protein function was one of the most studied research area in protein science for 

the last two decades.   
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 Role of in silico Disorder Prediction 

Due to highly flexible and dynamic characteristics of the residues of IDRs or IDPs, experimentally verified 

annotation of intrinsic disorder becomes very complex. In the X-ray crystallography [89] experimentation,  

disordered residues are indicated by the lack coordinates in structure, often refer to as missing-residues. In 

NMR spectroscopy [90-93] experimentation, disordered residues exhibit high variability within the 

structural ensembles. Among other experimental approaches - near or far ultraviolet circular dichroism 

(CD) [94-97], Fourier transform infrared [2], various hydrodynamic techniques (small angle x-ray 

scattering (SAXS), small angle neutron scattering (SANS), sedimentation, and dynamic and static light 

scattering), electron microscopy or atomic force microscopy etc are examples of some techniques used [98, 

99].  

A curated database of disordered proteins, called DisProt [100] contains annotation for 694 protein 

sequences and 1,539 disordered regions in its version 6.02. Recently, DisProt 7.0 [101] is launched with 

803 proteins and 2,167 regions with annotated disordered residues of which 69.3%, 19.4%, 9.3% and 1.9% 

proteins are from eukaryota, bacteria, viruses and archaea domain. The recently established IDEAL [102, 

103] database also provides useful collection of IDPs including 838 protein entries in its current release by 

March, 2017. On the other hand, PDB [61] database provides access to find disordered regions in the solved 

secondary or tertiary structures, which incorporates 119,163 protein entries (accessed on March, 2017)6. To 

compare, the overall number of non-redundant collected protein sequences is 81,027,309 according to the 

most recent 81 release of RefSeq database [104].  

To keep pace with this large-scale increase in protein database, effective computational methods for 

correct identification of the disordered residues in IDPs or, IDRs are necessary. The in vitro experiments to 

analyze protein structure are costly both in terms of money and time, and in addition reveals little 

information about the possible structures and functionalities of IDPs/IDRs. In contrast, in silico tools 

provide a rapid and supplementary way for large-scale proteome-wise IDPs/IDRs analysis and prediction. 

MobiDB [105, 106] is an exemplar database that collects consensus annotation of protein disorder from 

predictors.  

                                                      
6 PDB statistics: http://www.rcsb.org/pdb/statistics/holdings.do 

http://www.rcsb.org/pdb/statistics/holdings.do
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2.2 Review of Disorder Prediction 

As the IDPs/IDRs differ dramatically from the ordered proteins in their amino acid sequences, possible 

development of successful predictors of protein disorder from its sequence made perfect sense. Thus, in 

this section, we provide a brief review the current development on disorder prediction techniques.  

Based on a very small number of proteins, Williams [107] developed a predictor of intrinsic disorder 

based on the ratio of the number of charged residues and the number of hydrophobic residues in the protein 

sequence in 1979. This predictor was used to separate only two IDPs from a small set of ordered proteins 

and later found to be not effective in general [108]. However, this article can be considered as one of the 

pioneer works that attempts to identify IDPs based on amino acid compositions, was substantially different 

from those of proteins with 3-D structure.  

Later, Dunker and Uversky and their coworkers independently developed predictors of IDPs [2, 109]. 

Since then, various prediction ideas and different computing techniques have been utilized to identify 

protein disorder. In the following section, we discuss these techniques by characterized them into three 

broad categories: (i) machine learning based methods, (ii) amino-acid composition and chemical property 

based methods, and (iii) methods that combine outputs of multiple predictors.  

2.2.1 Predictors based on Machine Learning 

Currently, machine learning is taking on a leading role in solving critical pattern classification tasks in an 

efficient manner, which is expanding rapidly in the field of biology with the vast amount of proteomics and 

genomics data being available. The available disorder prediction tools utilize pattern recognition methods, 

alone or in combination, such as  Logistic Regression (LR), Discriminant Analysis (DA), Ordinary Least 

Squares (OLS), Artificial Neural Network (ANN) [110], Support  Vector Machine (SVM) [111], Bayesian 

Classifier, Random Forest (RF) [112], K Nearest Neighbor technique etc. The underlying idea of these 

techniques is to train a machine learning algorithm that can capture patterns using a set of characterizing 

features so that the resulting model can predict those patterns in an independent test data set.  

The predictors of PONDR (Predictor of Natural Disordered Regions) series [62, 113-117], such as 

PONDR VL-XT, VL3 (VL3-E, VL3-P, VL3-H), VSL (VSL1, VSL2) are some of the established 

software tools that use feed-forward neural networks to predict disordered region of different length or in 

different location of a sequence. Among other ANN based tools, DisEMBL [118] identifies three kinds of 

disorder, including loops/coils, hoot loops and residues with missing coordinates in X-ray crystallography 

(REMARK 465 of PDB structure file), RONN [119] uses bio-basis functional alignments and NORSnet 



 

 

23 

 

[120] was trained for long loop or extended disordered regions. DisPro [121] uses a one-dimensional 

recurrent neural network (1D-RNN), whereas ESpritz [122] employs a bi-directional recurrent neural 

network. SPINE-D employs a single neural-network to predict disorder regions [123], focusing the 

differences between long and short disorder regions. DNdisorder [124] employs boosted ensembles of deep 

network [125], which are similar to the regular neural network but contain more layers to predict disordered 

regions in proteins.  

The DISOPRED [126] series includes three predictor of which, DISOPRED [127] applied neural 

network,  DISOPRED2 [128] used support vector machine with linear kernel, and DISOPRED3 [129] 

adopted a combined approach using SVM, ANN and nearest neighbor classifier  to predict disordered 

regions as well as peptide-binding sites in disordered regions. Spritz [130] is a server for predicting 

disordered IDRs in proteins using two different SVMs for short and long disordered regions.  

The POODLE series include POODLE-L [131] that incorporates two-level SVMs for long disordered 

region prediction, POODLE-S [132]  that uses seven SVMs to predict disorder in different region of the 

sequence, and POODLE-W [133] that applies Joachims' spectral graph transducer (SGT) [134], which is a 

semi-supervised learning technique unlike others and operates by constructing k-nearest neighbor (kNN) 

graph. DisPSSMP [135] is based on radial basis function network (RBFN) with inputs from position-

specific scoring matrices (PSSM) and DisPSSMP2 classifier is a derivative of the former one using 

condensed PSSM, which was integrated in the web server called iPDA [136]. 

Weathers et al. [137] used SVM to analyze and propose that a reduced amino acid alphabet is sufficient 

to accurately identify IDPs; and RAPID is a support vector regression-based predictor [138]. A recursive 

maximum construct tree (RMCT) was used in IUP to recognize IDPs. Bayes [139] incorporates a Bayesian 

method to compute conditional probability for a sequence, given a disordered protein and OnD-CRFs [140] 

predicts the intrinsic disorder in proteins using Conditional Random Fields (CRFs), which is a 

discriminatively supervised machine-learning method. 

There are some tools, which measure the disorder content of a protein sequence instead of binary 

classification of ordered and disordered residues. DisCon [141] quantifies the disorder content using ridge 

regression using weighted PSSM profile. SPA [142] incorporates a non-linear neural network classifier to 

predict disorder in short peptides in two-steps. PON-Diso [143] identifies disorder-related amino acid 

substitutions in sequence using random forest classifier. 
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2.2.2 Predictors based on Physicochemical Properties 

There exist tools which are based on the relative composition and propensity of amino acids or, their 

physical, chemical and structural properties.  

GlobPlot [144] and TopIDP [145] uses relative proportion of amino acid residues to predict IDP, 

whereas FoldUnfold [146] uses mean packing density as a characteristic measure for disorder. PreLink 

utilizes hydrophobic cluster content along with measure of compositional bias to identify IDRs in proteins 

[147]. The key idea of IUPred [148, 149] to identify disordered regions was that the inter-residual 

interactions are responsible for determining the structure of proteins.   

FoldIndex [150] is used to compute the ratio of net charge with hydropathy locally using a sliding 

window to predict disorder. SEG [151] identifies low-complexity disordered segments using complexity 

measures (Wootton and Federhen equation). Ucon [152] uses predicted contact information to identify 

unstructured regions, while DISOclust [153] is based on the analysis of how disorder is related with protein 

folding and uses predicted three-dimensional structural characteristics. IsUnstruct [154] employs the Ising 

model to distinguish disordered from the ordered regions based on statistical physics. 

2.2.3 Predictors based on Meta-approach 

In meta-approach, several self-complementary disorder predictors are combined to generate a consensus 

prediction or weighted predictions.  

PONDR-FIT [57] is a meta-predictor, which combines six individual predictors including PONDR 

VLXT, VSL2, VL3, FoldIndex [150], IUPred [148, 149], and TopIDP [145]. The three predictors of 

PONDR series use artificial neural network. FoldIndex, IUPred, and TopIDP to form disorder or ordered 

regions based on relative propensity of amino acids. PrDos [71] consists of two predictors, one of which 

uses the alignment of homologs. PreDisOrder [155] is based on an ab initio prediction method 

(MULTICOM-CMFR) along with a consensus prediction method, MULTICOM [156]. POODLE-I [157] 

is a predictor based on the meta-approach that integrates the sub-components of the POODLE series.  

MetaDisorder [158] incorpoartes 13 disorderd predictors, including DisEMBL [118], DISOPRED2 

[126], DisPro [121], Globplot [144], iPDA [136], IUPred [148, 149], Pdisorder [158], Poodle-S [132], 

Poodle-L [131], PrDOS [71], Spritz [130], DisPSSMP [135], and RONN [119]. The results generated by 

these predictors are weighted by the accuracy of the methods to produce final prediction by MetaDisorder 

[158]. DisMeta [159] assembles eight primary sequence-based predictors including DISEMBL [118], 
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DISOPRED2[126], DISpro [121], FoldIndex [150], IUPred [148, 149], RONN [119], and VSL2, and 

generate a consensus-based output. 

CSpritz [160] is a combination of Spritz, Punch (an SVM-based predictor extending Spritz), and 

ESpritz [122]. The metaPrDOS [161] is composed of seven individual predictors which are as follows: 

PrDOS, DISOPRED2, DisEMBL, DISPROT, DISpro, IUPred, and POODLE-S, while MD [162] is another 

metapredictor composed of NORSnet, Ucon, PROFBval [163], DISOPRED2, IUPred, and FoldIndex. 

MFDp [164] fuses three different methods that are complementary to each other, DISOPRED2, IUPred 

and  DISOclust , and combines outputs from three SVMs with linear kernel. A further improved version, 

named MFDp2 [165] was proposed later, which is also a meta-server combining two methods including 

residues-level based MFDp and sequence-level based DISCon [141]. 

The computational methods provide fast supplementary knowledge about potential location of disorder 

in proteins to the proteomics research community involved in analyzing protein functions, and their possible 

involvement in human diseases and drug discovery processes. Due to its importance, the critical assessment 

of protein structure prediction, popularly known as CASP competitions [166-171] evaluate the 

performances of existing disorder predictors biennially starting since 2002. In these competitions, 

participants make predictions of disordered residues in proteins on their amino acid sequences, of which 

the structures are being determined, but before the structures are known. An independent group of 

researchers then compares the various predictions from many research groups with the observed structures. 

2.2.4 Our Contributions 

It is exciting that in many cases predictions of protein disorder have been used to guide in vitro experiments, 

which in turn have led to the discovery of increasing numbers of disordered proteins. This prediction-

experiment-prediction loop is leading to further increases in the rates of discovery for IDPs [108]. With a 

view to add an advanced predictor with improved accuracy, we developed a new framework named 

DisPredict that incorporates two novel aspects; an optimized kernel support vector machine and a higher 

dimensional evolutionary profile as feature.  

We have further developed a residue-wise potential score (PSEE) that can be computed from protein 

sequence alone to characterize the disordered state of protein residues. Towards an application of 

IDPs/IDRs prediction using the PSEE feature, we developed DisPredict2 (discussed in Chapter 4) under a 

similar framework of DisPredict which showed promising performance compared to the state-of-the-art 

predictors.  
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2.3 Experimental Materials 

In this section, we describe the data-sources, collection of training and test datasets, and aggregation of 

input-features for DisPredict (version 1.0). 

2.3.1 Disorder Data Sources 

In the prior studies, DisProt [100] and PDB [61] are considered as the primary repositories of IDPs. Disorder 

regions are composed of residues with missing coordinates in structure solved by X-ray crystallography, 

whereas the residues show highly variable coordinates within ensemble solved by NMR. We selected two 

datasets which combine sequences from PDB having disordered residues without coordinates (recorded in 

REMARK 465) and sequences from DisProt, having curated annotations of disorder regions including 

properties such as short ( 30 residues) and long (> 30 residues) disordered regions, partial as well as fully 

ordered or disordered chains. 

2.3.2 Datasets 

We used two different datasets, MxD and SL, to train, test and cross-validate our proposed DisPredict. 

MxD and SL datasets were used to train two disorder predictors, MFDp [164] and SPINE-D [123], 

respectively. We collected and utilized these datasets to be able to consistently compare DisPredict with 

these two state-of-the-art predictors. We further used three independent test sets to evaluate the model. The 

datasets are available online7.   

2.3.2.1 Training Sets 

Dataset SL477: SL477 dataset was prepared by the developers of SPINE-D predictor from the 

benchmark SL (Short Long) dataset [172]. The SL dataset encompasses short and long disordered regions 

as well as ordered regions. It was built by re-annotating the sequences extracted from DisProt to include 

reliable order and disorder contents. Among the annotated regions in the SL dataset, 50% of the regions are 

of the short-disordered category. The short regions in SL dataset are of length 20 residues or less [172]. It 

is important to incorporate this disorder annotation in a dataset since these short disordered regions are 

found functionally important as they obtain induced folding with the close proximity of appropriate 

partners. SL477 also includes very long disordered regions as well as completely disordered proteins, called 

intrinsically disordered proteins (IDPs).  

                                                      
7 DisPredict dataset link: http://cs.uno.edu/~tamjid/Software/DisPredict/Training_and_Test_Data.zip 

http://cs.uno.edu/~tamjid/Software/DisPredict/Training_and_Test_Data.zip
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SL dataset is comprised of proteins with disorder regions annotated by NMR experimental method as 

well. To achieve a combination of sequences with low sequence identity, SL dataset’s sequences were 

clustered and filtered using BLASTCLUST [173] which resulted in 477 chains with < 25% sequence 

identity between each pair. SL477 has total 215,343 residues, of which 56,887 (about 25%), 72,808 (about 

34%) and 85,648 (about 40%) residues are annotated as disorder, order and unknown, respectively. 

Unknown residues are those which are marked unknown in the source datasets. We disregarded the residues 

with unknown annotation during both in training and in evaluating our proposed approach. 

Dataset MxD444: The Mixed Disorder (MxD) dataset is a combination of protein sequences with 

disordered residues from both PDB and DisProt. Originally developed MxD dataset has 514 protein 

sequences including 205 chains from PDB and 309 chains from DisProt. We carried out further purification 

by removing sequences with unknown amino acid (X-tag) since they do not have specific physicochemical 

properties to get corresponding features in our methodology. This led to the MxD444 dataset, with 444 

chains and 214,054 residues, that mixes 49,090 (about 23%) disordered residues and 164,964 (about 77%) 

ordered residues. 

2.3.2.2 Test Sets 

Dataset SL171: We executed one more round of filtration using BLASTCLUST [173] to generate an 

independent subset from SL477 which encompasses sequences with no more than 10% sequence identity 

with MxD444 dataset. It gave us an independent test set of 171 chains with 42,572 residues, named as 

SL171, which was used to evaluate the DisPredict model while trained on MxD444 dataset. Another 

distinction between our two test datasets is, MxD134 contains sequences with disordered regions defined 

by PDB. On the other hand, SL171 contains protein sequences with disorder annotation only from DisProt.     

Dataset MxD134: We extracted an independent test dataset from MxD444 and named it MxD134. To 

generate MxD134, we combined the sequences of MxD444 with the second dataset utilized to train 

DisPredict, SL477. The MxD444 dataset was then filtered to remove sequences with sequence similarity 

greater than 10% to any sequence from SL477 dataset using BLASTCLUST [173], retrieving a set of 134 

protein chains with 38,823 residues. MxD134 dataset was employed to evaluate our predictor while training 

was performed on SL477 dataset. 

Dataset DD73: Further, we prepared a completely new dataset that is entirely independent of the 

training sets of DisPredict, SPINE-D [123] and MFDp [164]. We collected 48 new protein chains from 

DisProt [100] released after version 5.1 upto current version of 6.02. These protein sequences were 

combined with another 25 protein chains culled from PDB [61]. Protein chains were extracted from PDB 
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x-ray structures with resolution  3.0 angstroms, length  50, and sequence identity cut-off of 30% and by 

choosing single chain proteins.  

We randomly selected 25 chains from the output of this experiment so that no sequence is more than 

25% similar with the training sequences. To have a proper combination of ordered and disordered proteins, 

we ensured that none of these 25 proteins can contain disordered residues except terminal regions. It 

provided us with 73 protein sequences which is a combination of 37 full disorder chains, 23 full ordered 

chains and 13 protein chains with disordered and ordered regions. We call this Disorder Dataset as DD73. 

DD73 dataset allows us to perform a robust comparison among DisPredict, SPINE-D [123] and MFDp 

[164], as it is independent of both SL and MxD dataset. 

2.3.3 Input Features 

Input features for DisPredict were carefully chosen to be able to include useful properties such as the 

sequence information, evolutionary information as well as the structural information (listed in Table 1). 

Table 1. List of features used in DisPredict.   

Feature Category Feature Count 

Amino Acid (AA) 1 

Physicochemical Property (PP) 7 

PSSM Profile (PSSM) 20 

Secondary Structure Content (SS) 3 

Accessible Surface Area (ASA) 1 

Torsion Angle Fluctuation (, ) 2 

Monogram (MG) 1 

Bigram (BG) 20 

Terminal Indicator (T) 1 

Total 56 

 

2.3.3.1 Sequence Information 

Anfinsen’s dogma (also known as the thermodynamic hypothesis) of molecular biology suggests that all 

the necessary information for the correct folding of a protein is encoded in its primary amino acid sequence 

[3]. Further studies suggest that the misfolded regions or disordered regions of protein can also be predicted 

from its amino acid sequence [113, 127], as discussed in Section 2.1.1. The physicochemical properties of 
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each amino acid, such as the steric parameter, polarizability, volume, isoelectric point and etc., are also 

correlated with the length of disordered regions, as the short disordered regions are mainly negatively 

charged while the long disordered regions are nearly neutral [8, 162]. These observations motivated us to 

use amino acid type (AA in Table 1, indicated by one numerical value out of twenty) and seven physical 

properties (PP in Table 1) [174] as features to identify disordered residues. 

To distinguish the terminal residues for their position specific disorder like behavior, we included 

terminal indicator feature (T in Table 1) by encoding five residues of N-terminal as (-1.0, -0.8, -0.6, -0.4, 

-0.2) and C-terminal as (+1.0, +0.8, +0.6, +0.4, +0.2) respectively, whereas rest of the residues were labeled 

0.0. 

2.3.3.2 Evolutionary Information 

Disordered regions and their related functions are conserved within the sequence during evolution [135], 

thus we considered position specific scoring matrix (PSSM in Table 1) as input features to capture 

evolutionary information. PSSM (size: sequence length × 20) was generated for each sequence by executing 

three iterations of PSI-BLAST against NCBI's non-redundant (NR) database. The PSSM values were 

normalized further using numeric value nine [175], which  we call as PSSM normalizing factor.  

 

(a) SL477          (b) MxD444 

Fig 4. Density distribution curves of monograms and bigrams for (a) SL477 and (b) MxD444 dataset. The x-
axis and y-axis show the monograms/bigrams in logarithmic scale and density index of the distribution, 
respectively. For each figure, the dotted (red) and solid (blue) vertical lines correspond to median 
values of the distribution for monograms (MG) and bigrams (BG), respectively. 

 

The literature suggests that the conserved evolutionary information given by PSSM can be transformed 

from primary structure (amino acid sequence) level to three dimensional structure level by computing 

monograms and bigrams from PSSM values [176]. The monogram-bigram probabilities characterize the 
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subsequence of a protein sequence that can be conserved within a fold in terms of transition probabilities 

from one amino acid to another [177]. Thus, the monogram-bigram features are useful in identifying the 

evolutionary folded (ordered) or, unfolded (disordered) region of proteins, which motivated us to utilize 

them as features in disorder prediction. We computed monogram feature matrix (1 × 20) and bigram feature 

matrix (20 × 20) for each sequence from its PSSM. Monogram feature matrix consists of one monogram 

value (MG in Table 1) for each type of amino acid and bigram feature matrix consists of one bigram value 

(BG in Table 1) for each pair of 20 possible amino acids, respectively. Further, our analysis based on 

multiple datasets collected from PDB and DisProt shows that both monograms and bigrams follow a normal 

density distribution in their logarithmic space with approximately consistent median value equals to 6.0 

within any dataset (Fig. 4). Therefore, we used 𝑒6.0 to normalize these values and reduce the noise.  

2.3.3.3 Structural Information 

We employed sequence based predicted secondary structure (SS in Table 1) probabilities for helix, sheet 

and coil residues [175], predicted solvent accessibility (ASA in Table 1) [178] and predicted backbone 

dihedral torsion angles, phi and psi ( and  in Table 1) fluctuations [179] as features. We included these 

six features since disordered residues can be characterized by the lack of stable secondary structure [35, 52] 

and also the unstructured regions are found to have large solvent accessible area [15]. 

Note that, we included the fundamental features to characterize disorder in proteins in our feature set 

which are well studied in the literature. Further, we enhanced the feature set by including new features, like 

MGs and BGs. Finally, we included the information of neighboring residues within the features of each 

residue by using a sliding window, keeping the target residue at the center of the window. The motivation 

was to incorporate the native interactions and contacts of neighboring residues which are found to play 

essential roles in determining protein structures and protein folding dynamics [180]. We determined the 10-

fold cross-validation performance of DisPredict for 13 different window sizes (1, 3, 5, …, 23, 25) to find 

the optimal window size 21. Thus, there were 1176 (since, window size × total feature count = (21 × 56) = 

1176) features used for each residue. The features were finally scaled within the range [-1, +1] before using. 

2.3.4 Performance Evaluation Criteria 

The performance of DisPredict [10] is evaluated using the criteria followed in the past Critical Assessment 

of protein Structure Prediction (CASP) competitions [166-168]. The measures and procedures used in 

CASP experiments are comprehensive. The predictions are done in two levels:  

• Binary value, defining whether a residue is disorder or not (“+1” for disorder and “−1” for order) 

and 
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• Real value, quantifying the probability of a residue being disorder (“≥ 0.5” for disorder and “<

0.5” for order). 

Binary Prediction Evaluation: In binary (two-class) prediction of disorder, TP (True Positive) = 

number of correctly predicted disordered residues, TN (True Negative) = number of correctly predicted 

ordered residues, FP (False Positive) = number of incorrectly predicted disordered residues and FN (False 

Negative) = number of incorrectly predicted ordered residues. To determine the total number of correct 

prediction (both ordered and disordered), 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑇𝑃 + 𝑇𝑁 is calculated. Sensitivity (SENS) and 

specificity (SPEC) are two complementary statistical measures identifying the proportionate values of 

correct prediction of disordered (positive class) and ordered (negative class) residues, respectively.  

𝑆𝐸𝑁𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑁𝑑
 (1) 

𝑆𝑃𝐸𝐶 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

𝑇𝑁

𝑁𝑜
 (2) 

Here, 𝑁𝑑 and 𝑁𝑜 are the total number of disordered and ordered residues, respectively. As increment 

of one of these measures (SENS and SPEC) usually leads towards the decrement of another measure, neither 

of these two measures is a suitable indicator of performance for an imbalanced dataset. On the contrary, the 

balanced accuracy (𝐴𝐶𝐶), weighted score (𝑆𝑤) and Mathews correlation coefficient (𝑀𝐶𝐶) are the measures 

that take all four components of prediction quality (TP, TN, FP and FN) into account and thus can be 

regarded as more important indicators.  

𝐴𝐶𝐶 =  
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (3) 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁) − (𝐹𝑃×𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (4) 

𝑆𝑤 =
(𝑤𝑑×𝑇𝑃 − 𝑤𝑜×𝐹𝑃) + (𝑤𝑜×𝑇𝑁 − 𝑤𝑑×𝐹𝑁)

(𝑤𝑑×𝑁𝑑) + (𝑤𝑜×𝑁𝑜)
 (5) 

Here, 𝑤𝑑 =
𝑁𝑜

𝑁𝑜+𝑁𝑑
= percentage of ordered residues, is the weight for 𝑁𝑑,  and 𝑤𝑜 =

𝑁𝑜

𝑁𝑜+𝑁𝑑
= 

percentage of disordered residues, is the weight for 𝑁𝑜 [167]. The 𝑆𝑤 measure includes weight to address 

the imbalance in the ratio of ordered and disordered residues and rewards correct disorder classification 

over correct classification of ordered residues, which is later found to have a linear relationship with 

𝐴𝐶𝐶 (𝑆𝑤 = 2×𝐴𝑐𝑐 − 1) [181]. Since both of these measures (ACC and 𝑆𝑤) have been used in CASP 

assessment, we have also included both of them in our paper instead of just one. MCC score, another 
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measure that accounts for all four parameters of the prediction quality, is the most reasonable and consistent 

measure for disorder prediction assessment because of not being favorable to over prediction of any class 

(order/disorder). MCC and 𝑆𝑤 scores vary from −1 to 1, where −1 and 1 represent perfect misclassification 

and classification, respectively with a random classification scoring by 0. More recently, precision (𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
) has been appeared as a good measure for binary disorder prediction as it is totally insensitive to the 

prediction of the dominant class (i.e., here the order state), is therefore computed to evaluate DisPredict. As 

the prediction becomes better, the values of these metrics also get higher.   

We calculated Mean Absolute Error (𝑀𝐴𝐸) =
∑ |𝑐𝑑

𝑎(𝑖)−𝑐𝑑
𝑝

(𝑖)|𝑛
𝑖=1

𝑛
 to quantify the error of disorder 

prediction in content level. Here, n is the total number of protein chains, and 𝑐𝑑
𝑎 and 𝑐𝑑

𝑝
 are the actual and 

predicted disorder content (fraction of disordered residues) for the ith protein chain, respectively. The lower 

value of MAE corresponds to better prediction. 

Evaluation of Predicted Probability: The SVM model of DisPredict generates a predicted probability 

value for each residue, which signifies the disorder confidence of that residue. This probability value is then 

used for binary classification and annotation by applying a threshold value 0.5. If the probability is greater 

than or equal to 0.5, the predicted class is considered ‘disorder’ and if the probability is less than 0.5, the 

predicted class is considered ‘order’. Assessment of the predicted probability by a DisPredict is performed 

by receiver operating characteristic (𝑅𝑂𝐶) curve, which depicts the correlation between the true positive 

rate (TPR or, SENS) and false positive rate (𝐹𝑃𝑅 = 1 − 𝑆𝑃𝐸𝐶) for a probability threshold. The area under 

the ROC curve (AUC) quantifies the predictive quality of a classifier, where the AUC value equal to 1 

indicates a perfect prediction and 0.5 corresponds to a random prediction. Moreover, 95% confidence 

interval (CI) for the AUC score is evaluated using DeLong's [182] variance estimated by bootstrapping. 

The evaluation of AUC and CI are performed using the statistical R package with the pROC library [183]. 

2.4  DisPredict (version 1.0)  

In this section, we describe the design and development of DisPredict (version 1.0). 

2.4.1 SVM Design and Parameterization  

DisPredict is a two-layer disorder predictor that integrates optimization-layer and classification-layer. The 

classification-layer is developed using a single support vector machine (SVM), namely LIBSVM [184]. 

Due to the working principle of SVM of simultaneously minimizing the empirical classification error 
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(training error) and generalized error (test error) by maximizing the geometric margin of the separating 

hyperplane, it can be regarded as an effective technique in hard classification problems especially in 

bioinformatics and computational biology area. We used Gaussian or, radial basis function (RBF) kernel 

for the SVM to extend its capability to handle non-linearly separable classes. RBF transforms the input 

feature space into infinite dimension space (i.e. Hilbert space), which results in a linear separating affine-

plane or a hyperplane.  

 

Fig 5. DisPredict Framework: feature aggregation, optimization-layer and classification-layer. In the 
feature aggregation step, features are shown in their abbreviated form according to Table 1 and the 
arrows are labeled by the number of features involved. The classification-layer receives final feature 
set from the feature aggregation step and optimal parameters from the optimization-layer. Then, it 
generates the predictor model and outputs both binary annotation and real-valued class probabilities. 
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On the other hand, in the optimization-layer of DisPredict, we selected two parameters, C and , where 

C is the cost of misclassification and  is the parameter of fitting best mode of RBF. The optimal values for 

the parameters C and  are determined by grid search using 5-fold cross-validation. However, in our case 

the grid search turned out to be computationally very intensive. Thus, we used 5% of the training dataset to 

determine the optimal parameters instead. The output of DisPredict, i.e., the disordered or ordered residue 

probabilities, is optimized by a round of 5-fold cross validation. Using the threshold value 0.5, the 

probabilities are converted into binary decision variables, where probability ranges 0.5 ≤ 𝑟𝑎𝑛𝑔𝑒𝑑 ≤ 1.0 is 

considered as disordered and 0.0 ≤ 𝑟𝑎𝑛𝑔𝑒𝑜 < 0.5 is considered as ordered. Fig. 5 shows the detail 

paradigm of DisPredict. 

2.4.2 Implementation and Availability 

We implemented the DisPredict tool in C. The software is developed and tested on Linux platform. It is 

dependent on two external packages, namely PSI-BLAST8 and NR database9, which are publicly available.  

The software is available online10 with a user manual. 

2.5 Evaluation of DisPredict1.0 

Here, we evaluate the performance of DisPredict through cross-validation and testing with independent 

datasets. We further compare the of performance DisPredict with two other existing predictors, and analyze 

its effectiveness through case-studies.   

2.5.1 10-Fold Cross Validation 

2.5.1.1 Default parameters for SVM 

We evaluated the 10-fold cross-validation performance of DisPredict separately on SL477 and MxD444 

dataset. Regarding the optimum selection of the window size, we ran cross-validation for 13 different 

windows, shown in Table 2, for both of the SL477 and MxD444 dataset with default parameters for SVM. 

The best result for window size 25 was found with ACC, MCC and AUC values equal to 0.82, 0.65 and 

0.91, respectively for SL477 dataset, whereas for MxD444 dataset the values are 0.77, 0.48 and 0.85, 

                                                      
8 PSI-BLAST link: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 
9 NR database link: ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 
10 DisPredict link: https://github.com/tamjidul/DisPredict_v1.0 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
https://github.com/tamjidul/DisPredict_v1.0
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respectively. The gradual increase in performance becomes a plateau as window goes higher above size 23 

(Fig 6).  

Table 2. 10-fold Cross Validation Performance of DisPredict (Default Parameter).  

𝑾𝒔𝒊𝒛𝒆 TP TN FP FN Ncorrect (total)1 SENS SPEC ACC Sw PPV MCC AUC [95%CI]2 

SL477 Dataset 

1 4440 5804 1469 1260 10244 (12973) 0.779 0.798 0.788 0.577 0.751 0.574 0.869 [0.862 , 0.876] 

3 4467 5954 1319 1233 10421 (12973) 0.784 0.819 0.801 0.602 0.772 0.601 0.884 [0.877 , 0.890] 

5 4457 6020 1253 1243 10477 (12973) 0.782 0.828 0.805 0.609 0.781 0.609 0.889 [0.882 , 0.896] 

7 4441 6076 1197 1259 10517 (12973) 0.779 0.835 0.807 0.614 0.787 0.615 0.893 [0.886 , 0.899] 

9 4457 6086 1187 1243 10543 (12973) 0.782 0.837 0.809 0.618 0.789 0.619 0.895 [0.888 , 0.902] 

11 4483 6113 1160 1217 10596 (12973) 0.786 0.841 0.813 0.627 0.794 0.628 0.898 [0.891 , 0.905] 

13 4502 6114 1159 1198 10616 (12973) 0.790 0.841 0.815 0.63 0.795 0.631 0.899 [0.892 , 0.905] 

15 4513 6150 1123 1187 10663 (12973) 0.792 0.845 0.819 0.637 0.801 0.638 0.902 [0.896 , 0.909] 

17 4540 6133 1140 1160 10673 (12973) 0.796 0.843 0.82 0.64 0.799 0.64 0.902 [0.895 , 0.902] 

19 4545 6148 1125 1155 10693 (12973) 0.797 0.845 0.821 0.643 0.802 0.643 0.903 [0.896 , 0.910] 

21 4548 6148 1125 1152 10696 (12973) 0.798 0.845 0.822 0.643 0.802 0.643 0.903 [0.896 , 0.910] 

23 4555 6167 1106 1145 10722 (12973) 0.800 0.847 0.823 0.647 0.804 0.647 0.904 [0.898 , 0.911] 

25 4564 6164 1109 1136 10728 (12973) 0.801 0.847 0.824 0.648 0.804 0.648 0.905 [0.898 , 0.911] 

MxD444 Dataset 

1 3284 13093 3397 1632 16377 (21406) 0.668 0.793 0.731 0.462 0.491 0.419 0.817 [0.810 , 0.825] 

3 3369 13241 3249 1547 16610 (21406) 0.685 0.803 0.744 0.488 0.509 0.444 0.832 [0.826 , 0.840] 

5 3410 13302 3188 1506 16712 (21406) 0.694 0.807 0.75 0.5 0.516 0.456 0.839 [0.833 , 0.847] 

7 3419 13275 3215 1497 16694 (21406) 0.695 0.804 0.75 0.501 0.515 0.455 0.840 [0.833 , 0.847] 

9 3446 13253 3237 1470 16699 (21406) 0.7 0.805 0.752 0.505 0.516 0.458 0.842 [0.834 , 0.849] 

11 3503 13232 3258 1413 16735 (21406) 0.712 0.802 0.757 0.515 0.517 0.466 0.846 [0.839 , 0.853] 

13 3523 13188 3302 1393 16711 (21406) 0.717 0.8 0.758 0.516 0.516 0.466 0.847 [0.839 , 0.853] 

15 3564 13145 3345 1352 16709 (21406) 0.725 0.797 0.761 0.522 0.515 0.469 0.848 [0.842 , 0.855] 

17 3578 13097 3393 1338 16675 (21406) 0.728 0.794 0.761 0.522 0.513 0.469 0.848 [0.841 , 0.855] 

19 3607 13068 3422 1309 16675 (21406) 0.734 0.792 0.763 0.526 0.513 0.471 0.849 [0.842 , 0.856] 

21 3613 13078 3412 1303 16691 (21406) 0.735 0.793 0.764 0.528 0.514 0.473 0.850 [0.843 , 0.857] 

23 3640 13059 3431 1276 16699 (21406) 0.74 0.792 0.766 0.532 0.515 0.476 0.851 [0.845 , 0.859] 

25 3658 13064 3426 1258 16722 (21406) 0.744 0.792 0.768 0.536 0.517 0.479 0.852 [0.847 , 0.861] 

Wsize indicates the size of sliding window. 

Best values of each metric are marked in bold for each dataset separately. 
1 Ncorrect is reported with total number of residues (Residuetotal) to be predicted in parentheses. Both the counts correspond to one 

subset (fold) of the full dataset, which is generated for performing cross validation. 
2 For AUC, the values within bracket indicate 95% confidence interval with 2000 stratified bootstrap replicas. 

As the window size continues to increase, the rate of increase in scores becomes slow. Increase of scores is 0.001, as the 

windows size grows from 23 to 25 for SL477 dataset and 0.004 for MxD444 dataset, respectively. 
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Table 2 also depicts the inverse relationship between SENS and SPEC scores with increasing window 

size for MxD444 dataset. The best SENS (0.74) is achieved by window size 25 while the best SPEC (0.81) 

is achieved at window size 5. Overall, the consistent increment in balanced accuracy (ACC) and PPV prove 

our methodology to be well balanced. 

 

            (a) SL477  (b) MxD444 

Fig 6. 10-fold cross-validation (default parameter) performance of DisPredict with different window sizes. 
Results are shown in terms of ACC, MCC and AUC scores on (a) SL477 and (b) MxD444 dataset. 
The x-axis and y-axis represent the window sizes and scores, respectively. 

2.5.1.2 Optimized Parameters for SVM 

The preliminary extensive analysis of performance with multiple window sizes is done without 

selection of optimal parameters for SVM. For a specific window size (Wsize) and total number of residues 

(Residuetotal) in a dataset, we have a feature matrix of dimension, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑡𝑜𝑡𝑎𝑙×(𝑊𝑠𝑖𝑧𝑒×56). Therefore, 

the increase in window size leads towards the increase in the dimensions of the feature space, which in turn 

makes the time expensive grid search for parameters slower. To tradeoff between performance with 

optimization and time complexity of parameter selection along with model generation, we determined the 

optimal values of parameters with a 5% randomly selected subset of residues from training dataset for 3 

window sizes (15, 21 and 25). The optimal parameters (C and ) found from grid search are reported in 

Table 3.  

Furthermore, we inserted repeated disordered residue information only in case of training to balance 

the dataset as the support vector points for the less dominant class may not be sufficient to determine the 
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optimal SVM margin. Specifically, duplicates (2 times for SL477 dataset and 3 times for MxD444 dataset) 

of disorder samples were provided during generation of predictor model. However, in case of testing, no 

repeated information was inserted. Table 4 illustrates the detail of the cross-validation results with 

optimized parameters for 3 different window sizes. 

Table 3. Optimized Parameters used to build final DisPredict Model.  

 SL477 dataset MxD444 Dataset 

𝑾𝒔𝒊𝒛𝒆 C  C  

15 8.0 0.0019531 8.0 0.0312500 

21 2.0 0.0078125 2.0 0.0078125 

25 0.5 0.0078125 0.5 0.0078125 

C is the soft penalty parameter to handle overlapped class.  

 is the parameter for radial basis kernel for SVM. 
 

The improvement of performance with optimized parameters over non-optimized parameters one was 

significant. To compare, for SL477 dataset (window size 21), FP and FN values are reduced to 1,002 and 

1,083 from 1,125 and 1,152 due to optimization. In case of MxD dataset (window size 21), the FN value is 

increased by 133 residues. However, the FP value is also decreased by 1,812 residues which maintains the 

overall increase in the total number of correctly predicted residues from 16,691 to 18,370. The improvement 

of prediction, both in terms of increased correct classification and decreased misclassification, is also visible 

from both the sensitivity and specificity scores. For window size 21, the values of Sw, precision and MCC 

are improved by 4.5%, 2.5% and 4.5% respectively due to optimized training on SL477 dataset. At the 

same time, for MxD444 dataset, these progresses are 15.7%, 33.3% and 26.8% respectively. Note that, this 

significant improvement in MCC strongly supports our method's capability in handling the imbalance ratio 

of ordered and disordered residues. Further, the AUC score is also increased by 4.4% and 0.4% as the result 

of optimization for SL477 and MxD444 dataset, respectively.  

A comparative analysis of Table 2 and Table 4 also shows that optimized DisPredict model with 

window size 21 outperforms all the other models of its own kind. Thus, we select 21 as the optimal window 

size for our proposed DisPredict. Furthermore, to understand the relevance of the new features (MGs and 

BGs) with protein disorder, we separately evaluated optimized DisPredict's performance without 

monograms and bigrams. We performed 10-fold cross validation on SL477 dataset with the optimal window 

size 21 and optimal parameters of SVM as reported in Table 3 for SL477 dataset with window size 21. The 

result of this experiment in terms of ACC, MCC and Sw score are 0.810, 0.651 and 0.621, respectively. The 

comparison of these scores excluding MGs and BGs with those of including MGs and BGs (reported in 
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Table 4 for SL477 dataset) shows that involvement of MGs and BGs along with PSSM leads to a further 

increase in binary prediction accuracy in terms of 3.2% improved ACC (0.810 to 0.836), 3.8% improved 

MCC (0.651 to 0.673) and 8.2% improved Sw score (0.621 to 0.672). 

Table 4. 10-fold Cross Validation Performance of DisPredict (Optimized Parameter).  

𝑾𝒔𝒊𝒛𝒆 TP TN FP FN 
Ncorrect 

(Residuetotal)1 
SENS SPEC ACC Sw PPV MCC 

AUC 

[95%CI]2 

SL477 Dataset 

15 4655 6056 1217 1045 10711 (12973) 0.817 0.833 0.825 0.649 0.793 0.647 0.898 [0.890 , 0.904] 

21* 4617 6271 1002 1083 10888 (12973) 0.810 0.862 0.836 0.672 0.822 0.673 0.956 [0.950 , 0.963] 

25 4624 6234 1039 1076 10858 (12973) 0.810 0.857 0.834 0.668 0.816 0.669 0.911 [0.904 , 0.917] 

MxD444 Dataset 

15 2590 15590 900 2326 18180 (21406) 0.527 0.945 0.736 0.472 0.742 0.538 0.838 [0.831 , 0.845] 

21 3480 14890 1600 1436 18370 (21406) 0.708 0.903 0.805 0.611 0.685 0.600 0.853 [0.847 , 0.859] 

25 3367 3367 1635 1549 18222 (21406) 0.685 0.901 0.793 0.586 0.673 0.582 0.850 [0.843 , 0.858] 

Wsize indicates the size of sliding window. 

Best values of each metric are marked in bold for each dataset separately. 
1 Ncorrect is reported with total number of residues (Residuetotal) to be predicted in parentheses. Both of the counts correspond to 

one subset (fold) of the full dataset which is generated for performing cross validation. 
2 For AUC, the values within bracket indicate 95% confidence interval with 2000 stratified bootstrap replicas. 

 

2.5.1.3 Probability and Performance Analysis of Residual Overlap for Residue and Chain Level 

Splitting of Dataset 

To uniformly distribute the residues into ten subsets for cross validation, we applied modular arithmetic 

operation to split the dataset in residue level. As the residues are already included within the neighboring 

information based on the window, they are detachable from their original sequence. However, this inclusion 

of residue information within window may yield overlap of information between training and test sets in 

case of residue level splitting of dataset for cross validation. We analyzed the probability of this residual 

overlap between training and test sets.  

Let, there are 𝑁 sequences in the dataset and the expected length of the sequence is ℒ. Then, the 

possibility of picking two residues for training and test subsets of 10-fold cross-validation which belongs 

to same sequence is (
1

9𝑁

10

×
1
𝑁

10

) =
100

9𝑁2. Since the expected length of a sequence is ℒ, the chance of training 

and test overlap for a specific window size (𝑊𝑠𝑖𝑧𝑒) is 
𝑊𝑠𝑖𝑧𝑒−1

 ℒ
. Altogether, the probability of a train and test 

residue overlap from the same sequence is (
100

9𝑁2 ×
𝑊𝑠𝑖𝑧𝑒−1

 ℒ
) = (

100

9
)

𝑊𝑠𝑖𝑧𝑒−1

 𝑁2ℒ
. For SL477 dataset with 𝑁 =
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477, approximate ℒ = 400 and 𝑊𝑠𝑖𝑧𝑒 = 21, the probability of the overlap is 2.44 × 10-06, which is 

significantly low and thus can be safely ignored. Further, we reevaluated DisPredict's 10-fold cross 

validation performance with sequence level sampling by modular operation for SL477 dataset to generate 

training and test subsets. Table 5 quantifies the difference in performance between residue level and state-

of-the-art practice of sequence level splitting of dataset for cross validation with window size 21 and default 

parameters for SVM. It showed that DisPredict's performance remains consistent without any significant 

over-prediction in terms of all the metrics. 

Table 5. Cross-validation performance of DisPredict with residue level and sequence level splitting of SL477 

dataset.  

Splitting Method SENS SPEC ACC Sw PPV MCC AUC [95% CI] 

Residue Level 0.798 0.845 0.822 0.643 0.802 0.643 0.903 [0.896 , 0.910] 

Sequence Level 0.784 0.844 0.814 0.628 0.793 0.627 0.892 [0.886 , 0.898] 

Default values of C and  are applied for SVM.  

Window size 21 is used. 

2.5.2 Independent Training and Testing 

With optimized parameters and balanced dataset, we carried out independent training on SL477 and 

MxD444 datasets followed by testing the resulting predictor model with MxD134 and SL171 dataset, 

respectively. Note that, these independent test datasets (MxD134 and SL171) were generated at low 

sequence identity (10%) with the corresponding training datasets (SL477 and MxD444). The consistent 

results of these two tests done through cross validation and independent test confirm the usage of robust 

technique and effective feature set in DisPredict as well as training efficacy avoiding possible over-fittings. 

Table 6 further illustrates the results of these tests, where we reported the average of the scores 

computed for equally divided 10 subsets of the full dataset along with the corresponding standard deviation 

(STDEV). Table 6 reveals that training by SL477 dataset gives consistent performance regardless of test 

datasets and test procedures (cross validation or independent test) in terms of ACC: 0.836, 0.833 and Sw: 

0.672, 0.667. These consistencies are also evident in case of training with MxD444 dataset while tested by 

different datasets and the evaluations are, ACC: 0.805, 0.789 and Sw: 0.611, 0.577. We calculated the Mean 

Absolute Error (MAE) which is also reported along with its corresponding STDEV from mean. The score 

indicates that the error does not increase from cross validation to independent test as the test-results were 

robust.   
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Table 6. Performance Comparison of Cross Validation and Independents Tests.  

Model Evaluation 

Procedure1 

SENS 

(STDEV) 

SPEC 

(STDEV) 

ACC 

(STDEV) 

Sw 

(STDEV) 

PPV 

(STDEV) 

MCC 

(STDEV) 

AUC 

(STDEV) 

MAE 

(STDEV) 

10-fold cross 

validation on SL477 

0.810 

(0.004) 

0.862 

(0.001) 

0.836 

(0.002) 

0.672 

(0.005) 

0.822 

(0.002) 

0.673 

(0.004) 

0.956 

(0.007) 

0.032 

(0.002) 

Train by SL477,  

Test on MxD134 

0.744 

(0.002) 

0.923 

(0.002) 

0.833 

(0.002) 

0.667 

(0.003) 

0.574 

(0.002) 

0.598 

(0.004) 

0.906 

(0.001) 

0.023 

(0.001) 

10-fold cross 

validation on MxD444 

0.708 

(0.006) 

0.903 

(0.001) 

0.805 

(0.003) 

0.611 

(0.006) 

0.685 

(0.002) 

0.600 

(0.004) 

0.853 

(0.007) 

0.208 

(0.001) 

Train by MxD444, 

Test on SL171 

0.718 

(0.003) 

0.860 

(0.001) 

0.789 

(0.001) 

0.577 

(0.003) 

0.748 

(0.001) 

0.583 

(0.002) 

0.872 

(0.007) 

0.151 

(0.001) 

1 All the evaluations are carried out using a sliding window of length 21 and optimized parameters for SVM.  

 

  
              (a) SL477  (b) MxD444 

Fig 7. ROC curves given by DisPredict on the training dataset (a) SL477 and (b) MxD444 dataset. In each 
figure, the solid (blue) curve corresponds to the cross-validation test on the same dataset and the 
dotted (red) curve corresponds to the independent test. The AUC values given in each figure 
correspond to the values in Table 6. The x-axis and y-axis show the Specificity and Sensitivity, 
respectively. 

 

To analyze the quality of the predicted probability, the ROC curves given by DisPredict are plotted in 

Fig 7 in continuous scale between 0.0 and 1.0. In each figure, two ROCs are plotted keeping the training 
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dataset same with varying test datasets and evaluation procedure. Finally, we reported the AUC values 

which are found consistent for cross validation and independent test indicating our predictor's capability to 

avoid over-fitting. 

2.5.3 Comparison with Other Predictors 

The performance of DisPredict1.0 (or DisPredict [10]) is compared with the state-of-the-art disorder 

predictors, MFDp [164] and SPINE-D [123]. To remain fair while comparing DisPredict with each of the 

above two predictors, we train DisPredict separately with respective datasets and compare with each of 

them separately. Thus, DisPredict is compared with MFDp based on dataset MxD444, while dataset SL477 

is used to compare DisPredict with SPINE-D (Table 7). 

Table 7. Comparison of DisPredict with MFDp and SPINE-D respectively on MxD444 and SL477 dataset. 

Method SENS SPEC ACC Sw MCC AUC 

DisPredict1 0.71 0.90 0.80 0.61 0.60 0.85 

MFDp2 0.76 0.75 0.75 0.51 0.44 0.81 

DisPredict3 0.81 0.86 0.84 0.67 0.67 0.96 

SPINE-D4 0.77 0.85 0.81 0.62 0.63 0.87 

1 10-fold cross validation performance of DisPredict on MxD444 which is a subset of 444 chains out of 514 chains with no X-tag.  
2 5-fold cross validation performance of MFDp on MxD dataset of 514 protein chains [164].  
3 10-fold cross validation performance of DisPredict on SL477.  
4 10-fold cross validation performance of SPINE-D [123] on SL477.  

 

In particular, MFDp [164] is a meta predictor that combines the predictions from three disorder 

predictors (DISOPRED2 [126], DISOclust [185] and IUPred [186]). Further, MFDp combines the outputs 

from three SVMs with linear kernel using a threshold of 0.37, used to output binary prediction. In contrast, 

we utilized single SVM with RBF kernel and optimized parameters combined with a comprehensive set of 

features to develop the standalone predictor. However, the performance of MFDp in Table 7 is of 5-fold 

cross validation whereas DisPredict is evaluated by 10-fold cross validation and hence to be considered 

reliable rather than over-fitted by chance. In terms of MCC, DisPredict improved significantly, which is 

36.36% better than MFDp. The improvement in Sw score is also 19.6%. DisPredict showed lower sensitivity 

(7%) than MFDp while at the same time improved specificity by 20%, which in turn improved the balanced 

accuracy by 6.67%. Moreover, DisPredict outperformed MFDp in AUC score by 1.29% which is used to 

assess the probability based prediction.   

The other state-of-the-art predictor, SPINE-D [123] utilizes ANN technique which was first developed 

to output three state prediction and later reduced into two state predictor of ordered and disordered residues. 
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SPINE-D employs a disorder probability threshold of 0.06 that was optimized to achieve maximum Sw 

score. On the contrary, DisPredict is a SVM-based two-state disorder predictor using a more meaningful 

threshold for two-class classification of value 0.5. DisPredict outperformed SPINE-D in terms of sensitivity 

as well as specificity by 5.19% and 1.18% respectively which leads to 3.7% improvement in overall 

accuracy. DisPredict also outperformed SPINE-D in terms of Sw, MCC and AUC by 8.06%, 6.34% and 

10.34% respectively. 

Table 8. Performance comparison among DisPredict, SPINE-D and MFDp on independent DD73 dataset. 

Method SENS SPEC ACC Sw PPV MCC AUC [95% CI] 

DisPredict* 0.775 0.883 0.829 0.658 0.806 0.663 0.89 [0.88, 0.90] 

SPINE-D 0.769 0.847 0.822 0.644 0.765 0.639 0.89 [0.88, 0.90] 

MFDp 0.780 0.875 0.828 0.656 0.796 0.658 0.88 [0.87, 0.89] 

* Window size = 21, C = 2.0 and  = 0.0078125.  

Best results are marked by bold. 

In addition to the comparison on cross validation test, we evaluated DisPredict, SPINE-D [123] and 

MFDp [164] on independent DD73 dataset. The comparison among these three methods is illustrated in 

Table 8. It shows that DisPredict gives better performance among three predictors except in case of 

sensitivity. DisPredict yielded 2.63% lower sensitivity than that of SPINE-D[123], whereas DisPredict gave 

4.25% higher specificity than that of SPINE-D [123]. Table 8 also shows that DisPredict outperformed 

SPINE-D [123] and MFDp [164] in terms of MCC by 3.76% and 0.76%, respectively. At the same time, 

DisPredict gave 1.26% and 5.36% improved precision (PPV) than MFDp [164] and SPINE-D [123], 

respectively. However, DisPredict resulted slightly lower sensitivity than those of SPINE-D [123] and 

MFDp [164]. At the same time, both SPINE-D [123] and MFDp [164] gave lower specificity than that of 

DisPredict.   

Fig 8 compares the ROC curves and precision-recall curves, respectively, given by DisPredict, SPINE-

D [123] and MFDp [164]. Fig 8(a) shows that the ROC curves given by the three predictors are 

comparative. At the same time, the precision-recall curves (Fig 8(b)) depicts that DisPredict achieves 

consistently higher precision upto less than 65% sensitivity (recall). 
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(a) ROC (DD73) (b) Precision-recall (DD73) 

Fig 8. (a) ROC and (b) precision-recall curves given by DisPredict (blue), SPINE-D (green) and MFDp (red) 
while predicting disorder on DD73 dataset. The AUC values shown in the figure correspond to the values 
in Table 8. For (a), the x-axis and y-axis show the Specificity and Sensitivity, respectively, and for 
(b) the x-axis and y-axis show the Recall (Sensitivity) and Precision (PPV), respectively. 

 

MFDp and SPINE-D have been established as the best disorder predictor among 8 and 11 existing 

disorder predictors [123, 164], respectively, covering different approaches in their relevant publication. In 

this article, our predictor is shown to be comparable with both of these methods. Therefore, DisPredict can 

be considered to be one of the finest disorder predictor and can be utilized to produce more reliable 

annotation of disorder versus order residues. 

2.5.4 Case Studies: Characteristic Region and Protein Function 

Proteins with disordered regions are found to contain several regions of interest, such as self-stabilizing 

folded regions, DNA or, nucleotide binding regions, short (up to 20 amino acids) conserved regions of 

biological significance (known as motif), mediating regions for protein interaction with different partners 

etc. These characteristic regions undergo various conformational changes, gain structure and affect many 

important biological functions. We selected three proteins as cases (UniProt IDs: P41212, P01116 and 

P04637) with experimentally verified regions of interest to analyze per residue disorder confidence score 

assigned by DisPredict, SPINE-D and MFDp. Fig 9 illustrates the disorder probability of each residue with 

respect to residue index. 
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2.5.4.1 UniProtKB – P41212 (ETV6_HUMAN) 

P41212 is a human ETV6 protein11 for transcriptional repressor function, which is also involved in 

several kinds of leukemia and syndrome. Fig 9(a) indicates that for this protein, DisPredict and SPINE-D 

showed comparable performance in detecting the highly conserved region of PNT (pointed) domain 

(residues 40 – 124) [187] and ETS (E26 transformation-specific) DNA binding region  (residues 339 - 420) 

[188] respectively, while MFDp outperformed both of them with relatively less noise.  

2.5.4.2 UniProtKB – P01116 (RASK_HUMAN) 

P01116 is a human KRAS protein12 with intrinsic GTPase activity (binds GDP/GTP) [189] and related 

to several diseases, such as gastric cancer (GASC), acute myelogenous leukemia (AML), 

cardiofaciocutaneous syndrome 2 (CFC2) etc. Fig 9(b) shows that DisPredict could identify its GTP 

(guanosine triphosphate) binding region (residues 10 – 17) and effector region (residues 32 – 40) 

respectively, with close to cut-off (0.5) probabilities. Note that, these two regions are experimentally 

verified unstructured regions, which are strongly suggested as structured by both SPINE-D and MFDp. 

However, the C-terminal hypervariable region (residues 166 – 185) is consistently detected by all three of 

these predictors. 

2.5.4.3 UniProtKB – P04637 (P53_HUMAN)  

P04637 corresponds to human p53 protein13 which acts as a tumor suppressor. Fig 9(c) illustrates that 

DisPredict and MFDp outperformed SPINE-D with relatively sharp detection of N-terminal TADI 

(transcriptional repression domain-I) motif (residues 17 – 25) [190]. On the other hand, DisPredict and 

SPINE-D outperformed MFDp in determining oligomerization domain [191] of residues 325 - 356. Fig 

9(c) also shows that both SPINE-D and MFDp missed the very short, 3-residues (370 - 372) long [KR]-

[STA]-K binding motif at C-terminal, while DisPredict detected it correctly. The overall comparison depicts 

that DisPredict's performance is more biologically relevant with correct identification of these short regions. 

Therefore, it would be interesting to utilize DisPredict in a broader scope in near future. 

 

                                                      
11 UniProtKB – P41212 link: http://www.uniprot.org/uniprot/P41212 
12 UniProtKB – P01116 link: http://www.uniprot.org/uniprot/P01116 
13 UniProtKB – P04637 link: http://www.uniprot.org/uniprot/P04637 

 

http://www.uniprot.org/uniprot/P41212
http://www.uniprot.org/uniprot/P01116
http://www.uniprot.org/uniprot/P04637
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Fig 9. Disorder probability plot for (a) human ETV6 (P41212), (b) human KRAS (P01116) and (c) human p53 
(P04637) proteins, given by DisPredict(red), SPINE-D (blue) and MFDp (green). In (P41212, A), the 
yellow (40 - 124 residues) and pink bar (339 - 420 residues) represent to the PNT domain 
[187] and ETS DNA binding region [188], respectively. In (P01116, B), the orange (10 - 17 
residues), cyan (32 - 40 residues) and purple bar (166 - 185 residues) correspond to the GTP 
binding region [189], effector region and hypervariable region, respectively. In (P04637, C), the dark 
green (17 - 25 residues), red (325 - 356 residues) and gray bar (370 - 372 residues) highlight 
to the TADI motif [190], oligomer region and [KR]-[STA]-K binding motif, respectively. 

2.6 Result Analysis and Discussions with DisPredict1.0 

In this section, we discuss the different length of disordered regions, structural properties of ordered versus 

disordered regions along and their correspondence, possible overlap between annotation of ordered and 
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disordered residues in datasets, sequence-based amino acid composition of disordered regions and their 

effect on prediction.   

2.6.1 Distribution of Length Disordered Segments in the Datasets 

The performance of DisPredict is also justified by training and testing the predictor with multiple datasets: 

SL477, SL171 and MxD444, MxD134. The datasets used to train DisPredict (SL477 and MxD444) 

encompass disorder annotation from several complementary sources (X-ray and NMR defined disorder 

from PDB and DisProt) as well as disorder region of various lengths.  

The SL dataset comprises of 81 full disordered proteins (IDPs) while the rest of the chains contain 928 

disordered regions (IDRs). On the other hand, the MxD dataset is composed of 55 full disordered chains, 4 

full ordered chains and 385 chains, sharing both structured and disordered regions, which include 730 

disordered regions (IDRs). Furthermore, 70% of the IDRs included within partially disordered proteins are 

short ( 30 residues) and 30% of them are long (> 30 residues). This combination of several length 

disordered regions (Fig 10) included within training confirms the consistent performance of DisPredict for 

disordered regions of all sizes as well as different types of disordered residues. 

 

Fig 10. Distribution of disordered regions of different lengths in MxD444 (left) and SL477 (right) dataset. 
Legends are shown for different range of lengths (with interval size 15) and each bar is labeled with 
total number of occurrence of a disordered region of this specific length. 
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2.6.2 Feature Correlation Plots and Insights into Possible Noise in the Dataset 

We observed that regardless of cross validation or independent test, DisPredict's performance is relatively 

better while it is trained on SL477 dataset than that of MxD444 (Table 6). To further insight into this 

discrepancy, we investigated the correlation of true annotation provided in the dataset with the actual 

structural characterization of disordered and ordered residues.  

Disordered residues are distinguished from ordered residues by low content of secondary structure 

[8, 20], therefore high probability of coil residues than helical or beta strand residues and disordered regions 

are likely to have large solvent accessible (exposed) area [162]. We represented the correlation of the 

fraction of secondary structure content and fraction of exposed residues for disordered and ordered regions 

of all length in Fig 11. We employed the predicted probability of each residue to be coil and predicted per 

residue solvent accessibility provided by SPINE-X [175] since all residues do not have defined coordinates 

(structure) to compute secondary structure and solvent accessibility. 

 

(a) SL477 (b) MxD444 

Fig 11. Correlation plot between structural characterizations of ordered (blue) and disordered (red) regions 
within (a) SL477 and (b) MxD444 dataset. The x-axis and y-axis correspond to the probability of having 
well defined secondary structure (in terms of probability being coil) and fraction of exposed residues 
of that region, respectively. 

 

We calculated the average coil probability (𝑃𝑐𝑜𝑖𝑙) for each ordered or disordered region and computed 

the fraction of exposed residues with greater than 25% solvent accessibility (𝐹𝑒𝑥𝑝𝑜𝑠𝑒𝑑) of that region. In 

this analysis, we discarded 5 residues from the N and C-terminal regions of each protein sequences as they 

are mostly found on the surface of a protein chain (not buried in the core) and more likely to be affected by 

the interaction with nearby structured protein, yielding to a highly flexible and dynamic conformation. The 

plots for both datasets show that the ordered regions are mostly concentrated in the portion with relatively 

low coil probability, 0.3 ≤ 𝑃𝑐𝑜𝑖𝑙 < 0.5 (high content of well-defined helical or strand secondary structured 

residues) and low exposure, 0.2 ≤ 𝐹𝑒𝑥𝑝𝑜𝑠𝑒𝑑 < 0.5. While on the contrary, the disorder regions are abundant 
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in the area of high coil probability, 0.5 ≤ 𝑃𝑐𝑜𝑖𝑙 ≤ 0.9 (low content of helical or strand secondary structured 

residues) and high exposure, 0.5 ≤ 𝐹𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ≤ 1.0.  

However, we found the intrinsic difference between these two datasets according to their annotation of 

residues as order and disorder. This difference is evident from the top right location of the correlation plot, 

0.6 ≤ 𝑃𝑐𝑜𝑖𝑙 ≤ 0.8 and 0.4 ≤ 𝑃𝑐𝑜𝑖𝑙 ≤ 0.9, designated for disordered regions. For SL477 dataset (Fig 

11(a)), the number disordered regions are predominant over the number of ordered regions in this top right 

location of disordered regions in the plot. In contrast, the same location of the plot in Fig 11(b) is overlapped 

by both ordered and disordered regions for that of MxD444.  

We further quantified the difference as 13% of the data in MxD444's ordered set are more likely to be 

coil as well as highly exposed while 6% of the data in SL477's ordered set are exposed as well as coil. This 

higher proportion of misleading annotation in MxD444 dataset contributes relatively lower signal to noise 

ratio (SNR) of 87/13 compared to 94/6 for SL477 which is the most compelling reason of the better 

performance of DisPredict in case of training dataset SL477 over MxD444. As the prediction produced by 

DisPredict is well capable of detecting such discrepancies in the native annotation of the datasets, it can be 

utilized as a reliable source of correct annotation of the ordered and disordered residues. We should also 

focus that, a similar proportion of 11% and 13% of the disordered data are also mixed with the ordered 

residues in the low coil probability region of the plot for both MxD444 and SL477 dataset, respectively. 

2.6.3 Residual Composition of IDPs/IDRs and their Effect on Prediction 

Here, we investigate that the amino acid residue compositions in IDPs/IDRs that may vary in different 

datasets as well as within short ( 30 residues) and long (> 30 residues) disordered regions [8, 192]. 

Specifically, short disordered regions are enriched with aspartic acid (D), glycine (G) and serine (S). On 

the contrary, glutamic acid (E), lysine (K) and proline (P) are likely to be abundant in long disordered 

regions.  

To give further insight into this residue composition and confirm the ability of DisPredict to detect the 

residue preferences of short and long disordered regions, we determined the residual composition profile 

for our two test datasets, SL171 (Fig 10(a)) and MxD134 (Fig 10(b)). It is to be noted that, these two 

datasets contain experimentally annotated disorder from two different sources. SL171 contains sequences 

with disorder annotation from DisProt while MxD134 contains that from PDB. The composition profile 

consists of the actual ratio (𝑟𝑎) and predicted ratio (𝑟𝑝) of each amino acid type out of total annotated and 

predicted disordered residues. 
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 (a) SL171 (b) MxD134 

Fig 12. Percentage of amino acid type residues in actual composition (blue or left adjacent bar) and predicted 
composition (red or right adjacent bar) of (a) SL171 and (b) MxD134 dataset. The x-axis and y-axis 
represent the 20 different amino acids and their relative proportions in the composition. 

 

The composition profile in Fig 12(a) demonstrates that SL171's disordered residue set accommodates 

relatively higher ratio of amino acid type E (10%) and K (9%), which are long disorder prone residues. In 

contrast, MxD134's disordered residue set, shown in Fig 12(b) is enriched with high ratio of amino acid 

type S (11%), G (10%) and D (9%), known as short-disorder-prone residues. Another significant difference 

between the intrinsic compositions of these two datasets is in the proportion of histidine (H). Disorder 

annotation from PDB includes higher ratio of H-tag (8% in MxD134, compared to 2% in SL171), which is 

sometimes used for protein purification [123]. The predicted proportion of all these amino acids given by 

DisPredict ensures its capability of detecting residues in disordered region of all length accurately with no 

significant over prediction. Moreover, DisPredict could also accurately predict methionine (M) at highly 

flexible N-terminal region.  

To further quantify DisPredict's performance in detecting residue composition, we evaluated the Root 

Mean Square Difference (RMSE) and Pearson Correlation Coefficient (PCC) between actual and predicted 

ratio (𝑟𝑎 and 𝑟𝑝) for each amino acid type. For MxD134 test dataset, we found RMSE of 0.0046, which was 

comparatively higher than the RMSE value computed for SL171 which equals to 0.0018. However, the 

correspondence between actual composition and predicted composition by DisPredict measured with PCC 

(P-Value < 10−5) was found equally positive, 0.9976 and 0.9897 for SL171 and MxD134 dataset, 

respectively. It is important to note that, this consistent result is corresponding to the independent test where 

the dataset used to train DisPredict shared significantly low sequence identity (at most 10%) with test 

dataset, which once again implicates the strength of the classification methodology of DisPredict. 
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2.7 DisPredict (version 1.1) 

Here, we propose an improved version of DisPredict [10], named DisPredict1.1 [193], which includes a 

post-processing of probability outputs given by initial DisPredict1.0 [10] to generate more accurate 

annotation of disordered protein residues. DisPredict1.1 applies window based averaging of per residue 

probability, generated DisPredict1.0 (described in Section 2.4) to reduce possible less-than-ideal noisy 

prediction output by DisPredict1.0.  

In DisPredict1.0, the input feature set and model development process are kept similar to those of 

DisPredict1.0 to consistently quantify the improvement gained only due to smoothing the outputs. 

However, we evaluated DisPredict1.1 on a new independent test set. DisPredict1.1 was found better than 

DisPredict1.0 as well as competitive with 20 other existing predictors.   

2.7.1 Datasets 

DisPredict1.1 was separately trained using SL477 and MxD444 (see Section 2.3.2) and similar to 

DisPredict1.0, was tested using SL171 and MxD134 (see Section 2.3.2). However, we downloaded an 

additional dataset [165] to evaluate DisPredict1.1.  

Dataset DP_NEW: This dataset was originally developed as part of MFDp2 [165]. DP_NEW dataset 

encompasses disorder annotation from PDB REMARK 465 as well as curated annotation from DisProt. It 

combines 43 protein chains with curated annotation of DisProt and 62 chains annotated by PDB. Moreover, 

this dataset contains 115 short disordered regions (less than 30 residues) and 28 long disordered regions 

(greater than or equal to 30 residues) combined with 17 full ordered and disordered proteins. BLATCLUST 

was used to filter the resulting dataset so that no sequence is more than 25% similar to MxD dataset which 

resulted another independent test dataset of 105 protein chains. DP_NEW dataset comprises of 31,511 

residues that combines 4640 (about 14.7%) disordered residues, 17,798 ordered residues (about 56.4%) and 

9,073 unknown residues (about 28.7%). 

2.7.2 Predictor Framework 

DisPredict1.1 follows our initially designed SVM based classifier model of DisPredict [10] (see Section 

2.4) for prediction of per residue binary annotation (order or disorder) and assigning two real values as the 

probability score of being order or disorder. SVM with RBF kernel is used to develop the predictor model. 

The predictor consists of two layers. The selection of parameter values (C and ) is done with optimization 

on accuracy (fraction of correctly predicted residues) by grid search, which is guided by 5-fold cross 
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validation. The real values are binarized using a natural threshold equal to 0.5, 0.5  range  1.0 is 

considered as disordered probability and 0.0  range < 0.5 is considered as ordered probability. We utilized 

LIBSVM [184] for SVM parameterization and model generation.  

In DisPredict1.1, we processed the probabilities by taking the average of the resulting probabilities with 

a sliding window of 29 residues (14 residues on either side of the target residue) and converted the scores 

into binary annotation using the same threshold of 0.5. We selected the window size which provided us the 

highest MCC scores in performance evaluation. With this post processing step, DisPredict1.1 applies a 

smoothing on the probabilities to take the impact of relative type (order or disorder) of the neighboring 

residues while assigning the score for a target residue which improves both MCC and AUC scores achieved 

by DisPredict1.0. However, we have not applied this smoothing of probability for the N and C terminal 

region due to their highly flexible and dynamic conformation. 

2.7.3 Evaluation of DisPredict1.1 

2.7.3.1 Comparison with DisPredict1.0 

DisPredcit1.1 is evaluated using a similar set of criteria described in Section 2.3.4. With the additional 

correction of predicted probabilities by sliding window based averaging and transforming the resulting 

probabilities into binary annotation, DisPredict1.1 outperforms DisPredict1.0 [10] both in binary annotation 

and probability prediction.  

Table 9. Performance comparison between DisPredict1.0 and DisPredict1.1. 

Predictor1 Test Set SENS SPEC ACC Sw PPV MCC AUC MAE 

DisPredict1.1 

(SL477)2  
 MxD134  0.745 0.928 0.837 0.673 0.591 0.611 0.911 0.083 

DisPredict1.0 

(SL477)3  
 MxD134  0.744 0.923 0.833 0.667 0.574 0.598 0.906 0.023 

DisPredict1.1 

(MxD444)2  
 SL171  0.644 0.926 0.785 0.57 0.834 0.61 0.888 0.032 

DisPredict1.0 

(MxD444)3  
 SL171  0.718 0.86 0.789 0.577 0.748 0.583 0.872 0.151 

1 The predictor name is specified with the corresponding training dataset in parenthesis. The training was done with window size 

twenty one and optimal SVM parameters. 
2 Probabilities smoothed with a sliding window size 29.  
3 No probability smoothing.  
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Table 9 further illustrates this comparison of results in the case of independent tests of the predictor 

two (MxD134 and SL171) datasets. DisPredict1.1 improved the performance for binary disorder or order 

prediction by 0.48%, 0.89%, 2.96%, 2.17% in terms of accuracy, Sw, precision and MCC, respectively 

during the test by MxD134 dataset. On the other hand, while testing with SL171 dataset, there are significant 

increase by 6.38% and 4.63% in precision and MCC, respectively. However, the accuracy decreased 

slightly which caused by the decrease of SENS along with significant increase in SPEC. 

DisPredict1.1 also provided consistent improvement in assigning per residue confidence score with 

0.55% and 1.83% increase in AUC score for MxD134 and SL171 datasets. This improvement is further 

analyzed with the ROC curves in Fig 13 which depicts better correlation between sensitivity and specificity 

with smoothing. Overall, the consistent performance for two different test sets justifies rigorous training 

and precise methodology. 

  
(a) Train: SL477, Test: MxD134 (b) Train: MxD444, Test: SL171 

Fig 13. Comparison of ROC curves given by DisPredict1.0 and DisPredict1.1. (a) Train by SL477, test 
by MxD134 and (b) Train by MxD444, test by SL171. In each figure, the solid (blue) and dotted 
(red) curve corresponds to the performance of DisPredict1.0 and DisPredict1.1, respectively. The AUC 
values are given in the legend according to the respective ROC. 

2.7.3.2 Comparison with Other Existing Predictors 

Here, we compare the performance of DisPredict1.0 and DisPredict1.1 against twenty existing methods 

(including sub versions of some tools for different types of disorder) which cover various categories of 

disorder prediction methods using different machine learning algorithms. These methods include 

DISOPRED [126], 3 versions of ESpritz (X, N and D) [122], PROFbval [194], PrDOS [195], NORSnet 

[120], PreDisOrder [155], 2 versions of IUPred (short and long) [186], Ucon [152], DISOclust [185], 2 
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versions of CSpritz (short and long) [160], MD [162], SPINE-D [123], MFDp [164], PONRD-FIT [63] and 

very recent 2 versions of MFDp2 (with and without BLAST) [165].  

Table 10. Performance comparison of DisPredict1.0 and DisPredict1.1 with 20 existing predictors when 

residues without actual annotation are assumed as ordered. 

Methoda SENS SPEC MCC AUC MAE 

DisPredict1.1 (SL477)  77.3 83.8 0.499 0.857 0.081 

DisPredict1.1 (MxD444)  66.2 88.1 0.482 0.862 0.04 

MFDp2  75.9 83.2 0.479 0.862 0.153 

DisPredict1.0 (SL477)  77.4 82.2 0.478 0.85 0.092 

MFDp2 (no blast)  75.4 83.2 0.475 0.86 0.153 

MFDp  80.9 79.3 0.466 0.85 0.174 

DisPredict1.0 (MxD444)  67.8 86.3 0.466 0.845 0.054 

Cspritz L  83.5 77.5 0.463 0.87 0.242 

MD  72.6 79.9 0.414 0.829 0.235 

Espritz X  53.8 88.7 0.394 0.801 0.139 

Cspritz S  73.5 77.2 0.39 0.823 0.209 

PrDos*  55.8 86.8 0.388 0.818 0.137 

PONDR-FIT  66.3 81.5 0.387 0.8 0.162 

SPINE-D  78.4 72.9 0.381 0.823 0.204 

IUPreD L  60.4 84.4 0.38 0.788 0.13 

PreDisorder*  74.5 74.1 0.374 0.797 0.234 

DISOPRED2  65.6 80.5 0.37 0.797 0.153 

IUPreD S  54.5 86.7 0.368 0.782 0.133 

Espritz D  40.9 92.0 0.349 0.827 0.186 

DISOCLUST  75.3 71.3 0.343 0.803 0.19 

Espritz N  60.2 80.5 0.329 0.785 0.168 

NORSnet  47.3 87.6 0.323 0.761 0.172 

UCON  60.5 76.6 0.289 0.732 0.179 

PROFBVaL  52.8 65.1 0.13 0.631 0.307 

a The methods are sorted according to MCC. 

For each metric, our best result is marked in bold and previously found best result is underlined. 
* According to MFDp2 [165], PrDos and PreDisorder failed for one chain and were evaluated on 104 chains. 

To compare consistently, we collected the performances of these methods on DP_NEW benchmark 

dataset from MFDp2 article [165] and evaluated the performance of DisPredict1.0 and DisPredict1.1 on 

same dataset. Note that, DP_NEW dataset contains about 28.7% residues annotated as unknown. To remain 

consistent, we also evaluated our predictors assuming the unknown residues as order at first and then 

discarding the unknown residues. Comparisons among different predictors at both level are presented 
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quantitatively in Table 10 and Table 11 in terms of SENS, SPEC, MCC, AUC, MAE and PCC. Here, 

SENS, SPEC, MCC and AUC are used to determine the performance in binary annotation prediction and 

probability prediction at residue level, while MAE indicates the performance of disorder prediction in 

content level.  

Table 11. Performance comparison of DisPredict1.0 and DisPredict1.1 with 20 existing predictors when 

residues without actual annotation are discarded. 

Methoda SENS SPEC MCC AUC 

DisPredict1.1 (SL477)  75.9 95.3 0.729 0.94 

DisPredict1.1 (MxD444)  75.4 95.3 0.725 0.938 

MFDp2  77.3 94 0.711 0.925 

DisPredict1.0 (SL477)  80.9 92.2 0.704 0.925 

MFDp2 (no blast)  66.2 96.4 0.683 0.912 

MFDp  77.4 92.2 0.677 0.914 

DisPredict1.0 (MxD444)  67.9 94 0.642 0.89 

Cspritz L  83.5 85.9 0.621 0.909 

MD  65.6 93.6 0.614 0.88 

Espritz X  60.4 94.3 0.588 0.851 

Cspritz S  75.3 87.4 0.581 0.904 

PrDos*  72.6 88.4 0.576 0.873 

PONDR-FIT  55.8 95.4 0.576 0.883 

SPINE-D  78.4 85.4 0.575 0.893 

IUPreD L  66.3 90.3 0.558 0.85 

PreDisorder*  47.3 96.7 0.54 0.834 

DISOPRED2  53.8 94.5 0.54 0.845 

IUPreD S  54.5 93.6 0.525 0.83 

Espritz D  73.5 83.6 0.512 0.857 

DISOCLUST  74.5 82.4 0.503 0.85 

Espritz N  60.2 89.4 0.492 0.844 

NORSnet  40.9 94.4 0.426 0.866 

UCON  60.5 84.4 0.42 0.78 

PROFBVaL  52.8 67.2 0.167 0.647 

 a The methods are sorted according to MCC. 

 For each metric, our best result is marked in bold and previously found best result is underlined. 

 * According to MFDp2 [165], PrDos and PreDisorder failed for one chain and were evaluated on 104 chains. 

 

Table 10 shows that DisPredict1.1 results highest MCC among all the other methods and outperforms 

the previous best result given by MFDp2 [165] by 4.18% when trained on SL477 dataset and by 0.63% 
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when trained on MxD444 dataset. The AUC score of DisPredict1.1 was also competitive. The best score of 

specificity was given by Espritz D at the cost of very low sensitivity. However, both sensitivity and 

specificity given by DisPredict1.1 are comparable.  

Table 11 shows that all the scores provided by DisPredict are competitive and outperform 18 existing 

predictors in terms of MCC and AUC except MFDp2. However, MFDp2 does not consider relatively short 

disordered regions (less than 4 residues) in the evaluation, while DisPredict is evaluated for all types and 

length of disordered regions. We consider the short disordered regions since they are biologically significant 

and our result provides us with evidence that the methodology of our predictor gives promising performance 

for all types of disorder. 

2.8 Summary and Conclusions  

In this chapter, we described a disordered protein prediction framework, which utilizes a canonical support 

vector machine with RBF kernel and includes useful and advanced features for predicting disordered 

residues, called DisPredict. DisPredict not only generates the binary class annotation for ordered and 

disordered residues but also provides order-disorder probabilities that can be treated as the confidence level 

of the prediction as well. DisPredict is implemented in C and the code is publicly available in open source 

form at https://github.com/tamjidul/DisPredict_v1.0. 

The DisPredict outperformed other existing top performing predictors both in predicting binary 

annotation and probability. The competitive performance of DisPredict is mainly due to the use of a novel 

methodology that incorporates firstly, radial basis kernel function (RBF) that can implicitly map the feature 

space in infinite dimension, secondly and most importantly the optimization of the parameters and thirdly, 

the novel features that assisted in determining an optimal as well as effective class separating hyperplane. 

DisPredict was guided by a comprehensive set of features that captured the sequential (amino acid 

composition) and structural characterization of ordered and disordered residues or, proteins. We used 

SPINE X [175] to generate the secondary structure related fine features. The distinguishing property of our 

feature set in comparison with existing predictors is the inclusion of monogram (MG) and bigram (BG), 

computed from PSSM. When a region of a protein is evolutionarily conserved in a fold, then all the proteins 

within that fold are likely to have a conserved group of MGs and BGs. As some intrinsic disordered regions 

are conserved, addition of these features provides important structural evolutionary characteristics. By 

determining the appropriate window size, we have also included the effect of optimal interactions due to 

the contacts among neighboring residues. 
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While DisPredict1.0 was found comparable with two other existing predictors, DisPredict1.1 (a new 

version) was found competitive with 20 other state-of-the-art predictors. In DisPredict1.1, an additional 

post processing of probabilities with window based averaging was performed to correct the binary order or 

disorder annotation accordingly, which is found effective to reduce the noise in prediction as such averaging 

captures the impact of the relative structured or unstructured status of neighboring residues. In addition to 

that, our case studies ensure biologically relevant performances of DisPredict.  

Finally, accurate prediction of disorder has useful implications in proteomic studies due to its direct 

involvement in the function of a protein. Successful detection of disordered region(s) of a protein is 

considered to be the first step in drug design to combat critical diseases. We have built DisPredict using the 

canonical SVM classifier with RBF kernel and established it as a successful predictor of disorder by 

utilizing the benchmark datasets, which we believe will be a useful tool in the study of proteomes and their 

functions. 

One interesting observation is that predicted disorder probability can serve as a useful feature for 

sequence-based prediction of other structural properties of protein. For example, we have developed an 

improved accessible surface area predictor [15] and balanced secondary structure predictor [196] of protein 

residues from sequence alone, where the output of DisPredict was one of the major feature. The accessible 

surface area predictor is discussed under this thesis in Chapter 3. With an aim to contribute further in this 

field of study, we have extracted novel features to protein disorder and extended our framework, which is 

discussed in Chapter 4.  
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Chapter 3 

REGAd3p: A Predictor of Protein Accessible Surface Area  

 A Framework to Predict ASA using Polynomial Kernel and Regularized Regression with 

Reinforcement Learning and its Application 

Proteins consist of a linear chain of amino acid residues connected by peptide bonds to adjacent amino acid 

residues. Accessible Surface Area (ASA) is a one-dimensional structural property of amino acid residues 

of protein that measure their level of exposure to solvent (like, water) in a structure. Proteins perform a vast 

array of functions within the living organisms which are governed by their amino acid residue sequence 

and the 3-dimensional structures defined by the sequence. Proteins interact with appropriate partners to 

perform specific functions. Surface area of amino acid residues determines the interaction pane, which 

eventually play an important role in binding mechanisms and structures and functions of proteins. ASA has 

been helpful in understanding the 3-dimensional structure and function of a protein, acting as high impact 

feature in secondary structure prediction, disorder prediction, binding region identification and fold 

recognition applications. Thus, accurate prediction of accessible surface area (ASA) in real-value from 

protein sequence alone has wide application in the field of bioinformatics and computational biology. 

 To enhance and support broad applications of ASA, we have made an attempt to improve the 

prediction accuracy of absolute accessible surface area of protein residues by developing a new predictor 

paradigm, namely REGAd3p [15], for real value prediction, discussed in this chapter. REGAd3p exerts the 

Regularized Exact regression, which is reinforced by Genetic Algorithm and incorporates degree 3 

polynomial kernel function. While the higher degree polynomial kernel was applied to properly fit the high-

dimensional data, regularization was incorporated to resist over-fitting. Furthermore, we applied genetic 

algorithm (GA) to optimize the weights computed by regularized regression. The kernel that we applied, 
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was selected based on optimum values of Mean Absolute Error (MAE) and Pearson Correlation Coefficient 

(PCC).  

The ASA prediction paradigm was trained and tested using a new benchmark dataset, mined under 

this work. We achieved maximum Pearson Correlation Coefficient (PCC) of 0.76 and 1.45% improved 

PCC when compared with existing state-of-the-art predictor in ASA prediction on independent test set. 

Further, we presented a rigorous analysis of the quality of the predicted ASA by REGAd3p in terms of 

different amino acids and their physical properties, secondary structure components and range of ASA 

values. Another major contribution of this work is that we modeled the error between actual and predicted 

ASA in terms of energy and combined this energy linearly with a knowledge-based energy function 

3DIGARS [16] which resulted in an effective energy function, namely 3DIGARS2.0 [15]. The outline of 

this chapter is as follows.  

• We start by giving the background information about ASA and its implications, motivation behind 

developing a predictor and review of existing ASA prediction techniques in Section 3.1.  

• In Section 3.2, we describe the experimental materials, such as data collection and mining process, 

input features used to train the ASA predictor, and the criteria to evaluate and compare the predictor.  

• Section 3.3 describes the design and development of the new real-value predictor framework, REGAd3p 

using several machine learning techniques.   

• We report the results of feature selection, kernel selection, performance of the final ASA prediction 

model, and its comparison with existing predictor in Section 3.4. 

• In Section 3.5, we analyzed the quality of predicted ASA in terms of physical and structural properties 

of protein residues.  

• In Section 3.6, we discuss about the application of the predicted ASA to improve an energy function. 

• Finally, we conclude in Section 3.7 including brief future research directions.  

3.1 Background and Motivation 

Most protein molecules have a hydrophobic core, which is not accessible to solvent and a polar surface in 

contact with the environment. Proteins perform their functions mostly through interactions using their 

solvent exposed surface with their partners for transmission or reception of signals. A protein residue, in its 

three-dimensional conformation, can be surrounded by other residues in the chain. In contrast, a residue 

can have a part of it accessible to the residues of the same chain or to the residues of other chains for 

interaction. The parameter to measure the level of interaction of a residue is thus can be determined by the 

accessible surface area (ASA), usually described in units of square Angstroms. 
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Lee and Richards [197] first described the ASA, often called as Lee-Richards Molecular Surface which 

can be calculated using the “rolling ball” algorithm of Shrake and Rupley [198], fast and analytical Power 

Diagram [199] technique or, can be approximated using LCPO method [200]. The van der Waals surface 

as defined by the atomic radii [201], whereas the solvent ASA is the surface area of a biomolecule (protein 

or protein residues) that is accessible to a spherical solvent while probing the surface of that molecule [197, 

202]. Fig 14 illustrates the ASA of a protein molecule.  

 

Fig 14. Accessible Surface Area (ASA) of Protein. The dark central area, composed of atoms, can be 
thought of a 3D protein and the circumference of the area is the van der Waals surface area. The 
outline (blue) around that area is the accessible surface area of the protein. 

 

Function of a protein is found to be closely coupled with the ASA of its residues as it defines the 

interaction pane. The wide conformational dynamics of proteins, which is often exemplified by intrinsically 

disordered regions and thermal fluctuations (B-factor) of a protein, is crucial for their diverse functionalities 

and is found to be strongly correlated with the ASA of each of the residue of a protein [203, 204]. Surface 

areas, often in the form of exposed residues, are directly involved in the protein-protein interaction [205, 

206]. ASA is also found to play an important role in the binding mechanism of proteins in the literature 

[207]. Thus, the measurement of the ASA is essential in understanding the 3-dimensional structure and 

function of a protein [208, 209]. It is well known that the hydrophobic effect is the major factor that drives 

a protein to collapse and fold, which is directly related to ASA [210, 211].  

Fig 15 illustrates the protein ASA-structure relations with two collected samples. Fig 15 (a) and (b) 

shows the structure of human I81 domain from titin [212] (PDB ID: 5JOE) with secondary structure and 

surface views, respectively.  The protein has a stable structure with helical and beta components, and has 
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accessible surface area of 5400.13 square Angstroms, calculated using GETAREA14 web server [213]. On 

the other hand, Fig 15 (c) and (d) portray the structure of elF1a (green) [214], which has an extended coil-

like N- and C-terminals (red) where N-terminal is connected with histidine tag (cyan). The protein has a 

large binding surface area with ASA equal to 14400.45 square Angstroms. This illustration shows that ASA 

of a protein is directly related to its structure.  

  

(a) Cartoon view, PDB ID: 5JOE (b) Surface view, ASA = 5400.13 Å,  
PDB ID: 5JOE 

  

(c) Cartoon view, PDB ID: 1D7Q (d) Surface view, ASA = 14400.45 Å,  
PDB ID: 1D7Q 

Fig 15. ASA-structure relationship of protein. (a) – (b)  PDB ID: 5JOE [212], crystal structure of 
human I81 domain from titin with stable components and ASA of 5400.13 square Angstroms. (c) – 
(d) PDBID: 1D7Q [214], solution structure of elF1a with coil-like components and large RNA binding 
surface with ASA of 14400.45 square Angstroms. 

 

Moreover, ASA has been found to be an important feature for secondary structure prediction, intrinsic 

disorder prediction, binding region identification, hot-spot prediction [215], domain boundary prediction 

[216], fold recognition and protein function identification [217-221]. Importantly, accurate prediction of 

                                                      
14 GETAREA: http://curie.utmb.edu/getarea.html 
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surface area of protein residues elevates the success in ab initio protein structure prediction [222] and 

accurate energy function development for correct discrimination of native conformation from the decoys 

[223, 224]. The prediction of real valued accessible surface area from primary protein sequences alone is 

challenging, yet rewarding in the field of structural biology. We responded to this challenge by developing 

tools to find accurate ASA from a protein sequence alone and validated the outcome with test dataset as 

well as by significantly improving an energy function application. 

Effective energy function is an essential component of protein’s structure prediction for which 

homologous templates are absent. The major theme of the energy function developed to date are based on 

the fact that protein in their native state gains the lowest free energy compared to its other possible states. 

The developed Energy functions can be categorized into two different types [225-229]: first, physical-based 

potential, based on empirical molecular mechanics force fields [230, 231] and second, knowledge-based 

potentials or empirical potential energy function, based on statistical analysis of known proteins [232-237]. 

Knowledge-based potentials can be  more successful over physical-based potential [238] as it uses growing 

number of experimental (known) protein structures, can capture unrecognized forces and the execution is 

much faster compared to the molecular mechanics based tools. Under this work, we compute predicted 

accessible surface area based energy component and integrate it with hydrophobic-hydrophilic model (HP 

model) based 3-Dimensional Ideal Gas Reference State (3DIGARS) potential [239] towards a better energy 

function application. 

3.1.1 Role of in silico ASA Prediction 

There exist some tools that can computationally assign secondary structure to proteins given its three-

dimensional structure such as in PDB file format. From the coordinates of the atoms, these secondary 

structure assignment methods can produce coarse-grained descriptions of the local backbone structure, such 

as helical, beta or coil conformation as well as fine-grained descriptions, like ASA, dihedral angles (phi and 

psi).  

One of the widely used assignment tools is DSSP [51], designed by Kabsch and Sander, which assigns 

secondary structure descriptions including ASA according the pattern of hydrogen bonds. STRIDE [240] 

is a knowledge-based assignment method that considers hydrogen bond as well as backbone torsion angles. 

KAKSI [241] determines secondary structure related descriptors using Cα distances and ϕ/Ѱ dihedral 

angles. A surface area routine, GETAREA [213] calculates ASA, solvent energy and their gradients of a 

macromolecule using an analytical method from the atomic coordinates. The other tools in this study 
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includes, POPS [242], a parameter optimized approach for atomic and reside-wise ASA calculation and 

FreeASA [243], which is an improved technique over NACCESS [244].  

While these computational methods give us prior knowledge about ASA for a protein from its structure 

model, they cannot serve the purpose when the structure is not known, such as for intrinsically disordered 

protein. The NCBI RefSeq [245] database contains approximately 677 times higher number of protein 

sequence than the available protein structures solved at current date of April 03, 2017, deposited in PDB 

[61]. Thus, to analyze the local structure and function of a protein given only the sequence information, an 

in silico predictor becomes essential to predict structural properties such as ASA. With an effective pattern 

recognition algorithm and appropriate feature-set, a predictor can be trained using available proteins-

structure relational datasets to generate protein structure and structural properties given only the sequence 

information. 

3.1.2 Review of ASA Prediction 

The solvent accessibility prediction has been studied in two forms: firstly, binary or, multiclass 

classification problem and, secondly, real-value prediction problem. Machine learning based methods, such 

as neural network, liner or polynomial regression methods, k-nearest neighbor, support vector machine, 

random forest etc., are some of the successful methods for ASA or relative accessibility prediction given 

the sequence information only.  

The neural network based classifier of protein residues depending on their ASA into multiple states 

includes, 10-state classifier by Rost and Sander [246], 2-state model of JPred [247], bidirectional recurrent 

network model of [248], binary (buried/exposed) and ternary (buried/intermediate/exposed) models by 

Holbrook et al [249], NETASA [250] that classifies residues into three-states using multiple thresholds  to 

categorize buried and exposed residues. Li and Pan [251] developed a two-state defining solvent 

accessibility using multiple linear regression. Using a cut-off value of 15%, a support vector machine was 

used in [252] to predict the exposed and buried state of protein residues, whereas threshold values of 25%, 

16%, 5%, and 0% were adopted in [253]. The Bayesian method based framework was developed to take 

into account local interactions among amino acid residues, by extracting the information from single 

sequences or multiple sequence alignments to obtain posterior probabilities for RSA prediction in [254]. A 

fuzzy k-nearest neighbor was also used for 2-state and 3-state prediction of ASA [255].  

The first real value prediction of ASA was conducted by Ahmad et al. [256] in 2003 using a neural 

network. Other state-of-the-art work for real value prediction of accessible surface area using artificial 

neural network includes Real-Spine [178, 257], SPINE-X [175], ASAquick [258], and recently developed 
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SPIDER package uses deep neural network [259]. SABLE [260] is another neural network based regression 

technique for predicting ASA, secondary structure and transmembrane domain from protein sequence. 

Wang et al. [261] developed a multiple linear regression model to predict ASA from protein sequence and 

evolutionary information.   The support vector machine based regression technique was also used in two 

predictors [262, 263].   

However, the real-value prediction approach is preferred over the former since the residue’s solvent 

accessible surface area tends to vary largely due to their free movement in 3-dimensional space  [204, 256]. 

Direct prediction of a continuously varying ASA as a real value reduces the inherent error introduced within 

the approaches, like binary state classification of the residues (exposed or, buried) or, multi-class 

classification using different choice of thresholds. 

3.1.3 Our Contributions 

It is common in the literature to express and predict ASA in the form of relative accessible surface area 

(RSA) which is calculated by normalizing the absolute ASA by residue specific maximum values of ASA 

found in the dataset or, ASA of the extended tripeptide conformation, such as, Ala-X-Ala or, Gly-X-Gly. 

However, depending on different normalizing factors, RSA values vary for same amino acid which makes 

the comparison of performance with existing predictors inconsistent. To overcome such inconsistencies, 

we avoided normalizing the ASA values. Instead, we directly predicted the absolute accessible area of the 

protein residues.  

We introduced a new benchmark dataset in this work collected from Protein Data Bank (PDB) 

consisting of 1299 protein sequence, called as Secondary Structure Dataset (SSD1299), with 25% sequence 

identity cut-off. We tested our predictor (REGAd3p) with three blind, harder test datasets and compared our 

predictor’s performance on ASA prediction with SPINE-X [175]. The improved performance of our 

REGAd3p in all cases suggests that integrating GA optimization with regression resulted a robust real value 

predictor. Furthermore, we developed a secondary structure predictor model for generating three 

dimensional secondary structure profile (helix, beta and coil probabilities) which is used as features for the 

ASA prediction using support vector machine package, the LIBSVM [184]. Finally, we applied the 

predicted ASA values to improve the accuracy of the energy function, 3DIGARS, which actually resulted 

in outperforming all the state-of-the-art energy functions significantly. 
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3.2 Materials for ASA Prediction 

In this section, we describe the datasets and the feature set for building the ASA predictor and evaluation-

steps to measure the effectiveness of our approach.  

2.3.5 Datasets 

We prepared a new dataset from Protein Data Bank (PDB) [61] which is referred to as the Secondary 

Structure Dataset (SSD1299), consisting of 1,299 protein sequences. Initially, we collected 2,793 protein 

chains (both single and multiple chain) from PDB with following specifications:  

(a) Solved by X-ray crystallography  

(b) Resolution ≤ 1.5 Å 

(c) Chain length ≥ 40 residues and  

(d) 30% sequence identity cut-off.  

We further carried out three step refinement of this dataset: (i) we filtered the dataset so that the pair-

wise sequence similarity is no more than 25% using BLASTCLUST; (ii) we discarded the protein sequences 

that contain unknown amino acids labelled as ‘X’ as the physical properties of this amino acid is unknown 

and (iii) we removed the sequences containing amino acids of unknown coordinates. This resulted a dataset 

of 1299 sequences (SSD1299) and 272,800 residues.  

We separated randomly selected 298 sequences from this dataset as the test dataset (SSD_TS298), and 

the remaining 1,001 sequences are used as the training dataset (SSD_TR1001). SSD_TR1001 contains 

211,048 residues which combines 69,333 helix (32.8%), 51,859 beta (24.5%) and 89,856 coil (42.5%) 

residues and SSD_TS298 comprised of 61,752 residues which combines 20,470 helix (33.1%), 16,052 beta 

(25.9%) and 25,230 coil (40.8%) residues. We determined the real or the actual annotation of secondary 

structural and surface area by the DSSP program [51]. 

2.3.6 Feature Set 

We computed a comprehensive set of residue level features for predicting the secondary structures as well 

as the accessible surface area.  The residue level information includes:  

(a) One amino acid (AA) indicator 
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(b) Seven physical properties (PP)  

(c) Twenty Position Specific Scoring Matrix (PSSM) values 

(d) One monogram (MG) and twenty bigram (BG) values 

(e) Two predicted disorder probabilities (short and long) (IUS and IUL) 

(f) Three predicted secondary structure (SS) probabilities (helix, beta and coil) 

(g) One terminal tag (T) to indicate five residues from N and C terminal as (-1.0, -0.8, -0.6, -0.4, -0.2) 

and (+0.2, +0.4, +0.6, +0.8, +1.0) while others as 0.0.  

Feature AA is one numerical value for indices, ranges from 1 to 20, which correspond to the twenty 

different amino acids and PP are the seven physical properties of amino acids described in [174]. ASA is 

found to vary largely with different amino acids, and is correlated with properties, such as hydrophobicity 

and isoelectric point [204]. Thus, we used these features to predict real ASA values. PSSM values 

accommodate evolutionary information of protein residues and generated by executing 3 iterations of PSI-

BLAST [264] against NCBI’s non-redundant database.  

A feature extraction technique by [265] suggests that MG and BG values contain useful 3-dimentional 

evolutionary information of protein residues. Therefore, we calculated BG and MG values from PSSMs as 

described in  [265] and used as features in our proposed ASA predictor.  Disorder residues are often 

characterized to have large ASA values [162]. To incorporate this correlation into feature set, we computed 

disorder probabilities (IUS and IUL) using IUPRED [148] and incorporated into our feature set. Protein 

secondary structure is also closely coupled with ASA of the protein residues [266]. Thus, we developed our 

SVM model to generate predicted SS probabilities and used as features to predict ASA values.  

We separately reported our predictor’s performance using two feature sets to depict the importance of 

3-dimensional structural features in ASA prediction. Feature Plan #1 contains sequence based one-

dimensional features (a – c, g). In addition, with the features in Feature-Plan #1, Feature-Plan #2 includes 

3-dimensional feature (d) and predicted structural features (e – f).  

Table 12 illustrates an overview of different feature plans used for secondary structure (SS) and ASA 

prediction along with the total counts of features in a given features plan. Finally, we included the 

neighboring residue information within the residue specific features set by applying a window size of 21 to 

incorporate the effect of residue contacts. 
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Table 12: List of features used in secondary structure and ASA prediction according to different feature plans. 

Feature description (abbreviation) 
Feature 

Count 

Feature-Plan #1 Feature-Plan #2 

SS ASA SS ASA 

Amino acid (AA) 1     

Physical properties (PP) 7     

Position specific scores matrix (PSSM) 20     

Monogram (MG) 1 - -   

Bigram (BG) 20 - -   

Short and long probabilities (IUS/IUL) 2 - -   

Secondary structural probabilities (SS) 3 -  -  

Terminal tag (T) 1     

Total 55 29 32 52 55 

‘’ and ‘-’ imply that the corresponding feature-set is included and excluded, respectively in the feature-plan. 

 

2.3.7 Evaluation Measure 

In our approach, we predicted ASA as real value, which was evaluated using Pearson’s Correlation 

Coefficient (PCC) and Mean Absolute Error (MAE).  

𝑃𝐶𝐶 =  
∑ (𝐴𝑆𝐴𝑟𝑖 − 𝐴𝑆𝐴𝑟̅̅ ̅̅ ̅̅ ̅)(𝐴𝑆𝐴𝑝𝑖 − 𝐴𝑆𝐴𝑝̅̅ ̅̅ ̅̅ ̅)𝑁

𝑖=1

√[∑ (𝐴𝑆𝐴𝑟𝑖 −  𝐴𝑆𝐴𝑟̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1 ][∑ (𝐴𝑆𝐴𝑝𝑖 −  𝐴𝑆𝐴𝑝̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1 ]

 
(6) 

𝑀𝐴𝐸 =  
∑ |𝐴𝑆𝐴𝑟𝑖 − 𝐴𝑆𝐴𝑝𝑖|𝑁

𝑖=1

𝑁
 (7) 

Here, N is the total number of residue in the dataset, 𝐴𝑆𝐴𝑟 and 𝐴𝑆𝐴𝑝 are the real and predicted ASA. 

As the prediction obtains higher accuracy, the PCC value increases and the MAE value decreases. 

3.3 REGAd3p: Regularized Regression using Degree 3 Polynomial Kernel and 

Genetic Algorithm 

REGAd3p is a real value predictor framework that combines the exact regularized regression with 

optimization of weights predicted by genetic algorithm. The equation of basic exact regression [267] is: 
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 YXXX TT 1)(   (8) 

Here, 𝑋 = input feature matrix having dimensions: number of residues (𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒) × number of features 

(𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒), 𝑋𝑇 = transpose of the feature matrix X, 𝑌 = actual value of ASA (ASAr) and 𝛽= weights. 

Equation (8) analytically determines the best coefficients (weights) for the regression predicting the ASA 

value. After having the weights, Equation (9) is followed to predict the ASA. Here, 𝑌̂ = predicted values 

of ASA (ASAp). 

 
XY 



 
(9) 

    However, this basic equation is for linear regression model which can give a poor fit to the data. We 

extended the kernel of this regression method to 3rd degree polynomial function within the feature matrix 

using basis expansion by inserting two extra column vectors for each features which are the squares and 

cubes of the original feature values. This extension is expressed by the following equation, where p is the 

number of features given: 

𝑋 = [1 𝑥1 𝑥2 𝑥3 … 𝑥𝑝] (10) 

𝑋3 = [1 𝑥1 𝑥1
2 𝑥1

3  … 𝑥𝑝 𝑥𝑝
2 𝑥𝑝

3] (11) 

    Here, 𝑋3 is the extended feature matrix which is used in place of 𝑋 is the basic Equation (8) and (9) to 

determine weights and calculate predicted ASA values, respectively. Extension of the kernel gave us the 

flexibility of model selection with higher order polynomial to select the best-fit model.  

However, increasing the degree of polynomial can cause overfitting, resulted from highly fluctuating 

weights. An overfitted model towards training data can give poor performance on test dataset. To overcome 

this overfitting problem, we implemented regularization, which involves adding a penalty term to the error 

to shrink the value of weights. Therefore, the modified Equation (12) that includes regularization, where, 

λ = regularization parameter to control weight values and Mλ is the identity matrix of dimension (p+1) by 

(p+1) with the first diagonal element is assigned 0 to avoid affecting the bias term directly. We performed 

a search for the best value of λ within the range [-100.0 to 100.0] with an interval size equal to 2.0 and 

reported the best result (see Section 3.5) to compare the best result from regularized exact regression with 

and without GA optimization. 

 𝛽 =  (𝑋𝑇𝑋 +  𝜆𝑀𝜆(𝑝+1).(𝑝+1)
)−1 𝑋𝑇 𝑌 (12) 

This search for λ gave us 100 sets of weights, which is then used as seeds for genetic algorithm. The 

parameter values of our genetic algorithm implementation are:  
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(i) Population size = 200 

(ii) Number of generations = 2000 

(iii) Chromosome length = number of weights (𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒) × number of bits for each weight (19 in 

       our implementation) 

(iv) Elite rate = 10%  

(v) Crossover rate = 80% and 

(vi) Mutation rate = 10%  

While generating initial population, 100 individuals are taken from the output of regularization and the 

rests were generated randomly. 10% ((200 × 0.1) or, 20) best performing weight sets are always forwarded 

towards next generation population from current one. To select the candidates for crossover, we 

implemented roulette wheel selecting algorithm to sample highly fitted individuals to be utilized for next 

generation population. We performed crossover on (200 × 0.8)/2 or, 80 pairs of chromosomes and filled up 

next 160 positions of next generation with 160 chromosomes resulted from crossover. Finally, we filled up 

last 20 positions of next generation population with 20 least fitted chromosomes of current generation. 

Then, we randomly selected a mutation candidate from these 20 chromosomes with repetition for (200 × 

0.7) or, 140 times. In this process, a single chromosome can be selected multiples times (at most 70% of 

the total number of chromosomes in a population), and can get mutated at multiple positions. 

Literature suggests that the best value of mutation rate is problem specific [268, 269]. The problem 

space of real valued accessible surface area is large and complicated. Moreover, we had highly diversified 

population of 200 chromosomes and the length of each chromosome is very high. We used 55 unique 

features per residue. Including the features of neighborhood residues within the window of size 21, we had 

(55 × 21) or, 1,155 features per residue. The coefficient of each feature is encoded by 19 bits within a 

chromosome. Therefore, a chromosome of GA is (1,155 × 19) or, 24,255 bits long. In a single mutation 

process, we flipped only one randomly chosen bit within the chromosome. Therefore, Mutation at multiple 

position was desirable to significantly change a long chromosome which aided in finding new improves 

solution within the large and complex search space of real values ASA. Fig 16 illustrates an overview of 

the REGAd3p real ASA prediction framework. 
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Accessible Surface Area (ASA) Prediction Framework (REGAd3p) 

 

Fig 16. Overview of REGAd3p real value accessible surface area prediction framework. It shows the feature 
aggregation, secondary structure prediction, and regularized exact regression and GA optimization. The 
features are represented by their abbreviations introduced in Table 12. 
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In contrast to the practice in the state-of-the-art predictors, we did not guide our predictor to achieve 

only low mean absolute error (MAE) or, high Persons correlation coefficient (PCC). Rather, we defined a 

multi-objective function (OBJ), combining PCC and MAE, and carried out the optimization of weights, β, 

for maximizing OBJ to achieve high performance both in terms of PCC and MAE. The equations for OBJ, 

PCC and MAE are as follows: 

 𝑂𝐵𝐽 = 𝑃𝐶𝐶 + (1 − 𝑀𝐴𝐸) (13) 

Furthermore, we integrated a post processing of predicted ASA values within GA to avoid negative 

values of the predicted ASA. To keep the ASA values practicable, the predicted negative values (because 

of the natural extension of the equation towards the non-admissible region) were replaced by zero. 

3.3.1 Implementation and Availability 

We implemented the REGAd3p tool in C. The software is developed and tested on Linux platform. It is 

dependent on two external packages, namely PSI-BLAST15 and NR database16, which are publicly 

available.  The software is available online17 with a user manual. 

3.4 Evaluation of REGAd3p  

Here we evaluate of our approach based on obtained results. First, we presented the result of the secondary 

structure prediction performed internally within the ASA prediction framework. Later, we present the 

results obtained through parameterization and development of the ASA predictor.  

3.4.1. Results of Secondary Structure Prediction 

At first, we predicted secondary structure of a residue of our dataset so that we can use the predicted 

secondary structure probabilities as features for ASA prediction. We explored four classifiers: (i) Logistic 

Regression (LogReg) using LIBLINEAR [270], (ii) Random Forest (RDF), (iii) Artificial Neural Network 

(ANN) using WEKA [271], and (iv) support vector machine (SVM) using LIBSVM [184]. Note that, the 

main objective of this work is to predict ASA and utilize the predicted ASA to improve 3DIGARS [239] 

energy function.  

                                                      
15 PSI-BLAST link: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 
16 NR database link: ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 
17 REGAd3p link: http://cs.uno.edu/~tamjid/Software/REGAd3p/REGAd3p.tar.gz 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://cs.uno.edu/~tamjid/Software/REGAd3p/REGAd3p.tar.gz
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We collected the eight state secondary structure annotation from DSSP program [51] which includes 

α-helix (H), 3-helix or, 310-helix (G), 5-helix or, -helix (I), residue in isolated β-bridge (B), residue in 

extended beta or, β-ladder (E), hydrogen bonded turn (T), bend (S) and random coil or, loop (blank) for all 

residues in SSD1299 dataset. We converted this eight state annotation into three state annotation [175] by 

coding H, G and I as H (helix), B and E as E (beta) and T, S and blank as C (coil). Table 13 gives an 

illustration of the performance of the four classifiers for both the feature plans (see Table 12) in terms of 

accuracy (total number of correctly predicted residues) of three class classification. All the classifiers were 

trained on SSD_TR1001 dataset for three class (helix, beta and coil) classification and tested on 

SSD_TS298 dataset. The superior performance of SVM model on both the feature plans motivated us to 

select it as our predictor of secondary structure. We used radial basis function (RBF) as the kernel for the 

applied SVM. We used LIBSVM [184] package for building SVM model and used the default parameter 

values provided within the package. The default values of misclassification cost of SVM and gamma 

parameter of RBF were one and (1 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒⁄ ), respectively. 

Table 13. Performance of secondary structure prediction by four classifiers on SSD_TS298 dataset. 

Classifier LogReg (%) RF (%) ANN (%) SVM (%) 

Feature-Plan # 1 73.46 72.3  72.8  75.31 

Feature-Plan # 2 73.51 72.7 72.53 74.86 

 Bold: indicates the obtained best values. 

3.4.2. Result of Accessible Surface Area Prediction 

In section, we report the results we obtained during the design process of REGAd3p.   

3.4.2.1.  Feature Plan Selection 

We evaluated the performance of REGAd3p on both the training (SSD_TR1001) and test (SSD_TS298) 

dataset. Table 14 presents the performance of REGAd3p in predicting absolute ASA values in terms of 

PCC and MAE for feature plan # 1 and plan # 2. As a result of inclusion of three dimensional features (MG 

and BGs) and structural features (short, long disorder probabilities), PCC value is increased (0.28%) as 

well as MAE is decreased (0.16%). This result validates the correlation of residue exposure with protein’s 

flexibility (disorder) and usefulness of these features in ASA prediction. In addition, it also motivates us to 

do further experiments only on feature plan # 2. 
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Table 14. Prediction quality of ASA for different feature plans with 1st order polynomial as kernel. 

Dataset SSD_TR1001 SSD_TS298 

Features MAE PCC MAE PCC 

Plan # 1, non-optimized 

Plan # 1, optimized 

27.27 0.655 25.44 0.711 

26.53 0.661 24.57 0.717 

Plan # 2,  non-optimized 

Plan # 2,  optimized 

27.05 0.665 24.45 0.711 

26.31 0.670 24.53 0.719 

      Bold: indicates the obtained best values.     

3.4.2.2.  Kernel Selection 

We extended the kernel from degree 1 polynomial (linear) up to 4 to determine the optimal polynomial 

function to be utilized, so that the model best fits the ASA values with feature plan # 2. Table 15 

summarizes the results. PCC is increased by 2.03% and MAE is decreased by 2.3% as we extended the 

kernel from 1st order polynomial to 3rd order polynomial function. Table 15 also shows 4.63% and 5.13% 

fall in performance in terms of PCC and MAE, respectively, when the kernel is extended beyond 3rd order 

polynomial. This behavior indicates that the predictor’s performance can suffer from high dimensionality 

as a result of making the model too complex and motivated us to select 3rd order polynomial as the optimal 

kernel function.   

 

Table 15. Prediction accuracy of ASA due to the extension of kernel function from linear to higher order 

polynomial (Feature-Plan # 2). 

Dataset SSD_TR1001 SSD_TS298 

Polynomial kernel MAE PCC MAE PCC 

Degree 2, non-optimized  

Degree 2, optimized 

26.24 0.683 25.05 0.717 

25.86 0.686 24.53 0.723 

Degree 3, non-optimized  

Degree 3, optimized 

25.29 0.699 25.54 0.727 

25.19 0.702 23.97 0.734 

Degree 4, non-optimized  

Degree 4, optimized  

26.61 0.676 25.98 0.685 

26.21 0.679 25.21 0.700 

Bold: indicates the obtained best values. 

Table 14 and Table 15 compare the performances of REGAd3p for both with and without the 

optimization and signify the importance of weight optimization for improving the performance. For the best 

model (with Feature-Plan # 2 and 3rd order polynomial kernel), the improvement due to optimization over 

un-optimized model was 0.96% for PCC and 6.14% for MAE. Genetic algorithm successfully enhanced 
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the performance of classical regression method to make it competitive with several complex pattern 

recognition algorithms, like artificial neural network and support vector regression that we had tested 

extensively. 

3.4.2.3.  Result of Final Model 

To verify the robustness of our best model further, we carried out 10-fold cross validation on the training 

dataset, SSD_TR1001. In statistical prediction, the following three cross-validation methods are often used 

to examine a predictor’s effectiveness in practical application: independent dataset test, subsampling test, 

and jackknife test. However, of the three test methods, the jackknife test is deemed the least arbitrary that 

can always yield a unique result for a given benchmark dataset as elaborated in [272]. Accordingly, the 

jackknife test has been widely recognized and increasingly used by investigators to examine the quality of 

various predictors (e.g., [273], [274], [275], [276], [277], [278], [279], [280]).  However, to reduce the 

computational time, we applied more commonly used approach, the 10-fold cross-validation. The result of 

10-fold cross validation test is 0.69 and 25.43 in terms of PCC and MAE, respectively, which is consistent 

with the result of independent test (indicated with bold in Table 15). 

Finally, the overall performance comparison among the models (for different feature plans as well 

as kernels) is shown in Fig 17 on SSD_TS298 dataset with optimization, where the best model with plan # 

2 and kernel # 3, is indicated. 

 

Fig 17. Overall comparison of performance for different feature plans and kernel functions on SSD_TS298 
dataset with GA optimization. The x-axis and y-axis shows the model description and performance 
measure scores (PCC and MAE), respectively. The best model is marked. 
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3.4.3. Comparison of ASA Prediction with Existing Methods 

We compared our regularized regression technique with optimization against top performing artificial 

neural network based predictor, SPINEX [175]. To avoid the inconsistencies raised in comparison due to 

different datasets, normalizing factors and evaluation measures, we ran SPINE-X on SSD1299 dataset and 

collected the absolute ASA for a fair comparison. Fig 18 summarizes the result.  

It shows that except in the case of MAE for SSD_TS298 dataset, REGAd3p outperformed SPINE-

X [175] in absolute ASA prediction. REGAd3p gave 8.2% and 1.45% improved PCC score than SPINE-

X [175] for SSD_TR1001 and SSD_TS298 datasets, respectively. Further, we evaluated the statistical 

significance of these improvements by t-test with R package [281] which shows that both of the 

improvements are significant.  Moreover, we executed support vector regression (SVR) from LIBLINERA 

package [270] on SSD1299 dataset and found the better performances of REGAd3p. SVR resulted a PCC 

value of 0.51 when trained on SSD_TR1001 dataset and tested on SSD_TS298 dataset for Feature-Plan # 

2. To compare, REGAd3p gave PCC value of 0.73 in case of the same dataset and feature plan. 

 

Fig 18. Comparison between REGAd3p and SPINE-X [175] in absolute ASA prediction on SSD_TR1001 and 
SSD_TS298 dataset. The x-axis and y-axis represents the dataset and performance measure scores 
(MAE and PCC), respectively. 

 

3.4.4. Case Studies with Individual Proteins 

We selected two protein chains, (i) 1C9OA and (ii) 1DK8A of length 66 and 147, respectively, to investigate 

the sequence wise performance of REGAd3p versus SPINE-X [175], in predicting absolute ASA values. 
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We plotted the actual annotation of ASA calculated from DSSP with residue wise predicted ASA values 

from REGAd3p and SPINE-X [175] in Fig 19.  

 

Fig 19.  ASA prediction comparison for individual proteins. Plot of ASA for each residues of protein (i) 
PDB ID: 1C9O, Chain: A and (ii) PDB ID: 1DK8, Chain: A, given by DSSP (blue line with circle 
marker), SPINE-X [175] (red line with triangle marker) and REGAd3p (green line with diamond 
marker).  For each plot, MAE and PCC scores between predicted ASA given by SPINE-X and 
REGAd3p with actual ASA from DSSP are shown on the top right corner. In PDB ID: 1DK8, the 
yellow bars represent two disorder regions [282] at the terminals. The x-axis and y-axis shows the 
residue index and ASA values, respectively. 

 

It is clear from the plots that both predictors lack in accuracy when exposure is high. To be specific, 

for the residue indices: 11 – 13, 21, 36, 38, 43 – 44, 55 – 56 of protein chain 1C9OA, both predictors under 
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predict. To compare, REGAd3p could result better prediction than SPINE-X for the residue index: 11 – 13, 

15, 19, 23 – 3, 36 and 55 – 56 of protein chain 1C9OA.  

For protein chain 1DK8A, we marked the predicted disorder region (residue indices 1 – 8 and 139 – 

142) at the terminals collected from DisPredict [282]. Disordered regions are often characterized by 

dynamic conformation and high residue accessible surface areas. It is evident from the plots that REGAd3p 

could better predict the ASA values at disordered regions than SPINE-X. We further summarized the 

residue-wise performance by sequence-wise MAE and PCC scores given by both the methods, reported in 

the top right corner of the plots. For both the proteins as well as measures (MAE and PCC), REGAd3p 

outperformed SPINE-X. In the case of 1C9OA, REGAd3p gave 2.1% lower MAE and 2.7% higher PCC 

than SPINE-X. At the same time, for 1DK8A, REGAd3p outperformed SPINE-X by 1.5% decrease in 

MAE and 1.3% increase in PCC score. 

3.5 ASA Prediction Analysis 

We performed extensive analysis on the predicted ASA by REGAd3p and actual ASA obtained from DSSP 

[51] to assess the quality of our proposed real value prediction framework. We used the prediction output 

on SSD_TS298 for the following analysis. 

3.5.1 Amino Acid Specific Analysis  

 PCC(ASAr(MEAN), ASAp(MEAN)) = 0.99 

Fig 20. Actual and predicted ASA of different amino acid residues of SSD_TS298 dataset. Amino acid 
specific comparison between mean actual ASA (blue bar) and mean predicted ASA (red bar) values. 
The x-axis and y-axis show the amino acid and ASA values, respectively. 
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This analysis is executed in terms of total number of residues within dataset (COUNT) per amino acid, 

maximum value of actual ASA within dataset (ASAr(MAX)), mean actual ASA (ASAr (MEAN)), standard 

deviation of actual ASA (ASAr(SD)), mean predicted ASA (ASAp(MEAN)) and MAE resulted from 

prediction. Fig 20 illustrates that how the predicted and actual ASA values for each amino acid is highly 

correlated, with a PCC value equal to 0.99, without no significant over prediction or, under prediction. 

Fig 21 represents the correlation between the mean absolute errors in prediction with the inherent 

variability (computed by standard deviation) of ASA values within the dataset. It shows a high correlation 

value of 0.97 which indicates that the internal fluctuation of ASA within the dataset determines the 

prediction quality. To this end, identification of flexible (disorder) residues with high net charge and low 

hydrophobicity is challenging, which are also characterized by large ASA values [204].  

 PCC(ASAr(SD), MAE) = 0.97 

Fig 21. Correlation of predicted ASA and physical properties of different amino acid residues. Correlation 
between MAE (green line) with actual standard deviation (red line) of ASA value within dataset, 
hydrophobicity (blue bar) and isoelectric point (purple bar) for each amino acid type. 

 

It is also evident from Fig 21, as the disorder promoting amino acids (R, Q, E, K) [283] are likely to 

have highly variable ASA, therefore contributing in high MAE values. However, Fig 20 shows that the 

average predicted ASA given by REGAd3p for these amino acids are very close to the average actual ASA. 

Furthermore, Fig 21 shows the prediction error for each amino acid with its respective hydrophobicity index 

and isoelectric point (charge index) [174]. The high errors in prediction are resulted for Arg (R), Lys (K), 

Glu (E), which have high charge and low hydrophobicity. These residues usually reside in the exterior of 

proteins and incorporate flexible ASA values with high deviation. Fig 20 also shows that the low errors are 



 

 

78 

 

found for Cys (C), Gly (G), Ile (I), Val (V), Ala (A), which are normally buried or, partially buried inside 

the core of the protein with higher hydrophobicity values. 

3.5.2 Secondary Structure Specific Analysis 

Fig 22 presents the distribution of actual and predicted ASA values for three different secondary structure 

types of residues (coil, helix and beta) with their corresponding MAE. It is evident from the distributions 

that for each type of residues, prediction of ASA is relatively easier for the unexposed residues, as the 

distributions overlap with low ASA values.  

Coil residues have highest exposure and beta residues have lowest exposure (mean actual ASA for coil, 

helix and beta residues are 27.49, 45.87 and 56.61, respectively) which indicates that beta residues are 

mostly structured whereas coil residues are mostly flexible. This is also clear from the MAE value which 

decreases from coil to helix to beta residues. 

 

Fig 22. ASA prediction performance of REGAd3p on different types of secondary structure residues of 
SSD_TS298 dataset. The Distribution of actual (solid line) and predicted (dotted line) ASA values 
for coil (red), helix (green) and beta (blue) residue are plotted. The x-axis and y-axis shows the 
ASA values and corresponding density. MAE is reported in the title of each type of residue’s curve. 

 

3.5.3 ASA Range Specific Analysis 

Fig 23 shows the mean absolute error in prediction resulted by REGAd3p for different range, [x1 – x2) where 

x1 ≤ ASAr < x2 of actual ASA values. It also represents the count of total residues (COUNT), coil residues 

(Coil), helix residues (Helix) and beta residues (Beta) within a range. The graphical overview illustrates 

that for a wide range of actual ASA values, [0 – 105), REGAd3p could predict with consistently low MAE 

which incorporates 87% of the total dataset. For the rest of the residues (13%), the MAE increases with the 
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range which is justified, since these residues are highly exposed and often involved in protein-protein 

interactions which results in dynamic conformations.  

Fig 23 also shows that only within the ASA range [0 – 15), there are more beta residues than other 

(helix or, coil) residues which are relatively easy to predict as beta residues are mostly structured. For rest 

of the range, there are more coil residues. However, REGAd3p could still predict the flexible coil residues 

for a wide range, [15 – 105), resulting consistent MAE with the structured beta residues. Thus, the 

prediction output of our REGAd3p can be utilized as useful feature for flexible region prediction in future. 

 

Fig 23. Variation of error in ASA prediction depending on the range of actual ASA values (dataset: 
SSD_TS298). The x-axis shows the range of actual ASA values in the form [x1 – x2) = x1 ≤ ASAr 
< x2. The primary y-axis (left side) shows the count of all types of residues (blue bar), coil 
residues (red bar), helix residues (green bar) and beta residues (purple bar) within a range and 
secondary y-axis (right side) shows MAE (light blue line), respectively. 

3.6 Application of Predicted ASA in the Energy Function, 3DIGARS2.0 

An efficient energy function is the one which can identify more native from their decoy sets. Towards this 

goal, we have developed a new energy function (3DIGARS2.0) which is an improvement over the previous 

version (3DIGARS18) [239] for protein structure prediction. 3DIGARS2.0 is different from 3DIGARS in 

terms of using sequence based solvent-accessibility information. We obtained the sequence-based solvent-

                                                      
18 3DIGARS: http://cs.uno.edu/~tamjid/Software.html 

http://cs.uno.edu/~tamjid/Software.html
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accessibility energy by modelling the error between actual and predicted accessible surface area (ASA). 

3DIGARS2.0 is a linear combination of energy from 3DIGARS and energy from sequence-specific solvent-

accessibility which is further optimized using Genetic Algorithm (GA).  

3DIGARS2.0 outperforms DFIRE [233], RWplus [284], dDFIRE [285], GOAP [286] and 3DIGARS 

[239] energy functions based on the most challenging Rosetta and I-Tasser decoy sets with an improvement 

on weighted average of 80.78%, 73.77%, 141.24%, 16.52%, and 32.32% respectively based on count of 

correct identification of native from decoy sets (see Table 6). 

3.6.1 Experimental Materials 

In this section, we describe the experimental materials related to the development of the improved energy 

function.  

3.6.1.1 The 3DIGARS Potential 

3-Dimensional Ideal Gas Reference State (3DIGARS) [239] potential is based on hydrophobic-hydrophilic 

model (HP model) which computes three different energy score interaction tables, specifically, i) 

hydrophobic-hydrophilic (HP), ii) hydrophobic-hydrophobic (HH); and iii) hydrophilic-hydrophilic (PP). 

The interaction distance bin size is kept Δr = 0.5 Å each, with a cutoff distance of 15 Å, where r represents 

each distant bin with values ranging from 0.5 Å to 15 Å. The value of cutr  = 0.5 Å as all bin size are same. 

The exception consider in 3DIGARS is based on the fact that – amino acid, based on their types are not 

distributed equally over the 3D structure of a protein to consider them in the same scale on an average by a 

single dimensional parameter, which can rather be segregated into at least 3 different categories based on 

the regular distributions within native conformations. 3DIGARS implements Genetic Algorithm (GA) to 

obtain the best fitted value of six parameters: 3D alpha (three different values of alpha represents three 

different interaction mentioned above and generate three different energy score tables) and 3D beta (three 

different values of beta represents the contributions of each of the group along with the z-score). 

3.6.1.2 Decoy Sets 

The performance of 3DIGARS2.0 has been compared with other state-of-art energy functions based on 

three most challenging decoy datasets Moulder, Rosetta and I-Tasser. Modular19 dataset consists of 20 

native proteins with 300 comparative decoy models generated using homologous template for each protein. 

Rosetta20 dataset includes 58 proteins generated by Baker Lab. Each of the proteins contains 20 random 

                                                      
19 Modular dataset: http://salilab.org/john_decoys.html 
20 Rosetta dataset: http://www.bakerlab.org/ 

http://salilab.org/john_decoys.html
http://www.bakerlab.org/
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models and 100 lowest scoring models from 10,000 decoys generated by ROSETTA de novo structure 

prediction [287] followed by all-atom refinement. I-Tasser21 decoy set-II consist of 56 proteins. Each of 

these proteins contains 300 to 500 decoys. These decoys were generated first by using Monte Carlo 

Simulations and then refined by GROMACS4.022 MD simulation. 

3.6.2 The 3DIGARS2.0 Potential 

3DIGARS2.0 combines the sequence-specific solvent-accessibility energy, EASA, computed from the error 

between real and predicted accessible surface area (ASA) linearly with 3DIGARS. EASA is based on 

probability )|( iAAiASAP   computed from the error modelling of our predicted solvent-accessibility 

)( PredReal
iii ASAASAASA  for a given amino acid type iAA . Here, for each residue i within each protein, Real

iASA

(real accessible surface area) is computed using DSSP and Pred
iASA  is computed using REGAd3p 

methodology.  

Table 16 summarizes the performance achieved by our SVM model on secondary structure prediction 

in terms of accuracy and REGAd3p predictor on absolute accessible surface area prediction in terms of 

MAE as well as PCC. The best result was found for I-Tasser dataset in ASA prediction with PCC value 

equal to 0.76.  

Table 16. Performance of secondary structure prediction and ASA prediction by REGAd3p for Moulder, 

Rosetta and I-Tasser datasets. 

Dataset 
SS prediction ASA prediction 

Accuracy (%) MAE PCC 

Moulder 66.56 23.07 0.68 

Rosetta 72.04 24.93 0.71 

I-Tasser 74.23 24.73 0.76 

 

    Now, keeping the prediction accuracy of REGAd3p in mind as in Table 16, we wanted to model the error 

pattern in a useful way to aid in enhancing the accuracy of the energy function. With a view to this, we 

computed the error in ASA prediction for each of the residues of 1299 proteins and obtained the frequency 

distribution (FDT) of the error between real and predicted accessible surface area. While building frequency 

distribution we first calculated the max error ∆𝐴𝑆𝐴  from the dataset of 1299 protein which was found to 

be 240. The error range from 0 to 195 was then divided by bin width of 5 to obtain 39 bins of equal size. 

                                                      
21 I-Tasser dataset: http://zhanglab.ccmb.med.umich.edu/decoys/ 
22 GROMACS4.0: http://www.gromacs.org/Downloads 

http://zhanglab.ccmb.med.umich.edu/decoys/
http://www.gromacs.org/Downloads
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Remaining of the error ranging from 195 to 240 is considered to fall in the last bin or the 40th bin of the 

frequency distribution. Thus, the 40th bin has the width of 45 (240-195 = 45). In our implementation of 

having each bin size of equal width of 5, we normalized the values of last bin by dividing each cell count 

by 9 (45/9 = 5). Thus, the final frequency distribution table consist of 20 rows (for 20 different types of 

amino acid) and 40 bins of equal size of 5. For each residue, frequency distribution table is updated as 

Equation (14): 

𝐹𝐷𝑇(𝐴𝐴𝑖  , 𝑏𝑖𝑛𝑗) = 𝐹𝐷𝑇(𝐴𝐴𝑖  , 𝑏𝑖𝑛𝑗) + 1.0    (14) 

     

Here, AAi is the ith amino acid and binj is the jth bin. Index i ranges from 1 to 20 indicating twenty 

different amino acids and j ranges from 1 to 40 indicating bins. binj is defined by Equation (15): 

𝑏𝑖𝑛𝑗 = 𝑎𝑏𝑠(∆𝐴𝑆𝐴𝑖 = 𝐴𝑆𝐴𝑟𝑖 − 𝐴𝑆𝐴𝑝𝑖)/𝑏𝑖𝑛_𝑠𝑖𝑧𝑒    (15) 

 

Here, bin_size = 5. Once the frequency table is obtained, cell whose frequency count is zero are replaced 

with a small value of 10-6. After the frequency is computed, probability table is obtained by Equation (16): 

𝑃(𝐴𝐴𝑖  , 𝑏𝑖𝑛𝑗) = 𝐹𝐷𝑇(𝐴𝐴𝑖 , 𝑏𝑖𝑛𝑗)/𝑇𝑜𝑡_𝐹𝑟𝑒𝑞    (16) 

Here, Tot_Freq is the sum of the count of each amino acid type in frequency table. Finally, the energy 

score library for sequence specific solvent accessibility is obtain by Equation (17): 

𝐸(𝐴𝐴𝑖 , 𝑏𝑖𝑛𝑗) = −ln (𝐵𝑖𝑛_𝐶𝑜𝑢𝑛𝑡 ×𝑃(𝐴𝐴𝑖  , 𝑏𝑖𝑛𝑗))   (17) 

 

Energy associate with each native protein as well as decoy protein is given by Equation (18): 

𝐸𝐴𝑆𝐴 = ∑ 𝐸𝑘(𝐴𝐴𝑖 , 𝑏𝑖𝑛𝑗)

𝑁

𝐾=1

 

 

(18) 

 

The combined energy 𝐸3𝐷𝐼𝐺𝐴𝑅𝑆2.0 for each of the proteins including native as well as decoy sets are 

calculated using Equation (19): 

𝐸3𝐷𝐼𝐺𝐴𝑅𝑆2.0 =  𝐸3𝐷𝐼𝐺𝐴𝑅𝑆 + (𝑤 × 𝐸𝐴𝑆𝐴) (19) 

     3DIGARS2.0 potential combines 3DIGARS energy with the sequence-specific solvent accessible 

energy for each of the protein with weight 𝑤1. The optimal value of weight w, ranging from 0 to 2, is 
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obtained from using Genetic Algorithm (GA). The Genetic Algorithm (GA) parameters were of population 

size 300, elite-rate 5%, crossover-rate 90% and mutation-rate 50%. The stopping criteria to stop the 

optimization was set to maximum number of generations 2000. Fig 24 shows the performance of GA where 

the value remains stable after around 3rd generation. 

 

 

 

Fig 24. GA optimization result: generations versus fitness graph. Fitness increases sharply and remains 
constant over number of iterations indicating stable outcome.   

 

Fig 25 shows the complete workflow of computing 3DIGARS2.0. 
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Fig 25. Steps of computing 3DIGARS2.0 potential. The abbreviations used are explained in Section3.6.2.  
 

3.6.3 Performance of 3DIGARS2.0 

We compare the performance of 3DIGARS2.0 with the state-of-art-approaches DFIRE, RWplus, dDFIRE 

and GOAP using the most challenging three different decoy datasets, Moulder, Rosetta and I-Tasser. 

3DIGARS2.0 is found to outperform all the state-of-art approaches including the previous version of 

3DIGARS with high number of correctly identified native proteins from their decoy datasets. For example, 

based on Rosetta and Tasser decoy-sets 3DIGARS2.0 improved on an average over DFIRE, RWplus, 
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dDFIRE, GOAP, 3DIGARS are 79.64%, 72.5%, 162.48%, 17.77%, and 31.86% respectively. In Table 17 

the results for DFIRE, RWplus, dDFIRE and GOAP are obtained from [286] and 3DIGARS from [239]. 

Table 17. Comparison between DFIRE, RWplus, dDFIRE, GOAP, 3DIGARS and 3DIGARS2.0 based on 

correct selection of native from their decoy-set and z-score. 

Decoy Sets  

(No. of targets) 

 
DFIRE RWplus dDFIRE GOAP 3DIGARS 3DIGARS 2.0 

Moulder 

(20) 
19 

(-2.97) 

19 

(-2.84) 

18 

(-2.74) 

19 

(-3.58) 
19 

(-2.998) 

19 

(-2.6728) 

Rosetta 

(58) 
20 

(-1.82) 

20 

(-1.47) 

12 

(-0.83) 

45 

(-3.70) 
31 

(-2.023) 

49 

(-2.9871) 

Tasser 

(56) 
49 

(-4.02) 

56 

(-5.77) 

48 

(-5.03) 

45 

(-5.36) 
53 

(-4.036) 

56 

(-4.2964) 

  Bold indicates best score. Values within the parenthesis are average z-scores of the native structure. 

3.7 Summary and Conclusions 

In this chapter, we described a new framework, namely REGAd3p. The workflow includes a canonical 

exact regression technique, optimized further by genetic algorithm. The superior performance achieved by 

our proposed framework proves that integration of optimization by genetic algorithm can successfully 

enhance the capability of classical pattern recognition methods. The framework is generic and applicable 

for any real-value prediction application with appropriate tuning of the parameters. However, we have 

applied it for the prediction of absolute accessible surface area (ASA) of residues from protein sequence 

alone.  

The accessible surface area (ASA) is often used as an important measure related to proteomic studies 

for describing the biophysical properties of a protein. We introduced a comprehensive feature set which 

could better characterize absolute ASA as we achieved better accuracy (PCC: 0.73) in the case of 

independent test compared to existing independent test results (PCC equal to 0.49 [256], 0.61 [262], 0.66 

[263]). However, these results are subject to different datasets and different normalizing factors which make 

the comparisons often inconsistent. Therefore, under this work, we introduced a new benchmark dataset, 

SSD1299 and compared the performance of our methodology with the existing state-of-the-art predictor, 

SPINE-X [175] by running it on SSD1299 dataset. Our test results for multiple datasets (SSD_TR1001, 

SSD_TS298, Moulder, Rosetta, I-Tasser) further prove our method is robust. As demonstrated in a series 

of recent publications (e.g., [272], [273], [274], [275], [276], [279]) in developing new prediction methods, 
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user-friendly and publicly accessible web-servers significantly enhance their impacts [280]. We will make 

efforts in our future work to provide a web-server for the prediction method presented in this chapter. 

    For this work, we avoided the common practice of predicting normalized ASA [178] and then de-

normalizing since the normalized ASA varies depending on normalizing factor.  Current research is still 

determining a suitable reference value for normalizing ASA [288] which indicates that inaccurate 

normalizing factor can lead to misinterpretation of the absolute accessible surface area of residue within a 

protein conformation.  

We followed the normalized ASA calculation adopted in [178] and computed the MAE for normalized 

ASA prediction with respect to the SSD1299 dataset by our proposed framework. We found that the 

correlation between the error in prediction in case of with and without normalization for twenty different 

amino acids is poor with PCC value equal to 0.41 which also proves the inconsistency between absolute 

and normalized ASA values. Therefore, we predicted absolute ASA values and justified the quality of our 

prediction through exhaustive analyses of different amino acids along with their physical properties, 

residues with different type of secondary structure and multiple range of ASA values. Through these 

analyses, we could show that flexible and higher ASA values are harder to predict. However, for a wide 

range of ASA values, [0 – 105), REGAd3p can predict with consistently lower error and higher correlation 

which suggests that our methodology can be useful and consistent in measuring parameters in protein’s 

dynamic or, flexible structure prediction and function identification. 

 To establish a concrete instance of the claim, we extended 3DIGARS energy functions by optimally 

combining the ASA error model based energy generated by REGAd3p, namely 3DIGARS2.0, which 

significantly outperformed all the state-of-the-art energy functions based on the most challenging decoy 

datasets. We have also extended the application of sequence based predicted ASA towards developing of a 

sequence base energy score, which is described in Chapter 4. Moreover, in a separate work conducted by 

us in balanced secondary structure prediction [196], the predicted ASA by REGAd3p served as one of the 

major feature.  

    Energy function is one of the key component of ab initio protein structure prediction, which is an 

important method to predict proteins’ 3D structure from the given amino acid sequence only. In cases, 

where homologous proteins are absent, the ab initio protein structure prediction approach becomes 

essential. Therefore, the proposed predictor of real value ASA (i.e., REGAd3p) and energy function (i.e., 

3DIGARS2.0) can be very useful for emerging research of proteomics and related fields. 
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Chapter 4 

PSEE: Position Specific Estimated Energy  

 An Energy Score to Characterize the Stability of Protein and its Application in Disorder 

Prediction 

Protein folding is the process by which a protein chain acquires its 3-dimensional (3D) structure. It is the 

physical process by which a polypeptide, a linear chain of amino acid residues, folds into its characteristic 

and functional 3D structure from random coil. Amino acids interact with each other to produce a well-

defined 3D structure, the folded protein, known as the native state. The energy landscape describes the 

folding pathways in which the unfolded protein can adopt its native and stable state at minimal free energy. 

Therefore, Energy acts as a measure of a protein’s structural stability. Lower free energy (especially 

negative energy) is favorable for stabilizing the folded state of a protein, whereas an unstructured protein 

cannot achieve such a gain in enthalpy, therefore remains neutral in terms of energy. The stable 3D structure 

is determined by the amino acid sequence or primary structure, explained by Anfinsen's dogma [3]. Thus, 

the possible extraction of energy contribution of amino acid residues from protein sequence alone has its 

underlying hypothesis and will have crucial implications as a feature to characterize protein structure and 

stability in inducing a machine learning model that is capable of accurately predicting 3D protein structural 

descriptors. Solutions for existing protein structure prediction problems need features that can capture the 

complexity of molecular level interactions.  

In this chapter, we propose a novel approach to estimate position specific energy (PSEE) of a residue 

using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE 

can be reasonably estimated based on sequence information alone. PSEE is found useful in identifying the 

structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable 
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and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, 

verified empirically, is the indication that the PSEE feature can effectively classify disordered versus 

ordered residues and can segregate different secondary structure type residues by computing the constituent 

energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the 

corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that 

essentially undergo disorder-to-order transitions to perform crucial biological functions. 

Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and 

found that a support vector machine model informed by a set of features including PSEE consistently 

outperforms a model with an identical set of features with PSEE removed. We have synonymously 

mentioned the improved predictor as DisPredict (version 2.0) or DisPredict2. In addition, the new disorder 

predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with 

six existing disordered protein predictors. The outline of this chapter is as follows.  

• We start by giving the background information about thermodynamic forces that stabilizes protein fold 

and energy landscape of structured and disordered proteins in Section 4.1. Here, we discuss our 

motivation behind estimating energy score from protein’s primary sequence and our contribution.  

• In Section 4.2, we describe the technique to compute of position specific estimated energy (PSEE) per 

residue from protein sequence.  

• Section 4.3 highlights the capacity of PSEE to score protein’s stability and capture different structural 

properties of protein residues, therefore its importance as a feature to predict protein structure prediction 

problems.   

• In Section 4.4, we discuss the design and development of an improved version of the initially developed 

disorder predictor (described in Chapter 2), DisPredict (version 2.0), including the experimental 

materials, such as dataset collection, feature set preparation and performance evaluation metrics. 

• In Section 4.5, we evaluate and compare the performance of DisPredict2 statistically and with case 

studies.  

• Finally, we conclude in Section 4.6 with brief future research directions.  

4.1 Background and Motivations 

Protein exists as an unfolded polypeptide or random coil without any stable 3D structure when translated 

from a sequence of mRNA to a linear chain of amino acids. As the polypeptide chain is being synthesized 

by the ribosome, the linear chain begins to fold into its three-dimensional structure. Folding begins to occur 

even during translation of the polypeptide chain of amino acid residues, which interact with each other to 
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produce a well-defined 3D structure. The correct 3D structure is essential to function, although some parts 

of functional proteins may remain unfolded [22], which performs dynamic function through heterogeneous 

conformations. Protein may fail to fold into native structure, which becomes inactive proteins or misfolded 

proteins in some instances, having toxic functionality. Several neurodegenerative and other diseases are 

believed to result from the accumulation of amyloid fibrils formed by misfolded proteins.  

While a fully functional protein is usually the one that is appropriately twisted, coiled and folded into 

a specific three dimensional conformation,  intrinsically disordered regions (IDRs) or, proteins (IDPs) [2, 

7] remain unfolded under physiochemical conditions [2, 5, 7], discussed in Chapter 2. IDRs and IDPs 

become biologically active through disorder to structure transitions [5, 20, 44, 46, 53, 69, 70, 75]. The 

connection of IDPs with critical human diseases, such as cancer, cardiovascular diseases, neurodegenerative 

diseases, genetic diseases, diabetes, amyloidosis and others, has created research areas such as prediction 

of protein disorder, identification of induced folding region, or binding sites in disordered proteins and drug 

discovery. 

 

Fig 26. The Energy funnel: a sample energy landscape through which the unfolded linear chain of amino 
acid residues (primary structure) gains the 3D native structure. It shows that the unstructured proteins 
stay in less favorable energy state (less negative) and in native state, structured proteins stay in 
highly negative or favorable energy condition.  

 

In late 1980s and early 1990s, Joseph Bryngelson and Peter Wolynes formulated the energy landscape 

theory of protein folding phenomenon [289]. This approach introduced the principle of minimal frustration 

[290]. The folding funnel landscape allows the protein to fold to the native state through any of many 

pathways and intermediates, rather than being restricted to a single mechanism. The computational 



 

 

90 

 

simulations of proteins and experimental studies support this theory and is utilized by protein structure 

prediction and design methods. 

A sample landscape is illustrated in Fig 26, which indicates that there are many initial possibilities, but 

only a single native state is possible; however, it does not reveal the numerous folding pathways that are 

possible. A different molecule of the same exact protein may be able to follow marginally different folding 

pathways, seeking different lower energy intermediates. Different pathways, having different 

thermodynamic favorability, can be utilized at different frequencies. Therefore, a pathway, being 

thermodynamically more favorable than another, is likely to be used more frequently in the pursuit of the 

native structure [291]. As the protein begins to fold and gets its various conformations, it seeks a more 

thermodynamically favorable structure than before and thus continues through the energy funnel. Thus, 

protein residues that are ordered (structured) can be assumed to contribute lower negative energy (favorable 

state) to the protein’s 3D conformation whereas the disordered (unstructured) contribute less negative 

energy (unfavorable state).  

The thermodynamic forces that stabilize the folded state of a protein comes from the formation of 

intramolecular non-covalent interactions, like ionic bond, hydrogen bond, van der Waals attraction, and a 

net force, hydrophobic effect. The ionic bonds in proteins, also called as salt bridges, occur due to highly 

favorable interaction between amino acids with side chains of opposite charge. A hydrogen bond is a strong 

form of dipole-dipole interaction between heteroatoms, which play a key role in the formation of secondary 

structure, such as alpha helices and beta sheets. The van der Waals’ interaction, also known as London 

dispersion force, is the induced dipole-induce dipole interaction between nonpolar surfaces. The 

hydrophobic effect is the phenomenon in which the hydrophobic chains of a protein collapse into the core 

of the protein (away from the hydrophilic environment) [292]. Minimizing the number of hydrophobic side-

chains exposed to water is an important driving force behind the folding process [293]. Furthermore, 

proteins will have limitations on their folding abilities by the restricted bending angles or conformations 

that are possible, described with a two-dimensional plot known as the Ramachandran plot, depicted with 

psi and phi angles of allowable rotation.  

Protein folding is a spontaneous process, which is thermodynamically favorable within a cell, which 

follows the thermodynamic laws, thus the change in Gibbs free energy (G) is negative. Gibbs free energy 

is defined in terms of enthalpy and entropy [292]. For a negative delta G to arise and for protein folding to 

become thermodynamically favorable, then either the change in enthalpy (H) must be negative and 

dominant over an unfavorable entropy term, or the change in entropy (S) must be positive and dominant 

over an unfavorable enthalpy term or, both terms must be favorable (negative change in enthalpy or positive 

change in entropy). 
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Fig 27. Thermodynamics of protein folding process. The spontaneous process of protein folding results in 
negative Gibbs free energy change (G). It includes negative change in enthalpy (H) and decrease 
(positive change) in entropy of the system (Ssystem). However, the free energy causes an increase 
in the entropy of the surrounding environment (Ssurrounding) resulting in disordered water and hence, a 
total increase of entropy.  

 

Protein folding is an exothermic process, illustrated in Fig 27, with negative enthalpy change (H < 0) 

due to the formation of strong and short hydrogen bonds. The water molecules tend to aggregate around the 

hydrophobic regions or side chains of the protein, creating water shells of ordered water molecules [294]. 

The ordered water molecules around a hydrophobic region, driving hydrophobic collapse, decreases 

entropy of the system (Ssystem < 0). However, the heat given off by the exothermic process of folding causes 

the molecules in the surrounding to dance around more (Ssurrounding  0), thus increases the total entropy 

(Stotal > 0), following the 2nd law of thermodynamics. 

For globular proteins, the contribution of interresidue interactions to total energy can be approximated 

by low resolution force fields, or statistical potentials, energy-like quantities derived from structured 

proteins based on the observed amino acid pairing frequencies [295, 296]. In deriving the actual potentials, 

different principles have been applied [295, 297-300]. The resulting empirical energy functions are well 

suited to assess the quality of structural models and have been used for fold recognition or threading [301, 

302], in docking [303], ab initio folding [304] and predicting protein stability [305]. Their success in a wide 

range of applications suggests the existence of a common set of interactions, simultaneously favored in all 

native structures.  

However, extraction of such energies is not possible to carry out for proteins whose structure is not 

known, like intrinsically disordered proteins (IDPs). To overcome these limitations, attempts have been 

made to predict the pairwise contact energy values among 20 different amino acids from sequence only 

[149] and found effective in characterizing ordered and disordered state [149] of protein residues. The 
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underlying principle is the major milestone in protein science, the thermodynamic hypothesis of Christian 

Anfinsen, the primary structure of a protein, its linear amino-acid sequence, determines its native 

conformation. The amino acid composition is not as important as the sequence [292]. The essential fact of 

folding, however, is that the amino acid sequence of each protein contains the information that specifies 

both the native structure and the pathway to attain that state. Therefore, nearly identical amino acid 

sequences usually fold similarly [306].  

4.1.1 Our Contributions 

We propose a novel approach of predicting position specific residual energy contribution in the total 

energy of a protein. We predict this energy per residue from the protein’s primary sequence alone unlike 

the energy functions [15, 179, 307] while the protein structure is given, and called as Position Specific 

Estimated Energy (PSEE) [11]. The computation of PSEE considers the potential contact partners (amino 

acids) and the contact energies in the neighborhood of the primary protein sequence as well as the relative 

burial of the target residues and its partners to capture the hydrophobic effect, which can be defined as the 

tendency of nonpolar (or hydrophobic) amino acids to become buried because that leads to increase the 

entropy of water. PSEE successfully characterized the ordered and disordered state of protein residues, 

different types of secondary structure residues, hydrophobic and polar amino acid residues.  

An important implication of PSEE is its usability as a valuable feature for the development of sequence 

based predictors of disorder protein, secondary structure and accessible surface area and so on where 1D 

sequence information to 3D structural mapping is essential. As an application, we enhanced our disorder 

protein predictor, DisPredict [10] with the new PSEE feature, called DisPredict2 [11], and DisPredict2 

outperforms DisPredict in predicting disorder residues more accurately.   

4.2 Extraction of PSEE from Sequence 

The free energy of a protein chain is a function of effective inter-residual contacts in its three-dimensional 

conformation. An iterative method is described by Thomas and Dill [297] to extract interaction potentials 

(ENERGI) from a database of protein structures obtained from Protein Data Bank (PDB) [308]. Initially, 

the 20 × 20 contact energy matrix in [297] is derived from known structures of 37 protein chains. A similar 

approach is applied in [149] to recalculate the contact energies between all possible pairs of 20 different 

amino acids using known structures of 785 proteins from PDB.  
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However, the amino acid composition in the primary structure of protein determines its native structure 

with favorable energy. Therefore, it is believed that the pairwise contact energy can be extracted from the 

amino acid sequence [149]. The predicted pairwise contact energies are derived in [149] using 674 protein’s 

primary structure (amino acid sequence) by the least square fitting with the contact energies derived from 

tertiary structure of 785 proteins. The actual and predicted energies are found to have linear relationship, 

explained in [149]. The predicted energy matrix (𝑃) derived in [149] is shown in Table 18. 

Table 18. Predicted pairwise contact energy matrix derived in [149].  

 A R N D C Q E G H I L K M F P S T W Y V 

A -1.65 0.98 0.66 1.16 -2.83 1.2 1.8 -0.41 1.9 -3.69 -3.01 0.49 -2.08 -3.73 1.54 -0.08 0.46 0.32 -4.62 -2.31 

R 0.98          0.21 1.08 -2.02 -0.41 0.91 -3.13 0.84 0.19 2.05 -0.6 2.34 2.09 -0.4 1.06 0.95 0.98 -5.89 0.36 0.08 

N 0.66    1.08 0.61 0.32 -4.18 1.28 0.2 -0.32 1.84 -0.07 0.97 1.12 0.21 0.73 1.15 0.29 0.46 -0.74 0.93 0.93 

D 1.16    -2.02 0.32 0.84 -0.82 2.67 1.97 0.88 -1.07 0.68 0.23 -1.93 0.61 -0.92 3.31 0.91 -0.65 -0.71 0.9 0.94 

C -2.83    -0.41 -4.18 -0.82 -39.58 -2.91 -0.53 -2.96 -4.98 0.34 -2.15 -1.38 1.43 -3.07 -2.31 -2.33 -1.84 4.26 -4.46 -0.16 

Q 1.2      0.91 1.28 2.67 -2.91 -1.54 0.1 1.11 2.64 -0.18 -0.58 0.43 1.9 0.77 -0.42 1.12 1.65 -2.06 -2.09 0.38 

E 1.8      -3.13 0.2 1.97 -0.53 0.1 1.45 1.31 0.61 1.3 1.14 -2.51 2.53 0.94 1.44 0.81 1.54 -1.07 1.29 0.12 

G -0.41   0.84 -0.32 0.88 -2.96 1.11 1.31 -0.2 1.09 -0.65 -0.55 -0.16 -0.52 0.35 2.25 0.71 0.59 1.69 -1.9 -0.38 

H 1.9      2.05 1.84 -1.07 -4.98 2.64 0.61 1.09 1.97 -0.71 -0.86 2.89 -0.75 -3.57 0.35 0.82 -0.01 -7.58 -3.2 0.27 

I -3.69   0.19 -0.07 0.68 0.34 -0.18 1.3 -0.65 -0.71 -6.74 -9.01 -0.01 -3.62 -5.88 0.12 -0.15 0.63 -3.78 -5.26 -6.54 

L -3.01  -0.6 0.97 0.23 -2.15 -0.58 1.14 -0.56 -0.86 -9.01 -6.37 0.49 -2.88 -8.59 1.81 -0.41 0.72 -8.31 -4.9 -5.43 

K 0.49     2.34 1.12 -1.93 -1.38 0.43 -2.51 -0.16 2.89 -0.01 0.49 1.24 1.61 -0.82 0.51 0.19 -1.11 0.02 -1.19 0.19 

M -2.08  2.09 0.21 0.61 1.43 1.9 2.53 -0.52 -0.75 -3.62 -2.88 1.61 -6.49 -5.34 0.75 1.39 0.63 -6.88 -9.73 -2.59 

F -3.73  -0.4 0.73 -0.92 -3.07 0.77 0.94 0.35 -3.57 -5.88 -8.5 -0.82 -5.34 -11.25 0.32 -2.22 0.11 -7.09 -8.8 -7.05 

P 1.54  1.06 1.15 3.31 -2.13 2.97 1.44 2.25 0.35 0.12 1.81 0.51 0.75 0.32 -0.42 1.12 1.65 -2.06 -2.09 0.38 

S -0.08  0.95 0.29 0.91 -2.33 0.85 0.81 0.71 0.82 -0.15 -0.41 0.19 1.39 -2.22 1.12 -0.48 -0.06 -3.03 -0.82 0.13 

T 0.46    0.98 0.46 -0.65 -1.84 -0.07 1.54 0.59 -0.01 0.63 0.72 -1.11 0.63 0.11 1.65 -0.06 -0.96 -0.65 -0.37 1.14 

W 0.32     -5.89 -0.74 -0.71 4.26 -0.76 -1.07 1.69 -7.58 -3.78 -8.31 0.02 -6.88 -7.09 -2.06 -3.03 -0.65 -1.73 -12.39 -2.13 

Y -4.62    0.36 0.93 0.9 -4.46 0.01 1.29 -1.9 -3.2 -5.26 -4.9 -1.19 -9.73 -8.8 -2.09 -0.37 -0.37 -12.39 -2.68 -3.59 

V -2.31   0.08 0.93 0.94 -0.16 -1.91 0.12 -0.38 0.27 -6.54 -5.43 0.19 -2.59 -7.05 0.38 0.13 1.14 -2.13 -3.59 -4.82 

 

Here, we present a novel idea of extracting position specific estimated energy (PSEE) contribution of 

each residue in a protein from its sequence alone based on following two hypotheses.  

Hypothesis 1: The position specific energy for a protein residue includes the contact effects with 

different types of amino acid within a neighborhood along the primary sequence.  
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The preliminary idea to predict pairwise energies in [149] agrees with the above hypothesis that the 

energy contribution of a residue depends on the amino acid type of that residue as well as the types of its 

partners in the sequence. Therefore, we utilize the energy matrix (𝑃) derived in [149] to include the effect 

of having variable count of different amino acid type residues that can form favorable contacts with the 

target residue.  

Hypothesis 2: The position specific energy contribution of a protein residue is related to the relative 

solvent accessibility (RSA) of the target residue and the residues within its neighborhood region, which can 

essentially capture the hydrophobic effect on the 3D state.  

The RSA of a residue is used to determine its proportional exposure (𝑝𝐸𝑥𝑝) or, burial (𝑝𝐵𝑢𝑟𝑟), and 

hence the effective contact surface that can characterize the local environment of that residue in the tertiary 

structure. In protein folding process, the hydrophobicity of the amino acid, having less 𝑝𝐸𝑥𝑝, acts as a 

driving force to develop the core in the tertiary structure and the hydrophilic residues usually stay on the 

surface of the protein with high 𝑝𝐸𝑥𝑝. Thus, 𝑝𝐸𝑥𝑝 (or, 𝑝𝐵𝑢𝑟) of a residue can provide useful information 

in capturing the local solvent effects and can help computing favorable (negative) energy contribution of 

that residue in the native structure.  

Let, 𝐴𝐴𝑖 is the 𝑖𝑡ℎ amino acid residue of the protein sequence, where 𝑖 ∈ {1, … , 𝐿} and 𝐿 is the length 

of that protein sequence. 𝑁𝑖 is the neighborhood region around 𝐴𝐴𝑖 that consists of the contact partner 

residues of 𝐴𝐴𝑖. 𝑁𝑖 includes contact radius (𝐶𝑅) number of residues on the either side of target residue 

(𝐴𝐴𝑖). Thus, the size of 𝑁𝑖 is equal to 2𝐶𝑅. The predicted pairwise contact energy between 𝐴𝐴𝑖 and 𝐴𝐴𝑗 is 

denoted by 𝑃(𝐴𝐴𝑖, 𝐴𝐴𝑗), where 𝐴𝐴𝑗 belongs to 𝑁𝑖. We weight this contact potential by the proportional 

burial of the contact partners to capture the essential contact effect in the estimation of position specific 

energy of the target residue 𝐴𝐴𝑖. Therefore, 𝑃𝑆𝐸𝐸(𝐴𝐴𝑖) is formulated as, 

 
𝑃𝑆𝐸𝐸(𝐴𝐴𝑖) = 𝑝𝐵𝑢𝑟(𝐴𝐴𝑖) [

∑ 𝑃(𝐴𝐴𝑖 , 𝐴𝐴𝑗)×𝑝𝐵𝑢𝑟(𝐴𝐴𝑗)𝐴𝐴𝑗∈𝑁𝑖

2𝐶𝑅
] 

 

(21) 

4.2.1 Computation of Proportional Exposure (or Burial) 

RSA of a protein residue is calculated by normalizing the accessible surface area (ASA) of that residue by 

the surface area of the same type of residue in a reference state. We used the ASA normalizing values 

derived in [309] using Gly-X-Gly tripeptide as the reference state for a given residue X. Therefore, the 

proportional exposure (𝑝𝐸𝑥𝑝) and burial (𝑝𝐵𝑢𝑟𝑟) can be expressed by the following equations. 
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𝑝𝐸𝑥𝑝(𝐴𝐴𝑖) =

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑆𝐴 (𝐴𝐴𝑖)

𝐴𝑆𝐴 (𝐴𝐴𝑖) 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑙𝑦 − 𝐴𝐴𝑖 − 𝐺𝑙𝑦
 

 

(22) 

 𝑝𝐵𝑢𝑟(𝐴𝐴𝑖) = 1 − 𝑝𝐸𝑥𝑝(𝐴𝐴𝑖) (23) 

 

Table 19. ASA normalization values for 20 amino acids in Å𝟐, proposed in [309]. 

Amino Acid (AA) ASA normalization 

value 

Amino Acid (AA) ASA normalization 

value 

Alanine (A) 129.0 Leucine (L) 201.0 

Arginine (R) 274.0 Lysine (K) 236.0 

Asparagine (N) 195.0 Methionine (M) 224.0 

Asparatate (D) 193.0 Phenylalanine (P) 240.0 

Cysteine (C) 167.0 Proline (P) 159.0 

Glutamine (Q) 225.0 Serine (S) 155.0 

Glutamate (E) 223.0 Threonine (T) 172.0 

Glycine (G) 104.0 Tryptophan (W) 285.0 

Histidine (H) 224.0 Tyrosine (Y) 263.0 

Isoleucine (I) 197.0 Valine (V) 174.0 

 

The ASA normalization values are listed in Table 19. We utilized a new ASA predictor framework, 

REGAd3p [15], described in Chapter 3 to generate predicted ASA of the residues.  REGAd3p [15] is a new 

real-value ASA predictor from protein sequence alone that showed maximum Pearson correlation 

coefficient (PCC) value of 0.76 on a blind dataset 

4.2.2 Determining Contact Radius (CR)  

PSEE of a residue serves as a measure of structural stability of a residue being in a specific position. The 

structurally stable proteins, so as the residues of proteins, gains energetically favorable (negative) condition 

compared to the unstructured counterparts. The quantification of PSSE by Equation 21 involves the 

determination of the contact radius (CR) of the neighborhood around the target residue. It is assumed that 

the target residue forms effective local contacts with the CR number of residues on its either side.  

To determine the CR parameter for the computation of PSEE, we applied PSEE as a feature to 

characterize the structured (ordered) and unstructured (disordered) residues. We allowed the minimum CR 
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value equal to 4 to maximum of 30. We performed this experiment on the DisProt database [100] of 

disordered proteins that stores manually curated annotations of ordered and disordered residues.  The recent 

release of DisProt version 6.02 contains 694 proteins with 1539 disordered regions. We excluded three 

chains from this set, Id: DP00688, DP00195, DP00642, as they have unknown amino acids, such as X, B 

and Z.  Furthermore, the Cysteine (C) amino acid, being highly reactive due to its sulfhydryl group, caused 

abnormal PSEE values for some residues of 11 more protein sequences which we have discarded for the 

mentioned reason. A very high Cysteine-Cysteine pairwise interaction energy is also explicit in Table 18. 

Thus, we excluded these 11 chains while tuning the value of CR. This purification resulted a list of 680 

protein chains, called as DisProt680 dataset, from DisProt database [100]. After that, we computed mean 

PSEE, formulated by Equation 24, of DisProt annotated ordered (𝑜) and disordered (𝑑) residues.  

 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜) =
∑ 𝑃𝑆𝐸𝐸(𝑜)

𝑛𝑜
 and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑) =

∑ 𝑃𝑆𝐸𝐸(𝑑)

𝑛𝑑
 (24) 

Here, 𝑛𝑜 and 𝑛𝑑 are the total number of ordered and disordered residues, respectively. We computed 

𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜) and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑) for CR values of 4 to 30. For each value of CR, we define the threshold, 𝑡(𝑃𝑆𝐸𝐸), 

for PSEE based identification of ordered and disordered residues as the value that is equally distant from 

𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜) and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑). Fig 28 shows the 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜), 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑) and 𝑡(𝑃𝑆𝐸𝐸) for CR equal to 4 to 30.  

 

 

Fig 28. 𝑷𝑺𝑬𝑬̅̅ ̅̅ ̅̅ ̅̅ (𝒐), 𝑷𝑺𝑬𝑬̅̅ ̅̅ ̅̅ ̅̅ (𝒅) and 𝒕(𝑷𝑺𝑬𝑬) for different contact (CR) values. Mean PSEE for ordered and 
disordered residues, indicated by green line with circle marker and red line with diamond marker 
respectively, of DisProt680 dataset for CR values of 4 to 30. The separation line or, threshold 
(t(PSEE)) is drawn with a black dashed line. The x-axis and y-axis show the CR and mean PSEE 
values, respectively. 

 

Fig 28 illustrates that PSEE identifies the energetically induced gap between the structured and 

unstructured residue and clearly draws the separation line in terms of 𝑡(𝑃𝑆𝐸𝐸) for all values of CR. For 
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CR value equal to 4 to 30, 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜) ranges from -0.51 to -0.58, whereas 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑) ranges from -0.13 to -

0.15. Therefore, PSEE could recognize the energetically favorable (negative) condition of a structured 

residues. Now, we utilize 𝑡(𝑃𝑆𝐸𝐸) of corresponding CR values to classify ordered versus disordered 

residues to determine the best CR value that can generate the most distinguishing PSEE values to classify 

ordered versus disordered class most effectively.  

 
(a) ACC (b) PPV (c) MCC 

Fig 29. Performance of ordered and disordered residue classification based on per residue PSEE value 
calculated using different contact radius (CR) values. Classification performance is shown in terms of 
(a) balanced accuracy, ACC (blue bar), (b) precision, PPV (purple bar) and (c) Matthews 
correlation coefficient, MCC (green bar) for CR values equal to 4 to 30. The x-axis and y-axis 
show the CR values and the performance metric values, respectively.  

 

We plot the PSEE based disorder classification performance in terms of balanced accuracy (ACC), 

precision (PPV) and Matthews correlation coefficient (MCC) in Fig 29. We carried out this preliminary 

classification based on PSEE only to identify the effective CR value, thus we ignore the actual numerical 

values of the performance metrics here. Fig 29 shows that PSEE values calculated with CR value 9 performs 

the disordered residue classification most accurately based on the DisProt680 dataset. Thus, we obtained 

the best CR value 9 and we used the same of rest our experiments in this work.  

4.3 Performance of PSEE in Determining Structural Property 

In this section, we highlight the usefulness of PSEE to characterize the structural stability of protein 

residues. Our results show that PSSE can effectively distinguish ordered and disordered residues, residues 

including three different types of secondary structures (helix, beta and coil) as well as residues with different 

physical property (hydrophobic and hydrophilic). Therefore, PSEE can effectively extract useful biological 

information from sequence that makes it a useful feature for machine learning based computational tools 

for disorder prediction, secondary structure prediction, residue exposure prediction, contact prediction, 

binding region prediction etc.  
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4.3.1 Ordered and Disordered Residues 

Fig 30(a) shows the mean PSEE of ordered and disordered residues of DisProt680 dataset with contact 

radius of 9 on the either side of the target residue. The absolute gap between 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑜) and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑑) is 

0.363 that is reasonable to use PSEE feature for ordered versus disordered residue classification. 

Further, we investigated the PSEE values at the region level. Fig 30(b) plots the PSEE values for IDRs 

and ordered regions (ORs) computed as the average PSEE values of the respective residues of the regions. 

The average PSEE value for all IDRs is -0.391 and that for ORs is -1.00. The black dashed line in Fig 30(b) 

shows the separation line, computed as the middle value (-0.698) of the two average PSEE values for all 

IDRs and ORs. Therefore, the region below -0.698 is energetically favorable, whereas above it is the 

unfavorable region. It shows that PSEE values for some IDRs falls into the favorable region as well. 

  

(a) PSEE of Order and Disordered 
Residues 

    (b) PSEE of Ordered and Disordered 
Regions 

Fig 30. Order versus disorder characterization of PSEE in residue and region level. (a) Mean PSEE for 
ordered (green bar) and disordered (red bar) residues of DisProt680 dataset. The bars are label 
with the respective mean PSEE values. (b) PSEE values for ordered regions (green circle) and 
disordered regions (red diamond). The separation line between the average PSEE of all ordered and 
disordered region is indicated by black dashed line. The x-axis and y-axis represent the region index 
and the corresponding PSEE values. 

 

To investigate it further, we segregate the IDRs into four types depending on the length of IDRs; IDRs 

with ≤ 5 residues, (5 – 20] residues, (20 – 40] residues and ≥40 residues. Then we compute the average 

PSEE for all IDRs having similar length range.  
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Fig 31. PSEE of different length disordered regions and all ordered regions. Average PSEE of different 
protein regions of DisProt680 dataset; ORs (green), IDRs (red) IDRs with ≥ 40 residues (orange), 
IDRs with (20 – 40] residues (pink), IDRs with (5 – 20] residues (blue), IDRs with ≤ 5 residues 
(purple) and the separation line between all IDRs and ORs is shown by black dashed line. The lines 
are labeled by the corresponding numerical values of PSEE.  

 

Fig 31 shows the average PSEE for all ORs, IDRs, 4 different types of IDRs along with separation line 

shown in Fig 30(b). The relatively longer IDRs with (20 – `40] and ≥ 40 residues have PSEE values, -0.373 

and -0.274, which are more unfavorable (less negative) than that of considering all IDRs, -0.391. Therefore, 

PSEE is useful in identifying long disordered regions. It is important to note that the average PSEE for 

shorter IDRs with ≤ 5 residues, -0.544, is close to the separation line, -0.698, and thus tends to have 

favorable energy. These short disordered regions are often called as binding sites which are biologically 

important, as they undergo disorder to order transition by interacting with various partners. Identifying the 

binding sites in disordered regions are one of the most recent research areas due to their functional 

importance. Our result shows that PSEE values for short disordered regions reflect the usefulness of PSEE 

in binding site prediction as well. 

4.3.2 Helix, Beta and Coil Residues  

To capture the performance of PSEE in capturing the structural differences of three different types of 

secondary structure residues (helix, beta and coil), we computed mean PSEE for helix (h), beta (e) and coli 

(c) residues using Equation 25. 
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 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(ℎ) =
∑ 𝑃𝑆𝐸𝐸(ℎ)

𝑛ℎ
 , 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑒) =

∑ 𝑃𝑆𝐸𝐸(𝑒)

𝑛𝑒
, and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑐) =

∑ 𝑃𝑆𝐸𝐸(𝑐)

𝑛𝑐
 (25) 

 

We applied a new secondary structure predictor, called MetaSSPred [310], to generate predicted 

annotations for helix(h), beta (e) and coil (c) residues . MetaSSPred [310] is a balanced secondary structure 

predictor that can overcome the under prediction of less dominating beta residues in the datasets. Helices 

and beta residues are preferably located in the core of the protein, having favorable energy. Beta residues 

are more structured compared to the helix residues. On the other hand, coil residues stays in the surface 

areas of proteins and highly flexible, having unfavorable energy.  

 

(a) Dataset: DisProt680 

 
(b) Dataset: SSD1299 

Fig 32. Secondary structure residue type characterization by PSEE. (a) Mean PSEE for beta (dark brown 
bar), helix (brown bar) and coil (light brown bar) residues of DisProt680 dataset, predicted using 
MetaSSPred [196]. (b) Mean PSEE for beta, helix, and coil residues of SSD1299 dataset [15]. The 
blue and brown set of bars represent the actual and predicted annotations from DSSP [51] and MetaSSPred 
[196], respectively. The bars are label with the respective mean PSEE values. 
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Fig 32(a) shows the 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(ℎ), 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑒) and 𝑃𝑆𝐸𝐸̅̅ ̅̅ ̅̅ ̅(𝑐) for residues of DisProt680 dataset. Beta 

residues have the highest negative PSEE and coils possess lowest negative energy, whereas helix residues 

stay in between beta residues and coil residues. This result is reasonable to validate the usefulness of PSEE 

in identifying different secondary structure residues. To further ensure this, we repeated the similar 

experiment on another dataset, generated by us in [15], specifically for secondary structure analysis. This 

dataset is called as secondary structure dataset (SSD) containing 1299 protein sequences with known 

structure from PDB. We ran DSSP [51] to generate the actual annotations of secondary structures for the 

residues of SSD1299 dataset and MetaSSPred [310] for the predicted annotations. The eight class 

annotations provided by DSSP are converted into three classes using the similar mapping given in [15, 

310]. The mean PSEE values for the residues in SSD1299 dataset is shown in Fig 32(b). PSEE consistently 

distinguished the three types of residues annotated by DSSP as well as MetaSSPred for SSD1299 dataset. 

Therefore, PSEE will serve as a useful feature for secondary structure prediction.  

4.3.3 Hydrophobic and Hydrophilic Residues  

Hydrophobic (H) amino acids build up the core of the protein and the hydrophilic or, Polar (P) ones are 

preferentially cover the surface of the proteins and are in contact with solvent due to their ability to form 

hydrogen bonds. Therefore, the hydrophobic residues gain energetically favorable condition compared to 

hydrophilic residues. Hydrophobic amino acids are A, G, I, L, M, F, P, W, Y and V, whereas the hydrophilic 

amino acids are R, N, D, C, Q, E, H, K, S, T. We computed mean PSEE for the H and P type residues of 

both DisProt680 dataset and SSD1299 dataset.  

  

 
 

(a) Dataset: DisProt680 (b) Dataset: SSD1299 

Fig 33. Mean PSEE of hydrophobic and hydrophilic residues. PSEE for hydrophobic (green bar) and 
hydrophilic (red bar) residues of (a) DisProt680 dataset and (b) SSD dataset. The bars are label 
with the respective mean PSEE values. 
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Fig 33 shows that for both datasets, the mean PSEE values for hydrophobic and hydrophilic residues 

are negative and positive, respectively. Thus, PSEE effectively discriminates hydrophobic and hydrophilic 

residues. As the hydrophobicity of the residues are directly related to the ASA of the residues, PSEE can 

serve as a useful feature for ASA prediction [15]. 

We further collected the hydrophobicity index for 20 different amino acids from [174] and computed 

mean PSEE for 20 different amino acid residues of SSD1299 dataset. Essentially the residues with positive 

hydrophobicity should obtain negative mean PSEE. Fig 34 shows the correlation between hydrophobicity 

index and mean PSEE of 20 amino acid type residues with the correlation coefficient (CC) equal to -0.86. 

This result emphasizes that (aggregated) PSEE is strongly correlated with the physical property, 

hydrophobicity, of the amino acid residues, which in turn, confirms that the proposed approach is not 

deviating from the statistics obtained in previous work significantly [174].  

 

Fig 34. Correlation between mean PSEE and hydrophobicity index of 20 amino acids. Mean PSEE (blue 
bar) and hydrophobicity index (red bar) of 20 different types of amino acid residues of SSD1299 
dataset. The data values are given in the data table under the plot.  

 

The negative value of correlation coefficient (CC) is desirable as the high (positive) hydrophobicity of 

a residue resembles its structural stability, thus its favorable (negative) energy contribution. Proline (P) and 

Threonine (T) are the exceptions here. Proline is referred as hydrophobic; however, it is found more in turns 

(coils) with unstable structure than helix and beta sheets. Thus, it has positive hydrophobicity as well as 

positive PSEE that correspond to unstable structure. 
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4.4 DisPredict (version 2.0) 

In this section, we describe the materials and methods of our proposed DisPredict2 [11], anonymously 

mentioned as DisPredict (version 2.0), which is an enhanced version of our initially developed DisPredict 

framework. DisPredict2 uses our proposed novel feature, PSEE [11], into the feature set of our existing 

predictor, DisPredict [10]. DisPredict2 is available at http://cs.uno.edu/~tamjid/Software/PSEE/PSEE.zip.    

4.4.1 Datasets 

4.4.1.1 Training Set 

We trained DisPredict2 with the same dataset as was utilized to train DisPredict [10] to have an accurate 

assessment of the effectiveness of the novel feature PSEE. DisPredict2 is trained with 477 protein sequences 

of Short-Long (SL) [10, 172] dataset.  

SL477 dataset contains protein chains from DisProt [100] database. 50% of the disorder regions in this 

dataset are short with less than or equal to 20 residues, and rests are long. The allowable similarity between 

protein sequence pairs is 25%. SL477 dataset consists of approximately 25%, 34% and 40% of residues 

annotated as disordered, ordered and unknown. The unknown residues are annotated as ‘X’. We ignored X 

residues for training and evaluation purposes.  

4.4.1.2 Test Set 

We tested and compared the performance of DisPredict2 with that of DisPredict [10] based on four 

independent datasets, DD73 [10], CASP8, CASP9 and CASP10. DD73 dataset is prepared by us  and used 

as the holdout dataset in [10].  

While the training dataset, SL477, is extracted from the protein chains of DisProt database version 5.0, 

DD73 accommodates 48 proteins from DisProt database version 5.1 to 6.02. The rest of the 25 single chain 

proteins are extracted from PDB [308] with the following criteria: i) X-ray structures with resolution  ≤ 3.0 

Å, ii) length ≥ 50 residues, and iii) 30% sequence identity cut-off. Later we removed sequences with more 

than 25% pairwise sequence similarity using BLASTCLUST23 from NCBI-BLAST package [173]. Among 

73 protein chains, 37 are fully disordered, 23 are fully ordered and 13 have both ordered and disordered 

regions. For DisPredict2, we utilized DD73 dataset for both independent evaluation of the predictor and 

optimization of threshold for disordered residue classification. However, CASP datasets are kept 

completely independent, and we did not carry out any optimization with the CASP datasets.  

                                                      
23 BlastClust: ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html 

http://cs.uno.edu/~tamjid/Software/PSEE/PSEE.zip
ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html
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 CASP8 dataset contains 122 protein chains, of which, 103 are X-ray derived protein structures and 19 

are NMR structures. This dataset has approximately 11% disordered residues, and the rest of the residues 

are structured.  

We used 111 protein chains of CASP9 dataset to test and compare DisPredict2 versus DisPredict [10]. 

For this dataset, only 10% of the total residues were annotated disordered. CASP9 dataset has 

approximately similar proportion of X-ray and NMR derived protein structures.  

In CASP10, 94 protein chains were used to assess the disorder predictors. For all CASP datasets, a 

residue is considered as disordered if it lacks spatial coordinates or, shows a high conformational variability 

across different X-ray structures or, NMR models.  

4.4.2 Feature Set 

In DisPredict2, we supplied the same 56 per residue features used in DisPredict [10], elaborately described 

in Section 2.3.3 along with PSEE. Therefore, we have 57 features per residue in DisPredict2. The residue 

level information includes:  

(i) Amino acid type, encoded by one single value, as all the necessary information for the correct folding 

of a protein is encoded in its amino acid sequence [3];  

(ii)  Seven physicochemical properties of amino acid as different types, short or long, disordered regions 

in protein are found to have distinguished physicochemical properties;  

(iii) Twenty PSSM’s (position specific scoring matrix) indicating the evolutionary information 

conserved in each residue position of a protein sequence;  

(iv) Three predicted secondary structure (helix, beta and coil) probabilities from SPINE-X [175], one 

predicted relative surface area [178] and two predicted backbone torsion angle (phi, psi) fluctuations [179] 

since disordered residues are characterized by lack of stable secondary structure, highly exposed area and 

higher fluctuations of torsion angle;  

(v) One monogram and twenty bigrams computed from PSSM [265] representing the conserved 

evolutionary information in three dimensional structure level;  

(vi) One indicator for terminal residues, five residues from N terminal and C terminal are indicated by 

-1.0 to -0.2 and +0.2 to +1.0 respectively with a step size 0.2 and  

(vii) One position specific estimated energy (PSEE) value.  
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Finally, before feeding the features into the classifier, 10 neighboring residue’s, on the either side of 

the target residue, information is aggregated using a sliding window of 21, resulting in 21 × 57 = 1197 

features per residue.  

4.4.3 Predictor Framework  

We developed DisPredict2 using support vector machine (SVM) algorithm, following our initially designed 

DisPredict predictor. We kept the dataset and classification algorithm similar to DisPredict to be able to 

compare the contribution of the proposed PSEE feature. SVM with radial basis function (RBF) kernel 

simultaneously minimizes the empirical classification error (training error) and generalized error (test error) 

by maximizing the geometric margin of the separating hyperplane. The DisPredict2 predictor framework 

has three levels: 

Parameter optimization:  The first level is the parameter tuning that determines the optimal values of 

two parameters for SVM classifier, namely C and , where C is the cost of misclassification that penalizes 

the feature space points on the wrong side of the decision boundary and  is the parameter of RBF kernel. 

The parameter selection is done by grid search using 5% of the training dataset, which is guided by 5-fold 

cross validation with the accuracy (fraction of correctly predicted residues) optimization. The best 

parameter values found by the grid search is, C = 0.5 and  = 0.0078125.  

Model development: The second level of DisPredict2 development involves the prediction model that 

generates both binary annotations and real valued probabilities of order versus disorder residues. The 

probability range, 0.5 ≤ range ≤ 1.0, is considered as disorder probability and 0.0 ≤ range < 0.5 is considered 

as order probability. The first and second level development of the predictor is done using LIBSVM [32].  

Threshold optimization: The third level of the predictor is to optimize the threshold for disorder 

classification and to reannotate the residues accordingly. We employed Youden’s J statistic [311]  to find 

the optimal threshold for disorder prediction by analyzing the receiver operating characteristic (ROC) curve 

using pROC package [183]. This statistic determines the optimal cut-off that maximizes the distance from 

the identity (diagonal) line. The optimality criterion is formulated as, 

 𝑚𝑎𝑥(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑖𝑒𝑠) (26) 

To make our predictor robust, we carried out the threshold optimization with an independent test 

dataset, DD73. The best threshold value found is 0.79. Therefore, we curated the annotation output given 

by the SVM model using 0.79 ≤ range ≤ 1.0 as disorder probability and 0.0 ≤ range < 0.79 as order 

probability. Further, we scaled the probability range [0.0, 0.79) into [0.0, 0.5) for the ordered residues and 
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[0.79, 1.0] into [0.5, 1.0] for the disordered residues to make the DisPredict2’s output more natural for 

binary classification.  

3.3.2 Implementation and Availability 

We implemented the DisPredict2.0 tool in C. The software is developed and tested on Linux platform. It is 

dependent on two external packages, namely PSI-BLAST24 and NR database25, which are publicly 

available.  The software is available online26 with a user manual. Besides disorder prediction, the software 

generates the pre-residue PSEE values of the target protein within the ‘Features’ sub-directory. 

4.5 Evaluation of DisPredict2 

In this section, we report the predictive performance of DisPredict2 [11] that measures the benefits of using 

PSEE as feature in the application of structure (or, disorder) classification and prediction while compared 

with DisPredict (version 1.0) [10]. The superior performance of DisPredict2 validates effectiveness of the 

proposed PSEE feature.  

4.5.1 Performance Measures 

The binary outputs given by DisPredict2 is evaluated and compared using the measures listed in Table 20. 

MCC is considered as the most balanced measure for binary classification. Moreover, we computed AUC, 

considered as the measure for the probability assignment. We further plotted the ROC curves and Precision-

Recall curves. The AUC values and the curves are generated using ROCR package [312].   

For a comprehensive comparison, we separately ranked the predictors in terms of balanced accuracy 

(ACC), Precision (PPV), Mathews Correlation Coefficient (MCC) and Area Under ROC curve (AUC). We 

gave same rank to all predictors having similar score. We assigned a cumulative score (Sc) as a summation 

of ranks according to different metrics and determined the final rank according to that cumulative score.  

 

 

                                                      
24 PSI-BLAST link: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 
25 NR database link: ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 
26 REGAd3p link: http://cs.uno.edu/~tamjid/Software/REGAd3p/REGAd3p.tar.gz 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://cs.uno.edu/~tamjid/Software/REGAd3p/REGAd3p.tar.gz
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Table 20. Name and definition of performance measuring parameters.  

Name of metric Definition 

True positive (TP) Number of correctly predicted disordered residues 

True negative (TN) Number of correctly predicted ordered residues 

False positive (FP) Number of incorrectly predicted disordered residues 

False negative (FN) Number incorrectly predicted ordered residues 

Balanced accuracy (ACC)  1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Precision (PPV) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Mathews correlation coefficient 

(MCC) 

(𝑇𝑃×𝑇𝑁) − (𝐹𝑃×𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

4.5.2 Comparison with Other Predictors 

We compared the performance of DisPredict2 with 7 others state-of-the-art disorder predictors. These 

predictors include our initial disorder predictor, DisPredict [10], SPINE-D [123], MFDp [164], MFDp2 

[165], Espritz [313], IUPred-Long (IUPred-L) and Short (IUPred-S) [149].  

SPINE-D [123] is a two-layer neural network based technique that was initially developed for three 

state prediction (disordered residues in short and long regions, ordered residue) and later reduced into two 

state prediction (disordered vs ordered residues). Espritz [313] is a high throughput predictor that uses 

recursive neural network.  

MFDp  [164] and MFDp2 [165] are meta predictors that combine different complementary disorder 

predictor’s output to have further curated prediction. MFDp [164] combines four predicted disorder 

probabilities from IUPred-L [148, 149], IUPred-S [148, 149], DISOPRED2 [128] and DISOclust [314], 

while it’s incremental version, MFDp2 [165], further incorporates sequence based predicted disorder 

content from DisCon [141].  

IUPred-L [148, 149] and IUPred-S [148, 149] predict disordered residues in long and short regions, 

respectively, using predicted interaction energies. The formulation used in [148, 149] includes sequential 

local environment by involving interactions with potential partners. Our formulation of PSEE further 
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improvises the pairwise energy based feature by strategically combining the proportional burial information 

of the potential partners that determines the structural local environment.  

  The result highlights that DisPredict2 is well competitive with different neural network based 

methods, meta-predictors as well as predictors that uses predicted pairwise energy as feature. Moreover, 

the comparative performance analysis of DisPredict2 versus DisPredict is provided to focus the utility of 

PSEE as feature for disorder prediction. 

4.5.2.1 Comparison on DD73 Dataset 

Table 21 shows the performance comparison based on DD73 dataset. This dataset is collected from both 

DisProt [100] and PDB [61] which is independent from the training dataset, SL477. DisPredict2 was 

assigned rank 1 in terms of ACC, MCC and AUC as well as achieved highest Sc with final rank of 1. MFDp2 

gave the highest PPV only, however finally ranked 2 according to the overall performance. Moreover, 

DisPredict2 provided 0.41%, 6.35%, 3.48% and 1.36% improvement over DisPredict in terms of ACC, 

PPV, MCC and AUC under the ROC curve, respectively. These improvements focus the benefits of using 

PSEE as feature.   

Table 21. Disorder prediction performances of 8 disorder predictors based on DD73 dataset. 

Methods Targets ACC PPV MCC AUC 

(ROC) 

Ranks Cumulative 

Score (Sc) 

Final 

Rank 
ACC PPV MCC AUC 

DisPredict2 73 0.832 0.857 0.680 0.902 1 2 1 1 5 1 

DisPredict [10] 73 0.829 0.806 0.663 0.890 2 5 3 2 12 2 

SPINE-D [123] 73 0.822 0.766 0.639 0.890 4 8 5 2 19 4 

Espritz [313] 73 0.715 0.817 0.494 0.826 7 3 7 6 23 5 

MFDp [164] 73 0.828 0.796 0.658 0.883 3 6 4 5 18 3 

MFDp2 [165] 73 0.821 0.873 0.675 0.889 5 1 2 4 12 2 

IUPred-L [149] 73 0.742 0.812 0.532 0.806 6 4 6 7 23 5 

IUPred-S [149] 73 0.708 0.787 0.471 0.798 8 7 8 8 31 6 

Best performances are marked by bold. 

Fig 35 compares the ROC curves and precision-recall curves given by the predictors. DisPredict2, 

DisPredict and SPINE-D gave comparable ROC curves outperforming the others, while DisPredict2, 

DisPredict, MFDp and MFDp2 gave better precision for the recall range 0.3 to 0.8 than those of others. 
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(a) ROC Curves (b) Precision-Recall Curves 

Fig 35. ROC and precision-recall curves given by 8 disorder predictors for DD73 dataset. Comparison of 
disorder predictors in terms of (a) ROC curves and (b) precision-recall curves on DD73 dataset. The 
area under ROC curves are given in the plot (a). 

 

 

Table 22. Disorder prediction performances of 8 disorder predictors based on CASP8 dataset. 

Methods Targets ACC PPV MCC AUC 

(ROC) 

Ranks Cumulative 

Score (Sc) 

Final 

Rank 
ACC PPV MCC AUC 

DisPredict2 122 0.807 0.628 0.600 0.894 3 5 2 2 12 1 

DisPredict [10] 122 0.810 0.529 0.551 0.875 2 7 6 6 21 6 

SPINE-D [123] 122 0.849 0.504 0.576 0.910 1 8 5 1 15 4 

Espritz [313] 122 0.797 0.636 0.592 0.893 5 3 4 4 16 5 

MFDp [164] 122 0.806 0.634 0.601 0.894 4 4 3 2 13 2 

MFDp2 [165] 122 0.774 0.758 0.622 0.888 6 1 1 5 13 2 

IUPred-L [149] 122 0.722 0.700 0.531 0.810 8 2 8 8 26 7 

IUPred-S [149] 122 0.766 0.624 0.551 0.853 7 6 6 7 26 7 

Best performances are marked by bold. 

4.5.2.2 Comparison on CASP8 Dataset 

Table 22 shows the performance of the predictors based on CASP8 dataset. SPINE-D stood first in 

terms of ACC and AUC scores, however gave 33.5% and 7.4% lower PPV and MCC than those MFDp2 
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whose rank is 1 according to these two scores. DisPredict2 showed comparable performance in terms of all 

the metrics and attained the best cumulative score and finally ranked 1. Thus, the overall performance of 

DisPredict2 is promising. Furthermore, DisPredict2 provided 0.38% lower ACC than that of DisPredict 

while resulted 18.73%, 8.81% and 2.17% higher PPV, MCC and AUC than those of DisPredict.    

Fig 36 compares the ROC curves and precision-recall curves. SPINE-D, Espritz, DisPredict2 and 

MFDp2 gave competitive ROC curves, while the SPINE-D resulted the best precision-recall curve. 

  

(a) ROC Curves (b) Precision-Recall Curves 

Fig 36. ROC and precision-recall curves given by 8 disorder predictors for CASP8 dataset. Comparison of 
disorder predictors in terms of (a) ROC curve and (b) precision-recall curve on CASP8 dataset. The 
area under Roc curves are given in the plot (a). 

 

4.5.2.3 Comparison on CASP9 Dataset 

The comparative performances of the predictors on 111 protein chains of CASP9 dataset are reported 

in Table 23. CASP9 dataset is a highly imbalanced dataset with approximately 10% of the residues are 

characterized as disordered. MCC is regarded as the best measure in evaluating prediction performance on 

such imbalanced dataset as it does not favor over prediction of dominating class. DisPredict2 resulted the 

best MCC and precision (PPV) score on CASP9 dataset, while ranked 3rd according to ACC and AUC. On 

the other than, SPINE-D gave the best ACC and AUC, however provided 26.5% lower precision than that 

of DisPredict2. DisPredict2 obtained the 1st position in final ranking with cumulative score difference of 2 

and 4 from Espritz and SPINE-D respectively in 2nd and 3rd. Moreover, DisPredict2 with PSEE performed 

20%, 5.76% and 1.69% better than DisPredict in terms of PPV, MCC and AUC, respectively, with slightly 

lower (2.66%) accuracy. 
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Table 23. Disorder prediction performances of 8 disorder predictors based on CASP9 dataset. 

Methods Targets ACC PPV MCC AUC 

(ROC) 

Ranks Cumulative 

Score 

Final 

Rank 
ACC PPV MCC AUC 

DisPredict2 111 0.699 0.471 0.407 0.823 3 1 1 3 8 1 

DisPredict [10] 111 0.718 0.389 0.385 0.809 2 4 3 4 13 4 

SPINE-D [123] 111 0.745 0.346 0.385 0.840 1 7 3 1 12 3 

Espritz [313] 111 0.683 0.466 0.386 0.827 4 2 2 2 10 2 

MFDp [164] 111 0.651 0.361 0.299 0.756 5 6 5 5 21 5 

MFDp2 [165] 111 0.616 0.399 0.276 0.751 7 3 7 6 23 6 

IUPred-L [149] 111 0.561 0.259 0.147 0.572 8 8 8 8 32 8 

IUPred-S [149] 111 0.633 0.466 0.386 0.827 6 5 6 7 24 7 

Best performances are marked by bold. 

   

  

(a) ROC Curves (b) Precision-Recall Curves 

Fig 37. ROC and precision-recall curves given by 8 disorder predictors for CASP9 dataset. Comparison of 
disorder predictors in terms of (a) ROC curves and (b) precision-recall curves on CASP9 dataset. The 
area under ROC curves are given in the plot (a). 

 

Fig 37(a) shows the ROC curves given by DisPredict2, DisPredict, SPINE-D and Espritz were 

competitive at different points as a result of different thresholds, whereas SPINE-D resulted the most 
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consistent precision-recall curve. We observed a sharp drop of precision (PPV) in Fig 37(b) at a very low 

recall value for SPINE-D, DisPredict and DisPredict2. A precision-recall curve essentially plots the PPV 

and recall scores of a predictor at different threshold values. Therefore, these drops can be the result of 

having decreasing PPV values (truly positive results out of total positive test outcomes) at some threshold 

values. However, the PPV values had an increasing trend afterwards. 

4.5.2.4 Comparison on CASP10 Dataset 

Table 24 illustrates the performance comparison on CASP10 dataset. This dataset has only 6.2% of the 

residues annotated as disordered. DisPredict2 achieved reasonable ranks, however not the best, in terms of 

all the scores. On the contrary, SPINE-D gave highest ACC and AUC values with very low precision 

(ranked 7). Similarly, MFDp2 showed the best precision with low ACC (ranked 6) and Espritz gave best 

MCC with low ACC (ranked 5). The cumulative rank of Dispredict2, SPINE-D and Espritz were same, 

therefore all three of them were finally ranked 1. Moreover, the performance of DisPredict2 is 39.06%, 

15.73% and 3.58% higher in terms of PPV, MCC and AUC, respectively. Therefore, DisPredict2 turn out 

to be better disorder predictor than DisPredict [10] using PSEE as the only additional features.  

 

Table 24. Disorder prediction performances of 8 disorder predictors based on CASP10 dataset. 

Methods Targe

ts 

ACC PPV MCC AUC 

(ROC) 

Ranks Cumulative 

Score 

Final Rank 

ACC PPV MCC AUC 

DisPredict2 94 0.719 0.347 0.370 0.839 3 4 2 2 11 1 

DisPredict [10] 94 0.734 0.249 0.320 0.810 2 7 6 6 21 6 

SPINE-D [123] 94 0.774 0.269 0.366 0.840 1 6 3 1 11 1 

Espritz [313] 94 0.674 0.441 0.374 0.829 5 2 1 3 11 1 

MFDp [164] 94 0.677 0.359 0.336 0.818 4 3 4 4 15 4 

MFDp2 [165] 94 0.636 0.453 0.332 0.815 6 1 5 5 17 5 

IUPred-L [149] 94 0.569 0.238 0.160 0.604 8 8 8 8 32 8 

IUPred-S [149] 94 0.635 0.331 0.278 0.664 7 5 7 7 26 7 

Best performances are marked by bold. 
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Fig 38 shows that SPINE-D resulted better ROC and precision-recall curve consistently with the highest 

AUC and ACC values in Table 24, whereas the curves of DisPredict, DisPredict2 and Espritz were 

comparable. 

  

(a) ROC Curves (b) Precision-Recall Curves 

Fig 38. ROC and precision-recall curves given by 8 disorder predictors for CASP10 dataset. Comparison 
of disorder predictors in terms of (a) ROC curves and (b) precision-recall curves on CASP10 dataset. 
The area under ROC curves are given in the plot (a). 

 

4.5.3 Feature Correlation Plots with PSEE 

Here, we further discuss the capacity of PSEE to capture multiple structural properties of the residues 

with DisProt680 dataset. We performed a similar analysis in Chapter 2 with coil probability and exposure 

of ordered and disordered regions to focus the possible noise within the annotation of disorder available in 

current state-of-the-art databases, which are utilized to train a disorder predictor. In this chapter, we carried 

out the analysis with PSEE and other structural properties.   

Fig 39 shows the correlation between 𝑝𝐸𝑥𝑝 (or, 𝑝𝐵𝑢𝑟) and PSEE of disordered and ordered regions. 

The vertical dashed line is the separation (-0.698) of PSEE for ORs and IDRs, and the horizontal dash-

dotted line indicates separation for exposed or, buried residues. We assume that residues with relative 

exposure, computed by Equation 22, less than 25% are buried. We collected ASA for the residues of 

DisProt680 dataset by running REGAd3p [15]. Therefore, the left of the vertical line is the energetically 

favorable regions, and most of the ordered regions (blue circle) have PSEE in this region and most of the 

disordered regions (red diamond) have PSEE on the right side. Specifically, the first quadrant (top-right 

corner) of the plot is the major distribution area of the disordered regions with unfavorable (positive) energy 
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and higher exposure. On the other hand, the third quadrant (bottom-left corner) of the plot is the essential 

region for ordered regions with favorable (negative) energy and lower exposure.  

It is explicit in Fig 39 that the PSEE values of most of the disordered regions are in the first quadrant. 

Therefore, PSEE can capture the exposure-property of the residues and at the same time can categorize 

them as ordered or, disordered. However, the other quadrants also contain some disordered regions.  

 

Fig 39. Correlation between PSEE and relative exposure of ordered and disordered regions. PSEE and 
relative exposure of ordered regions are shown by blue circles and those of disordered regions are 
shown by red diamonds. The vertical dashed line separates the average PSEE of ordered and disordered 
regions and the horizontal dash-dotted line separates the ordered and disordered regions with more 
and less 25% exposure. 

 

Fig 40 shows the similar correlation analysis between the coil-like tendency and PSEE of disordered 

and ordered regions. We collected coil probability of the residues of DisProt680 dataset by running 

MetaSSPred [310] and assume that the residues with higher than 50% coil probability have flexible 

structure. Therefore, the first quadrant (top-right corner) of the plot is the essential area for disordered 

regions with unfavorable (positive) energy and high coil probability. On the other hand, the third quadrant 

(bottom-left corner) of the plot is the essential region for ordered regions with favorable (negative) energy 

and low coil probability.  

Fig 40 shows that most of the PSEE values for ordered regions fall in the third quadrant, where as those 

of disordered regions fall in the first quadrant. However, for both Fig 39 and Fig 40, the other quadrants 
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also contain some disordered regions. This can be caused by mis-annotation of disorder [10] from DisProt 

database or, the disorder to order transition of binding sites.  

 

Fig 40. Correlation between PSEE and coil probability of ordered and disordered regions. PSEE and coil 
probability of ordered regions are marked by blue circles and those of disordered regions are marked 
by red diamonds. The vertical black dashed line separates the average PSEE of ordered and disordered 
region and the horizontal dash-dotted line separates the ordered and disordered regions with more and 
less 50% coil probability.  

  

To further investigate, we searched for possible PDB models of each of the 694 sequences from DisProt 

disorder protein database of version 6.01. Each of the disorder protein sequences were crosschecked with 

approximately ~300,000 protein sequences from PDB (March, 2016) and we found that 155 IDPs or 

Proteins with IDRs of DisProt have structures in PDB. Specifically, 155 sequences of DisProt were mapped 

to 1226 sequences from PDB where some protein sequences have multiple structures in PDB for exactly 

same FASTA sequence. Therefore, our investigation validates the possibility of disorder-to-order transition 

of disordered proteins. This results also highlight the rationale behind the order-like characteristics of 

several IDRs reported in DisProt and the overlap found in feature correlation plot analysis.  

4.5.4 Amyloidogenic region (AR) prediction by DisPredict2 

To emphasize the biological significance of the outputs provided by DisPredict2, we attempted to 

evaluate it can detect the aggregation of amyloids.  The proteins with amyloidogenic regions (ARs) are 
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insoluble, however can improperly interact to fold and form amyloids.  ARs play important role in protein 

aggregation, and they are directly linked with critical human diseases such as neurological disorder.  

We  collected 7 sequence from AMYPdb [315] and computed disorder probabilities of the residues by 

DisPredict2. Fig 41 shows the location ARs, mean (𝑑𝑟𝑝𝑚𝑒𝑎𝑛) and standard deviation (𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣) of disorder 

probabilities of the residues of ARs, along with probability plot for the proteins.   

4.5.4.1 UniProtKB – P61769 (B2MG_HUMAN) 

P61769 is a human B2M (Beta-2-microglobulin) protein, a component of the class I major 

histocompatibility complex (MHC) and involved in the presentation of peptide antigens to the immune 

system. The AR is located within 

 residues 21 – 119. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 are 0.324 and 0.181, respectively. 

4.5.4.2 UniProtKB – P61626 (LYSC_HUMAN) 

P61626 is a human LYZ (Lysozyme C) protein, associated with the monocyte-macrophage system and 

enhance the activity of immune-agents. The AR is located within residues 19 – 148. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 

𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 are 0.352 and 0.205, respectively. 

4.5.4.3 UniProtKB – P0DJI8 (SAA1_HUMAN) 

P0DJI8 is a human SAA1 (Serum amyloid A – 1) protein. Extracellular accumulation of SAA1 protein 

causes secondary amyloidosis, which is associated with disruption of tissue structure and lung cancer like 

diseases. The AR is located within residues 19 – 94. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 are 

0.680 and 0.194, respectively. 

4.5.4.4 UniProtKB – P0DJI9 (SAA2_HUMAN) 

P0DJI9 is a human SAA2 (Serum amyloid A – 2) protein. Extracellular accumulation of SAA2 protein 

causes secondary amyloidosis, which is associated with disruption of tissue structure and compromise 

functions. The AR is located within residues 19 – 122. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 

are 0.773 and 0.196, respectively. 

4.5.4.5 UniProtKB – P02766 (TTHY_HUMAN) 

P02766 is a human TTR (Transthyretin) protein, binds with thyroid hormone and transports thyroxine from 

the bloodstream to the brain. Dissociation of tetramer and partial unfolding leads to the formation of 

aggregates and amyloid fibrils. The AR is located within residues 21 – 147. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 

given by DisPredict2 are 0.383 and 0.245, respectively. 
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(a) UniProtKB – P61769 
(B2MG_HUMAN)  
drpmean = 0.324 
drpstdev = 0.181 

 

(b) UniProtKB – P61626 
(LYSC_HUMAN)  
drpmean = 0.352  
drpstdev = 0.205 

 
(c) UniProtKB – P0DJI8 
(SAA1_HUMAN) drpmean = 

0.680 
drpstdev = 0.194 

 
(d) UniProtKB – P0DJI9 
(SAA2_HUMAN), drpmean 
= 0.773, drpstdev = 0.196 

 
(e) UniProtKB – P02766 

(TTHY_HUMAN) 
drpmean = 0.383 
drpstdev = 0.245 

 
(f) UniProtKB – P02743 

(SAMP_HUMAN) 
drpmean = 0.213,  
drpstdev = 0.238 

 

(g) UniProtKB – P01034 
(CYTC_HUMAN) 
drpmean = 0.419 
drpstdev = 0.266 

 
Fig 41. Disorder probability plots for proteins with amyloidogenic regions (ARs) given by DisPredict2. The 
yellow bar indicates the ARs and the red line shows the disorder probability of each residue indicated 
by circle marker. The description of protein, location of ARs are given on the label of each plot along 
with the mean and standard deviation of disorder probability for the AR. 
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4.5.4.6 UniProtKB – P02743 (SAMP_HUMAN) 

P02743 is a human APCS (Serum amyloid P-component) protein, found in basement membrane and 

associated with amyloid deposits. It can interact with DNA and histones and may scavenge nuclear material 

released from damaged circulating cells. The AR is located within residues 20 – 223. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 

𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 are 0.213 and 0.238, respectively. 

4.5.4.7 UniProtKB – P01034 (CYTC_HUMAN) 

P01034 is a human CST3 (Cystatin-C) protein, an inhibitor of cysteine proteinases and serves an 

important physiological role as a local regulator of this enzyme activity. Cystatin C amyloid deposition in 

the cerebral vessels results in cerebral amyloid angiopathy, cerebral hemorrhage and premature stroke. The 

AR is located within residues 23 – 146. The 𝑑𝑟𝑝𝑚𝑒𝑎𝑛 and 𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣 given by DisPredict2 are 0.419 and 

0.266, respectively. 

Fig 41 shows that the mean disorder probabilities (𝑑𝑟𝑝𝑚𝑒𝑎𝑛) for seven amyloidogenic regions range 

from 0.213 to 0.776, with an average of 0.45 (approximately in the middle of the probability range) and 

high standard deviation (𝑑𝑟𝑝𝑠𝑡𝑑𝑒𝑣) of 0.203. Therefore, DisPredict2 identified the flexibilities associated 

with the disorder (without amyloid formation) to order (with amyloid formation) transitions and the 

associated structural flexibilities of amyloidogenic regions.  

4.6 Discussion 

In this chapter, we describe the extraction of position specific estimated energy, named as PSEE, for each 

residues of a protein, based on sequence information alone. The quantification of PSEE includes the 

interaction effect of the target residue within a neighborhood in terms of pairwise contact energies between 

different amino acid types. We define the estimated neighborhood size in terms of number of residues on 

either side of the target residue with which it can form favorable contacts. Further, it utilizes the predicted 

relative exposure (or, burial) of a residue to approximate the local three-dimensional conformational 

position and stability of the residue. The source code to compute PSEE is written in C and the code is 

publicly available in open source format https://github.com/tamjidul/DisPredict2_PSEE. 

Our result shows that PSEE is very effective in characterizing ordered (structurally stable) and 

disordered (structurally unstable) residues as well as regions in protein sequences. A fine-grained analysis 

further highlights that the average PSEE of the residues of binding site in disordered regions is well 

separable from those of disordered or, ordered regions. Therefore, PSEE detects the existence of critical 

binding regions in disordered proteins that undergo disorder to order transition and perform crucial 

https://github.com/tamjidul/DisPredict2_PSEE
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biological functions [316]. Moreover, PSEE is effective in distinguishing the residues of two different 

datasets with three different types of secondary structures (helix, beta and coil). The residues with 

complementary physical properties, such as hydrophobic and hydrophilic, are promisingly identified by 

PSEE. Moreover, it strongly correlated with the respective hydrophobicity index of 20 different types of 

amino acid.  

This promising correlation among different structural properties and PSEE of protein residues 

motivated us to propose PSEE to be utilized as a feature for the development of predictive tools in the area 

of bioinformatics and computational biology. To validate our argument, we construct DisPredict2, a new 

disorder protein predictor, integrating PSEE in the feature set of an existing disorder protein predictor, 

DisPredict [10]. DisPredict2 is implemented in C and the code is publicly available in open source form 

at https://github.com/tamjidul/DisPredict2_PSEE. 

DisPredict2 showed improved performance over DisPredict [10] on 4 different datasets including 

CASP8, CASP9 and CASP10 datasets. Moreover, the disorder probability output given by DisPredict2 

resembles the flexible structural transformation of amyloidogenic regions of proteins. Therefore, we believe 

that the new position specific residual feature, PSEE, and the disorder predictor, DisPredict2, both will be 

effective in understanding several insights of protein structures and hence the respective functions.  

  

https://github.com/tamjidul/DisPredict2_PSEE
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Chapter 5 

PBRpredict: A Peptide-Binding Residue Predictor  

 A Framework using Stacked Model 

Protein-protein interactions (PPIs) play a key role in the biological processes as well as pathogenic 

processes in a living cell through physical interactions among multiple proteins within a complex. A major 

portion of the PPIs involve recognition of linear peptides by globular Peptide Recognition Domain (PRD) 

that induce binding with peptides and can form transient complexes. Human proteome contains millions of 

peptide motifs that are typically part of disordered regions and bind with appropriate partners through 

disorder-to-order transition. While in contact with the binding partners, transiently interacting peptide-

protein complexes are involved in a wide range of molecular activities. Therefore, it is crucial to identify 

the peptide motifs in proteome and link the motifs to the domains that recognize them. Identification of 

peptide-binding residues in proteins that promote transient interactions is a pre-requisite for identifying 

peptide motifs. Specifically, peptide-binding tendency of proteins with different PRDs can be utilized to 

scan a proteome to identify the peptides likely to bind a particular PRD.  Thus, recognition of peptide-

binding residues is crucial for assembling peptide-mediated interactomes. 

In this chapter, we computationally study the two-player complex process of induced-binding between 

peptides and protein with peptide-recognition domains [14]. With a view to this, we propose a new 

computational framework to predict peptide-binding residues (PBR) of receptor proteins in peptide-protein 

complex, called PBRpredict (Peptide-Binding Residues Predictor) [317]. PBRpredict classifies binding 

and nonbinding residues from protein sequence alone as well as generates a probability score. PBRpredict 

is developed by stacking different learning models. To develop the model, we explored six different 

machine-learning algorithms as base learners: support vector machine, gradient boosting, bagging, random 
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forest, extra tree and k-nearest neighbor classifier. The outputs of the base learners were aggregated using 

a meta-learner, which was logistic regression classifier. 

For this study, a set of protein complexes with a wide range of peptide-binding domains was collected 

from PDB and the sequences with domains were annotated with interaction information based on atomic 

distances from peptide residues in the structure. Using a comprehensive set of sequence-based features 

including chemical and evolutionary profile, secondary structure, surface area and local backbone profile, 

flexibility and an energy based profile, we guide our predictor to learn about peptide-binding residues. We 

carried-out a rigorous performance evaluation using statistical metrics and case studies. After careful 

analysis of the prediction performance, we tuned the classification thresholds of the base-level and the 

meta-level learners of the stacking approach to trade-off between the true positive rate and false positive 

rate.  Finally, we established three different PBRpredict models of a similar framework that apply different 

thresholds for segregating binding and non-binding residue under the name PBRpredict-Suite. The results 

manifest that PBRpredict-Suite models, provide well-balanced and biologically relevant outputs for 

proteins of different lengths and with a wide variety of PRDs.   

Further, we computed the score, with a novel approach, named PSBE (Position Specific Binding 

Energy), to approximate the binding energy contribution of the hot spot residues of peptide on the peptide-

protein interaction surface. To extract PSBE from sequence alone, we utilized a similar concept that we 

used to compute Position Specific Estimated Energy (PSEE) as described in Chapter 4. PSBE is found 

effective in recognizing the prevalent amino acids in the hot spots of the peptides. The outline of this chapter 

is as follows.  

• In section 5.1, we start by giving the background information about peptide-protein interactions, 

peptide-recognition domains and disorder-to-order transition of peptides. Moreover, we have defined 

the problem under consideration and reviewed the relevant literature in this section.  

• In Section 5.2, we describe the experimental materials, including the definition of peptide-binding 

residues and regions, data collection and mining process, input features used to train the predictor, and 

the criteria to evaluate and compare the predictor.  

• Section 5.3 describes the design and development of the predictor, PBRpredict-Suite models.  

• We described the performance evaluation report for window selection, feature selection, parameter 

selection and comparison of PBRpredict-Suite models with existing predictors in Section 5.4. 

• In Section 5.5, we describe the formulation of the position specific binding energy (PSBE) score and 

its effectiveness in recognizing the hot spots of peptide.   

• Finally, in Section 5.6 we draw conclusions with brief future directions.  



 

 

122 

 

5.1 Background and Motivation 

Interactions between proteins are essential for the vast majority of biological processes of a living cell 

through physical contacts among multiple proteins within a complex [318, 319]. Proteins carry signals and 

are the primary controller of the cell functionalities, including gene expression, cell growth, proliferation, 

morphology and intercellular communication. While proteins can independently function, a majority of the 

proteins interact with others for biological activity and correspondence [320]. These interactions can occur 

in different pace, such as long-time stable interactions in homo-oligomers and transient interactions 

between short linear peptides with globular protein receptors [321, 322].  

The short peptides usually originate in intrinsically disordered proteins or regions in proteins 

(IDPs/IDRs) [68, 129, 323] that remain unstructured in an unbound stage, however, undergo conformational 

changes upon transient interactions only at the presence of a suitable binding partner. At about 40% of the 

PPIs involve recognition of linear peptides (about 5 – 25 amino acid long) by a globular receptors that have 

a peptide recognition domain (PRD) and can induce binding [324] with peptides, and promote formation 

of transient complexes [320]. While in contact with the binding partners (synonymously called ‘receptors’ 

in this chapter), transiently interacting peptides are involved in a wide range of molecular activities, 

including protein scaffolding, modification, transport, folding, signaling, and cell cycling. Moreover, 22% 

of human disease mutations occur in disordered segments of proteins with such motifs. Therefore, fast 

identification of regions in globular receptor proteins that promote transient interactions would be crucial 

for assembling potential interactomes and mapping signaling network. 

At the present time, a growing number (around 200 [325]) of modular protein-interaction domains that 

mediate peptide-protein interactions have been identified, i.e.,  SH2, 14-3-3, Chromo and Bromo, SH3, 

Tudor, MBT, VHS, CW, PDZ (PDZ 1 and PDZ 2), PTB, WW, Glycine-Tyrosine-Phenylalanine (GYF) and 

MHC domains [326]. PRDs such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-

translational modifications (PTMs) of amino acids (such as phosphorylation, acetylation, methylation etc.) 

[327] and translate these into discrete cellular signals. Other domains such as SH3 and PDZ recognize linear 

peptide epitopes and serve to organize protein complexes based on localization and regions of elevated 

concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent 

on the selectivity of a given peptide-recognition domain for its cognate peptide ligand. 

5.1.1 Role of In Silico Techniques in Peptide-Binding Residue Prediction 

Peptide is an interesting class of molecule that shows strong activity, low toxicity and few drug-drug 

interactions, therefore it is worth investigating their interactions with globular partners to develop new 

therapeutic agents [328, 329]. Compared to the size of known interactomes [330], a relatively lower 
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proportion (approximately 20%) of the human protein interactions have  been explored using experimental 

techniques, like peptide or protein arrays, phase display, mass spectrometry, HTP technique etc. [325].  

High-throughput (HT) experimental techniques such as yeast two-hybrid and tandem affinity 

purification have been developed and applied to discover protein-protein interactions (PPIs) in multiple 

organisms on a genome-wide scale [331]. However, these approaches have inherent limitations and can 

provide substantial false positive rate [331, 332] with many interactions likely undiscovered due to high 

rates of false negatives [331, 333, 334]. The development of reliable computational approaches to identify 

PPIs is therefore an important alternative to HT experimental techniques [335, 336]. Moreover, for only a 

few major PRDs such as PDZ and SH3 domains, HT experimental techniques [326, 337, 338] such as phage 

display have been used to derive binding preferences.   

However, a computational predictor of peptide-binding residues or regions of wide variety of PRDs 

will have useful implications, which can subsequently be used to scan a genome to identify proteins that 

are likely to bind a given PRD. Although this is challenging to build an accurate predictor of peptide-

binding residues from protein sequence alone, it is vital to cope with the sequencing speed and demand 

which motivated us towards the study carried out in this chapter. We predicted regions of interaction in 

partner proteins as well developed a score to identify the hot spots of peptide surface that mostly contribute 

in binding energy, which will be useful to fast-scan a peptide across those regions and identify candidate 

sites of interaction.  

5.1.2 Problem Definition 

The problem of studying peptide-protein interactions and their identification can be defined in the following 

two following ways: 

Coarse-grain Definition: Given one protein with peptide-recognition domain and a peptide, the 

problem is to identify whether they will interact or not, shown in Fig 42. 

 

Fig 42. Coarse-grained view of the underlying problem. For example, given a MHC molecule (green) 
and a peptide (tint), it is to predict whether they will interact and form a complex or not. 
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Fine-grain Definition: Given one protein with peptide-recognition domain and a peptide, the problem 

is to identify the peptide-binding residues or regions in the protein that recognize the peptide. Moreover, 

characterize the hot spots on peptide surface that primarily contribute in the energy needed for binding.  A 

sample fine-grain problem definition is shown in Fig 43. In our study, we aim to develop computational 

tools to solve problems under this fine-grain definition.  

 

Fig 43. Fine-grained view of the underlying problem. For example, given a MHC molecule (green) and 
a peptide (tint), it is to predict the peptide-binding residues (yellow) in MHC molecule and residues 
on peptide surface (red) those contribute higher binding energy.   

 

5.1.3 Literature Review 

An adequate literature exists that investigates the underlying strategies behind peptide-protein binding [321, 

339], exploring how peptides can recover the entropic loss and achieve enthalpy gain involved in the 

process of binding. A rigorous study in [321] with known peptide-protein complexes shows that peptides 

usually bind to the largest pocket on the protein surface, and result in more packed interface than that of 

protein-protein interface. Moreover, the presence of ‘hot spot’ residues that make the major contribution of 

the energy in binding, has been conceptualized at the interface of both protein-protein [340-342] and 

peptide-protein complexes [321].  

Discoveries of new peptide-protein interactions are challenging [326, 343]. Attempts have been made 

to predict PDZ domain-peptide interactions from protein sequence [344], analyze and predict interactions 

of SH3 domain [345, 346], predict SH2 domain interactions in a genome-wide scale using structure 
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information [347]. Some other computational predictions of peptide-mediated interactions include 

structure-based modeling of binding specificity [348] to identify farnesylation and identification of 

interactions with Bcl-2 proteins [349]. The database of  the eukaryotic linear motif (ELM) [350] provides 

consensus sequence patterns for peptide motifs that bind to many different PRDs. The study of available 

structures of protein-peptide complexes in the PDB have also identified potential peptide-protein 

interactions [351]. However, the experimental or computational efforts are focused on limited range of 

PRDs, therefore the methods that enable predictions for a larger number of PRD families, are needed. 

Recently, a computational framework is developed to predict peptide-protein interactions using a Bayesian 

approach that integrates knowledge from the ELM database, domain-peptide structures from the PDB, and 

non-structural information [352].  

While previously discussed studies are focus on identifying interactions, attempts have been made to 

identify the potential peptide-binding sites as well. Computational tools to predict protein-peptide binding 

regions from structures are Pepsite [353], Peptimap [354], PepBind [355].  However, accurate prediction 

of binding regions from sequence only has further implications as it can be applied in proteome-scale to 

assemble potential interactome. Despite much progress, the sequence-based computational efforts have 

been taken to predict a few PRDs, i.e., MHC molecules [356, 357]. To the best of our knowledge, there 

exists only one scholarly article in the literature called SPRINT [358] that predicts peptide-binding sites on 

few PRDs, i.e., MHC, PDZ, SH2, and SH3 from sequence, but often overpredicts. 

5.1.4 Our Contributions 

In this study, we develop a new computational tool to predict peptide-binding residues, named PBRpredict, 

of proteins with peptide-recognition domain from protein sequence alone. We collected a new dataset of 

peptide-protein complexes with a large variety of domains, like MHC I and II, PDZ, SH2, SH3, WW, 14-

3-3, Chromo and Bromo, Polo-Box, PTB, enzyme inhibitor, from Protein Data Bank (PDB) [61]. A set of 

partner (receptor) proteins was generated from the complexes, and the protein chains were annotated with 

interaction information based on the atomic distances from peptide residues in the structure.  

Using a comprehensive set of sequence-based features including residual profile, chemical and 

evolutionary profile, secondary structure and local backbone profile, surface area and an energy based 

profile, we guided our predictor to learn about the peptide-binding regions. This work investigates ‘Model 

Stacking’ [359], an effective machine-learning technique, in this challenging application of proteomics that 

requires the ability to capture the atomic interaction level feature of protein molecule form its sequence 

alone. Furthermore, we develop two complementary versions of the initial model by tuning the 

classification thresholds, keeping the other parameters and overall framework the same, to improve the 
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model’s capacity to recognize potential binding sites. The final three models are called PBRpredict-strict, 

PBRpredict-moderate and PBRpredict-flexible, which are combined in the PBRpredict-Suite. 

The competitive performances of PBRpredict-Suite models support the strength of our predictor 

framework. When compared with the current state-of-the-art method, the proposed models showed a 

reasonable, well-balanced and biologically relevant performance. We analyzed the competence of the strict, 

moderate and flexible PBRpredict models on different case-studies, i.e., structure-specific sequence with 

known and unknown domains from PDB, and full-length sequence with unknown domain from UniProt.  

The outputs validate the usefulness of the 3 models in the PBRpredict-Suite in different cases. Thus, 

PBRpredict will have further implication in solving challenging problems of computational biology, like 

binding affinity prediction, hot spot regions and residue prediction, and peptide binding site prediction. 

Furthermore, we extracted an energy score, position specific binding energy (PSBE) from sequence 

only to characterize the amino acids that are prevalent in the hot spots of peptide surface. The hot spot 

residues are known to have major contribution in the binding energy. The PSBE was found effective in 

identifying the amino acid composition that are likely to be hot spots.  

5.2 Experimental Materials 

In this section, we describe the definition of peptide-binding residues and regions, data collection process, 

peptide-binding domains in the dataset, aggregation of input features, and the criteria to evaluate and 

compare the peptide-binding residue prediction tasks. 

5.2.1 Datasets 

In this study, our focus is to capture the residue-patterns of different peptide-recognition domains (PRDs) 

from protein sequence alone. Therefore, we intended to collect a set of globular protein receptors that were 

experimentally found to bind with short peptide chains (5 to 25 residues long) in a complex. The residues 

of these receptor proteins (or, partner proteins), which were involved in peptide-binding, were then 

annotated as binding (‘b’) or non-binding (‘n’). For our experiments, we explored PDB [61], accessed on 

September 2016, to assemble a set of peptide-protein complex structures using the following criteria:  

(i) Experimental method, x-ray crystallography;  

(ii) Molecule type, protein (no DNA, RNA or hybrid);  

(iii) Number of chains (both asymmetric unit and biological assembly), greater than or equal to 2;  
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(iv) Structures that contain at least one 5 to 25-residue long chain;  

Our initial search with above criteria resulted in 6,043 protein complexes which contain total 25,557 

chains. We filtered the set to remove complexes that have one or more subunit chains with unknown amino 

acid residues, ‘X’ or ‘Z’, because the necessary chemical features [174] are not available for these residues. 

Moreover, a multimeric protein (homomeric and heteromeric) can contain multiple entries of identical 

chains. In such cases, we kept only one unique copy of a chain that maximizes the number of peptide-

binding residues. In the feature generation steps, we used SPINE-X [175] to generate predicted values of 

the two backbone angles, phi and psi. We removed those chains for which SPINE-X failed to produce the 

required features. In the final step, we clustered the remaining sequences at sequence identity below 40%. 

From each cluster, a representative sequence with maximum peptide-binding residues was chosen in the 

non-redundant dataset of 644 protein receptors, named as rcp644, available within the software package. 

The rcp644 dataset contains 98 chains (around 15%) of length ≤ 25 whereas 546 chains are longer with 

> 25 residues. Out of 116,489 number of residues, around 17% were binding residues (positive class) while 

the rest of the 83% served as the negative samples. 

5.2.1.1 Peptide-Recognition Domains in the Dataset 

A wide range of peptide-recognition domains (PRDs) were included in our collection of receptor 

sequences with peptide-binding residues or regions that mediate peptide-protein interactions [326], listed 

in the following:  

(i) Major Histocompatibility Complex (MHC I and II) domain that recognizes peptide fragments 

derived from pathogen of length 8 – 12 residue [360]. 

(ii) PDZ domain, generally binds to short peptide motifs at C-terminal of other proteins [361]. 

(iii) Src Homology 2 (SH2) domain and Phospho-Tyrosine Binding (PTB) domains that recognize 

phosphorylation of tyrosine (pTyr or pY), such as SH2 binds to a core motif pY-X-X-P/L [362, 363]. 

Moreover, PTB domain can bind to motif, i.e., N-P-X-Y.  

(iv) Src Homology 3 (SH3) domain, binds to Pro-rich peptides [364], peptide motifs such as R-X-X-K 

[365] and also to the surface of ubiquitin [366].  

(v) 14-3-3, WW, Polo-box, BRCA1 C Terminus (BRCT), ForkHead-Associated (FHA) domain that 

recognize different type phosphorylation or post-translational modifications (PTMs) of threonine (pThr or 

pT) and serine (pSer or pS) [367-370]. Further, WW domain binds to pro-rich motifs.  
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(vii) Chromatin organization modifier (Chromo), Bromodomain and Tudor domain that bind to 

methylated or acetylated peptides, such as Tudor domain can recognize PTMs on lysine (meLys or meK) 

and arginine (meArg or meR) by methylation. Chromo domain can also recognize meLys and Bromo 

domain recognize PTMs on lysine by acetylation (acLys or acK).  

(viii) Enzyme/inhibitor complexes with hydrolase, kinase, isomerase, phosphatase, protease. 

(ix) Complexes with antibody-antigen, amyloid fibrils, membrane or transmembrane proteins.  

(ix) Nuclear receptor complexes and others.  

Therefore, our dataset rcp644 captures the sequence-patterns of a wide range of peptide-binding 

domains and their interactions with short peptides. The set contains 98 chains (around 15%) of length less 

than or equal to 25 whereas 546 chains are longer having greater than 25 residues. Out of 116,489 residues, 

around 17% were peptide-binding residues (positive class) while the rest of the 83% residues served as the 

negative samples in training. 

For each class of peptide-recognition domains (PRDs), 25% sequences were accumulated in the 

independent test dataset and the rest were gather to form the training set. Further, the training set were 

divided into two folds, in which we carefully included 50% sequences of each types of PRDs. This 

distribution allows training and evaluating the predictor with information of all the domains. Table 25 lists 

up the counts of different PRDs in the full dataset (644 chains), full training set (475 chains) and two 

different folds of the training set (243 and 232 chains), and the test set (169 chains). 

5.2.1.2 Training Set 

The training set is composed of 475 receptor protein chains, named rcp_tr475. It contains 400 relatively 

longer chains (> 25 residues) and 75 shorter chains ( 25 residues).  The 475 chains consist of 89,512 

residues of which 16.5% (14,748) were peptide binding and rests (74,764) were non-binding residues. The 

count of different PRDs included in the training set along with its two different folds are listed in Table 25.  

5.2.1.3 Test Set 

The independent test set contains 169 chains with different PRDs (Table 25), called as rcp_ts169. The test 

set has 146 long chains and 23 short chains. Moreover, it has total of 26,977 residues of which 5,162 

residues are peptide-binding residues and the rest of the 21,815 are non-binding residues. 
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Table 25. Name and count of the peptide-recognition domains included in the datasets.  

 Peptide Recognition 

Domains (PRDs) 

Full  

Set 

Full Training Set 

(Fold 1 + Fold 2) 

Test 

Set 

MHC I/II 81 60 (30 + 30) 21 

PDZ 37 27 (14 + 13) 10 

SH2 49 36 (18 +18) 13 

SH3 54 40 (20 + 20) 14 

14-3-3 35 26 (13 + 13) 9 

WW 7 5 (3 + 2) 2 

Polo-Box 10 7 (4 + 3) 3 

Tudor 15 11 (6 + 5) 4 

PTB 10 7 (4 + 3) 3 

Chromo 12 9 (5 + 4) 3 

Bromo 27 20 (10 + 10) 7 

BRCT 13 9 (5 + 4) 4 

FHA 7 5 (3 + 2) 2 

Enzyme/Inhibitor  

(hydrolase/kinase/isomerase 

/phosphatase/protease) 

109 81 (41 + 40) 28 

Antibody/antigen/FAB 25 18 (9 + 9) 7 

Membrane/Transmembrane 27 20 (10 + 10) 7 

Amyloid 36 27 (14 + 13) 9 

Nuclear 20 15 (8 + 7) 5 

others 70 52 (26 + 26) 18 

 Total 644 475 (243 + 232) 169 

 

5.2.2 Annotation of Peptide-Binding Residues and Regions 

A putative interaction between two amino acids is determined based on their atomic distances. Specifically, 

we annotated an amino acid as peptide-binding residue if at least one of its heavy atoms stays within 6Å 

distance from a heavy atom of a peptide residue [129]. Therefore, we did not consider hydrogen atom while 

determining interaction between amino acids. Further, we did not consider any interactions with two 
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adjacent amino acids on either side of a residue to skip the covalent bonded interactions, and store only the 

transient interactions which is relevant in coupled-binding within peptide-protein complex [322].  

After annotating the residues as either peptide-binding (‘b’) or non-binding (‘n’), we applied a 

smoothing strategy to have regions of binding residues. We smoothed-out maximum 3-residue long non-

interacting regions that fall within two consecutive interacting regions or residues. Therefore, we say that 

the resulting regions are the ‘potential’ areas that contain the residues of interaction. We call such labeling 

as synthetic annotation, which was assigned on top of the actual annotation. Fig 44 shows a sample 

synthetic annotation of a chain with PDZ domain (PDB ID: 4JOE [371]). 

 
(a) Actual and Synthetic Annotations on the Sequence 

 

(b) Actual and Synthetic Annotations on the Structure 

Fig 44. Actual and synthetic annotation of a PDZ domain (green) bound to peptide (pink) (PDB ID 4JOE 
[371]). (a) The actual (2nd line from top) and synthetic annotations (3rd line from top) of peptide-
binding residues are shown on the protein’s primary sequence (1st line). Two potential regions of 
interactions, residues: 28 – 36 and residues: 66 – 74) are highlighted in yellow and orange 
respectively. We used two different colors to highlight two different structural regions (helix and beta). 
The last line shows the annotated sequence with labels (‘b’ for peptide-binding and ‘n’ for non-
binding). (b) The annotations are mapped onto the structure of the same protein (green) bound to 
a peptide (pink). The two highlighted regions in (a) are marked on the structure in yellow (beta 
region) and orange (helix region), respectively. Before smoothing, the binding residues were disjoint 
(left), whereas in synthetic annotation (right), the binding residues are contiguous.  We viewed the 
3D structures using PyMOL[50] and the secondary structure was assigned using DSSP [51].   
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The rationale behind generating such synthetic annotation is: we have disjoint residues of interaction 

with non-interacting residues in between due to the geometrical orientation of the side chain atoms. 

Notwithstanding, it is hard to capture these 3D structural details from 1D primary sequence alone and 

subsequently guide a machine learning algorithm. To reduce the complexity, we localized the binding 

residues in a region so that the prediction algorithm can be better informed about their characteristics from 

the sequential environment. In this way, we have less chance of missing a binding residue as the contiguous 

residues can reinforce the residue-level as well as region-level prediction. 

5.2.3 Feature based Sequence Representation 

We encoded the residues of the primary protein sequence using 60 features (f1 – f60) of 6 categories per 

residue to characterize the peptide-binding properties as described below. 

Residue profile (f1, f60): The residue profile was created with two information: the amino acid (AA) 

type and the terminal (t) region indicator. Twenty different types of amino acids were encoded using 20 

different numbers. Thus, AA contributes 1 feature per residue, which is useful to capture the amino acid 

compositions of peptide-recognition domains that primarily contribute to peptide-protein binding. Further, 

to distinguish the terminal residues that show higher tendency of binding than the central ones, we encoded 

five residues of N-terminal as (−1.0, −0.8, −0.6, −0.4, −0.2) and C-terminal as (+1.0, +0.8, +0.6, +0.4, 

+0.2), whereas rest of the residues were labeled as 0.0 

Chemical profile (f2f8): Seven physicochemical properties (PP) of amino acids, namely steric 

parameter, normalized van der Waals volume, hydrophobicity, isoelectric point, helix and sheet 

probabilities were collected [174], and fed as features to capture the chemical description of the protein 

residues that can transiently interact with peptides [372].  

Conservation profile (f9f28, f37f57): Peptide-recognition domains can be conserved [373] and also 

undergo divergence for functional adaptation [326]. Sequence alignment based conservation score was 

extracted from Position Specific Scoring Matrix (PSSM). We executed three iterations of PSI-BLAST [173] 

against NCBI’s non-redundant database to generate PSSM of size sequence length × 20, which gave us 20 

features per residue. These 1D scores given by PSSM were further extended to higher dimension by 

computing monogram (MG, 1 feature) and bigram (BG, 20 features) which are found to be effective in 

protein fold recognition [176, 374]. We used PSSMs, MG and BGs as conservation profile to predict 

peptide-binding residues. 
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Structural profile (f29f34): We used six predicted structural properties; 3 secondary structure (SS) 

probabilities, specifically helix (H), beta (B) and coil (C), 2 backbone angles, phi () and psi (), and 1 

solvent Accessible Surface Area (ASA) to construct the structural profile. The SS profile was predicted 

using a meta predictor, MetaSSpred [196] that gives balanced predictions of all three classes. The ASA and 

backbone angles were respectively predicted using tools, REGAd3p [15] and SPINE-X [175]. 

Flexibility profile (f35f36, f58): We created a flexibility profile with 2 backbone angle fluctuations, 

such as dphi () and dpsi () and 1 disorder probability (drp). The backbone angle fluctuations were 

predicted using DAVAR [179] and the probability of a residue being disordered was predicted using 

DisPredict [10]. These features are useful to capture the pattern of conformational changes that may result 

from coupled-binding between a short peptide and a globular receptor [321]. 

Energy value (f59): The transient bonds between peptide and receptor involve formation and dissolution 

of atomic interactions as well as structural changes that require change in free energy [321]. To capture the 

state of free energy contribution of the residues in peptide-protein interaction, we computed per-residue 

Position Specific Estimated Energy (PSEE) [11] from sequence. PSEE is a recently introduced concept in 

the literature, discussed in Chapter 4, that estimates free energy contribution of the residues from sequence 

by modeling pairwise contact energy and predicted solvent accessibility. Here, the pairwise interaction 

energy captures the sequential environment around the residue whereas the solvent accessibility captures 

the residue’s state in the respective 3D structure.     

We further computed the relative importance of these 60 features in predicting the peptide-binding residue 

by computing the Gini importance with extra tree classifier [375]. The output of this experiment suggested 

that all these features are useful (see Section 5.4.1). Thus, we used all 60 residue-wise features. Finally, we 

applied a sliding window of size 25 centering the target residue to include the properties of 12 residues on 

either side of the target, describing the local environment. Thus, we fed 60 × 25 = 1,500 features per residue 

to train the predictor model. The window size was selected through a separate set of experiments and the 

results are reported in Section 5.4.2. 

5.2.4 Evaluation Criteria 

The binary classification output is evaluated and compared using the measures listed in Table 26. Here, 

peptide-binding residues belong to the positive class and non-binding residues belong to the negative class. 

Recall is the measure to identify a predictor’s completeness in classifying the positive class (peptide-

binding residues), precision measures the predictor’s exactness. Therefore, the harmonic mean of recall and 

precision called F1 score measure a classifier’s overall correctness. The miss rate and fall-out rate measure 
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two complementary types of incorrect predictions, respectively the misclassification of binding residue as 

non-binding and non-binding residue as binding. MCC is considered as another balanced measure to 

evaluate binary classification.  

Table 26. Name and definition of performance measures to evaluate peptide-binding residue prediction. 

Name of metric Definition 

True positive (TP) Number of correctly predicted peptide-binding residues 

True negative (TN) Number of correctly predicted non-binding residues 

False positive (FP) Number of incorrectly predicted peptide-binding residues 

False negative (FN) Number of incorrectly predicted non-binding residues 

Recall/Sensitivity 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Fall-out (or over prediction) Rate 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Miss Rate 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Balanced accuracy (Mean of Specificity and 

Recall) 

1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Precision  𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1 Score (Harmonic mean of precision and 

Recall) 

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Mathews correlation coefficient (MCC) (𝑇𝑃×𝑇𝑁) − (𝐹𝑃×𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Moreover, Area under ROC curve (AUC or AUROC) is considered as the measure for probability 

assignment. We further plotted the ROC curves and Precision-Recall curves. The AUC values and the 

curves are generated using pROC [376] and ROCR packages [312] in R.   
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5.3 PBRpredict Framework 

We applied stacked generalization [377] to develop the peptide-binding residue predictor (PBRpredict). 

Stacking is an ensemble technique to minimize the generalization error and has been successfully applied 

in several machine learning tasks [378-380]. To the best of our knowledge, this study has first explored 

stacking for identifying the pattern of protein sequence that induces binding with peptides.  

Stacking framework involves two-tier learning. The classifiers of the first tier and the second tier are 

called base-learner and meta-learner respectively. Multiple base-learners are employed in the first tier. In 

the second tier, the outputs of the base-level learners are combined using another meta-level learner. Here, 

the underlying idea is that different base-learners can incorrectly learn different regions of the feature space, 

effectively due to the no-free-lunch theorem [381]. A meta-learner is then applied, usually non-linearly, to 

accumulate the outcomes of the first-tier learners that are better-trained for differ feature-space regions. 

Therefore, it is desirable to choose classifiers that can generate uncorrelated prediction outputs for the base-

level training.  

The second tier, that combines the outputs from the first tier, makes the stacking technique different 

from other ensemble methods like, bagging and boosting as those techniques apply a particular cost function 

such as, weighted average or majority vote to combine the existing outputs from the first tier. On the other 

hand, stacking employs another classifier to learn from the outputs from the first tier and generates the final 

prediction.  

5.3.1 Learning Algorithms 

We explored six different machine leaning algorithms as base-learners and used logistic regression as meta-

learner to combine probability distributions generated at the base-level. The included algorithms are briefly 

discussed below.  

Support Vector Machine (SVM): We used radial basis function (RBF) kernel based support vector 

machine (SVM) [111] as one of the base-learners. SVM is an effective algorithm for binary prediction in 

high-dimensional space that minimizes both the empirical classification error in the training phase and 

generalized error in the test phase. SVM classifies by maximizing the separating hyperplane between two 

classes and penalizes the feature space points on the wrong side of the decision boundary using a cost 

parameter, 𝑐.  

The parameter of RBF kernel,  and the cost parameter, 𝑐 were optimized to achieve best accuracy 

using time-intensive grid search along with 5-fold cross validation step. We conducted this parameter 
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optimization using a subset of 60% samples from the training set, specifically 386 chains out of 644 chains 

of the dataset. The found best values of the parameters are, 𝛾 = 2−7 and 𝑐 = 23, and those are used as 

representative parameter values for training with the full dataset. The optimal setup of the penalty parameter 

(𝑐) and RBF parameter (𝛾) make the SVM model effective for classification problem with imbalanced 

dataset and high-dimensional feature space, such as, problem that is attempted under this work. The 

generation of  SVM model and parameter optimization is done using libSVM [184] package.   

Random Decision Forest: The random decision forest (RDF) [382, 383] is an ensemble algorithm 

which is used to generate a base-learner in this study. RDF operates by constructing a multitude of decision 

trees on various sub-samples of the dataset and outputting the mean prediction of the decision trees. 

Therefore, the trees of RDF work on the subspaces of the full data. We used bootstrap samples to construct 

1,000 tress in the forest to develop the RDF learner using scikit-learn [384].   

Extra Tree Classifier: The extremely randomized tree or extra-tree classifier (ET) [385] is another 

class of ensemble methods and explored as a base-learner in this work. ET works by constructing 

randomized decision trees from the original learning sample. The best split is determined randomly from 

the range of values at each split. We used scikit-learn [384] to construct the ET model with 1,000 tress and 

the quality of a split was measured by Gini impurity index.   

Gradient Boosting Classifier:  Another machine learning technique that we used to develop a base-

learner is the gradient boosting [386]. The gradient boosting classifier (GBC) works by combining weak 

learners into a single learner in an iterative fashion. Using scikit-learn [384], we applied 1,000 boosting 

stages where a regression tree was fit on the negative gradient of the deviance loos function. The learning 

rate was set to 0.1 and the maximum depth of each regression tree was set to 3. GBC gives robust 

performance to over-fitting with higher number of boosting stages, and we observed that 1,000 stages were 

giving competitive performance for this application.  

K Nearest Neighbors:  The k nearest neighbors (KNN) classifier [387] operates by learning from 

the k closest training samples in the feature space around a target point. The classification decision is 

produced based on the majority votes coming from the neighbors. In this work, the value of k was set to 9 

and all the neighbors were weighted uniformly for generating the KNN model using scikit-learn [384].  

Bagging Classifier:  The bootstrap aggregation or bagging (BAG) [388] is another ensemble method 

that is particularly useful for reducing variance in the prediction. We developed bagging classifier model 

using scikit-learn [384] that essentially fits multiple subsets of data with repetitions on 1,000 decision trees, 

and combines output by weighted averaging.    
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Logistic Regression:  To develop the meta-learner that combines the output probabilities generated 

by the base-learners, we used logistic regression (LogReg) [389] with L2 regularization. The LogReg 

classifier estimates the probability of interacting versus non-interacting residues based on the confidence 

or probability distributions produced by multiple independent base-learners.   

5.3.2 Training and Test of Base Learners 

The six potential classifiers (SVM, RDF, ET, GBC, KNN and BAG) to be used as base-learners were 

trained on the full rcp_tr475 dataset using M = 60 × 25 features. These models were then used to predict 

peptide-binding residues in 169 chains of the test set (rcp_ts169) and evaluated using statistical measures. 

Let us assume, 𝑁𝑡𝑟𝑎𝑖𝑛 is the total number of residues of 475 chains in the training set (rcp_tr475). Then the 

size of the feture matrix used for training was 𝑁𝑡𝑟𝑎𝑖𝑛 × 𝑀. Guided by the performance of these six 

algorithms (see Section 5.4.3), we finally employed SVM, GBC and KNN in the base-level of the stacking 

performed to develop the predictor-models under PBRpredict-Suite (Fig 46). These base-level models are 

denoted by 𝑀𝑂𝐷𝐸𝐿𝑆𝑉𝑀, 𝑀𝑂𝐷𝐸𝐿𝐺𝐵𝐶 and 𝑀𝑂𝐷𝐸𝐿𝐾𝑁𝑁, and the per-residue feature vector is 𝑿′ =

 (𝑓1
′, 𝑓2

′, … , 𝑓60×25
′ ).  

5.3.3 Training and Test of Meta Learner 

We created the feature matrix of  𝑁𝑡𝑟𝑎𝑖𝑛 residues to train the meta-learner through blending, shown in Fig 

45. For this, we divided the train set of 475 chains into two folds of 243 and 232 chains (Table 25) so that 

𝑁𝑡𝑟𝑎𝑖𝑛 = 𝑁𝑓𝑜𝑙𝑑1 + 𝑁𝑓𝑜𝑙𝑑2. Here, 𝑁𝑓𝑜𝑙𝑑1 and 𝑁𝑓𝑜𝑙𝑑2 are the total number of residues in 243 and 232 chains, 

respectively. Further, we found that the inclusion of 60 features (discussed in Section 5.2.3) of the target 

residue in addition to the three probabilities generated by the three base-learners makes the meta-learner 

more accurate (discussed in Section 5.4.4.2). Therefore, the number of features used to train the meta-

learner was 63.  

At first, 𝑁𝑓𝑜𝑙𝑑1 number of residues with 𝑀 number of features were used to develop the three base 

models, 𝑀𝑂𝐷𝐸𝐿𝑆𝑉𝑀
𝑓𝑜𝑙𝑑1

,  𝑀𝑂𝐷𝐸𝐿𝐺𝐵𝐶
𝑓𝑜𝑙𝑑1

 and  𝑀𝑂𝐷𝐸𝐿𝐾𝑁𝑁
𝑓𝑜𝑙𝑑1

, which were used to predict the 𝑁𝑓𝑜𝑙𝑑2 number of 

residues (see Fig 45). Conversely, 𝑁𝑓𝑜𝑙𝑑2 number of residues with 𝑀 number of features were used to 

develop another set of base models, 𝑀𝑂𝐷𝐸𝐿𝑆𝑉𝑀
𝑓𝑜𝑙𝑑2

,  𝑀𝑂𝐷𝐸𝐿𝐺𝐵𝐶
𝑓𝑜𝑙𝑑2

 and  𝑀𝑂𝐷𝐸𝐿𝐾𝑁𝑁
𝑓𝑜𝑙𝑑2

, and the predicted 

probability values for 𝑁𝑓𝑜𝑙𝑑1 number of residues were generated using these models. Thereafter, the 

independently predicted probabilities of 𝑁𝑓𝑜𝑙𝑑1 residues (in 243 chains) and 𝑁𝑓𝑜𝑙𝑑2 residues (in 232 chains) 

were combined to generate the feature matrix of size 𝑁𝑡𝑟𝑎𝑖𝑛× 63 to train the LogReg. 
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Base and Meta-learner Phase of Stacking 

 

Fig 45. Two-tier training and validation in stacking. Blending of SVM, GBC and KNN to generate 
independent prediction outputs on two different folds of the full training set. These outputs are then 
used as training features for the meta-level LogReg classifier. The objects and arrows associated with 
fold1 and fold2 are indicated by solid line and dashed line, respectively. 

 

To test the meta learner, we predicted 169 chains from the test set using 𝑀𝑂𝐷𝐸𝐿𝑆𝑉𝑀, 𝑀𝑂𝐷𝐸𝐿𝐺𝐵𝐶 and 

𝑀𝑂𝐷𝐸𝐿𝐾𝑁𝑁, which were trained using full training set but the test set. With the three output probabilities 

and the 60 features for the residues, we performed the meta-level predictions on these chains.  

5.3.4 PBRpredict-Suite 

PBRpredict-Suite is a collection of 3 peptide-binding residue predictor-models, namely PBRpredict-strict, 

PBRpredict-moderate and PBRpredict-flexible. The models are named according to their behavior in 

predicting the peptide-binding residues which is primarily determined by the classification thresholds used 

by the base-level and meta-level learners (Section 5.4.5). However, the learning algorithms and feature set 

combination used in both the levels of stacking were kept same for all three models in the suite.  
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Let us denote the set of thresholds used by SVM, GBC, KNN and LogReg to convert the probability outputs 

(or confidence score) into binary outputs as (𝑡𝑆𝑉𝑀 , 𝑡𝐺𝐵𝐶 , 𝑡𝐾𝑁𝑁, 𝑡𝐿𝑜𝑔𝑅𝑒𝑔). With that the definition of the 

three models of PBRpredict-Suite are given below. 

• PBRpredict-strict: The traditional value of 0.5 is used as thresholds by all the learners. Thus, 

(𝑡𝑆𝑉𝑀 , 𝑡𝐺𝐵𝐶 , 𝑡𝐾𝑁𝑁, 𝑡𝐿𝑜𝑔𝑅𝑒𝑔) = (0.5, 0.5, 0.5, 0.5). The three original probability values generated 

by SVM, GBC and KNN (𝑝𝑆𝑉𝑀 , 𝑝𝐺𝐵𝐶 , 𝑝𝐾𝑁𝑁) are used as features to train the LogReg. Later, the 

LogReg produces the final prediction output using 0.5 as threshold. 

• PBRpredict-moderate: Here, we apply a moderate set of values as thresholds, (𝑡𝑆𝑉𝑀 ,

𝑡𝐺𝐵𝐶 , 𝑡𝐾𝑁𝑁, 𝑡𝐿𝑜𝑔𝑅𝑒𝑔) = (0.3, 0.34, 0.35, 0.3). Thus, the probabilities of the predicted positive class 

(peptide-binding residue) can range from the modified threshold value to 1.0, e.g., [0.3, 1.0] for 

SVM. Consequently, the range of the predicted negative class (non-binding residue) is [0.0, 0.3) 

for SVM. The original probabilities given by the base-learners are then scaled to [0.5, 1.0] for the 

positive class and to [0.0, 0.5) for the negative class from the corresponding ranges for different 

base-learners defined by the new thresholds. These three modified probability values for SVM, 

GBC and KNN (𝑝𝑆𝑉𝑀
𝑚 , 𝑝𝐺𝐵𝐶

𝑚 , 𝑝𝐾𝑁𝑁
𝑚 ) are the used as features to train the LogReg, which produces 

the binary prediction output using 0.3 as threshold. Finally, the probabilities given by LogReg are 

scaled to the traditional range ([0.0 – 0.5) for the negative class and [0.5 – 1.0] for the positive 

class) from the one defined by the changed threshold ([0.0 – 0.3) for the negative class and [0.3 – 

1.0] for the positive class).    

• PBRpredict-flexible: In this model, the classification thresholds for all the learners are further 

loosened, (𝑡𝑆𝑉𝑀, 𝑡𝐺𝐵𝐶 , 𝑡𝐾𝑁𝑁, 𝑡𝐿𝑜𝑔𝑅𝑒𝑔) = (0.17, 0.21, 0.21, 0.2). Like the PBRpredict-moderate, 

the output probabilities of the base-learners are scaled to modified range defined by these new 

thresholds and then used as features for training the meta-learner. Here, the LogReg produces the 

binary prediction output using 0.2 as threshold and the probabilities given by LogReg are scaled to 

the traditional range ([0.0 – 0.5) for the negative class and [0.5 – 1.0] for the positive class) from 

the one defined the changed threshold ([0.0 – 0.2) for the negative class and [0.2 – 1.0] for the 

positive class). 

The framework of the PBRpredict-Suite is illustrated in Fig 46. The different threshold values for the 

learners of the moderate and flexible models of the suite were statistically chosen (see Section 5.4.5) to 

correct certain percentage of the false negative prediction outputs of the strict model. Altogether, these 3 

models performed promisingly in different cases (see Section 5.4).  
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The PBRpredict-Suite with all 3 models is implemented as a single software package and available 

online27. The software is developed using C, Python and shell scripting, and tested on Linux platform. It 

includes a ReadMe file that lists up the external dependencies and guidelines to run the tool. The software 

outputs per-residue binary annotation and real-value probability given by 3 different models. It also 

generates a summary file that reports the peptide-binding tendency per-chain averaged over the predicted 

peptide-binding residues and all residues. 

PBRpredict-Suite Framework 

 

Fig 46. The workflow of BIRpredict-Suite framework including BIRpredict-strict, BIRpredict-moderate and 
BIRpredict-flexible. The symbols and abbreviations used are explained in Section 5.3.  

 

                                                      
27 PBRpredict-Suite: http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredictSuite.zip 

http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredictSuite.zip
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5.3.5 Implementation and Availability 

We implemented the PBRpredict-Suite using languages, like C, Python and shell scripting. The software is 

developed and tested on Linux platform. The software is available online28 with a user manual.  

5.4 Results 

In this section, we report the results of each step of the development of the PBRpredict-Suite including the 

feature selection, window selection, base-learner selection, and tuning of thresholds to build strict, moderate 

and flexible models. The performance comparison among the PBRpredict-Suite models and a state-of-the-

art predictor is discussed as well. We further analyze the biological significance of the predictor-models on 

multiple case studies with known and unknown peptide-recognition domains.  

5.4.1 Feature Selection 

Here, we report the results of the feature importance estimation using extra tree (ET) classifier. ET estimates 

the feature importance using a method described by Brieman [375] by maintaining impurity reduction for 

each feature [385, 390]. The information gain is attributed to each feature to measure total decrease of 

impurity. Finally, the classifier provides an importance value for each feature, known as Gini importance, 

which was used to rank the features. 

 
Estimated Feature Importance 

Fig 47. Feature importance estimation by ET classifier in peptide-binding residue prediction. The importance 
values are shown respectively by green bar. The x-axis shows the features in their abbreviated form 
according to Section 5.2.3. Multiple features of same category are indexed by their count, i.e., 20 
PSSMs are indexed from 1 to 20. 

 

                                                      
28 PBRpredict-Suite: http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredictSuite.zip 

http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredictSuite.zip
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Fig 47 presents the ranked features according to the importance values. The importance values can be 

interpreted as the fraction of the test samples that were correctly classified by that feature. The training and 

testing were done using rcp_tr475 and rcp_ts169 datasets with 60 features (window size 1). Fig 47 shows 

that all the features have greater than zero importance, thus we used all 60 features to develop our predictor.   

Fig 47 shows that the structural profile (f29: beta, f30: coil, f31: helix, f32: ASA, f33: phi and f34: psi), the 

flexibility profile (f35: dphi, f36: dpsi and f58: drp) and the energy profile (f59: PSEE) are the three most 

dominant feature categories. To understand the contribution of the dominant features, we further developed 

separate ET models by subsequently removing the six structural properties, three flexibility-related 

properties and one energy-based property from the feature set. Therefore, these ET models were developed 

based on 54 (60 – structural profile), 51 (60 – structural profile – flexibility profile) and 50 (60 – structural 

profile – flexibility profile – energy profile) features. The performance of these models and the one 

developed using all 60 features are reported in Table 27. The training and test were done using rcp_tr475 

and rcp_ts169 datasets, and the window size was set to 1. 

The results show that all MCC, F1 score, precision and recall continues to decrease with the removal 

of the dominant feature categories. Specifically, we observed no less than 5% decrease in MCC as we 

removed the structural, flexibility and energy profile. In addition, the F1 score is decreased by 6.2%, 4.4% 

and 4.8% after removal of the 6 structural properties, 3 flexibility-related properties including disorder 

probability and backbone angle fluctuations, and 1 position specific estimated energy (PSEE), respectively. 

These results validate the importance of the top features used to develop our predictor.   

Table 27. Performance comparison of different feature sets (training set: rcp_tr475 and test set: rcp_ts169).  

Metric 60 Features 54 Features 51 Features 50 Features 

MCC 0.478 0.454 0.431 0.407 

F1 Score 0.505 0.474 0.453 0.431 

Precision 0.788 0.787 0.765 0.739 

Recall 0.372 0.339 0.322 0.304 

      Best values are marked in bold. 

      60 features: all 

       54 features: all – structural profile 

      51 features: all – structural profile – flexibility profile 

      50 features: all – structural profile – flexibility profile – energy profile 

5.4.2 Window Selection  

In this section, we search for a suitable value of the sliding window size (𝑊). The value of 𝑊 approximates 

the number of residues around a target residue that may form the necessary local environment for inducing 

the peptide-protein transient interaction. We developed 14 different models with extra-tree (ET) classifier 
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with 13 different window sizes (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29). We chose ET 

classifier for this set of runs as this technique is relatively cheaper from a computational point of view and 

found to result comparable performance (see Section 5.4.3). The models were trained using rcp_tr475 

dataset, and was independently tested using rcp_ts169 dataset.  

The result of this experiment is shown in Fig 48 in terms of recall, precision, F1 score, MCC and AUC 

score. We observed that all of the scores were improved with the increase of window size, which highlights 

that inclusion of neighborhood residue information better guides the predictor to learn about a target 

residue. We have also observed some irregular changes in the MCC and precision scores, which were not 

very significant. However, the score remained same for window size 19 and higher. Finally, we picked 25 

as an optimum value of window as it gave better MCC, F1 score, recall and AUC values than the adjacent 

competing  window sizes 23 and 27. Therefore, we took the features of 12 residues on either side of a target 

residue while determining whether the target residue is interacting or not. 

 

Fig 48. Performance comparison with different sliding window sizes for peptide-binding residue prediction 
using extra-tree classifier. The MCC, miss rate and recall scores are reported. The optimum size of 
window and the corresponding performance scores are marked by a black rectangle. 

5.4.3 Performance Analysis of the Base Learners 

In this section, we analyze the independent performances of the six base-learners, SVM, RDF, ET, 

GBC, KNN and BAG that we explored for binding-inducing region prediction in receptor proteins. The 

models were trained using rcp_tr475 dataset and were evaluated using independent test set, rcp_ts169. The 

predicted annotations were compared against the synthetic annotations of peptide-binding residues after 

smoothing that were used while training the models. 
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 Fig 49 compares the binary prediction outputs of the learners and highlights that the optimized RBF-

kernel SVM model gave outstanding performance in this application. The RBF-kernel SVM model gave 

the best recall (completeness of a classifier in predicting peptide-binding residues), miss-rate (rate of 

misclassifying a peptide-binding residue as non-binding), balanced accuracy (ACC) scores of values 0.547, 

0.452 and 0.735. The closest competitor of RBF-SVM in terms of recall and ACC was the ET classifier.  

The random forest (RDF) classifier performed the best for correctly predicting the non-binding residues 

in terms of specificity (0.982) and bagging (BAG) classifier gave the best precision score of 0.829 

(correctness of a classifier in predicting binding-inducing residues). However, RBG-SVM model 

outperformed the other predictors in terms of two critical measures used to assess the performance of a 

binary classifier, MCC (regarded as the most effective measure for binary classification on an imbalanced 

dataset) and F1 score (balances between correctness and completeness of a classifier) with score values of 

0.579 and 0.637, respectively. These scores are 11.35% and 15.62% better those provided by the closest 

competitor, ET classifier. On the other hand, GBC and KNN performed similarly, which were 

comparatively lower than the other predictors.   

 

Fig 49. Peptide-binding residue prediction performance of the base-learners. The score outputs for all 
the measures are grouped together for each of the six base-learners. The best value in each scoring 
metric is marked by a black box. The x-axis and y-axis represent different learners and their 
corresponding score values respectively.  

 

Fig 50 compares the ROC and precision-recall (PR) curves produced by the six methods that were 

tested as base-learners for this application. The ROC and PR curves can assess the performance of a 

classifier throughout its entire operating range by evaluating the probability distribution at different 
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thresholds. The curves illustrate that the ET and RDF classifiers gave the highest and the second-highest 

AUC values of 0.887 and 0.881, respectively. The RBF-SVM was a close competitor with AUC value of 

0.879. The KNN classifier provided the lowest AUC value of 0.789.  

Fig 50(a) shows the complementary competitiveness of SVM with RDF and ET classifier at different 

points. Specifically, the recall/sensitivity of the SVM was lower than those of RDF and ET classifier at the 

range of high specificity (0.5 – 0.9), whereas at the range low specificity (0.0 – 0.45), SVM was better than 

RDF and ET. Another tree based ensemble learner, bagging (BAG) showed a similar performance to those 

of RDF and ET. 

  

(a) ROC curves (b) Precision-recall Curves 

Fig 50. ROC and precision-recall curves given by 6 base-learners on peptide-binding residue prediction. 
Comparison of (a) ROC curves and (b) precision-recall curves on rcp_ts169 dataset by six different 
base-learners. The area under ROC curves (AUROC) are given in the plot (a). 

 

The PR curves in Fig 50(b) highlight that the precision of GBC, RDF and BAG were initially better 

than SVM and ET at the range low recall (0.0 – 0.4). However, SVM and ET gave better precision at higher 

recall (0.5 – 0.9). The gradient-boosting classifier (GBC) gave slightly different PR curve that involves 

sharp rise in precision value and it continued providing a reasonable precision for rest of the range of recall 

value. We also observed that the curves of KNN classifier were the least competitive. 

5.4.3.1 Correlation Analysis of the Base-Learners 

We further performed a pair-wise correlation analysis of the residue-wise probability outputs resulted 

on rcp_ts169 dataset by these six learners, reported in Table 28. To carry out this analysis, we computed 

the Persons correlation coefficient () between the two sets of probabilities given by two classifiers using 

following equation. 
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 =  
∑ 𝑋𝑌

√∑ 𝑋2 ∑ 𝑌2
 

According to the working principle of stacking, as discussed in Section 2.3, it is useful to apply stacking 

using the base-learners that can capture diversifier regions of the feature space and therefore provides 

uncorrelated outputs. In this way, the meta-learner (LogReg) can learn about the improper training of the 

base-learner.  

Table 28. Correlation of probability distribution generated by six base-learners on rcp_ts169 dataset.  

Pair-wise Correlations Among Six Classifies 

Classifiers ET RDF SVM GBC KNN BAG 

ET  0.891 0.794 0.652 0.600 0.890 

RDF   0.734 0.676 0.610 0.910 

SVM    0.627 0.556 0.760 

GBC     0.558 0.693 

KNN      0.603 

           Correlation value less than 0.7 are marked by bold. 

 

Table 28 shows that the output of a tree-based ET classifier is highly correlated with the other tree-

based ensemble learners, RDF and BAG, whereas is less correlated with the outputs of GBC, SVM and 

KNN classifiers. Therefore, a potential set of complementary learners is, ET, SVM, GBC and KNN. On the 

other hand, SVM is found less-correlated with GBC and KNN classifiers with correlation values of 0.627 

and 0.556, respectively. Note that, from the results reported in Fig 49, we found that SVM is the best 

representative classifier for this application and the GBC and KNN are less competitive. Therefore, another 

potential set is: SVM, GBC and KNN classifiers. We have further verified different sets of base learners in 

the section below. 

5.4.4 Parameter Selection for the Stacked Models 

Here, we evaluate different sets of base-learners and features, and select the best combination to be used to 

generalize the stacking in PBRpredict-Suite. 

5.4.4.1 Selection of the Base-Level Learners 

Here, we evaluated four different combination of base-learners for stacked models (sM): 

• sM1: ET, SVM, GBC, KNN, RDF and BAG (all six learners). 
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• sM2: ET, SVM, GBC and KNN. The RDF and BAG, which were highly correlated with ET (Table 

28) are discarded. 

• sM3: ET, SVM and GBC. The least performing KNN classifier while tested as a sole model is not 

considered in this set. 

• sM4: SVM, GBC and KNN. Here, we combined the best performing base-learner, SVM with two 

relatively less competitive classifiers, GBC and KNN. 

For all cases, the meta-level learner was the LogReg which was trained using rcp_tr475 dataset. Here, 

two different folds of the dataset were independently predicted by the base-learner models to generate 

probabilities while the models were trained on the other fold (Fig 45). Finally, the LogReg models were 

evaluated using independent test set, rcp_ts169.  

Table 29. Comparison of different stacked models in peptide-binding residue prediction on rcp_ts169 dataset. 

Score Types sM1 sM2 sM3 sM4 

Sensitivity (TPR)  0.551 0.551 0.546 0.553 

Specificity (TNR)  0.959 0.959 0.960 0.959 

Fall-out Rate (FPR)  0.041 0.041 0.040 0.041 

Miss Rate (FNR)  0.449 0.449 0.454 0.447 

ACC 0.755 0.755 0.753 0.756 

Precision  0.762 0.762 0.765 0.760 

F1 Score  0.639 0.640 0.638 0.640 

MCC  0.581 0.582 0.580 0.581 

      sM1 uses ET, SVM, GBC, KNN, RDF and BAG as base-learners 

      sM2 uses ET, SVM, GBC and KNN as base-learners. 

      sM3 uses ET, SVM and GBC as base-learners. 

      sM4 uses SVM, GBC and KNN as base-learners. 

      Best values are marked in bold.  

 

The performance comparison among four stacked models, shown in Table 29, clarifies that our 

assumption about the effective set of base-learners was reasonable. The model using all six base-learners 

(sM1) was outperformed by the stacked models with reduced number of complementary base-learners. 

After removing BAG and RDF classifiers from the set (sM2), we got a slight improvement in MCC score. 

The sM3 with ET, SVM and GBC only provided the highest specificity/TNR (0.96) and precision (0.765), 

and the lowest fall-out rate (0.04). On the other hand, the stacking of SVM, GBC and KNN in sM4 gave 

the highest recall (TPR), ACC and F1 score of values 0.553, 0.756 and 0.640, respectively. 
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(a) ROC Curves (b) Precision-recall Curves 

Fig 51. ROC and precision-recall curves given by 4 different stacked models on peptide-binding residue 
prediction. Comparison of (a) ROC curves and (b) precision-recall curves on rcp_ts169 dataset by 
three stacked models. The area under ROC curves (AUROC) are given in the plot (a). 

 

Fig 51 shows the ROC and precision-recall curve comparison among four stacked models, respectively 

in (a) and (b). The ROC curves for sM1, sM2 and sM3 were overlapping and the AUC values were also 

similar. However, the AUC of sM4 was slightly worse. On the other hand, the stacked model sM4 gave the 

best precision-recall curve with highest precision at the range of low recall (0.0 – 0.5). 

We prioritized the balanced prediction capacity of a model in this classification task that can be 

measured by ACC and F1 score (Table 29). Therefore, we utilized the base-learner set of sM4 (SVM, GBC 

and KNN) to develop the predictor models in the PBRpredict-Suite which were combined using LogReg 

as meta-learner. 

5.4.4.2 Combination of Features for Meta-Learner 

During the selection of base-learners, results reported in Table 30, we used only the probability outputs 

generated from the base-learners as the features in the meta-level. Here, we further want to include 

additional features to boost up the capacity of meta-learner. We tested two different feature plans to train 

the meta-learner of sM4 stacked model that combines SVM, GBC and KNN that are given below.  

(1) Feature plan# 1 that contains the probability outputs generated by the base-learners only.  

(2) Feature plan# 1 contains the probability outputs generated by the base-learners and the 60 features 

per-residue, which are discussed in Section 5.2.3.  
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Table 30. Comparison of stacked model (sM4) with two different feature plans for meta-learner on rcp_ts169 

test set. 

Score Types Feature Plan# 1 Feature Plan# 2 

True Positive  2855 2880 

True Negative  20912 20901 

False Positive  903 914 

False Negative 2307 2282 

Sensitivity/Recall  0.553 0.558 

Specificity (TNR)  0.959 0.958 

Fall-out Rate (FPR)  0.041 0.042 

Miss Rate (FNR)  0.447 0.442 

ACC 0.756 0.758 

Precision  0.760 0.759 

F1 Score  0.640 0.643 

MCC  0.581 0.584 

                Best values are marked in bold.  

 

The outputs of feature plan# 1 and 2 were complementary, shown in Table 30. The meta-learner of 

plan# 1 gave better specificity, which emphasizes the predictors capacity to identify non-binding residues. 

In contrast, the meta-model of plan# 2 provided better recall that focuses the predictor’s ability to accurately 

identify the binding residues. Moreover, the model with feature plan# 2 resulted in balanced prediction in 

terms of ACC, MCC and F1 score.  Therefore, the final models in PBRpredict-Suite use SVM, GBC and 

KNN as the base-learners that were trained using (60 × 25) features and LogReg as meta-learner that was 

trained using 63 features.  

5.4.5 Finalizing PBRpredict-Suite Models 

In the proposed PBRpredict-Suite, we included three models to predict the protein’s peptide-binding 

residues from sequence alone: PBRpredict-strict, PBRpredict-moderate and PBRpredict-flexible. In this 

section, we discuss the related results to support the development of these 3 different predictor models. 

We named the stacked model sM4 with 63 features in the meta-level (Section 5.4.4) as PBRpredict-

strict. This model provided a well-balanced performance when compared with the state-of-the-art predictor 

that is supported by both statistics (Section 5.4.6) and case-studies (Section 5.4.7). However, we called this 

model ‘strict’ in predicting the positive class peptide-binding residues as it resulted in fine false positive 

rate (fall-out rate/FPR) even at the cost of compromised recall score (TPR). Moreover, we intended to 
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design models that can identify the peptide-binding sites in the structure-specific (relatively shorter) 

sequence as well as within the full-length protein sequence. Note that, we included only the structure-

specific sequences from PDB in our training dataset as we needed the experimental structures to extract the 

interaction information and annotate the protein sequence. Therefore, the model was informed about the 

shorter sequence only. We observed that the PBRpredict-strict model provides conservative performance 

in identifying the binding residues in full-length sequence to avoid the false positive predictions or over-

prediction (see Figure 9). These observations led us to tune our model further to improve the true positive 

rate (recall/TPR) or positive-class prediction accuracy of our model.      

To increase the recall score of the model, we tried two techniques. As the first technique, we iteratively 

trained the base-learners to improve their performance and then combined their outputs with a meta-learner. 

Secondly, we modified the classification thresholds of both base-level and meta-level learners to trade-off 

between the recall (true positive rate/TPR) and fall-out rate (false positive rate/FPR). We discuss the results 

of the experiments below.  

5.4.5.1 Iterative Training of the Base-Learners 

To improve the recall, we tried to boost-up the performances of the individual base-learners by iterative 

training. Thus, we used the output probabilities generated by a learner as a feature in addition to the original 

feature set to train that learner in the second iteration. In this way, we continued to train each of the base-

learners (SVM, GBC and KNN) until their performances degraded or reached a plateau, specifically up to 

4th iterations for SVM and KNN, and 5th iterations for GBC. Figure 52 (a) – (c) show the outputs of iterative 

training and test of SVM, GBC and KNN. The scores correspond to the output of two-fold cross-validation 

on the training set (rcp_tr475), thus the average performance of testing with the one-fold while training 

with the other fold.  

From Figure 52(a), we observed that SVM resulted in the best recall, ACC, F1 score and MCC at the 

2nd iteration, and after that the performance is deteriorated. In case of the gradient boosting classifier (GBC), 

the recall, accuracy and F1 scores continued to increase up to the 4th iteration and then got flat, while the 

best precision and MCC were achieved in the 1st and 2nd iterations, respectively. For KNN, the harmonic 

mean of the precision and recall (F1 score) and the balanced accuracy remained alike for all the iterations. 

On the other hand, the best recall value was scored at the 1st iteration.   

To emphasize on the recall score, we chose the 1st iteration model for KNN along with the respective 

2nd and 4th iteration models for SVM and GBC for combination using LogReg meta-level learner. We tested 

the meta-learner using rcp_ts169 test dataset. The output scores were 0.542, 0.638 and 0.582 in terms of 

recall, F1 score and MCC, respectively, which were 2.85%, 0.80% and 0.32% lower than those of the 
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original PBRpredict-strict model (Table 30).  Therefore, the iterative training improved the individual 

performance of the base-learners, however could not improve the performance of the stacked model. 

Moreover, the separately improved base-learners were not better than the PBRpredict-strict model on the 

rcp-ts169 dataset. Therefore, we did not consider this technique further into our predictor-models. 

  

(a) SVM (b) GBC 

 

 

(c) KNN  

Fig 52. Performance of the iterative training and testing of the base-learners: (a) SVM, (b) GBC and (c) 
KNN. The training was carried-out using one-fold of the training dataset (rcp_tr475), and the output 
model was tested on the other fold. This process was repeated for the two folds of rcp_tr475 set 
(Table 25) and the average score values are reported. The best values are bold-faced. 

  

5.4.5.2 Tuning of Thresholds for the Learners 

Next, we attempted to relax the classification threshold to recover the positive-class type (peptide-

binding) residues that are falsely predicted as negative-class (non-binding). A classification threshold, 

which is traditionally kept as 0.5, is used to binarize the real-value probabilities generated by a classifier 

algorithm such as the samples with a probability output ≥ threshold is predicted as of positive-class, 

otherwise labeled as of negative-class. To understand the probabilistic behavior of the learners, we 

visualized the distributions of the probabilities generated by SVM, GBC, KNN for four different prediction 

types: true positives (TP), false positive (FP), true negative (TN) and false negative (FN) using the threshold 

value 0.5. Fig 53 shows the distribution plots. The plots for SVM, GBC and KNN of Fig 53(a)-(c) were 
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generated from the prediction outputs on the full rcp_tr475 dataset, where the each of the two folds of the 

dataset was independently predicted using the model trained on the other fold (Table 25). The plot for 

LogReg in Fig 53(d) was generated from the prediction outputs on rcp_ts169 dataset while trained on the 

full rcp_tr475. 

  

(a) SVM (b) GBC 

  

(c) KNN (d) LogReg 

Fig 53. Probability distributions of different prediction types given by (a) SVM, (b) GBC, (c) KNN and (d) 
LogReg using the threshold value 0.5. The curves for true positives (TP), false positives (FP), true 
negatives (TN) and false negatives (FN) are drawn in orange, red, green and blue respectively. 
The x-axis and y-axis show the probabilities generated by the corresponding classifier and the relative 
density, respectively. 

 

Note that, by tuning the threshold our purpose is to correct the false negative (FN) prediction outputs, 

represented by the blue curve in Fig 53. However, we must be careful as lowering the threshold from 0.5 

will convert the corresponding true negatives (TN) under the green curve into false positives (FP), 

represented by the red curve. Therefore, we can only increase the accuracy of positive class (peptide-

binding residue) prediction or decrease the miss rate at a cost of increased over-prediction rate (false 

positive rate). The plots of Fig 53 again highlight the strength of SVM for this application. The SVM model 
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correctly predicts the highest mass of binding (orange curve) and non-binding residues (green curve) with 

a high confidence, higher (0.85 – 1.0) and lower (0.0 – 0.15) probability values respectively. Moreover, Fig 

53(a) shows that the SVM model provided the lowest overlap between TNs (correctly predicted non-

binding residues) and FNs (incorrectly predicted binding residues) near the threshold margin compared to 

the other base-learners, GBC and KNN. Therefore, we can lower the threshold of SVM to gain an increase 

in recall score (TPR) at a cost of lower increase in the false positive rate (FPR). On the other hand, we 

noticed an opposite scenario from the outputs of KNN in Fig 53(c) with almost overlapped density curves 

for TNs and FNs. Therefore, we can only achieve an increase in TPR at a cost of high FPR. To mention, 

the curves for GBC in Fig 53(b) were better than those of KNN, however worse than those given by SVM. 

Fig 53(d) shows that density curves given by LogReg which were even better than SVM in terms of overlap 

between TNs and FNs near the margin (0.5). It suggests that the application of the meta-learner improved 

the performance over the base-learners and we can tune the threshold of the meta-learner as well to correct 

the FNs.   

To search for appropriate thresholds, we checked 7 different values: 0.45, 0.4, 0.35, 0.3, 0.25, 0.2 and 

0.15 other than the traditional value: 0.5. We evaluated the base-learners, SVM, GBC and KNN by two-

fold cross-validation on the training set, and the average results are shown in Table 31. This experiment 

did not result any certain value of the threshold. For all classifiers, the recall and balanced accuracy 

continued to increase with the lower threshold values at a cost of very high over-prediction which is not 

desirable. Thus, we finally chose the thresholds according to certain statistics on the probabilities of false 

negatives (FNs) given by the classifiers as our aim is to correct FNs by assigning a different threshold to 

segregate the positive and negative class.   

We quantified the mean probabilities of FNs (𝐹𝑁𝑝𝑟𝑜𝑏) from the distribution of Fig 53 along with the 

standard deviations (std) which are 0.172 ± 0.122 for SVM, 0.209 ± 0.130 for GBC, 0.208 ± 0.138 for KNN 

and 0.199 ± 0.105 for the LogReg. We checked the median values as well which are 0.139 for SVM, 0.187 

for GBC, 0.222 for KNN and 0.191 for the LogReg. Then, we considered the mean(𝐹𝑁𝑝𝑟𝑜𝑏) + std(𝐹𝑁𝑝𝑟𝑜𝑏), 

mean(𝐹𝑁𝑝𝑟𝑜𝑏) and median(𝐹𝑁𝑝𝑟𝑜𝑏) values as different sets of thresholds. 
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Table 31. Cross-validation performance of SVM, GBC and KNN using 8 different thresholds on the training 

dataset (rcp_tr475).  

Thresholds 
Recall 

(TPR) 

Specificity 

(TNR) 

Fall-out Rate 

(FPR) 

Miss Rate 

(FNR) 
ACC Precision 

F1 

Score 
MCC 

SVM 

0.5 0.428 0.978 0.022 0.572 0.703 0.797 0.557 0.530 

0.45 0.447 0.974 0.026 0.553 0.710 0.774 0.566 0.532 

0.4 0.470 0.967 0.033 0.530 0.718 0.741 0.575 0.529 

0.35 0.496 0.957 0.043 0.504 0.727 0.699 0.580 0.523 

0.3 0.528 0.943 0.057 0.472 0.735 0.650 0.582 0.513 

0.25 0.568 0.921 0.079 0.432 0.745 0.589 0.579 0.496 

0.2 0.620 0.885 0.115 0.380 0.753 0.519 0.565 0.472 

0.15 0.696 0.812 0.188 0.304 0.754 0.425 0.527 0.425 

GBC 

0.5 0.228 0.972 0.028 0.772 0.600 0.622 0.334 0.312 

0.45 0.270 0.964 0.036 0.730 0.617 0.597 0.372 0.330 

0.4 0.314 0.951 0.049 0.686 0.632 0.561 0.403 0.339 

0.35 0.368 0.933 0.067 0.632 0.651 0.524 0.432 0.349 

0.3 0.430 0.908 0.092 0.570 0.669 0.482 0.454 0.354 

0.25 0.506 0.870 0.130 0.494 0.688 0.437 0.469 0.355 

0.2 0.593 0.814 0.186 0.407 0.703 0.388 0.469 0.348 

0.15 0.694 0.722 0.278 0.306 0.708 0.332 0.449 0.325 

KNN 

0.5 0.156 0.966 0.034 0.844 0.561 0.473 0.233 0.198 

0.45 0.156 0.966 0.034 0.844 0.561 0.473 0.233 0.198 

0.4 0.260 0.916 0.084 0.740 0.588 0.381 0.308 0.206 

0.35 0.260 0.916 0.084 0.740 0.588 0.381 0.308 0.206 

0.3 0.421 0.807 0.193 0.579 0.614 0.303 0.353 0.202 

0.25 0.421 0.807 0.193 0.579 0.614 0.303 0.353 0.202 

0.2 0.654 0.605 0.395 0.346 0.629 0.248 0.360 0.194 

0.15 0.654 0.605 0.395 0.346 0.629 0.248 0.360 0.194 

Best score values for each classifier are bold faced. 

Table 32 shows the performances of SVM, GBC and KNN on rcp_ts169 dataset using these modified 

threshold values, mean(𝐹𝑁𝑝𝑟𝑜𝑏) + std(𝐹𝑁𝑝𝑟𝑜𝑏), mean(𝐹𝑁𝑝𝑟𝑜𝑏) and median(𝐹𝑁𝑝𝑟𝑜𝑏) along with the 

traditional value of 0.5. The results show that for all the classifiers, the recall, miss rate and accuracy (ACC) 

scores were improved if the thresholds are relaxed and set to a lower value, however, with a higher false 
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positive (fall-out) rate and lower precision. The models with traditional threshold (0.5) produced the most 

balanced performance for SVM and KNN with the highest MCC scores. On the other hand, the models with 

thresholds equal to mean+std(𝐹𝑁𝑝𝑟𝑜𝑏) provided the best F1 scores for all the classifiers and best MCC for 

GBC. Moreover, the fall-out or over-prediction rates with these threshold values were reasonable, 

specifically no greater than 7.5%. On the other, the median(𝐹𝑁𝑝𝑟𝑜𝑏) values were lower than the 

mean(𝐹𝑁𝑝𝑟𝑜𝑏) values for the SVM and GBC. Therefore, the use of median(𝐹𝑁𝑝𝑟𝑜𝑏) values as thresholds 

resulted in outstanding recall scores, however at a cost of very high fall-out rate which was not desirable. 

In addition, the performances of KNN models with mean(𝐹𝑁𝑝𝑟𝑜𝑏) and median(𝐹𝑁𝑝𝑟𝑜𝑏) as thresholds were 

similar. Therefore, we did not consider the median(𝐹𝑁𝑝𝑟𝑜𝑏) value as threshold in the meta-level.     

Table 32. Comparison of SVM, GBC and KNN using different thresholds (statistically derived) on rcp_ts169 

dataset.  

Thresholds 
Recall 

(TPR) 

Specificity 

(TNR) 

Fall-out 

Rate (FPR) 

Miss Rate 

(FNR) 
ACC Precision 

F1 

Score 
MCC 

SVM 

Traditional: 0.5 0.547 0.959 0.041 0.453 0.753 0.762 0.637 0.579 

Mean + Std: 0.3 0.639 0.926 0.074 0.361 0.782 0.672 0.655 0.576 

Mean: 0.17 0.747 0.854 0.146 0.253 0.800 0.547 0.632 0.538 

Median: 0.14 0.785 0.821 0.179 0.215 0.803 0.509 0.618 0.523 

GBC 

Traditional: 0.5 0.373 0.977 0.023 0.627 0.675 0.791 0.507 0.480 

Mean + Std: 0.34 0.526 0.934 0.066 0.474 0.730 0.652 0.582 0.500 

Mean: 0.21 0.692 0.827 0.173 0.308 0.759 0.486 0.571 0.459 

Median: 0.19 0.722 0.800 0.200 0.278 0.761 0.460 0.562 0.448 

KNN 

Traditional: 0.5 0.348 0.965 0.035 0.652 0.657 0.701 0.465 0.420 

Mean + Std: 0.35 0.440 0.926 0.074 0.560 0.683 0.586 0.502 0.411 

Mean: 0.21 0.744 0.687 0.313 0.256 0.716 0.360 0.485 0.347 

Median: 0.22 0.744 0.687 0.313 0.256 0.716 0.360 0.485 0.347 

Best score values for each classifier are bold faced. 

In Table 33, we report the results of the stacked models with modified threshold values on rcp_ts169 

dataset. In the meta-level 63 features were used as suggested by the results reported in Section 5.4.4.2. The 

stacked model for which the mean(𝐹𝑁𝑝𝑟𝑜𝑏) + std(𝐹𝑁𝑝𝑟𝑜𝑏) and the mean(𝐹𝑁𝑝𝑟𝑜𝑏) are used as thresholds 

for all the base-level and meta-level learners are named as PBRpredict-moderate and PBRpredict-flexible, 

respectively. The actual threshold values are reported in the column-heads of Table 33.  
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The outputs show that the PBRpredict-strict with threshold value of 0.5 resulted in the lowest fall-out 

rate with the highest MCC score (a balanced measure to assess a binary classifier), however the recall score 

was lower as well as the miss rate was higher than those of other models in the suite. In PBRpredict-

moderate, the thresholds were relaxed and set to a relatively lower values, defined by the mean(𝐹𝑁𝑝𝑟𝑜𝑏) + 

std(𝐹𝑁𝑝𝑟𝑜𝑏). Subsequently, the true positive rate (TPR) was increased by 19.4% at a cost of 4.54% decrease 

in the true negative rate. In addition, the F1 score and ACC were also improved by 2.19% and 4.27% for 

the PBRpredict-moderate than those of PBRpredict-strict model. In the PBRpredict-flexible model, the 

thresholds were even more lowered and set to the mean(𝐹𝑁𝑝𝑟𝑜𝑏). Therefore, all the false negative 

predictions (miss rate) of PBRpredict-strict with probability values greater than or equal to the 

mean(𝐹𝑁𝑝𝑟𝑜𝑏) were corrected by the PBRpredict-flexible at a cost of high fall-out rate of around 16%. 

Table 33. Comparison of the PBRpredict-strict, PBRpredict-moderate and PBRpredict-flexible models on 

rcp_ts169 dataset.     

Performance metrics PBRpredict-strict 

SVM (0.5), GBC (0.5), 

KNN (0.5), LogReg 

(0.5) 

PBRpredict-moderate 

SVM (0.3), GBC (0.34), 

KNN (0.35), LogReg 

(0.3) 

PBRpredict-flexible 

SVM (0.17), GBC 

(0.21), KNN (0.21), 

LogReg (0.2) 

Recall (TPR)  0.558 0.666 0.774 

Specificity (TNR)  0.958 0.915 0.841 

Fall-out Rate (FPR)  0.042 0.085 0.159 

Miss Rate (FNR)  0.442 0.334 0.226 

Accuracy (balanced) 0.758 0.790 0.808 

Precision  0.759 0.649 0.536 

F1 Score  0.643 0.657 0.633 

MCC  0.584 0.575 0.541 

Best values are bold faced. 

The threshold values for the classifiers in the PBRpredict-Suite models are reported in the column head.  

 

In Fig 54, we illustrate the usefulness of these 3-different prediction using an example. PBD ID: 2CIA 

[391] stores the structure of a sequence (chain A) with SH2 domain bound to a phospho-peptide. In Fig 

54(a), we present structure-specific sequence of chain A (length: 102) and the predicted annotation 

produced by PBRpredict-strict. The peptide-binding residues are marked in blue on the amino acid 

sequence. The true and false predictions are marked respectively in green and red on the predicted 

annotations (‘b’ for peptide-binding and ‘n’ for non-binding). We observed that PBRpredict-strict could 

recognize most of the binding residues in the structure-specific sequence. However, the same model failed 

to recognize those residues when the input was the full-length sequence (UniProtKB: O43639, length: 380) 
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containing the shorter structure-specific sequence (Fig 54(b)). On the other hand, the PBRpredict-moderate 

and flexible models could identify the binding residues on the full-length sequence, however with an 

increased number of false predictions of non-binding residues as binding residues. Therefore, the 

PBRpredict-Suite contains all these models that serve the purpose of recognizing peptide-binding residues 

under different scenarios. 

 
(a) PDB ID: 2CIA, chain A (length: 102) 

 

 
(b) UniProtKB: O43639 (length: 380) 

Fig 54. The outputs of PBRpredict-Suite models on (a) the structure-specific and (b) the full-length 
sequence of the same protein. Fig 54(a) shows the protein sequence and predicted annotations 
given by PBRpredict-strict on PDB sequence (ID: 2CIA, chain A). Fig 54(b) shows the 
protein sequence and predicted annotations given by all PBRpredict-Suite models on UniProt 
sequence (ID: O43696). The peptide-binding residues are marked in blue on the amino acid 
sequence. The true and false predictions are marked respectively in green and red on the 
predicted annotations (‘b’ for peptide-binding and ‘n’ for non-binding). 

 

5.4.6 Performance Comparison with Other Predictors 

In this section, we compare the performance of PBRpredict-Suite models with SPRINT [358]. SPRINT is 

a sequence-based predictor of protein-peptide binding residues that uses a SVM with optimized parameter 

set. Moreover, the dataset, model parameter set and feature set for SPRINT are different than those of 

PBRpredict. We ran SPRINT through its webserver on our test dataset, rcp_ts169. However, SPRINT 
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server could generate prediction on 146 sequences out of 169, and failed for the rest. Thus, we compared 

the performance of the proposed models with that of SPRINT [358] on the 146 sequences only. 

The comparison while evaluated against the synthetic annotation (with smoothing) is reported in Fig 

55. We observed that SPRINT could result higher recall value than that of PBRpredict-strict model. Note 

that, we named this model ‘strict’ as it does not compromise the rate of false positive (fall-out rate) even at 

a cost of lower recall score. The recall score of PBRpredict-strict was found 10.69% lower than that of 

SPRINT. On the other hand, the fall-out rate of SPRINT, which defines the rate of miss-classification of 

non-binding residues as peptide-binding residues or tendency of over-prediction, was 86.52% higher than 

that of PBRpredict-strict. Moreover, the PBRpredict-strict gave more precise and balanced performance 

with 15.42%, 138.34%, 132.50% and 51.99% higher balanced accuracy (ACC), precision, F1 score and 

MCC, respectively than those given by SRINT. Further, the PBRpredict-moderate and flexible overcomes 

the shortcomings of the strict model. The PBRpredict-moderate and flexible provided 7.3% and 25.3% 

higher recall scores than that of SPRINT, respectively, while keeping the fall-out rate 72.3% and 48.3% 

lower than that of SPRINT. Thus, the three models in together made the PBRpredict-Suite comprehensive 

in identifying peptide-binding residues.   

 

Fig 55. Performance Comparison of SPRINT and PBRpredict-Suite models in peptide-binding residue 
prediction, evaluated against synthetic annotation. The bars are grouped for the two predictors per 
metric. The best values in each metric type are marked in bold. 

 

In Fig 56, we report the performance comparison while the predictions were evaluated against actual 

annotation (without smoothing). A similar result was obtained where SPRINT gave competitive sensitivity 

and miss-rate with PBRpredict-strict and moderate, however at a cost of higher fall-out rate, specifically 

77% and 62.2% higher than that of PBRpredict-strict and moderate. Notwithstanding, PBRpredict-flexible 

resulted in 12.1% higher recall score than that of SPRINT even with 38.12% lower fall-out rate.  In addition, 
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PBRpredict-Suite models gave better balanced scores in case of assessing against actual annotation as well. 

Specifically, the ACC, precision, MCC and F1 score given by PBRpredict-strict were 6.79%, 109.82%, 

74.72% and 43.99% higher than those of SPRINT, respectively. These differences in performance even 

increases for MCC and F1 scores when SPRINT was compared with PBRpredict-moderate as this model 

gave the best MCC and F1 score. The surprisingly superior performance given by SPRINT only in case of 

recall when compared to PBRpredict-strict, despite falling far behind it in terms of balanced measures such 

as MCC and F1 score provide us a clue that SPRINT suffers with over-prediction problem. 

 

Fig 56. Performance Comparison of SPRINT and PBRpredict-Suite models in peptide-binding residue 
prediction, evaluated against actual annotation. The bars are grouped for the two predictors per metric. 
The best values in each metric type are marked in bold. 

 

Fig 57 presents the ROC curves generated by SPRINT and PBRpredict-Suite models while the 

predictions are evaluated against both synthetic and actual annotations. The curves show the TPR 

(sensitivity)/FPR (1 – specificity) output pairs at different classification thresholds. The ROC curves given 

by different models of the PBRpredict-Suite nearly overlapped with each other. The curves highlight the 

strength of PBRpredict models in achieving a high true positive rate (TPR) of ≥ 80% (rate of correct 

prediction of peptide-binding residues) at a very low rate (20%) of false positive (FPR). On the other hand, 

SPRINT gave TPR ≥ 80% at a cost of high FPR ≥ 60% only. This performance gap persists when the 

predictions are compared against the actual annotation as well. Therefore, the synthetic annotation of the 

non-binding residues (negative class) as peptide-binding (positive class) in between disjoint peptide-

binding regions did not contribute to over-prediction, rather better guided a machine learning technique to 

identify the binding residues from collective information of the residues at close vicinity. Moreover, the 

AUC scores given by PBRpredict-Suite models were at least 24.7% and 13% higher than those of SPRINT 

while evaluated against synthetic and actual annotation, respectively.  
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(a) ROC (synthetic annotation) (b) ROC (actual annotation) 

Fig 57. Comparison of ROC curves and AUC values given by SPRINT and PBRpredict-Suite models on 146 
chains. Evaluation against synthetic and actual annotations are indicated using solid and dotted lines in 
Figure (a) and (b), respectively. The AUC values under the ROCs are reported in the legend. 

 

5.4.7 Case-Studies on Sequence with Known Domains 

In this section, we perform case-studies with seven different proteins with different peptide-recognition 

domains (PRDs), discussed in Section 5.2.1.1. The structure-specific chains of these proteins were picked 

from the rcp_ts169 test set that share less than 40% similarity with any chain of the training set. However, 

chains with similar domain type were present in the training set. We applied the PBRpredict-strict that uses 

the traditional threshold and SPRINT to predict the peptide-binding residue in each protein and mapped the 

prediction outputs on the structure. We viewed the 3D structures using PyMOL [50] and the secondary structure 

was assigned using DSSP [51]. For a fair analysis and comparison on the structure-specific sequences, we 

applied the strictest model of the suite. 

5.4.7.1  PDZ Domain (PDB ID – 4NNM) 

We selected the crystal structure of Tax-Interacting Protein-1 (TIP-1) with PDZ domain[23] to analyze the 

performance of PBRpredict-strict and SPRINT in identifying PDZ domain, results shown in Fig 58. The 

structure is available as PDB ID: 4NNM where the PDZ domain of TIP-1 (green), having a disordered C-

terminal, is bound to Y-iCAL36 (YPTSII) peptide (pink).  

In Fig 58 (a), the actual peptide-binding regions (by synthetic annotation) are shown in red. Fig 58 (b) 

and (c) show the predicted peptide-binding residues by PBRpredict-strict and SPRINT, highlighted in 

yellow and pink, along with the recall and MCC values. According to the statistics, the recall and MCC 
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given by PBRpredict-strict (0.946 and 0.959) were better than those of SPRINT (0.729 and 0.755), however, 

SPRINT was comparable. 

   

(a) Actual Annotation (b) PBRpredict-strict Annotation 
Recall = 0.946 
MCC = 0.959 

(c) SPRINT Annotation 
Recall = 0.729 
MCC = 0.755 

Fig 58. Case study on PDZ domain (PDB ID: 4NNM). (a) Actual annotation of peptide-binding residues 
in the tax-intercation protein-1 (green) bound to peptide (pink), (b) Prediction output of PBRpredict-
strict (yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in (b) and 
(c) are labeled by the corresponding prediction accuracies in terms of recall and MCC scores. We 
viewed the 3D structures using PyMOL[50] and the secondary structure was assigned using DSSP 
[51]. 

 

5.4.7.2  MHC Domain (PDB ID – 1DL9) 

Here, we picked the three-dimensional structure of an H-2Ld protein interacting with a peptide, reported in 

PDB ID: 1LD9 [392]. The actual annotation is shown in Fig 59(a) where the MHC molecule is shown in 

green, the nine-residue long peptide is shown in cyan and the peptide-binding residues are marked in red. 

We predicted the peptide-binding residues of H-2Ld using PBRpredict-strict and SPRINT, shown in Fig 

59(b) and (c), respectively.  

Prediction of PBRpredict-strict (yellow) for this case was very precise in terms of the statistical 

measures, recall value 1.0 and MCC value 0.99. The visual illustration of SPRINT prediction in Fig 59(c) 

clearly shows the over-predicted peptide-binding residues (pink) throughout the full chain with a MCC of 

-0.123 and recall of 0.59. 
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(a) Actual Annotation (b) PBRpredict-strict Annotation 
Recall = 1.0 
MCC = 0.99 

(c)SPRINT Annotation 
Recall = 0.59 
MCC = -0.123 

Fig 59. Case study with MHC molecule (PDB ID: 1DL9). (a) Actual annotation of peptide-binding residues 
(red) in the H-2Ld (green) bound to nine-residue long peptide (cyan), (b) Prediction output of 
PBRpredict-strict (yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in 
(b) and (c) are labeled by the corresponding prediction accuracies in terms of recall and MCC 
scores. We viewed the 3D structures using PyMOL [50] and the secondary structure was assigned 
using DSSP [51]. 

 

5.4.7.3  SH2 Domain (PDB ID – 2CIA) 

To test the predictors on SH2 domain, we picked the structure of human Nck2 with SH2 domain (PDB ID: 

2CIA [391]) in complex with a phosphotyrosine peptide. Fig 60(a) shows the actual peptide-binding 

residues (red) within the Nck2 protein (green) that recognizes the phosphopeptide (cyan).  

   
(a)Actual Annotation (b) PBRpredict-strict Annotation 

Recall = 0.75 
MCC = 0.77 

(c)SPRINT Annotation 
Recall = 0.63 
MCC = 0.55 

Fig 60. Case study with SH2 domain (PDB ID: 2CIA). (a) Actual annotation of peptide-binding residues 
(red) in Nck2 (green) bound to phosphotyrosine peptide (cyan), (b) Prediction output of PBRpredict-
strict (yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in (b) and 
(c) are labeled by the corresponding prediction accuracies in terms of recall and MCC scores. We 
viewed the 3D structures using PyMOL [50] and the secondary structure was assigned by DSSP [51]. 
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Fig 60(b) and (c) depicts the comparative performance of PBRpredcit-strict (yellow) and SPRINT 

(pink) for peptide-binding residue prediction within SH2 domain.We found that the most strict model of 

the PBRpredict-Suite resulted in recall and MCC values of 75% and 77%, respectively. These values were 

better than those given by SPRINT, recall: 63% and MCC: 55% respectively.  

5.4.7.4  Polo-Box Domain (PDB ID – 4LKL) 

Here, we picked the crystal structure of the polo-like kinase 1 (Plk1) with polo-box domain in bound with 

five-residue long PL-55, reported as PDB ID: 4LKL [393]. PBRpredict-strict and SPRINT were used to 

predict the peptide-binding residues of Plk1 polo-box domain, shown in Fig. 61. The actual annotation is 

shown in Fig 61(a) where the Plk1 molecule is shown in green, the five-residue long PL-55 is shown in 

cyan and the peptide-binding residues are marked in red.  

   

(a) Actual Annotation (b) PBRpredict-strict Annotation 
Recall = 0.89 
MCC = 0.76 

(c) SPRINT Annotation 
Recall = 0.74 
MCC = 0.23 

Fig 61. Case study with polo-box domain (PDB ID: 4LKL). (a) Actual annotation of peptide-binding 
residues (red) in Plk1 (green) bound to PL-55 (cyan), (b) Prediction output of PBRpredict-strict 
(yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in (b) and (c) 
are labeled by the corresponding prediction accuracies in terms of recall and MCC scores. We viewed 
the 3D structures using PyMOL[50] and the secondary structure was assigned using DSSP [51]. 

 

Fig 61(b) and (c) respectively show the predicted residues, generated by PBRpredict-strict (yellow) and 

SPRINT (pink). PBRpredict-strict correctly predicted 89% of the peptide-binding residues (recall) and gave 

a balanced MCC score of 0.76. On the other hand, SPRINT gave reasonable recall score of 74%, however, 

highly over-predicted the non-binding residues as peptide-binding (Fig 61(c)). Therefore, the MCC score 

of SPRINT was much lower (0.23) than that of PBRpredict-strict. 
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5.4.7.5  Tudor Domain (PDB ID – 3ASK) 

To study with Tudor domain, we chose the crystal structure of UHRF1 [394], an essential factor for 

maintenance of DNA methylation, with a tandem Tudor domain and a PHD finger, in complex with the 

amino-terminal tail of histone H3. Fig 62(a) shows the peptide-binding residues (red) of UHRF1 (green), 

which are interacting with the histone tail (tint). The figure also shows the two disordered regions within 

UHRF1, residues 163 – 179 and 344 – 347.   

Fig 62(b) and (c) show the predicted peptide-binding regions by PBRpredict-strict and SPRINT, 

highlighted in yellow and pink along with their recall and MCC values. We observed that for this PRD, the 

MCC and recall of PBRpredict were 74% and 77%. SPRINT gave reasonable recall score of 64%, however 

the MCC score was 44% only due to the over-prediction. 

   

(a) Actual Annotation (b)PBRpredict-strict Annotation 
Recall = 0.74 
MCC = 0.77 

(c) SPRINT Annotation 
Recall = 0.64 
MCC = 0.44 

Fig 62. Case study with tudor domain (PDB ID: 3ASK). (a) Actual annotation of peptide-binding residues 
(red) in UHRF1 (green) bound to histone tail (tint), (b) Prediction output of PBRpredict-strict 
(yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in (b) and (c) 
are labeled by the corresponding prediction accuracies in terms of recall and MCC scores. We viewed 
the 3D structures using PyMOL[50] and the secondary structure was assigned using DSSP [51]. 

 

5.4.7.6  14-3-3 Domain (PDB ID – 3MHR) 

Here, we picked the crystal structure of the 14-3-3 sigma in complex with phosphopeptide with 

phosphorylation of Ser127, reported as PDB ID: 3MHR [395]. BIRpredict and SPRINT were used to predict 

the peptide-binding residues of 14-3-3 domain, shown in Fig 63. The actual annotation is shown in Fig 
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63(a) where the 14-3-3 molecule is shown in green, the phosphopeptide is shown in cyan and the peptide-

binding residues are marked in red.  

Fig 63(b) and (c) respectively show the predicted residues, generated by PBRpredict-strict (yellow) and 

SPRINT (pink). PBRpredict-strict and SPRINT correctly identified 95% and 85%, respectively, of the 

peptide-binding residues (recall), which were comparable. On the other hand, the MCC scores for 

PBRpredict was much higher (0.93) than that of SPRINT (0.52). 

   

(a) Actual Annotation (b) PBRpredict-strict Annotation 
Recall = 0.95 
MCC = 0.93 

(c) SPRINT Annotation 
Recall = 0.85 
MCC = 0.52 

Fig 63. Case study with 14-3-3 domain (PDB ID: 3MHR). (a) Actual annotation of peptide-binding 
residues (red) in 14-3-3 protein (green) bound to phosphoserine peptide (cyan), (b) Prediction 
output of PBRpredict-strict (yellow) and (c) Prediction output of SPRINT (pink), respectively. The 
figures in (b) and (c) are labeled by the corresponding prediction accuracies in terms of recall and 
MCC scores. We viewed the 3D structures using PyMOL[50] and the secondary structure was assigned 
by DSSP [51]. 

 

5.4.7.7  Bromodomain (PDB ID – 3JVK) 

As To test the predictors on bromodomain, we picked the structure of mouse Brd4 (PDB ID: 3JVK[391]) 

in complex with histone H3-K(ac) peptide. Fig 64(a) shows the actual peptide-binding residues (red) within 

the Brd4 protein (green) that recognizes the acetylated-peptide (cyan).  

Fig 64(b) and (c) depicts the performance of PBRpredcit-strict (yellow) and SPRINT (pink) for peptide-

binding residue prediction within bromodomain. PBRpredict-strict correctly predicted all the peptide-

binding residues (recall) and gave a balanced MCC score of 0.83. On the other hand, SPRINT gave a recall 

score of 0.75 and MCC score of 0.53. 
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(a) Actual Annotation (b) PBRpredict-strict Annotation 
Recall = 1.0 
MCC = 0.83 

(c) SPRINT Annotation 
Recall = 0.75 
MCC = 0.53 

Fig 64. Case study with Bromodomain (PDB ID: 3JVK). (a) Actual annotation of peptide-binding residues 
(red) in Brd4 protein (green) bound to H3-K(ac) peptide (cyan), (b) Prediction output of 
PBRpredict-strict (yellow) and (c) Prediction output of SPRINT (pink), respectively. The figures in 
(b) and (c) are labeled by the corresponding prediction accuracies in terms of recall and MCC 
scores. We viewed the 3D structures using PyMOL[50] and the secondary structure was assigned 
using DSSP [51]. 

 

5.4.8 Case-Studies on sequences with Unknown Domains 

In this section, we perform case-studies on structure-specific sequences with peptide-recognition domains 

that are not present in the dataset used to train PBRpredict-suite models. We picked 3 such domains: The 

MBT (Malignant Brain Tumor) domain, VHS (VPS-27, Hrs and STAM) domain and CW domain. We 

collected the structures with these domains from PDB following similar steps described in Section 2.1. We 

respectively found 8, 9 and 10 structures of complexes in which chains with MBT, VHS and CW domains 

were bound to peptides. After filtering out the chains with a similar domain that shared greater than 40% 

sequence similarity, we had 6, 4 and 7 sequences with MBT, VHS and CW domains, respectively. Then, 

we extracted the interaction information from the structures and annotated the chains based on the atomic 

distance between the domain and peptide residue as described in Section 5.2.2.  Below we discuss the 

performance of different PBRpredict-suite models in identifying peptide-binding residues on these 

sequences with domains that are not known to the models.      

5.4.8.1  MBT Domain 

The MBT domain recognizes the post-translational modifications, i.e., methylation on lysine, on histone 

tails. The MBT domains are involved in transcriptional repression and have critical roles in diseases [396]. 

Fig 65 shows the performances of the 3 models of PBRpredict-Suite in recognizing the residue patterns of 

this domain.  
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We can observe that the strict model identified only 19.7% of the peptide-binding residues, however, 

resulted in very low false positive rate (FPR). The moderate predictor could correct some of the incorrectly 

predicted binding residues, therefore the recall and accuracy scores were improved with a reasonable false 

prediction of the non-binding residues (FPR value of 8.1%). On the other hand, the model with the most 

flexible threshold values for the classification resulted in the highest recall, ACC and F1 scores.  

 

Fig 65. Performance of the PBRpredict-Suite models on MBT domains. The baser are grouped for the 
three predictors per metric and the score values are reported in the data table below the plot. The 
best values for each metric are highlighted using black boxes.   

 

5.4.8.2  VHS Domain  

The VHS domains are mostly found in the N-terminal of many proteins and have crucial roles in membrane 

targeting [397]. VHS domain recognizes short peptide motifs, i.e., D/ExxLL. Fig 66 shows the average 

performances of the three PBRpredict-Suite models in recognizing the peptide-binding residues on 4 chains 

with this domain.  

The results show that the PBRpredict-flexible model recognized the highest number of residues that 

were involved in the interactions with peptide residues with the highest recall (58.3%), accuracy (57.6%) 

and F1 score (35.4%). On the other hand, the strict model gave the lowest recall score, however, almost 

perfectly predicted the non-binding residues with only 2 false positives (FPR: 0.4%). The accuracy of the 

moderate model was in between the strict and flexible models. 
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Fig 66. Performance of the PBRpredict-Suite models on VHS domains. The baser are grouped for the 
three predictors per metric and the score values are reported in the data table below the plot. The 
best values for each metric are highlighted using black boxes.   

 

5.4.8.3  CW Domain  

The CW domain recognizes the lysine methylation on the N-terminal histone tails. These post-

translational modifications have key role in the tissue-specific gene expressions and chromatin regulations 

[398]. Fig 67 shows the performances of the 3 models of PBRpredict-Suite in recognizing the residue 

patterns of this domain averaged over 7 chains.  

 

Fig 67. Performance of the PBRpredict-Suite models on CW domains. The baser are grouped for the 
three predictors per metric and the score values are reported in the data table below the plot. The 
best values for each metric are highlighted using black boxes.   
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We observed a similar output for CW domain where the strict and the flexible models recognized the 

lowest and the highest percentage of the binding residues, respectively. On the other hand, the PBRpredict-

moderate model resulted in a modest recall value. 

The results of the above case-studies on the domains that were unseen by the PBRpredict-Suite models 

during training advocate the strength of the proposed models in locating potential peptide-binding sites 

within sequences for which the cognate domains are not known to the models. Therefore, the predictors, 

especially the moderate and the flexible models, can be useful in determining possible peptide-binding sites 

from protein sequence alone when no putative interaction information is known. The outputs then can be 

verified experimentally. 

5.4.9 Case-Studies with PBRpredict-Suite models on Full-length Sequence 

In this section, we study the full-length protein sequences with PBRpredict-Suite models. Here, we want to 

evaluate the ability of the proposed models in identifying potential peptide-binding residues in proteins for 

which no experimental or template structure is available. For this study, we chose the Gid4 protein. 

Recently, Chen et.al [399] discovered that the Gid4 subunit of the ubiquitin ligase GID in the yeast 

Saccharomyces cerevisiae targets the gluconeogenic enzymes, and recognizes the N-terminal proline (P) 

residue and the short 5-residue-long adjacent sequence motifs. The authors of the related study [399] 

identified such interactions through in vitro experiments with two-hybrid assays. 

In this article, we computationally predict the potential residues in Gid4 protein that may mediate such 

interactions with gluconeogenic enzymes to degrade them and down-regulate the gluconeogenesis. We 

collected 3 Swiss-Prot reviewed proteins from UniProt, GID4_YEAST (ID: P38263), GID4_HUMAN (ID: 

Q8IVV7) and GID4_MOUSE (ID: Q9CPY6), and ran the PBRpredict-Suite models on these sequences to 

identify possible peptide-binding residues. The PBRpredict-strict model predicted only one residue as 

peptide-binding in GID4_YEAST and GID4_MOUSE, and found no binding residue in GID4_HUMAN. 

Therefore, we showed the predicted peptide-binding residues given by PBRpredict-moderate and flexible 

only. 

5.4.9.1  GID4_YEAST (UniProtKB – P38263) 

Fig 68(a) and (b) show the possible binding residues in blue identified by the PBRpredict-moderate and 

PBRpredict-flexible model in GID4_YEAST. The moderate and flexible model found 34 and 71 binding-

residue respectively with a similar average confidence of 0.58 (mean probability values generated for the 

binding residues).  
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(a) PBRpredict-moderate annotation  

 
(b) PBRpredict-flexible annotation 

Fig 68. GID4_YEAST protein annotated by PBRpredict moderate and flexible model. (a) and (b) 
show the prediction outputs of PBRpredict-moderate and flexible models that are mapped on to 
the sequence of GID4_YEAST. The predicted binding residues are marked in blue. 

5.4.9.2  GID4_HUMAN (UniProtKB – Q8IVV7) 

Fig 69(a) and (b) show the possible binding residues in blue identified by the PBRpredict-moderate and 

PBRpredict-flexible model in GID4_HUMAN. The moderate and flexible model found 8 and 39 binding-

residue respectively with an average confidence of 0.58 and 0.55.  

 
(a) PBRpredict-moderate annotation 

 
(b) PBRpredict-flexible annotation 

Fig 69. GID4_HUMAN protein annotated by PBRpredict moderate and flexible model. (a) and (b) 
show the prediction outputs of PBRpredict-moderate and flexible models that are mapped on to 
the sequence of GID4_HUMAN. The predicted binding residues are marked in blue. 

5.4.9.3  GID4_MOUSE (UniProtKB – Q9CPY6) 

The potential binding residues in GID4_MOUSE, predicted by the PBRpredict-moderate and PBRpredict-

flexible model, are shown in Fig 70(a) and (b). The moderate and flexible model found 19 and 67 binding-

residues respectively with an average confidence of 0.56 and 0.55.  

 
(a) PBRpredict-moderate annotation 

 

(b) PBRpredict-flexible annotation 

Fig 70. GID4_MOUSE protein annotated by PBRpredict moderate and flexible model. (a) and (b) 
show the prediction outputs of PBRpredict-moderate and flexible models that are mapped on to 
the sequence of GID4_MOUSE. The predicted binding residues are marked in blue. 
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The above case-studies show that the PBRpredict-Suite can be a useful tool in revealing the amino acid 

compositions that mediates the crucial interactions with peptide motifs from sequence alone when no 

structure is available. Such residue patterns can be further utilized for their cognate peptide identification. 

The above outcomes can further guide the experimental determination of the complex structure of these 

proteins by truncating the portion of the chain with potential peptide-binding sites.  

5.5 Position Specific Binding Energy (PSBE) 

While in Sections 5.2 to 5.4, we have elaborately discussed our contribution to identify the peptide-binding 

residues of proteins that play a major role in inducing a peptide-protein interaction. The short peptide motifs 

are usually part of disordered proteins or regions of proteins and undergo disorder-to-order transition only 

presence of an appropriate partner that can promote the binding [68, 129, 323]. In this section, we will focus 

on the other player of this peptide-protein interaction network, which are the residues on peptide surface 

that form the complex with peptide-recognition domains in partners. Specifically, we developed a residue-

wise score to approximate the binding energy contribution (∆∆𝐺), called position specific binding energy 

(PSBE) [14] to identify the hot spots on peptide surface that contribute most of the binding energy [321].  

It is well-known that in protein-protein interfaces, the major contribution to binding energy is due 

to a small number of residues, which have been termed hot spot residues. This idea is established for protein-

protein interactions as well [321]. Experimental identification of hot spot residues is primarily performed 

by alanine scanning. This process involves mutation of a target residue to alanine, and recording the 

resulting binding energy changes. If this mutation results in a marked drop in the binding energy, the residue 

is considered a hot spot [400]. Substitution with alanine removes all atoms in the side chain beyond the β-

carbon. Furthermore, Alanine has relatively inert methyl functional group without contributing additional 

flexibility [401-403]. Mutation to glycine would also remove the side chain, but is not used since it can 

introduce unwanted conformational flexibility in the protein backbone [404]. The Binding free energy 

(∆∆𝐺) [405] is computed using following equation: 

 ∆∆𝐺 = ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − ∆𝐺𝑤𝑖𝑙𝑑 (27) 

 

Here, ∆𝐺𝑤𝑖𝑙𝑑 and ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 are the binding free energies upon complex formation of the wild-type and 

alanine-mutated proteins, respectively. We performed a similar computation of binding energy, however, 

the per-residues energy contribution was calculated as position specific estimated energy (PSEE) [11] from 

protein sequence only, a novel energy score proposed by us and discussed in Chapter 4 of this thesis.  
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Fig 71. Definition of position specific binding energy (PSBE). PSEE is used to compute per-residue ∆𝐺𝑤𝑖𝑙𝑑 
and aPSEE, which is the recomputed PSEE value with target residue mutated using alanine, is used 
to compute per-residue ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡. Then, the different between PSEE and aPSEE gives the PSBE, 
which can approximate ∆∆𝐺.  

 

PSEE is an energy score that models the pairwise contact energy of amino acid residues within a 

neighborhood of the residue of interest to approximate its position specific energy contribution, however 

the contact energies are further weighted by the proportional burial of the neighborhood residues, which 

essentially captures the hydrophobic effect, the major force to determine the hydrophobic core of the 3D 

protein structure. The formulation of PSEE in given in Section 4.2, Equation 21. While per-residue PSEE 

can approximate the ∆𝐺𝑤𝑖𝑙𝑑 of Equation 27, here, we recomputed PSEE with target residue mutated to 

alanine (A), shown in Fig 71. This modified value of PSEE is denoted as aPSEE, which approximates 

∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡.  After that, we quantify PSBE as the different between PSEE and aPSEE, illustrated in Fig 59 

to approximate ∆∆𝐺.  

An analysis of amino acid propensities of peptide hot spot residues was carried out by London et.al 

[321] using 103 peptide-protein complex structures. In [321], the hot spot residues were identified by a 

computational alanine scan on each of the 103 complex structures using the Rosetta software [406]. Hot 

spots were defined as residues that upon mutation to alanine are identified to significantly decrease the 

binding energy, ∆∆𝐺 > 1𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 (Rosetta energy unit). Their observation suggested that the amino acids 

that are overrepresented in peptide hot spot residues are:  Trp (W), Phe (F), Tyr (Y), Ile (I), and Leu (L). 

We computed PSBE for the surface residues, interacting with a partner protein, of 724 peptide chains, 

culled from PDB. We generated the box-plots of binding-energies (PSBE) for 20 types of amino acids (AA) 
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on the peptide interface while interacting with partners. The boxes are sorted according to the median of 

PSBE values, shown in Fig 72. The PSBE values Along with the average values highlighted in bigger fonts. 

We found that for five AAs (W, F, Y, I, L), the average PSBE values are higher than a particular threshold 

0.5 within a range of −1.0 to +1.0, showing higher energy contribution in binding. This findings are 

consistent with the previous study [321], discussed above, which reports the AA overrepresentation in 

peptide hot-spot residues from structures of 103 peptide-protein complexes. This finding suggests that 

PSBE can approximate per-residue ∆∆𝐺 form sequence information only, thus, can recognize the peptide 

hot spots as well. 
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Fig 72. Box-plots of binding-energies (PSBE) for 20 types of amino acids (AA) on the peptide interface 
while interacting with partners. The boxes are sorted according to the median PSBE values. The boxes 
are sorted according to the median PSBE values and labeled by the average PSBE values. The AA 
with average PSBE > 0.5, likely to be in hot spots, are circled with a green box. 
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5.6 Summary and Conclusions 

In this chapter, we describe the development of a suite of machine learning models to predict residues that 

can transiently interact with short flexible peptides in a complex and can result in induced-binding, using 

only protein sequence information. These residues are called peptide-binding residues and we call the 

proposed model, PBRpredict. For benchmarking purposes, we collected a new dataset of peptide-protein 

complexes. From that set, we extracted a non-redundant set of protein chains with wide range of peptide-

recognition domains (PRDs), such as MHC, PDZ, WW, SH2, SH3, Polo-Box, Tudor, 14-3-3, PTB and 

others. Several of these PRDs have ability to recognize peptides with post-translational modifications 

(PTMs).  

We labeled the residues that are in contact with peptide residues in a complex by measuring the distance 

between atomic coordinates. However, we carefully reduced the structural complexities involved in 

deciding the atomic association in a complex, like very short non-binding region of no greater than 3 

residues can occur in between disjoint peptide-binding residues or regions due to the geometrical orientation 

of side chains and the associated steric clash. Specifically, we smoothed out those very short (1 – 3 residues 

long) non-binding residues in between binding residue stretches to generate a synthetic annotation of 

peptide-binding residues. Such synthetic annotation can effectively guide the predictor to learn about the 

local environment of the binding residues using only protein sequence information.  

We provided a comprehensive set of residue-wise features to PBRpredict to characterize the inherent 

properties of the regions of interaction with peptides including chemical profile, evolutionary profile, local 

backbone profile and flexibility profile. In this work, we have integrated the other tools that we have 

developed and discussed in this thesis. We combined DisPredict (Chapter 2) that gave the disorder 

probabilities, REGAd3p (Chapter 3) that provided the predicted accessible surface area and PSEE 

(Chapter 4) that scores the stability and energy contribution of the protein residues to generate features.  

Moreover, to develop the predictor, we used stacked generalization or stacking, a popular method in 

modern machine learning community. Stacking operates combining the outputs by a set of base-learners of 

different types nonlinearly using a top-level meta-learner, unlike other ensemble techniques that use 

majority-voting (boosting) and weighted averaging (bagging). We investigated six different machine 

learning algorithms, support vector machine (SVM) with radial basis function as kernel, random forest 

(RDF), extremely-randomized tree (ET), gradient boosting classifier (GBC), k nearest neighbor (KNN) and 

bootstrap aggregation (BAG) to solve the problem of peptide-binding residue prediction. Through rigorous 

performance analysis, we found that SVM, GBC and KNN serve as an effective set of base-learners for this 

application. After that, we combined the predicted probabilities and the target residue features using logistic 
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regression to build the final PBRpredict-Suite models. Therefore, this study can also be considered as a 

comprehensive review of machine learning algorithms to solve this challenging problem of proteomics.  

After developing the initial PBRpredict model, called PBRpredict-strict, we carefully analyzed its 

applicability on full-length protein sequence for most of which the structures are unknown, and therefore, 

it is crucial to identify the potential peptide-binding sites from sequence alone. To make the predictor robust 

for recognizing peptide-binding residues on full-length sequence, unlike the structure-specific shorter 

sequence that were used to train the model, we developed two other predictors of similar framework using 

statistically derived relaxed threshold values, called PBRpredict-moderate and PBRpredict-flexible.  

Due to the structural detail involved in protein-peptide interactions, most of the earlier predictions of 

peptide-binding regions in proteins have been done based on protein structure [353-355]. On the other hand, 

SPRINT [358] is a sequence-based method which is very recently introduced to predict protein-peptide 

binding sites using SVM, yields a MCC score of 0.248 on an independent test set of 146 chains. SPRINT 

is found to outperform two structure-based predictors [353, 354], as reported in [358]. To compare, the 

proposed predictor of this work, PBRpredict-strict scored 0.576 MCC in predicting peptide binding regions 

in proteins on the same dataset.  

We further explored the biological relevance of the prediction output of SPRINT and PBRpredict-strict 

through case studies. We found that SPRINT overestimates the presence of peptide-binding residues 

throughout the full sequence of a receptor in complex, therefore results in a higher recall score. On the other 

hand, the outputs of PBRpredict seem to be biologically useful as it identifies few peptide-binding regions 

with contiguous residues, which is more relevant considering the intuitive number of regions that may 

possibly interact with a short peptide in a compact 3D structure.  

Moreover, the PBRpredict-Suite models were found promising in locating peptide-binding sites in 

domains that were not seen by the models during training. In addition, the two relaxed models of the suite, 

PBRpredict-moderate and PBRpredict-flexible could detect the possible peptide-binding residues in GID4 

protein which is recently found to bind to N-terminal peptide with proline (P) residue. To current date, no 

structure is available for GID4 protein, however, the proposed tool can guide the in vitro experiment with 

the potential sites only. Thus, PBRpredict can essentially be regarded an invaluable additional in the field 

of computational biology and worth further investigation in applications, like hot-spot region prediction 

and peptide binding-site prediction.  

We have also studied short peptides involved in peptide-protein interaction. To characterize the hot 

spot residues on the peptide surface that mostly contribute to the binding energy, we extracted a per-residue 

energy score from protein sequence only using PSEE, discussed in Chapter 4. We performed a residue-wise 
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alanine scanning within the protein sequence to recomputed PSEE and the induced gap in PSEE value after 

mutation is defined as position specific binding energy (PSBE). PSBE effectively identified the amino acids 

that are known as potential hot spots of peptide surface.  

The ultimate goal of this study is to dig into the two-player complex process of induced folding between 

peptides and receptor proteins given sequence information only, of which, an accurate predictor of regions 

that induce such transient binding is a prerequisite. While the experimental screen is costly, computational 

methods with reasonable accuracy and relevance can be engaged to accelerate the process, thus increasing 

the productivity at reduced cost. With this predictor and PSBE score, a larger set of peptides and linear 

motifs of the human proteome can be scanned faster against the potential binding-inducing regions, and 

therefore can be linked to their potential binding partners. This study gives a step towards above-mentioned 

goal with the use of machine learning and proposes BIRpredict that can be potentially useful in 

understanding insights of peptide-protein binding.  
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Chapter 6 

Conclusions  

In this dissertation, we strived for the systematic discovery and characterization of new biological properties 

of proteomic data and computational modeling of several structural and interaction properties of proteins 

to better understand their roles in biological process. Our comprehensive research objective addressed 

applications in two disciplines:  

(1) Bioinformatics, which includes development and implementation of tools using novel algorithms 

that enable efficient access and management of different types of biological information;  

(2)  Computational Biology, which involves analysis and interpretation of various types of data 

including nucleotide and amino acid sequences, protein domains, and protein structures to learn 

new biology.  

Besides development of machine learning based novel frameworks for protein sequence to (un)structure 

mapping and interaction prediction, we have devised new biological properties, such as Position Specific 

Estimated Energy (PSEE) and Binding Energy (PSBE). In our working procedure, we have established 

each of the tools or properties that we have developed as a software and have also applied them in exploring 

another challenge. In the last project of interaction prediction (described in Chapter 5), we have integrated 

all the tools that were developed earlier under this dissertation. Therefore, the overall flow of this thesis 

work and the outputs are interconnected yet each component are independently usable by the broader 

scientific community.  

In this chapter, we first give a quick summary of the contributions and then present some directions for 

future research, and finish by some concluding remarks. 
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6.1 Summary 

In the following, we summarize the contributions of this dissertation.   

DisPredict: We have developed an optimized SVM based framework for predicting intrinsically disordered 

proteins (IDPs) or regions (IDRs) in proteins from sequence alone. In this research, we performed large 

scale proteomic data collection, purification and analysis from multiple sources such as PDB, DisProt and 

IDEAL. To develop the predictors, we implemented Support Vector Machine (SVM) with Radial Basis 

Function (RBF) kernel which is a well-known classifier to handle non-linearly separable classes. To best 

of our knowledge, we applied an optimized parameter set for in the first time in SVM-based disorder 

prediction.  We carried out tuning of the cost of SVM and the mode of RBF, using Grid Search. Such 

optimized parameter set made the predictor competitive. Moreover, we applied two new features, 

Monogram and Bigram, in DisPredict to predict disorder for the first time.  

In DisPredict1.0 (version 1.0) [10], we directly used the probability values generated by SVM to 

classify ordered and disordered residue using a threshold of 0.5. In the next version (DisPredict1.1) [193], 

we have carried-out a post-processing of the probabilities generated by the SVM, which essentially averages 

the probability value of the target residue and those for a pre-defined number of residues on the either side 

to compute the final probability score. This final score was then binarized using a threshold value of 0.5.  

The development and benchmarking procedure of DisPredict1.0 and DisPredict1.1 are described in 

Chapter 2.  

Through rigorous analysis, we have also investigated the correlation of ordered and disordered regions, 

reported in DisProt v6.02, in 2-dimensional feature space. This analysis highlighted the possible overlaps 

of the ordered or disordered regions in their feature space (relative exposure and coil probability). To meet 

the necessity of more efficient feature to characterize order versus disorder, we then developed a new 

residue-wise biological property, PSEE and used it in the feature space to predict intrinsically disordered 

proteins. The new predictor, DisPredict2 [11] (discussed in Chapter 4) uses a similar framework that 

included optimized SVM with RBF kernel. Further, we quantified an optimized threshold value of 0.79 to 

finally segregate the two classes. DisPredict2 performed very well in comparison to several other state-of-

the-art predictors including its predecessor. We have utilized the output probabilities of DisPredict1.0 and 

DisPredict2.0 as residue-wise feature, respectively, in predicting accessible surface area and peptide-

binding residues of protein.   

REGAd3p: We developed a predictor of accessible surface area (ASA) of protein residues as real value 

from primary sequence. In this research work, we developed a new predictor paradigm, namely REGAd3p 

[15], for real value prediction through Regularized Exact regression and Genetic Algorithm (GA). GA was 
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used to optimize both Mean Absolute Error (MAE) and Pearson Correlation Coefficient (PCC). Further, 

the kernel of the exact regression was extended to 3-degree-polynomial as this kernel was found to be the 

best to predict ASA while testing with large datasets collected from PDB. However, the framework is 

general for a real-value prediction work and the kernel can be easily tuned for an application. Therefore, 

we believe this framework will be useful for similar prediction tasks.  

We have applied my tool in several other applications of bioinformatics. We modeled the error between 

actual and predicted ASA in terms of Energy to discriminate native proteins from their decoys. We 

combined this ASA based energy linearly with the components of an existing energy function, 3DIGARS 

[16], using Genetic Algorithm to develop an improved versions, 3DIGARS2.0 [15]. The design process, 

evaluation and performance analysis of REGAd3p for ASA prediction and the formulation of 3DIGARS2.0 

energy function are discussed in Chapter 3. 

We have further utilized the predicted ASA generated by REGAd3p to quantify the relative exposure 

(or burial) of protein residue, which was used to devise a new property of protein residue, PSEE. Moreover, 

we have utilized the per-residue predicted ASA by REGAd3p as residue-wise feature for predicting peptide-

binding residues in protein sequence with peptide recognition domain.  

PSEE and PSBE: We have devised a sequence-based feature for protein residues to characterize its ordered 

and disordered state, named Position Specific Estimated Energy (PSEE) [11]. Essentially, the PSEE 

resembles an energy-like quantity that scores the stability of a protein residue in its tertiary structure in 

terms of its contribution to the free-energy state of the full protein. The novel approach to quantify  (PSEE) 

of a residue was based on two hypotheses: the contact of a target residue with different types of amino acid 

residues within a neighborhood region affects its tertiary structure, so as its energy contribution; and the 

pair-wise interaction between a target residue with its neighboring residues is further guided by the relative 

exposure (or burial) of the protein residues, which determines the hydrophobic effect, a major force that 

stabilizes protein fold. Therefore, we combined the pairwise interaction (or contact) energy between 

different types of amino acids with the residue’s solvent accessibility to compute PSEE from protein 

sequence alone. Here, the pairwise interaction captures the sequential environment, whereas the predicted 

solvent accessibility, which is eventually used to compute relative burial of a residue, includes the 

hydrophobic effect and captures the respective structural environment in PSEE. The extraction of PSEE is 

described in Chapter 4. 

We have performed a thorough analysis of PSEE values of ordered and disordered residues as well as 

regions of full DisProt v6.02 [100] database, which showed a reasonable gap of PSEE values in between 

these two classes. PSEE was also found effective in segregating different secondary structure type residues, 
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beta (mostly stays in the core of protein), helix, and coil (mostly stays on the surface of protein), according 

to their stability. PSEE could further characterize hydrophobic and polar amino acid type residues by 

computing their constituent energies.     

A feature that can be computed from the primary amino acid sequence of proteins is crucial in the 

process of inducing a machine learning model that is capable of accurately predicting 3D structural 

descriptor of protein. Computational tools for existing protein structure prediction problems require 

features, like PSEE that can capture the complexity of molecular level interactions. As an application, we 

have applied PSEE in improving DisPredict where DisPredict2 with PSEE outperformed the similar 

framework without PSEE. Development and benchmarking of DisPredict2 is also discussed in Chapter 4.  

Moreover, we have utilized the per-residue PSEE values as residue-wise feature for predicting peptide-

binding residues from protein sequence. 

The Position Specific Binding Energy (PSBE) [14] is a score that estimates the contribution of short 

peptide residues in binding with its partner in a complex. Using a sequence-based energy score PSEE, we 

have adopted a similar concept of alanine mutagenesis, which is usually performed with protein structure, 

to estimate binding energy. Specifically, we computed PSEE value of protein residue with its original amino 

acid at its position and after mutation of that amino acid to alanine. The induced gap in PSEE values before 

and after mutation is quantified as PSBE. The residues that contribute mostly in the binding energy are 

known as hot spot residues. When we computed PSBE values of the residues of a set of peptide sequences, 

we found that average PSBE values are greater than a specific threshold (0.5) for the experimentally 

identified hot spot prone amino acid residues. The extraction and analysis on PSBE are given in Chapter 

5. Therefore, we believe PSBE has the potential to serve as a crucial sequence-based feature for peptide 

prediction, hot spot residue prediction and related tasks.   

PBRpredict-Suite: Identification of peptide-binding residues in proteins with peptide-binding domain is 

the key for assembling peptide-protein interactomes and peptide-based therapeutic discovery. Under this 

dissertation, we have developed a framework, called PBRpredict [317] to predict peptide-binding residues 

of receptor proteins in peptide-protein complex from sequence alone. A dataset of protein complexes with 

wide range of peptide binding domains, like MHC I and II, PDZ, SH2, SH3, WW, 14-3-3, Chromo and 

Bromo, Polo-Box, PTB, enzyme inhibitor, was collected from PDB and mined to collect interaction 

information based on the atomic distances from peptide residues in the structure. To predict the peptide-

binding residue, we encoded the protein sequence using a comprehensive set of sequence-based features 

including chemical and evolutionary profile, secondary structure, surface area and local backbone profile, 

flexibility and an energy based profile, we guide our predictor to learn about peptide-binding residues using 
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model-stacking approach. In this step of this project, we have utilized the other tools that we have 

developed, DisPredict2, REGAd3p and PSEE for feature generation.  

To develop the predictor, we developed a stacking-based framework, a popular ensemble mechanism 

in modern machine learning community. In stacking, a set of base-learners are applied first and then the 

outputs are combined by a top-level meta-learner to generate final prediction, unlike other ensemble 

techniques that use majority-voting (boosting) and weighted averaging (bagging). We investigated six 

different machine learning algorithms, support vector machine (SVM) with radial basis function as kernel, 

random forest (RDF), extremely-randomized tree (ET), gradient boosting classifier (GBC), k nearest 

neighbor (KNN) and bootstrap aggregation (BAG) to solve the problem of peptide-binding residue 

prediction. Through rigorous performance analysis, we found that SVM, GBC and KNN serve as an 

effective set of base-learners for this application. After that, we combined the predicted probabilities and 

the target residue features using logistic regression to build the final PBRpredict model. This study can also 

be considered as a comprehensive review of machine learning algorithms to solve this challenging problem 

of proteomics.  

Using three different sets of classification thresholds, that were statistically derived to trade-off between 

the true positive predictions and false positive predictions, for the base-level and meta-level learners, we 

established 3 different predictors under the PBRpredict-Suite (strict, moderate and flexible). We tested the 

models statistically and under biologically relevant case-studies, i.e., with different length sequence and 

sequences with known and/or unknown domains. Altogether, the three models are found effective in 

different cases.  

6.2 Future Scopes 

Here, we briefly discuss the future scopes of the research that has been conducted under this dissertation. 

The possible future directions (but not limited to) are following. 

In Section 4.6 of Chapter 4, we have discussed about the possibility of noisy annotation of ordered and 

disordered regions in DisProt database. We have observed such possibility when we plotted the ordered 

and disordered regions in their two-dimensional feature space with features, like PSEE, relative exposure 

and coil probability (Fig 39 and 40). To explore further, we searched for possible structure of disordered 

proteins within Protein Data Bank and found that 155 IDPs or Proteins with IDRs of DisProt have structures 

in PDB.  This finding complies with the existing phenomenon of disorder-to-order transition of short 
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disordered regions through induced-binding in presence of an appropriate partner. Therefore, it will be 

interesting to extend our work to identify any class that may exist in between ordered and disordered state.   

It is interesting to note that PSEE can also identify the existence of these short peptides within 

disordered proteins as the average PSEE values of short disordered regions were found to exist in between 

the PSEE values of ordered region and long disordered regions. Therefore, PSEE can potentially serve as a 

useful feature for short peptide region prediction. As an outcome of the discussion in Section 4.3, we can 

foresee that PSEE can also be utilized in predicting secondary structural features in disordered state which 

has not yet been robustly characterized. 

The REGAd3p framework, discussed in Chapter 3, is a generic real-value predictor that can be easily 

tuned for many future applications that involves real-value prediction. One of the major advantage of this 

framework comes from using exact regression technique, which can generate fast output. As another 

application, besides accessible surface area prediction, we have utilized a similar framework for backbone 

angle fluctuation prediction from protein sequence. We have performed preliminary simulations on tuning 

of kernel parameter and the results found were promising in comparison to an existing predictor [179] 

(results not shown in this thesis). This work is currently ongoing. 

In our work of peptide-binding region prediction, discussed in Chapter 5, we have used stacking. To 

best of our knowledge, we have applied this ensemble technique for the first time in proteomics and the 

method was found promising in this challenging application. Therefore, it is worth trying this framework 

in other bioinformatics and computational biology applications instead of boosting and bagging, which are 

more popular in current days within the proteomics community because of their simplicity from the 

implementation point of view. 

Moreover, the PBRpredict-Suite models provided prediction outputs that worth further in vitro 

experimentations. The models recognized potential peptide-binding sites in the Gid4 subunit of the 

ubiquitin ligase GID in the yeast Saccharomyces cerevisiae for which no structure is available to date. The 

corresponding subunit is experimentally found to interact with N-terminal Pro-peptide and degrade the 

gluconeogenesis-specific enzymes. We are currently collaborating the biology department of UNO to setup 

experiments on the potential binding sites and the cognate pro-peptides to understand more about the 

underlying mechanism of this interaction.   

Finally, some possible future research directions using PSBE, discussed in Chapter 5, includes 

prediction of hot spot residue, short peptide region that are likely to undergo conformational transformation 

though coupled-binding with appropriate partners and participate in crucial signaling related activities 

within the cell. 
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6.3 Conclusions  

Development of computational methods for large-scale as well as fast prediction, and analysis of biological 

data to study structure and functions of proteins from sequence only, such as the ones we developed in this 

dissertation, can help outgrow the ability of the experimental techniques. To keep pace with the current 

explosion of sequence-data, development of efficient and broadly applicable predictive algorithms with 

reasonable accuracy is critical to further progress. For some problems, the need of these computational 

efforts is essential. For instance, to understand the functions of proteins that are IDPs or have IDRs that do 

not adopt well-defined structure, however can change their states and fold through binding, and can perform 

important biological functions. Therefore, experimental investigation of IDPs/IDRs can reveal little 

information about their possible structures and functionalities. On the other hand, high throughput 

computational tool like DisPredict can provide a supplementary way for fast and large-scale IDPs/IDRs 

analysis. 

To conclude, in order to pursue a predictive understanding of how structural information is encoded 

and evolved from sequence, development of computational frameworks based on solid mathematical 

foundations and algorithms, and statistical evaluation is imperative. Fast and efficient annotation of 

structural descriptors have significant implication to keep up with the rapid pace of biological research, and 

furthermore will contribute to applications in other science and engineering domains involving predictive 

understanding and reasoning. The published all the tools and datasets developed under this dissertation 

work are publicly available as open source. We hope that our contributions, e.g., DisPredict, REGAd3p, 

PSEE, PBRpredict and PSBE will serve as useful tools for advancing the computing as well as biological 

sciences, particularly in proteomics research and application using machine learning. 
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