23 research outputs found

    Deep learning for procedural content generation

    Get PDF
    Summarization: Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.Presented on: Neural Computing and Application

    Artificial intelligence for digital twins in energy systems and turbomachinery: development of machine learning frameworks for design, optimization and maintenance

    Get PDF
    The expression Industry4.0 identifies a new industrial paradigm that includes the development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital Twins aims to build a dynamic environment in which, with the help of vertical, horizontal and end-to-end integration among industrial processes, smart technologies can communicate and exchange data to analyze and solve production problems, increase productivity and provide cost, time and energy savings. Specifically in the energy systems field, the introduction of AI technologies can lead to significant improvements in both machine design and optimization and maintenance procedures. Over the past decade, data from engineering processes have grown in scale. In fact, the use of more technologically sophisticated sensors and the increase in available computing power have enabled both experimental measurements and highresolution numerical simulations, making available an enormous amount of data on the performance of energy systems. Therefore, to build a Digital Twin model capable of exploring these unorganized data pools collected from massive and heterogeneous resources, new Artificial Intelligence and Machine Learning strategies need to be developed. In light of the exponential growth in the use of smart technologies in manufacturing processes, this thesis aims at enhancing traditional approaches to the design, analysis, and optimization phases of turbomachinery and energy systems, which today are still predominantly based on empirical procedures or computationally intensive CFD-based optimizations. This improvement is made possible by the implementation of Digital Twins models, which, being based primarily on the use of Machine Learning that exploits performance Big-Data collected from energy systems, are acknowledged as crucial technologies to remain competitive in the dynamic energy production landscape. The introduction of Digital Twin models changes the overall structure of design and maintenance approaches and results in modern support tools that facilitate real-time informed decision making. In addition, the introduction of supervised learning algorithms facilitates the exploration of the design space by providing easy-to-run analytical models, which can also be used as cost functions in multi-objective optimization problems, avoiding the need for time-consuming numerical simulations or experimental campaings. Unsupervised learning methods can be applied, for example, to extract new insights from turbomachinery performance data and improve designers’ understanding of blade-flow interaction. Alternatively, Artificial Intelligence frameworks can be developed for Condition-Based Maintenance, allowing the transition from preventive to predictive maintenance. This thesis can be conceptually divided into two parts. The first reviews the state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial role of Artificial Intelligence in supporting informed decision making during the design, optimization, and maintenance phases of energy systems. The second part covers the development of Machine Learning strategies to improve the classical approach to turbomachinery design and maintenance strategies for energy systems by exploiting data from numerical simulations, experimental campaigns, and sensor datasets (SCADA). The different Machine Learning approaches adopted include clustering algorithms, regression algorithms and dimensionality reduction techniques: Autoencoder and Principal Component Analysis. A first work shows the potential of unsupervised learning approaches (clustering algorithms) in exploring a Design of Experiment of 76 numerical simulations for turbomachinery design purposes. The second work takes advantage of a nonsequential experimental dataset, measured on a rotating turbine rig characterized by 48 blades divided into 7 sectors that share the same baseline rotor geometry but have different tip designs, to infer and dissect the causal relationship among different tip geometries and unsteady aero-thermodynamic performance via a novel Machine-Learning procedure based on dimensionality reduction techniques. The last application proposes a new anomaly detection framework for gensets in DH networks, based on SCADA data that exploits and compares the performance of regression algorithms such as XGBoost and Multi-layer Perceptron

    Ghost In the Grid: Challenges for Reinforcement Learning in Grid World Environments

    Get PDF
    The current state-of-the-art deep reinforcement learning techniques require agents to gather large amounts of diverse experiences to train effective and general models. In addition, there are also many other factors that have to be taken into consideration: for example, how the agent interacts with its environment; parameter optimization techniques; environment exploration methods; and finally the diversity of environments that is provided to an agent. In this thesis, we investigate several of these factors. Firstly we introduce Griddly, a high-performance grid-world game engine that provides a state-of-the-art combination of high performance and flexibility. We demonstrate that grid worlds provide a principled and expressive substrate for fundamental research questions in reinforcement learning, whilst filtering out noise inherent in physical systems. We show that although grid-worlds are constructed with simple rules-based mechanics, they can be used to construct complex open-ended, and procedurally generated environments. We improve upon Griddly with GriddlyJS, a web-based tool for designing and testing grid-world environments for reinforcement learning research. GriddlyJS provides a rich suite of features that assist researchers in a multitude of different learning approaches. To highlight the features of GriddlyJS we present a dataset of 100 complex escape-room puzzle levels. In addition to these complex puzzle levels, we provide human-generated trajectories and a baseline policy that can be run in a web browser. We show that this tooling enables significantly faster research iteration in many sub-fields. We then explore several areas of RL research that are made accessible by the features introduced by Griddly: Firstly, we explore learning grid-world game mechanics using deep neural networks. The {\em neural game engine} is introduced which has competitive performance in terms of sample efficiency and predicting states accurately over long time horizons. Secondly, {\em conditional action trees} are introduced which describe a method for compactly expressing complex hierarchical action spaces. Expressing hierarchical action spaces as trees leads to action spaces that are additive rather than multiplicative over the factors of the action space. It is shown that these compressed action spaces reduce the required output size of neural networks without compromising performance. This makes the interfaces to complex environments significantly simpler to implement. Finally, we explore the inherent symmetry in common observation spaces, using the concept of {\em geometric deep learning}. We show that certain geometric data augmentation methods do not conform to the underlying assumptions in several training algorithms. We provide solutions to these problems in the form of novel regularization functions and demonstrate that these methods fix the underlying assumptions

    Audio self-supervised learning: a survey

    Get PDF
    Inspired by the humans' cognitive ability to generalise knowledge and skills, Self-Supervised Learning (SSL) targets at discovering general representations from large-scale data without requiring human annotations, which is an expensive and time consuming task. Its success in the fields of computer vision and natural language processing have prompted its recent adoption into the field of audio and speech processing. Comprehensive reviews summarising the knowledge in audio SSL are currently missing. To fill this gap, in the present work, we provide an overview of the SSL methods used for audio and speech processing applications. Herein, we also summarise the empirical works that exploit the audio modality in multi-modal SSL frameworks, and the existing suitable benchmarks to evaluate the power of SSL in the computer audition domain. Finally, we discuss some open problems and point out the future directions on the development of audio SSL

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    Exploiting Novel Deep Learning Architecture in Character Animation Pipelines

    Get PDF
    This doctoral dissertation aims to show a body of work proposed for improving different blocks in the character animation pipelines resulting in less manual work and more realistic character animation. To that purpose, we describe a variety of cutting-edge deep learning approaches that have been applied to the field of human motion modelling and character animation. The recent advances in motion capture systems and processing hardware have shifted from physics-based approaches to data-driven approaches that are heavily used in the current game production frameworks. However, despite these significant successes, there are still shortcomings to address. For example, the existing production pipelines contain processing steps such as marker labelling in the motion capture pipeline or annotating motion primitives, which should be done manually. In addition, most of the current approaches for character animation used in game production are limited by the amount of stored animation data resulting in many duplicates and repeated patterns. We present our work in four main chapters. We first present a large dataset of human motion called MoVi. Secondly, we show how machine learning approaches can be used to automate proprocessing data blocks of optical motion capture pipelines. Thirdly, we show how generative models can be used to generate batches of synthetic motion sequences given only weak control signals. Finally, we show how novel generative models can be applied to real-time character control in the game production

    Exploiting Novel Deep Learning Architecture in Character Animation Pipelines

    Get PDF
    This doctoral dissertation aims to show a body of work proposed for improving different blocks in the character animation pipelines resulting in less manual work and more realistic character animation. To that purpose, we describe a variety of cutting-edge deep learning approaches that have been applied to the field of human motion modelling and character animation. The recent advances in motion capture systems and processing hardware have shifted from physics-based approaches to data-driven approaches that are heavily used in the current game production frameworks. However, despite these significant successes, there are still shortcomings to address. For example, the existing production pipelines contain processing steps such as marker labelling in the motion capture pipeline or annotating motion primitives, which should be done manually. In addition, most of the current approaches for character animation used in game production are limited by the amount of stored animation data resulting in many duplicates and repeated patterns. We present our work in four main chapters. We first present a large dataset of human motion called MoVi. Secondly, we show how machine learning approaches can be used to automate proprocessing data blocks of optical motion capture pipelines. Thirdly, we show how generative models can be used to generate batches of synthetic motion sequences given only weak control signals. Finally, we show how novel generative models can be applied to real-time character control in the game production

    Intrinsic Motivation in Computational Creativity Applied to Videogames

    Get PDF
    PhD thesisComputational creativity (CC) seeks to endow artificial systems with creativity. Although human creativity is known to be substantially driven by intrinsic motivation (IM), most CC systems are extrinsically motivated. This restricts their actual and perceived creativity and autonomy, and consequently their benefit to people. In this thesis, we demonstrate, via theoretical arguments and through applications in videogame AI, that computational intrinsic reward and models of IM can advance core CC goals. We introduce a definition of IM to contextualise related work. Via two systematic reviews, we develop typologies of the benefits and applications of intrinsic reward and IM models in CC and game AI. Our reviews highlight that related work is limited to few reward types and motivations, and we thus investigate the usage of empowerment, a little studied, information-theoretic intrinsic reward, in two novel models applied to game AI. We define coupled empowerment maximisation (CEM), a social IM model, to enable general co-creative agents that support or challenge their partner through emergent behaviours. Via two qualitative, observational vignette studies on a custom-made videogame, we explore CEM’s ability to drive general and believable companion and adversary non-player characters which respond creatively to changes in their abilities and the game world. We moreover propose to leverage intrinsic reward to estimate people’s experience of interactive artefacts in an autonomous fashion. We instantiate this proposal in empowerment-based player experience prediction (EBPXP) and apply it to videogame procedural content generation. By analysing think-aloud data from an experiential vignette study on a dedicated game, we identify several experiences that EBPXP could predict. Our typologies serve as inspiration and reference for CC and game AI researchers to harness the benefits of IM in their work. Our new models can increase the generality, autonomy and creativity of next-generation videogame AI, and of CC systems in other domains
    corecore