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Abstract Procedural content generation in video

games has a long history. Existing procedural content

generation methods, such as search-based, solver-based,

rule-based and grammar-based methods have been ap-

plied to various content types such as levels, maps, char-

acter models, and textures. A research field centered on

content generation in games has existed for more than

a decade. More recently, deep learning has powered a

remarkable range of inventions in content production,

which are applicable to games. While some cutting-edge

deep learning methods are applied on their own, oth-

ers are applied in combination with more traditional

methods, or in an interactive setting. This article sur-

veys the various deep learning methods that have been
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applied to generate game content directly or indirectly,

discusses deep learning methods that could be used for

content generation purposes but are rarely used today,

and envisages some limitations and potential future di-

rections of deep learning for procedural content gener-

ation.

Keywords Procedural content generation · Game

design · Deep learning · Machine learning · Computa-

tional and artificial intelligence

1 Introduction

Deep learning has powered a remarkable range of in-

ventions in content production in recent years, includ-

ing new methods for generating audio, images, 3D ob-

jects, network layouts, and other content types across

a range of domains. It stands to reason that many of

these inventions would be applicable to games. In par-

ticular, modern video games require large quantities of

high-definition media, which could potentially be gen-

erated through deep learning approaches. For example,

promising recent methods for generating photo-realistic

faces could be used for character creation in games.

At the same time, video games have a long tradition

of procedural content generation (PCG) [132], where

some forms of game content have been generated algo-

rithmically for a long time; the history of digital PCG

in games stretches back four decades. In the last decade

and a half, we have additionally seen a research commu-

nity spring up around challenges posed by game content

generation [16, 93, 112, 129, 133, 134, 148]. This re-

search community has applied methods from core com-

puter science, such as grammar expansion [22]; AI, such

as constraint solving [115] and evolutionary computa-

tion [7, 133]; and graphics, such as fractal noise [24].
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But only in the last few years have we seen a real ef-

fort to bring the tools of deep learning to game content

generation.

Deep learning brings new opportunities and leads

to exciting advances in PCG, such as generative ad-

versarial networks (GANs) [32], deep variational au-

toencoders (VAEs) [63] and long short-term memory

(LSTM) [34, 45]. However, those methods for other gen-

erative or creative purposes are not always applicable

to games and need certain adaptations due to the func-

tionality criteria of different game content. Methods for

generating images (e.g., generative networks) can be

used to generate image-like game content (e.g., level

maps, landscapes, and sprites). However, the generated

levels should be playable and require specific gameplay

skill-depth. The generated sprites should imply spe-

cific character or emotion, as well as coherence within

the game. Training reliable models requires a necessary

amount and quality of data, while the available data of

content and playing experience for most games is lim-

ited. Careful consideration and sophisticated design of

adaptation techniques are requisites for applying deep

learning methods to generate game content.

It is important to note that content generation has

uses outside of designing and developing games for hu-

mans to experience. In addition to creating content in

games meant for humans to play, content generation

can also play a crucial role in creating generalizable

game-based and game-like benchmarks for reinforce-

ment learning and other forms of AI [26, 136].

This article surveys the various approaches that

have been taken to generate game content with deep

learning, and also discusses methods proposed from

within deep learning research that could be used for

PCG purposes. First, we give an overview of types of

game content that could conceivably be generated by

deep learning, including the particular constraints and

affordances of each content type and examples of such

applications (if they exist), followed by an overview of

applicable deep learning methods.

2 Scope of The Review

This article discusses the use of deep learning (DL)

methods, here defined as neural networks with at least

two layers and some nonlinearity [33], for game con-

tent generation. We take an inclusive view of games as

any games a human would conceivably play, including

board games, card games, and any type of video games,

such as arcade games, role-playing games, first-person

shooters, puzzle games, and many others. Several other

surveys and overviews of PCG in games already exist.

Here, we delineate the scope of our article by compar-

ing it to existing books and surveys in Section 2.1 and

Section 2.2. Section 2.3 describes our paper selection

methodology.

2.1 Related Work

A number of books and surveys of PCG with differ-

ent focuses and aims have been published in the past

two decade [16, 93, 112, 129, 133, 134, 148]. The two

textbooks for PCG [112] and Game AI [148] cover the

search-based methods, solver-based methods, construc-

tive generation methods (such as cellular automata and

grammar-based methods), fractals, noise, and ad-hoc

methods for generating diverse game content. De Kegel

and Haahr [16] reviewed the PCG methods for eleven

categories of puzzles, but few work based on deep learn-

ing has been reported. The article by Togelius et al.

reviews the search-based PCG methods, defined as us-

ing meta-heuristics to search in a predefined content

space, not necessarily represented by the same format

of the content itself, and automatically generate new

content [133]. The search is led by a fitness or eval-

uation function which measures the quality or playa-

bility of the generated content. The experience-driven

PCG framework [147] largely adopts a search-based ap-

proach and reviews ways in which algorithms can gen-

erate content for adjusting the player experience. Most

of the reviewed search-based methods in both survey

papers rely on evolutionary algorithms. In this article,

we also cover some search-based methods which coop-

erated with deep learning methods for generating con-

tent. The most famous example may be latent variable

evolution [5]. Risi and Togelius [93] focuses on PCG

for applications in Reinforcement Learning (RL), while

the work based on RL methods reviewed in this arti-

cle mainly used RL agents to play the generated levels,

which indirectly served as content evaluators. Khalifa

et al. [62] models the level generation as an iterative

process that one needs to edit the levels to meet cer-

tain requirements or achieve some specific goals. RL

agents need to learn to generate levels through this it-

erative process. The study of Summerville et al. [129],

published in 2018, reviews the PCG via Machine Learn-

ing (PCGML) methods, building on e.g. Markov chains

(e.g., [118, 119, 120, 131, 152]), n-grams (e.g., [14]), and

Bayes nets (e.g.,[37]), whereas we will focus exclusively

on deep learning in this article.
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2.2 Novelty of The Review

The differences between the current article and the

PCGML survey [129] is that (i) our article focuses on

DL-based methods, defined at the beginning of Section

2 (although other techniques will be mentioned for con-

trast); (ii) our article surveys more types of game con-

tent, such as narrative text and graphical textures; (iii)

we also discuss applications of deep learning to support

PCG, such as for content quality prediction; and (iv)

our survey is written more than three years after the

PCGML survey was first submitted and two years af-

ter it was published, during which time an avalanche of

new work in the field has appeared.

During the two years after the publication of [129],

PCG via deep learning has been growing quickly and

a significant number of papers and articles have been

published. The trend was mainly set by latent variable

evolution [5] in 2018. A review of the state-of-the-art

and the latest applications of deep learning to PCG is

needed.

2.3 Paper Collection Methodology

To collect the related papers published or online since

2018, till end of August 2020, we have searched with

Google Scholar and Web of Science using the following

search terms ( “game”) AND (“design”) and (“game”)

AND (“procedural content generation” OR “pcg”), sep-

arately. We systematically went through the returned

papers, most of which were publications in the IEEE

Transactions on Computational Intelligence and AI in

Games (T-CIAIG), the IEEE Transactions on Games

(ToG), in the proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG) series,

the IEEE Conference on Games (CoG) series, the In-

ternational Conference on the Foundations of Digital

Games (FDG) series, the Artificial Intelligence for In-

teractive Digital Entertainment (AIIDE) Conference

series and their related workshops, as well as special ses-

sions at other conferences, such as the IEEE Congress

on Evolutionary Computation (IEEE CEC). We also

went through the papers that have been recently ac-

cepted in 2020 by the conferences mentioned above.

Only work that involve direct or indirect use of DL-

based methods for generating game content or evaluat-

ing content or content generators are reviewed in this

article, while the ones being returned due to citations

with the search terms but are out of our scope are not

included.

3 Content Types

Generally, game content can be distinguished from the

content meant for non-interactive media by various

forms of functionality constraints. Video, images, and

music all require coherence, and in general that aes-

thetic suffers when the coherence fails. For example,

GANs can often create images that are locally convinc-

ing but globally incoherent, such as a side-view of a car

where the front wheels have a different size and style

to the back wheels. This may be annoying to the hu-

man viewer, but the image still unmistakably depicts

a car; it doesn’t turn into a blur of random pixels just

because the wheels on the car don’t match. In contrast,

when generating a game level, if the final door has no

matching key the level is unplayable; the level’s utility

as content is not just slightly diminished, but essentially

zero (unless manually repaired). Making a neural net-

work learn to produce only functional content is often

a tall task, and is one of the core challenges of using

deep learning for PCG. Not all types of game content

have the same extent of functional constraints however,

and some offer affordances that may make content gen-

eration relatively easier. Also, not all content is nec-

essary ; depending on the game’s design, there might

be artifacts that are allowed to be broken, as the user

can simply discard them and select others. Weapons in

Borderlands are a good example of optional content.

3.1 Game Levels

The most common type of content to generate in games

is levels. These are spaces in two or three dimensions

that need to be traversed. Typically, these are necessary

rather than optional, and have strong functional con-

straints that require them to be playable. For example,

there can not be impassable geometry (such as gaps or

walls) blocking traversal of the level, items needed to

finish the levels must be present, and enemies cannot

be unbeatable. 2D, side-scrolling platform games is a

genre where procedural generation is particularly com-

mon, both in entertainment-focused games (in particu-

lar indie games) and in academic research. Among the

former, the standout game Spelunky has defined a way

of building 2D platform games around PCG; among the

latter, the Mario AI Framework [135], built around an

open-source clone of Super Mario Bros, has been used

in so many research projects that it could be called the

“drosophila of PCG research”. Another type of com-

monly attempted 2D level is the rogue-like or dungeon-

crawler level, where the objectives and constraints are

similar to the platform game level, but which are viewed

from the top down so physics works differently. Related
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to this are levels for first-person shooters. Another kind

of 2D level is the battle map, used in strategy games

such as StarCraft or player-versus-player modes of first-

person shooters. While such maps also have “hard” con-

straints, such as sufficient room for the players’ bases,

there are also the softer constraints of balancing; many

features contribute to the quality of battle maps, but

balancing is paramount.

Levels for music games, such as as Guitar Hero or

Dance Dance revolution, can be seen as 2D levels as

well. Here the player is automatically moved along the

level, and has to carry out certain actions in time with

the music, as prompted by level features. Some inter-

esting work has been done on learning to create such

music game levels from existing music (e.g., [21, 139]).

3.2 Text

Almost all games include some form of text, and typi-

cally they use text to convey narrative. This text typ-

ically has very strong constraints, as it needs to be

truthful with regards to what happens in the game. For

example, if the text says that the King lives in Stock-

holm, this must actually be the case lest it misleads

the player. Traditionally, generative text in games has

not been very ambitious and used simple text substitu-

tion or grammar-based approaches. Outside of games,

deep learning has made great strides with LSTM net-

works [34, 45] and, more recently, transformers able to

generate coherent and stylistically relevant text. How-

ever, these methods are not easy to integrate into most

games because of the lack of control over deep learning-

based text generators. However, games such as AI Dun-

geon 2 have managed to build gameplay on top of al-

most uncontrollable text generation.

3.3 Character Models

Faces and character models are examples where deep

learning has advanced content creation capabilities rad-

ically in recent years, but these methods have generally

not made their way into games. Datasets of thousands

of real human faces, such as the Celeb-A dataset [75],

have become standard benchmark for developing new

GAN variations, leading to some impressive break-

throughs in face generation. While many games have

a need for (human) faces in various roles, including for

freshly generated NPCs, the character design feature

of role-playing games is a standout application case for

controllable PCG, where machine learning-based meth-

ods have yet to make their mark. Depending on the

features of the game, these faces or models might need

to be animatable, so that they can produce believable

movements or facial expressions.

3.4 Textures

Textures are used in almost all 3D games, and is per-

haps the type of content that has the fewest function-

ality constraints. Procedural methods such as Perlin

Noise [24, 89] have been used for texture generation

in games since the birth of commercial 3D games with

DOOM. Deep learning methods for texture generation

could provide a viable alternative in this case.

3.5 Music and Sound

Most games feature a soundtrack, often composed of

both music and sound effects. The constraints on the

soundtrack tend to be relatively soft compared to other

types of content constraints; the sound effects should

be appropriate to the actions in the game at any given

moment, and the music to the emotional tone of the

moment, but inappropriate sound does not necessarily

break the game. Quite a few games involve some kind

of procedural soundtrack, and some research projects

have focused on music generation able to adapt to af-

fective shifts in real-time [106]. At the same time, deep

learning has made impressive strides in learning to gen-

erate music with some modes of controllability [18], but

we have yet to see the use of deep learning methods for

sound generation in games.

4 Training Methods and Neural Architectures

of DLPCG

Due to the different types and roles of content in games,

diverse deep learning methods have been adapted for

PCG. In this section we present different ways to apply

deep learning for PCG systems, the target content, and

their generality. The approaches are categorized by the

type of machine learning method used for training. Ad-

ditionally, works combining evolutionary computation

techniques to deep learning methods are also presented.

The works reviewed in this section are summarized in

Fig. 1, categorized by the content types and deep learn-

ing methods.

Generating different types of content often requires

different types of neural architectures. In the use cases

reviewed in Section 4.1 and Section 4.2, LSTMs are

mostly used for time-dependent sequential data (e.g.,

action sequences, agent paths, charts for rhythm) and

language models, while convolutional neural networks
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Fig. 1: This figure shows the distribution of research by methods and content types. We notice the disproportion-

ately large amount of work on 2D level and map generation compared to all other content types.

are often used for any type of image-like content. A very

popular class of architecture for content generation are

GANs [32]. A GAN consists of two networks, a gen-

erator and a discriminator that are trained iteratively

to allow the generator to create more realistic content,

while the discriminator is getting better at distinguish

generated content from real data.

4.1 Supervised Learning

Supervised learning (SL) methods have been used in a

variety of ways for content generation. Often as a pre-

dictor, SL models predict the gameplay outcomes of

games with the generated content, either for evaluating

the quality of content, or for meeting specific prefer-

ences (such as game style, image style and color) or

adapting the generated levels to desired skill-depth.

The study of Summerville et al. [127] extracted

player paths in Mario from gameplay videos and

used them to annotate training levels. Then, separate

LSTMs are trained on levels annotated with different

players’ paths in order to generate personalized levels

based on the players’ chosen paths [127]. Then, Guzdial

et al. [40] trained a random forest on expert-labeled

design patterns from Mario levels (i.e., small sections

of levels given descriptive class labels) to classify level

structures and an autoencoder with level structures and

labels as input to generate new instances of those design

patterns.

Karavolos et al. [57] trained a CNN to predict the

outcomes of a simplified 3 versus 3 multiplayer death-

match shooter game to evaluate and determine if the

levels, represented by maps and weapon parameters, are

balanced or favor a team. Based on the outcome pre-

dictor from [57], Karavolos et al. [58] further designed

a DL surrogate model for pairing levels and character

classes for desired game outcomes.

Tsujino and Yamanishi [139] represented rhythm-

based video game levels by charts and implemented

Dance Dance Gradation (DDG), a system with LSTMs

trained on levels of different degrees of difficulty to gen-

erate new levels. DDG can tune the difficulty degree of

generated charts by changing the fractions of easy or

hard charts used to compose the training dataset [139].

Liang et al. [67] used C-BLSTM [105] to generate lev-

els of rhythm games, represented by actions and corre-

sponding timing, of different difficulties, trained on the

beatmaps collected from OSU!, a famous rhythm game.

Beside considering skill-depth required in game lev-

els, the emotion sent by content has also been studied.

Guzdial et al. [38] studied the emotion shown by the

game visuals, such as abstract texture, color of game

maps and scene, including the visual effects, and trained

a CNN to generate textures for some given target emo-

tion.
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Soares and Bulitko [123] trained a VAE [63] to clas-

sify NPC behaviors to Leaders, Followers, and Random,

in a simple artificial life environment. Sirota et al. [114]

trained two RNNs, a speaker and a listener, by playing

a referential game with concepts and human-generated

annotations to design communication systems for NPCs

in games.

4.2 Standard Unsupervised Learning

Most unsupervised learning (USL) techniques in PCG

focus on learning a representation of all the content and

then sample new content from this representation. For

example, using autoencoders to learn to replicate game

levels. Another direction usually taken is transforming

the data into a sequence and use unsupervised learning

to learn the relation between these elements similar to

Markov Chains relations. For example, learning from a

text corpus how to predict the next word based on the

previous ones.

Summerville and Mateas [126] trained LSTMs on

Mario levels annotated with agent paths by represent-

ing the 2D levels as one dimensional strings of tiles.

Jain et al. [54] trained autoencoders on sliding-window

segments of Super Mario Bros levels, which were rep-

resented by 2D arrays, to generate and repair levels.

Jain et al. [54] considered a tile as being empty or

occupied, but has inspired many follow-up investiga-

tions. Blending has lead to new and creative game lev-

els. Sarkar and Cooper [96] trained separate LSTMs

on two different game domains (Mario and Kid Icarus),

and generated new blended level sections with alternat-

ing generators. Sarkar et al. [99] further explored gen-

erating blended levels by training variational autoen-

coders and GANs on Mario and Kid Icarus, and gen-

erating new blended level sections that interpolate be-

tween the domains using the latent vectors. Snodgrass

and Sarkar [121] also used VAEs to model and generate

platformer level structures which was finished by using

a search-based approach to blend details from several

other games. Sarkar et al. [100] explored two variants of

VAEs (linear are GRU) for blending platforming game

levels and associated paths in those levels. Sarkar and

Cooper [97] trained VAEs to learn a sequential model

of level segment generation and a random forest clas-

sifier to determine the exact location of a newly gen-

erated segment to the previous segment (an ancestor).

The resulted levels are not only more coherent [97], but

also more creative [98] because of the changing altitude

of platformer and various possible heading directions.

Yang et al. [146] trained Gaussian Mixture VAE to

learn relation between game level segments from various

games (Super Mario Bros, Kid Icarus, and Megaman)

and later be able to generate level segments that follow

a certain distribution/style. Davoodi et al. [15] trained

an autoencoder to repair manually designed levels for

different games by re-iterating it over the decoder while

using a trained discriminator from a GAN model to

determine the stopping criteria. Besides levels, autoen-

coder has also been used to generate 3D shapes [151].

Moreover, USL methods for image generation have

also been applied to generating sprites and characters

in games. The recent work by Mordvintsev et al. [83]

learned cellular automata (CA) to imitate the develop-

ment of organism and generate images, represented by

2D grids of cells. A cell is similar to the tile considered

in the MarioGan [140] (explained later in section 4.5).

A cell contains a cell state (e.g., a discrete value or a

vector of RGB values), while a tile contains a discrete

value which refers to an object type or part of it.

Applications of USL methods to content generation

for card games and text adventure games have also been

investigated. An example is [130]. Summerville and

Mateas [130] trained encoding and decoding LSTMs

on Magic: The Gathering cards, represented as se-

quences of tokens corresponding to the important in-

formation on the cards (e.g., mana cost, effect, power,

etc.). The LSTMs were trained on corrupted versions

of the cards, and encoded cards were used as input

to the decoder at generation time. Another example is

the endless text adventure game AI Dungeon 2 1 (ear-

lier version as AI Dungeon). AI Dungeon 2 is built on

OpenAI’s GPT-2 model [92], a 1.5B parameter Trans-

former, and fine-tuned on some text adventures ob-

tained from chooseyourstory.com, according to its

developer Nick Walton [142]. In a game, a player can

interact with the game by inputting text commands,

then the AI dungeon master will generate content of

the game environment (updates in the game story) ac-

cording to the commands and provide text feedback.

By doing so, each player can build his/her own unique

game story. Ammanabrolu et al. [2] focused on procedu-

rally generating interactive fiction worlds and proposed

AskBERT to construct knowledge graph. AskBERT ex-

tracts objective information in the game worlds, such as

characters and objects, via question-answering model.

Ferreira et al. [27] proposed Bardo Composer, a sys-

tem that automatically composes music for tabletop

role-playing games. In Bardo Composer, a BERT model

cooperates with a stochastic bi-objective beam search

model to identify music emotion, and then generate mu-

sic pieces that reflects the identified emotion.

1 https://github.com/AIDungeon/AIDungeon

chooseyourstory.com
https://github.com/AIDungeon/AIDungeon
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(a) Binary (b) Zelda (c) Sokoban

Fig. 2: Generated examples from three different prob-

lems using PCGRL envrionment introduced by Khalifa

et al. [62].

4.3 Reinforcement Learning

Using reinforcement learning (RL) for PCG is a very re-

cent proposition which is just beginning to be explored.

Here, the generation task is transformed into a Markov

Decision Process (MDP), where a model is trained to

iteratively select the action that would maximize ex-

pected future content quality. This transformation is

not an easy task and there is no standard way of han-

dling it.

One of the early projects that uses RL is by Chen

et al. [10]. They used a small network of one hidden

layer to generate a hearthstone deck of cards that can

beat a specific other deck given a certain player. The

agent can modify the current deck by substituting any

of its cards with a different one. The goal is to maximize

the win rate of the playing agent using the current deck

against a predefined deck.

Earle [23] used RL to play the game of SimCity

(Maxis, 1989). They used a fractal network (convo-

lutional network with structured skip connections) as

their network architecture and optimized it towards in-

creasing the city population. At each step, the agent can

change any space on the map to any other type. This

project is a borderline example of PCG. The aim of

the project was to play the game of SimCity where the

trained agent will learn to be a city planner/generator.

As we can see, most of the RL PCG requires an

adaptation for the input to be able to be used dur-

ing generation. Khalifa et al. [62] introduced a frame-

work2 for 2D level generation using RL. The genera-

tion process is framed as an iterative process where at

every step the generator modifies the level toward cer-

2 https://github.com/amidos2006/gym-pcgrl

tain goals (based on the current generation problem).

They proposed 3 main transformation: Narrow, Turtle,

and Wide. These transformation focus on the different

ways that the generator controls where it is modifying.

Fig. 2 shows examples of the generated levels over three

different problems using trained agents in the PCGRL

framework.

4.4 Adversarial Learning

Adversarial learning (AL) models are perfect for gener-

ating content represented by pixel-based images or 2D

array of tiles, such as levels as a map, landscapes and

sprites. The most popular model among the reviewed

works would be GAN [32] and its variants.

2D levels of most arcade games can be simplified as

2D arrays of tiles, where each tile contains a type of

object or part of an object. Examples include the lev-

els designed using Video Game Description Language

(VGDL) [101] in the General Video Game AI plat-

form [87, 88], and the tile-based levels in the Mario

AI framework [110]. As shown in the top-left of Fig.

4, each tile contains a type of object or part of it,

such as ground, pipe, empty and enemy, represented

either by a symbol or an integer. Kuang and Luo [64]

implemented an interactive map designing system us-

ing different generative models to generate 2D maps,

which can be further extended to 3D scenes. Torrado

et al. [137] designed a new GAN architecture, Condi-

tional Embedding Self-Attention GAN (CESAGAN),

to tackle the low quality and diversity issue of gener-

ated 2D levels by traditional GANs, and increased the

amount of training data to CESAGAN with a boot-

strapping technique. They applied their technique to

Zelda, a dungeon crawler game from GVGAI [87].

To facilitate the input form for generative mod-

els, such as GANs, 3D landscapes are often converted

to 2D height map. Wulff-Jensen et al. [145] trained

a deep convolutional GAN (DCGAN) on digital ele-

vation maps sampled from the Alps dataset to gen-

erate 2D height maps as input to Unity for creating

3D landscapes for video games. Giacomello et al. [31]

converted each 3D DOOM level to several 2D images,

among which a HeightMap was used to indicate the

3D information and other were top-down images of the

corresponding level. In [31], two GANs were trained on

human-designed levels, one of which took plain 2D im-

ages as input and the other used both the images and

some of the extracted features. Park et al. [85] trained

a multistep DCGAN, adapted from [140], to generate

levels of an educational game, ENGAGE. The levels

were represented by a 2D array of tiles, from a top-

down view, during training and creation, and then con-

https://github.com/amidos2006/gym-pcgrl
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verted to 3D levels to be used in the game [85]. Volz

et al. [141] explored the use of GANs in the context

of match-3 levels, attempting to model the local and

global structures of those levels. Awiszus et al. [3] pro-

posed token-based oneshot arbitrary dimension genera-

tive adversarial network (TOAD-GAN), adapted from

SinGan [108], trained on a single sample level, to gener-

ate tile-based levels. In the work using GANs for level

generation that have been reviewed so far, game levels

are tackled as image only during training while the con-

straints for validating levels are not considered at all.

Recently, Di Liello et al. [20] presented constrained ad-

versarial networks (CANs) which encourages the gen-

erator to learn to generate valid levels by penalizing

it due to invalid structures generated during training.

But still, these methods generate individual segments

of platformer levels separately and then combine them

together randomly or according to some increasing level

difficulty [140]. Different from above work, Fontaine

et al. [29] proposed latent space illumination (LSI),

which uses quality diversity algorithms, such as Covari-

ance Matrix Adaptation MAP-Elites (CMA-ME) [28],

to search the latent space of trained generators, aiming

at increasing the diversity of generated levels. A recent

work by Kumaran et al. focused on generating levels

in multiple distinct games. Instead of training several

GANs for these games separately, a novel GAN archi-

tecture, composed of a branched generator and multiple

parallel discriminators, was proposed [65].

Besides generating 2D and 3D levels represented

as pixel-based or tile-based images, texture [25] and

sprite generation [48] have also been investigated.

Hong et al. [48] generated 2D image sprites using a

multi-discriminator GAN, in which two encoders were

used for bone graph, shape and color, without shar-

ing parameters. Additionally, two discriminators, one

for shape and the other for color, were used in [48]

to generate sprites’ skeletons and color, respectively.

Another potential application is GAN-based charac-

ter generation [55] for video games, such as The Sims

(Maxis, 2000). Wang and Kurabayashi [143] proposed

Sketch2Map to generate 3D terrains from sketches.

Sketch2Map used a conditional GAN (cGAN) to con-

vert a sketch into an elevation bitmap, which is inter-

preted to generate the practical terrain asset by a de-

terministic algorithm [143].

More recently, Bontrager and Togelius [4] proposed

a new training method similar to GANs, where the

network consists of two parts: generator and agent.

The generator is trying to generate new playable levels

adapted to the agent’s strength, while the agent plays

the game and reports how playable it is and how hard

it is to play. Similar to GANs, the agent will try to im-

Fig. 3: The key phases of DeLeNoX for the autonomous

generation of content [69]. DeLeNox adopts the prin-

ciples of exploration (realized via constrained novelty

search), transformation (realized via deep denoising au-

toencoders) and iterative refinement (realized through

the increasing complexity of NEAT architectures). Im-

age reproduced with authors’ permission.

prove itself by playing the new generated levels, while

the generator will improve itself based on the agent per-

formance on its generated levels. In this work, RL is

used to play the generated content and not to generate

the content; an RL agent interacted with the generative

model to create levels adapted to the agent’s playing

strength.

4.5 Evolutionary Computation

There is a long tradition of using evolutionary compu-

tation (EC) approaches for training (deep) neural net-

works. While these are sometimes not regarded as DL,

the standard definition of DL does in fact not reference

gradient descent. Most evolved networks are deep, and

architectures created by evolutionary algorithms such

as NEAT [124] often have multiple layers and recurrent

components [102].

For example, Hoover et al. [51] represented game

levels as functional scaffolding for musical composition

voices [49]. Taking Mario as an example, each level is

presented by a set of voices with the size of possible

tile types in a level. Each voice is a one dimensional

array of same length of the level, in which each element

indicates the vertical position of the tile if it presents

on the corresponding column, otherwise 0. Neural net-

works were trained and evolved through neuroevolu-

tion of augmenting topologies (NEAT) [124] to suggest

placements of tiles in Mario levels [51].
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Fig. 4: Overview process of MarioGan [140], reproduced

with authors’ permission.

Hoover et al. [50] evolved CPPNs through NEAT

for generating both audio and visual content in the

game AudioInSpace. Risi et al. [94] evolved and trained

CPPNs with NEAT to generate flower images for a

flower-breeding video game Petalz 3. The CPPNs of dif-

ferent flowers can be mated to generate new flowers.

Evolutionary Computation techniques have also

been combined with unsupervised DL methods for gen-

erating new content. A prominent example is the Deep

Learning Novelty Explorer (DeLeNoX) [69]. DeLeNoX

alternates phases of content exploration and content

transformation for the generation of spaceships, de-

picted as 2D black and white images (Fig. 3). In the ex-

ploration phase, constrained novelty search seeks max-

imally diverse artifacts and generates a training set. In

the transformation phase, a deep autoencoder learns

to compress the variation between the found artifacts

into a lower-dimensional space. The newly trained en-

coder is then used as the basis for a new fitness function,

transforming the search criteria for the next exploration

phase [69]. The process continues repeating exploration

and transformation phases thereby iteratively refining

and complexifying the generated outcomes.

Arguably one of the most popular examples of EC

for DLPCG is the aforementioned Latent Variable ap-

proach [5], which combines unsupervised learning in

the form of a GAN/VAE with evolutionary compu-

tation to search for content in the learned space of a

GAN/VAE. Originating from synthesizing new finger-

print [95], in the context of games this approach has

been employed to generate Super Mario Bros and Zelda

levels [104, 140].

3 https://www.facebook.com/Petalz-238904402867390/

Fig. 5: Screenshot of interactive evolution interface in

[103], reproduced with authors’ permission.

In the work of Volz et al. [140], a DCGAN [91] is

trained on a set of level segments of Super Mario Bros

represented by 2D array of tiles, and then latent vari-

able evolution (LVE) [5] is applied to search for levels

that are more playable and encourage particular be-

haviors evaluated by the games simulated by an A*

agent. The overview process is illustrated in Fig. 4. The

resulted framework, MarioGAN [140], certainly identi-

fied a new and creative way of generating game con-

tent. However, two issues have been observed: (i) broken

pipes occur in some of the level segments generated by

GANs, and (ii) the segments were connected directly in

an arbitrary order to build complete levels, while how

to combine segments to make the resulted levels more

structured and organized was not exploited. To tackle

the former issue, Shu et al. [113] trained a MLP model

to learn the surrounding information of tiles and de-

tect wrong tiles in the generated segments (e.g., Fig.

6). An evolutionary repairer is designed to search for

optimal replacement tiles for fixing the broken pipe

[113]. To tackle the latter issue, a graph grammar was

used to combine rooms of Zelda generated by a GAN

into dungeons [36], and Schrum et al. [104] proposed

CPPN2GAN which used Compositional Pattern Pro-

ducing Networks (CPPNs) to organize level segments

generated by GANs into complete levels.

Inspired by [140], Irfan et al. [52] applied LVE and

trained DCGANs on randomly generated levels of 3

single player games from the GVGAI framework [87],

Freeway, Zelda and Colourescape. Based on the work

of [140], Mott et al. [84] designed a new fitness func-

tion for CMA-ES as a weighted sum of the number of

frames that an action is feasible, the fraction of agents

that completed a level and the largest fraction to con-

trol the difficulty of generated levels. The weights are

evaluated and tuned via the human playing-tests per-

formed on the levels generated using the corresponding

fitness function [84].

https://www.facebook.com/Petalz-238904402867390/
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Fig. 6: Top: A MLP model trained on human-designed levels labels wrong tiles (in red rectangle) and unsure tiles

(in blue rectangle) in a segment. Bottom: Segment fixed by an evolutionary repairer assisted by the trained MLP

model [113]. Images reproduced with authors’ permission.

Evolutionary methods for content generation can

also be combined with user feedback, such as through

interactive evolutionary computation (IEC), in which

human evaluation is used instead of the fitness eval-

uation by a simulator. For example, Hastings et al.

[44] used CPPNs to represent weapons in a multi-

player video game Galactic Arms Race4. The CPPNs

are evolved during the game playing with the prefer-

ences abstracted from the past playing of players. IEC

combined with LVE can allow users to breed their own

game levels, such as Zelda and Mario [104]. Based on

[36, 140], a mixed-initiative tile-based level design tool

was implemented by Schrum et al. [103], which allows

human to interact with the evolution and exploration

within latent level-design space (interface illustrated in

Fig. 5), and to play the generated levels in real-time.

EC methods can also collaborate with human to

generate and evaluate or repair game content. Liapis

et al. [71] presented Sentient World tool which allows

interactions with human designers and generates game

maps using Neuroevolution via novelty search. Sentient

World can generate high resolution maps based on the

rough terrain sketches drawn by designers, as well as

the iterative refining via selection and editing options

opened to designers.

Karavolos et al. [59] generated levels of a first-person

shooter (FPS) game with targeting gameplay outcomes,

in which a genetic algorithm is used to generate levels of

specific fitness values based on the predicted outcomes

by a CNN trained on simulated matches.

4 http://gar.eecs.ucf.edu/

5 Using Deep Learning to Evaluate Content

and Content Generators

Evaluating content generators is not a trivial task.

Much of the ML and DL-based PCG work has focused

their evaluations on the generated content, and used

those evaluations as proxies for evaluating the genera-

tor itself. However, the computational creativity com-

munity has identified that in order to get a full picture

of the generator (or creative program) the process by

which the output content is created should be evalu-

ated as well. Colton [11], Jordanous [56], Pease and

Colton [86] each propose frameworks and methodolo-

gies for evaluating the creativity of the process of a gen-

erator. Smith and Whitehead [116] (later expanded on

by Summerville [125]) proposed methods for holistically
evaluating a content generation approach, by evaluat-

ing large swaths of generated content to get a broader

understanding of the generative space of a content gen-

erator and its biases within that generative space. Sum-

merville [125] focused on ML-based generators, and pro-

posed approaches for highlighting the shortcomings and

strengths of a generator through methodically high-

lighting generated artifacts (e.g., artifact most similar

to an artifact in the training set).

In this section we survey uses of deep learning for

content generation in an indirect fashion. In particular,

we list studies (cf. Fig. 7) that consider deep learning

for testing or evaluating game content through the anal-

ysis of generated content (Section 5.1), construction

of human-like playing bots (Section 5.2), or the con-

struction of reliable models of player experience (Sec-

tion 5.3). We additionally highlight which of these ap-

proaches focus on evaluating the generator itself instead

of only the content.

http://gar.eecs.ucf.edu/
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5.1 Analyzing Content

Statistical measures on the generated content and sim-

ilarity measures based on the content used in train-

ing set (e.g., [77]) can give insight into the generative

space of a content generator and its biases within that

space. Statistical measures can be used to compare the

distribution of generated content to the distribution of

the training set [125]. Similarity measures can also be

specifically designed for this task. For example, Lucas

and Volz [77] compared occurrences of small structures

in the generated set to their presence in the training set

to measure similarity.

Many similarity and statistical measures suffer from

the same drawback of only measuring what is quan-

tifiable. Recent approaches in deep learning can help

avoid this drawback by learning latent semantic fea-

tures of the content. Recent work has developed ap-

proaches to style transfer [61, 74] by traversing the

learned latent space of the model, and others have an-

alyzed the learned latent space of their models to find

semantic meaning in the features [1]. These advances

have led to the use of latent space-based distance and

similarity measures [144]. Leveraging the latent space

learned by a model to create similarity measures be-

tween pieces of content might allow us to develop more

semantically meaningful similarity measures in addition

to the statistical measures currently in use. As an in-

dicative example of such a research direction, Isaksen

et al. [53] categorized tile-based 2D game levels with se-

mantic hashing based on autoencoders. The proposed

approach [53] can be used to categorize the generated

level segments or rooms and group the ones sharing sim-

ilar styles to build a complete game level or dungeon.

5.2 Playing Content

In this section we review methods based on ANNs and

DL for reliable playtesting which can be used, in turn,

to evaluate game content generators in an indirect fash-

ion. Simulated playtesting [46, 47, 140] of generated

content can give quick insights into the features of the

content and the generative space of the content genera-

tor [116, 125]. Guzdial et al. [42] propose the use of deep

reinforcement learning agents for simulated playtesting

as a way of creating more human-like playtraces. Guz-

dial et al. [42] specifically focus on deep RL agents for

Mario, where human-like control is simulated by giv-

ing the agent imprecise controls via stochastic effects

on actions. Similarly, Min et al. [82] designed a goal

recognition framework based on stacked denoising au-

toencoders for open-ended games, which can be used

to personalize games for different players according to

their actions.

Karavolos et al. [57] trained a CNN to predict the

outcomes of a simplified 3 versus 3 multiplayer death-

match shooter game to evaluate and determine if the

levels, represented by maps and weapon parameters, are

balanced or favoring a team. Based on the predictor for

the same deathmatch shooter game, Karavolos et al.

[58] further designed a DL surrogate model for pairing

levels and character classes for desired game outcomes.

Gudmundsson et al. [35] imitated the behavior of hu-

man through SL and performed experimental study on

non-deterministic puzzle games Candy Crush Saga and

Candy Crush Soda Saga. A CNN was trained on human

player data, and then used to predict the action that

human players most likely to select when playing levels

that were unseen during training [35]. This approach

can be used to measure metrics such as the diversity of

actions to evaluate generated new levels. Notice, each of

these methods focuses on evaluating the generated arti-

facts, but can be expanded to more broadly evaluating

the generator itself if the results of artifact evaluations

are used to stratify the generative space or further ex-

plore the biases and capabilities of the generator.

5.3 Experiencing Content

Human user trials and surveys can provide the most

useful insight into the less quantifiable (i.e. subjective)

features of the content and the generation process, such

as the human-perceived quality of the generated con-

tent over time. A large volume of studies focus on the

use of deep learning for modeling aspects of player ex-

perience which can be used, in turn, to evaluate the con-

tent that is generated and experienced by the player.

Player experience is usually provided as annotated la-

bels (ratings or ranks) or even continuous traces via

crowdsourcing. Running user evaluations and crowd-

sourcing labels of subjective aspects such as experience,

however, can be a laborious task which may not be fea-

sible if what is desired is the quick iteration on the

generative system. One approach for further leveraging

the output of a user evaluation is to treat the user eval-

uations as features to be learned. Larsson and Petri

[66] trained neural networks using NEAT to predict

the user rating of user-created StarCraft maps. This

approach [66] can be extended to evaluate generated

StarCraft maps.

Within the platformer genre, a series of studies by

Shaker et al. [109, 110, 111] investigate the use of

DL models of player experience for the generation of

experience-tailored Super Mario Bros levels. Camilleri
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et al. [8] view a player’s believability as a content gener-

ation problem and used various forms of deep networks

to infer the mapping between game content, gameplay

and believability in a Super Mario Bros variant. The

networks of that study predict the degree to which

a combination of gameplay behavior and a generated

level can be considered believable. Guzdial et al. [42]

trained a CNN to predict rate of the difficulty, enjoy-

ment and aesthetics of game levels and performed case

studies on Infinite Mario Bros, which was further en-

hanced by the features extracted from search history of

an A* agent. Similarly, Summerville et al. [128] used a

regression model on a large set of statistical measures

to find measures that predict those same human eval-

uations of Mario levels. More recently, Pfau et al. [90]

proposed deep player behavior modeling (DPBM) with

a multi-layer perceptron (MLP) trained on behavioral

data and game observation to map game states to ac-

tion probabilities. All aforementioned approaches can

be used, for instance, to evaluate generated levels.

The first application of CNNs for modeling player

experience is introduced by Martinez et al. [80]. CNNs

in that study consider and fuse the content of a 3D

maze prey-predator game and the in-game behavior of

the player [79] and predict reported ranks of player ex-

perience via use deep preference learning. Looking at

the challenge of player affect modeling by solely focus-

ing on gameplay, Makantasis et al. [78] used various

CNN models to predict the level of arousal of survival

shooter games directly from the pixels of gameplay in

a general player-agnostic fashion. Thus CNNs map be-

tween gameplay behavior and game content as repre-

sented by pixels—such as in-game play features and UI

elements. In principle, such surrogate models of arousal

can be used directly and evaluate video content of any

game within the the survival shooter genre. In a similar

recent study various types of neural networks have been

trained to predict the continuous viewer engagement of

PUBG streamed games on Twitch [81]; the engagement

models obtained are highly accurate and general across

different streamers. Camilleri et al. [9] took player expe-

rience modeling to the next level and built models that

are general across many different games. The models

are build on simple 1-hidden layer networks indicating

the potential of the methodology with larger DL repre-

sentations for the general evaluation of the experience

of game content across games. Similar to the previous

section, each of these methods are predominantly used

to evaluate content. However, using these methods to

evaluate large samples of content from a generator can

enable a meta-analysis of the types of content a partic-

ular generator tends towards creating.

Analyzing content
[1, 53, 61, 74]

Playing content
[35, 42, 57, 58, 82]

Experiencing content
[8, 42, 66, 109, 110, 111]
[9, 78, 79, 80, 81, 90, 128]

Fig. 7: Summary of the works that focused on analyz-

ing, playing or experiencing generated content.

6 Discussion and Outlook

The combination of deep learning and PCG in games

is beneficial for both game research—as deep learning

enhances our capacity to generate content—and deep

learning research since games pose challenging prob-

lems for deep learning to solve. Deep learning opens

new opportunities for the autonomous generation of

content of any type and has a plethora of use cases

within games. As we saw throughout this article, deep

learning may serve as a content generator, as a con-

tent evaluator, as a gameplay outcome predictor, as a

driver of search, and as a pattern recognizer for repair

and style transfer. This section surveys the areas with a

particular importance for the current and future use of

DLPCG in games with an emphasis on mixed-initiative

generation, style transfer and breeding, underexplored

content types, learning from small datasets, orchestrat-

ing different content types within a game, and general-

izing generation across games.

6.1 Mixed-initiative DLPCG

Autonomous PCG systems, including the cases where

the initiative of the human designer is limited to al-

gorithmic parameterizations [148], can hardly generate

content with target quality or features. Recently, more

and more work takes into account the preferences or in-

put of designers or players in different ways while gen-

erating content. Mixed-initiative PCG [149], formally

defined as “the process that considers both the human

and the computer proactively making content contri-

butions to the game design task” [148], offers a more

controllable and practical design process that may in-

volve the use of DLPCG algorithms but their use is

limited so far.

Level generation in games, as a popular application

of mixed-initiative DLPCG, requires some initial spec-

ifications (i.e. the initiative) from the designer—e.g. in

the form of sketches [43]—to assist the design process.

A popular example of the mixed-initiative paradigm

is the shallow neural network model presented in [70]
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which generates game strategy maps based on the ter-

rain sketches drawn by designers. The map generation

feature of Sentient Sketchbook features neuroevolution-

ary search which is driven by design objectives and the

novelty of the map. Moving from level to image gen-

eration, Serpa and Rodrigues [107] adapted the GAN-

based Pix2Pix architecture to generate both gray and

color pixel art sprites from sketches using a single net-

work.

Taking platform games as the domain under investi-

gation, Guzdial et al. [39] developed a mixed-initiative

Super Mario Bros level design tool that leveraged sev-

eral existing PCGML techniques, including Markov

chains [117], LSTM [126] and Bayes Net [37], to assist

the user in creating levels. Guzdial et al. [39] gathered

data on how the users interacted with the models in

the tool, and trained a CNN on that collected data.

This CNN was then used to better predict and gener-

ate level sections along with the user. Later, Guzdial

et al. [41] used the trained CNN with active learning

based on the user current interaction to generate levels

for Super Mario in a mixed-initiative fashion [68, 149].

Recently, Schrum et al. [103] allowed the designers to

change manually the latent vectors of the trained gen-

erative model or define the mutation strength of their

evolutionary generator for tile-based 2D levels. Delarosa

et al. [17] presented RL Brush, a human-driven, AI-

augmented design tool also for tile-based 2D levels, in

which RL-based models have been used to enhance hu-

man design with suggestions generated by PCG meth-

ods.

6.2 Style Transfer, Breeding and Blending

Most style transfer methods and generative models for

image, music and sound [6], can be applied to gener-

ate game content. So far, only a few work focused on

the style transfer for game content (e.g., [71, 107, 150]).

[71] generated game maps based on the terrain sketches

and [107] generated art sprites from sketches drawn by

human. However, a number of diverse input sketches to

these two work can also be generated using deep learn-

ing approaches based on a single human sketch [43].

Moreover, algorithms and techniques designed for im-

age generation can often be adapted to the automatic

generation of faces and sprites in games. For instance,

[150] applied a neural styling algorithm [30] to change

artistic style of graphics in a strategy game Hedgewars5.

Another example is ArtBreeder6, which contains sev-

eral generative models for creating new images by im-

5 http://www.hedgewars.org/
6 https://artbreeder.com/

age breeding, among which, the models for portraits

and anime-style faces, can be used to generate comic or

video game characters and the one for landscapes can be

used to generate background images for games. Blend-

ing levels from different games has recently gained more

attention from the research community, with much re-

cent work focusing on blending platformer levels. Sarkar

and Cooper [96] and [99] trained separate models on

two different games, and then blended new levels using

these trained models via interpolation or alternation.

Snodgrass and Sarkar [121] used VAEs to generate level

structures, and a search-based approach to blend de-

tails from various platformers, while Sarkar et al. [100]

directly trained VAEs on levels from several platform-

ing games and interpolated the latent vectors between

domains for blending.

6.3 Underexplored Content Types

Most of the reviewed works focus on the design of con-

tent that can be represented by 2D images of tiles or

pixels, such as 2D levels, landscapes and sprites (cf. Sec-

tion 4). Only a few of them considered text and narra-

tive generation, music and rhythm generation, weapons

generation for FPS, etc.

In the research we have surveyed, platformer and

dungeon-like games (e.g., arcade games, FPS games and

adventure games) are clearly over-represented. In par-

ticular, Super Mario Bros and Zelda are usually used

for testing the GAN-based level generation approaches.

However, the types of games are not limited to ar-

cade games and the generation of some commonly seen

types of game content are rarely investigated. For in-

stance, the generation of characters (skills, actions, and

images) for fighting games and multi-player online bat-

tle games; the generation of cards and rules for strategy

card games (e.g., Hearthstone); event generation (sto-

ries and effects) (e.g., for The Sims); goal generation

in all kinds of games. Several approaches from other

fields can be adapted to DLPCG, such as transfer learn-

ing for image generation in games, story generation for

text-based adventure games and conversational NPCs.

6.4 Content Generation in Real-time - Personalized

Game content

Another less explored area is content generation in real-

time, such as generating level segments during game-

play, according to the actual player’s playing skill-

depth, style and preferences. Taking Super Mario Bros

as an example, several MarioGAN models can be

trained offline using a variety of fitness functions with

http://www.hedgewars.org/
https://artbreeder.com/
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different aims (e.g., encourage more jumps by putting

more pipes, put more coins for players to collect, adjust

the difficulty by controlling the number of enemies),

and then be selected to generate new level segments

during the game after determining the player’s prefer-

ences and performance according to the gameplay data

during first segments.

6.5 Learning from Small Data

One of the main limitations for most forms of PCG

based on deep learning, or PCGML in general, is the ac-

cess to training data. Some games have a large amount

of existing content, either made by developers or by

users. However, for a game in development there may

not be content to learn from, because the content may

not be made yet. In fact, not having to produce all of

that content may be a prime reason for wanting to train

a content generator in the first place. What would be

desirable here would be a way of training a generator

based on only a few pieces of hand-designed content,

such as items, levels, or characters.

One approach to doing this is bootstrapping, where

a generator is first trained on just a few examples,

and whenever it produces new content that satisfies

the functionality constraints, this content gets added

to the training set for continued training of the gener-

ator [137]. This approach requires a reliable test of the

functionality constraints, for example the playability of

a level can be tested with game-playing agents.

Note that the amount of data required to train a re-

liable model varies greatly depending on the complexity

of the model, the complexity of the data, and the train-
ing procedures of the model. For example, the training

data limitation does not apply to PCG methods based

on reinforcement learning. Further, MarioGAN [140]

was trained on a single Mario level broken into many

sections. Snodgrass et al. [122] explored the effects of

the amount and diversity of training data on a simple

Markov chain model and an LSTM, and found that the

benefits of additional data dropped off after several lev-

els. Further studies exploring the data requirements of

DLPCG models can help illuminate the usability and

scalability of these approaches.

6.6 Generalization across Games

Another, and arguably better, approach to learning

generators for games for which you do not (yet) have

much content would be trained on content from other

games. After all, games from a particular genre have

much in common, and it should arguably be possible

to train on FPS levels from Quake, Halo and Call of

Duty to learn to generate new levels for Half-Life. It

should be even easier to train character models on exist-

ing human-designed characters from several open-world

games, as they share the same functionality constraints.

The trained generator would likely be a conditional

model, that takes some encoding of the characteristics

of a game as input. In all of these cases, the deep learn-

ing model would have to learn to represent the under-

lying similarities between content for the games it was

trained on, as well as the differences.

6.7 Orchestration for Game Generation

A key future research direction for any PCG framework

is the generation of more than one domain of compu-

tational creativity within games. The six key compu-

tational game creativity domains as defined by Liapis

et al. [72] include visuals, audio, narrative, levels, rules

and gameplay. A process that considers the output of

two or more of these domain generators up to the gener-

ation of a complete game is referred to as orchestration

[73]. In other words, orchestration can be defined as the

“harmonization of the game generation process” [73].

While orchestration is a core aim for the au-

tonomous generation of complete games Liapis et al.

[73] reported only a few game generation systems that

considered more than one generation domain. These in-

clude Angelina [12, 13], Game-O-matic [138], Sonancia

[76], AudioInSpace [50] and the FPS generator by Kar-

avolos et al. [58, 60]. Among these case studies of orches-

trated game generation only a few can be considered

early embryos of DLPCG-based game orchestration. In

particular, the work by Karavolos et al. [58, 60], So-

nancia [76], and AudioInSpace [50] use various forms

of shallow and deep neural networks—both as surro-

gate models (indirectly) and as generative functions

(directly)—to generate content for multiple domains

within games. As deep learning is of particular impor-

tance for fusing the generation process across content

representations of dissimilar resolutions and character-

istics [148], we expect to witness an increase in DL re-

search work towards achieving game orchestration.

7 Conclusions

The work surveyed in this paper is the result of two

convergent trends from the last few years. One is the

increasing use of deep learning for generative tasks in

non-game contexts, such as GANs and VAEs used for

generating pictures of faces and RNNs used for generat-

ing voices and music. The other is the increasing use of
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machine learning in PCG, something that was unheard

of until five years or so ago. Both of these trends build

on the deep learning revolution itself, which has made

machine learning effective on completely new classes of

problems.

As a result, interest in deep learning for PCG has

exploded. Examples abound, as our survey shows. It is

very likely that we will see rapid progress in this re-

search direction in the near future. This survey paper

attempts to contribute to this progress by surveying

and systematizing this work and implicitly and explic-

itly pointing out relevant and fertile research problems.

We believe that this is a very timely effort given the

exciting pace of this field.

Deep learning methods have been applied alone or

in collaboration with other PCG methods to gener-

ate game content and to analyze, play and experience

content. Due to the characteristics of different types

of content, different types of deep neural architectures

have been used. Among the reviewed work, the widely

used neural architectures include convolutional neural

networks for supervised learning tasks, varying from

generating texture or music for target emotion to pre-

dicting game outcomes or difficulty rate; long short-

term memory for generating sequential data like charts

for rhythm and narrative or for predicting action se-

quences; deep variational autoencoders, mostly used

for generating level maps and sometimes for classifying

NPCs’ or players’ behaviors; and generative adversar-

ial networks for creating image-like content (e.g., level

maps, landscapes, faces and sprites). A part from the

direct use of deep learning methods or their alliance

with evolutionary computation to generate game con-

tent, they have also been used for evaluating content

and content generators in an indirect manner.

Although a variety of game content (e.g., levels,

text, character models, textures, music and sound) have

been investigated, the generation of content like event,

goals or character features with skill-depth can be ex-

ploited more. As a future research, evolving or training

game-playing agents and content generators in paral-

lel, such as in the recent work of Dharna et al. [19],

is of great interest, as well as the generalization across

games. Besides those, online generation of game con-

tent to adapt players’ skill and preferences in real-time

will accelerate the realization of personalized games.
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Studying the effects of training data on machine

learning-based procedural content generation. In:

Thirteenth Artificial Intelligence and Interactive

Digital Entertainment Conference

123. Soares ES, Bulitko V (2019) Deep variational au-

toencoders for npc behaviour classification. In:

2019 IEEE Conference on Games (CoG), IEEE,

pp 1–4

124. Stanley KO, Miikkulainen R (2002) Evolving neu-

ral networks through augmenting topologies. Evo-

lutionary Computation 10(2):99–127

125. Summerville A (2018) Expanding expressive

range: Evaluation methodologies for procedural

content generation. In: Fourteenth Artificial In-

telligence and Interactive Digital Entertainment

Conference

126. Summerville A, Mateas M (2016) Super Mario as

a string: Platformer level generation via LSTMs.

In: International Joint Conference of DiGRA and

FDG

127. Summerville A, Guzdial M, Mateas M, Riedl MO

(2016) Learning player tailored content from ob-

servation: Platformer level generation from video

traces using lstms. In: Twelfth Artificial Intelli-

gence and Interactive Digital Entertainment Con-

ference

128. Summerville A, Mariño JR, Snodgrass S, Ontañón
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