
Ghost In the Grid: Challenges for

Reinforcement Learning in Grid World

Environments

Christopher David James Bamford

Ph.D. thesis

School of Electronic Engineering and Computer Science
Queen Mary University of London

2022

Abstract

The current state-of-the-art deep reinforcement learning techniques require
agents to gather large amounts of diverse experiences to train effective and gen-
eral models. In addition, there are also many other factors that have to be
taken into consideration: for example, how the agent interacts with its environ-
ment; parameter optimization techniques; environment exploration methods;
and finally the diversity of environments that is provided to an agent.

In this thesis, we investigate several of these factors.
Firstly we introduce Griddly, a high-performance grid-world game engine

that provides a state-of-the-art combination of high performance and flexibility.
We demonstrate that grid worlds provide a principled and expressive substrate
for fundamental research questions in reinforcement learning, whilst filtering
out noise inherent in physical systems. We show that although grid-worlds are
constructed with simple rules-based mechanics, they can be used to construct
complex open-ended, and procedurally generated environments.

We improve upon Griddly with GriddlyJS, a web-based tool for designing
and testing grid-world environments for reinforcement learning research. Grid-
dlyJS provides a rich suite of features that assist researchers in a multitude of
different learning approaches. To highlight the features of GriddlyJS we present
a dataset of 100 complex escape-room puzzle levels. In addition to these com-
plex puzzle levels, we provide human-generated trajectories and a baseline policy
that can be run in a web browser. We show that this tooling enables significantly
faster research iteration in many sub-fields.

We then explore several areas of RL research that are made accessible by
the features introduced by Griddly:

Firstly, we explore learning grid-world game mechanics using deep neural
networks. The neural game engine is introduced which has competitive perfor-
mance in terms of sample efficiency and predicting states accurately over long
time horizons.

Secondly, conditional action trees are introduced which describe a method
for compactly expressing complex hierarchical action spaces. Expressing hierar-
chical action spaces as trees leads to action spaces that are additive rather than
multiplicative over the factors of the action space. It is shown that these com-
pressed action spaces reduce the required output size of neural networks without
compromising performance. This makes the interfaces to complex environments
significantly simpler to implement.

Finally, we explore the inherent symmetry in common observation spaces,
using the concept of geometric deep learning. We show that certain geometric
data augmentation methods do not conform to the underlying assumptions in
several training algorithms. We provide solutions to these problems in the form
of novel regularization functions and demonstrate that these methods fix the
underlying assumptions.

2

Acknowledgements

Firstly, I’d like to thank my family. My Mother and Father have been supportive
and have listened to my worries and given me constant and unwavering support
throughout the years of my PhD. My Sister and Brother have always been on
the other end of the phone when I needed to vent about frustrations around
writing up, or just needed a pick me up.

I’d like to thank my supervisor Simon Lucas, who gave me this incredible
opportunity to pursue this PhD. Something I’ve always aspired to do in my life.
Thanks for all the feedback on paper and ideas that have been thrown around
over the past few years!

I want to thank all of the friends and colleagues I have made in the Queen
Mary Game AI Lab and across the Intelligent Games and Games Intelligence
(IGGI) network. In particular friends in the office that have been good fun:
James Goodman, Sebastian Berns, Elena Gordon-Petrovskaya, Nathan John,
Sara Cardinale, Martin Balla, Michael Aichmuller, Remo Sasso, Michelangelo
Conserva, Linjie Xu and Sahar Mirhadi. Also I would like to thank Raluca
Gaina, Diego Perez Liebana and Suzanne Binder for organising many games
nights, conferences and other events made me really feel like part of a commu-
nity.

A huge thank you goes out to the team at MetaAI where I did two internships
and gained my biggest publication: Tim Rocktäschel, Minqi Jiang and Mikayel
Samvelyan, Heinrich Kuttler and Ed Grefenstette. You helped me to present
ideas in a much more principled and scientific way, and I have learned a huge
amount from my time working with you.

I also want to say a thanks all the contributors and collaborators I have had
on several open-source projects: Shengyi (Costa) Huang, Aaron Dharna Ville
Kopio, Clemens Winter and Alvaro Ovalle.

Finally I’d like to thank Margaret Ainsley and our pet cat Poppy. I know
at times supporting me was difficult but I appreciate everything that you have
done for me.

3

Contents

1 Introduction 9
1.1 Griddly . 12

1.1.1 GriddlyJS . 12
1.2 Environment Interfaces . 13

1.2.1 Conditional Action Trees 13
1.3 Environment Modelling . 13

1.3.1 Neural Game Engine . 14
1.4 Equivariant Data Augmentation 14
1.5 Contributions . 16

1.5.1 Publications . 16
1.5.2 Open Source Contributions 18
1.5.3 Documentation and Tutorials 19

2 Background 20
2.1 Policy Gradient Methods . 23
2.2 Exploration . 24
2.3 Parallelization and Distributed Methods 26
2.4 Auxillary Losses . 28
2.5 Multi-Task Learning . 29
2.6 Transfer Learning . 30
2.7 Imitation Learning . 31
2.8 Unsupervised Environment Design 32
2.9 Alternate methods . 35

3 Griddly 37
3.1 Background . 37

3.1.1 Perception-Action Loop 39
3.1.2 Observation Spaces . 39
3.1.3 Action Spaces . 43
3.1.4 Rewards . 44

4

3.1.5 Engineering Considerations 44
3.2 The Case for Grid Worlds . 46
3.3 The Griddly Engine . 47

3.3.1 Architecture . 49
3.4 Griddly Description YAML (GDY) 49

3.4.1 Environment Configuration 50
3.4.2 Action Behaviour Configuration 50
3.4.3 Object Configuration . 51

3.5 Observation Space Configuration 51
3.5.1 Observers . 51
3.5.2 Partial Observability . 53
3.5.3 Custom Shaders . 54

3.6 Action Space Configuration . 54
3.6.1 Single Agent . 55
3.6.2 Single Agent - Multiple Object 55
3.6.3 Multi-Agent . 55
3.6.4 Multi-Agent - Multiple Object 56
3.6.5 Multiple Action Types . 56

3.7 Griddly GDY Example - Sokoban 57
3.7.1 Objects . 57
3.7.2 Actions . 58
3.7.3 Environment . 60
3.7.4 Putting It All Together 61

3.8 Baselines . 63
3.8.1 Random Network Distillation 64
3.8.2 Network Architecture . 65

3.9 Results . 66
3.9.1 Per-Environment . 66
3.9.2 Generalization . 70

3.10 Framework Comparison . 70
3.10.1 Features . 70
3.10.2 Efficiency . 72

3.11 GriddlyJS . 73
3.12 Proof-of-Concept: Escape Room Puzzles 76

3.12.1 Rapid Environment Development 76
3.12.2 Human-in-the-Loop Level Design 79
3.12.3 Recording and Controlling Trajectories 81

3.13 Experimental Details and Hyperparameters 82
3.13.1 Architecture . 82
3.13.2 Training And Evaluation 83

5

3.13.3 Modified Crafter Environment 83
3.14 Solution Trajectories . 87
3.15 Conclusions . 90

4 Environment Interfaces 91
4.1 Background . 91
4.2 Conditional Action Trees . 94

4.2.1 Compatible Action Spaces 95
4.2.2 Action Trees . 95
4.2.3 Valid Action Trees . 96
4.2.4 Conditional Masking . 96

4.3 Actor-Critic with Conditional Action Trees 97
4.3.1 IMPALA . 97
4.3.2 V-trace and masking . 97

4.4 Experiment Setting . 98
4.4.1 The "Clusters" Game . 98
4.4.2 Action Space Variations 99
4.4.3 Baselines . 101
4.4.4 Masking Ablation . 101
4.4.5 Model Architecture . 103

4.5 Results . 103
4.6 Discussion . 105

4.6.1 Auto regressive action spaces 106
4.7 Conclusion . 107

5 Environment Modelling 108
5.1 Background . 109

5.1.1 Deep Neural Network Modelling 109
5.1.2 Image Generation . 116
5.1.3 Video Prediction . 117
5.1.4 State Space Models . 121
5.1.5 Object-Centric Models . 127
5.1.6 Transformer Models . 131
5.1.7 Model-Based Reinforcement Learning 132
5.1.8 Neural GPU . 139

5.2 Neural Game Engine . 139
5.2.1 Observation Encoder - fo(Ot) 141
5.2.2 Observation Decoder - fd(sn) 141
5.2.3 Action Conditioning - fa(O

e
t , at) 141

5.2.4 Reward Observation Encoder - fr
o (Ot) 141

6

5.2.5 Reward Action Conditioning - fr
a(O

r
t , at) 141

5.2.6 Reward Decoder - fr
d(s

r
t) 142

5.3 Neural GPU enhancements . 142
5.3.1 2D Diagonal Gating . 142
5.3.2 Selective Gating . 143
5.3.3 Evaluation Methodology 144
5.3.4 Training . 145

5.4 Experiments and Results . 146
5.4.1 Comparison of gating mechanisms 146
5.4.2 Comparison with other methods 146
5.4.3 Ablation Testing . 148
5.4.4 Generalising to different size grids 149
5.4.5 Results on GVGAI games 150

5.5 Discussion . 150
5.6 Conclusion . 152

6 Equivariant Data Augmentation 153
6.1 Background . 154

6.1.1 Data augmentation in Supervised Learning 154
6.1.2 Data Augmentation in Reinforcement Learning 155
6.1.3 Equivariant Networks in Supervised Learning 155
6.1.4 Equivariant Networks in Reinforcement Learning 156

6.2 Invariant and Equivariant Augmentation 156
6.2.1 Augmentation Groups . 159

6.3 Data Augmentation using IMPALA 159
6.3.1 Augmentation Constraint Assumptions 160

6.4 Equivariant Networks . 162
6.5 Experiments . 162
6.6 Results and Discussion . 163

6.6.1 Augmentation vs Equivariance 163
6.6.2 Ablation Study . 163
6.6.3 No Regularization . 165
6.6.4 With Regularization . 166

6.7 Conclusions . 167

7 Conclusions and Future Work 169
7.1 Future Work . 171

7.1.1 Griddly . 171
7.1.2 GriddlyJS . 172
7.1.3 Conditional Action Trees 172

7

7.1.4 Entity Neural Networks 173
7.1.5 Environment Modelling 173
7.1.6 Geometric Deep Reinforcement Learning 174

A GriddlyJS 211
A.1 GriddlyJS UI Walkthrough . 211

A.1.1 Building And Testing Environment Mechanics 211
A.1.2 Level Design . 212
A.1.3 Recording Trajectories . 213
A.1.4 Evaluating Models . 213

8

Chapter 1

Introduction

For artificial general intelligence (AGI) to be realized, there are many hurdles
that need to be overcome. These hurdles fall into an array of different areas
of science and technology. One of the most promising directions of research is
known as deep learning (DL). Many recent advances have been made in hard-
ware, infrastructure, and software to support progress in deep learning. These
advantages have led to rapid progress in many scientific fields.

The focus of this thesis surrounds a particular area of DL which is known
as deep reinforcement learning. deep reinforcement learning concerns creating
algorithms that control the actions of an agent within an environment. The
agent can take many forms such as a mobile robot, a character in a game, or a
more high-level control issuing hierarchical commands to other smaller low-level
control agents. The environments in which these agents perform tasks can be
real-world physical systems such as a robot arm, or simulated, where a virtual
environment is implemented in software.

While real-world autonomous agents are a desirable goal for realizing the
practical potential of these systems, they are particularly difficult to achieve.
Deep learning is well known to require a large amount of data to train, especially
when the goal of training is for a system to act generally. The most common
methods of training DL systems still struggle to perform tasks in environments
that are different from those seen during training. In real-world terms, the
amount of required data or experience for a deep learning solution to achieve
the same accuracy or effectiveness as a human counterpart is often intractable.
Additionally, it is hard to control the parameters of real-world environments,
such as noise in sensor readings, lighting conditions, and tolerances in manufac-
turing processes. This leads to large differences in the behavior of agents as they
struggle to overcome small physical differences in hardware implementations.

In order to attempt to side-step the limitations of learning in physical en-

9

vironments, simulated environments can be used. However, when using these
methods, it is still challenging to effectively transfer any simulation-learned be-
haviors to the real world [214]. High-fidelity realistic environments are also
extremely difficult to build which would mean accurately reproducing a digital
physical model of the environment in question.

On the other hand, simulated environments provide a configurable test bed
for a wide variety of research questions. In scientific research and mathematical
reasoning, a common approach is to take a particular problem and break it
down into component parts in order to understand these fully and separately.
As artificial intelligence is arguably one of the most complex scientific problems,
breaking these problems down into milestones is crucial to making progress in
understanding.

Instead of trying to replicate the dynamics of the real world, many simulated
environments try to capture the important factors in particular problems while
removing confounding factors that would otherwise be found in physical systems.
One class of environments that we concentrate on in this thesis is that of grid
worlds. Grid worlds can be described as environments where actions and states
are typically discrete. Grid worlds can encompass a huge variety of different
tasks and problems. In the simplest case, a grid world could be a task where an
agent has to move to a particular goal state in the lowest number of up, down,
left, and right movements. However, grid worlds can also encompass complex
multi-agent strategy games where there are different classes of units, upgrades,
and resources to manage.

Several general platforms for generating simulated environments have been
created in order to build games for entertainment purposes. These are generally
referred to as "game engines". However, these platforms, such as Unity [?] and
Unreal Engine [83] are targeted at creating high-fidelity commercial games, and
their support for research applications is limited. This lack of first-class support
leads to environments that produce data inefficiently and integration with these
environments usually requires significant engineering expertise to modify the
interfaces to make them compatible with RL algorithms.

In this thesis, we aim to answer the following research questions:

• How can we design and build a game engine that provides a high volume
of relevant data for a wide variety of RL research topics, while maintaining
efficiency and functionality?

• What essential features should be incorporated into this game engine to
ensure it can generate the most pertinent training data, along with diverse
scenarios and adaptable formats?

10

• How can we ensure the data provided by the game engine can be effectively
used by various types of algorithms?

In order to provide a platform for answering these questions, we introduce
Griddly [29], a unified framework for grid-world environments. We describe how
Griddly can be used to create many different kinds of environments for research,
and show that Griddly provides a state-of-the-art combination of efficiency and
flexibility. We then expand on the Griddly platform by introducing GriddlyJS
which allows researchers to easily create, debug and run experiments in a web-
based graphical user interface. Griddly and GriddlyJS are introduced fully in
section 1.1 and described in detail in section 3.

Taking advantage of the flexibility of the Griddly platform, we then inves-
tigate several other areas of research. Firstly we concentrate on the interfaces
between the environment and the agent itself. These interfaces are commonly
known as action spaces and observation spaces. In section 1.2, we introduce the
concept of conditional action trees, which are a method of generalizing complex
discrete action spaces into a canonical form. We show that conditional action
trees can simplify the action spaces while maintaining the accuracy of more com-
plex action spaces. This leads to smaller and therefore more computationally
efficient networks.

We also use the Griddly platform to perform additional experiments where
we take advantage of natural priors of grid-world environments. More specif-
ically, we develop the neural game engine, covered in section 5, which learns
the local dynamics of many grid-world games and can reproduce the states and
rewards of these games with near-perfect accuracy over long time-scales. This
allows agents to learn complex puzzle games in their own imagined environ-
ments.

Another property of many grid-world environments is that they can have
state and action symmetry. For example, given a set of actions to solve an
environment, there may exist a linear transformation of the state and corre-
sponding action transformation which can solve the transformed environment.
We explore these ideas in section 6 using the mathematical framework of invari-
ance and equivariance [199, 63, 299, 286] and show that under geometric data
augmentations, certain RL methods that employ off policy corrections have cer-
tain requirements which are violated. We provide regularization methods that
alleviate these issues and show that this greatly improves sample efficiency in
training.

11

1.1 Griddly

Designing and implementing game environments to test the ability of different
algorithms, such as reinforcement learning (RL), to reason, generalize and plan
can be complex and time-consuming. Even simple environments require imple-
menting a number of common components such as rendering, game mechanics,
and optimization. A few solutions have been developed to abstract away the
implementation details of environments and present researchers with a simpli-
fied interface. This allows researchers to concentrate on building the specifics
of environments to test their algorithms.

In chapter 3 we introduce Griddly [29] which provides a highly configurable
and optimized platform for building grid-world games for artificial intelligence
research. Griddly uses a domain-specific language known as Griddly description
YAML (GDY) which allows an unprecedented level of configurability in all of
the key areas described above. Not only can GDY be used to create single-player
puzzle games like those in GVGAI [222], MiniGrid [54], DMLab2D [35] and other
toy problems, but it can be used to create multi-agent and RTS style games with
partial observability and complex resource systems. GDY also provides multiple
built-in observation representations such as sprite-based isometric rendering,
simple shape-based tiles, and minimal state tensors. In addition to the wide
array of configurability that Griddly provides, the underlying Griddly engine is
heavily optimized in both computational speed and memory usage by taking
advantage of hardware-accelerated rendering techniques.

1.1.1 GriddlyJS

On top of the Griddly engine, we introduce GriddlyJS [30], a web-based in-
tegrated development environment (IDE) based on a version of the Griddly
engine which is integrated with the web browser using WebAssembly (WASM).
GriddlyJS provides a simple interface for developing and testing grid-world envi-
ronments using a visual editor, with support for highly complex game mechanics
and environment generation logic. The visual editor allows the rapid design of
new levels (i.e. variations of an environment) via a simple point-and-click inter-
face. Environments can be tested via interactive control of the agent directly
inside the IDE.

We use GriddlyJS to build a dataset of 100 challenging escape room game
levels. We show that even with strong RL agents trained with state-of-the-art
domain-randomization techniques, these human-designed levels are very difficult
to solve. For each level, we also use GriddlyJS to record trajectories of how these
levels can be completed. These trajectories can then be used in downstream
reinforcement learning algorithms such as behavioral cloning.

12

1.2 Environment Interfaces

In addition to the tooling introduced in the previous two sections, we focus our
efforts on the interface of the agents to these grid-world environments. More
specifically, we study the effects of different configurations of action spaces in
which the agent can interact with the environment.

In the grid-world environments that Griddly provides, the actions are typi-
cally discrete to match the nature of the deterministic mechanics, but creating
a common interface that can encompass all possible actions has many consid-
erations. For example, actions can be multi-factored, requiring the agent to
select actions to be performed in a hierarchical sense, where an action "type"
is selected before an action "parameter". In the case where an environment ex-
poses multiple different action "types" for multiple different controllable units,
the number of possible actions in this interface can increase exponentially. This
section provides solutions to these issues.

1.2.1 Conditional Action Trees

Training reinforcement learning agents to solve environments with large, com-
plex action spaces is a notoriously difficult task [163]. Several methods have
been proposed to try to either reduce the space of actions by re-using model
outputs for different action types [191, 292], provide auxiliary information to
facilitate the exploration of large numbers of possible actions [240, 209, 156],
or simplify the manipulation of the action spaces through action embeddings
via mechanisms such as attention and graphs networks [4, 186, 5]. We pro-
pose the conditional action tree [28] as a paradigm to generalize several of these
methods. Conditional action trees can be used to describe action spaces in a
way that naturally reduces the required policy model output size whilst also
allowing hierarchical action parameterized and action reduction using invalid
action masking[138]. We show how many action spaces frequently found in sin-
gle, multi-agent, and real-time strategy (RTS) games can be described using
conditional action trees. We also show that agents that have access to condi-
tional action trees as part of their state observations can learn high-performing
policies.

Conditional action trees are presented in detail in section 4.2

1.3 Environment Modelling

The majority of this thesis is concerned with the usage of environment engines
such as Griddly as the primary substrate in which an agent can learn to complete

13

tasks. This is commonly known as "model-free" reinforcement learning as the
agent does not have access to an internal model of the game engine itself. Model-
based reinforcement learning refers to algorithms in which agents build or use
an internal model of the environment itself.

Recent work has shown that in a situation where the agent has no access
to a pre-defined model of an environment, it can be possible for the agent to
learn its own model. This approach attempts to solve the problem of predicting
future states of the environment given a set of actions. In situations where there
where it is difficult or inefficient to collect lots of environmental data, sufficiently
accurate models of the environment can be used. Learning a model of the envi-
ronment has many potential benefits over traditional model-free reinforcement
learning, and provides a gateway to much more complex and intricate learn-
ing algorithms. Model-based reinforcement learning techniques are discussed in
section 5.1.7.

1.3.1 Neural Game Engine

In chapter 5 we introduce a technique for learning accurate deterministic grid-
world games using a deep neural network architecture known as the neural game
engine [26].

The neural game engine (NGE) can learn grid-based arcade-style games of
any dimension with high accuracy from a limited number of game ticks (state
transitions). Additionally, the architecture can scale to grid games of any num-
ber of tiles without loss of accuracy. The NGE engine is trained on several de-
terministic grid-world games from the GVGAI environment [222], an updated
version of pyVGDL [243] which provides many grid-based games under the Ope-
nAI gym wrapper [45].

We compare the neural game engine to several state-of-the-art methods used
in predicting the transition function of grid-world games and show that it out-
performs these methods in terms of compounding errors. These experiments
are performed in the pre-cursor to the Griddly Engine, (GVGAI), but the envi-
ronments used are available in Griddly with significant improvements in speed
and flexibility.

In chapter 5 we introduce the neural game engine and associated experiments
in more detail.

1.4 Equivariant Data Augmentation

Data augmentation is a promising new technique for RL that is regularly used
in supervised learning [257]. Data augmentation adds training data, either

14

via fixed transformations, or random perturbations, with the goal of increasing
the training data distribution to improve generalization to unseen examples.
Unfortunately, certain classes of data augmentation that are applied in super-
vised learning, are problematic when applied in RL settings, and are commonly
avoided for this reason [181, 174]. In particular, certain geometric data aug-
mentations such as rotation and flipping do not produce invariant policies with
respect to the inputs. As an intuitive example, if an agent traverses from left to
right, but that map is flipped during data augmentation, the output policy will
now have to also flip so the agent traverses from right to left instead. This is
not the case with augmentations that are invariant, such as those in supervised
learning, where the output is usually a classifier that would still output the same
classification, regardless of the transformation used.

In order to solve this problem, we analyze data augmentation with a math-
ematical approach known as geometric deep learning. Geometric deep learning
investigates the usage of strong geometrically-based priors that occur frequently
and naturally in many datasets. For example, in computer vision, it is common
that transformations such as scaling and rotating input images should result in
the same classifications [34, 299, 167]. This is shown to have many advantages
over just increasing the amount of data using data augmentation.

In section 6 we apply the mathematical framework of geometric deep learn-
ing to the problem of data augmentation in reinforcement learning. We show
that certain algorithms, such as the v-trace algorithm [86], which is used for
off-policy corrections, have certain requirements which are not met when data
augmentation is applied. We propose regularization functions to improve these
methods and show empirically that these methods improve training under data
augmentation.

15

1.5 Contributions

This section contains a list of contributions of both peer reviewed academic
publications, open source contributions and documentation and tuto-
rials.

1.5.1 Publications

GriddlyJS

Title GriddlyJS: A Web IDE for Reinforcement Learning
Venue NeurIPS Datasets and Benchmarks, 2022
Authors Bamford, Christopher and Jiang, Minqi and Samvelyan, Mikayel and
Rocktäschel, Tim.
Date 2022-06-16
URL https://arxiv.org/abs/2207.06105

GriddlyJS introduces a set of tools which allow researchers to easily gen-
erate challenging reinforcement learning challenges for many different research
questions. GriddlyJS includes interfaces for creating, debugging and evalu-
ating environments, recording human trajectories for behavioural cloning and
view trajectories of trained policies. GriddlyJS is explained in detail in chapter
3.11

Conditional Action Trees

Title Griddly: A Platform for AI Research in Games
Venue 2021 IEEE Conference on Games(CoG)
Authors Bamford, Christopher and Ovalle, Alvaro.
Date 2021-08-17
URL https://ieeexplore.ieee.org/document/9619093/

This paper introduces a canonical method of representing hierarchical action
spaces where only sub-sets of actions are available at each time-step. Further
detail on Conditional Action Trees can be found in chapter 4.2

Griddly

Title Griddly: A Platform for AI Research in Games
Venue Workshop on Reinforcement Learning in Games
Authors Christopher Bamford, Shengyi Huang, Simon Lucas.
Date 2021-02-08

16

https://arxiv.org/abs/2207.06105
https://ieeexplore.ieee.org/document/9619093/

URL http://aaai-rlg.mlanctot.info/2021/papers/AAAI21-RLG_paper_34.

pdf

Griddly is an efficient and flexible game engine built for grid-world based
research. Griddly underpins many of the contributions in this thesis, including
Conditional Action Trees and GriddlyJS. Griddly is explained in detail
in chapter 3.

Neural Game Engines

Title Neural Game Engine: Accurate learning of generalizable forward models
from pixels
Venue 2020 IEEE Conference on Games (CoG)
Authors Bamford, Chris and Lucas, Simon.
Date 2020-10-20
URL https://ieeexplore.ieee.org/document/9231688

Previously to the creation of Griddly, experiments were undertaking in
learning the mechanics of grid-world games, specifically those in the GVGAI
framework. Neural Game Engines learn accurate models of several GVGAI
games, and outperforms other methods in terms of accuracy of predicting many
states into the future.

Neural Game Engines are discussed in chapter 5

Local Forward Modelling

Title A local approach to forward model learning: Results on the game of life
game
Venue 2019 IEEE Conference on Games (CoG)
Authors Lucas, Simon M. and Dockhorn, Alexander and Volz, Vanessa and
Bamford, Chris and Gaina, Raluca D. and Bravi, Ivan and Perez-Liebana, Diego
and Mostaghim, Sanaz and Kruse, Rudolf.
Date 2019-03-29
URL https://arxiv.org/abs/1903.12508

In this paper, contributions were made to the comparisons of different for-
ward model structures. More specifically a deep neural convolutional auto-
encoder neural network was used to predict local changes in the forward model
of the environment.

17

http://aaai-rlg.mlanctot.info/2021/papers/AAAI21-RLG_paper_34.pdf
http://aaai-rlg.mlanctot.info/2021/papers/AAAI21-RLG_paper_34.pdf
https://ieeexplore.ieee.org/document/9231688
https://arxiv.org/abs/1903.12508

1.5.2 Open Source Contributions

Griddly

Griddly is an entirely open source project which can be found at: https:

//github.com/Bam4d/Griddly. The python libraries for Griddly are automati-
cally built and distirbuted on PyPi https://pypi.org/project/griddly/ and
available for Linux, Windows and MacOS development. Additionally GriddlyJS
source code is provided in a sub-folder of GriddlyJS https://github.com/

Bam4d/Griddly/js

Grafter

Grafter is an implementation of the Crafter [117] game using the Griddly Engine.
Recreating Crafter using the Griddly engine has many benefits such as multi-
agent support, faster rendering, and highly configurable observations spaces.
https://github.com/GriddlyAI/grafter

Grafter Escape Rooms

The Escape Rooms project is the resulting dataset included in the original
GriddlyJS Paper [30]. This dataset contains 100 challenging human-designed
escape room levels. This dataset is designed specifically to be a highly complex
challenge for Reinforcement Learning. The dataset also contains human trajec-
tories for level for use in behavioural cloning or other methods such as verifying
or measuring ppolicies.

Entity Neural Networks

Entity Neural Networks is an open source project that allows entity based
observation spaces to be used in reinforcement learning algorithms. This project
was developed mainly by Clemens Winter of OpenAI, but is natively supported
by the Griddly Engine. https://github.com/entity-neural-network. Grid-
dly was used to benchmark several different features of the Entity Neural Net-
work library, and several Griddly environments are included as part of the col-
lection of examples.

RLLib

RLLib contains an efficient and distributed implementation of the IMPALA [86]
which is used in several Griddly-based projects such as the Conditional Action
Trees paper [28]. During development of this project and other experiments,
several bugs were found in the underlying implementation of IMPALA which

18

https://github.com/Bam4d/Griddly
https://github.com/Bam4d/Griddly
https://pypi.org/project/griddly/
https://github.com/Bam4d/Griddly/js
https://github.com/Bam4d/Griddly/js
https://github.com/GriddlyAI/grafter
https://github.com/entity-neural-network

were corrected, these contributions can be found here: https://github.com/

ray-project/ray/commits?author=Bam4d

1.5.3 Documentation and Tutorials

Griddly Documentation

Alongside the code of Griddly, extensive documentation has been authored
which can be found online at https://griddly.readthedocs.io/en/latest/.

A pdf of up-to-date documentation can also be downloaded from: https:

//griddly.readthedocs.io/_/downloads/en/latest/pdf/

Griddly Tutorials

In the Griddly documentation [27] there are tutorials for implementing various
complex mechanics: Making Sokoban, GDY Schema Tutorial, Proximity
Triggers, Custom Shaders, Projectiles, Stochasticity, Level Design, A*
Search. In addition there are also addition to these tutorials which concentrate
on implementation of Griddly environments, there are also articles explaining
how to integrate Griddly with Procedural Content Genration algorithms
and popular Reinforcement Learning Environments such as RLLib [182],

19

https://github.com/ray-project/ray/commits?author=Bam4d
https://github.com/ray-project/ray/commits?author=Bam4d
https://griddly.readthedocs.io/en/latest/
https://griddly.readthedocs.io/_/downloads/en/latest/pdf/
https://griddly.readthedocs.io/_/downloads/en/latest/pdf/

Chapter 2

Background

This chapter introduces the main concepts of Reinforcement Learning that lay
the foundations of the contributions in this thesis.

It is assumed that the reader of this thesis is already familiar with many of
the basics of neural networks such as stochastic gradient descent and informa-
tion theory. An in-depth discussion of these concepts and their origins will not
be given.

We provide a detailed background on Reinforcement Learning to provide
context for the main chapters in this thesis. In addition, we provide further
background at the start of each chapter to deepen the reader’s understanding
before each section.

Reinforcement Learning is one of the most active areas of research in artifi-
cial intelligence and is arguably a major step toward building Artificial General
Intelligence. Reinforcement learning aims to reduce any agent in an environment
to a set of functions that try to choose actions that the agent can undertake in
order to maximize a particular reward. The most basic form of reinforcement
learning tries to optimize one specific reward function in a particular environ-
ment, for example, trying to reach a high score on the Atari game Breakout
[196]. However, the performance of Reinforcement Learning agents is strongly
correlated to the distribution of the data it is trained with. If an agent is
trained to perfect a small subset of training environments, it will likely fail to
perform well in environments that it has never seen before. This generalization
gap problem is yet to be solved. Other more complex methods of reinforcement
learning attempt to learn higher-level hierarchical concepts such as points of
interest in the game. Other algorithms attempt to solve problems given con-
textual markers such as textual hints or in-game prompts. This section aims to

20

provide an in-depth review of the most impactful reinforcement learning tech-
niques. More detail will be given on particular techniques that are relevant to
the contributions of this thesis.

Reinforcement learning (RL) in its most simple case can be represented as a
Markov Decision Process (MDP), defined as a tuple M = (S,A,O,Ω, T , R, γ),
where S is the state space, A is the action space, O is the observation space,
Ω : S → O is the observation (or emission) function, T : S × A → S is the
transition function, R : S → R is the reward function, γ is the discount factor,
and ρ is the distribution over initial states. At each time t, the RL agent takes an
action at according to its policy π(at|ot), where ot = Ω(st), and the environment
then transitions its state to st+1 = T (st, at), producing a reward rt = R(st+1)

for the agent. Both the observation and transition functions can provide a
source of randomness, i.e. the observation function may return the observation
ot from a distribution P (ot|st) and the transition function may return the state
from a distribution P (st+1|st, at).

In many cases the observation function Ω(st) is a transformation of the state
s or the identity function. In this case, from the perspective of an agent, the
environment represented by the MDP M is known as fully observable. In cases
where the observation only contains a subset of the information contained in
s, for example, a cropped, or masked image, the environment is referred to as
partially observable.

In both cases, it is common to see the state referred to as st, even if the en-
vironment returns a partially observable state. When RL equations and models
are defined without the context of a particular environment, it is also common
to use the state variable st in definitions instead of the observation variable ot.

To put this into practical terms, a minimal example of a fully observable
environment would be the game of chess, where each player can see the entire
board. In contrast, the game battleships would be considered partially observ-
able as both players have limited information about the positions of the other
player’s pieces.

Reinforcement learning algorithms attempt to learn to maximize a function
such as the value function V (st), or action-value function Q(st, at).

The value function V (st) is an estimate of the return of the environment.
The return Gt, also known as the cumulative reward or the total discounted
reward, is a measure of the total reward an agent receives over a sequence of
time steps t. It represents the sum of all rewards from the current time step
until the end of an episode:

Gt = Rt+1 + γRt+2 + . . .+ γT−t−1RT (2.1)

21

Action Value Function (Q-function) denoted as Q(st, at), estimates the ex-
pected return when starting in a particular state st, taking a specific action st,
and following a certain policy thereafter. It represents how valuable it is to take
a particular action in a specific state.

Early experiments with deep neural networks to estimate value functions
were proposed in [233], however, Deep reinforcement learning was more widely
introduced in [196] where Q-learning was combined with a deep neural net-
work to predict the value function directly from the pixels of the Atari learning
environment [37].

In these experiments, the Q function is updated iteratively as the agent
gathers experience in the environment. The simplest form of the Q-learning
temporal difference update algorithm is given by:

Qnew(st, at) = Qcurrent(st, at) + α
[
rt + γmax

a
Q(st+1, a)−Qcurrent(st, at)

]
(2.2)

Where rt is the reward given by the environment at step t, γ is the discount
factor which is effectively a measure of how a reward should be discounted over
time and α is the learning rate. The temporal difference (TD-error) is calculated
as the difference between the predicted and actual discounted reward.

Several modifications to Q learning have been proposed such as double Q
learning [124, 288] which uses two Q functions, one to estimate the value and
one to estimate the policy:

QA
new(st, at) = QA

current(st, at) + α
[
rt + γmax

a
QB(st+1, a)−QA

current(st, at)
]

QB
new(st, at) = QB

current(st, at) + α
[
rt + γmax

a
QA(st+1, a)−QB

current(st, at)
]

(2.3)
Using two Q functions in this way allows much faster training and avoids

the problem of overestimating the value of certain actions, which is a common
problem in Q learning.

When using Q-learning as described above, the action space is required to be
discrete as the maximum over the possible actions needs to be taken to update
the Q-function. However, in complex control tasks where movement requires
more fine-grained control, such as physics environments where forces have to be
applied to joints or actuators, continuous actions have to be used. Games with
continuous action spaces tend to have simulated physical environments, such
as racing games with steering wheels, flight simulation games with continuous
joysticks, or first-person shooters where the mouse is used to aim.

In these kinds of environments, Policy Gradient Methods can be used.

22

2.1 Policy Gradient Methods

Instead of learning an intermediate value function such as with Q learning,
policy gradient methods attempt to learn a distribution of the actions P (a|st)
that gives a high probability of future rewards. Policy gradient theorem [276]
shows the optimal policy can be found by gradient ascent of:

∇θJ(πθ) = E[∇θlogπθ(a|s)Qπ(s, a)] (2.4)

A common way of using deep neural networks with the policy gradient the-
orem is to use actor-critic architectures [73].

Actor-critic architectures contain two function approximators, one that learns
the policy function πθ(a|s) and one that learns the value function Qπ(s, a). The
value function can be estimated using TD error updates as in equation 2.2, and
then gradient ascent can be used to learn the parameters for πθ.

In episodic reinforcement cases where the value function can be easily cal-
culated as the sum of discounted rewards over an episode, REINFORCE [302]
can be used. This method, however, can produce updates with high variance as
each action is judged based on long sequences of subsequent actions. This can
also result in slower and more unstable training.

[258] shows that the stochastic policy term πθ(a|s) in equation 2.4 can be
replaced by a deterministic term µθ(s). The deterministic policy function µθ(s)

is a limited case of the policy πθ(a|s) where the variance is negligible.
Like Q-learning, deterministic policy gradient methods can be extended to

use deep neural networks [183].
As stated before, the q-value function Qπ(s, a) can be learned by using the

TD error from episodes. However, the TD error itself can be estimated by
learning an advantage function.

The advantage of an action is a measure of how much better or worse an
action is compared to the average action taken in a particular state. It quantifies
the impact of selecting a specific action rather than following the current policy.

Mathematically, the advantage of an action a in a state s under a policy π

is defined as the difference between the action value function Q(s, a) and the
state value function V (s):

A(st, at) = Q(st, at)− V (st)

= rt + V (st+1)− V (st)
(2.5)

This yields the Advantage Actor-Critic (A2C) algorithm [198] where the
advantage is used instead of the Q-function:

23

∇θJ(πθ) = E[∇θlogπθ(a|s)A(s, a)] (2.6)

Since A2C methods are learning an estimate of the TD error, this can intro-
duce bias which can lead to convergence to poor policies or lack of convergence
at all. This problem is addressed in [251], where a Generalized Advantage Es-
timator is introduced. Generalized Advantage Estimators attempt to stabilize
training by implementing two techniques. The first is to use a discounted reward
function, similar to Q-learning. The second technique uses an exponentially
weighted average of the calculated advantage terms within an episode. Both
techniques can be adjusted by hyperparameters γ and λ, respectively. These
terms allow a tradeoff between bias and variance to be configured.

Variance in the updates of the policy and value estimation can also be re-
duced by modifying the update functions to reduce their step size intelligently.
[250] introduces Trust Region Policy Optimization (TRPO), which in theory
guarantees monotonic improvement to policies, however in practice, uses several
approximations, and Proximal Policy Optimization (PPO) [252] which modifies
TRPO to avoid the use of expensive computations. [279] generalizes [250] [252]
by showing that they are in fact a case of Taylor Series Policy Optimization
(TayPO) where only the first expansion term is used.

Variance in updates in other deep learning problems is generally reduced by
using large batches and averaging updates over these. In [196], an experience
replay buffer is used, which keeps a record of state-action pairs, and updates
the policy intermittently by sampling batches from the experience replay buffer.
Simple experience replay buffers only keep a certain amount of recent history
from the agent’s experience in the environment and disregard old history. This
means that events in this history appear in the training set with the same
proportion of time they would if there was no replay buffer. In reinforcement
learning environments, the states that result in high rewards are usually rare.
This would result in high TD errors as they are rarely encountered. [245] in-
troduces Prioritized Experience Replay (PER), which uses a priority queue as
a replay buffer using the TD error as the priority metric. This leads to states
that have low TD errors being removed from the replay buffer and states that
have high td errors being more likely to be used in policy updates.

2.2 Exploration

In most reinforcement learning algorithms, the agent initially has no experience
and knows nothing about the environment in which it is placed. This makes the
initial policy for the agent essentially random. The agent will randomly move

24

around the environment, learning that the value of most states is essentially 0.
Once the agent reaches a state that contains a non-zero reward, the discounted
TD error can be applied to previous states, which will help the agent to follow
or avoid similar trajectories in the future. In many environments, however, for
the agent to reach states that contain rewards, the agent must perform a series
of specific actions. In many cases, randomly choosing actions will not reach
these states.

Exploration in reinforcement learning is a very difficult challenge with many
possible solutions that may work in some environments but not others. This
section covers model-free methods. However, many model-based methods are
covered in section 5.1.7.

In model-free exploration with a deterministic policy that chooses actions by
sampling the maximum Q value, an exploration policy must be implemented to
stop the agent from taking the same actions every step. ϵ-greedy exploration is
the most common technique, where ϵ is the probability that a random action will
be taken instead of the action given by the maximum Q-value. In stochastic
policies where the action is sampled from a distribution, random exploration
arises naturally. In actor-critic reinforcement learning, soft actor-critic [116]
methods can be used to aid exploration by adding a constraint that tries to
increase the entropy of the policy.

Several methods of improving ϵ-greedy exploration involve repeating the ran-
domly selected actions. For example, in [187], "sticky actions" are introduced,
which repeat the previous action based on a probability 1− ς. Similarly, in [71],
actions are repeated for lengths of time defined by distributions.

In the Atari Learning Environment, several games are defined as "hard explo-
ration" problems due to the complexity required to gain rewards. Montezuma’s
Revenge and Pitfall fall into this category. In both games, the agent controls
a 2D avatar in a platformer-like environment in which the avatar can move
from one room to another by passing through walls or doorways. Additionally,
the order in which the avatar interacts with objects is important across large
time scales. For example, moving across several rooms to pick up a key and
backtracking to find a door that can now be opened.

Go-Explore [82] is one of the first methods to solve both Montezuma’s Re-
venge and Pitfall with scores higher than the average human baseline. Go Ex-
plore explores randomly using standard ϵ-greedy methods and then stores states
that are interesting and trajectories of how to get to those states. Interesting
states can be states that are not visited very often or states that are near other
interesting states. Once many interesting states are found, the environment is
reset to those states, and exploration is performed to find new interesting states.
In the second phase, the trajectories that find the interesting states are used

25

to teach a policy that learns how to get to those states. Because go-explore
uses many heuristics and involves state resets, it is impractical for many envi-
ronments, such as those with highly stochastic transition functions or physical
environments where state resetting is not possible or time-consuming. Environ-
ments have to be specifically compatible with the Go-Explore algorithm, which,
in many cases, defeats the simplicity of maximizing the expected returns that
reinforcement learning promises.

There are numerous techniques utilized to enhance exploration and make
sure that agents encounter a wide range of possible game scenarios. Methods
such as counting the number of times states have been visited can be used
for intrinsic motivation [38]. For example, in [215], the observed states are
encoded using a deep neural network as a pseudo-counting algorithm. The
number of times these states are visited is then counted, and a reward inversely
proportional to the count is used as an intrinsic reward. This encourages the
agent to visit states that are not visited as often and avoid states that it has
seen many times before.

Many exploration policies that work in some environments can be poor in
others, [21] and [20] learn several different exploration policies which are selected
depending on the task to be solved. The exploration policies give intrinsic
rewards to the agent based on the novelty of states that are being observed by
the agent, similar to [217] and [48]. These methods commonly learn models of
their environments in which to predict certain useful factors such as expected
future rewards or measures of information gain. These model-based methods
are explored further in section 5.1.7

2.3 Parallelization and Distributed Methods

Currently, there is a challenge with deep neural networks, particularly deep
reinforcement learning: They demand a significant amount of data to establish
highly efficient policies. In reinforcement learning, many environment models
can only process actions and produce their associated states relatively slowly.
Many environments are not inherently designed to produce states efficiently for
reinforcement learning as they are software emulated [37], [205], or are ports of
existing games that contain a wrapper [292].

A method that is commonly used to generate more data for reinforcement
learning algorithms is to parallelize the execution of the environments and use
the experience from many agents running in parallel to update a global model.
This section concentrates on these kinds of methods and their advantages and
disadvantages.

[201] introduces a parallel architecture (Gorila) that uses several agents with

26

Figure 2.1: Image taken from [201] showing the architecture of the Gorila frame-
work for distributed deep reinforcement learning.

their own experience replay buffers. The learning algorithm, instead of sampling
from a single replay buffer, samples from the many different replay buffers gen-
erated by the individual agent’s experience. This experience is then used to
generate gradient updates to a global parameter store. The global parameter
store contains the parameters for a Q-function which periodically synchronizes
with the Q-functions being used by the individual agents. Figure 2.1 shows a
diagram of this architecture.

[198] introduces a distributed version of the A2C algorithm, Asynchronous
Advantage Actor Critic (A3C). Instead of using a shared experience replay buffer
and many physical machines to produce experience data, A3C generates expe-
rience using several threads on the same machine, which reduces the latency
of updates over a network. Additionally, as there is no replay buffer, different
actors can generate different experiences using different policies as they evolve
over time. These policies can periodically update a shared target network which
is then distributed to all actors. The authors show empirical evidence that A3C
scales linearly in computation time with respect to the number of actors that
are producing experience.

IMPALA [86] improves upon parallel methods by updating a global policy
network using GPU acceleration with data from multiple actors across many
machines. Experience, policy distributions, and initial states are generated by
asynchronous learners and are passed to a global queue mechanism which does
large batched updates of the global policy. This global policy is then shared
with the asynchronous actors to generate new experience information. One of
the issues with this asynchronous training method is that asynchronous actors
generating the experience and policy updates are always added to the end of

27

the queue, meaning these updates are from old policies, which may conflict with
the much newer global policy. In order to alleviate this issue, [86] introduces
the V-trace algorithm, which uses importance sampling to correct off-policy
updates.

Prioritized experience replay is extended to use a distributed architecture in
[133]. The distributed architecture uses many actors to push experience into a
global prioritized experience replay buffer which filters out states where the TD
error is low.

Using LSTMs to help store information across many frames in reinforce-
ment learning allows hidden states to be remembered or inferred in partially
observable Markov decision processes [23] and time series data [96]. LSTMs can
also provide large improvements in training in fully observable environments.
Recurrent Replay Distributed DQN (R2D2) [165] uses the idea from Ape-X
[133] to use an experience replay buffer, but instead of storing (state, action,
reward, next state) tuples, stores sequences of (state, action, reward), which
can then be trained as sequences using Recurrent Neural Networks (in this case
LSTMs). R2D2 achieved much higher scores than both IMPALA and Ape-X on
many Atari games and superhuman performance on 52 out of 57 of the Atari
benchmark suite.

Using many CPUs, GPUs, and networking hardware can become extremely
expensive and efforts have been made to make the process more efficient and
cheaper. [87] Combines R2D2 and V-trace from [86] in an algorithm called Scal-
able Efficient Deep RL (SEED) which can train reinforcement learning agents
with millions of frames per second, with significantly reduced costs.

2.4 Auxillary Losses

In [180], Deep Recurrent Q Networks [125] are used to play the 3D game Doom
to a super-human ability. During training, the agent uses pixel information and
additional game features such as the presence of certain items within the visual
frame. The agent’s network is trained to predict game features in each frame in
addition to predicting the value function Q. A similar method named Auxiliary
Tasks is used in [143] to navigate 3D mazes, the Auxiliary Task in this case is
to learn the distance from the player to the wall ahead of it. [256] also uses
several auxiliary functions, such as predicting the actions based on the current
and next state (Also known as inverse dynamics), reconstructing the next state
using auto-encoders, and predicting whether rewards will be positive, negative
or 0. These methods were used in pre-training an RL agent and sped up the
subsequent learning of the agent. In many cases forcing neural networks to pre-
dict underlying semantic information as part of training dramatically increases

28

training speed and agent performance.
[98] shows that learning an accurate model of the game itself can drastically

improve reinforcement learning on several Atari 2600 games.

2.5 Multi-Task Learning

Figure 2.2: Image taken from [20] showing the 57 atari games that were solved
using the combination of multi-agent learning, exploration, and meta-learning.

Deep Reinforcement Learning has been able to learn a single task or play sin-
gle games with state-of-the-art performance. The results achieved are certainly
impressive, but unfortunately, the methods used may not be suitable for scaling
to other games or tasks. This is because reinforcement learning is trained on
a specific state distribution and reward system, which means that the learned
policy may not perform well on a state distribution that was not covered during
the training phase. Additionally, it may not perform well on tasks defined by
different reward schemes.

One method of addressing multi-task learning is to use universal value func-
tion approximators (UVFA) [244]. This method includes an extra variable in
the value function Q which encodes the current task to be solved.

Normal value function for state and action (s, a):

Q(s, a) (2.7)

Value function with state, action, and task identifier z

Q(s, a, z) (2.8)

The value function in this case assumes that the environments and their

29

structure are similar, but the tasks have different reward functions. This allows
a single-value function to be trained on multiple tasks.

An improvement to this method combines universal function approximators
with successor features [41].

In [31] uses successor features to train several tasks and then uses the suc-
cessor features in linear combinations to generalize to new unseen tasks. This
algorithm allows agents to infer policies of new tasks from tasks that have pre-
viously been learned without having to learn new tasks from scratch. The
successor features for this new policy can then be used to generate new policies
in future tasks that are unlike those previously seen. The authors argue that
this has implications for life-long learning applications.

Using universal value function approximators, [21] learns several exploration
value functions Q(s, a, β) that give the agent varying degrees of intrinsic reward.
The reward of the agent at a given time-step t is given by rβi

t = ret +βir
i
t where

ret and rit are the extrinsic and intrinsic rewards at a given time step. The
learned value functions for these rewards are parameterized over the βi values.
The number of beta values that are used is a hyperparameter N . In harder
exploration problems, larger values of N were beneficial, giving a more complex
exploration policy, but this was a detriment in simple games.

The same universal function approximators approach is used in [20], which
achieves much higher scores on the same ALE games as [21] as well as being able
the first algorithm to beat the human-level benchmark on all 57 ALE games. [20]
claims that having a single Q-function for all values of β is difficult to learn as the
different β values result in different scaling and sparsity of rewards. To alleviate
this issue, two improvements are made, firstly, the discount γ factor is added as a
parameterization of the Q-values and secondly, separate Q-functions are learned
for exploration and exploitation. This gives an update Q-function as Q(s, a, j) =

Q(s, a, j; θe) + βjQ(s, a, j; θi) where j is a one-hot vector representing which
combination of βj , γj is used. [184] uses a similar approach of decoupling the
exploration reward and environment reward into separate policies with separate
Q functions.

2.6 Transfer Learning

Transfer learning is another field of research in deep neural networks that deal
with how to generalize learning between similar environments or use the knowl-
edge learned in one environment to understand others in order to learn faster.

In the domain of reinforcement learning, one of the most promising areas of
research is how to train agents in simulations in a way that can then be em-
bodied in a physical machine and still retain high performance. It is extremely

30

difficult to transfer from simulations to real life because there are so many sim-
plifications in simulated environments that are unrealistic in physical worlds.
For example, when controlling robot arms, in a simulation, the sensors that
give state information to the agent will give perfectly accurate values. However,
in the real world, the sensor information is subject to electrical noise, slew rates,
inaccuracies, and drifting. This means the data from a physical robot will al-
most certainly not fall within the distribution of the training data given in the
simulation. The agent will then struggle to perform even basic tasks.

One method of solving this issue is to train neural networks on the data read
from the physical system itself [88], [289]. However, due to the inefficiency of
deep neural networks, these methods are extremely slow to train, making the
method impractical, as the training would take years for the neural networks to
converge.

In [282], a method of training under uncertainty in simulated environments is
introduced. Domain Randomization randomizes the parameters of the simulated
environment observations in a way that forces the neural networks to ignore
many distractions, such as visual noise, lightning conditions, and colors. [214]
expands on this by extending the randomization to sensor readings in a robot
hand. This allowed a robot hand trained in simulation to manipulate a cube
block into different orientations to transfer to a physical robot hand.

Instead of training a control algorithm under a large amount of randomized
data, [145] trains a model to first convert the randomized data into a canonical
representation of the environment. This canonical representation is then used
as the input to the agent which controls the environment, in this case, a robot
arm. This method draws parallels with learning accurate latent state space
models of complex environments and then using this state as the observation in
reinforcement learning.

2.7 Imitation Learning

Imitation learning is the process in which an agent learns to perform tasks
in an environment by attempting to mimic the actions of another agent it is
observing. It is prevalent in nature, for example, when a child imitates their
parents by trying to walk or trying to say words. Therefore, it is a natural
research direction to teach artificial agents to imitate an example agent’s actions
in other environments. In many cases, the example data comes from humans, for
example, in [255], [14], [293]. "Expert trajectories," which in most cases refers
to the full state of the environment, including the data from all the sensors,
are used to effectively seed the initial policy of the network so that the agent
is biased to finding particular rewards or reacting to particular situations in

31

certain ways. This avoids the initial stages of inefficient random exploration
that the agent would otherwise follow.

Natural environments do not provide all of the information required to copy
a policy from one agent to another. Suppose one agent tries copying another
"demonstrator" by observing its actions. In that case, the only information the
agent receives is visual, and it does not have access to any sensor information
or noise data that the demonstrator is experiencing. In many cases, the agent
may not have the same physical or embodied characteristics as the demonstrator
whom it is trying to imitate. This problem is referred to as a Domain Gap, and
there are many potential solutions to this problem [170], [255], [14], [57].

[255] and [14] Both use Time Contrastive Networks (TCN) in order to bridge
the domain gap between multiple different videos of human demonstration. In
the former, a human demonstrates tasks such as pouring liquid into a cup to be
replicated by a robot arm. In the latter, an Atari game-playing agent attempts
to imitate playing several games from YouTube videos. The YouTube videos in
[14] are of several hard exploration games that are difficult to solve using stan-
dard exploration techniques as rewards are sparse and tend to require specific
sequences of actions to realize. The main domain gap issue with learning games
from YouTube is that in the process of uploading and encoding, the users may
be using different encoding algorithms, aspect ratios, and in some cases, adding
image overlays or transitions to the videos. TCNs are used alongside Cycle
consistency algorithms to map the different videos into the same latent space
which is then combined with an imitation reward function. The imitation re-
ward function rewards the agent when the agent’s actions produce observations
that match those in the demonstrations.

In DeepMimic [220], task-based objectives are combined with imitation ob-
jectives to create a realistic movement of many humanoid, animal, and robot
models. DeepMimic can generalize across similar tasks, such as jumping to and
landing from different heights, having only seen examples of jumping across a
level platform. Complex physical motions such as Spinkicks, cartwheels, and
backflips can also be learned and are nearly indistinguishable from the appear-
ance from the reference motion.

It is also useful for agents to learn policies from other agents. In this case,
a technique known as policy distillation [69] [236] can be used.

2.8 Unsupervised Environment Design

Like any algorithm using deep learning, deep RL requires large amounts of data
and is sensitive to overtraining. That is to say that if the agent is exposed to the
same environment over many training trajectories, then the same set of states

32

will always be encountered, thus leading to a policy that is trained specifically
for that environment. In the game setting, training an agent to perform well in
a single level will likely impede its ability to perform well or generalize to levels
it has not seen. This problem is referred to as the generalization gap [61].

One of the most promising methods for agents to learn high-performing poli-
cies that still have high performance on un-seen levels is to use Procedural Con-
tent Generation (PGC) methods to create a much larger variety of experiences
for the agent during training, with the hope that this experience is transferable
to unseen scenarios.

Procedural content generation (PCG) refers to automatically creating envi-
ronment assets or configurations such as textures, maps, audio, and even NPC
(Non-player character) behavior.

PCG methods have existed mainly in the gaming industry to generate novel
experiences for human players rather than for generating data for artificial in-
telligence training. Thus, many directions of PCG research focus on human
experience [275, 268] such as controlling diversity, player enjoyment, and aes-
thetic perception [126]. In the RL setting, PCG can be used as a component of
what is known as Unsupervised Environment Design (UED) [74].

In UED methods, the MDP introduced in section 2 has a slightly different
parameterization, where the initial distribution ρ is replaced by an environment
parameterization Θ which allows modification of the environment during tra-
jectories M = (S,A,O,Ω, T , R, γ,Θ). An example of this would be in domain
randomization [214] where the environment parameters such as friction and
gravity are modified at each time-step in order to improve sim-to-real transfer
to a physical robot hand.

In game environments, it is much more likely that the environment param-
eterization is only used to modify the initial state of the MDP, which in prac-
tical terms, means that the level configurations are procedurally generated per
episode. The generated levels depend on the particular algorithm being used
in UED. In one of the simplest cases, the environments are generated using
heuristic algorithms that rely on random number generation. In this case, the
parametrization of the environment generator can be viewed as the parameter-
ization. This is the case in environments such as ProcGen [61], MiniGrid [54],
and Crafter [117].

Using these randomly generated levels can lead to better generalization
across unseen levels. For example, in [281], the wave function collapse algo-
rithm [111] is used to generate diverse sets of levels with various different goals.
However, randomly generating levels and using them to train agents can lead
to poor performance. Instead, in [281], a "dynamic task generation" method
is introduced, where levels are only added to the training curriculum if they

33

meet certain criteria. These criteria are based on the performance of a "con-
trol agent," which measures whether or not the levels are too simple or too
complicated.

This issue is also addressed in [148], where a curriculum is automatically
generated by scoring levels that have high learning potential and repeatedly
exposing these levels to the agent and revising scores regularly. This method
automatically generates a level curriculum, allowing the agent to learn more ef-
ficiently and with more effective policies that generalize better to unseen levels.
This method is expanded in [216] where, instead of just using and scoring ran-
domly selected levels, the levels are also modified using evolutionary algorithms.
For example, in maze levels, walls can be added or removed. This work again
improves learning efficiency and generalization across many environments.

Evolutionary algorithms are used as the primary method used in [295] to
generate an evolving set of training environments alongside an evolving popula-
tion of agents. This co-evolution strategy generates new sets of problems as the
agents evolve to solve the existing problems. Like previously mentioned meth-
ods, this also naturally generates a curriculum of levels that allows the agents
to learn in a more principled manner.

In [74], the environment parameterization controls a reinforcement learning
policy that places environment objects. This policy is trained to maximize the
regret between a protagonist and an antagonist agent. The protaganist agent
is trained to minimize the regret, and the antagonist agent is trained to maxi-
mize the regret (similarly to the policy that generates the environment). This
method, similar to [216], creates a natural curriculum whereas the protagonist
learns to solve environments by minimizing regret, the antagonist and adversary
policies have to generate harder levels in order to maximize it.

In other literature, the method of using an RL policy to generate levels
is known as Procedural Content Generation Via Reinforcement Learning (PC-
GRL) [169]. PCGRL typically splits the problem of environment generation
into three components, the problem module, the the representation module, and
finally, the Change Percentage. The problem module defines the components of
the environment generation, such as objects, goals, and reward functions. The
representation module defines how the RL agent perceives the environment gen-
eration process, for example, the state representation of an environment under
construction, and how the actions can modify this representation. The problem
module contains rules for defining which state transitions in the representation
module result in rewards. For example, if an action results in the addition of
a goal object that is required for a valid level, the problem module calculates a
positive reward for this action. Finally the change percentage is a hyperparam-
eter which controls how many parameters of the environment can be modified

34

per iteration. In 2d Grid worlds, this percentage represents the number of tiles
that can be changed as a percentage of the total tiles in the environment.

In the implementation of PCGRL [169], the rules in the "problem module"
have to be manually specified. For example, in the Sokoban problem module, a
simple Sokoban solver has to be included to validate that the generated levels
are not impossible. This can be problematic as proving that any environment
or game has a solution is an open problem. In several other works, this problem
of generating solvable levels is also encountered [314, 265, 81].

In section 3, we introduce the Griddly framework, which contains many fea-
tures to support UED and PCGRL. For example, Griddly environments can be
configured that allow RL agents to design an environment itself. This environ-
ment can then be exported and played by another agent.

2.9 Alternate methods

In this section, we will discuss alternative techniques that do not rely on deep
neural network models to train policies or understand the dynamics of envi-
ronments for model-based reinforcement learning. The methods here use either
heuristic methods or evolutionary computation algorithms.

For example, in [114] the game engine of Mario is learned by learning how
to map the set of given sprite images to each frame and then learning a set of
heuristic rules as a sprite transition function. This method works very well, but
the mechanics of the game and the features, in this case, sprites, are specifically
engineered for this single game.

[75] and [76] also learn rule-based hierarchical knowledge bases that learn
very fast and can adapt to unseen states quickly.

[222] introduces Rolling Horizon Evolutionary algorithms, which, similarly
to MCTS require a model of the environment and perform rollouts to find the
best actions. [94] Shows that in some environments when the population size of
the evolutionary algorithm underlying is larger, it can outperform MCTS. [95]
improves on these results by using another genetic algorithm N-Tuple Armed
Bandit Evolutionary Algorithm (NTBEA), to optimize the large hyperparame-
ter space of RHEA.

Particularly interesting areas of research are those that use neural networks
but combine these with evolutionary strategies.[202] uses randomly initialized
neural networks and an evolutionary strategy that, instead of using backpropa-
gation, learns the parameters of Hebbian learning rules. This allows each con-
nection between neurons to be configurable in terms of their learning gradient
and learning rules.

35

With this broad context of reinforcement learning, we can now focus on the
research questions in section 1.

36

Chapter 3

Griddly

In the research setting, it is common to use video games as the primary substrate
in which to perform experiments. Arguably without video games, many of the
recent advances in reinforcement learning would not have been possible. In this
chapter, we cover the challenges of building simulation environments specifically
for reinforcement learning. As new architectures, methods, and representations
are developed in deep learning, the way that agents interact and perceive en-
vironments may have to change to accommodate these advances. For example,
with the introduction of transformer models and object-centric methods, the
ability to enumerate objects and their associated features is required, but many
game environments do not support this. Many reinforcement-learning specific
environments have been created, many based on real environments, or wrap
existing games such as Starcraft. Unfortunately, many of these environments
suffer from slow execution speed and large memory overhead, making research
progress only available to organizations with large experimental resources. In
this section, we first delve into current research methods and approaches aimed
at creating efficient and accessible environments to enhance research productiv-
ity. We then introduce Griddly [29] as a software package that aims to provide
rich functionality for many research directions, without sacrificing features or
efficiency.

3.1 Background

Deep Reinforcement Learning typically requires large amounts of experience
data to train expressive and general policies. However, collecting this data
from physical sensors on an embodied agent such as a humanoid robot or a
self-driving car is particularly inefficient. Additionally, this data will have a
significant amount of noise as a result of the physical dynamics of the real

37

(c)

(a)

(b)

(d)

Figure 3.1: Some of the most popular reinforcement learning simulated environ-
ments. a) the "pendulum" classical control environment. b) and c) are the "Ms.
Pac-Man" and "Boxing" environments from the Arcade Learning Environment
(ALE). Finally d) is the "ant" environment from MuJoCo.

world, such as friction, temperature, and vibration. Only very recent research
has shown that it is possible to learn policies for physical robots [305, 267] within
a reasonable amount of time. These methods, although impressive, are limited
to learning robust motor control over different terrains, and do not involve tasks
that require complex reasoning or planning.

It is for this reason that the majority of Reinforcement Learning environ-
ments are simulated, that is, they exist in software. This has many advantages,
such as allowing the environments to be easily configured and controlled. Sim-
ulated environments also have large advantages over physical environments for
research: most environments are free and open source; do not require special-
ized hardware; are not limited by physical time constraints (i.e can be trained
at speeds much higher than required in inference) and are far safer as they do
not risk physical injury.

Using simulated environments also allows the concept of embodiment to
transcend physical restrictions. In simulated environments, we can give agents
as little or as much information about the environment as possible and also
define the form and structure of that information. We can also completely
control how the agent interacts with the environment: a simulation could be
interacted with by setting forces on simulated actuators, or interactions could
be far more abstract such as "find the shortest path to a destination", where an
inbuilt heuristic algorithm is initiated by a simple decision.

In this section, we explore the different types of simulation environments
that have been proposed for reinforcement learning research and describe the
methods and interfaces used to embody these agents.

38

Agent

Environment

Figure 3.2: A diagram of the perception-action loop used to describe the way
reinforcement learning is modeled as a Markov Decision Process. The agent
produces actions at in response to observations ot. The environment then pro-
duces the next state st+1 using the transition function T . Observations The
next observation ot+1 is determined by an observation function Ω.

3.1.1 Perception-Action Loop

In section 2, we introduced the Markov Decision Process, as how reinforcement
learning is modeled, and in this section, we will concentrate on particular com-
ponents of the MDP which relate to the observations oi ∈ O, rewards rt = R(st)

and actions ai ∈ A within the perception-action loop. These components are
shown in figure 3.2.

3.1.2 Observation Spaces

We review the many different forms that observations can take in reinforcement
learning environments. More formally, we explore the different possible config-
urations of observation functions Ω that have been used in recent research and
their relative merits.

Observations of environments refer to the way that an agent senses an envi-
ronment. This could be using proprioceptive sensors, vision, audio, or external
memory.

Some of the most well-known environments introduced in [45] are the "clas-
sical control environments". These environments typically consist of simple
toy problems such as balancing a pole on a moving cart, pushing a car up a
mountain, or balancing a pendulum vertically. All of these environments use
observation spaces that can be described as proprioceptive, for example, the
pendulum environment’s observation space consists of 3 variables; the x and y
position of the end of the pendulum, and the angular velocity of the pendulum.
The pendulum environment can be seen in Figure 3.1.

Other popular environments, such as the Arcade Learning Environment [37]
expose only the image of the screen. The image is encoded using RGB with a

39

fixed width and height, O ∈ R210×160×3. In many experiments, however, this
image is cropped, and down-scaled [196]. It has also been shown that using the
Random Access Memory of the internal game state can be used as an observation
space [8].

In some cases, the observation space of environments is configurable, mean-
ing that the environment provides different observation spaces depending on the
application. The MuJoCo environment [284] (shown in Figure 3.1 for example,
can be trained directly from pixels [307] or using proprioceptive information
such as angular velocities and positions of joints [80].

Aside from physical or visual observation spaces, there are several simulation
environments that use natural language as the observation space [146, 70]. In
these environments, the agent must learn to understand the environment via
textual descriptions and perform actions based on these alone. These works
commonly use transformer neural networks, which are the most popular method
of language understanding. [300, 290].

In many game environments, observation spaces are split into several differ-
ent components. For example, there may be visual components, components
that represent maps and text representations in the same observation space.
The observation space of the NetHack Learning environment [177] consists of a
2D description of what the agent can currently see, a vector of agent statistics, a
text-based message input for messages from the game, and a padded tensor con-
sisting of the inventory of the agent. Similarly in some mini-grid environments
[54], textual messages such as describing environment goals are given which can
be interpreted using language models.

Another particularly successful observation space related to textual obser-
vation spaces is that of entity observation spaces. In this thesis, we refer to
any observation space that consists of a set of unordered feature vectors, which
correspond to various environment components as entity observation spaces. A
simple example of an entity observation space would simply be a set of vectors
e ∈ E, where each individual vector corresponds to one object in the envi-
ronment. Each individual vector would only contain an x,y coordinate, and a
one-hot encoding of the object type. In more complicated environments, there
can be several distinct sets of entity types, where different objects have differ-
ent features, or, for example, there may be a set of entities that correspond
to the inventory of the player. These entity features are used in environments
such as NeuralMMO [273], StarCraft [293], and Dota [213]. Additionally, open-
source frameworks exist which are designed to train agents with these kinds of
observation spaces [303].

These entity observations are typically embedded into tokens and observed
using neural networks such as transformers, in a similar way to language models

40

[33, 315, 303], this allows the neural network to learn relationships between the
objects and attend to important factors in the observation space.

In this thesis, we concentrate mainly on grid-world environments, where ob-
servation states are discrete in nature as environmental objects have discrete
positions. In many cases, pixel-based observations using sprites can be used
as an observation space [54, 117, 35, 80, 221, 29], however as these environ-
ments generally have a distinct number of objects and positions, Vectorized
observations may be used. We use the term Vectorized observations to refer to
observations which are of the form O ∈ RH×W×C where H and W refer to the
height and width and C refers to the number of channels at each x,y location.
We use channels to refer to the information which is stored at each location.
The scalars in each channel refer to features of the environment, such as which
objects are present and the variables that might be associated with those ob-
jects. The configuration of the channels is usually defined by the particular
environment. A simple example of a common configuration of channels is to
use a one-hot encoding scheme to encode the locations of different object types.
More complex environments can allow objects to occupy the same location, and
in some cases, these objects might have observable variables such as health.
In multi-agent games or games with multiple controllable units, the channels
might also contain information on which agent or "team" the objects belong to
[208, 137, 139, 157].

It is also common practice to embed pixel-based observations into a similar
space by using convolutions that have a kernel size the same dimensions as
tiles, and associated padding. This has the effect of creating an observation
space similar to Vectorized observations. However, the embedding only contains
information that is visible in the pixel observations, which in most cases is just
the object type. Directly converting from pixels to an embedding can also have
a negative effect on generalization if, for example, the image changes slightly
due to effects unseen during training [271].

Partial Observability

Partial observability in an MDP refers to the implementation of an observation
function Ω, which only includes a subset of the full state of the environment,
which can be subject to additional transformations. In many game environ-
ments, this partial observability is inherent to the environment. For example,
3d worlds only show the camera view of the agent, so there are occluding walls,
objects, and other features such as fog. In simple grid-world games, full observ-
ability is common for example in games like Sokoban or Zelda [222].

In more complicated, or larger grid world environments, it is common to use

41

an egocentric partial view of the environment, for example, a 5x5 grid around the
agent itself. This allows the agent to exist within a large complex environment,
but have a consistent and canonical observation space. Consistent vector and
pixel observation spaces are also much more suited to neural networks as they
require fixed numbers of parameters to learn policies.

In terms of generalization, having a fixed representation also limits the size
of the number of parameters required to learn policies, and thus can lead to
policies that are much more successful, and generalize better to unseen level
configurations [311].

As Reinforcement Learning research studies both fully observable and par-
tially observable environments, many environments provide inherent configura-
tion or tooling to customize the observation space of the environments. In-built
tooling is far more efficient than post-processing, as only the specified observa-
tion is generated, rather than a complex observation which is then filtered by
an additional process such as image manipulations or transformations [29].

Auxiliary Information

One advantage of simulated environments such as games is that additional high-
level information can be shared from environments that would not typically be
part of an observation space.

One example of this type of information is that of Invalid Action Masking.

Invalid action masking (IAM) [138] is a technique used to stop agents
from sampling actions that are invalid in a particular game state. IAM is useful
in environments where the action space is large, and some of the actions are
only available in certain states. For example, in RTS games [293, 292, 240], the
agent’s action may consist of selecting a unit or units from a large list and then
issuing commands to those units. The commands sent to those units can also
be unique to particular unit types. This results in a large number of options in
the action space that are invalid. In policy gradient and actor-critic methods in
deep RL, IAM is applied to the output logits l ∈ Rn, of the policy produced by
a neural network, by replacing the logits corresponding to invalid actions with
large negative numbers. This forces the probability of selecting those actions to
tend toward 0.

For instance, let us assume a compound policy constituted by K independent
components, such that π(a|s) =

∏K
k π(ck|s). This type of action policy could

be described by:

π(a|s) = [π(c0|s), π(c1|s), . . . , π(ck|s)] (3.1)

42

For each of the components in equation 3.1, a value is selected following a
softmax sub-policy. We can create a mask to modify the logits to assign large
negative numbers to actions deemed as non-viable or inaccessible. The modified
logits result in l̂ = l+m where −∞ < mi ≪ 0. It then follows that the masked
logits alter the probability of a value of ci of being sampled:

π(ci|s) =

0 if mi −→ −∞
eli∑N
j elj

if mi = 0

In PySC2 [292], µRTS [209] and BotBowl [157] action masks can be con-
structed from lists of available actions that are provided by the environment
implementations. However, these action masks do not consider that the masking
of some sub-actions can depend on the sampled values of others. For example,
in an environment with units selected by coordinates and the set of available
actions for each unit is disjoint, the mask for the available actions depends on
the unit’s selection. Masks that are naively constructed using these lists can
still lead to select actions that are not available, as the list does not consider
the unit’s selection. [139] introduces a two-step method for generating masks
where the unit location is selected using masked logits and then a second mask
is generated based on that selection. This significantly improves training as the
mask for unit actions depends on the selected unit.

3.1.3 Action Spaces

In this section, we review several of the most common methods that an agent can
affect the environment through their action space. In an environment modeled
by an MDP (shown in figure 3.2), at each time step, an action at ∈ A to perform
is chosen by the agent. This next state st+1 is then returned from the transition
function T , which takes the current state st and the chosen action at as inputs.
The set of possible actions A an agent can take in an environment is known as
the action space.

Action spaces can be structured in several ways, but most commonly, they
take the form of a 1 Dimensional space A ∈ Rn where n is the number of
possible action components. The choice of action can be discrete or continuous,
depending on the environment. For example, in Mujoco environments (d) and
Classic Control (a) in Figure 3.1, the actions set the torque values of the joints,
and the torque values can be set within specific ranges. In this case A =

(a0, ...an) where n is the number of joints to control, and an ∈ [amin, amax]

In Atari Environments (b and c) in Figure 3.1, the actions are discrete, as in
the agent will select a distinct action such as "up," "down," "left," or "right."
This translates to a single-valued action space A = (a) where a is an integer

43

value representing the index of an action to take a ∈ [0..3].
We cover several action space configurations in detail in section 4.4.2

3.1.4 Rewards

A final part of the perception-action loop that we will cover is that of the
reward. The reward given to an agent in any environment is the signal that
the agent uses to learn any given task. Rewards are usually configured as
part of the environment itself and are usually calculated as a function of the
state of the environment r = R(st). In Reinforcement Learning, described in
section 2, the goal is to maximize the expected return, which is calculated as the
sum over the discounted rewards J(θ) = Eπ [

∑
t γ

trt]. It is commonly argued
that this method of maximizing expected return is adequate even in complex
environments to produce complex behaviors and general intelligence [261].

In many environments, the rewards configured by the environments them-
selves are very simplistic, for example, only giving a single reward when a goal is
reached [54]. More complex environments add rewards for completing sub-tasks
or tracking homeostatic variables such as health levels [117]. In many exper-
iments, the reward function is modified to attempt to provide the agent with
more information. This is especially useful in environments with sparse rewards
[321, 108].

Another common modification to rewards is to provide intrinsic rewards
rather than extrinsic (provided by the environment) rewards. Intrinsic rewards
are those that are generated by the agent itself, usually generated by a particular
algorithm that looks for novelty or high information gain [224, 217].

3.1.5 Engineering Considerations

A large factor in research success using simulated environments is the iteration
speed of experiments [310]. Reinforcement learning usually requires hyperpa-
rameter searches to find the most optimal set of learning rates, batch sizes, and
other parameters. It is not uncommon to find state-of-the-art results by just
performing wide hyperparameter searches [271]. One of the largest bottlenecks
in reinforcement learning, however, is the execution speed of the environment.
Using high-fidelity game environments such as StarCraft, Dota and Minecraft
[164, 113] can require large amounts of CPU and GPU resources to train neural
networks in a reasonable amount of time. But faster training comes at a huge
cost. These types of environments, as they are not designed with reinforcement
learning in mind, lack optimizations that would make training significantly more
efficient.

44

Hardware Accelleration

More recently, complex environments have been designed specifically with paral-
lelism and sample efficiency as design requirements. These environments com-
monly take advantage of GPU acceleration or multi-threading capabilities to
parallelize the computation of environment dynamics or rendering.

In [92] and [188], the computation of the mechanics of rigid body dynamics
is offloaded entirely to the GPU. This means that several thousand agents can
be run in parallel on a single piece of hardware. Additionally, the overhead of
transferring memory from the CPU to the GPU can be avoided as the calculation
of neural network gradients is also located on the GPU. Similarly, in [72], the
Atari emulator is ported to the GPU which has similar benefits.

Another bottleneck that is common to reinforcement learning environments
is due to the fact that the most common language used for experimentation,
python, has no support for threading. Instead of parallelizing environments
using efficient multi-threading methods, the most common method for running
many environments in parallel is to create multiple processes, which then com-
municate through Remote Procedure Calls (RPC), which carry significant over-
head. In some environments, typically those written in C++, this can be avoided
by handling the parallelism natively, so only one Python process is required
[61, 301]. Another method is to create a small number of Python processes
(typically one per CPU) but then host multiple environment instantiations in
each process [182].

Configurability

Many reinforcement learning environments are specific to particular tasks. There
are many common parts of reinforcement learning environments that can, how-
ever, be re-used, for example, rendering and interfacing code for RL algorithms.
In order to attempt to create a more general approach to generating environ-
ments to either build simple platforms such as GVGAI [222], use existing games
[242, 113] or game engines such as Unity [153, 152].

GVGAI contains a simple scripting language that allows grid-world games
to be built. However, the rendering and parallelization capabilities of GVGAI
are not optimized for reinforcement learning, making it unsuitable for this par-
ticular use. A limited scripting language is also used in the NetHack Learning
Environment [177, 242], which allows NetHack style levels to be generated, this
scripting language gives access to hundreds of in-game items, NPCs and various
configurations of behaviors. The NetHack Learning Environment is particularly
complex in nature and is fairly well optimized, making it a very flexible choice
for RL research.

45

Game Engines such as Unity, although offering high levels of flexibility and
ease of use, RL interfaces are not designed to be optimal for RL research and
commonly suffer from slower execution speed and high memory usage. Ad-
ditionally, the flexibility of the environment allows researchers to write poor-
performing code, which again can cause slow execution.

Some specifically designed engines for research have also been created, such
as DMLab [36] and DMLab2D [35]. These sit between the full-featured game
engine and the scripting approach. Both of these projects enable the creation of
games using the Lua language. Lua is quite flexible, but researchers still need to
invest time and effort to engineer new games. Additionally, these approaches are
CPU bound and do not use GPU acceleration to parallelize game computation.
However, they still achieve high sample rates, making them a popular choice for
research.

In Chapter 3, we introduce the Griddly framework, which combines many of
the above approaches into a state-of-the-art combination of flexibility and effi-
ciency. We also show that the architecture of Griddly allows it to be integrated
with web-based interfaces, which adds to its rich feature set. This integration
with web technology makes Griddly a useful tool for sharing and disseminating
research.

3.2 The Case for Grid Worlds

Grid worlds are environments corresponding to MDPs with discrete actions and
states that can be represented as a 3D tensor. Note that while the state is
constrained to be a tensor with dimensions M ×N ×K, where M,N,K ∈ Z+,
the actual observations seen by the agent may be rendered differently, e.g. in
pixels or as a partial observation. Typically, in 2D grid worlds, each position in
the grid, or tile, corresponds to an entity, e.g. the main agent, a door, a wall,
or an enemy unit. The entity type is then encoded according to a vector in
RK . By constraining the state and action space to simpler, discrete represen-
tations, grid worlds drastically cut down the computational cost of training RL
agents without sacrificing the ability to study the core challenges of RL, such
as exploration, planning, generalization, and multi-agent interactions.

Indeed, many of the most challenging RL environments, largely unsolved by
even the latest state-of-the-art methods, are PCG grid worlds. For example,
Box-World [315] and RTFM [319] are difficult grid worlds that require agents to
perform compositional generalization; many games of strategy requiring efficient
planning such as Go, Chess, and Shogi may be formulated as grid worlds; and
many popular exploration benchmarks, such as MiniHack [242] and MiniGrid
[54] take the form of grid worlds. A particularly notable grid world is the

46

NetHack Learning Environment [NLE; 177], on which symbolic bots currently
still outperform state-of-the-art deep RL agents [122]. NLE pushes existing RL
methods to their limits, requiring the ability to solve hard exploration tasks
and strong systematic generalization, all in a partially-observable MDP with
extremely long episode lengths. Crafter is a recent grid world that features
an open-world environment in which the agent must learn dozens of skills to
survive, and where the strongest model-based RL methods are not yet able to
match human performance [117]. To demonstrate the potential of GriddlyJS,
we use it to create a Griddly-based Crafter in Section 3.12.

Their common grid structure and discrete action space allows for grid worlds
to be effectively parameterized in a generic specification. GriddlyJS takes ad-
vantage of such a specification to enable the mass production of diverse PCG
grid worlds encompassing arbitrary game mechanics. Thus, while GriddlyJS is
limited to grid worlds, we do not see this as significantly limiting the range of
fundamental research that it can help enable. Still, it is important to acknowl-
ege that grid worlds can not provide an appropriate environment for all RL
research. In particular, grid worlds cannot directly represent MDPs featuring
continuous state spaces, including many environments used in robotics research
such as MuJoCo [283] and DeepMind Control Suite [280]. Nevertheless, as we
previously argue, grid worlds capture the fundamental challenges of RL, mak-
ing them an ideal testbed for benchmarking new algorithmic advances. Further,
many application domains can directly be modeled as grid worlds or quantized
as such, e.g. many spatial navigation problems, video games like NetHack [177],
combinatorial optimization problems like chip design [194], and generally any
MDP with discrete state and action spaces.

3.3 The Griddly Engine

Griddly1 [29] is a game engine designed for the fast and flexible creation of grid-
world environments for RL, with support for both single and multi-agent envi-
ronments. Griddly simplifies the implementation of environments with complex
game mechanics, greatly improving research productivity. It allows the under-
lying MDP to be defined in terms of simple declarative rules, using a domain-
specific language (DSL) based on Yet Another Markup Language (YAML). This
is a similar approach to GVGAI [221], MiniHack [242] and Scenic4RL [15], where
a DSL language is used to define environment mechanics. Griddly’s DSL is de-
signed to be low level in terms of interactions between defined objects, but does
not go as far to allow the user to define physical models unlike Scenic4RL. This

1Documentation, tutorials, examples, and API reference can be found on the Griddly docu-
mentation website https://griddly.readthedocs.io, This can also be found in the Appendix

47

https://griddly.readthedocs.io

libGriddly

Griddly Engine

GDY
Parser

GDY File

Player Interface

Observer
Global

Observer

Control Algorithm (e.g
Reinforcment

Learning)
VisualizationEnvironment

Configuration

Actions Objects Environment

Figure 3.3: A high-level diagram of main components of the Griddly architec-
ture showing the separation of the main components. Multiple player interfaces
with configured observers can be attached to the Griddly engine to control any
number of players in the environment. Additionally, a global observer can be
configured to monitor the environment as a whole or analyze the performance
of any algorithms from a global perspective. The environment configuration is
decoupled from observation and agent control, meaning that generative algo-
rithms for creating different environment layouts can be used.

is similar in regards to GVGAI and MiniHack as they are both grid-world games.
Griddly’s DSL contains higher level functions such as A* search and proxim-
ity sensing, which can be configured to build higher-level behaviours for NPCs.
MiniHack’s DSL gives access to all of the objects within the base NetHack game,
and allows them to be configured at a high level using modifiers such as "hos-
tile" or "peaceful". The choice of using YAML is also more flexible, as YAML
is a common DSL with supporting libraries in many different languages. This
allows the generation and manipulation of GDY files without requiring the con-
struction of parsers or serializers. Integrations of higher level tooling such as
GriddlyJS are made possible due to this. We provide a simple example Griddly
environment implementation in Appendix 3.7.

48

3.3.1 Architecture

Griddly provides environments configured with user-defined Griddly Description
YAML, which is explained in detail in Section 3.4. An Environment E can be
thought of as an MDP with specific transition function T , state S, space A,
observation O and reward R spaces. In addition, Griddly can be configured to
provide multiple observation functions Ω.

An environment’s state contains objects which are distinct components ar-
ranged in the environment’s grid layout. For example, an environment like a
maze will contain walls, an avatar, and a goal. The walls, avatar, and goal are
configured as objects.

objects contain variables which can be modified by the transition function
of the environment, such as the x and y position of the object or other user-
defined state variables. The state can also contain global variables accessible
and modifiable by the transition function.

The transition function T in Griddly environments are configured by action
behaviors. action behaviors are sets of instructions performed when the agent
interacts with the environment. The action space A of the MDP represented
by the environment is configured by these action behaviors. The states of the
environment in which rewards are given are also defined in the action behaviors.
More specifically, there may be an instruction in an action behavior, which sets
a reward on execution.

Reinforcement learning agents may be able to interact with multiple objects
in an environment or may be embodied in a single object. In the case where an
agent can control multiple objects these objects are referred to as units, whereas
if the agent is embodied in a single object this object is referred to as an avatar.

The observation space O of the environment is configured using observers,
which are equivalent to the MDP observation function Ω. Griddly provides
several different configurable formats of observer, which are described in section
3.5.1. In visual observation spaces, we commonly refer to objects as tiles. These
tiles are images that represent the objects in the environment.

3.4 Griddly Description YAML (GDY)

Griddly Description YAML (GDY) is a schema-oriented domain-specific lan-
guage (DSL) that allows great flexibility in creating grid-world environments.
Any DSL requires a certain amount of pre-existing knowledge; however, with
industry-standard configuration languages, there are many tools available such
as syntax highlighting, schema validation, and linting, which can reduce the bar-
rier to entry when writing DSLs. The use of YAML as a syntax allows schema

49

validation to be used for syntax highlighting, validation, and auto-completion.
Many IDEs such as Visual Studio Code, IntelliJ, and PyCharm support YAML
validation out-of-the-box using JSON schemas. This makes the development of
new games using Griddly simpler as the IDE will provide feedback on the game
description’s syntax and structure.

Full documentation of the schema of GDY can be found in the Griddly Docu-
mentation https://griddly.readthedocs.io/en/latest/reference/GDY/index.

html.

3.4.1 Environment Configuration

The environment Section of the YAML contains configuration options for sev-
eral high-level concepts for a Griddly game. The three most important of these
are the Player, Termination and Levels options. The Player options define how
the players will interact with the environment and which, if any, avatar object
the player will control. Player partial observability can also be configured in
the Observer subsection here using options such as: RotateWithAvatar, which
causes the environment representation to rotate if the avatar rotates; TrackA-
vatar, which enables egocentric rendering (the agent is put at the center of the
observation and OffsetX and OffsetY can be used to offset the agent from the
center) and finally Height and Width which determine the height and width of
the observable window.

Termination conditions, such as determining if the episode is complete, or
determining the winner in a multi-player game are also set in the environment
section. Termination options can use any variable defined at a global level and
also several special variables that allow calculations such as counts of specific
objects in the environment. Levels are defined using strings of characters, re-
ferred to as Level Strings. the characters that are used are defined in the objects
configuration. An example of an environment configuration is shown below. An
example of configured egocentric partial observability with an Isometric Ren-
derer can be seen in figure 3.4

3.4.2 Action Behaviour Configuration

Instead of having a fixed set of actions, GDY allows the user to define any
number of actions and how they will interact with other objects. Actions have
the ability to modify any variables associated with the objects involved and any
global variables.

Actions in Griddly are defined in two parts, the Input Mapping and the
Behaviours. The Input Mapping maps a set of distinct integers to a Descrip-
tion, OrientationVector and VectorToDest. The OrientationVector and Vector-

50

https://griddly.readthedocs.io/en/latest/reference/GDY/index.html
https://griddly.readthedocs.io/en/latest/reference/GDY/index.html

ToDest are parameters that can then be used by the Behaviours to define how
different objects react when the action is performed on them by another object.
The object that is performing the action is referred to as the source object and
object that is the target of the action is referred to as the destination. The
defined behaviours in actions can also be subjects to conditions on the variables
of objects or global variables.

3.4.3 Object Configuration

Objects in environments are defined individually. The object definition allows
individual objects to contain encapsulated variables, for example; hit points,
resources and possessions such as keys. Rendering information is also defined
per-object and passed to the rendering engine at run-time.

3.5 Observation Space Configuration

In this section we outline the numerous ways in which the observation spaces
of Griddly environments can be configured. With this flexibility of observations
spaces, Griddly can replicate the observations of many different grid-world en-
vironments, but also add the benefits of flexibility, which allows these environ-
ments to be re-configured quickly and easily whilst maintaining efficiency.

3.5.1 Observers

In Griddly, observation function configurations are referred to as observers.
Each different observer represents a subset of possible observation functions Ω

that can be used to either render the environment for viewing and debugging
policies or provide an observation space for an agent.

(a) Block2D (b) Sprite2D

(c) Isomtetric

Figure 3.4: Visualization of the three observers, Block, Sprite and Isometric
configured on the "Spiders" environment. The 4th Vector observer does not
have a natural visual representation.

51

Block2D observers are a simplistic visual observation space that renders only
shapes and colours. The shapes, scale and colors can be customized per-object
and can be modified by GDY behaviours. The observations space is RGB
RH×W×3 where H and W are the height and the width of the observation
space. An example of these observations can be seen in Figure 3.4a

Sprite2D observers are similar to Block2D observations in terms of their avail-
able configuration properties, however they allow images and tilesets to be used
instead of simple shapes. This allows more visually rich environments to be
generated. Again the observation space is RGB encoded O ∈ RH×W×3. The
Sprite2D rendering of the spiders environment can be seen in 3.4b

Isometric observers (Figure 3.4c are also RGB encoded O ∈ RH×W×3, and
are configurable in the same way as Sprite2D and Block2D observers. Isometric
observers differ in visual presentation in that they render the game isometrically,
which is a technique common to rogue-like games. Isometric observations are
more visually appealing, as they appear 3D to the viewer but are rendered using
2D sprites.

Vector observers consist of a set of features for each tile in the observable
grid, that is to say, the observation space can be arranged as a single tensor
O ∈ RH×W×C where H and W are the height and the width of the observation
and C is the "channel" dimension which represents the features at each location.
The channel dimension consists of a one-hot encoding of the "type" of object,
followed by optional features such as object rotation, agent id, object variable
values and global variable values.

ASCII observers present the environment as a string of ASCII characters,
each character representing an object. ASCII representation can be particularly
useful when building PCG environments as the observations are compatible
with the level descriptions used to define environment layouts. This can assist
in building PCGRL [169] environments where agents design or modify level
layouts.

Entity observers represent each object in the environment as a set of features.
Each feature set contains variables such as x and y coordinates and object
variables can be provided also. Given that the environment has a layout the
same as those in figure 3.4, the environment would consist of the following set
of objects and their respective features: 30 "wall" objects W ∈ R30×fw , 3 spider
objects S ∈ R3×fs , one goal G ∈ R1×fg and one "gnome" avatar A ∈ R1×fa .

52

Figure 3.5: An example of the rendering of the Griddly environment spider nest
with a specific player’s egocentric partially observable view that an agent will
see during training (inset)

Entity observations are typically embedded using a linear neural network
and then fed to a multi-headed attention transformer [303].

3.5.2 Partial Observability

Many of the markov-decision processes used in research provide an observation
space that is only a subset of the environment. These partially observable en-
vironments are significantly more realistic and provide much more challenging
scenarios, especially in multi-agent games where the agents are required to pre-
dict or pre-empt the strategy of other agents in order to compete or collaborate.

In the Griddly Engine there are several options available for partial observ-
ability. Firstly, the height and width of the observation space can be modified
to reduce the perceptual field of the environment. Offsets can also be applied
to specifically place the perceptual field at any part of the environment. Ego-
centric partial observability can also be configured, which will "track" the agent
as it moves around the environment. The "tracking" mechanism can also be
configured to rotate around the agent’s location, so that the observations are
relative to the angle of the agent itself.

Partial observability can be configured globally for all defined observers, or
it can be defined differently per each observer. For example there could be a
fully observable Block2D observation function used as a mini-map alongside a
vector or entity observation space.

We show an example of an isometric observer with partial observability in
Figure 3.5.

53

3.5.3 Custom Shaders

The visual observers (Sprite, Block and Isometric) are implemented using Vulkan
Graphics Pipelines [2], which support the SPIR-V shader language. This high-
performing shader language not only provides fast GPU rendering support, but
also allows customization of the rendering. When configuring custom shaders,
variables can be made available in the graphics pipeline, meaning that they can
be referenced in the shader. This allows significantly flexibility when producing
visual representations. Custom shaders can be used to add noise, fog-of-war,
lighting, or even "juice" effects to make the visualizations more appealing.

Figure 3.6 shows an example of a custom shader which renders coloured bars
on agents in a multi-agent game.

Figure 3.6: A Custom shader rendering a local object variable (health) using
Signed Distance Functions in a custom shader.

3.6 Action Space Configuration

Action spaces in Griddly follow the Conditional Action Tree representation
which is described in more detail in chapter 4.2. In general, Griddly will auto-
matically map the action space to the actions that are defined in the GDY 2.
We will define a few specific cases for action spaces here.

2More details with code examples can be found in the Griddly documentation
https://griddly.readthedocs.io/en/latest/getting-started/action%20spaces/index.
html#examples

54

https://griddly.readthedocs.io/en/latest/getting-started/action%20spaces/index.html#examples
https://griddly.readthedocs.io/en/latest/getting-started/action%20spaces/index.html#examples

3.6.1 Single Agent

Firstly, we consider a single agent that controls the movement of an avatar in
an environment, there are only 4 "move" commands that can be issued: up,
down, left, right. To set the object that will be controlled by the agent, an
avatar object must be defined in the Environment section of the GDY. (In this
example the object name is "gnome"):

Player:
AvatarObject: gnome

As there is only a single action defined with 4 inputs, and the environment
is set control a single avatar object, then only a single integer is required for
the action space. In addition to the 4 possible action inputs, Griddly also
automatically adds a NOP as the first action. This makes the full action space
a ∈ [0..4].

3.6.2 Single Agent - Multiple Object

If the AvatarObject is not defined, then the Griddly Engine will assume that
the agent can control multiple objects in the environment. In order to make an
object controllable, the object in the level string must be followed by the integer
referring to which agent the object belongs (in the single agent case this would
only be 1). For example "w1" will be controllable by the agent and "w" will be
a fixed object. The object to be controlled is chosen by it’s x and y coordinate,
then the action to perform follows this.

Assuming we have an environment with up, down, left and right actions
for each controllable object type, we first have to select the object and then
issue the direction command. This action is of the form a = [aw, ah, aid] where
aw ∈ [0..W], ah ∈ [0..H], and aid ∈ [0..4].

To select an object at 5,6 to go down, the action would be specified as
[5, 6, 2]. To control multiple objects at once a vector of actions can be used e.g:
[[5, 6, 2], [3, 4, 3]]

3.6.3 Multi-Agent

Multi-agent environments can be configured simply by adding a PlayerCount

Key which has a value greater than 1:

Player:
PlayerCount: 3
AvatarObject: gnome

55

In the above code snippet, we have specified that there are three agents in our
environment. We can define which object is owned by which player by adding
a player id next to the map character in the level description. For example,
to place three "gnome" objects with map character "g", each is assigned to a
different agent:

Levels:
- |

w w w w w w w
w g1 w
w w
w . . g2 . . w
w w
w g3 w
w w w w w w w

The action space for multiple agents is defined in the same way as single
agents, and methods such as self-play can be achieved by parallelising actions
to multiple agents at the same time.

3.6.4 Multi-Agent - Multiple Object

If there are multiple objects that can be controlled by multiple different agents
then the action space becomes a combination of both the previous examples.
Objects to be controlled must be given a number that assigns the ownership of
that object, and then actions must include the x and y coordinates of the object
to perform the action.

3.6.5 Multiple Action Types

A final part of the action space configuration is that of when there are multiple
"action types" that objects can be assigned. For example there may be a "move"
action, but there also may be non-directional action such as "collect", "build",
"harvest" etc... these "action types" are automatically generated by Griddly
when the GDY is parsed. If there are multiple "action types", the "action
type" precedes the action itself.

In an environment with a single agent that can perform actions "move (up,
down, left, right)" and "push (up, down, left, right)" the action space would be
a = [at, aid] where at ∈ [0..1] (move/push) and aid ∈ [0..4]

In the multiple-object case this would expand with the aw and ah terms to
a = [aw, ah, at, aid].

56

3.7 Griddly GDY Example - Sokoban

To provide an intuition on how environments can be implemented using Griddly,
we provide a brief tutorial of the GDY below which recreates the popular game
of Sokoban. Once the GDY is completed, Griddly’s environment wrappers can
easily map it to a Gym environment.

3.7.1 Objects

In this section we describe the objects of the game and the ways they can be
rendered in Griddly.

The game of Sokoban is composed of four objects: avatar, box, hole, and
wall. avatar is the main decision-making object which can move around and
push boxes into holes. Walls are immovable objects. The goal of the avatar is
to push all boxes into the holes.3

Each object needs to have a unique name, which can serve as references to
that object in other parts of the GDY code. Let us start the Objects section
and define the avatar object as follows:

Objects:
- Name: avatar

Z: 2
MapCharacter: A
Observers:

Sprite2D:
Image: images/gvgai/oryx/knight1.png

MapCharacter is used to define the ASCII character of an object and can
be used to mark the initial positions of objects in concrete levels defined later
in the Environment section.

The property Z can serve as the third dimension of the cells in the grid. It
allows to define objects that can occupy the same location of the grid, as long as
they have different Z values. It also defines the order of objects when rendered
in Griddly, i.e., higher Z values indicate that the objects will be rendered on
top.

The Observers property determines how each observer type will render this
particular object. Here, the avatar object only includes a Sprite2D observer,
but Griddly supports additional forms of observations, including those shown
in Figure 3.4. Sprite2D observers expect an image for rendering, thus we select
a knight icon from Griddly’s selection of icons.4

3There are many variations of the game of Sokoban. In our particular implementation the
agent can push boxes into any hole on the environment. There also exist versions where only
a single box can be pushed into each hole.

4Griddly allows users to easily upload new custom icons for their own environments.

57

Having finished the description of the avatar object, we proceed to the wall
object. Here we provide 16 different images for walls to correspond to different
positions of walls, such as horizontal or vertical locations, corner pieces, T-
pieces, etc.

- Name: wall
MapCharacter: w
Observers:

Sprite2D:
TilingMode: WALL_16
Image:

- images/gvgai/oryx/wall3_0.png
- images/gvgai/oryx/wall3_1.png
- images/gvgai/oryx/wall3_2.png
- images/gvgai/oryx/wall3_3.png
- images/gvgai/oryx/wall3_4.png
- images/gvgai/oryx/wall3_5.png
- images/gvgai/oryx/wall3_6.png
- images/gvgai/oryx/wall3_7.png
- images/gvgai/oryx/wall3_8.png
- images/gvgai/oryx/wall3_9.png
- images/gvgai/oryx/wall3_10.png
- images/gvgai/oryx/wall3_11.png
- images/gvgai/oryx/wall3_12.png
- images/gvgai/oryx/wall3_13.png
- images/gvgai/oryx/wall3_14.png
- images/gvgai/oryx/wall3_15.png

We do not provide this object with a Z value given that nothing should
interact with this object. WALL_16 tiling mode is used to make sure all 16
wall icons are rendered correctly for each location.

- Name: box
Z: 2
MapCharacter: b
Observers:

Sprite2D:
Image: images/gvgai/newset/block1.png

- Name: hole
Z: 1
MapCharacter: h
Observers:

Sprite2D:
Image: images/gvgai/oryx/cspell4.png

The box and hole objects can be defined similar to the avatar objects,
except that the hole objects have a different Z value allowing the avatar to
move on top of them.

3.7.2 Actions

Actions define the mechanics of the game and interactions between objects in
Griddly. Each individual action includes two entities: source and destination.

58

source is the object which performs a particular action, whilst the destination
is the object that is affected by this action. Firstly, we define the movement
action of the avatar as follows.

Actions:
Define the move action
- Name: move

Behaviours:
The agent can move around freely in empty space and over holes

- Src:
Object: avatar
Commands:

- mov: _dest
Dst:

Object: _empty

Given that the Src key includes avatar object as its value, it can be in-
ferred that this is an action performed by the avatar. The Dst key with the
object value _empty indicates that the behaviour only applies when the action
is performed on a space with no objects on it.

The Commands property in the Src field includes a list of instructions that will
be executed to the Src object once this action is performed. The mov: _dest

commands moves the object to the destination of the action.
Next, we define the box pushing actions. Firstly, we define the ability of

box objects to move to empty locations. Then, we allow the avatar object to
interact with the box object.

Boxes can move into empty space
- Src:

Object: box
Commands:

- mov: _dest
Dst:

Object: _empty

The agent can push boxes
- Src:

Object: avatar
Commands:

- mov: _dest
Dst:

Object: box
Commands:

- cascade: _dest

Here we make sure that the box object is moved in the same direction as
the avatar object, the source of the action. We achieve this by using the
cascade: _dest which re-apply the same action on the destination object,
namely the box.

Finally, we define the mechanics of the box being pushed onto a hole. We
achieve this by defining our last action with box as its source and hole as its

59

destination:

If a box is moved into a hole remove it
- Src:

Object: box
Commands:

- remove: true
- reward: 1

Dst:
Object: hole

Here, the remove: true command removes the source box from the grid
once pushed into a hole. Furthermore, the reward: 1 commands Griddly to
provide the agent with the reward of 1 once this event is triggered.

3.7.3 Environment

The Environment section defines the environment description, such as its name,
as well as the observation and action spaces of the MDP.

Below we provide the Environment section for our Sokoban example. Firstly,
we indicate that the avatar object will serve as the decision-making agent in
our environment:

Player:
AvatarObject: avatar

We then describe the termination condition which determines when the
episode is complete and whether the agent wins or loses. For Sokoban, an
episodes is considered won if all the boxes are pushed into the holes, i.e., the
number of boxes in the environment is equal to 0:

Termination:
Win:
- eq: [box:count , 0]

Our next step is to defines levels for our Sokoban game. The layout of each
level can be defined using a sequence of strings that uses the MapCharacter

characters of each object defined above. The dot character . indicates an
unoccupied grid cell.

Levels:
- |

wwwwwww
w..hA.w
w.whw.w
w...b.w
whbb.ww
w..wwww
wwwwwww

- |

60

Figure 3.7: Custom Sokoban levels defined in the GDY example.

wwwwwwwww
ww.h....w
ww...bA.w
w....w..w
wwwbw ...w
www ...w.w
wwwhw
wwwwwwwww

The two defined levels produce the environment renderings illustrated in
Figure 3.7.

Lastly, we specify the size of the tiles in pixels and the background image
using the MapCharacter and BackgroundTile fields. We also provide the envi-
ronment with a unique name.

Environment:
Name: sokoban
TileSize: 24
BackgroundTile: images/gvgai/newset/floor2.png

3.7.4 Putting It All Together

Figures 3.8 and 3.9 provide the full implementation of the Sokoban example in
Griddly.

61

Environment:
Name: sokoban
TileSize: 24
BackgroundTile: images/gvgai/newset/floor2.png
Player:

AvatarObject: avatar
Termination:

Win:
- eq: [box:count, 0]

Levels:
- |

wwwwwww
w..hA.w
w.whw.w
w...b.w
whbb.ww
w..wwww
wwwwwww

- |
wwwwwwwww
ww.h....w
ww...bA.w
w....w..w
wwwbw...w
www...w.w
wwwh....w
wwwwwwwww

Actions:
- Name: move

Behaviours:
- Src:

Object: avatar
Commands:

- mov: _dest
Dst:

Object: [_empty, hole]
- Src:

Object: box
Commands:

- mov: _dest
Dst:

Object: _empty
- Src:

Object: avatar
Commands:

- mov: _dest
Dst:

Object: box
Commands:

- cascade: _dest
- Src:

Object: box
Commands:

- remove: true
- reward: 1

Dst:
Object: hole

Figure 3.8: Full implementation of Sokoban in Griddly (part 1).

62

Objects:
- Name: box

Z: 2
MapCharacter: b
Observers:

Sprite2D:
Image: images/gvgai/newset/block1.png

- Name: wall
MapCharacter: w
Observers:
Sprite2D:

TilingMode: WALL_16
Image:

- images/gvgai/oryx/wall3_0.png
- images/gvgai/oryx/wall3_1.png
- images/gvgai/oryx/wall3_2.png
- images/gvgai/oryx/wall3_3.png
- images/gvgai/oryx/wall3_4.png
- images/gvgai/oryx/wall3_5.png
- images/gvgai/oryx/wall3_6.png
- images/gvgai/oryx/wall3_7.png
- images/gvgai/oryx/wall3_8.png
- images/gvgai/oryx/wall3_9.png
- images/gvgai/oryx/wall3_10.png
- images/gvgai/oryx/wall3_11.png
- images/gvgai/oryx/wall3_12.png
- images/gvgai/oryx/wall3_13.png
- images/gvgai/oryx/wall3_14.png
- images/gvgai/oryx/wall3_15.png

- Name: hole
Z: 1
MapCharacter: h
Observers:

Sprite2D:
Image: images/gvgai/oryx/cspell4.png

- Name: avatar
Z: 2
MapCharacter: A
Observers:

Sprite2D:
Image: images/gvgai/oryx/knight1.png

Figure 3.9: Full implementation of Sokoban in Griddly (part 2).

3.8 Baselines

In this section we introduce a set of experiments on an array of Griddly envi-
ronments. The goal of these experiments is to:

• Provide a set of baselines for any future improvements to be compared
against.

63

• Showcase the flexibility of Griddly by using many different engine features.

• Highlight the ability for Griddly to provide a challenging substrate for
reinforcement learning research.

Firstly we chose 10 environments that have been ported from the GVGAI
environment that are particularly difficult for RL algorithms to solve. Each en-
vironment contains 5 levels of different sizes and varying difficulty. We trained
each level from each environment separately using three different observers Vec-
tor, Block and Sprite. Additionally two of the environments are configured with
egocentric partial observability. This baseline suite consists of 150 experiments
in total. Each level is trained for 1.28M frames, and the average score for the
100 final episodes during training is measured. Table 3.1 shows the results of
these experiments.

The second baseline uses a subset of the previous experiments, but all con-
figured with egocentric partial observability. These experiments have an obser-
vation space of 5 × 5 tiles, with the agent centered at the bottom of this grid.
This allows the agent to see 4 squares ahead of it in the direction of travel, and
2 squares either side. Additionally, instead of training each level separately, 3
of the levels are used as a training set and then the 2 remaining levels are used
to evaluate generalization. These experiments are all performed using only the
Vector observer to produce game states.

The neural network’s architecture for both sets of experiments is the same.
Both networks are trained using Proximal Policy Optimization [252] and Ran-
dom Network Distillation [48] (RND).

All environments in the baseline examples are deterministic. Griddly does
allow stochastic behaviors to be implemented but this is beyond the scope of
the baselines in this section.

3.8.1 Random Network Distillation

Random Network Distillation (RND) is a technique used in reinforcement learn-
ing, particularly in exploration strategies. Its central idea revolves around the
concept of "curiosity", where the agent gets rewards for exploring unfamiliar
states. This idea makes RND useful in solving environments with sparse re-
wards.

The mechanics of RND are as follows:

Two networks are trained a fixed randomly initialized target network and
a predictor network. Both of these networks have the same architecture, which
usually consists of several layers of a neural network.

64

Observation processing The state or observation from the environment goes
through these networks. The target network produces a random feature vector
from the observation, while the predictor network tries to match this output.
The predictor network is updated based on a loss function (typically mean
squared error) between its output and the target network’s output.

Intrinsic reward calculation The difference between the output of the two
networks is used to form an intrinsic reward signal. If the predictor network
struggles to predict the output of the fixed random network (meaning the agent
is in a state it hasn’t seen much before), then the intrinsic reward is high.
Conversely, if the predictor can easily predict the output (meaning the agent is
in a state it’s familiar with), the intrinsic reward is low.

Policy update This intrinsic reward is then used to guide the policy of the
agent. In other words, the agent is motivated to go to places where the predictor
network struggles to mimic the random network. This motivates the agent to
explore unseen or less familiar states in the environment.

RND is effective for encouraging exploration in environments with sparse
rewards because it generates an auxiliary reward signal based on the novelty of
states. This allows the agent to discover and learn from new experiences even
when the environment does not provide any explicit rewards.

3.8.2 Network Architecture

The agent network, RND target network and RND prediction network share the
same architecture per experiment. The only difference in networks occurs in the
first few layers as the observation space differs between different observers used.
Experiments using Sprite and Block observers begin with a convolutional layer
with kernel size and stride the same as the tile size. This effectively embeds
each tile into tensor R32×W×H where C is the number of channels, and H and
W are the height and width of the game level in terms of tiles. Alternatively
experiments using Vector observers embed the vector representations using a
1×1 kernel with 32 channels into the same resulting shape R32×W×H . The em-
bedded representation is then fed through the following layers: A convolutional
layer with 32 input channels, 64 output channels, kernel size 3 and padding 1.
Then a convolutional layer with 64 input and output channels, with kernel size
3 and padding 1. A global average pooling (GAP) layer is then used to reduce
the network size to a linear layer of size 2048, this is then reduced by a further
linear layer to a vector size 512. Single linear layers are used after this point for
the various heads such as the actor and critic.

65

The global average pooling layer allows different H and W for different level
sizes to output the same shape vector (in our case 2048) [25].

The action space of the fully observable environments consists of 5 actions do
nothing (no-op), move up, move left, move down, and move right. In contrast,
the partially observable setting the agent has access to 4 actions, do nothing
(no-op), turn left, turn right and move forward.

3.9 Results

3.9.1 Per-Environment

As shown in the results table 3.1 and training plots 3.10, 3.11, there are levels
of specific environments that fail to gain any score. These environments are
sometimes difficult to solve even for humans, as they require precise planning,
and making single mistakes result in states that cannot be reversed. For ex-
ample, in the "Zenpuzzle" the agent gains a reward every time it moves over
tiles of a certain color, but once it has moved over these blocks, it can not move
onto them again. This can cause the agent to get "stuck" surrounded by tiles
that it has already passed. The agent can also easily stop itself from being able
to reach certain tiles by blocking the path to them. Although the agent scores
highly in the "Zenpuzzle" environment, it rarely covers "all" the tiles to reach
the maximum score possible. In the game "Clusters" the agent must push col-
ored blocks into groups and score a point each time a block is "grouped". There
are other obstacles in the environment that the agent must avoid pushing the
blocks into. In the "Clusters" experiments, the agent rarely learns to make a
single group.

We test two partially observable versions of the games "Labyrinth" and "Zen
Puzzle" to see if more general approaches, such as wall-following strategies, can
be learned. As expected in "Labyrinth", a simple maze game with a reward
at the destination, the agent performs better and can solve some of the mazes.
We observe that in some of the games where a "wall following" approach can
solve the maze, the agent learns this strategy. In other levels, the agent does
not learn a strategy and fails to find the goal. It is also interesting to note that
the full observable maze levels could not be learned by this method.

In the "Sokoban" environment, some levels are consistently solved. However,
on other levels, the agent consistently fails to score a single point. This highlights
that the structure of a level and the strategy required to solve the "Sokoban"
levels can require different approaches to training, even when the mechanics of
the game are consistent across levels.

66

Level Max Observer
Game Reward Vector Block Sprite

Clusters

0 8 -0.06 ± 0.24 0.00 ± 0.00 2.00 ± 0.00
1 8 -0.02 ± 0.14 3.00 ± 0.00 0.00 ± 0.00
2 6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
3 9 -0.04 ± 0.20 1.00 ± 0.00 1.00 ± 0.00
4 6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Cook Me Pasta

0 25 0.08 ± 0.57 8.00 ± 0.00 0.00 ± 0.00
1 25 1.47 ± 1.93 8.00 ± 0.00 0.00 ± 0.00
2 25 -0.04 ± 0.20 4.00 ± 0.00 0.00 ± 0.00
3 25 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
4 25 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Bait

0 5 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
1 7 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
2 12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
3 42 7.04 ± 0.28 23.00 ± 0.00 25.90 ± 0.36
4 12 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00

Bait (Keys)

0 5 5.00 ± 0.00 5.00 ± 0.00 3.98 ± 2.02
1 7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
2 12 1.00 ± 0.00 1.00 ± 0.00 2.00 ± 0.00
3 42 7.00 ± 0.00 5.78 ± 0.65 26.90 ± 0.30
4 12 7.00 ± 0.00 6.69 ± 0.91 7.00 ± 0.00

Sokoban

1 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
2 3 0.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00
3 4 2.00 ± 0.00 4.00 ± 0.00 2.00 ± 0.00
4 3 2.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00
5 2 0.00 ± 0.00 2.00 ± 0.00 0.00 ± 0.00

Sokoban 2

0 4 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00
1 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
2 6 5.00 ± 0.00 4.92 ± 0.27 4.96 ± 0.20
3 2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
4 2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Zen Puzzle

0 34 27.24 ± 3.11 33.00 ± 0.00 34.00 ± 0.00
1 34 30.53 ± 1.74 34.00 ± 0.00 33.00 ± 0.00
2 33 26.14 ± 2.27 30.31 ± 1.68 28.98 ± 0.14
3 23 19.94 ± 0.24 18.00 ± 0.00 20.00 ± 0.00
4 27 26.90 ± 0.30 25.98 ± 0.14 25.00 ± 0.00

Labyrinth

0 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
1 1 -0.04 ± 0.20 0.00 ± 0.00 0.00 ± 0.00
2 1 -0.02 ± 0.14 0.00 ± 0.00 0.00 ± 0.00
3 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
4 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Labyrinth po

0 1 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
1 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
2 1 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
3 1 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
4 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Zen Puzzle po

0 34 34.00 ± 0.00 31.02 ± 1.67 30.00 ± 0.00
1 34 27.00 ± 0.00 32.00 ± 0.00 31.88 ± 0.48
2 33 29.00 ± 0.00 31.00 ± 0.00 28.00 ± 0.00
3 23 19.84 ± 0.37 19.90 ± 0.30 19.63 ± 0.48
4 27 22.00 ± 0.00 22.00 ± 0.00 22.00 ± 0.00

Table 3.1: This table shows the results of training 5 levels of 10 GVGAI envi-
ronments that have been ported to the Griddly platform using GDY. Each level
from each environment is trained for 1.28 million steps, and the average reward
of the final 100 episodes is reported for each observer used. (Vector, Block,
and Sprite). In most cases the results are consistent across all the representa-
tions, but due to the unstable nature of RL based on random starting seeds,
some errors in consistency are expected. The two environments marked with
po are configured with egocentric partial observability. Due to computational
constraints, we were only able to train a single model per environment

67

Figure 3.10: Training curves for the first 5 games shown in table 3.1

68

Figure 3.11: Training curves for the first 5 games shown in table 3.1

69

Evaluation Level
Game 1 3

Clusters 0.00 ± 0.00 0.7 ± 0.46
Cook Me Pasta 4.00 ± 0.00 0.00 ± 0.00

Bait -0.09 ± 0.29 1.78 ± 0.42
Sokoban 2 0.00 ± 0.00 0.00 ± 0.00
Zen Puzzle 23.00 ± 0.00 10.9 ± 5.01
Labyrinth 0.00 ± 0.00 1.00 ± 0.00

Table 3.2: This table shows that a simple neural network is able to generalize
when trained on three levels and evaluated on two unseen levels. The agent can
only see an egocentric, partially observable view of the environment.

3.9.2 Generalization

The three training levels used in each experiment are 0,1,4, and the evaluation
levels are 1 and 3. Table 3.2 shows the results of these experiments. These
experiments were also trained for 10M steps instead of the 1.28M used in the
single environment experiments. In some levels, the agent can achieve some re-
wards but can only solve a single unseen "Labyrinth" level out of the evaluation
set. The result of the "Labyrinth" experiment trained per level also shows that
partial observability seems less challenging for the RL agent than having access
to the whole level. The maximum episodic rewards for these environments can
be seen in Table 3.1.

3.10 Framework Comparison

In this section, we provide two comparisons between several frameworks. The
first comparison is a feature matrix showing the differences in features between
Griddly and its closest grid-based relatives. The second comparison is between
several games from popular frameworks that have been re-implemented using
the GDY language.

3.10.1 Features

Table 3.3 shows how the features offered by Griddly compare with a selection
of other environments; since this chapter is about Griddly, it is presented to
highlight what Griddly offers that other environments do not. Griddly is most
closely related to GVGAI and DMLab2D [35], but with various extensions to
provide faster rendering and support for multi-agent and grid-based RTS games
similar to µRTS [208].

Although ALE is not technically a grid world, we’ve included it in the table
for comparison. NetHack Learning Environment (NLE) is built around the

70

G
ri

d
d
ly

G
V

G
A

I
gy

m
-m

ic
ro

rt
s

M
in

iG
ri

d
A

L
E

N
L
E

D
M

L
ab

2D

O
b
se

rv
at

io
n

V
ec

to
r

x
x

x
x

x
x

B
lo

ck
x

x
x

x
S
p
ri

te
s

x
x

x
Is

om
et

ri
c

x
A

S
C

II
x

x
x

x
E
nt

it
y

x
x

C
on

fi
gu

ra
b
le

P
ar

ti
al

O
b
se

rv
ab

il
it
y

x
x

G
P

U
A

cc
el

er
at

ed
R

en
d
er

in
g

x
D

es
cr

ip
ti

on
L
an

gu
ag

e
x

x
x

P
ro

ce
d
u
ra

l
C

on
te

nt
G

en
er

at
io

n
x

x
x

C
op

ya
b
le

Fo
rw

ar
d

M
od

el
x

x
x

x
x

P
la

ye
r

M
od

es
S
in

gl
e

x
x

x
x

x
x

M
u
lt

i
x

x
x

R
T

S
x

x

Table 3.3: Feature matrix comparing Griddly with other environments.

71

Platform FPS (Rendered) ± std. FPS (Vector) ± std. Max Memory (MB)
Griddly 5023 ± 268 72790 ± 2474 95
DMLab2D (10x10) 12815 ± 3863 20562 ± 6658 94
Griddly 3769 ± 124 65056 ± 1736 138
DMLab2D (50x50) 984 ± 116 17036 ± 5341 98
Griddly 1936 ± 76 60232 ± 691 371
DMLab2D (100x100) 318 ± 16 8577 ± 2370 146
Griddly 5012 ± 244 73134 ± 839 106
GVGAI GYM 19 ± 5 - 365
Griddly 3799 ± 170 61101 ± 4186 106
Minigrid 95 ± 3 1228 ± 25 49
Griddly 1160 ± 157 32130 ± 419 106
gym-microRTS 177 ± 12 1906 ± 272 278

Table 3.4: Speed and memory footprint of Griddly compared to similar envi-
ronments. All environments are tested using the python OpenAI gym interface
except from DMLab2D which has its own equivalent python interface. In each
double-row, the Griddly entries are for the same or similar game running on
each of the platforms.

classic NetHack Rogue-like game, and although just one grid-based game, it
offers great variety due to procedural level generation. Although not included
in the table, ProcGen is similar to ALE in scope but offers endless variety
through procedural level generation.

3.10.2 Efficiency

As the focus of the Griddly Engine is currently to improve the data rate of RL
in grid-world environments, a benchmark comparison of the available Python
gym interfaces for some of the most popular grid-based environments is shown
in Table 3.4. The benchmark consists of running the original environment and
the equivalent Griddly version with a random agent for 1000000 frames and cal-
culating the rendered states’ average frames-per-second (FPS) and maximum
memory usage. Rendering the pixels of the environments is the most demanding
method of producing game states, so it provides a useful bottleneck to test. Ad-
ditionally, if available, we compare the game engines’ vectorized versions of the
states. The games and maps used for the tests are GVGAI - Sokoban, MiniGrid
- FourRooms, gym-microrts [137] - MicrortsMining-v4. We also provide three
separate comparisons to Deepmind 2D lab, which is the most closely related to
Griddly. These three comparisons are on three “Pushbox" game levels with sizes
10x10, 50x50, and 100x100. We also configured the tile size to be consistent in
Griddly and other platforms.

72

Griddly for Python

Training

Wasm

TF.jsGriddly

Version: 0.1
Environment:
 Name: Grafter
 ...

 Observers:
 Entity:
 ...

 Vector:
 Width: 14
 Height: 14
 ...

GriddlyJS
Web browser

Environment definition (GDY)
and hand-designed levelsGDY

Model checkpoints for interactive evaluation

Figure 3.12: An overview of the human-in-the-loop environment development work-
flow enabled by GriddlyJS, built on top of the Griddly engine in Wasm and Tensor-
flow.js (TF.js). Environments and custom-designed levels can be loaded into Griddly
for Python for training, and model checkpoints can be directly loaded into GriddlyJS
for visual evaluation.
3.11 GriddlyJS

Recently, procedural content generation (PCG) has emerged as the standard
paradigm for developing environments that can vary throughout training, en-
abling the study of systematic generalization and robustness in RL [234, 179,
62, 54, 152, 241]. The more complex programming logic entailed by PCG al-
gorithms, i.e. creating probabilistic programs that specify distributions over
environment configurations, adds considerable engineering overhead to the cre-
ation of new RL environments.

As research progresses and simpler environments no longer require adequate
challenges, there is a need for environments with higher complexity. Due to this,
researchers are required to create sufficient challenges and thus spend more time
on environment design. These complex environments often come with additional
difficulty in the reproduction of results.

Most environment implementations are focused on solving single tasks from
particular directions and do not offer additional tooling to enable or assist many
approaches. Visualising, evaluating, and recording agent trajectories, for exam-
ple, usually requires additional effort from the researcher if these techniques are
required, and this comes with the additional cost of maintaining these features
for further work.

To address these challenges, we introduce GriddlyJS, a web-based integrated
development environment (IDE) based on a WebAssembly (Wasm) version of
the Griddly engine [29]. GriddlyJS provides a simple interface for developing
and testing arbitrary, procedurally-generated grid-world environments in Grid-
dly using a visual editor and domain-specific language based on YAML, with
support for highly complex game mechanics and environment generation logic.
The visual editor allows rapid design of new levels (i.e. variations of an environ-

73

Level Editor GDY Editor Level Selection

Figure 3.13: GriddlyJS has three main components: The level editor allows rapid
design of custom levels with a code-free, visual interface; rendered levels are fully
interactive via keyboard control. The GDY editor allows editing of the underlying
GDY specification of the core environment mechanics. The level selection component
lists previously designed levels. Users can select levels for further modification or
deletion.

ment) via a simple point-and-click interface. Environments can be tested via
interactive control of the agent directly inside the IDE.

GriddlyJS produces Griddly game description YAML files (GDY), which
define environments and custom levels. GDY files can be loaded directly into
Griddly for Python, producing a Gym-compatible environment. In addition,
any agent model can be loaded into the GriddlyJS IDE, once easily converted
to the TensorFlow.js [TF.js; 266] format, allowing visualizing, evaluating, or
recording performance. The integrated development and visualization provided
by GriddlyJS enables a whole new mode of closed-loop development of RL
environments, in which the researcher can rapidly iterate on environment design
based on the behavior of the agent. This allows designing environments that
specifically break state-of-the-art RL methods, thereby assisting in pushing the
field forward.

GriddlyJS provides a fully web-based integrated development environment
(see Figure 3.13) composed of simple and intuitive user interfaces wrapping the
core components of the Griddly engine. As such, the GriddlyJS IDE can be
used inside any modern browser, without the need for installing complex de-
pendencies. Running Griddly directly inside of the browser is made possible by
transpiling the core components of Griddly into WebAssembly (Wasm). The
interface itself is written using the React library. Inside the GriddlyJS IDE,

74

GDY files can be directly edited with any changes to the environment’s me-
chanics immediately reflected. Moreover, specific levels of the environment can
be designed using a simple visual editor, allowing levels to be drawn directly in-
side the IDE. Previously designed levels can be saved locally into a gallery and
instantly reloaded into the environment instance running inside the IDE and
played via keyboard controls. Taken together, the features of GriddlyJS allow
for rapid environment development, debugging, and experimentation. We now
discuss the major highlights of GriddlyJS in turn. For a detailed walkthrough
of these features, see Appendix A.1.

Environment Specification Designing new environment dynamics can be
time-consuming. For example, adding and testing a new reward transition re-
quires recompiling the environment and adding specific test cases. With Grid-
dlyJS changes can be coded directly inside the GDY in the browser, where it
will be immediately reflected in the environment. The designer can then inter-
actively control the agent to test the new dynamic. Moreover, the environment’s
action space is automatically reanalyzed on all changes, and environment ac-
tions are assigned sensible key combinations, e.g. WASD for movement actions.
Similarly, newly defined entities inside the GDY are immediately reflected in
the visual level editor, allowing for rapid experimentation.

Level Design Given any GDY file, GriddlyJS provides a visual level editor
that allows an end user to design environment levels by drawing tiles on a grid.
Objects from the GDY file can be selected and placed in the grid by pointing
and clicking. The level size is automatically adjusted as objects are added. The
corresponding level description string, which is used by the Griddly environment
in Python to reset to that specific level, is automatically generated based on the
character-to-object mapping defined in the GDY. New levels can then be saved
to the same GDY file and loaded inside the Python environment.

Publish to the Web As GriddlyJS is built using the React library, the envi-
ronment component itself can be encapsulated inside a React web component.
Moreover, GriddlyJS supports the loading and running of TF.js models directly
inside the IDE environment instance. Taken together, this allows publishing
Griddly environments and associated agent policies in the form of TF.js mod-
els directly to the web, as an embedded React web component. By allowing
researchers to directly share interactive demos of their trained agents and envi-
ronments, GriddlyJS provides a simple means to publish reproducible results,
as well as research artifacts that encourage the audience to further engage with
the strengths and weaknesses of the methods studied.

75

Recording Human Trajectories Recording human trajectories for environ-
ments is as simple as pressing a record button in the GriddlyJS interface and
controlling the agent via the keyboard. Recorded trajectories are saved as JSON,
consisting of a random seed for deterministically resetting the environment to
a specific level and the list of actions taken. They can easily be compiled to
datasets, e.g. for offline RL or imitation learning. The recorded trajectories can
also be replayed inside of GriddlyJS.

Policy Visualization Visualizing policy behavior is a crucial debugging tech-
nique in RL. Policy models can be loaded into GriddlyJS using TF.js and run in
real-time on any level. In this way, the strengths, weaknesses, and unexpected
behaviors of a trained policy can be quickly identified, providing intuition and
clues about any bugs or aspects of the environment that may be challenging in a
closed-loop development cycle. These insights can then be used to produce new
levels that can bridge the generalization gap and thus improve the robustness
of the agent.

3.12 Proof-of-Concept: Escape Room Puzzles

We now demonstrate the utility of Griddly and GriddlyJS by rapidly creating
a complex, procedurally-generated RL environment from scratch. After devel-
oping this new environment, we then use GriddlyJS to quickly hand-design a
large, diverse collection of custom levels, as well as record a dataset of expert
trajectories on these levels, which can be used for offline RL. We then load this
new environment into Griddly for Python to train an RL agent on domain ran-
domized levels—whose generation rules are defined within the associated GDY
specification—and evaluate the agent’s performance on the human-designed lev-
els.

3.12.1 Rapid Environment Development

We consider an environment, resembling a 2D version of MineCraft, in which
the agent must learn a set of skills related to gathering resources and construct-
ing entities using these resources in order to reach a goal. While prior works
have presented environments with similar 2D, compositional reasoning chal-
lenges [9, 315, 319], we specifically model our EscapeRoom environment after
the complex state and transition dynamics of Crafter [117], with the key differ-
ence being that EscapeRoom episodes terminate and provide a large reward upon
reaching the goal object, a cherry tree, in each level.5 The dynamics inherited

5A full description of how EscapeRooms deviates from Crafter is provided in Appendix 3.13.

76

- Name: do
...
Behaviours:

...
- Src:

Object: player
Preconditions:

...
Commands:

- add:
- inv_wood
- 1

- if:
Conditions:

lt:
- ach_collect_wood
- 1

OnTrue:
- set:

- ach_collect_wood
- 1

- reward: 1
Dst:

Object: tree
Commands:

- remove: true
- spawn: grass

Figure 3.14: GDY for an environment transition for picking up wood.

77

(a) (b) (c) (d)

Figure 3.15: Example EscapeRoom that are procedurally-generated (a, b) and human-
designed (c,d). The agent must collect resources to build tools and structures to reach
the goal cherry tree, while surviving the environment.

from Crafter entail harvesting raw resources such as wood and coal in order to
build tools like furnaces, bridges, and pickaxes required to harvest or otherwise
clear the path of additional resource tiles like iron and diamond.

Mastering this environment presents a difficult exploration problem for the
agent: Not only must the agent reach a potentially faraway goal, but it must also
learn several subskills required to reliably survive and construct a path leading
to this goal. Success in this environment thus requires exploration, learning
modular subskills, as well as generalization across PCG levels. Meanwhile, im-
plementing these rich dynamics presents a time-consuming challenge for the
researcher. Such a complex environment typically entails knowledge of many
disparate modules performing functions ranging from GPU-accelerated graphics
rendering and vectorized processes for parallelized experience collection. Fur-
ther, the researcher must implement complex logic for executing the finite-state
automata underlying the environment transitions, as well as that handling the
rendering of observations.

GriddlyJS abstracts away all of these details, allowing the researcher to
focus exclusively on defining the underlying MDP through a succinct GDY
specification. In particular, the researcher can simply define all entities (i.e.
Griddly objects) present in the game, each with an array of internal state
variables, as well as the agent’s possible actions. Then, all transition dynamics
are simply established by declaring a series of local transition rules (i.e. Griddly
actions) based on the state of each entity in each tile, as well as any destination
tile, acted upon by the agent’s action. For example, after declaring the action of
do (i.e. interact with an object) along with the possible game entities and their
states (e.g. the agent is the player, which can be sleeping) we can simply
define the transition dynamic of receiving +1 wood resource upon performing do

on a tree using the simple sub-block declaration shown in Figure 3.14. More
complex dynamics can be implemented by calling built-in algorithms like A*
search or nesting Griddly Action definitions. Further, arbitrary PCG logic can
be easily implemented by writing Python subroutines that output level strings
corresponding to the ordering of the level tiles.

78

0 200 400 600 800 1000 1200 1400
PPO Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
lv

e
Ra

te
Human Levels
DR Levels

Figure 3.16: Mean and std of solve rate on DR levels (orange) and human-designed
levels (blue).

3.12.2 Human-in-the-Loop Level Design

Given the rich design space of the EscapeRoom environment, randomized PCG
rules defined by the Griddly level generator are unlikely to create challenging
levels that push the boundaries of the agent’s current capabilities. Rather in
practice, designing such challenging levels for such puzzle games rely heavily
on human creativity, intuition, and expertise, which can quickly hone in on
the subsets of levels posing unique difficulties for a player or AI. Indeed, based
on recent works investigating the out-of-distribution (OOD) robustness of RL
agents trained on domain-randomized (DR) levels [74, 147], we do not expect
agents trained purely on randomized PCG levels to perform well on highly
out-of-distribution, human-designed levels, without the usage of such adaptive
curricula. However, it can be costly to collect a large set of diverse and chal-
lenging human-designed levels necessary to encompass the relevant challenges,
and thus, most prior works test on limited sets of human-designed OOD levels.

GriddlyJS allows us to quickly assess OOD generalization on a large number
of human-designed levels. With its visual level editor and interactive, browser-
based control of agents, we can rapidly design and iterate on new and challenging
levels. In particular, we created 100 diverse environments in roughly eight hours,
many featuring environment and solution structures that are highly unlikely to
be generated at random. These levels can be seen in Figure 3.17

We then use PPO to train a policy on domain-randomized EscapeRoom levels.
We checkpoint the policy at regular intervals in terms of the number of PPO

79

Figure 3.17: All 100 human-designed EscapeRoom levels, made using GriddlyJS.

80

updates and evaluate the performance of each checkpoint on all 100 human-
designed levels, as well as 100 DR levels. We see in Figure 4.6 that, throughout
training, the resulting policy solves DR levels at a significantly higher rate than
human-designed levels, highlighting the distinct quality of human-designed lev-
els. We also note here that the human-designed levels are exponentially unlikely
to fall inside the distribution of the generated levels. This highlights a signifi-
cant limitation of PCG, which does not exist with levels generated by a human.
Generating complex puzzle levels using PCG methods is an ongoing area of re-
search. Tuning generators to create unique levels often results in levels that are
invalid or unsolvable, and vice versa [275, 314, 265, 81, 74]. The full details on
our choice of model architecture and hyperparameters is provided in Appendix
3.13.

Furthermore, as GriddlyJS loads TF.js models for policy evaluation and vi-
sualization directly inside the IDE, human-in-the-loop level design can be per-
formed in a closed-loop, adversarial manner: The policy, first trained on DR
levels, is successively evaluated on additional sets of human-designed levels, the
most challenging of which are added to the agent’s training set, thereby robus-
tifying the agent’s weaknesses. Given the success of these methods and that of
recent adversarial adaptive curricula methods for RL [148] in producing robust
models, we expect human-in-the-loop adversarial training to lead to similarly
significant gains in policy robustness. Importantly, by developing an RL envi-
ronment in GriddlyJS, this mode of training is immediately made available to
the researcher. GriddlyJS enables TF.js policies and environments to be directly
published on the web, thus allowing such adversarial methods to be tested at
high scale, potentially leading to highly robust policies and collecting unique
datasets of adversarial levels useful to future research in generalization and the
emerging field of unsupervised environment design [74].

3.12.3 Recording and Controlling Trajectories

GriddlyJS makes it easy to record trajectories for any level directly inside the
IDE, enabling a wide range of downstream use cases. For example, such recorded
trajectories can be associated with human-designed levels during human-in-the-
loop adversarial training to ensure solvability. Further, such recorded trajecto-
ries naturally serve as datasets for offline RL and imitation learning—especially
useful for more complex multi-task or goal-conditioned environments where it
may be important to ensure the dataset has sufficient coverage of the various
tasks or goals [219].

Moreover, the interactive control feature in the presence of a loaded TF.js
policy enables the study of human-AI interaction, in which the agent may hand

81

over control to a human when the policy is uncertain. Further, as levels can
be edited directly inside the IDE, GriddlyJS allows researchers to perform a
controlled evaluation of policy adaptation to environment changes that occur
mid-episode.

Deep Learning Framework Support

GriddlyJS supports any deep learning model that can be converted into the
ONNX format [207]. This includes many popular frameworks such as PyTorch,
Tensorflow, JAX, Caffe, and Chainer. Once converted to the ONNX format,
these models can be converted to TensorflowJS and used in the debugging view.

As our experiments in section 3.12 are trained using PyTorch, we include
example scripts to convert these models to ONNX and then to TensorflowJS.
These scripts and documentation on how to load and use the converted models
can be found at:

https://github.com/GriddlyAI/escape-rooms#using-checkpoints-in-griddlyjs

3.13 Experimental Details and Hyperparameters

Table 3.5 summarises the hyperparameters we chose to sweep. Other hyperpa-
rameters while sweeping were those shown in Table 3.6.

Table 3.6 summarises our final hyperparameter choices for our PPO agent.
The final choice was made by taking the highest average (calculated across the
seeds) level completion rate.

Table 3.5: Hyperparameter sweep values

Parameter Values

λGAE 0.65, 0.8, 0.95
Adam learning rate 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4
Student entropy coefficient 0.2, 0.1, 5e-2, 1e-2, 5e-3, 1e-3
Seeds 0 1 2 3 4 5 6 7 8 9

3.13.1 Architecture

We use the PPO implementation from CleanRL [140] with the ImpalaCNN [86]
architecture as this is commonly used with grid-world environments.

82

https://github.com/GriddlyAI/escape-rooms#using-checkpoints-in-griddlyjs

Table 3.6: Hyperparameters used for training the PPO model.

Parameter Values

γ 0.99
λGAE 0.95
PPO rollout length 128
PPO epochs 4
PPO minibatches per epoch 4
PPO clip range 0.2
PPO number of workers 256
Adam learning rate 1e-3
Adam ϵ 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
Return normalization no
Value loss coefficient 0.5
Student entropy coefficient 0.05

3.13.2 Training And Evaluation

All training and evaluation episodes are limited to 500 steps. The agent receives
no penalty for reaching this limit. We trained our models with 10 different seeds
for 50 million environment steps. All training is performed using our modified
Crafter level generator as described in the next section. All results are averaged
across these 10 seeds. All code for our experiments and descriptions on how
to use the training and evaluation scripts can be found in the escape-rooms
repository: https://github.com/GriddlyAI/escape-rooms

3.13.3 Modified Crafter Environment

Griddly’s GDY format contains a restricted set of commands that allow complex
mechanics to be realized. However, when translating from many environments
into GDY format, there are some caveats that may mean behaviors are slightly
modified from the original versions.

Grafter

Grafter Github repository: https://github.com/GriddlyAI/grafter
Before generating the Escape Room environments, Crafter was first trans-

lated directly to GDY to create as close replication of the original environment as
possible. This replication (Nicknamed Grafter) had several features that could
not be directly translated. These translation artifacts between the environment
implementations are explained below:

83

https://github.com/GriddlyAI/escape-rooms
https://github.com/GriddlyAI/grafter

Chunk Balancing The spawning and despawning of Non-player characters
(NPC) i.e zombies, cows, and skeletons in order to balance their numbers across
the environment is not possible using the current features of Griddly, so objects
are only spawned at the start of the episode. Defeating NPCs removes them
permanently from the environment.

Day and Night Cycles Changing the brightness of pixels in order to simulate
a day and night cycle is relevant only when pixel observations are being used.
Griddly supports several other observation spaces where day and night cannot be
easily modeled, such as Vector and Entity. Day and night are still implemented
as part of the Sprite2D observations, but the associated behavioral changes for
NPCs are not present.

Chasing Behaviour Zombies and skeletons use Griddly’s built-in A* pathfind-
ing implementation, whereas zombies and skeletons in Crafter use a simple rule-
based method.

Observation Spaces All observation spaces are configured to contain the
same information as the original crafter environment and have equivalent ob-
servability dimensions.

Sprite2D observers configured to be the same as the original Crafter envi-
ronment, the inventory display, and day/night cycle are produced by a custom
shader. In this implementation, the Voronoi pixel noise used in the original
environment is omitted.

Vector observers contain a 7x9x51 (WxHxC) observation space, where the
channels C represent object types, orientations, playerIds, and the set of global
variables which represent the inventory, which are repeated across the height
and width dimensions.

Entity observers contain a list of features for each object type in the 7x9
space around the agent and additionally include a global entity which contains
the inventory variables.

Multi-Agent Support is naturally introduced as part of the features that
come with Griddly, agents gain an additional achievement if they defeat other
agents. The number of agents that are spawned in the environment is config-
urable in the GDY.

84

Domain Randomization

Figure 3.18: Example escape rooms generated by the Domain Randomization gener-
ator.

The domain randomization algorithm we use is a modified version of the
open-simplex-based level generator from the original Crafter environment. While
the structure of the levels is generally the same as those in Crafter, we also make
sure that we add a single "cherry" tree goal to each level. In most cases, the
cherry tree can be reached by traversing land, but occasionally there may be
levels where more complex strategies are required such as chopping trees or
building bridges to get to the island where a tree exists. We show examples of
the DR levels in Figure 3.18

Escape Rooms

Escape Rooms Github repository https://github.com/GriddlyAI/escape-rooms

85

https://github.com/GriddlyAI/escape-rooms

Table 3.7: Flattened Action Space

Action Values

No-Op 0
Move Left 1
Move Right 2
Move Down 3
Move Up 4
Interact With Object 5
Place Stone 6
Place Table 7
Place Furnace 8
Make Wood Pickaxe 9
Make Stone Pickaxe 10
Make Iron Pickaxe 11

To make an escape room, firstly we needed a method of escape. To do this
we repurposed the mechanic of eating a plant object. We added a termination
condition so that if the eat plant goal is achieved, the episode ends and the agent
receives a reward of 10.

There are also several features in Grafter that were not required in the
Escape Room environment:

Plants As reaching and eating a plant (cherry tree) is now being used as the
goal state, the mechanics for collecting, planting and ripening of the trees was
removed. Plants are spawned in the ripe state and remain that way until the
agent collects them and subsequently ends the episode.

Agent Survival The mechanics for surviving in the environment, such as
requiring food, water, energy and maintaining health levels are unnecessary
complexities for the escape rooms and limit the possible challenges that can be
built. The same reasoning is applied to zombies and skeletons which are not
required. Removing these mechanics also removes the need for certain actions
such as sleeping. Additionally, the day/night mechanics were removed entirely.

Swords Similar to the reasoning behind survival mechanics, we decided that
combat with zombies/skeletons was an unnecessary complication, therefore the
mechanics for building weapons were not required. This also simplified the
action space as is shown in table 3.7.

86

Reward Shaping In Crafter the agent is rewarded depending on their current
health level, as we are not using any health or survival mechanics this reward
scheme is ommitted. All achievements still give a single reward of 1 for the
first time they are encountered. The exception being the eat plant achievement
which gives a reward of 10 for completing the escape room.

3.14 Solution Trajectories

Figure 3.19: Level 1. In this simple level, the agent must solely navigate the maze
to reach the goal cherry tree.

Figure 3.20: Level 30. The agent begins in the top-left corner, where it must first
collect wood and build a wooden pickaxe using the work table. With this tool, the
agent can pick up stones to clear the path, as well as successively place and pick up
stones over the water to create a walkable path, making it possible to reach the goal.

To demonstrate the ease of creating custom levels and recording trajectories
with GriddlyJS IDE, we create a set of 100 hand-designed levels of the Crafter-
based EscapeRoom environment. All 100 levels are visualized in Figure 3.17. The
levels are feature distinct challenges for the agent. For each level, we include
a solution trajectory generated by a human player using the recording feature
inside the IDE. Griddly stores trajectories as simply a list of actions taken,
along with a string representation of the level or a specific seed that allows the
level generator to deterministically reset to the recorded level. We visualize key

87

Figure 3.21: Level 37. The agent starts on the left and must first collect the wood
and go to the work table to build a wooden pickaxe, with which it can collect the stone
above. The agent must then successively place and remove this stone over the water
to make the water walkable paths, making sure to collect the remaining two pieces of
wood. Returning to the work table, the agent can then build a stone pickaxe, collect
the coal at the top of the level, return to the work table and furnace to build an iron
pickaxe, with which it can clear the diamond blocking the goal.

Figure 3.22: Level 82. The agent begins in the bottom-left corner and then must
visit top-left corner to collect wood, visit the work table in the bottom-right to create
a wood pickaxe, collect the stone in the top-right corner, and then successively place
and remove the stone over the lava to create a walkable path through the lava corner
in at the bottom-left of the central diamond-bordered square to reach the goal.

frames (left to right, top to bottom) from expert trajectories for a diverse subset
of the 100 hand-designed EscapeRoom levels in Figures 3.19 through 3.24. In

88

Figure 3.23: Level 95. The agent begins at the bottom of the island. It must collect
the wood across the island to build a work table and then a wooden pickaxe, with
which it can collect stone —which requires building a path to the stone in the water
by placing and removing stone in the water. The agent must then return to the work
table to build a stone pickaxe, with which it can collect the iron in the bottom-right.
With the iron, the agent must return to the work table to create a stone pickaxe, which
can be used to collect the coal, clearing the way to also place and remove stone over
the lava to collect the final piece of stone. The agent must then return to the work
table to build a furnace and then an iron pickaxe, with which it can use to clear the
diamond blocking the goal.

Figure 3.24: Level 100. The agent starts at the top-left, and must first move
down to collect the wood and build a wooden pickaxe to collect the stone. With the
stone, the agent must create walkable area over each of the crevices along the path in
order to allow it to properly face the lava tiles, so that the agent can then place and
remove the stone over the lava to create a walkable path towards the goal. This level
creates difficulty by exploiting how moving towards water does not result in episode
termination, while turning into lava does.

each frame, the agent is highlighted with a magenta bounding-box for clarity.

89

3.15 Conclusions

We introduced GriddlyJS, a fully web-based integrated development environ-
ment that streamlines the development of grid-world reinforcement learning
(RL) environments. By abstracting away the implementation layers responsible
for shared business logic across environments and providing a visual interface al-
lowing researchers to quickly prototype environments and evaluate trained poli-
cies in the form of TensorFlow.js models, we believe GriddlyJS can greatly im-
prove research productivity. GriddlyJS enables human-in-the-loop environment
development, which we believe will become a major paradigm in RL research
and development, allowing for the measured design of higher quality environ-
ments and therefore training data. Moreover, such approaches (and therefore
GriddlyJS) can enable new training regimes for RL, such as human-in-the-loop
adversarial curriculum learning.

Of course, our system is not without limitations: GriddlyJS does not cur-
rently persist user-generated data on a dedicated server, though we plan to
support this functionality in the future. Additionally, although environments
are rendered in the browser, pixel-based observation states are not currently
supported. Moreover, training must still occur outside of GriddlyJS, a bottle-
neck that is mitigated by the fact that GDY files can be so easily loaded into
Griddly for Python, and most model formats are easily converted to the TF.js
format as highlighted in Appendix A.1.4.

As a proof-of-concept, we used GriddlyJS to rapidly develop the EscapeRoom
environment based on the complex skill-based dynamics of Crafter, along with
100 custom hand-designed levels. We then demonstrated that an agent trained
on domain-randomized levels performs poorly on human-designed ones. This
result shows that PCG has difficulty generating useful structures for learning
behaviors that generalize to OOD human-designed levels, thereby highlighting
the value of GriddlyJS’s simple interface for quickly designing custom levels.
Additionally, we believe GriddlyJS’s web-first approach will enable more RL
researchers to share their results in the form of interactive agent-environment
demos embedded in a webpage, thereby centering their reporting on rich and en-
gaging research artifacts that directly reproduce their findings. Taken together,
we believe the features of GriddlyJS have the potential to greatly improve the
productivity and reproducibility of RL research.

90

Chapter 4

Environment Interfaces

One of the main requirements of Griddly is that it can support many possi-
ble methods of interacting with environments, for example, single-agent, multi-
agent, and RTS-style games where an agent can issue commands to control
multiple units in parallel.

In some environments, there may be action spaces that are conditional or
hierarchical, where an action is formed of multiple components. One example
of this would be an environment that has two components: the first component
consists of the discrete actions "move" and "jump", the second component con-
sists of actions "up", "down", "left", and "right". If the agent selects "move"
then the other actions "up", "down", "left", and "right" are available, but if
the agent selects "jump" then some options of the second component may be
invalid. "jump" + "down" and "jump" + "up", might not be valid actions.
Other examples such as StarCraft II[292], µRTS [138] and BotBowl [157] allow
control of multiple individual units either by selecting their locations and then
issuing commands to those units. Some units can perform certain actions that
are not accessible to other units. Furthermore, some of those actions in turn
require additional parameters. For instance, selecting a combat unit that can
target several potential locations in the game requires specifying them. More-
over, the particular type of combat actions might be tied or dependent on the
unit selected.

4.1 Background

Several techniques have been proposed to handle this kind of action space and in
the rest of this section, we will attempt to cover the most well-known methods.

91

Flat Action Spaces

The most common method for dealing with conditional or hierarchical action
spaces is to "flatten" the action space. Flattening consists of enumerating all
possible combinations of actions and then converting this enumeration into one
large list of distinct actions [163]. In our simple example above, we have an
action with two components. The first component is to select "move" or "jump"
and the second component is to select the respective direction: up, down, left,
and right. We have already stated that there are two invalid actions, jump
down and jump up. this leaves us with 6 possible combinations. The flattening
procedure would therefore change the action space into the following 6 distinct
actions: move up, move down, move left. move right, jump left, jump
right.

This method works in environments that are relatively simple, but in en-
vironments that have large numbers of possible values in several components,
the combinatorial complexity means that the eventually flattened space can be
multiplicative in nature. In RTS games such as µRTS [138], the components of
actions can include x and y coordinates. In small maps or levels, a flattened
representation may consist of a few hundred possible actions, but as larger maps
are used, the growth of the action space is multiplicative. In particular in µRTS,
"attack" actions may have start and end coordinates, meaning that a flattened
action space scales with respect to x2y2. A 30× 30 game would require a policy
with almost 1 million outputs. This is also ignoring the fact that there are many
other actions other than "attack" that are present in the environment.

Parameterised Actions

Parameterized action spaces commonly take the form of an action a made from
two components c0, c1 where the first component is a type of action and the
second is a parameter. In [191], this action space shaping strategy was applied
in the RoboCup 2D Half-Field-Offense environment to beat the state-of-the-
art hard-coded bots. The first action component defines whether the agent will
dash, turn, tackle or kick. The second component defines continuous parameters
for each of these actions. Four sets of parameters are used, however, only one
of them is used at each time step depending on the action type selection. This
leads to many redundant outputs of any policy.

In larger environments such as RTS games, requiring parameters for every
action quickly becomes infeasible as the number of action types increases. To
contextualize the effect this can have for the size of the policy representation
consider the example of BotBowl. The game contains 17 action types that
require an x and y position parameter. If we proceeded to parameterize the

92

action space, 17 sets of x,y positions would need to be predicted at each time
step. From the point of view of an RL agent, the problem is exacerbated if
we consider that the policy would have to specify each combination of x and
y position. In a traditional BotBowl map (25 × 5) this would lead to a policy
that requires 17 + 17 × 25 × 15 = 6, 382 logits (i.e. unnormalized scores) to
parameterize these actions. The number grows quadratically with the map size,
a 30× 30 map, for example, would require 17 + 17× 30× 30 = 15, 317 logits.

Auto-regressive Actions

c1c0 ck

s

· · ·

Figure 4.1: An auto-regressive policy can be graphically represented as a di-
rected acyclic graph where we can illustrate the dependency of a component ck
on the previous components c<k.

An alternative comes from reflecting on the structural relations that exist in
complex action spaces. For example, when comparing all the potential actions
that an agent could choose to enact, not all of them will belong to the same
level of abstraction. Some actions will be more self-contained, whereas others
may need a group of actions to be properly contextualized.

It is possible to capture this concretely by representing a policy in a more
expressive manner. In [292] the authors suggest an auto-regressive model of the
form:

π(a|s) = π(c0, . . . , ck|s) =
K∏

k=0

π(ck|c<k, s) (4.1)

To create the action a, the agent samples multiple sub-actions or compo-
nents ck that depend on the previous c<k choices (illustrated in Figure 4.1).
[292] explores the usage of conditional policies within the context of StarCraft
II. However, they relax the constraints imposed by the auto-regressive model
opting for a policy π(a|s) =

∏K
k π(ck|s). In [293], the approach is extended

substantially as the architecture considers a conditional policy that captures
the context of previous actions through different embeddings. An invalid action
masking scheme, as described in Section 3.1.2, is also used to prevent the agent
from selecting actions that are invalid or cannot be performed in the current

93

state.

Entity Actions

Entity actions, work in conjunction with entity observation spaces, and output
actions per-entity type [303]. Each entity in entity observation spaces has a
corresponding object embedding head, the output also requires an output or
policy head per object type. The fact that different action heads are used per
object type means that the number of redundant outputs and required masking
is significantly reduced. Additionally, as objects are observed and policies are
predicated on a per-entity basis, there is a reduced need for action spaces where
objects have to be selected through coordinates, further reducing the complexity
of the action spaces.

4.2 Conditional Action Trees

In this chapter, we propose a Conditional Action Tree as a paradigm to gen-
eralize several of the action space configurations introduced in section 3.1.3.
Conditional Action Trees can be used to describe action spaces in a way that
naturally reduces the required policy model output size whilst also allowing ac-
tion parameterization and action reduction using invalid action masking. We
show how many action spaces frequently found in single, multi-agent, and Real
Time Strategy (RTS) games can be described using Conditional Action Trees.
We also show that agents with access to Conditional Action Trees as part of
their state observations can learn high-performing policies.

We present several experiments where we purposefully modify the action
space of a game environment to include several increasingly more complex fea-
tures, whilst keeping the observation space and game mechanics consistent. In
these experiments, we show that agent operating with Conditional Action Trees
maintains the performance of those operating with common action space con-
structions while significantly reducing the number of outputs, or logits, required
to furnish the policy distribution.

In addition to these experiments, we also perform several ablation studies to
show various possible modifications to the Conditional Action Tree formulation
and how they can affect training.

The results suggest that the Conditional Action Trees could offer an alter-
native to generically handle complex combinatorial action spaces with multi-
ple components. This work is made possible by using the Griddly Framework
described in previous sections. All Griddly environments support conditional
action trees as their default action interface.

94

move attack use

root

up down left right up down left right food

Figure 4.2: An action tree consisting of nine possible actions and two compo-
nents C0 = 3 and C1 = 4. The possible actions are "move" or "attack" in any
of the four directions, "attack" in any of the four directions, and finally "use"
a food item. Move, Attack and Use cannot be performed at the same time.

Conditional action trees (CAT) offer a generalization of discrete action spaces
to provide an interpretation of action selection as the process of traversing along
a chained sequence of action components with different levels of dependency. To
complete the characterization of a Conditional Action Tree we first need to define
three main elements: Action Trees, Valid Action Trees, and finally Conditional
Masking.

4.2.1 Compatible Action Spaces

For an action space to be compatible with by CATs, they must satisfy a few
requirements:

• Action spaces must contain one or more discrete components as described
in 4.2.2

• Environments must provide invalid action masks for all components as
described in section 4.2.3

• It is not possible to provide invalid action masks for continuous compo-
nents, so continuous actions are not compatible.

4.2.2 Action Trees

We start by formulating a single action as a list of a fixed number of components
a = {c0, c1...cn}, where ck ∈ Ck. That is, each component takes a value from
a set of possible elements. Actions in the same component level are mutually
exclusive. For example, move left and move right must be options within a
single component Ck. The possible values of Ck are determined first, by the
specification of the environment, and second by the values of previous selections
Ck = f(c0, c1, ..., ck−1).

These restrictions naturally allow the components to form a tree structure,
where a path from the root node to any leaf forms the action. An example

95

of an action tree is shown in Fig. 4.2. Note that under this specification an
environment requiring the agent to specify a single atomic action at each time
step results in an action tree with a single component, a = {c0}. Parameterized
action spaces that contain an action type and a discrete action parameter can
also be described by action trees with two components, a = {c0, c1}.

Previous work has touched upon the idea of using trees as a formalization of
action spaces with multiple components such as in [89], where the tree structure
is referred to as a Hierarchical Action Space. Other works have used action
spaces that are similar to action trees. The Global Action Space in [137] for
example can also be described as an action tree.

4.2.3 Valid Action Trees

We define a valid action tree as a sub-tree of an action tree at a particular
environment state, where the sub-tree nodes correspond to possible actions in
that state. For example, consider the tree in Fig. 4.2, an agent in a state where
no enemies are surrounding it and does not have food in its inventory has a
valid action tree only consisting of the left-most move branch and its children.

In the context of reinforcement learning, the environment provides a valid
action tree at each time step. Valid action trees are then used to construct the
Invalid Action Masks described in Section 3.1.2. These masks index the child
nodes available in the full action tree.

4.2.4 Conditional Masking

The two-step method of masking in [139] can be generalized to an n-step mask-
ing method when the environment provides a valid action tree as described in
Section 4.2.3. We refer to this generalization of action selection and masking as
a Conditional Action Tree (CAT).

A CAT is constructed by adding a mask at each node of a valid action
tree, defining which child nodes of the complete action tree are available. An
action is constructed by starting at the root node of the valid action tree and
selecting a child node from the masked distribution. This child node contains
the mask to use for the next component. Thus, first the mask is obtained as
mk+1 ∼ p(mk+1|ck), to produce a masked sub-policy to sample a component
ck+1 ∼ p(ck+1|mk+1, s). This process continues until all action components
have been sampled. The full compound policy, as illustrated in Fig. 4.3, is
factorised as:

π(a|s) = p(m0)

K∏
k

p(mk+1|ck)p(ck|mk, s) (4.2)

96

m2m1m0

c1c0 ck

s

· · ·

· · ·

Figure 4.3: A graphical model representing the policy as a joint distribution of
masks m and components c. In a CAT, a component c0 is sampled from the
options allowed by the mask m0. The next mask m1 depends on c0, which
constrains the next possible component c1. The process is repeated until all ck
components have been sampled.

4.3 Actor-Critic with Conditional Action Trees

4.3.1 IMPALA

The description of the action spaces provided by CAT is naturally agnostic to the
choice of the RL algorithm. We examine this perspective within the context of
IMPALA, an actor-critic-based framework introduced in [86]. Unlike A3C [197]
or other similar distributed approaches where the agents share their gradients,
IMPALA considers the acting and the data collection as independent of the
learning step. That is, it separates the learners who are in charge of computing
the gradients and sharing the most recent parameters from the actors whose
role is to execute a policy, only sharing back with the learners the observations
gathered during an episode.

4.3.2 V-trace and masking

As an actor-critic, IMPALA learns Vθ(s) parameterized by θ to be used as part
of the baseline, and a policy πϕ parameterized by ϕ. Each actor executes their
own policy µ by retrieving the latest policy π from the learner. Meanwhile the
learner updates continuously the parameters θ and ϕ. As the process occurs
in parallel and in a decoupled manner, there will be a discrepancy between the
policy µ from an actor and π. Namely, the trajectories (st, at, rt . . .) collected
by an actor come from a policy µ that has become obsolete with respect to
π. IMPALA proposes to address these off-policy corrections by introducing a
v-trace target,

97

vt = V (st) +

t+n−1∑
i=t

γi−t
(i−1∏
j=t

uj

)
δiV (4.3)

where δiV corresponds to a temporal difference term,

δiV = ρi(ri + γV (si+1)− V (si))

The v-trace adjusts the weight of the contributions provided by the ac-
tors through the presence of two truncated importance sampling weights ρi =

min(ρ, π
µ) and uj = min(u, π

µ). Thus the second part of the v-trace target acts
as a correction term. For example assuming p and u ≥ 1, if µ > π the learner
would down-weight the observations and actions followed by the actor. Intu-
itively, if this ratio tends towards a low number, it indicates that the policies
have diverged significantly. The extent to which more recent δiV affect the up-
date of a previous V is captured by the product of ut:i−1 where u serves as a
hyperparameter controlling the convergence speed towards V . In turn, ρ deter-
mines to which V we converge. A ρ close to 0 leads convergence towards a V µ

as the correction term becomes negligible in the v-trace target.
It is important to note that for CAT we do not just consider a single

set of importance sampling weights {ρ, u} but instead we must account for
multiple corrections dependent on the various sub-policies such that ρk,i =

min(ρ, π(ck|mk,s)
µ(ck|mk,s)

) and uk,j = min(u, π(ck|mk,s)
µ(ck|mk,s)

) for a sub-policy k. Moreover,
we must synchronize the masks applied to ck in both π and µ. Similarly, for
updating the policy parameters ϕ we adapt the policy gradient loss function
to consider the inclusion of the masks and to propagate the gradients to all
sub-policies:

J = ρk,i∇ϕ log πϕ(ck|mk, s)(rt + γvt+1 − Vθ(xt))

4.4 Experiment Setting

4.4.1 The "Clusters" Game

We perform our experiments in the Clusters environment provided by Grid-
dly [29]. Clusters1 is a game in which coloured boxes must be clustered together
in specific locations defined by the environment level. The environment con-
tains five levels with a set of movable coloured boxes and a single fixed-position
block of each colour. The agent receives a reward of +1 each time it pushes a
coloured box against a fixed location block of the same colour. When a coloured

1https://griddly.readthedocs.io/en/latest/games/Clusters/index.html

98

https://griddly.readthedocs.io/en/latest/games/Clusters/index.html

(a) Global

(b) Agent

Figure 4.4: An example of a level in the Clusters game, showing (a) the entire
game and (b) the viewpoint of the agent.

box is pushed against its respective block, it becomes a block itself. If all boxes
are converted to blocks the episode is completed successfully. Some levels also
contain spikes which give the player a negative reward (-1) and terminate the
episode if the agent or any boxes collide with them.

The observation space of the agent consists of a 5× 5 grid where the agent
itself is situated at the center-bottom of the grid as shown in Fig. 4.4. Each
cell of the 5 × 5 grid contains 10 binary values describing whether an object
is present in each cell. The 10 objects are as follows: three (red, green, blue)
coloured boxes and three associated blocks, walls, spikes, the agent and finally a
broken box which only appears in the final state of an episode if a coloured box
is pushed against spikes.

4.4.2 Action Space Variations

By default, the agent’s movement is restricted to moving forward one position,
or rotating ±90 degrees every step. Boxes are "pushed" by the agent when the
agent attempts to move into the cell occupied by the box.

In our experiments, we modify these action spaces to make it increasingly
more complex whilst keeping the game mechanics, observation space and reward
scheme consistent. This allows us to test the Conditional Action Tree formu-
lation on different action spaces with minimal influencing factors. The only
significant change we make to the environment across experiments is when we
remove the avatar and allow the agent to move boxes independently by selecting
their x and y coordinates. These action space variations are explained below:

99

Move (M)

The first action tree variation is the default action space provided by the Clusters
environment. The action space consists of rotate left, right and move forward.
As mentioned in Section 4.2.2, this is equivalent to an Action Tree with a single
component a = {c0}, with c0 ∈ 0, 1, 2, 3.

Move + Push (MP)

Next we modify the action space to consider that the agent can no longer push
boxes by simply moving into the location occupied by them. We define a sepa-
rate push action that must be performed in order to move any of the boxes. The
push action has no effect unless there is a box directly in front of the agent. The
move action is left unmodified, other than the fact that it can no longer be used
to push boxes. As the move and push actions are mutually exclusive they are
confined to the first level in the tree C0 = {0, 1}, whilst the second component
C1 contains either the three move parameters or the single push parameter.

Move + Push + Separate colours (MPS)

This action space configuration contains the same modifications as the MP
variant, however it splits the push component into three to account for the
separate colours. The agent must select the correct push action, depending on
which colour box it is pushing (i.e. push green, push blue, push red). Similarly
to MP, the action space consists of two components, but the first one now
contains the three different push actions as well as the move action, that is
C0 = {0, 1, 2, 3}. The second component C1 remains the same, defining the 4
directions for both move and push.

Move - Agent (Ma)

To make the action space significantly larger we remove the agent and the
associated ego-centric partial observability. Thus the input consists of the entire
13×10 grid with the same 10 binary digits per cell. The boxes are now moved first
by selecting their x and y coordinates and then by issuing the direction where to
move it. This action space has three components: C0 = {valid x coordinates},
C1 = {valid y coordinates} and C2 = {0, 1, 2, 3} referring to the movement
directions up, down left and right.

Move + Separate colours - Agent (MSa)

The final and largest action space we consider starts with the same formulation
as Ma, but separates the colour components in the same way as done in MPS.

100

This results in an action space with four components: x, y, action type and
action parameters. An example of a conditional action tree for this space is
shown in Fig. 4.5

4.4.3 Baselines

For each of the variations of the action space described in the previous section,
we compare against two baselines which are designed to show the benefits and
limitations of the CAT paradigm. The baselines modify only the way that the
model interacts with the action space in terms of number of logits required. The
number of actions and mechanics of the game are consistent.

No Masking

For the first comparison we use the same action components as a CAT but
remove the Invalid Action Masking entirely. This means that the component
selections are made independently of each other and invalid actions can be
selected.

Depth-2

The second comparison also uses a conditional action tree structure, but flattens
the action tree to only a depth of two. The separate x and y components (only
available in MSa and Ma) are flattened into a single xy component. Additionally
the action type and action parameter components are flattened into a single
selection. This flattening process was also considered in [163] where multi-
discrete actions are flattened into single discrete spaces. Table 4.1 shows the
number of logits per-component for all experiments and the equivalent number
of logits required in the depth-2 representation.

4.4.4 Masking Ablation

To show that structure of the tree and the resulting conditional masking has an
effect on the learning of the policy, we perform an experiment where we relax
the conditional masking restrictions and compare it against the fully conditional
masking. We relax the conditional masking of the tree by collapsing the masking
across the tree breadth-wise, so all masking is effectively a union of all the
possible masks at each depth. This method is equivalent to applying a single
mask to the entire action space with no consideration for dependencies between
action selections. We refer to the relaxed Collapsed and full Conditional masking
options in further sections as CAT_CL and CAT_CD respectively.

101

1 2 4

0 1
01

1
-

2
-

3
-

0
-

1
-

2
-

3
-

0
-

2
-

3
-

0
-

3
-

1 3

01
St

at
e:

x-
po

si
tio

n
y-

po
si

tio
n

m
ov

e-
co

lo
r

(r
ed

=1
, b

lu
e=

0)
up

, r
ig

ht
, d

ow
n,

 le
ft

0
2

3
4

1

0 1 2 3

x

y

Figure 4.5: Image of a conditional action tree from a 5x4 Clusters level con-
figured with the MSa action space as described in Section 4.4.2. The agent
is configured with an action space with 4 components, the agent selects which
object to move by its position and the color. It then proceeds to choose which
direction to move the box. The CAT shown contains the selected action compo-
nent ck and the mask mk for each possible valid combination of components.

102

|C0| |C1| |C2| |C3| Total Logits
M 3 3
MP 2 3 5
MPS 4 3 7
Ma 13 10 4 27
MSa 13 10 4 3 30

Depth-2
M 3 3
MP 4 4
MPS 6 6
Ma 130 4 134
MSa 130 12 142

Table 4.1: This table shows the number of action components, their sizes in
term of number of logits and the total logits needed in the policy output for the
action space variations described in Section 4.4.2. We also show the number of
logits that are required in the Depth-2 model.

4.4.5 Model Architecture

We keep the model architecture consistent throughout all experiments as much
as possible. The size of the model input observations differs between partially
observable agent-based environments (M, MP, MPS) and unit-selecting envi-
ronments (Ma, MSa). The partially observable environments have a 5×5×10

observation space, while for the unit-selecting environments, it is 13× 10× 10.
Additionally, the final layer in each experiment outputs the number of logits
shown in Table 4.1. The model itself contains two convolutional layers with
padding 1 and kernel size 3 that up-scales the number of values in each channel
to 32 and then 64 respectively, whilst keeping the width and height the same.
After these layers, the output tensor is flattened and then passed through two
linear layers with 1024 and 512 neurons. We then use a separate actor and critic
head. The actor head contains a further two linear layers, first to compress to
256 nodes and then a final layer to output predicted logits. The critic head
contains a single layer that outputs the single predicted value.

4.5 Results

In total, we run 4 experiments on each variation of the action space of the
Clusters game. The four experiments contain the two baselines as previously
described and two versions of masking (CAT_CL and CAT_CD).

The first variation M provides evidence that the formulation of conditional
action trees generalizes to simple action spaces. In this environment, all varia-
tions of the action space are almost identical and therefore have similar perfor-

103

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1e
8

0246 Ave. Reward

M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1e
8

0246

M
P

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

St
ep

s
1e

8

0246
M

PS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

St
ep

s
1e

8

0246 Ave. Reward

M
a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

St
ep

s
1e

8

0246

M
Sa

M
 =

 M
ov

e
M

P
=

M
ov

e+
Pu

sh
M

PS
 =

 M
ov

e+
Pu

sh
+S

ep
ar

at
e

M
a

=
M

ov
e-

Ag
en

t
M

Sa
 =

 M
ov

e+
Se

pa
ra

te
-A

ge
nt

No
 M

as
ki

ng
De

pt
h

2
CA

T_
CL

CA
T_

CD

Figure 4.6: The average episode reward over three different starting seeds during
training of the 5 different action space variations as described in Section 4.4.2.
For each of the 5 action space variations, we compare three policies with the same
action tree structure, but different masking methods: No Masking, CAT_CD
(conditional) and CAT_CL (collapsed). We also provide a comparison with
a model policy that uses an action tree limited to depth 2 as described in
Section 4.4.3

104

mance. Masks in this environment have little effect because only a few actions
are ever invalid. MP and MPS variations begin to show that the fully con-
ditional tree CAT_CD and the depth-2 action tree policies learn faster and
plateau at high-scoring policies. Depth-2 action policies in these variations are
in fact slightly better performing than the more hierarchical formulation of the
Conditional Action Tree, in addition to using one less logit in their policies.
The reason for this is that in the MP and MPS the structure of the associated
action tree has a degree of 1 in all of the push nodes, making the tree structure
redundant for the push actions. In cases like these, where parent nodes have
only single children, it is more efficient to flatten these nodes into a single set
of children.

Conditional Action Trees excel in the variations with the highest branching
factors. Ma and MSa both require the policy to select an individual unit
to perform an action at each time step. As expected, the depth-2 policy and
CAT_CD have similar performance as they are both CATs, but CAT_CD splits
the x, y selection into separate components, which results in a greater than
4x reduction in the number of logits required by the policy, with no loss in
performance.

The results for experiments on all five test environments with Collapsed
(CAT_CL) masks are also shown in Fig. 4.6. We can see that with Conditional
Action Trees the full Conditional (CAT_CD) masking strategy is important for
efficient training, as the Collapsed masking strategy performs similarly to the
No Masking Baseline.

4.6 Discussion

Trees are a useful data structure across many fields of computer science and can
provide a natural representation for action spaces. Although the formulation
and the experimental setting focused on discrete action spaces, we hypothesize
that in principle the formulation can be extended to continuous spaces using
Gaussian distributions for each action component [17].

It is important to note that the degree of subtrees in a CAT should be taken
into consideration when deciding on parts of the tree that could be flattened,
as this can lead to an unnecessary increase in policy size [204].

The current work presented the CAT formulation in five toy scenarios in-
tended to recreate, with different levels of complexity, the conditions frequently
exhibited in various single, multi-agent, and RTS games. Further work will be
required to analyze the behavior of the CAT in more complex domains such as
µRTS or BotBowl. Part of the current limitation resides in adapting these and
other environments to provide Valid Action Trees. With a Conditional Action

105

Tree the parameterized part of BotBowl’s action space could be reduced from
6392 logits to 25 + 15 + 17 = 57

Other relevant research on how to handle large action spaces has applied
techniques such as evolutionary algorithms [22, 156]. These proposals have
also been tested in scenarios that require multiple actions per time step. A
naive approach to work with CATs within this context would be to recursively
append the tree to its own leaf nodes, re-sampling until a condition specifying
the required number of actions is fulfilled.

In its current form, a CAT makes specific assumptions about the conditional
dependencies between actions (Section 4.2.4). Following [293], a potential future
research avenue is to explore the possibility of modeling more complex depen-
dencies. Namely, contextualizing further the selection of a ck with an encoding
learned from previous components c<k.

4.6.1 Auto regressive action spaces

Conditional action trees are similar to the tree-like structure of auto-regressive
action spaces, where each action is represented as a branch in the tree. The
selection of action components is similar to the traversal through a tree, where
a branch is selected at each node based on the previously selected branches.
The main difference in conditional action trees is that the branch selection is
restricted by conditional masking. All the possible combinations of tree traver-
sals are pre-calculated, and each tree node contains a restricted set of branches.
These restrictions are encoded as invalid action masks. Additionally, conditional
action trees do not predict each component autoregressively but instead rely on
masking during training to learn high-performing policies.

The advantages of conditional action trees are that they only require a sin-
gle pass through a neural network to produce all of the action components.
Auto-regressive models have to make a conditional inference step for each com-
ponent. This means that in environments with action spaces that have many
components, the inference could be much slower due to the multiple steps re-
quired for each action.

Auto-regressive actions are much less strict on the requirements of the format
of action space, for example, action components could be a combination of
continuous and discrete variables.

It is also interesting to note that valid action trees can also be combined with
auto-regressive action spaces in order to mask impossible actions. However, this
is beyond the scope of our experiments.

106

4.7 Conclusion

In this chapter, we have proposed a formalization of a tree structure for repre-
senting discrete action spaces with any number of components. We have pro-
vided the required steps to adapt already existing action spaces to conform to a
Conditional Action Tree. From a technical perspective, a side effect of imposing
a structure to the action space is the reduction of the elements considered by
a policy. The experiments showed that this modification does not reduce the
sample efficiency during training and achieves comparable performance while
resulting in significantly smaller models with less parameters.

As part of this work, Griddly [29] implements built-in functionality for gener-
ating Valid Action Trees, and we provide all reproducible examples in a GitHub
repository 2. We also provide all training parameters, statistics and videos using
Weights and Biases 3. We encourage the developers of reinforcement learning
environments, especially those with large discrete action spaces, to provide Valid
Action Tree observations in their environments.

2https://github.com/Bam4d/conditional-action-trees
3https://wandb.ai/chrisbam4d/conditional_action_trees

107

https://github.com/Bam4d/conditional-action-trees
https://wandb.ai/chrisbam4d/conditional_action_trees

Chapter 5

Environment Modelling

Recent research has focused on forward models of games that utilise heuristic
methods or using deep neural network architectures. These heuristic models can
then be used by traditional planning algorithms, or as part of the architecture
in reinforcement learning. Using neural networks in planning algorithms can
be difficult, as the accuracy of state observations tends to decrease with the
number of steps that are simulated. This results in diminishing efficacy of
planning algorithms when larger rollout lengths are used [123]. Recent neural
network models also tend to rely on a fixed dimensional observational input to
predict the rewards and subsequent states and therefore struggle to generalize
to games that may have different sized observational spaces.

Heuristic rule-based algorithms for learning forward models [75] [114] offer
high performance when they work, but require human input regarding the form
the rules will take.

Recent work on a local approach to learning forward models [76] shares some

Figure 5.1: Left: A screenshot taken from the game Starcraft II, where an AI
(Alphastar) plays professional player "MaNa". Right: A screenshot taken from
the game Dota 2, where an AI (OpenAI Five) plays against professional team
"OG"

108

similarities with the Neural Game Engine described in this chapter, in that both
methods are able to generalize to levels of a different size than those seen during
training. Compared to [76], the Neural Game Engine works directly with pixels
rather than tiles, and for many games also does accurate reward prediction.

Grid-based arcade style games, although simple to understand for humans,
still present highly challenging environments for artificial intelligence. In this
chapter a grid-based game refers to a game that is based on a grid of discrete
tiles such as walls, floors, boxes and other game-specific items. A single agent
has a set of actions it can perform at each time step, such as movement or
interaction with other tiles in the grid. The agent is restricted to perform a
single action at each time step. Additionally, each environment may have a
different grid dimensions, leading to variable observation space sizes. These
game environments can be represented by a fully observable markov decision
process with states s as the pixels of the environment, actions a of the agent
and the rewards r given by the game score.

In section 5.2 We propose the Neural Game Engine, based on a modified
Neural GPU[158] [93].

5.1 Background

In this section, we cover the literature that leads up to the present day’s efforts at
creating computational models of the state transition function T of the Markov-
decision-process (MDP) first discussed in section 2. We first cover the use
of deep neural networks to model various sub-components that are required
to model environment dynamics. For example, compressing the state of the
environment into a latent representation. These methods are then expanded
upon with models that can predict subsequent states conditioned on an action.
We then discuss a particularly popular method "state space models", which
are a promising method of state representation, in which environment models
can be compressed and interacted with, without having to recreate the original
state until it is required. Finally, we show how these methods are being used in
state-of-the-art reinforcement learning algorithms.

5.1.1 Deep Neural Network Modelling

Access to a simulated environment model for an agent to explore is, in many
circumstances, impossible. In fact, in most real-world scenarios, it is simply too
complex to model the environment at all. The world is filled with unknowable,
unpredictable, and chaotic factors which can only be estimated to a shallow
degree. Approaches such as reinforcement learning aim to create a way of esti-

109

mating the value of particular actions at a point in time given the immediate
observable state and, in some cases, information from the past.

These methods do not require a model of the environment in order to pre-
dict future states and they have been the subject of a large amount of recent
research with many notable successes, such as beating professional players in
games such as Starcraft II [293], and Dota [213], see Figure 5.1. These model-
free reinforcement learning techniques are discussed in detail in chapter 2.

Agents having the ability to approximately model their environment and
predict the outcomes of their actions is arguably an important aspect of general
intelligence [247, 246]. Environment models have proven to be useful tools in
many artificial intelligent processes, such as learning to play games [293, 259,
65, 155] and control of physical systems such as robotics [118, 120, 121, 305,
161, 178]. In both cases, the model of the environment is used to make exact
predictions or approximations of future states in order to optimize the system
to achieve a particular goal.

Autoencoders

Figure 5.2: Image taken from [130] showing from top to bottom: firstly, a row
of random images taken from a test data set. Secondly, a reconstruction using
an autoencoder; finally a reconstruction using Principal Component Analysis
(PCA)

Autoencoders [130] are arguably one of the most important inventions in
deep learning. Autoencoders are typically used to compress high-dimensional
and complex data into a much smaller latent space. For example in Figure 5.2
one of the earliest version of autoencoders is used to compress simple images
into a latent space. These images are then reconstructed from the compressed
representation showing a close to identical match with the original images. Since
this work, There have been multitudes of improvements to neural networks
making this data-compression paradigm much more accurate and usable [13].
Also, there have been many attempts to understand how and why auto-encoder-
based representations are so successful from a theoretical perspective [39] [128].

110

The simplest construction of an autoencoder takes an input x, uses an En-
coder function to transform this into a latent space s and then uses a Decoder
to predict an output x̂. The output is trained to be as close to the input as
possible.

Encoder
s = E(x) (5.1)

The Encoder of an autoencoder model typically consists of several neural
network layers which decrease the dimensionality of the input until it meets
that of the latent space. These encoding layers learn to compress the salient
features of the input data. These neural network layers can be fully connected
or convolutional layers depending on the training data. Where the dataset is
images, it is most common to see encoders with convolutional layers and pooling
layers [59].

Latent Space
s (5.2)

The latent space refers to a vector or tensor which represents the compressed
form of the input data. In simple applications only a 1D vector is used to
compress the data. 2D spaces can contain data in a way that maintains spatial
information about the compressed data

Decoder
x̂ = D(s) (5.3)

The Decoder consists of a number of neural network layers that reconstruct
the original input from the latent space. The dimensions of the output of the
decoder are the same as the output.

Training The aim of autoencoders is to create a latent vector s which can
compress information from a dataset X in a way that the original data can be
reconstructed. Training autoencoders is unsupervised as the features used in
the latent space to encode the information are unknown. Reconstruction loss is
used to train the network via stochastic gradient descent (SGD):

L(X) =
∑

loss(x̂, x) (5.4)

The loss function itself in equation 5.4 depends on the format of the dataset
X. For example if the data being autoencoded are images x ∈ RD×W×H where

111

Encoder DecoderLatent
Space

Figure 5.3: Diagram of an autoencoder showing the three main components
described in 5.1.1

D is the depth of the colour palette, binary cross-entropy can be used to classify
the colour at every pixel:

loss(x̂, x) = −
W−1∑
i=0

H−1∑
j=0

D∑
d

xd,i,j log(x̂d,i,j) (5.5)

This is used mainly in images that have low colour depth D, for example
grayscale or images that have low bit-depth such as frames from game emula-
tors [37]. The issue with this method is that the memory required to store the
images becomes large if the colour depth and image resolution are high. Ad-
ditionally, computing the probability of every pixel class and the loss becomes
computationally expensive.

Using mean squared error between the predicted x̂ and x is a more intuitive
and more scalable method of training. In grayscale images D = 1 and in full
RGB colour images D = 3. The mean squared error can then be calculated as:

loss(x̂, x) =
1

3WH

W−1∑
i=0

H−1∑
j=0

3∑
d

(xd,i,j − x̂d,i,j)
2 (5.6)

Variational Autoencoders

A well known addition to the auto-encoder is the variational autoencoder [171]
[232]. Variational autoencoders allow the latent space to represent a distri-
bution rather than a discrete symbol of representation of data. Variational
autoencoders, more specifically those representing a Gaussian distribution pa-
rameterize the latent space as a tensor of means and associated variances. This
latent space can then be sampled in effect to generate data that could be con-
tained in the dataset it has been trained with. There are many applications for
these kinds of autoencoders, for example generation of faces and denoising of

112

Figure 5.4: Image taken from [296] showing the broadcasting mechanism and
concatenated pixel coordinates used to generate the output image

images. Variational autoencoders exist that model distributions other than the
Gaussian distribution [203] [151], but they are beyond the scope of this thesis.
Any variational auto-encoders described in further sections refer to those based
on a Gaussian distribution form unless otherwise specified.

Variational autoencoders generally follow the same architecture as the au-
toencoders in section 5.1.1 but the latent space represents a distribution p(z|x)
where z is a sampled state z ∈ Rk.

Assuming the true distribution p(z|x) is a Gaussian distribution, it can be
parameterized by a set of means µz ∈ Rk and standard deviations σz ∈ Rk,
giving an approximate distribution q(z|x) The variational autoencoder can then
be constructed as follows:

Encoder
q(z|x) = Ev(x) (5.7)

The architecture of the variational autoencoder is similar to that of the
discrete autoencoder, except instead of outputting the discrete state s. The
outputs are µz and σz, which parameterize the posterior distribution p(z|x).

Latent Space
z ∼ q(z|x) (5.8)

The latent variable z is sampled from the posterior distribution.

Decoder
x̂ = Dv(z) = p(x|z) (5.9)

113

The decoder network is the same architecture as that in the autoencoder.
The main difference is that the input to the network is a sampled latent variable
z rather than a discrete vector. This allows the decoder of the network to be
represented by p(x|z).

Training There are two terms that need to be calculated for the loss of a
variational autoencoder. The first is the reconstruction loss which is the same
as the reconstruction loss in section 5.1.1. The second is a regularizing term to
encourage the latent variable z to fit a Gaussian distribution with mean 0 and
unit variance p(z) = N (0, I) [171].

L(X) = loss(x̂, x)−KL(q(z)||p(z)) (5.10)

The Second regularizing term is the Kullback-Leibler divergence which, given
the conditions of the multivariate Gaussian given above can be calculated by:

KL(q(z)||p(z)) = −1

2

L∑
j=0

(1 + log(σ2
z,j)− µ2

z,i − σ2
z,j) (5.11)

An important advantage that variational auto-encoders have over standard
auto-encoders is that they have an inherent ability to create latent state dis-
tributions with disentangled factors [127]. This means that VAEs represent
datasets in a way that means that perturbations in each of the units of the
state result in perturbations of generative factors such as size, shape, position
and color. [127] proposes two constraints that are important to learning dis-
entangled representations. The first is that there should be a large amount of
continuously transformed data, for example seeing the same object from many
different angles and different colours. This encourages the network to learn a
manifold representing similar factors rather than learning single points in the
latent space. The second factor is that the network should be encouraged to
reduce redundancy and learn statistically independent factors within the data.
This is achieved by modifying the loss equation to contain a term β which en-
forces an information constraint on the KL Divergence, encouraging axis-aligned
disentanglement of z. This modification to equation 5.10 can be seen here:

L(X) = loss(x̂, x)− βKL(q(z)||p(z)) (5.12)

Disentanglement with β-VAEs is explored further in [49], where additional
modifications are suggested to encourage the axis-aligned disentanglement fur-
ther.

Alternatively [296] Modifies the decoder of a variational autoencoder by
broadcasting the latent vector to the channel dimension of a tensor of size

114

Figure 5.5: Image taken from [211] showing the output of the PixelCNN decoder
when interpolating values of the latent conditioning space. The images at the
far left and the far right are the start and end points of the interpolation.

HxWx(S + 2) where H and W are the height and width respectively, S is
the number of elements in the latent vector and the final 2 channels encode
the x and y coordinates of the output image. This expanded latent space is
then passed through several layers of size-preserving convolutions and finally,
the channel dimension is reduced to the RGB components. Spatial broadcast
decoders are shown to improve state-of-the-art disentangling techniques such
as β-VAE. It is also noted that it is hard for VAEs to encode information from
smaller objects, but the spatial broadcast decoder improves this issue drastically.

Variational autoencoders are typically good at learning the distributions of
datasets that are continuous, but if the underlying dataset is discrete, this can
lead to difficulties in learning these distributions, as traditional VAEs will not
have a quantized latent state space. In [212] the Vector-Quantized Variational
Auto-Encoder (VQ-VAE) is introduced. Instead of learning a continuous Gaus-
sian latent state space like traditional variational auto-encoders, the VQ-VAE
quantizes its latent space. The way this is achieved is by constructing the la-
tent state space as a collection of categorical variables. The sampling of these
variables quantizes the latent state using the following formula:

q(z = k|x) =

1 for k = argminj ||x− ej ||2
0 otherwise

(5.13)

e ∈ R(K ×D) represents a set of K embedding vectors where D is the size
of each ei. The quantization effectively sets the sampled latent representations
zq(x) to the nearest embedding vector. VQ-VAEs are particularly useful in
creating accurate models of the transition dynamics of MDPs without having
to re-create pixel representations between each time step. This is covered in
section 5.1.7 where a VQ-VAE is used in model-based reinforcement learning.

115

5.1.2 Image Generation

In contrast to many image generation algorithms that generate an image in a
single step given a latent state. There are several methods that either generate
images iteratively over several steps, writing to a canvas until the image is gen-
erated. In [104], images are generated using an iterative approach that is based
on two recurrent neural networks, one which iteratively reads an image and one
that iteratively writes the pixels. The locations for reading and writing pixels
to and from the source and destination images are determined by the result
of a transformation of the latent state itself. It is argued that this attention
mechanism is more biologically plausible than methods that generate the image
as a whole, as the network can shift its reading and writing focus similar to the
process of foveation in nature.

Alternatively, [210] generates images by writing iteratively to a canvas,
but instead of using an attention mechanism inspired by biology, it uses a
rasterization-based method where pixels are written row by row. This tech-
nique also uses a recurrent LSTM to store information from previous pixels in
order to generate images that have spatial coherence. In a follow-up to this
work, [211] introduces a concept of images based on contextual latent variables,
which is related to the tags and labels in the training dataset. Figure 5.5 shows
how the images are generated by pixelCNN as the conditioning variable is it-
eratively interpolated between two images. Further modifications to pixelCNN
are made in [239] which optimize the memory usage of the method and improve
training loss values.

Another notable method of generating images is known as Neural Style
Transfer. In general Neural Style Transfer, approaches attempt to apply the
style of one image to the content of another. [97] Introduces a method of ex-
tracting features in the top-level layers in the VGG convolutional neural network
[263] that represents content and style separately. To generate the images with
transferred style, a joint minimization of a content loss from one image and a
style loss from another image is performed on a random white noise image. An
example of an image generated by this method can be seen in Figure 5.6. Neural
Style Transfer has also been applied to video [235], [136] and audio data [195]
[291]. Other investigations into manipulating the value of vectors in large neural
networks have resulted in several research directions, for example, DeepDream
[3] [277] and adversarial images [278].

The final theme of image generation that will be mentioned here is that of
the Generative Adversarial Network (GAN) [102]. GANs consist of two neural
networks, a generator network G(z), where z is sampled from a random distribu-
tion p(z) and a discriminator network D(x). The role of the generator network

116

Figure 5.6: Image taken from [97] showing an image being created (right im-
age) from the content (left image) with an applied style derived from a source
(thumbnail image)

is to generate images from input noise (z) that fall within the distribution of the
training dataset and the role of the discriminator network is to classify whether
the generated image is part of the training set or a generated image. The end
goal of the training of the network is to maximize the probability that the dis-
criminator classifies generated images as part of the training dataset. In simple
terms as the generator network gets better at creating images that are indistin-
guishable from those in the training data, the discriminator will no longer be
able to classify whether the image is generated or not. GANs can produce sharp
images that are difficult for even humans to detect they are generated [42] [223]
[12]. GANs can also be conditioned in the same way as other image generation
methods [211] [239] so images with particular properties can be generated.

5.1.3 Video Prediction

In the previous sections encoding images in a compressed vectorized format
and then either reconstructing those images or generating similar images was
described. These techniques can be combined with recurrent neural networks in
order to generate a stream of images which change depending on the previous
images seen. These methods can be used to predict the subsequent frames in
videos [270] [228]. The format of these networks follows a similar theme to
the autoencoders and variational autoencoders in the previous sections, but the
latent space is also calculated based on previous latent spaces.

Recurrent Neural Networks

The most common way to encode information from previous latent spaces is to
use a recurrent neural network with a memory state which evolves over time.
Equation 5.14 shows how a recurrent latent vector srnn

t may be predicted in

117

a deterministic way from the previous recurrent state srnn
t−1 and an embedded

input, which in this case is given by the encoding function xrnn = st = E(xt)

from equation 5.1.

srnn
t = RNN(srnn

t−1, E(xt)) (5.14)

The most frequently used form of RNN that provides prediction that takes
into consideration previously seen data is the Long Short-Term Memory LSTM
[132] [100].

ft = σ(Wfxx
rnn
t +Wfhht−1 + bf)

it = σ(Wixx
rnn
t +Wihht−1 + bi)

ot = σ(Woxx
rnn
t +Wohht−1 + bo)

ĉt = tanh(Wgxx
rnn
t +Wghht−1 + bg)

c = ft ⊙ ct−1 + it ⊙ ĉt

ht = tanh ct ⊙ ot

(5.15)

The LSTM takes an input xt at each time step and produces several inter-
mediate states, forget, input, cell, hidden and output. The cell state is passed
between layers of LSTMs through time. The forget ft and input state it are
used to determine how much information is removed and added respectively in
the cell state at each time step. New information to be added to the state is
calculated in ĉ and then multiplied with it which effectively calculates the new
values of c. Conversely, the current information in the cell ct is multiplied with
ft which effectively removes values from the cell state. The hidden state, like
the cell state, is passed through the LSTM layers in time. It is used in combina-
tion with the current input to calculate the information to be updated based on
previous information. Finally the output state ot is used to decide which parts
of the cell will be used in the hidden state ht that will be passed to the next
LSTM module. The hidden state ht can then be used to predict the output.

In order to align the LSTM in equation 5.15 with the RNN in equation
5.14, srnn refers to a concatenation of both the cell ct and hidden ht states.
Additionally the prediction of the next output x̂t (image or otherwise) can be
recovered from the hidden state ht This is shown in equation 5.16.

xrnn
t = E(xt)

ct, ht = RNN(ct−1, ht−1, x
rnn
t)

x̂t+1 = D(ht)

(5.16)

Another commonly used recurrent neural network that uses previous states
to calculate future predictions is the Gated Recurrent Unit (GRU) [56]. The

118

GRU is a simplified version of an LSTM that combines the forget and input
gating mechanisms into a single update mechanism. The hidden state ht and
cell ct state are also combined. The equivalent update functions for the GRU
RNN are shown in equation 5.17. The performance of GRU units in comparison
to LSTMs in many tasks have been shown to be similar [58], [110].

ut = σ(Wuxx
rnn
t +Wuhht−1 + bu)

rt = σ(Wrxx
rnn
t +Wrhht−1 + br)

ĥt = tanh(Wĥxx
rnn
t +Wĥh(rt ⊙ ht−1) + bĥ)

ht = (1− u)⊙ ht−1 + u⊙ ĥt

(5.17)

Action Conditioning

In environments such as games, or video sequences where the future frames
can be affected by inputs generated by the agent, the prediction needs to take
into account the actions that the agent may take. Adding the actions to the
predicted model is similar to conditioning during image generation in techniques
like pixelCNN [210] [239].

Action conditioning is typically implemented by replacing the input to the
recurrent neural network xrnn

t with a function that takes both the action at time
t, at and the observation embedding from equation 5.1.

xrnn
t = C(E(xt), at)

srnnt = RNN(srnnt−1 , x
rnn
t)

(5.18)

[206] shows that using action conditioning in video prediction in Atari games
with a Recurrent LSTM latent space can correctly predict future frames depen-
dent on the actions being presented.

Similarly [91] attempts to predict the movement of objects in videos of robots
grasping objects. The architecture uses a recurrent convolutional LSTM (Con-
vLSTM) (shown in equation 5.19), which replaces the linear dot product be-
tween weights and inputs with a convolutional operation. the ∗ operator de-
notes a convolution operation with respect to the kernel weights W . The use
of recurrent convolutional neural networks in this case is to preserve local infor-
mation over time. The recurrent ConvLSTM is used to predict the distribution
over the locations where a pixel will be displaced.

119

Figure 5.7: Image taken from [18] showing the issue with predicting subsequent
frames using deterministic models when the movement of objects is stochastic.
In each sub-image, a random shape moves in a random direction. With the
deterministic model [91], all possible states are predicted and superimposed onto
each other, whereas in the stochastic methods, a plausible output is generated
by sampling and the underlying distribution of possible states which is also
conditioned on many previous frames.

ft = σ(Wfx ∗ xrnn
t +Wfh ∗ ht−1 + bf)

it = σ(Wix ∗ xrnn
t +Wih ∗ ht−1 + bi)

ot = σ(Wox ∗ xrnn
t +Woh ∗ ht−1 + bo)

ĉt = tanh(Wgx ∗ xrnn
t +Wgh ∗ ht−1 + bg)

c = ft ⊙ ct−1 + it ⊙ ĉt

ht = tanh ct ⊙ ot

(5.19)

Using convolutional neural networks in this fashion however, does not take
into account movement stochasticity. In figure 5.7 objects in the video which
move under stochasticity tend to blur over time, because the error function
is the mean squared error over all examples. This in effect also causes the
predictions to average out over time, which when predicting the next frames,
produces blurred images. [18] solves this issue by using a variational latent space
and uses sampling to predict the next image frames. Image 5.7 shows that this
method produces realistic predictions in stochastic environments.

In a traditional auto-encoder model, the latent space is typically a vector
of continuous values. If the auto-encoder is intended to encode a finite number
of symbols in latent space, it follows that the latent space should also have a
finite number of features. Discrete auto-encoders can be used to fit this purpose
[160]. The discrete auto-encoder model forces the latent space to compress the
sequence of symbols into a discrete representation. It does this using a semantic

120

hashing technique first introduced in [238]. For environments that can be largely
represented by discrete latent features, this technique can drastically improve
prediction accuracy [159].

Other methods of predicting future states assume that the difference between
consecutive states is a small constant and add constraints to the loss functions to
encourage this [304], [173]. [11] builds upon this by generalizing that there may
be many different constraint functions that help to shape the representation.
Instead of fixed relations such as the difference between consecutive states, the
introduced algorithm attempts to learn these relations.

5.1.4 State Space Models

Previous work has shown that it is possible to use neural networks to encode
information into a compressed latent space in a way that the original information
can be accurately retrieved. As an addition to this, those latent spaces can be
conditioned either to generate images similar to those in the distribution or
conditioned to steer the progression of frames in videos. This conditioning can
be replaced by an action variable to predict the next state of an MDP given
that action.

The literature in previous sections has included several examples of action-
conditioned video prediction for games and physical systems, but these will be
covered in more depth in this section. Also, it should be noted that this section
concentrates on the use of state space models and their applications mainly to
producing models of environments. More details of how these models interact
with reinforcement learning methods are given in section 5.1.7.

The traditional way to model physical systems stems from control theory
such as Kalman filters [161] and model predictive control (MPC) [178]. These
methods generally require that the states of the system can be measured and
only the parameters need to be learned.

Many systems can be represented as a state space model, which in its simplest
form can be represented by the following equations:

The state transition function defines how a set of state variables x progress
over time given some input ut, the functions A and B in many cases are linear
matrix multiplications.

xt+1 = A(xt) +B(ut) (5.20)

The output equation defines the measurable quantities of the system such as
sensor readings. Like A and B, the C and D functions are commonly represented
by matrix operations.

yt = C(xt) +D(ut) (5.21)

121

To give some more context, the state variables x usually represent the dy-
namic characteristics of the system such as position and speed. The state space
equations can therefore be used to derive the equations of motion of the sys-
tem. The matrix operations defined by A,B,C, and D can in many cases, be
estimated by Kalman filters [161], but this requires the states of the system to
be known already.

Recent work has shown that these state space representations including the
configuration of the states themselves can in fact be learned using deep neural
networks. For example, [166] shows that instead of using state space models in
the format of equations 5.20 and 5.21, they can be replaced by a latent state
space model where the transitions and state variables can be learned. This
latent state space model takes the form of an action-conditioned variational
autoencoder. [166] shows that their method Deep Variational Bayes Filters
DBVF can learn to infer the parameters and the states of the state space model
even if the models are non-Markovian. They also show that this method is able
to accurately predict future states beyond those used in the training data.

Latent state space models are the primary way in which future states are
predicted in video games, and many methods have been invented to optimize
certain domain-specific characteristics or impose priors that can help future
prediction within certain types of environments.

In [55] Recurrent Environment Simulators RES take the ideas from [206] and
apply it to Atari games. Instead of using a variational autoencoder, RES uses
a standard deterministic autoencoder model, as the games it is predicting the
future states of are also deterministic. [55] also introduces a useful concept in
learning state-space models, which helps training and has inspired many future
optimizations. This concept is known as Prediction Dependent Training PDT.
PDT defines a hyperparameter T , which is the number of state predictions that
are performed during training. When T = 1, the model is trained only to predict
the next step from a previous observation; however, if T is larger, the model
is trained over multiple steps, where it predicts multiple states in sequence.
[55] showed that this method of training is important in predicting long-term
accuracy but at the loss of short-term accuracy.

Similarly to Recurrent Environment Simulators, World Models [115] predicts
the future states of several games, but instead of learning a deterministic model,
the authors use a variational auto-encoder. World Models is trained on games
that do not have deterministic states, for example, the VizDoom [308] and
CarRacing [43] environment. A reproduction of the pixels of the VizDoom
environment is shown in figure 5.8. [115] also shows that it is possible to train
a reinforcement learning agent using just learned internal state representation
z as the observations of the reinforcement learning agent rather than using the

122

Figure 5.8: Image taken from [115] which shows the reconstruction (right) of
a game image (left). The sliders in the center represent the encoding of latent
state variables in z which generate the image.

pixels. The authors also show it is possible for the reinforcement learning agent
to learn policies within the generated states without seeing any external data.
The idea of learning reinforcement learning or MPC policies are expanded upon
in [119] and [118].

Latent state spaces for both [115] and [55] use a vector latent variable and
learn the compressed version of the states, however in image and video predic-
tion experiments, it has been shown that learning a 2D latent state space rep-
resentation can produce much more accurate results [91] [18]. The advantage
that the 2D state representation has over the single dimension is that locality
of information is preserved, as well as just having more variables to represent
the state. Effectively the image is segmented and encoded into many latent
state vectors that represent the information at a more local level. Convolu-
tional neural network architectures are particularly powerful in these models as
they learn complex, multi-dimensional cellular automata rules applied across the
state space. Cellular automata rules such as the game of life can be effectively
learned using convolutional neural networks [185], [101].

These convolutional operators are also effective when the game state and
actions are discrete. For example, in [297], a "basic block" architecture encodes
each grid world game tile into its own vector. Given a grid world game with grid
shape G ∈ RHxW where each tile in the grid is a TxT image, the observation of
the game will be O ∈ RHTxHWx3 representing an RGB image. A convolutional
neural network with kernel size T , stride T , and C output channels can be used
to reduce the observation space to a tile embedding space that has dimensions
HxWxC. [297] uses this embedding space as the latent state space of a model
that is used to predict future states. This 2D state space using embedded tiles
is used in many grid-world environment models, including those in the Neural
Game Engine [26], which is described in detail in section 5. [297] is similar

123

to [55] in that the environment model predicts the next image given an action
combined with the latent state space. Details of how this is used as part of the
policy in reinforcement learning are given in section 5.1.7

Instead of using blocks of convolutional layers, an improvement is to use
convolutional recurrent neural networks to remember information from previous
states. Two common variants are the Convolutional LSTM which is shown in
equation 5.19 and the Convolutional GRU, which is shown in equation 5.22:

ui = σ̂(Uus ∗ srnni−1 + bus)

ri = σ̂(Urs ∗ srnni−1 + brs)

ci = ˆtanh(Ucr ∗ ri ⊙ srnni−1 + bcr)

si = ui ⊙ srnni−1 + (1− ui)⊙ ci

(5.22)

Two-dimensional latent state models are improved in [47], where, instead of
predicting the output of the image at every step and chaining these predictions
together to predict future observations, the latent state space itself is iterated
without decoding to an image and re-encoding. Due to this, the iteration of
states forward in time is significantly faster and takes up less memory (as no
convolutions to decode and re-encode images are necessary). [47] applies this
to grid-world game models and also simple systems with physics, such as a
bouncing ball. An additional difference between [297] and [47] is that [47] makes
use of variational inference as well as a deterministic model to create a stochastic
latent state space.

The stochastic latent state space model can be modeled in the following way:
Starting from equation 5.18, we want to be able to sample the state from an

underlying distribution which depends on the previous deterministic state srnnt

the action at and a stochastic state zrnnt . We can create the stochastic state zt

by sampling from a distribution:

zrnnt P (zrnnt |srnnt−1 , at−1) (5.23)

And then the state transition function can deterministically calculate the
next state srnnt given the sampled state zrnnt , the action at−1t and the previous
deterministic state srnnt :

srnn0 = C(E(xt), at)

srnnt−1 = zrnnt

srnnt = RNN(, zrnnt , at)

(5.24)

It is important to note here that the state transition does not depend on
previous observations, but the initial state srnn0 is obtained by the action con-

124

ditioning function C described by equation 5.18.
Two-dimensional latent state spaces with stochastic inference help to solve

two problems with predicting the future states of game states. Firstly the issue
of local interactions, which the two-dimensional state space aims to solve, and
secondly stochastic elements of games such as random events can be modeled by
sampling the stochastic latent state space. With these models, however, they
can only predict a single time-step into the future and have calculated on a
time-step-by-time-step basis what might happen in the future. It is theorized
that artificially intelligent agents should be able to predict what will happen
several steps in the future without having to go through every time step and
calculate everything individually. [105] introduced a modified auto-encoder the
"temporal-difference autoencoder", that also encodes a time variable into the
latent state space. This allows the model to be arbitrarily advanced in time
without progressing through many computational steps.

Predictive forward models have been applied to several tasks where parts of
the environment are not directly observable, but can only be inferred by partial
signals. Stochastic latent state spaces have been successful where an inherent
belief state of the environment needs to be maintained. [6] shows that a model
of a robot hand trained with a stochastic latent state space model can predict
the outputs of over 100 sensors accurately with many time steps into the future
and that the learned latent state space can also be used to predict the shape of
objects, even if the hand has lost contact with the object after initially touching
it. This shows that the latent state space memorizes past information. [6] also
introduces the concept of observational overshooting during training which is
used to create much more accurate belief state representations.

[106] also attempts to build a belief state in a partially observable environ-
ment. The environments that are used in this work are 3D worlds that can be
modified by the agent for example by placing blocks to reach rewards. In order
to improve the representation of the belief state, the variational autoencoder is
paired with a Kanerva machine [306] [162], which acts as memory for the agent.
In order to measure the accuracy of the learned belief state, a separate model is
trained which takes the input of the belief state and predicts the map of the en-
vironment from a top-level view. As the agent explores the environment from its
own egocentric view, the predictions of the environment become more accurate,
showing that the belief state is understanding the structure of the environment
as it explores. The agent is compared against two other reinforcement learning
agents, one that is a plain latent state space model with an LSTM used to pre-
dict future states, and one that includes a slot-based memory. The agent with
the Kanerva machine-based memory outperformed the two other methods.

Similarly to [6], [118] introduces PlaNet which uses a stochastic latent state

125

space model which is used to learn accurate models of several Deepmind Lab [36]
environments. Like the robot arm environment in [6], PlaNet learns the latent
state space model of the underlying sensors, which in the case of Deepmind Lab
are angles and positions of legs of various different creatures. PlaNet uses MPC
to control the actuators with each environment but using the accurate learned
model. PlaNet also introduces another important training mechanism latent
overshooting which can be used alongside observational overshooting. Dreamer
[119] uses a similar latent state space model to PlaNet, but instead of using the
model in predictive control, it is used as an environment in which to train a deep
reinforcement learning agent. An accurate latent state space model is learned
which can accurately roll out many steps into the future using just the learned
latent dynamics. These learned latent states are then used as the observations
of a deep reinforcement learning agent. This allows the reinforcement learning
algorithm to be separated entirely from the process of learning from pixels.
This method also allows much more data to be generated as it can be sampled
from the underlying model in parallel on GPU making the process of learning
significantly more efficient in terms of time and memory.

An accurate model of the environment is also used to play atari games in
[159]. The Simulated Policy Learning algorithm SimPLe iterates between gath-
ering data from the environment using a reinforcement learning policy, using
the gathered information to learn a world model, and then updating the policy
by using the learned world model. As the model of the work improves, the pol-
icy also improves. As atari games are mainly deterministic, [159] uses a state
space model that contains a discretized auto-encoder [160] described in section
5.1.1 as well as a stochastic state space. This combination of stochastic and
deterministic parts is used in many other state space models [47], [118], [119].

[98] also showed that learning a latent state space representation as an aux-
iliary task leads to large improvements over model-free RL. This paper also
provides several formal guarantees that the latent state space representation is
good for accurately predicting future states and rewards.

Other methods of training belief state models have also been explored, for
example, [112] uses contrastive predictive coding to learn a belief of the posi-
tion and orientation of an agent based only on the agent’s partially observable
state. The belief state contains an encoding of the agent’s uncertainty about
the environment. This uncertainty can lead to more effective exploration where
the agent is acting to reduce its uncertainty about the environment.

Learning a latent state space representation that can reproduce the entire
observation is not necessarily required to obtain high scores in several tasks.
[249] uses a recurrent model that predicts the reward, the value, and a policy at
every time step. It’s argued that the state representation that is learned does

126

not include the parts of the environment which are static or are not important
in predicting the value function or rewards. The model is trained in a similar
way to AlphaZero [260], which uses MCTS to search through the state space
given the initial observations and list of actions. During the MCTS rollouts, the
reward and value functions are learned. MCTS can then be used to search the
learned model itself to find accurate rewards and value functions when playing
games.

[254] uses an ensemble of latent state spaces in order to measure uncertainty
in future predicted states. Uncertainty is measured by taking the difference
between the latent states of the ensemble. This is referred to as latent dis-
agreement, which is similar to model disagreement proposed in [218], but the
"disagreement" is calculated by the difference in latent states rather than the
difference in observations of an ensemble. The uncertainty is then used as an
intrinsic motivation reward in a reinforcement learning agent.

One of the main contributions to this thesis [26] builds a deterministic latent
state space that is specifically aimed towards accurately reproducing the rewards
and observations of 2D grid-world games.

Building accurate models of environments that are not specifically tied to
policy prediction, and can encode latent spaces that are invariant to small
changes in the observational state is an important challenge in reinforcement
learning as small perturbations in observation states can cause reinforcement
learning policies to break down [129], [120]. Learning invariant latent state
space models that filter out this noise can produce more robust policies.

5.1.5 Object-Centric Models

Object-centric models follow the premise of trying to individually segment and
then model each segmented object individually. Image segmentation is another
field in deep learning that has been studied to a large extent [193]. Many state-
of-the-art image segmentation algorithms combine attention mechanisms with
locality processing [294].

Attend Infer Repeat (AIR) is introduced in [84] which uses an attention
model to attend to specific parts of images, infer their latent representation and
then continue on to the next object. Each object is associated with a specific
learned latent model. Decoding networks that perform affine transformations
of the learned latent models are then used to reproduce the original images.
[66] improves upon (AIR) by introducing convolutional layers to the internal
recurrent attention network. The introduction of convolutions allows spatial
invariance and helps the algorithm to scale to much larger scenes with more
objects.

127

Other models such as [134], [274] and [32] model the physical interactions
between objects with explicit graph-like architectures.

[50] Introduces the Multi-Object Network (MONet) which attempts to de-
compose images into individual objects that make up the scene. MONet consists
of two neural networks, a recurrent attention network and a VAE. The recur-
rent network is trained to produce segmentation masks of individual objects
sequentially, conditioned on previous masks, and the VAE is used to store the
individually extracted objects. The number of extraction steps K is set as a
hyperparameter. The image is then re-composed from the learned components
of the image. The thesis argues that the loss functions for masking and repro-
ducing the image lead to masks that segment individual objects in the original
image. The reasoning for this is that decomposing an image into constituent
parts is the most efficient way to store information and minimizing the loss will
naturally result in the image being decomposed in this way. Figure 5.9 shows
the learned object decomposition and reconstructions at various points within
the reconstruction process.

Similarly to [50], [103] takes on the problem of multi-object decomposition
and representation. [103] introduces the Iterative Object Decomposition Infer-
ence NEtwork (IODINE) which takes a similar architecture to MONet in that
it iteratively decomposes objects using a recurrent network. Instead of using an
attention model however, IODINE uses an iterative amortized inference [190]
to refine the segmentation of objects, and instead of a standard VAE for recon-
struction, uses a spatial broadcast decoder [296].

Generative Query Networks (GQNs) [85] learn a scene representation given
a query viewpoint Vq which represents a point in 3D space and a direction
that generates an image of the scene given that particular location and viewing
direction.

Given that the network contains no implicit rendering pipeline, for example,
one that would use model-view-projection matrices in combination with frag-
ment and vertex shaders, the thesis argues that the network must be learning a
representation of the environment that contains information about the individ-
ual size, color, and positioning of the objects that can then be rendered from
any new location given the query viewpoint. This hypothesis is tested in several
ways for example the GQN can accurately reproduce a top-down representa-
tion of the map of a 3D environment when it is only trained using 3D images
produced by a camera moving within the environment.

[128] provides a theoretical foundation for the disentanglement of informa-
tion within latent states using group theory and symmetry. There are many
symmetrical factors in data such as geometric symmetries in images and sym-
metries with physical systems such as forces pushing objects. These symmetries

128

Figure 5.9: Image taken from [50] showing object decomposition and re-
construction on the CLEVR dataset, including individual reconstructions of
occluded object parts (s4 red arrows). The number of steps K to segment the
scene was set to 11.

129

in systems form groups of disentangled representations if there exist transfor-
mations that can map between these symmetrical states without affecting other
groups of symmetries. It is also theorized that there are transformations that
exist that can encompass color and lighting, meaning that neural networks can
learn representations that can generalize across color and lighting, leading to
stronger generalization in many areas.

[8] Introduces a method of learning a method of representing the Atari envi-
ronment based on DeepInfomax [131] which aims to be able to encode features
of the environment that are also reflected in the internal state of the Atari en-
vironment’s Read-Only Memory. Many features of games that are important
for learning good policies are not available directly by pixels at every frame
but have to be inferred over several steps or remembered from previous frames.
Spatio-Temporal DeepInfomax (ST-DIM) is introduced to be able to learn these
features in a way that can be extracted using linear classifiers, referred to as
sensors. Several features are hand-picked from various games to test how accu-
rately the ST-DIM method can be used to predict internal states. ST-DIM is
compared against several other methods such as VAEs video prediction methods
[206] and outperforms them in predicting the internal features of several Atari
games.

[176] uses the unsupervised object landmark discovery algorithm from [318]
to identify parts of objects in videos of games (key points). These key points
can be used to generate latent models of the environment that represent objects,
relations, and geometries rather than learning a latent model from pixels, for ex-
ample with an autoencoder. The network is trained to predict key points more
accurately by learning a method of mapping the key points between two images
where the key points are spatially translated. This "key point bottleneck" en-
forces a more accurate key point representation to be learned and encourages
key points to be detected on image locations that are not static. As the key point
representation learned by the Transporter model contains mostly non-static and
controllable parts of the environment, control policies in Reinforcement Learn-
ing have a simplified action space which leads to faster learning.

Additionally, the key point representation can be used to define intrinsic
rewards to aid exploration. The intrinsic rewards are designed to be proportional
to the distance that the key points move, meaning that actions that affect the key
points the most are more favored. In this way, the key point method improves
the empowerment of the agent, as it is less distracted by parts of the environment
that are inconsequential [109].

An alternative method of keypoint detection is introduced in [144] where
key points are used as the basis of minimizing the information between different
images of human poses. This information bottleneck technique is used to detect

130

Figure 5.10: Image taken from [51] showing the architecture differences between
the Recurrent state-space model and the Transformer state-space model.

particular features in the images without any manual supervision or labeling
data.

[50] [85] [176] require prior knowledge of the environments they are tested in
such as the number of objects, key points or changing factors, which in unseen
data or new environments is unknown, this leads of difficulty in generalization.
[172] however proposes SlowVAE which attempts to find disentangled represen-
tations with no prior knowledge of the components of video data. SlowVAE
assumes temporal sparsity which assumes that latent representations between
time steps of video frames tend to change slowly but have sudden occasional
jumps. This is modeled as a Gaussian prior over state variables in subsequent
time steps. It is noted in the thesis, however, that this theoretical assumption
does not necessarily fit the datasets it is trained on, even though they produce
state-of-the-art results.

The methods described previously in this section concentrate mainly on de-
composing static scenes into disentangled object representations, but they do
not describe how these object-oriented systems can be used in model-based rein-
forcement learning. [320] introduces a method that combines the decomposition
of objects in scenes and action-conditioning using a spatial transformer network
[142] to translate the decomposed images of objects for the prediction of the
next observation.

5.1.6 Transformer Models

With the recent successes of transformers [290] in many areas of deep learning,
several attempts have been made to model the latent state space of environment
models using them. Transformer architectures are a common replacement for
sequential models that allows information to be shared and processed across

131

a sequence. At the heart of the transformer architecture is the self-attention
mechanism shown below:

attention = softmax
(
QKT

√
dk

)
V (5.25)

The inputs of the attention mechanism are the keys, queries, and values
K, Q, and V respectively. The values of K, Q, and V are encoded vectors given
by linear layers that act upon embedded text tokens. The attention vector in
equation 5.25 is a weighted sum of the embedded inputs, where higher weighting
is given to more important text tokens. The attention mechanism effectively
allows a single vector to be produced by combining and comparing a set of
inputs. Inputs that are more important give higher weight to the subsequent
values.

Transformers make use of multi-headed attention layers, which contain sev-
eral parallel self-attention mechanisms. This allows different self-attention mech-
anisms to encode multiple different relationships, the generated values for each
self-attention model are then concatenated and reduced to a single output.

Architectures that use transformers commonly beat the state-of-the-art ti-
tle in NLP and image processing benchmarks. For example, the transformer
architecture in ANNA [154] has state-of-the-art performance in the Stanford
Question-Answering Dataset (SQuAD) [227, 226]. The Vision Transformer
(ViT) architecture [77] uses almost the same architecture as the transformer
proposed in [290], but instead of its inputs being text tokens, it uses image
patches, with added positional encodings. When trained on large numbers of
images, the ViT architecture outperforms many convolutional architectures.

As transformers are very successful at sequence prediction tasks, it’s natural
to extend their usage to state prediction in model-based reinforcement learning.
In Transdreamer [51], the recurrent state-space model used in DreamerV2 is
replaced with a transformer that uses the hidden state history to predict the
next hidden state. This architecture is shown in Figure 5.10.

Similarly, in [192], a transformer architecture named IRIS is used to predict
subsequent states of a world model, but the states are encoded using a VQ-
VAE instead of the categorical latent states used in Transdreamer/DreamerV2.
IRIS is trained on the Atari 100k benchmark and performs impressively, beating
methods such as MuZero and efficient Zero.

5.1.7 Model-Based Reinforcement Learning

Many of the methods of learning forward models using deep neural networks are
covered in section 5.1.4. This section focuses on how these models can be used

132

to generate new results and improvements when used as part of the architecture
of agents in deep reinforcement learning models.

The previous section has covered several advances that have been made in the
pursuit of model-free reinforcement learning. However contrary to this, some of
the most interesting advances, such as [21] and [20] have used inverse-dynamics
models of the environment as part of their exploration policy.

The inverse dynamics model [217] used in these papers does not predict the
next of the game given an action and previous state but predicts the action a

based on two consecutive states st and st+1. The model used to produce this
prediction learns an embedding of the state of environment ϕ(st) by minimizing
the loss between the predicted action and the actual action:

â = g(ϕ(st), ϕ(st+1), θI) (5.26)

The embedding function ϕ learned by this model (although not used in [21]
[20]) can then be used as an input to a separate forward model ϕ̂(st+1) =

f(ϕ(st), at, θF) and the prediction error between the embedded state and the
predicted state ϕ̂(st+1) can be used as an intrinsic exploration reward:

ri = ||ϕ̂(st+1), ϕ(st+1)||22 (5.27)

[218] expands upon [217] by using an ensemble of models which predict the
next state and measure the difference between the models to use as an intrinsic
reward. This allows the agent to look ahead and plan which action will lead to
the next state, which it cannot predict. In the previous work, the exploration
reward was measured after the agent had already reached a state, meaning
that the agent would be inclined to follow that path if it reached that same
state again, however in the ensemble method, the agent can proactively make
decisions about which action to take next having seen the predictions of the
next states. Figure 5.11 shows an architecture diagram of this method.

Arming reinforcement learning agents with intrinsic rewards based on predic-
tion error encourages agents to take actions to reach states with high prediction
errors. As more of these states are encountered, the prediction error reduces for
the commonly seen states, which means the previously learned Q-values now
have different targets. Careful balancing of the intrinsic rewards and the en-
vironment rewards must be undertaken to avoid the models being biased too
much by high intrinsic rewards at the start of the training.

Another issue with generating intrinsic curiosity rewards by measuring pre-
diction error is known as the noisy TV problem. The noisy TV problem occurs
when stochastic parts of the environment have an inherent baseline error as
they cannot be predicted. In some cases, this prediction noise can render the

133

Figure 5.11: Image taken from [218] showing a diagram of the ensemble of
models used to measure disagreement as an intrinsic exploration reward.

intrinsic reward useless as the agent will learn to seek out states that have high
noise and will never learn the real extrinsic rewards of the environment.

Random Network Distillation (RND) [48] is proposed to attempt to alleviate
the issue of noise in the environment causing large intrinsic rewards. Instead of
learning to predict the next state from the previous state and action, RND pro-
posed that a network with random weights is used to generate a random state,
and then another network is trained to try and predict that same random state.
The prediction reward is then given by the measurement of the error of that
prediction. Since the prediction is entirely deterministic and there is no next-
state prediction, the stochasticity generated by randomness in the environment
itself is no longer a problem.

Other methods that avoid the noisy TV problem have also been proposed.
For example, [16] improves upon Variational Information Maximization Explo-
ration VIME [135], which derives its exploration bonus by finding actions that
maximize the information gain between subsequent states. Information gain
refers to quantifying the reduction in entropy between two consecutive states,
indicating the amount of new information obtained. [16] introduces Neural Dif-
ferential Information Gain Optimization (NDIGO), which predicts a baseline of
state information and a prediction of the next state from the current observa-
tion. This baseline prediction can reduce the noise generated from stochastic
environments and therefore avoid the intrinsic rewards created by stochastic
noise in observations.

Other measures are also used to generate prediction errors. For example,
Reward Impact-Driven Exploration (RIDE) [224] avoids the problem of curios-
ity rewards reducing over time as the forward model is learned by using an
impact measure. The impact I is measured by learning a latent-state space
representation in the same way as [217] and then taking the difference between
the learned consecutive states:

134

I = ||ϕ(st+1)− ϕ(st)||22 (5.28)

The impact measure is then divided by the square root of the number of
times that the state st+1 is measured N(st+1) to stop the agent from learning to
change between two different states constantly. This gives the intrinsic reward:

rRIDE =
||ϕ(st+1)− ϕ(st)||22√

N(st+1)
(5.29)

Models of the environment are not just used for calculating intrinsic rewards
for curiosity-based agents. Models of the environment can also be used to im-
prove the prediction accuracy of value functions and increase sample efficiency
[90] [98]. [90] directly uses a model of the environment to predict the value
function at any given state, whereas [98] uses learning of a model as an auxil-
iary loss. Both techniques typically use model-free algorithms but use models to
augment them. [60] and [7] use a similar approach to [90] but learn the model
of the environment through backpropagating the value prediction error as well
as just the state observation error.

In certain games, for example, Sokoban, the agent can perform actions that
put the game into a state in which the agent cannot complete the level. In
Sokoban, avoiding these un-recoverable states have to be avoided using a certain
amount of planning. Reinforcement learning does not directly handle these
circumstances because reaching these un-reversible states does not necessarily
result in a negative reward. In this case, the reinforcement learning agent does
not learn to avoid these states. Additionally, if the levels are procedurally
generated, these un-reversible states are very difficult to detect.

In environments with these irreversible states that require careful planning
to solve, models of environments can be searched using algorithms like MCTS
to avoid these states.

Imagination Augmented Agents (I2A) [297] uses an environment model to
predict both the value function of a network and a policy. At each time step,
the environment model is rolled out several steps into the future, and the result
of these rollouts is combined with a prediction network for both the value and
policy of the agent. [297] argues that these rollouts into the future at each time
step allow the agent to view potential future states before they happen and
adjust the agent’s policy based on these predictions. [47] improves upon the
model used by I2A by allowing stochastic future predictions and removing the
need to transform to pixel observations between actions. These stochastic state-
space models are explained in more detail in section 5.1.4. Using the stochastic
state space models improved the maximum score that the agents could obtain

135

with the deterministic I2A models.
Using models for planning has seen several advances in both accuracies of

the model itself and how to use the model to enhance the policy. In [150] a
similar method to [192] is used to encode the latent state space and predict
subsequent states, however instead of using the model to train an RL agent, the
model is used to plan trajectories using beam search.

It has also been suggested that planning can be an inherent property of some
RL architectures, [110] argues that in some cases, it is possible that a model-free
approach to learning in these kinds of difficult environments can lead certain
network architectures to inherently plan. [110] uses a stack of ConvLSTM units
that share a very similar architecture to the latent state-space models, which
predict future game states. However, it uses these to predict the policy and
value function for an agent. The Stack of ConvLSTMs is not trained to predict
future states of the environment but is trained directly as an actor-critic network
using IMPALA [86]. Different rollout and stack sizes are experimented with, and
the results show that larger rollouts, which the authors associated with "more
planning time," allowed the agent to perform better.

[115] Builds a recurrent stochastic state space model of several 2D and
3D environments such as CarRacing from [44] and Doom [308]. It then uses
these learned models to learn policies without interacting with the environ-
ment. Learning a dynamics model of the environment or underlying state space
is often faster than learning a reinforcement learning agent to solve the envi-
ronment itself. In section 5.1.4, we mentioned both PlaNet [118] and Dreamer
[119], which use stochastic state space models in which control algorithms are
applied. As both of these methods learn the environment’s dynamics in a su-
pervised manner, the models require fewer samples to train to a reasonable
accuracy than to train a reinforcement learning agent. This agent can then be
trained in the "imagined" model itself.

The Dreamer model used in [119] is built upon in Dreamer V2 [121]. Dream-
erV2 modifies the original Dreamer architecture by using a latent space consist-
ing of a set of discrete categorical variables; this effectively quantizes the state
space making it less prone to cumulative errors when predicting several states
in the future. Dreamer V2 is used to learn models of many of the Atari 2600
games. These models are then fixed and then used exclusively to train an actor-
critic algorithm. Using these accurate latent state space models, the actor-critic
algorithm is able to reach human-level performance on many of the Atari 2600
games.

In [117], Dreamer V2 is also proposed to learn the model of a complex
grid-world environment, "Crafter," which has dynamics such as an inventory
and NPCs that can chase the player. In addition to this, the environment is

136

partially observable, meaning that the underlying model must also generate the
world as the player moves around. Despite the complex modeling requirements,
the DreamerV2 agent outperforms other simple model-based baselines in the
paper that are trained with the same state budget. It is interesting to note,
however, that by performing a more-in-depth hyperparameter search, a model-
free PPO agent was able to out-perform the DreamerV2 agent in the same
number of steps it takes to learn the model itself [271].

In many cases, when learning models for reinforcement learning, emphasis
is put on trying to reproduce a state of the environment that can be converted
back into an observational state that is as close as possible to the original ob-
servation. However, learning the exact representation of the environment is not
necessary in many cases, as there are many parts of the observational state that
contain very little information about solving the task at hand. [249] introduces
µZero, in which modifications to the AlphaGo are made that use a learned en-
vironment model. In this case, the environment model is only required to learn
when a reward is given by the environment, and learning the exact state transi-
tion function is not required. The authors argue that learning the reward in this
way without needing to learn the exact state transitions is much more efficient
and filters out only the information relevant to solving the tasks. Several im-
provements have since been made to the µZero algorithm since its publication
[248, 312]

In many of the model-based planning algorithms described above, the "plan-
ning" algorithms are also used during inference in order to choose the next best
action. however [123] shows that policies trained using models for planning roll-
outs actually do not require planning during inference. Performance in many
environments is similar with or without the planning module. This suggests that
policies trained in this way will learn to avoid parts of the state space that lead
to unrecoverable states. This suggests that the planning algorithm in a model
can effectively act as a teacher to provide high-quality training trajectories.

Learning accurate models of environments does not exist without issues.
One of the most prevalent issues in learning world models is the fact that the
model learning is dependent on the trajectories of the agents collecting the
experience data. [231] demonstrates that in certain environments such as those
with stochasticity, policies that rely on models to plan do not learn the causality
of specific events and therefore make mistakes in predictions that lead to bad
performance of models. To fix this, [231] models this issue under the context
of causal reasoning and proposes a causal partial model to learn adequately to
predict under any arbitrary policy.

[24] introduces Ready Policy One RPO, which jointly optimizes policies for
both reward and model uncertainty reduction. RPO specifically avoids stochas-

137

(a) A screenshot taken from the game Star-
craft II, where an AI (Alphastar) plays pro-
fessional player "MaNa"

(b) A screenshot taken from the game Dota
2, where an AI (OpenAI Five) plays against
professional team "OG"

tic areas of the state space so the model of the environment is as deterministic
as possible. Policies in a world model are directed with the objective of acquir-
ing data that most likely leads to subsequent improvement in the model. This
reduces the amount of data required to learn the world model itself and leads
to more accurate rollouts.

Another method of avoiding incomplete models of the environment is to
make sure all the states are visited an equal amount of times or use a large
amount of data and build a model architecture that is designed specifically
to model the dynamics of the particular environment. [79] Achieves this by
training a model which concentrates on learning the physical dynamics of the
environment rather than action-conditioned states. It uses this model as an
input to the policy network so as to provide information on the dynamics of the
environment without directly predicting the next states given the actions.

In section 5.1.7 we introduced the concept of model-based RL. In model-
based RL the agent specifically learns a model of the dynamics of an environment
in which it is situated. There are several approaches to utilising the learned
model such as planning subsequent actions, using prediction error to provide
intrinsic motivation, or using experience in the model instead of the original
environment. In the case of planning or learning within the model, having an
accurate model of the environment is vital, as the model need to closely cover
the distribution of states.

As an example, if a chess playing agent has access to a perfect model of
the game of chess, it can test out many moves in advance and then pick out
the best move from the ones it has tried. If the model is imperfect, then the
planning algorithm will assign incorrect scoring to states and thus hinder the
performance.

138

5.1.8 Neural GPU

The Neural GPU (NGPU) architecture introduced in [158] and improved upon
in [93] can learn several unbounded binary operations. For example, multiplica-
tion, addition, reversal, and duplication. This is achieved by effectively learning
1D cellular automata rules which are then applied over a number of steps until
the result is achieved. The number of steps I is typically proportional to the
size of the binary digits being processed. The Neural GPU applies the cellular
automata rules to an embedded representation of the binary digits using a con-
volutional gated recurrent unit (CGRU) with hard non-linearities. The CGRU
itself is described by the following set of update rules:

ui = σ̂(U ′ ∗ si−1 +B′)

ri = σ̂(U ′′ ∗ si−1 +B′′)

ci = ˆtanh(U ∗ ri ⊙ si−1 +B)

si = ui ⊙ si−1 + (1− ui)⊙ ci

(5.30)

In the above equations U , U ′′, U ′′′ are convolutional kernel banks and B,
B′, B′′ are learnable biases. The ∗ operator is used to describe a convolution
operation of the left parameter over the right. For example, U ′ ∗ s denotes the
kernels in U ′ convolved over the values in s. ˆtanh and σ̂ represent the hard non-
linearity versions of the tanh and sigmoid functions respectively and ⊙ represents
the Hadamard (or element-wise) product between two tensors. Details of the
hard non-linearities are given in [93]. When dealing with binary operations, the
Neural GPU takes an input of arbitrary length, containing the binary encoded
digits and the operation to perform. The binary digits and operation symbol
are embedded into the initial state s0. This state is then iterated through the
CGRU for n steps and final state sn is read out using a softmax layer which
predicts the binary result.

As the Neural GPU can be seen as a recurrent application of learnable cellu-
lar automata rules, this leaves it well suited to being able to learn the local rules
of grid-world-based games. This architecture is comparable to other state-space
architectures that use size-preserving layers [297], [47] [110], with the exception
that parameters are shared between layers, no latent state information is shared
between frames and different gating mechanisms are explored.

5.2 Neural Game Engine

The Neural Game Engine is a neural network architecture based on a modified
Neural GPU. The main modifications to the Neural GPU are outlined in this

139

��

��

��,�−1
��

��

�
()�� ��

��,0
(,)�� ��

�
��

��,1

()�� ��

��+1

()� �
� ��

(,)� �

� ��

�
�� ()� �

�
��

�

��
��

���
�

NGPU

Figure 5.13: Architecture of the Neural Game Engine

section. The Neural Game Engine state differs from the Neural GPU in that
the state s is three dimensional (Ws, Hs, Cs) where the width Ws and height
Hs reflect the width and height in tiles of the game being trained and Cs is
the number of channels. Each vector stored at (ws, hs) represents a single tile
in the grid environment. The convolutional kernel banks U , U ′, and U ′′ are
also modified to be two-dimensional with a (3, 3) shape. The stride and zero-
padding are the same as the original paper at 1. As no diagonal movements are
allowed in any GVGAI environment, the kernels are also masked to ignore the
non-adjacent cells. Similarly to the NGPU, an iteration of the CGRU unit with
input si produces a new state si+1. The number of iterations of CGRU cell per
frame of the game state is tuned as a hyperparameter n.

The width and height of the games in the GVGAI environment can be any
positive integer value. Since changing the values of Ws and Hs does not change
the number of parameters in the underlying Neural GPU, the Neural Game
Engine can generalize to any Ws and Hs. This unbounded computation of
game state is discussed further in section 5.4.4.

In many reinforcement learning techniques, the rewards that the game pro-
vides to the player are augmented in order to aid exploration, modify the agent’s
goals, or provide auxiliary losses to reduce training time [256], [10]. In some
cases, the original rewards supplied by the environments are modified from their
original values with a technique known as reward shaping [108].

Reward prediction in the Neural Game Engine aims to reproduce the original
game rewards as accurately as possible but decouples reward prediction learning
from learning the game mechanics.

At every time step the Neural GPU is applied to an encoded observation
image Ot, iterated n times and then decoded to give the next observation state
Ot+1 and reward rt. Figure 5.13 shows the architecture for a single time-step
calculation.

140

5.2.1 Observation Encoder - fo(Ot)

In the GVGAI environment, tiles in the trained games are set to have the
same width and height dimensions D. This consistency allows the tiles to be
embedded into a tensor Oe

t with the same dimensions of the NGPU initial state
s0. This tile embedding is achieved by using a convolutional neural network
with kernel width, kernel height and stride set to D, input channels set to 3 to
reflect the RGB components of the image and finally output channels set to Cs,
the number of channels in the NGPU state.

5.2.2 Observation Decoder - fd(sn)

To render the game pixels, a mapping from the underlying embedded tile repre-
sentations to the pixel representations of the tile is learned. This mapping takes
the form of a convolutional transpose with kernel size D and stride D. The
number of input channels is set to 3 to reproduce the RGB components. This
mapping recovers a tensor of shape (D.Ws, D.Hs, 3) which can be rendered.

5.2.3 Action Conditioning - fa(O
e
t , at)

As the action needs to be considered as part of the local rule calculations in the
NGPU, information about the actions must be available in the s0 state, along
with the observations. To achieve this, the action at is one-hot encoded and
then embedded with a linear layer of output size Cs. This is then added to each
cell of the initial state s0. In practice this can be achieved by tiling the one-hot
representation of the action into a tensor of size (Ws, Hs, As), where Ws and Hs

are the width and height of the NGPU state, and As is the cardinality of the set
of actions for the game. This state can then by passed to a 1x1 convolutional
neural network with Cs output channels. The resulting tensor can then be added
to the Oe

t , which results in the initial s0 state of the Neural GPU.

5.2.4 Reward Observation Encoder - fr
o (Ot)

The reward observation encoder consists of a tile embedding layer similar to the
observation encoder encoding each tile into a vector with Cr channels, giving
an embedded observation state Or

t of size (Ws, Hs, Cr).

5.2.5 Reward Action Conditioning - fr
a(O

r
t , at)

A separate action conditioning network encodes the action at each step at to a
one-hot vector which is then embedded into a linear layer of size Cr and finally
added to each of the embedded tile vectors giving the reward state srt . This

141

process is identical to the NGPU action conditioning. The only difference is
that the number of channels may differ depending on hyperparameter choices.

5.2.6 Reward Decoder - fr
d(s

r
t)

In order to decode the rewards from the reward state srt , a convolutional network
with a kernel size of 3 and padding 1 is used, followed by two convolutional layers
with a kernel size of 1, 0 padding, and the number of channels decreasing in
each layer. A final convolutional layer with kernel size 3 is used to decrease the
number of channels to 16 and an arbitrary height and width. Global max pooling
is applied across the remaining arbitrary height and width dimensions leaving 16
outputs. These 16 outputs are then trained with categorical cross-entropy loss
to predict an 8 bit binary number corresponding to the reward. We assume here
that the environments in which we are training can only have integer rewards
between 0 and 255. Predicting binary rewards in this way instead of predicting
continuous values means that the reward can be predicted more accurately as
we effectively quantize the reward to exact values.

5.3 Neural GPU enhancements

5.3.1 2D Diagonal Gating

Diagonal gating, introduced in [93], is a technique used in the NGPU architec-
ture to pass state cell values directly to neighboring state cells. In the context
of a grid-world game, information, such as tile type, could be transferred in
this manner. The state of the original NGPU allows the copying of state infor-
mation from the left and right cells via the diagonal gating mechanism. The
state of the underlying NGPU in the Neural Game Engine adds an additional
dimension, which means that the diagonal gating mechanism can be used to
copy from above and below, as well as left and right. To achieve this, the state
is now split into 5 parts si = (s1i , s

2
i , s

3
i , s

4
i , s

5
i) and a 2D convolution operator

with fixed kernels as shown in equation 5.31 is used.

142

si = ui ⊙ s̃i + (1− ui)⊙ ct

s̃i = (s̃1i , s̃
2
i , s̃

3
i , s̃

4
i , s̃

5
i)

s̃1i = s1i−1 ∗

0 1 0

0 0 0

0 0 0



s̃2i = s2i−1 ∗

0 0 0

0 0 1

0 0 0



s̃3i = s3i−1 ∗

0 0 0

0 0 0

0 1 0



s̃4i = s4i−1 ∗

0 0 0

1 0 0

0 0 0



s̃5i = s5i−1 ∗

0 0 0

0 1 0

0 0 0



(5.31)

5.3.2 Selective Gating

One of the issues with diagonal gating is that the copying of the state information
is uni-directional for the state values in each cell (ws, hs, cs). To illustrate this
issue consider the values in any sub-state sxi . The values in each sub-state are
only shifted in a single direction. This means that sub-states that are shifted in
one direction are not the same states that can be shifted in the other directions.
This uni-directional flow does not allow consistent copying of state information
across all directions. Intuitively this means that if a tile moves upwards, the
state information it can bring to the cell above cannot be moved to the left,
right or even back to the cell that it started in.

To alleviate this issue, a selective gating mechanism is proposed which allows
the gating mechanism to copy values in any direction for any value in any cell
(ws, hs, cs).

The selection mechanism works by learning a classifier that, given the state
tensor si, outputs a selection tensor Ŝ of dimensions (Ws, Hs, Cs, 5) where the
selection of the gating directions (up, down, left, right, center) are one-hot
encoded into the last dimension. The selection tensor is created by applying
a convolution operation to the state si with a kernel size of 3x3, stride of 1,
padding of 1, and 5Cs output channels. The 5Cs channels are then reshaped

143

into a tensor of size (5, Cs), and a softmax is applied across the first dimension
to give a selection for each of the Cs values. The selection tensor Ŝ is then
multiplied by a tensor K̂ of shape (5, Cs, 1,Ws, Hs) containing 5 directionally
shifted versions of the original state. This gives the new state s̃i.

si = ui ⊙ s̃i + (1− ui)⊙ ct

s̃i = ŜK̂

K̂ = [Mu(si),Md(si),Ml(si),Mr(si), si]

(5.32)

The shifting operation can be achieved by convolving a fixed kernel that
copies states from adjacent cells. Zero padding of 1 is applied to the state to
retain its original shape. For example:

Mu(si) = si ⊙

0 1 0

0 0 0

0 0 0



Md(si) = si ⊙

0 0 0

0 0 0

0 1 0



Ml(si) = si ⊙

0 0 0

1 0 0

0 0 0



Mr(si) = si ⊙

0 0 0

0 0 1

0 0 0



(5.33)

5.3.3 Evaluation Methodology

The experiments aim to reach pixel-perfect reproduction of original GVGAI
environment games over arbitrarily long time frames for levels with any dimen-
sions. To achieve this, the network must learn the game mechanics on a symbolic
level and then be able to apply these to larger game states.

The results presented in this chapter are performed on the game Sokoban as
it is a good example of a GVGAI game with local rules.

Two related measures are used to measure the accuracy of the game repro-
duction. First is the mean-squared error Emse of the raw pixel outputs at each
step and second is a closest tile f1 Ft measure. The closest tile measure is created
by firstly taking a tile map of the original observation Tm, which has dimensions
(Ws, Hs) where each element in the map corresponds to an index of the set of
possible tiles T . A second tile map T̂m is then created by finding the closest

144

matching tile in the set of tiles T for each DxD tile in the predicted observa-
tion. The closest tile f1 measure is calculated from the mean of the f1 scores for
each of the tiles in Tm and T̂m. The f1 scores are generated by measuring the
precision and recall of the tile predictions.

Both measures reflect each other. A lower Ft would correspond to a high
Emse. However, Ft is calculated as closest tile to a pre-generated set of tiles T ,
which does not measure how close the tile predictions are to the original pixels.
The measurement of Emse achieves this more direct comparison.

Alongside learning pixel accuracy, the rewards given by the environment
are learned. Reward error is measured by converting the real reward values
to a binary representation and then calculating the cross-entropy loss. Reward
accuracy is measured using the binary classifications’ precision, recall, and f1
Fr score.

5.3.4 Training

To obtain accurate rollouts over long time periods for any size network, the
training data is generated in a way that does not bias toward game sizes, num-
bers of tiles (such as walls, boxes, and holes in Sokoban), or particular RL or
planning policies.

Level generation for GVGAI games has been explored in [168], [78], and
[156]. However, these generators are aimed at either producing levels that help
RL agents to learn or are pleasing to human players.

To generate levels for learning the environment dynamics, the probability
for an agent to interact with different types of tiles must be evenly distributed.
To achieve this, levels are randomly generated with height H and width W

between certain values Hmin, Hmax, Wmin, Wmax. GVGAI environments typi-
cally contain 5 pre-built levels. These pre-built levels are used to generate the
probabilities of each tile being placed in the environment. Tiles are positioned
with these calculated probabilities with the caveat that wall tiles are always
placed on the edges of the game state if this is consistent with the 5 pre-built
levels. Additionally, tiles that only appear once in each level are placed only
once in generated levels.

A random agent is used to generate experience data in the environment.
To improve the training data distribution, each step is augmented by creating
an 8-way tile-symmetrical observation and actions. Each learning step uses
mini-batch gradient descent, where the batch contains symmetrical experiences.
Batch sizes are fixed at 32 state transitions, giving 256 frame transitions per
batch.

As the observation predictions at each time step become the inputs for the

145

next prediction, errors can build up over time and cause the rollout accuracy to
decrease rapidly. During experiments, the same Prediction Dependent Training
(PDT) technique introduced in [55] coupled with a curriculum schedule was
employed which increased accuracy and training stability. Observation noise is
also added to training data, this was integral to achieving high accuracy.

In order to evaluate the training progress of the environment, rollouts are
performed every 200 epochs using real game levels from the GVGAI environ-
ment. 3 repeats of rollouts of length 100 are performed, and Ft and Emse are
calculated. 1

5.4 Experiments and Results

5.4.1 Comparison of gating mechanisms

In figure 5.14, the NGE architecture using the different NGPU gating mech-
anisms described in section 5.2 is shown. Even with no diagonal or selective
gating, the NGE can learn accurate models of game environments. In the ex-
periments, Selective gating had a small advantage in stability over long time
horizons, this is also reflected in table 5.1.

5.4.2 Comparison with other methods

The best performing Neural Game Engine (NGE) model from section 5.4 is
compared against several common networks from recent literature with the game
Sokoban. Rewards prediction is not analysed as it is a separate network. The
network architectures that are compared are the following:

FeedForward (FF) This model replaces the NGPU module with two feed-
forward convolutional layers with kernel size of 3, stride 1 and padding 1. This is
the equivalent of the basic block used in [297] when training Sokoban. The model
compared does not use pool-and-inject layers as Sokoban has no long-distance
dependencies that require global state changes. This model is commonly used
as the deterministic component of generative state-space architectures and is
well suited to deterministic grid environments.

Recurrent Environment Simulators (RES) The state of the game is en-
coded into a latent state using an auto-encoder. This latent state then forms
the input to an LSTM unit which can store past state information in its hidden

1All training and testing is performed on a single Ubuntu 18.04 machine with an NVIDIA
2080ti GPU, Intel® Core™ i7-6800K CPU and openBLAS (0.2.20) libraries installed.

146

0.6

0.8

1.0
Av

er
ag

e
Ti

le
 F

-S
co

re
 (F

t) No Gating Diagonal Selective

0 0.5 1 1.5
10 6

10 4

10 2

Er
ro

r (
E m

se
)

0 0.5 1 1.5 0 0.5 1 1.5
Millions of frames

Figure 5.14: This figure shows the average F1 score (F1t) and mean squared
error (Emse) at intervals of 200 epochs over training. Each score is calculated
over 100 evaluation steps and averaged over three runs. Selective gating trains
the fastest and is the most accurate out of the 4 tested methods.

state. This model is equivalent to the Recurrent Environment Simulator (RES)
[55] and models that use an auto-encoder to create a latent state.

Stochastic State Space (sSS) The most complex model, like NGE, heavily
uses cellular automata-like layers which encode pixel information into a com-
pressed grid. The model differs from NGE in that it works with continuous and
stochastic environments, and therefore uses sampling in order to produce the
output observations.

Figure 5.15 shows the comparison of these 4 methods with the same input
data and the number of epochs. The training in this experiment is limited
to random grids of fixed size (10x10). This is due to the fact that RES and
sSS models contain architectural components that cannot generalize to different
sized grids. Each method trains to high accuracy quickly, followed by a plateau
in decreasing error, leading to maximum accuracy. In the case of Sokoban,
FF, sSS and NGPU methods have a slight advantage as Sokoban is naturally
suited to local modeling. However, the sSS model is disadvantaged by the fact
that it contains stochastic components that are trying to model completely
deterministic state transitions.

147

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Ti

le
 F

-S
co

re
 (F

t)
NGPU (selective) RES FF sSS

0 0.5 1 1.5
10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r (
E m

se
)

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
Millions of frames

Figure 5.15: This figure shows the average F1 score (F1t) and mean squared
error (Emse) at intervals of 200 epochs over training. Each score is calculated
over 100 evaluation steps and averaged over three runs. NGPU achieves the
lowest Emse and highest average Ft score.

5.4.3 Ablation Testing

An important feature of many games is that many interactions between adjacent
cells can be dependent on other surrounding cells. For example, in Sokoban,
when pushing a movable block against a wall, a 3x3 grid around the location
of the agent will not take into account the wall when calculating the next state
of the cell currently occupied by the agent. However, the NGPU accounts for
non-local interactions when it iterates during a single time step. This effectively
lets cells share information during the processing of a single state. With n =

2, the NGPU can share information from more adjacent cells, encompassing
the wall that the block cannot be moved past. Other models such as those
used in [47] [297] use similar techniques, but use fixed networks with different
convolutional network sizes and apply residual layers. Using a NGPU with
multiple iterations removes the requirement for multiple layers of convolutions
and residual connections, making the network much simpler and smaller.

In [93], diagonal gating is used to share state information between adjacent
cells. As described in section 5.32, this only allows single-direction information
flow, which reflects in the higher error rate of NGE models using diagonal gating.

To test that the iteration of NGPU is vital for information flow in local

148

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Ti

le
 F

-S
co

re
 (F

t)
n=2, PDT n=2 n=1, PDT n=1

0 0.5 1 1.5
10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r (
E m

se
)

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
Millions of frames

Figure 5.16: Learning an accurate model of the Sokoban environment is depen-
dent on having multiple iterations of the NGPU units and also training over
multiple states. When the network is restricted to a single iteration n = 1
or is trained without PDT, the accuracy suffers. The results shown here are
the rollout accuracy measurements against the 5 original hand-built GVGAI
environments, taken every 200 epochs during training.

interactions, two experiments are performed under all the same conditions as the
high-performing models. One with the modification that only a single NGPU
step and no PDT are configured during training. The other is with a single
NGPU step, but using PDT described in section 5.3.4. The second experiment
aimed to rule out that local information could be transported through pixels.
The results of this are shown in figure 5.16.

In both the 2-step and 2-step+PDT experiments, the accuracy achieved is
high, but with the single step options, the accuracy achieved plateaus at a
much lower value and the prediction error remains high. This result shows
that multiple steps of the NGPU are vital to achieving high accuracy. It’s also
important to note that the 2-layer FF model in figure 5.15 also could not achieve
this high accuracy.

5.4.4 Generalising to different size grids

To test the generalization ability of the trained NGE, the models trained in
section 5.3.4 are used to play several levels with much larger dimensions than
those during training. These larger models are then compared against the orig-

149

Grid Size max(Emse) F1

30x30 7.5e-6 1.0
50x50 8.3e-6 1.0
70x70 7.9e-6 1.0

100x100 7.9e-6 1.0

Table 5.1: The maximum mean squared error and closest tile error for 500 steps
averaged over 10 repeats. NGPU with Selective gating obtains high tile accuracy
in all of the generalization tests.

inal GVGAI environment with an identical starting state and action list. The
two methods (Emse and Et) of measuring the accuracy of these models are used
as described in section 5.3.4. For each model, the two measures are calculated
for each step up to 500, and an average of the measures are taken over 10 repeats.
These results are shown in table 5.1

5.4.5 Results on GVGAI games

The results of training Neural Game Engine on several GVGAI games are shown
in table 5.2. The rollouts follow the same setup described in section 5.3.3 Games
that result in Ft scores of 1.0 show that the underlying game rules are learned
accurately and the NGE does not make any mistakes when tested. Reward F1
scores Fr can be interpreted in the same way. Most of the tested games achieve
high accuracy, however, there are some game mechanics that cannot be sup-
ported by the NGE without modifications. As an example, clusters completely
fails to learn the reward function. Rewards are fairly common in the game and
the forward model itself learns accurately, so the reason for this is unclear. The
game aliens is included as an example stochastic and partially observable game
(the enemies randomly shoot at the player and the enemies spawn from a lo-
cation that has no visible markers). The reward function min(Fr) of aliens is
partially learned by NGE, however, the min(Ft) score is 0.73 meaning that just
over a quarter of the tiles are predicted incorrectly.

5.5 Discussion

There are several interesting applications for games trained with the NGE ar-
chitecture, for example the fact that games can be learned with high accuracy
over long time horizons, these can be used in planning algorithms. Addition-
ally, because these games also run entirely on the GPU, the sample rate and
parallelization ability mean that they can be used as efficient environments for
reinforcement learning experimentation.

150

Game max(Emse) min(Ft) min(Fr)

sokoban 7.5e-6 1.0 1.0
cookmepasta 9e-4 0.98 0.83

bait 5.2e-4 0.97 0.99
brainman 3.6e-4 0.97 1.0
labyrinth 1.6e-5 0.97 1.0

realsokoban 1.8e-3 0.86 1.0
painter 4.6e-6 1.0 1.0
clusters 1.3e-5 1.0 0.0

zenpuzzle 8.2e-6 1.0 1.0
aliens 5.1e-3 0.73 0.85

Table 5.2: The maximum mean squared error max(Emse), minimum closest tile
f1 min(F1) and minimum reward f1 min(Fr) for 100 steps over 3 repeats.

There are two main limitations that the NGE architecture suffers from: its
lack of ability to model stochastic game elements, and global state-changes.
Further experimentation and research is required to achieve these goals. One
approach could be to use NGPU modules in place of the deterministic size
preserving layers in sSS models.

One large area for improvement for the Neural Game Engine is that the
statistical method of level generation and random agent movement does not
produce enough examples for some local patterns and can produce unsolvable
or unplayable levels. In many cases, tweaking the random level generation
parameters is enough to give the NGPU a distribution which greatly improves
the accuracy of training. Improving the data distribution of local states to
train the NGPU is an area which could greatly be improved. Using curiosity
driven agents, or planning agents may provide much better data distributions
for learning rewards, but may avoid areas of low rewards and therefore not learn
the full game dynamics.

Another area of improvement would be that the Neural Game Engine only
predicts a single time step in the future, therefore events that do not specifically
change the observational state are completely lost. For example, in some games
the agent picks up a key and then the agent tile changes to show the agent
holding a key. Once the agent has a key, the agent can open a door. NGE learns
these dynamics well and learns that if the agent lands on a tile with a key, it
changes to an agent with a key and can then interact with a door. However if
the fact that the agent is holding a key does not change the agent tile, NGE
has no knowledge of this at the next step and therefore the information is lost.
This could be fixed by following the latent state space model training techniques
used in [47], [6] and [16] where future observations are predicted several steps

151

in the future without decoding the visual information between steps.

5.6 Conclusion

In this chapter, the Neural Game Engine architecture is proposed as a method of
learning accurate forward models for grid-world games. The Neural Game En-
gine architecture, which is built upon the Neural GPU, learns a set of underlying
local rules that can be applied over several iterations rather than stacking layers
with different parameters. Improvements to the Neural GPU architecture such
as selective gating are introduced which enable it to be applied to predicting the
forward dynamics of games. This chapter shows that this method has many ad-
vantages: fast learning time; high accuracy over long time-horizons and fast and
easily parallelized execution. The Neural Game Engine shows higher accuracy at
predicting the state transitions in the game Sokoban when compared to similar
state space models that are used in several model-based reinforcement learning
applications. Additionally the Neural Game Engine is shown to generalize well
to different game environment dimensions not seen during training.

152

Chapter 6

Equivariant Data
Augmentation

Geometric Deep Learning is a promising direction in understanding how the
structure of neural networks and training of neural networks can be analyzed
using the mathematics of geometry. In image recognition tasks, affine trans-
formations of input data, such as scaling, translation, and rotation, should not
change the output of image classification, i.e. a small cat and a large cat picture
should both classify as a "cat". However, when the image classifier is a neural
network, it must be trained with significant data for high classification accuracy.
This accuracy can be improved by the augmentation of the input dataset, for
example, by adding rotated and scaled versions of the original dataset images.
Alternatively, the neural networks can be designed so that their classification
accuracy is invariant to these transformations. In this thesis, we are particularly
concerned with finding geometric priors in reinforcement learning environments,
which we can use to enhance training or understand issues with particular algo-
rithms. More specifically, we concentrate on the geometric priors found in the
perception of environmental agents, such as rotational and dihedral symmetry of
observations. In previous works it has been shown that while the value function
is invariant to transformations, the policy outputs are equivariant, meaning that
the as the input is transformed, we must apply an equivalent transformation to
the output for consistency. However, in several algorithms, it is unclear how to
apply these transformations. We show two potential solutions to the off-policy
correction algorithm V-Trace [86] which we call naive behaviour augmentation
and behaviour replay augmentation. We provide several ablation experiments,
showing the benefit of these additional techniques.

153

6.1 Background

Reinforcement learning requires a large amount of varied experience data in or-
der to learn generic policies. One method of artificially increasing the amount of
data, without requiring more environment trajectories is to augment the data.
Data augmentation techniques have a wide range of implementations and can be
as simple as just adding noise to inputs, or as complex as applying linear trans-
formations to the input data. In this section, we start by exploring commonly
used data augmentation techniques in supervised learning. We then move on
to how these methods can be applied to reinforcement learning and show that
different formulations of data augmentation are required under certain types
of transformation that are not required in supervised learning. These differ-
ences arise in the policy network when certain augmentation transformations
are applied to the inputs.

6.1.1 Data augmentation in Supervised Learning

Data augmentation is a well-known technique used to improve the performance
and stability of training deep neural networks [52]. Data augmentation in super-
vised learning uses a set of stochastic or deterministic transformation functions
to produce additional samples of data to be included in the training. Augmen-
tations are typically designed to be invariant [262], meaning that they should
result in the same output as the unmodified inputs. An example of this would
be adding translation, scaling, rotation, or noise to images [175], or replacing
words in text with synonyms in textual data [298].

Due to the stochastic nature of classifier predictions, naively using data aug-
mentation to improve model performance can still result in misclassification due
to unseen perturbations or adversarial examples [278]. To alleviate this issues,
regularization methods that try to preserve semantic information in latent vari-
ables [317, 53, 141], and methods for automating augmentations [67, 68, 313],
have been proposed. These methods attempt to apply data augmentation in a
more principled manner.

Consistency Regularization Consistency regularization is a popular method
for regularizing data augmentation [19, 237]. It is particularly useful when
the data augmentation methods are stochastic, such as adding noise or using
dropout during training. Consistency regularization typically adds a loss func-
tion to the output of classifiers that encourages the output to stay robust under
data augmentation. This loss function can take the form of a L2 norm or, in
the case of stochastic classifiers, the KL-divergence is commonly used [309].

154

Consistency regularization can also be performed under geometric augmen-
tations of inputs such as scaling and rotation. For example, in [264], consistency
regularization is used to constrain the latent representation of a Variational Au-
toencoder [171] so that latent representations of transformed images are similar,
regardless of their scale or orientation. Another example use-case is in Gener-
ative Adversarial Networks [102], where consistency regularization is used to
stabilize training [316]. This is achieved by adding a loss function to encourage
the discriminator to produce the same output for augmented images.

6.1.2 Data Augmentation in Reinforcement Learning

Similar success using data augmentation has been shown in Reinforcement
Learning. In many reinforcement learning domains, the state space can be
augmented similarly to the inputs in supervised learning. Techniques such as
adding noise, cropping, scaling, and manipulating the color of pixels are com-
mon [181, 174, 310, 225]. Data augmentation in Reinforcement learning is par-
ticularly useful in improving generalization and sample efficiency in generative
environments, for example, procedurally generated environments [61] and envi-
ronments designed specifically to contain distractions [272].

Domain randomization [145, 282, 4], a method similar to data augmentation,
has been used to improve robustness in robotic domains. Simulating robotic
environments for training is notoriously difficult as there are many unknown
sources of noise and dynamics that are hard to reproduce accurately. In addition
to this, every physical device has imperfections that can dramatically change the
performance when controlled with the same model. Domain randomization adds
noise by changing various simulation parameters, including friction, lighting,
colors, and even gravity, to train models that are robust to different physical
characteristics when deployed.

Data augmentation has also been used to encourage efficient data represen-
tations for reinforcement learning. For example, CURL [269] uses contrastive
unsupervised learning [141, 53] to generate an accurate latent state model from
pixels, which can then be used as input to a reinforcement learning algorithm.

Additionally, in model-based reinforcement learning, data augmentation has
been used to create accurate recurrent models that can predict future states
from several augmented initial states [253, 285].

6.1.3 Equivariant Networks in Supervised Learning

One desired property of many neural networks, such as image classifiers, is that
of invariance and equivariance. An invariant neural network is one where
the output does not change when the input is modified by a particular class of

155

transformations, more formally f(i) = f(Fip(i)), where and i is the input, f is a
neural network and Fip is a class of bijective, linear transformations indexed by
p. Similarly, equivariant neural networks hold a property that a particular class
of input transformations corresponds to another class of output transformations:
Fop(f(i)) = f(Fip(i)) [64, 63, 299, 46]. The transformations used are typically
geometric in nature, such as functions of symmetry groups.

Recent work has also shown that equivariant neural networks can signifi-
cantly outperform networks trained with data augmentation under the same
geometric transformation classes. [299]

6.1.4 Equivariant Networks in Reinforcement Learning

Equivariance and invariance are particularly useful priors in RL, as environment
observations commonly involve symmetries that can be translated to equivalent
symmetries in resulting policies [199]. As an example, in actor-critic reinforce-
ment learning, combinations of equivariant and invariant layers can be used
in the actor and critic. In grid-based environments with rotational symme-
try and actions that control the four directions of movement, any rotation of
the input state Fs(s) can directly result in a permutation of the logits in the
actor Fl(l), giving an equivariant policy Fl(factor(s)) = factor(Fs(s)). In this
case, the value function at any given state is also invariant to the rotation
fcritic(s) = fcritic(Fs(s)).

When an environment has geometric symmetries that can be represented
as group transformations, such as rotations and flips, the underlying Markov
Decision Process (MDP) can be modeled as an MDP homomorphism [229, 230,
286]. Symmetries in behavior in multi-agent settings can also be exploited using
the same frameworks [287, 107]

6.2 Invariant and Equivariant Augmentation

We define a trajectory T as a sequence of tuples (a, s, r) consisting of action
a, state s, and return r. These trajectories (also referred to as rollouts) form
episodes or batches and are used during the training process. Data augmentation
is applied to trajectories by performing transformations on the states Fs : S → S

and actions Fa : A → A. Where the state and action transformation functions
are bijective.

Using this notation, we can interpret MDPs under data augmentations as
MDP Homomorphisms [229, 230]. This allows us to link the transformation
functions Fa and Fs under the following rules:

156

∀s ∈ S,∀a ∈ A : R(a, s) = R(Fa(a), Fs(s)) (6.1)

∀s ∈ S,∀a ∈ A : T (s′, a, s) = T (Fs(s
′), Fa(a), Fs(s)) (6.2)

Additionally, we can specify that if the states in a trajectory are trans-
formed by Fs, the probability distribution of the actions in those states must
be transformed by the associated action transformation function Fa. This gives
a constraint for policies that are trained under augmented trajectories.

π(Fa(a)|Fs(s)) = π(a|s) (6.3)

In policy gradient methods, we can describe the policy as being parameter-
ized by logits for each action ls = {ls,0, ls,1, . . . , ls,k} where k = |A| − 1 and s

is the current state. Typically the policy π(a, s) can be written as a function of
these logits, commonly referred to as the Softmax function:

π(a|s) = exp(−ls,a)∑k
i=0 exp(−ls,i)

(6.4)

It then follows that the augmented policy can be recovered by calculating
the policy using augmented inputs:

π(Fa(a)|Fs(s)) =
exp(−lFs(s),Fa(a))∑k
i=0 exp(−lFs(s),i)

(6.5)

or by permutation of the logits Fl(ls) = Pl · ls where Pl is a permutation
matrix:

π(Fa(a)|Fs(s)) =
exp(−Fl(ls)Fa(a))∑k
i=0 exp(−Fl(ls)i)

(6.6)

Invariant Augmentation We describe augmentations as Invariant under
transformations if they follow the following condition: An augmentation is In-
variant if the augmentation applied to the input should not result in a change
of the output policy. This is the most studied form of augmentation in both
supervised and reinforcement learning [52]. In this case, Fa is an identity trans-
formation and has no effect on the action distribution of the policy. Substituting
Identity functions for Fa into equation 6.3 we have:

π(a|Fs(s)) = π(a|s)

Examples of this include colour jitter and greyscale [181] as they only perform
transformations on the state itself.

157

State is flipped horizontally:
Policy is equivariant
Trajectories are symmetrical

State is flipped horizontally:
Policy is not equivariant
Trajectories are asymmetric

Original State Flipped on Horizontal Axis

Equivariant Augmentation Policy

Diverged Augmentation Policy

Figure 6.1: It is assumed that the policy predicted from an augmented state
Fs(s0) should follow a trajectory T ′ that is a transformation of the original
trajectory T predicted from the original s0. We refer to this as equivariant
augmentation, shown in blue. However, this is not always the case. When poli-
cies are naively trained with data augmentation, they can produce trajectories
that break this assumption. We refer to these policies as diverged augmenta-
tion policies, shown in red.

Equivariant Augmentation In the case where the transformation of the
state results in a transformation of the actions, 6.3 cannot be simplified. This is
referred to as an equivariant augmentation (See Figure 6.1 for an example). For
example, equivariant augmentations include those in which Fs is a rotation or
flip transformation. Equivariant augmentation functions can also exist as func-
tion groups, such as rotations of 90 deg of the state s which result in equivalent
transformations of the actions a [286].

Value Function Invariance Finally, under data augmentation, the value
function V (s) is a scalar and therefore should be invariant to any transformation
of the state:

V (Fs(s)) = V (s) (6.7)

One of the most sought-after goals of deep reinforcement learning (RL) re-
search is generalization. RL has successfully solved problems where the set of
possible scenarios (i.e levels, or states) is relatively small. Unfortunately, suc-
cesses in these smaller domains can be prone to over-fitting, and changing small
features of the environment, such as introducing new levels, may lead to unex-

158

pectedly low performance in the modified environment. Even if the modified
environment is extremely similar to the original environment, this can cause
issues for the trained agent. The solution to this is to train the agent with a
large amount of data, which can encompass the distribution of the unknown
levels.

Challenging procedurally generated domains such as ProgGen [61], Mini-
Grid [54] and Nethack [177, 241] have been proposed as test beds for the gener-
alization performance of reinforcement learning agents, as these environments
consistently generate new levels, add background noise, or introduce distracting
factors such as background images. The goal of training RL agents in these en-
vironments is for the agents to be able to generalize to unseen levels and ignore
parts of the environment that are not useful for high-performing agents.

6.2.1 Augmentation Groups

Data augmentations commonly form group functions. For example, a group
augmentation for rotating the input by 90 degrees is a collection of 4 func-
tions for the actions, states, and logits: Fa = {I, Fa90

, Fa180
, Fa270

}, Fs =

{I, Fs90 , Fs180 , Fs270} and Fl = {I, Fl90 , Fl180 , Fl270}. Calculating the policy and
value function regularization, in this case, is a sum of the contributions from
each augmentation function.

Even in simple invariant data augmentation settings, the augmentation func-
tions can be structured in this way. For example, just changing the colour of
the pixels, such as grayscaling: Fa = {I, I}, Fs = {I, Fsgreyscale

} and Fl = {I, I}.

6.3 Data Augmentation using IMPALA

In this section, we propose two possible data augmentation methods when using
IMPALA and show that assumptions required for data augmentation to be
applicable do not hold in many cases. Subsequently, we propose regularization
methods which constrain these assumptions.

IMPALA separates the collection of data from the process of training by
using multiple behaviour policies, which collect trajectories in the environment.
These trajectories are then sent to a central location where a target policy is
updated. Additionally in IMPALA, trajectories described in section 6.2 contain
the logits ls of the policy for the state s. We provide a more in-depth explanation
of IMPALA in section 4.3.1

The parameters of the behaviour policies are updated by periodically copying
the parameters from the target network. This update procedure happens asyn-
chronously. This can lead to some behaviour policies diverging from the target

159

policy, effectively becoming "out-of-date". IMPALA uses the v-trace algorithm
to down-weight the training effects from trajectories generated by diverged be-
haviour policies. At the core of the v-trace algorithm, truncated importance
sampling weights are calculated using a ratio of the behaviour and target poli-
cies ρ = min(ρ̄, π(a|s)

µ(a|s)) and c = min(c̄, π(a|s)
µ(a|s)), where ρ̄ and c̄ are hyperparameters

typically set to 1. During training, it is assumed that when the behaviour policy
has not diverged, π(a, s) = µ(a, s) and therefore ρ = 1. However if the policies
have diverged, π(a, s) ̸= µ(a, s) and ρ ≤ 1, c ≤ 1. The ρ and c values then
weight the contribution of behaviour training samples.

Naive Behaviour Augmentation We define naive augmentation as an aug-
mentation that is applied to behaviour trajectories just before the point of train-
ing, producing an augmented trajectory Tn where each tuple has augmented
state, action and policy logits (Fa(a), Fs(s), Fl(ls), r). The augmented behaviour
policy πn(Fa(a), Fs(s)) is given by equation 6.6.

Behaviour Replay Augmentation In behaviour policy replay augmenta-
tion, instead of producing the augmented behaviour policy by permuting the
logits using equation 6.6, the logits for augmented trajectories are re-calculated
by passing the augmented trajectories through the behaviour policy, giving an
augmented trajectory Tr as (Fa(a), Fs(s), lFs(s), r). In this case the augmented
behaviour policy πr(Fa(a), Fs(s)) is calculated using equation 6.5.

In both trajectories Tn and Tr, the augmented actions Fa(a) and states Fs(s)

are available. This means that the augmented target policy can be calculated
using µ(Fa(a), Fs(s)). We can now calculate the v-trace importance sampling
weights for naive behavior augmentation as πn(Fa(a),Fs(s))

µ(Fa(a),Fs(s))
and behaviour

replay augmentation as πr(Fa(a),Fs(s))
µ(Fa(a),Fs(s))

. Figure 6.2 shows the various con-
structions of possible policies used in the proposed augmentation methods in
IMPALA.

6.3.1 Augmentation Constraint Assumptions

In equation 6.3, we state a constraint that is implied when training with data
augmentation, however in practice, the assumption of this required constraint
is likely to be violated.

In a randomly initialized policy, πϕ(a|s) and πϕ(Fa(a)|Fs(s)) will be roughly
similar as the probabilities of all actions are equal, however during training,
πϕ(a|s) and πϕ(Fa(a)|Fs(s)) can diverge. This divergence can happen if there
are multiple policies that can lead to high rewards, leading to trajectories that
are not symmetric, even if the state is symmetric. When these policies diverge,

160

Target Policy Network

Behaviour Policy Network

Softmax Function

Figure 6.2: How augmented policies are produced for naive πn and behaviour
replay πr methods in the minigrid Multi-Room environment [54]. Additionally,
the target policies µ for the original and augmented states s and Fs(s) are shown.
These policy outputs are then used to generate the clipped ρ and c values. The
augmentation function Fs(s) in this particular example is a horizontal axis flip.

the assumptions that are required for the augmentation methods in equations
6.6 and 6.5 no longer hold. Figure 6.1 shows a simple example of this issue. This
leads to worse policy performance when being trained with augmented data.

In section 6.5, we show empirical evidence for this policy divergence under
data augmentation.

Policy Regularization

In order to encourage the augmentation constraint to hold, we expand upon the
regularization terms introduced in [225].

For each augmentation transformation, we introduce a regularization term
which encourages policies under augmentation to be equivariant. We pose the
policy constraint in 6.3 as the KL divergence loss LπF

between the policy π and
the policy derived from augmented data π̂. We replace p̂i depending on the
method used: π̂ = πn for naive behaviour augmentation and π̂ = πr for
behaviour replay augmentation

Additionally, the contribution of this loss function is scaled using the normal-
ized entropy of the policy: Hπ(s) = (1−H(π(.|s))). This scaling increases the
contribution of policies that have lower entropy, leading to only more meaningful
samples to be used in calculating LπF

.

LπF
= βHπ(s)DKL(π(a|s))||π̂(Fa(a)|Fs(s))) (6.8)

Value Regularization

A similar assumption to equation 6.3 also applies to the value function under
data augmentation. As the calculation of the value function, V only requires
the state, we can frame equation 6.7 as a regularization term similar to the one

161

proposed for the policy:

LVF
= α

K∑
k=1

MSE(R(s), V (Fs(s))) (6.9)

6.4 Equivariant Networks

Equivariant neural networks solve the issues raised in previous sections when
the data augmentations can be organized into group transformations. Group
equivariant neural networks, such as those proposed in [286, 299, 63, 64], allow
neural networks to encompass natural groups in the data such as symmetries,
scaling, and translations in the structure of the neural network itself, rather
than try to learn it from large amounts of data, including augmentations.

In reinforcement learning, group equivariant neural networks can be con-
structed to specifically enforce the rules that we are trying to learn when using
data augmentation. Given we know the transformations Fs(s), Fa(a), and Fl(l)

that are required to perform data augmentation, we can create an equivariant
neural network that encodes these transformations in its structure.

Policies built using equivariant neural networks enforce the conditions in
equation 6.3 and 6.7, which means that value and policy regularization are not
required.

6.5 Experiments

Environment To compare the baseline, augmentation, and equivariant meth-
ods, we use the Minigrid Multi-Room environment. Multi-Room provides a
procedurally generated, grid-world maze in which an agent must traverse sev-
eral rooms, opening doors between each room and then finally reaching a goal
state. The agent can see a 14x14 fully observable top-down view of the set of
rooms. Each grid cell contains a one-hot representation of the state at that cell,
including the color of doors and the orientation of the agent itself. A Reward
of 1 is given to the agent once the goal has been reached, minus a small penalty
proportional to the number of steps taken to reach the goal.

Augmentations The two data augmentations used are referred to as AugC4

and AugS2. These augmentations are the group of 90-degree rotations C4 and
the symmetry group formed by a horizontal axis flip S2. It is important to note
that these augmentations are chosen as the Multi-Room environment has nat-
ural D4 (horizontal, vertical, and rotational) symmetry. We can also construct

162

equivariant neural networks that encompass these geometric symmetries as a
comparison point.

Networks The network trained with data augmentation in all cases is the
same architecture as used in [149]. The equivariant neural network has the
same structure, but the number of channels in convolutions and layer sizes are
adjusted to result in a similar number of trainable parameters. The Equivari-
ant networks are created using the symmetrizer method introduced in [286] for
both C4 and S2 equivariance groups. These networks are referred to as EqC4

and EqS2 respectively. Finally, we train a baseline neural network with no
augmentation; we refer to this baseline using B.

In all experiments, we train for 25M time steps of the environment; we
additionally run every experiment 10 times, each with different seeds, and then
average the results across all runs. Similarly to [149] we train and use 4000 seeds
for level generation and evaluate on an unlimited set of randomly generated
levels. Our evaluations are performed every 10 training epochs and averaged
across 8 levels. Unless otherwise stated, the average episode reward means
(referred to as V in our experiments) has been calculated from the evaluation
levels.

6.6 Results and Discussion

6.6.1 Augmentation vs Equivariance

In all of our experiments, both of our data augmentation methods outperform
the baseline. We also notice that the larger augmentation group C4 outperforms
the group S2; this is likely due to the simple fact that C4 contains more data due
to twice the number of augmented trajectories that are processed. On top of this,
equivariant neural networks further outperform the data augmentation methods.
It’s important to note that equivariant neural networks, in this case, did not
use any augmented data or regularization at all, so their high performance is
significantly more sample efficient as well as more general. Figure 6.3 shows
the training curves of these experiments. We did not include the results of
the augmentation methods that do not use regularization, as we compare them
separately with the regularized versions as part of an ablation study in the next
section.

6.6.2 Ablation Study

In Figure 6.4 It can be seen that the non-regularized version of the augmented
policy methods πn and πr have significantly worse performance than those with

163

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

V

B
EqS2

n + AugS2 + Reg.
r + AugS2 + Reg.

(a) Horiz. flip S2 group transformations.

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

V

B
EqC4

n + AugC4 + Reg.
r + AugC4 + Reg.

(b) 90◦ rotations C4 group transforma-
tions.

Figure 6.3: These results show the evaluation performance during training of
the two proposed augmentation methods in IMPALA and the equivariant neural
network. We group the experiments by the augmentation transformation groups
S2 (6.3a) and C4 (6.3b) so they can be fairly compared. We also include a
baseline comparison B which uses a standard neural network architecture but
with no augmentations to the data.

0 1 2
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

V

0 1 2
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

V

n + AugC4
n + AugC4 + Reg.

r + AugC4
r + AugC4 + Reg.

Figure 6.4: Here we show the effect of using regularization during training
on policy performance in both naive πn and behavior replay πr methods. In
these experiments, we use the augmentation group C4 and measure the mean
evaluation episode reward V . The regularized results are the same as those in
figure 6.3b Surprisingly without regularization, the behavior replay πr method
performs poorly.

164

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.00

0.02

0.04

0.06

0.08

0.10

V F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0

5

10

15

20

F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.00

0.02

0.04

0.06

0.08

0.10

V F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0

5

10

15

20

F

n + AugC4 r + AugC4

Figure 6.5: When augmentation methods are applied without the regularization
methods proposed in section 6.3.1, the predicted policies can diverge, which in
turn causes the degradation in the ρ values in IMPALA and training perfor-
mance. The losses LVF

and LπF
are calculated and shown above in the middle

and right plots, but are not applied to training. Policy divergence is particularly
bad when using behaviour replay augmentation. We show the results from 10
different seeds for each measure, and highlight the average across the seeds.

the regularization methods from section 6.3.1 applied. When data augmentation
is performed in a naive way by assuming that the properties 6.3 and 6.7 will be
learned, the performance of the learned policy can be poor.

We can further analyse these assumptions by plotting the losses in equations
6.8 and 6.9, without applying these as regularization terms. In addition we can
measure the clipped ρ values to view the effect on training in IMPALA. This
can be seen in Figure 6.5.

We then analyse the same measures, but with the policy and value regular-
ization applied, the results of these are in Figure 6.6.

6.6.3 No Regularization

With no regularization terms, there is nothing that is specifically constraining
the policy or value function to hold the required equivariance and invariance
assumptions. The ρ values diverging for the Naive policy πn in figure 6.5 can
be explained by the fact that this policy is generated by permuting the logits
of the policy for a state that is not transformed (equation 6.6). When the
ratio of πn and µ is calculated, initially these policies are the same as they are
essentially random. These initially random policies result in a ratio close to 1.
In addition to this, the KL divergence measure Lπr

between πn(Fa(a), Fs(s))

165

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.00

0.02

0.04

0.06

0.08

0.10

V F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0

5

10

15

20

F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0.00

0.02

0.04

0.06

0.08

0.10

V F

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e7

0

5

10

15

20

F

n + AugC4 + Reg. r + AugC4 + Reg.

Figure 6.6: When the regularization methods from section 6.3.1 are applied as
well as data augmentation, the policies no longer diverge, and the ρ values stay
close to 1. This results in significantly higher-performing policies. Similarly to
the results in figure 6.5, the results of the 10 different seeds are shown.

and π(a, s) is initially low, but becomes much larger as training progresses.
Due to this divergence in Lπr , the assumption in IMPALA that the behaviour
and target policies should be approximately equal deteriorates, leading to the ρ

values falling. Note also that ρ is clipped in IMPALA, if the ratio is calculated
without clipping then arbitrarily large values would also be present.

In the Behavior Replay the IMPALA assumption is maintained by the
fact that the behaviour replay policy πr and the target policy are calculated
from the same augmented trajectory. This is reflected in figure 6.5 where the
ρ value for behaviour replay πr is close to 1 and does not diverge during train-
ing like the naive policy πn. This however, does not stop the assumption for
augmented policies in equation 6.3 from deteriorating. In fact, in behaviour
replay augmentation policies, this deterioration is significantly worse than in
naive augmentation.

6.6.4 With Regularization

When the regularization methods from section 6.3.1 are applied to both naive
and behavior replay methods, the performance of these policies dramatically
increases. The difference in performance for these methods is shown in figure
6.4. We also show, in figure 6.6, that the constraints for ρ, Lπr and LVF

are
controlled.

166

6.7 Conclusions

Data augmentation in reinforcement learning is known to be problematic and,
in many cases, is avoided [174, 181].

In this chapter, we have provided a theoretical framework for equivariant
data augmentation in deep reinforcement learning. Using this framework, we
have provided a description of assumptions that have to be fulfilled by the policy
and training regime to avoid poor performance. In addition, when these assump-
tions are broken, this can lead to algorithmic failures in assumptions in training
algorithms such as IMPALA and PPO. More specifically, we conduct experi-
ments using IMPALA and show that naively applying data augmentations to
off-policy trajectories results in poor performance. We introduce two methods of
data augmentation that can be used in IMPALA. The first Naive method: tra-
jectories are augmented at training, which re-uses importance sampling weights
from non-augmented data. The second Behaviour Replay method: trajec-
tories are augmented at the point of data collection, and importance sampling
weights are re-calculated using the augmented trajectories. We show that these
methods apply to the V-Trace algorithm, which uses importance sampling to
filter off-policy corrections. These regularization methods are inspired by con-
sistency regularization and contrastive learning methods and are applicable in
many cases where training is performed in environments with natural symme-
tries.

In both of these cases, the performance of these methods is dependent on the
assumptions holding. However, we measure these assumptions during training
and see that it is common for these assumptions to break down and diverge.

To solve this issue, we introduce two regularization terms that can be used in
both equivariant and invariant data augmentation methods. These augmenta-
tion terms have been previously used in [225] for PPO and are related closely to
contrastive losses [269] and consistency regularization [19, 237, 264], however,
we now provide theoretical justification and empirical evidence to show why
these regularization terms are required.

Finally, we compare the data augmentation and regularization methods to
equivariant neural networks, in which the assumptions required for equivariant
data augmentations are enforced by the structure of the network. We show that
equivariant neural networks outperform data augmentation with no regulariza-
tion terms and no additional augmented data.

Although we took inspiration for the regularization terms in this work from
[225], we did not show empirical evidence from the importance sampling ratio
πθ(a|Fs(s))
πθold

(a|s) that is deemed to be the source of problems for augmentation using
PPO. However we believe it is likely that the theoretical assumptions in equation

167

6.3 and 6.7 are the source of error in PPO also.

168

Chapter 7

Conclusions and Future Work

In this thesis, we have explored several different areas around how reinforce-
ment learning agents can interact with environments. We have explored the
many different observation spaces that can be used and have created baseline
experiments and data to allow future results to be tested.

In chapter 6 we investigate several forms of geometric data augmentation
that can be applied to environment observations in order to increase learning
efficiency. During this investigation of data augmentations, we discovered vio-
lations of assumptions in several algorithms that use off-policy corrections. We
provide regularization functions that can correct these violations. These reg-
ularization functions allow data augmentation to be used in several off-policy
correction algorithms.

We have also investigated the many ways in which agents can interact with
environments in the form of action spaces. In Section 4.2, We show that many
different formulations of action spaces can be converted to a canonical form
which also contains additional information about which actions are possible at
any given time and requires smaller numbers of logits output layers of policy
networks. We show that this action space formulation, "Conditional Action
Trees," has no degradation of performance to underlying policies in a simple
grid-world setting.

In chapter 5, we introduce the Neural Game Engine, a neural network-based
architecture for grid-world games. We show that these kinds of architectures can
accurately reproduce game states for unlimited time steps. These architectures
can be trained with relatively small numbers of environment transitions and
then can be used to train RL environments.

We present Griddly and GriddlyJS in chapter 3 as a tool suite for researchers
to investigate many areas of reinforcement learning research in principled and
controlled environments.

169

Griddly is not just a set of grid worlds but a platform to build complex
environments without the need to optimize rendering and game logic. Unlike
other game engines, Griddly is designed bottom-up with an AI-first philosophy.
This places Griddly in a unique position for many areas of research, but currently
focused on reinforcement learning.

Griddly’s configurability allows many components of environments to be
flexible to focus on different areas of the reinforcement learning research space.

This flexibility allows observation spaces and action spaces to be tailored to a
large array of problem domains that we have covered in this thesis. For example,
in chapter 4, we show that principled thinking of how discrete action spaces can
be constructed leads to a compact and general representation of neural network
interfaces. Also, in 6, we show the benefit of having pixel-based representations
for learning models of environments.

In section 3.11, we show that having a simple description language (GDY)
allows expansions of features that can be useful to future research. With GDY,
we can create an array of different environments separately from the rendering
and optimization of the environment mechanics. This allows researchers to con-
centrate on building scientific challenges for research rather than on engineering
a fast simulation platform.

Additionally, GDY enables tooling such as GriddlyJS to be integrated, show-
ing the flexibility of the underlying Griddly engine. GriddlyJS adds several
important features to the Griddly ecosystem:

GriddlyJS allows complex environment mechanics to be designed in the
browser without having to install or configure any additional software. These
mechanics can be tested and debugged in place, lowering the barrier to building
sample-efficient environments. It is also simple to gather large datasets of human
play-throughs of the designed challenges. These play-throughs can be used in
many areas of research, such as generating human-level baselines, AI alignment,
and behavioral cloning. Trained RL policies can also be tested against unseen
environment layouts or mechanics in order to identify generalization issues.

We believe that the components of GriddlyJS and Griddly can be used in
many future projects and lay a strong foundation for future reinforcement learn-
ing research, and opens the door to several new avenues of exploration. We will
cover these in the next section.

170

7.1 Future Work

7.1.1 Griddly

Griddly has become quite a large project with several components that can
be enhanced to improve flexibility and allow different areas of research to be
experimented with. For example, adding more features to GDY to allow more
mechanics to be possible, or adding more continuous actions and observations.
Aside from these, Griddly’s underlying engine can be significantly improved in
several ways.

Even though Griddly is already heavily optimized, new approaches could be
integrated, such as vectorization of environments and parallelized GPU render-
ing with Jax [301].

Environment vectorization is already a common pattern used to spread many
environment interfaces across many processes. However, this method is usually
implemented in Python and uses many more software processes than there are
cores in the CPU. This can result in large overheads in thread context switching
and remote procedure calls which involve serialization and deserialization of
environment data. The method introduced in [301] avoids these pitfalls by
moving the parallelization to the environment engine level (i.e in the underlying
engine code) and then interfacing each environment with Python directly rather
than through multiple processes.

Additionally, as Griddly is rendered using the Vulkan framework [2], native
parallelization of GPU rendering across environments such as that used in Brax
[92] and ISAAC [189] could be implemented. This would increase the speed at
which pixel observations could be rendered and remove the latency of copying
environment states from the GPU to the CPU and back for gradient calculations.
Again allowing experimentation turnaround with Griddly environments to be
much faster.

Griddly has been used in projects which require forward models to be cloned,
for example, in [200]. However, it is noted in this project that this process can
be inefficient. Several improvements have been made recently using caching
where appropriate to avoid the calculation of unused properties, however, there
are more improvements that could be made within the engine itself. For exam-
ple, the allocation of state memory could be consolidated into a single location,
instead of being fragmented as it is at the moment. Once the memory is consoli-
dated, the copying of environment states would be achieved by simply allocating
and copying a single block of memory rather than doing this for every variable
required.

Other possible improvements and bugs can be raised by users and are tracked

171

on Griddly’s GitHub page https://github.com/Bam4d/Griddly/issues

7.1.2 GriddlyJS

Currently, GriddlyJS uses browser local storage to keep track of environments
that are created by users. This means that the environments that the users
have created are only stored on the machine they are using. This means that
to share environments or saved trajectories, the user must copy the GDY or
trajectory JSON text in order to share it via a zip file or similar.

In order to make sharing of Griddly environments significantly simpler, Grid-
dlyJS would require server-side persistence which allows users to log in anywhere
to view the environments, models, and trajectories they have created. With a
server-side persistence model and an updated frontend, GriddlyJS could also
be a service that is used to share and compare agent performance across mul-
tiple different environments that have been created by users. GriddlyJS could
store benchmarking information for each environment for uploaded models, and
become a user-curated competition platform. For example, users could submit
models that then could be automatically run against the environments included
in the curated benchmark environments. The performance of the models in
these environments could then be stored and presented online.

Another feature that would be useful for users is being able to download a set
of generated training and evaluation scripts that are tailored to the environments
that have been created in the online tool. These scripts and the environment
description could also be exported to platforms such as Google Colab [40] or
Huggingface [1] to train online. This would allow simple baselines for further
experimentation to be generated with just a few clicks.

7.1.3 Conditional Action Trees

There are several comparisons of the Conditional Action Trees paper that were
not undertaken but could shed significantly more light on the limitations of
CATs.

Firstly the environments in which CATs were tested only allowed single
actions at each time-step and arguably do not have MDPs where the action
components were interdependent. We could design a set of experiments where
the optimal policy of the environment would require high correlation in the
components of the action space. In this case, we would be able to show whether
the CAT action space can still create a policy that can capture these output
dependencies. Intuitively, adding an auto-regressive component to these action
spaces would allow this dependency on previous action selections to be modelled
by the neural network, but this would require empirical evidence to analyse how

172

https://github.com/Bam4d/Griddly/issues

important this is, or whether the CAT formulation can inherently model these
dependencies in lower layers by learning a similar masking function to those
imposed in [99].

Secondly, there is the question of comparing the performance and training
of a policy using CATs against a flattened policy in an environment that has
multiple controllable objects at each time step. For example, comparing a CAT
policy against a state-of-the-art policy in a game such as BotBowl [157], µRTS
[139] or [177]. However, these environments would need to be modified to pro-
duce the valid action trees and their masks, and then handle the actions as
several components.

7.1.4 Entity Neural Networks

Entity Neural Networks (ENNs) are mentioned briefly in several sections of
this thesis, but we believe they are a very promising direction that requires
several experiments and baseline environments in order to show that they are
competitive with current methods.

ENNs provide a method of controlling multiple objects in the same policy
at the same time as using attention methods to understand the relationships
between objects in the environment as a whole. This method would be partic-
ularly interesting when comparing it to state-of-the-art methods in games such
as µRTS or other RTS-style games. There are few benchmarks dedicated to
efficient reinforcement learning in RTS games, or games that control multiple
objects. Griddly provides a framework for this to be realised and also supports
an efficient Entity Observation Space. Producing a complex and principled
environment for this research is made possible using this tooling.

7.1.5 Environment Modelling

Since the publication of the Neural Game Engines [26] paper, many advances
in the modelling of environments have been made. The most promising of
these improvements either use stochastic state space models with quantized
state spaces, such as vector-quantized auto-encoders, or transformer models.
Any advance in this area still requires principled benchmarking, for example
analysing which environment mechanics can be modelled, and how successful
this modelling is.

To the author’s knowledge, there are no environments with a set of principled
mechanics which can be used as a benchmarking platform. Again in this case,
as Griddly uses the GDY language, in which mechanics can be defined with
simple instructions, generating a benchmark set of mechanics would be fairly
simple.

173

These mechanics would currently be limited to grid worlds, but these me-
chanics can be difficult to learn for neural networks. For example, Griddly
can create mechanics that have time delays, stochasticity, non-local effects and
partial observability. Experiments could be designed to specifically enumerate
and analyse the effectiveness of different forward models when learning these
mechanics. This would allow further focus to design models that can handle
many types of environments and find particular mechanics that are difficult for
models to learn.

7.1.6 Geometric Deep Reinforcement Learning

With the regularization functions that this thesis introduces, geometric data
augmentations can be extended to algorithms that use off-policy corrections such
as those that use importance sampling [86]. In this work, only discrete geometric
data augmentations were explored. In many environments, continuous action
and state spaces can also be augmented with geometric transformations. In the
continuous case, it would not be possible to augment all possible transformations
as the number of transformations is an infinite set.

It would be interesting to see if there is a certain finite subset of transfor-
mations that can be used to produce the requirements explained in Chapter
6. However, there’s a question about the required size of this subset. It might
be the case that the subset of transformations required may be too large and
thus make training infeasible. In this case, using a neural network with built-in
geometric priors [286] would be significantly faster to train.

In addition to the geometric augmentations, similar linear transformations
could also be incorporated into training. For example, in pixel-based observation
spaces, the RGB values of objects could be rotated to augment the represen-
tation of objects in environments, making the training learn to be invariant to
the transposition of the colours. It would be an interesting question to see if
just rotating the colours of the pixel can lead to significant gains in performance
under other, different transformations, such as lighting changes, or noise.

174

Bibliography

[1] Hugging Face – The AI community building the future. URL https:

//huggingface.co/.

[2] Vulkan. https://www.khronos.org/vulkan/, 2020.

[3] Google AI. Google AI blog: Inceptionism: Going deeper into
neural networks, 2020. URL https://ai.googleblog.com/2015/06/

inceptionism-going-deeper-into-neural.html.

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Pow-
ell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Pe-
ter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv, oct 2019. URL
https://arxiv.org/abs/1910.07113.

[5] Prithviraj Ammanabrolu and Matthew Hausknecht. Graph Constrained
Reinforcement Learning for Natural Language Action Spaces. 2020. URL
https://openreview.net/forum?id=B1x6w0EtwH.

[6] Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Ser-
gio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando
de Freitas, and Misha Denil. Learning awareness models. arXiv, apr 2018.
URL https://arxiv.org/abs/1804.06318.

[7] Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wil-
son. On the model-based stochastic value gradient for continuous rein-
forcement learning. arXiv, aug 2020. URL https://arxiv.org/abs/

2008.12775.

[8] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-
Alexandre Côté, and R. Devon Hjelm. Unsupervised State Representation
Learning in Atari. URL http://arxiv.org/abs/1906.08226.

175

https://huggingface.co/
https://huggingface.co/
https://www.khronos.org/vulkan/
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://arxiv.org/abs/1910.07113
https://openreview.net/forum?id=B1x6w0EtwH
https://arxiv.org/abs/1804.06318
https://arxiv.org/abs/2008.12775
https://arxiv.org/abs/2008.12775
http://arxiv.org/abs/1906.08226

[9] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask rein-
forcement learning with policy sketches. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 166–175. PMLR, 06–11 Aug 2017. URL https://proceedings.

mlr.press/v70/andreas17a.html.

[10] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and
Wojciech Zaremba. Hindsight experience replay. arXiv, jul 2017. URL
https://arxiv.org/abs/1707.01495.

[11] Rika Antonova, Maksim Maydanskiy, Danica Kragic, Sam Devlin, and
Katja Hofmann. Analytic manifold learning: Unifying and evaluating
representations for continuous control. arXiv, jun 2020. URL https:

//arxiv.org/abs/2006.08718.

[12] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
arXiv, jan 2017. URL https://arxiv.org/abs/1701.07875.

[13] Matan Atzmon, Amos Gropp, and Yaron Lipman. Isometric autoencoders.
arXiv, jun 2020. URL https://arxiv.org/abs/2006.09289.

[14] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and
Nando de Freitas. Playing hard exploration games by watching YouTube.
arXiv, may 2018. URL https://arxiv.org/abs/1805.11592.

[15] Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica,
Pieter Abbeel, and Sanjit A. Seshia. Scenic4RL: Programmatic Modeling
and Generation of Reinforcement Learning Environments. URL http:

//arxiv.org/abs/2106.10365.

[16] Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo Avila Pires, Jean-
Bastien Grill, Florent Altché, and Rémi Munos. World discovery models.
arXiv, feb 2019. URL https://arxiv.org/abs/1902.07685.

[17] Amin Babadi, Yi Zhao, Juho Kannala, Alexander Ilin, and Joni Pajarinen.
Continuous Monte Carlo Graph Search. URL http://arxiv.org/abs/

2210.01426.

[18] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Camp-
bell, and Sergey Levine. Stochastic variational video prediction. arXiv,
oct 2017. URL https://arxiv.org/abs/1710.11252.

176

https://proceedings.mlr.press/v70/andreas17a.html
https://proceedings.mlr.press/v70/andreas17a.html
https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/2006.08718
https://arxiv.org/abs/2006.08718
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/2006.09289
https://arxiv.org/abs/1805.11592
http://arxiv.org/abs/2106.10365
http://arxiv.org/abs/2106.10365
https://arxiv.org/abs/1902.07685
http://arxiv.org/abs/2210.01426
http://arxiv.org/abs/2210.01426
https://arxiv.org/abs/1710.11252

[19] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with
pseudo-ensembles. arXiv, dec 2014. URL https://arxiv.org/abs/1412.

4864.

[20] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo
Sprechmann, Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57:
Outperforming the atari human benchmark. arXiv, mar 2020. URL
https://arxiv.org/abs/2003.13350.

[21] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel
Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martín Arjovsky,
Alexander Pritzel, Andew Bolt, and Charles Blundell. Never give up:
Learning directed exploration strategies. arXiv, feb 2020. URL https:

//arxiv.org/abs/2002.06038.

[22] Hendrik Baier and Peter I. Cowling. Evolutionary MCTS for multi-action
adversarial games. In 2018 IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 1–8. IEEE, aug 2018. ISBN 978-1-5386-
4359-4. doi: 10.1109/{CIG}.2018.8490403.

[23] Bram Bakker. Reinforcement learning with long short-term mem-
ory. Advances in neural information processing systems, jan
2002. URL https://www.researchgate.net/publication/{2395590_

Reinforcement_Learning_with_Long_Short}-{Term_Memory}.

[24] Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski,
and Stephen Roberts. Ready policy one: World building through active
learning. URL http://proceedings.mlr.press/v119/ball20a.html.

[25] Martin Balla, Simon M. Lucas, and Diego Perez-Liebana. Evaluating
generalisation in general video game playing. arXiv, May 2020. URL
https://arxiv.org/abs/2005.11247.

[26] Chris Bamford and Simon M. Lucas. Neural Game Engine: Accurate
learning of generalizable forward models from pixels. In 2020 IEEE Con-
ference on Games (CoG), pages 81–88, 2020. doi: 10.1109/CoG47356.
2020.9231688.

[27] Christopher Bamford. Griddly Docs — Griddly 1.4.3 documentation. URL
https://griddly.readthedocs.io/en/latest/index.html.

[28] Christopher Bamford and Alvaro Ovalle. Generalising Discrete Action
Spaces with Conditional Action Trees. In 2021 IEEE Conference on
Games (CoG), pages 1–8, Copenhagen, Denmark, August 2021. IEEE.

177

https://arxiv.org/abs/1412.4864
https://arxiv.org/abs/1412.4864
https://arxiv.org/abs/2003.13350
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://www.researchgate.net/publication/{2395590_Reinforcement_Learning_with_Long_Short}-{Term_Memory}
https://www.researchgate.net/publication/{2395590_Reinforcement_Learning_with_Long_Short}-{Term_Memory}
http://proceedings.mlr.press/v119/ball20a.html
https://arxiv.org/abs/2005.11247
https://griddly.readthedocs.io/en/latest/index.html

ISBN 978-1-66543-886-5. doi: 10.1109/CoG52621.2021.9619093. URL
https://ieeexplore.ieee.org/document/9619093/.

[29] Christopher Bamford, Shengyi Huang, and Simon Lucas. Griddly: A
platform for AI research in games. In Workshop on Reinforcement Learn-
ing in Games, . URL http://aaai-rlg.mlanctot.info/2021/papers/

{AAAI21}-{RLG_paper_34}.pdf.

[30] Christopher Bamford, Minqi Jiang, Mikayel Samvelyan, and Tim
Rocktäschel. GriddlyJS: A Web IDE for Reinforcement Learn-
ing. . URL https://openreview.net/forum?id=YmacJv0i_UR&

referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.

cc%2F2022%2FTrack%2FDatasets_and_Benchmarks%2FAuthors%

23your-submissions).

[31] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Pre-
cup. Fast reinforcement learning with generalized policy updates. Proceed-
ings of the National Academy of Sciences of the United States of America,
aug 2020. doi: 10.1073/pnas.1907370117. URL http://dx.doi.org/10.

1073/pnas.1907370117.

[32] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and
Koray Kavukcuoglu. Interaction networks for learning about objects, rela-
tions and physics. arXiv, dec 2016. URL https://arxiv.org/abs/1612.

00222.

[33] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Fran-
cis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia
Li, and Razvan Pascanu. Relational inductive biases, deep learning, and
graph networks. arXiv, jun 2018. URL https://arxiv.org/abs/1806.

01261.

[34] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P.
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris
Kozinsky. SE(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. arXiv, jan 2021. URL https://arxiv.

org/abs/2101.03164.

[35] Charles Beattie, Thomas Köppe, Edgar A. Duéñez-Guzmán, and Joel Z.
Leibo. DeepMind Lab2D. URL http://arxiv.org/abs/2011.07027.

178

https://ieeexplore.ieee.org/document/9619093/
http://aaai-rlg.mlanctot.info/2021/papers/{AAAI21}-{RLG_paper_34}.pdf
http://aaai-rlg.mlanctot.info/2021/papers/{AAAI21}-{RLG_paper_34}.pdf
https://openreview.net/forum?id=YmacJv0i_UR&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FTrack%2FDatasets_and_Benchmarks%2FAuthors%23your-submissions)
https://openreview.net/forum?id=YmacJv0i_UR&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FTrack%2FDatasets_and_Benchmarks%2FAuthors%23your-submissions)
https://openreview.net/forum?id=YmacJv0i_UR&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FTrack%2FDatasets_and_Benchmarks%2FAuthors%23your-submissions)
https://openreview.net/forum?id=YmacJv0i_UR&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2022%2FTrack%2FDatasets_and_Benchmarks%2FAuthors%23your-submissions)
http://dx.doi.org/10.1073/pnas.1907370117
http://dx.doi.org/10.1073/pnas.1907370117
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2101.03164
https://arxiv.org/abs/2101.03164
http://arxiv.org/abs/2011.07027

[36] Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus
Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor
Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson, Sarah York,
Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King,
Demis Hassabis, Shane Legg, and Stig Petersen. DeepMind lab. arXiv,
dec 2016. URL https://arxiv.org/abs/1612.03801.

[37] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade
Learning Environment: An Evaluation Platform for General Agents. 47:
253–279. ISSN 1076-9757. doi: 10.1613/jair.3912. URL https://www.

jair.org/index.php/jair/article/view/10819.

[38] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul,
David Saxton, and Remi Munos. Unifying count-based exploration and
intrinsic motivation. arXiv, jun 2016. URL https://arxiv.org/abs/

1606.01868.

[39] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: a review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1798–1828, aug 2013. doi: 10.
1109/{TPAMI}.2013.50. URL http://dx.doi.org/10.1109/{TPAMI}.

2013.50.

[40] Ekaba Bisong. Google Colaboratory. In Ekaba Bisong, editor, Building
Machine Learning and Deep Learning Models on Google Cloud Platform:
A Comprehensive Guide for Beginners, pages 59–64. Apress, Berkeley,
CA, 2019. ISBN 978-1-4842-4470-8. doi: 10.1007/978-1-4842-4470-8_7.
URL https://doi.org/10.1007/978-1-4842-4470-8_7.

[41] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos,
Hado van Hasselt, David Silver, and Tom Schaul. Universal successor
features approximators. arXiv, dec 2018. URL https://arxiv.org/abs/

1812.07626.

[42] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN
training for high fidelity natural image synthesis. arXiv, sep 2018. URL
https://arxiv.org/abs/1809.11096.

[43] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI gym. arXiv, jun
2016. URL https://arxiv.org/abs/1606.01540.

[44] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

179

https://arxiv.org/abs/1612.03801
https://www.jair.org/index.php/jair/article/view/10819
https://www.jair.org/index.php/jair/article/view/10819
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1606.01868
http://dx.doi.org/10.1109/{TPAMI}.2013.50
http://dx.doi.org/10.1109/{TPAMI}.2013.50
https://doi.org/10.1007/978-1-4842-4470-8_7
https://arxiv.org/abs/1812.07626
https://arxiv.org/abs/1812.07626
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1606.01540

[45] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[46] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković.
Geometric deep learning: Grids, groups, graphs, geodesics, and gauges.
arXiv, apr 2021. URL https://arxiv.org/abs/2104.13478.

[47] Lars Buesing, Theophane Weber, Sebastien Racaniere, S. M. Ali Eslami,
Danilo Rezende, David P. Reichert, Fabio Viola, Frederic Besse, Karol
Gregor, Demis Hassabis, and Daan Wierstra. Learning and querying
fast generative models for reinforcement learning. arXiv, feb 2018. URL
https://arxiv.org/abs/1802.03006.

[48] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Explo-
ration by random network distillation. arXiv, oct 2018. URL https:

//arxiv.org/abs/1810.12894.

[49] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Wat-
ters, Guillaume Desjardins, and Alexander Lerchner. Understanding dis-
entangling in β-VAE. arXiv, apr 2018. URL https://arxiv.org/abs/

1804.03599.

[50] Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra,
Irina Higgins, Matt Botvinick, and Alexander Lerchner. MONet: Unsu-
pervised scene decomposition and representation. arXiv, jan 2019. URL
https://arxiv.org/abs/1901.11390.

[51] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. TransDreamer:
Reinforcement Learning with Transformer World Models. URL http:

//arxiv.org/abs/2202.09481.

[52] Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic frame-
work for data augmentation. arXiv, jul 2019. URL https://arxiv.org/

abs/1907.10905.

[53] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hin-
ton. A simple framework for contrastive learning of visual representations.
arXiv, feb 2020. URL https://arxiv.org/abs/2002.05709.

[54] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic
gridworld environment for openai gym. https://github.com/maximecb/
gym-minigrid, 2018.

[55] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mo-
hamed. Recurrent environment simulators. arXiv, apr 2017. URL
https://arxiv.org/abs/1704.02254.

180

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1802.03006
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1901.11390
http://arxiv.org/abs/2202.09481
http://arxiv.org/abs/2202.09481
https://arxiv.org/abs/1907.10905
https://arxiv.org/abs/1907.10905
https://arxiv.org/abs/2002.05709
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://arxiv.org/abs/1704.02254

[56] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation, pages 103–111, Strouds-
burg, PA, USA, 2014. Association for Computational Linguistics. doi:
10.3115/v1/W14-4012. URL http://aclweb.org/anthology/W14-4012.

[57] Sungho Choi, Seungyul Han, Woojun Kim, and Youngchul Sung. Cross-
domain imitation learning with a dual structure. arXiv, jun 2020. URL
https://arxiv.org/abs/2006.01494.

[58] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv, dec 2014. URL https://arxiv.org/abs/1412.3555.

[59] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3642–3649. IEEE, jun 2012.
doi: 10.1109/{CVPR}.2012.6248110. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6248110.

[60] Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-augmented actor-
critic: Backpropagating through paths. arXiv, may 2020. URL https:

//arxiv.org/abs/2005.08068.

[61] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Lever-
aging procedural generation to benchmark reinforcement learning. arXiv,
dec 2019. URL https://arxiv.org/abs/1912.01588.

[62] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Lever-
aging procedural generation to benchmark reinforcement learning. arXiv,
December 2019.

[63] Taco S. Cohen and Max Welling. Steerable CNNs. arXiv, dec 2016. URL
https://arxiv.org/abs/1612.08498.

[64] Taco S. Cohen and Max Welling. Group equivariant convolutional net-
works. arXiv, feb 2016. URL https://arxiv.org/abs/1602.07576.

[65] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In H. Jaap van den Herik, Paolo Ciancarini, H. H. L. M.
Donkers, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Klein-
berg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nier-
strasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Ter-
zopoulos, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum, editors,

181

http://aclweb.org/anthology/W14-4012
https://arxiv.org/abs/2006.01494
https://arxiv.org/abs/1412.3555
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6248110
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6248110
https://arxiv.org/abs/2005.08068
https://arxiv.org/abs/2005.08068
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1612.08498
https://arxiv.org/abs/1602.07576

Computers and Games, volume 4630 of Lecture notes in computer sci-
ence, pages 72–83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
ISBN 978-3-540-75537-1. doi: 10.1007/978-3-540-75538-8_7. URL
http://link.springer.com/10.1007/978-3-540-75538-8_7.

[66] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object
detection with convolutional neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33:3412–3420, jul 2019. ISSN 2374-
3468. doi: 10.1609/aaai.v33i01.33013412. URL https://aaai.org/ojs/

index.php/{AAAI}/article/view/4216.

[67] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and
Quoc V. Le. AutoAugment: Learning augmentation policies from data.
arXiv, may 2018. URL https://arxiv.org/abs/1805.09501.

[68] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Ran-
dAugment: Practical automated data augmentation with a reduced
search space. Advances in Neural Information Processing Systems,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/

d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html.

[69] Wojciech Marian Czarnecki, Razvan Pascanu, Simon Osindero, Sid-
dhant M. Jayakumar, Grzegorz Swirszcz, and Max Jaderberg. Distilling
policy distillation. arXiv, feb 2019. URL https://arxiv.org/abs/1902.

02186.

[70] Marc-Alexandre Côté, Ákos Kádár, Xingdi (Eric) Yuan, Ben Kybartas,
Tavian Barnes, Emery Fine, James Moore, Matthew Hausknecht, Layla El
Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler. TextWorld: A
Learning Environment for Text-based Games. pages 1–29, June 2018.
URL https://www.microsoft.com/en-us/research/publication/

textworld-a-learning-environment-for-text-based-games/.

[71] Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended
e-greedy exploration. arXiv, jun 2020. URL https://arxiv.org/abs/

2006.01782.

[72] Steven Dalton, Iuri Frosio, and Michael Garland. Accelerating Rein-
forcement Learning through GPU Atari Emulation, October 2020. URL
http://arxiv.org/abs/1907.08467. arXiv:1907.08467 [cs, stat].

[73] T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforcement
learning with continuous action in practice. In 2012 American Control

182

http://link.springer.com/10.1007/978-3-540-75538-8_7
https://aaai.org/ojs/index.php/{AAAI}/article/view/4216
https://aaai.org/ojs/index.php/{AAAI}/article/view/4216
https://arxiv.org/abs/1805.09501
https://proceedings.neurips.cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html
https://arxiv.org/abs/1902.02186
https://arxiv.org/abs/1902.02186
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://arxiv.org/abs/2006.01782
https://arxiv.org/abs/2006.01782
http://arxiv.org/abs/1907.08467

Conference (ACC), pages 2177–2182. IEEE, jun 2012. ISBN 978-1-4577-
1096-4. doi: 10.1109/{ACC}.2012.6315022. URL http://ieeexplore.

ieee.org/document/6315022/.

[74] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stu-
art Russell, Andrew Critch, and Sergey Levine. Emergent Complexity and
Zero-shot Transfer via Unsupervised Environment Design, 2021. URL
http://arxiv.org/abs/2012.02096.

[75] Alexander Dockhorn and Daan Apeldoorn. Forward model approxima-
tion for general video game learning. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1–8. IEEE, aug
2018. ISBN 978-1-5386-4359-4. doi: 10.1109/{CIG}.2018.8490411. URL
https://ieeexplore.ieee.org/document/8490411/.

[76] Alexander Dockhorn, Simon M. Lucas, Vanessa Volz, Ivan Bravi,
Raluca D. Gaina, and Diego Perez-Liebana. Learning local forward models
on unforgiving games. In 2019 IEEE Conference on Games (CoG), pages
1–4. IEEE, aug 2019. ISBN 978-1-7281-1884-0. doi: 10.1109/{CIG}.2019.
8848044. URL https://ieeexplore.ieee.org/document/8848044/.

[77] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale. URL http://arxiv.org/abs/2010.11929.

[78] Olve Drageset, Mark H. M. Winands, Raluca D. Gaina, and Diego Perez-
Liebana. Optimising level generators for general video game AI. In 2019
IEEE conference on games (CoG), pages 1–8. IEEE, August 2019. ISBN
978-1-72811-884-0. doi: 10.1109/{CIG}.2019.8847961. URL https://

ieeexplore.ieee.org/document/8847961/.

[79] Yilun Du and Karthik Narasimhan. Task-agnostic dynamics priors for
deep reinforcement learning. arXiv, may 2019. URL https://arxiv.

org/abs/1905.04819.

[80] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking Deep Reinforcement Learning for Continuous Control.
URL http://arxiv.org/abs/1604.06778.

[81] Sam Earle, Justin Snider, Matthew C. Fontaine, Stefanos Nikolaidis, and
Julian Togelius. Illuminating Diverse Neural Cellular Automata for Level
Generation. URL http://arxiv.org/abs/2109.05489.

183

http://ieeexplore.ieee.org/document/6315022/
http://ieeexplore.ieee.org/document/6315022/
http://arxiv.org/abs/2012.02096
https://ieeexplore.ieee.org/document/8490411/
https://ieeexplore.ieee.org/document/8848044/
http://arxiv.org/abs/2010.11929
https://ieeexplore.ieee.org/document/8847961/
https://ieeexplore.ieee.org/document/8847961/
https://arxiv.org/abs/1905.04819
https://arxiv.org/abs/1905.04819
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/2109.05489

[82] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Go-explore: a new approach for hard-exploration problems.
arXiv, jan 2019. URL https://arxiv.org/abs/1901.10995.

[83] Epic Games. Unreal. https://www.unrealengine.com/en-US. [Ac-
cessed: June 20, 2023].

[84] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David
Szepesvari, Koray Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer,
repeat: Fast scene understanding with generative models. arXiv, mar
2016. URL https://arxiv.org/abs/1603.08575.

[85] S M Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola,
Ari S Morcos, Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo
Danihelka, Karol Gregor, David P Reichert, Lars Buesing, Theophane We-
ber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King, Chloe
Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu, and Demis
Hassabis. Neural scene representation and rendering. Science, 360(6394):
1204–1210, jun 2018. ISSN 0036-8075. doi: 10.1126/science.aar6170. URL
http://www.sciencemag.org/lookup/doi/10.1126/science.aar6170.

[86] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable distributed deep-
RL with importance weighted actor-learner architectures. arXiv, feb 2018.
URL https://arxiv.org/abs/1802.01561.

[87] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin
Michalski. SEED RL: Scalable and efficient deep-RL with accelerated
central inference. arXiv, oct 2019. URL https://arxiv.org/abs/1910.

06591.

[88] Pietro Falco, Abdallah Attawia, Matteo Saveriano, and Dongheui Lee.
On policy learning robust to irreversible events: An application to robotic
in-hand manipulation. IEEE robotics and automation letters, 3(3):1482–
1489, jul 2018. ISSN 2377-3766. doi: 10.1109/{LRA}.2018.2800110. URL
http://ieeexplore.ieee.org/document/8276248/.

[89] Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic rein-
forcement learning in parameterized action space. In Sarit Kraus, editor,
Proceedings of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, pages 2279–2285, California, aug 2019. International
Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-
9992411-4-1. doi: 10.24963/ijcai.2019/316.

184

https://arxiv.org/abs/1901.10995
https://www.unrealengine.com/en-US
https://arxiv.org/abs/1603.08575
http://www.sciencemag.org/lookup/doi/10.1126/science.aar6170
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591
http://ieeexplore.ieee.org/document/8276248/

[90] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E.
Gonzalez, and Sergey Levine. Model-based value estimation for efficient
model-free reinforcement learning. arXiv, feb 2018. URL https://arxiv.

org/abs/1803.00101.

[91] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning
for physical interaction through video prediction. arXiv, may 2016. URL
https://arxiv.org/abs/1605.07157.

[92] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mor-
datch, and Olivier Bachem. Brax – A Differentiable Physics Engine for
Large Scale Rigid Body Simulation, June 2021. URL http://arxiv.org/

abs/2106.13281. arXiv:2106.13281 [cs].

[93] Karlis Freivalds and Renars Liepins. Improving the neural GPU architec-
ture for algorithm learning. arXiv, feb 2017. URL https://arxiv.org/

abs/1702.08727.

[94] Raluca D. Gaina, Jialin Liu, Simon M. Lucas, and Diego Pérez-Liébana.
Analysis of vanilla rolling horizon evolution parameters in general video
game playing. In Giovanni Squillero and Kevin Sim, editors, Applications
of evolutionary computation, volume 10199 of Lecture notes in computer
science, pages 418–434. Springer International Publishing, Cham, 2017.
ISBN 978-3-319-55848-6. doi: 10.1007/978-3-319-55849-3_28. URL
https://link.springer.com/book/10.1007/978-3-319-55849-3.

[95] Raluca D. Gaina, Simon M. Lucas, and Diego Perez-Liebana. Rolling hori-
zon evolution enhancements in general video game playing. In 2017 IEEE
Conference on Computational Intelligence and Games (CIG), pages 88–
95. IEEE, aug 2017. ISBN 978-1-5386-3233-8. doi: 10.1109/{CIG}.2017.
8080420. URL http://ieeexplore.ieee.org/document/8080420/.

[96] Xiang Gao. Deep reinforcement learning for time series: playing idealized
trading games. arXiv, mar 2018. URL https://arxiv.org/abs/1803.

03916.

[97] Leon Gatys, Alexander Ecker, and Matthias Bethge. A neural algorithm
of artistic style. Journal of Vision, 16(12):326, sep 2016. ISSN 1534-7362.
doi: 10.1167/16.12.326. URL http://jov.arvojournals.org/article.

aspx?doi=10.1167/16.12.326.

[98] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and
Marc G. Bellemare. DeepMDP: Learning continuous latent space models

185

https://arxiv.org/abs/1803.00101
https://arxiv.org/abs/1803.00101
https://arxiv.org/abs/1605.07157
http://arxiv.org/abs/2106.13281
http://arxiv.org/abs/2106.13281
https://arxiv.org/abs/1702.08727
https://arxiv.org/abs/1702.08727
https://link.springer.com/book/10.1007/978-3-319-55849-3
http://ieeexplore.ieee.org/document/8080420/
https://arxiv.org/abs/1803.03916
https://arxiv.org/abs/1803.03916
http://jov.arvojournals.org/article.aspx?doi=10.1167/16.12.326
http://jov.arvojournals.org/article.aspx?doi=10.1167/16.12.326

for representation learning. arXiv, jun 2019. URL https://arxiv.org/

abs/1906.02736.

[99] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle.
MADE: Masked Autoencoder for Distribution Estimation. URL http:

//arxiv.org/abs/1502.03509.

[100] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Continual pre-
diction using LSTM with forget gates. In Maria Marinaro, Roberto Tagli-
aferri, and J. G. Taylor, editors, Neural Nets WIRN Vietri-99, Perspec-
tives in neural computing, pages 133–138. Springer London, London, 1999.
ISBN 978-1-4471-0877-1. doi: 10.1007/978-1-4471-0877-1_10. URL
http://link.springer.com/10.1007/978-1-4471-0877-1_10.

[101] William Gilpin. Cellular automata as convolutional neural networks.
arXiv, sep 2018. URL https://arxiv.org/abs/1809.02942.

[102] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial networks. arXiv, jun 2014. URL https://arxiv.org/

abs/1406.2661.

[103] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters,
Chris Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and
Alexander Lerchner. Multi-object representation learning with iterative
variational inference. arXiv, mar 2019. URL https://arxiv.org/abs/

1903.00450.

[104] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and
Daan Wierstra. DRAW: A recurrent neural network for image generation.
arXiv, feb 2015. URL https://arxiv.org/abs/1502.04623.

[105] Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and
Theophane Weber. Temporal difference variational auto-encoder. arXiv,
jun 2018. URL https://arxiv.org/abs/1806.03107.

[106] Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza
Merzic, and Aaron van den Oord. Shaping belief states with generative
environment models for RL. arXiv, jun 2019. URL https://arxiv.org/

abs/1906.09237v2.

[107] Niko A. Grupen, Bart Selman, and Daniel D. Lee. Cooperative multi-
agent fairness and equivariant policies. arXiv, jun 2021. URL https:

//arxiv.org/abs/2106.05727.

186

https://arxiv.org/abs/1906.02736
https://arxiv.org/abs/1906.02736
http://arxiv.org/abs/1502.03509
http://arxiv.org/abs/1502.03509
http://link.springer.com/10.1007/978-1-4471-0877-1_10
https://arxiv.org/abs/1809.02942
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1903.00450
https://arxiv.org/abs/1903.00450
https://arxiv.org/abs/1502.04623
https://arxiv.org/abs/1806.03107
https://arxiv.org/abs/1906.09237v2
https://arxiv.org/abs/1906.09237v2
https://arxiv.org/abs/2106.05727
https://arxiv.org/abs/2106.05727

[108] Marek Grzes. Reward shaping in episodic reinforcement learning. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’17, page 565–573, Richland, SC, 2017. International
Foundation for Autonomous Agents and Multiagent Systems.

[109] Christian Guckelsberger and Christoph Salge. Does empowerment max-
imisation allow for enactive artificial agents? In Proceedings of the Artifi-
cial Life Conference 2016, pages 704–711, Cambridge, MA, jul 2016. MIT
Press. ISBN 978-0-262-33936-0. doi: 10.7551/978-0-262-33936-0-ch112.
URL https://mitpress.mit.edu/sites/default/files/titles/

content/alife16/978-0-262-33936-0-ch112.pdf.

[110] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien
Racanière, Théophane Weber, David Raposo, Adam Santoro, Laurent
Orseau, Tom Eccles, Greg Wayne, David Silver, and Timothy Lilli-
crap. An investigation of model-free planning. arXiv, jan 2019. URL
https://arxiv.org/abs/1901.03559.

[111] Maxim Gumin. Wave Function Collapse Algorithm. URL https://

github.com/mxgmn/WaveFunctionCollapse.

[112] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot,
Bernardo A. Pires, and Rémi Munos. Neural predictive belief representa-
tions. arXiv, nov 2018. URL https://arxiv.org/abs/1811.06407.

[113] William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang,
Cayden Codel, Manuela Veloso, and Ruslan Salakhutdinov. MineRL:
A Large-Scale Dataset of Minecraft Demonstrations, July 2019. URL
http://arxiv.org/abs/1907.13440. arXiv:1907.13440 [cs, stat].

[114] Matthew Guzdial, Boyang Li, and Mark O. Riedl. Game engine learning
from video. In Carles Sierra, editor, Proceedings of the Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, pages 3707–3713,
California, aug 2017. International Joint Conferences on Artificial Intelli-
gence Organization. ISBN 9780999241103. doi: 10.24963/ijcai.2017/518.
URL https://www.ijcai.org/proceedings/2017/518.

[115] David Ha and Jürgen Schmidhuber. World models. arXiv, mar 2018. URL
https://arxiv.org/abs/1803.10122.

[116] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv, jan 2018. URL https://arxiv.org/

abs/1801.01290.

187

https://mitpress.mit.edu/sites/default/files/titles/content/alife16/978-0-262-33936-0-ch112.pdf
https://mitpress.mit.edu/sites/default/files/titles/content/alife16/978-0-262-33936-0-ch112.pdf
https://arxiv.org/abs/1901.03559
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://arxiv.org/abs/1811.06407
http://arxiv.org/abs/1907.13440
https://www.ijcai.org/proceedings/2017/518
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

[117] Danijar Hafner. Benchmarking the Spectrum of Agent Capabilities. URL
https://openreview.net/forum?id=1W0z96MFEoH.

[118] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David
Ha, Honglak Lee, and James Davidson. Learning latent dynamics for
planning from pixels. arXiv, nov 2018. URL https://arxiv.org/abs/

1811.04551.

[119] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. arXiv, dec
2019. URL https://arxiv.org/abs/1912.01603.

[120] Danijar Hafner, Pedro A. Ortega, Jimmy Ba, Thomas Parr, Karl Friston,
and Nicolas Heess. Action and perception as divergence minimization.
arXiv, sep 2020. URL https://arxiv.org/abs/2009.01791.

[121] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba.
Mastering Atari with Discrete World Models, February 2022. URL http:

//arxiv.org/abs/2010.02193. arXiv:2010.02193 [cs, stat].

[122] Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam
Chakraborty, Edward Grefenstette, Minqi Jiang, Daejin Jo, Anssi Kan-
ervisto, Jongmin Kim, et al. Insights from the neurips 2021 nethack chal-
lenge. arXiv preprint arXiv:2203.11889, 2022.

[123] Jessica B. Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez,
Fabio Viola, Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar
Veličković, and Théophane Weber. On the role of planning in model-based
deep reinforcement learning, March 2021. URL http://arxiv.org/abs/

2011.04021. arXiv:2011.04021 [cs].

[124] Hado Hasselt. Double Q-learning. In Advances in Neural In-
formation Processing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.cc/paper/2010/hash/

091d584fced301b442654dd8c23b3fc9-Abstract.html.

[125] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-
tially observable MDPs. arXiv, jul 2015. URL https://arxiv.org/abs/

1507.06527.

[126] Jean-Baptiste Hervé and Christoph Salge. Automated Isovist Computa-
tion for Minecraft. URL http://arxiv.org/abs/2204.03752.

[127] I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot,
M. Botvinick, S. Mohamed, and Alexander Lerchner. beta-VAE:

188

https://openreview.net/forum?id=1W0z96MFEoH
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2009.01791
http://arxiv.org/abs/2010.02193
http://arxiv.org/abs/2010.02193
http://arxiv.org/abs/2011.04021
http://arxiv.org/abs/2011.04021
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1507.06527
http://arxiv.org/abs/2204.03752

Learning basic visual concepts with a constrained variational frame-
work. 2017. URL https://www.semanticscholar.org/paper/

beta-VAE-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/

a90226c41b79f8b06007609f39f82757073641e2.

[128] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic
Matthey, Danilo Rezende, and Alexander Lerchner. Towards a defini-
tion of disentangled representations. arXiv, dec 2018. URL https:

//arxiv.org/abs/1812.02230.

[129] Felix Hill, Andrew Lampinen, Rosalia Schneider, Stephen Clark, Matthew
Botvinick, James L. McClelland, and Adam Santoro. Environmental
drivers of systematicity and generalization in a situated agent. arXiv,
oct 2019. URL https://arxiv.org/abs/1910.00571.

[130] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, jul 2006. doi: 10.1126/
science.1127647. URL http://dx.doi.org/10.1126/science.1127647.

[131] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal,
Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep rep-
resentations by mutual information estimation and maximization. arXiv,
aug 2018. URL https://arxiv.org/abs/1808.06670.

[132] S Hochreiter and J Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[133] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo
Hessel, Hado van Hasselt, and David Silver. Distributed prioritized ex-
perience replay. arXiv, mar 2018. URL https://arxiv.org/abs/1803.

00933.

[134] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. arXiv,
jun 2017. URL https://arxiv.org/abs/1706.06122.

[135] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and
Pieter Abbeel. VIME: Variational information maximizing exploration.
arXiv, may 2016. URL https://arxiv.org/abs/1605.09674.

[136] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao Jiang, Xi-
aolong Zhu, Zhifeng Li, and Wei Liu. Real-time neural style transfer for
videos. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 7044–7052. IEEE, jul 2017. ISBN 978-1-5386-0457-

189

https://www.semanticscholar.org/paper/beta-VAE-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://www.semanticscholar.org/paper/beta-VAE-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://www.semanticscholar.org/paper/beta-VAE-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://arxiv.org/abs/1812.02230
https://arxiv.org/abs/1812.02230
https://arxiv.org/abs/1910.00571
http://dx.doi.org/10.1126/science.1127647
https://arxiv.org/abs/1808.06670
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1706.06122
https://arxiv.org/abs/1605.09674

1. doi: 10.1109/{CVPR}.2017.745. URL http://ieeexplore.ieee.org/

document/8100228/.

[137] Shengyi Huang and Santiago Ontañón. Comparing observation and action
representations for deep reinforcement learning in urts. arXiv, oct 2019.
URL https://arxiv.org/abs/1910.12134.

[138] Shengyi Huang and Santiago Ontañón. A closer look at invalid action
masking in policy gradient algorithms. arXiv, jun 2020.

[139] Shengyi Huang, Santiago Ontañón, Chris Bamford, and Lukasz Grela.
Gym-μRTS: Toward Affordable Full Game Real-time Strategy
Games Research with Deep Reinforcement Learning. URL http://arxiv.

org/abs/2105.13807.

[140] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff
Braga. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. 2021.

[141] Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl
Doersch, S. M. Ali Eslami, and Aaron van den Oord. Data-efficient image
recognition with contrastive predictive coding. arXiv, may 2019. URL
https://arxiv.org/abs/1905.09272.

[142] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial transformer networks. arXiv, jun 2015. URL
https://arxiv.org/abs/1506.02025.

[143] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv, nov 2016. URL
https://arxiv.org/abs/1611.05397.

[144] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi.
Unsupervised learning of object landmarks through conditional
image generation. 2018. URL https://papers.nips.cc/paper/

7657-unsupervised-learning-of-object-landmarks-through-conditional-image-generation.

[145] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalash-
nikov, Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Kon-
stantinos Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks. arXiv, dec
2018. URL https://arxiv.org/abs/1812.07252.

190

http://ieeexplore.ieee.org/document/8100228/
http://ieeexplore.ieee.org/document/8100228/
https://arxiv.org/abs/1910.12134
http://arxiv.org/abs/2105.13807
http://arxiv.org/abs/2105.13807
https://arxiv.org/abs/1905.09272
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1611.05397
https://papers.nips.cc/paper/7657-unsupervised-learning-of-object-landmarks-through-conditional-image-generation
https://papers.nips.cc/paper/7657-unsupervised-learning-of-object-landmarks-through-conditional-image-generation
https://arxiv.org/abs/1812.07252

[146] Peter A. Jansen. A Systematic Survey of Text Worlds as Embodied Nat-
ural Language Environments, July 2021. URL http://arxiv.org/abs/

2107.04132. arXiv:2107.04132 [cs].

[147] Minqi Jiang, Michael D. Dennis, Jack Parker-Holder, Jakob Nicolaus Fo-
erster, Edward Grefenstette, and Tim Rocktäschel. Replay-Guided Ad-
versarial Environment Design. . URL https://openreview.net/forum?

id=5UZ-AcwFDKJ.

[148] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level
Replay, . URL http://arxiv.org/abs/2010.03934.

[149] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level
replay. arXiv, oct 2020. URL https://arxiv.org/abs/2010.03934.

[150] Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rock-
täschel, Edward Grefenstette, and Yuandong Tian. Efficient Planning in
a Compact Latent Action Space, . URL http://arxiv.org/abs/2208.

10291.

[151] Yuan Jin, Lan Du, Longxiang Gao, Yong Xiang, Yunfeng Li, and Ruohua
Xu. Variational auto-encoder based bayesian poisson tensor factorization
for sparse and imbalanced count data. arXiv, oct 2019. URL https:

//arxiv.org/abs/1910.05570.

[152] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper,
Ervin Teng, Hunter Henry, Adam Crespi, Julian Togelius, and Danny
Lange. Obstacle tower: A generalization challenge in vision, control, and
planning. arXiv preprint arXiv:1902.01378, 2019.

[153] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen,
Jonathan Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A General Platform for In-
telligent Agents, May 2020. URL http://arxiv.org/abs/1809.02627.
arXiv:1809.02627 [cs, stat].

[154] Changwook Jun, Hansol Jang, Myoseop Sim, Hyun Kim, Jooyoung Choi,
Kyungkoo Min, and Kyunghoon Bae. ANNA: Enhanced Language Rep-
resentation for Question Answering. URL http://arxiv.org/abs/2203.

14507.

[155] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi.
Deep learning for video game playing. arXiv, aug 2017. URL https:

//arxiv.org/abs/1708.07902.

191

http://arxiv.org/abs/2107.04132
http://arxiv.org/abs/2107.04132
https://openreview.net/forum?id=5UZ-AcwFDKJ
https://openreview.net/forum?id=5UZ-AcwFDKJ
http://arxiv.org/abs/2010.03934
https://arxiv.org/abs/2010.03934
http://arxiv.org/abs/2208.10291
http://arxiv.org/abs/2208.10291
https://arxiv.org/abs/1910.05570
https://arxiv.org/abs/1910.05570
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/2203.14507
http://arxiv.org/abs/2203.14507
https://arxiv.org/abs/1708.07902
https://arxiv.org/abs/1708.07902

[156] Niels Justesen, Tobias Mahlmann, Sebastian Risi, and Julian Togelius.
Playing multiaction adversarial games: online evolutionary planning ver-
sus tree search. IEEE Transactions on Games, 10(3):281–291, sep 2018.
ISSN 2475-1502. doi: 10.1109/{TCIAIG}.2017.2738156.

[157] Niels Justesen, Peter David Moore, Lasse Moller Uth, Julian Togelius,
Christopher Jakobsen, and Sebastian Risi. Blood bowl: A new board
game challenge and competition for ai. In 2019 IEEE Conference on
Games (COG). IEEE, 2019.

[158] Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv,
nov 2015. URL https://arxiv.org/abs/1511.08228.

[159] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,
Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Pi-
otr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George
Tucker, and Henryk Michalewski. Model-based reinforcement learning for
atari. arXiv, mar 2019. URL https://arxiv.org/abs/1903.00374.

[160] Łukasz Kaiser and Samy Bengio. Discrete autoencoders for sequence mod-
els. arXiv, jan 2018. URL https://arxiv.org/abs/1801.09797.

[161] R. E. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering, 82(1):
35, 1960. ISSN 00219223. doi: 10.1115/1.3662552. URL
http://{FluidsEngineering}.asmedigitalcollection.asme.org/

article.aspx?articleid=1430402.

[162] Pentti Kanerva. Sparse Distributed Memory. MIT Press, jan 1988. ISBN
0262111322. URL https://dl.acm.org/citation.cfm?id=534853.

[163] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space
shaping in deep reinforcement learning. arXiv, apr 2020.

[164] Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay
Topin, Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu,
Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng Chen, Guangjun
Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexan-
der Nikulin, Yury Belousov, Oleg Svidchenko, and Aleksei Shpilman.
MineRL Diamond 2021 Competition: Overview, Results, and Lessons
Learned, February 2022. URL http://arxiv.org/abs/2202.10583.
arXiv:2202.10583 [cs].

192

https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/1903.00374
https://arxiv.org/abs/1801.09797
http://{FluidsEngineering}.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://{FluidsEngineering}.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
https://dl.acm.org/citation.cfm?id=534853
http://arxiv.org/abs/2202.10583

[165] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos,
and Will Dabney. Recurrent experience replay in distributed rein-
forcement learning. may 2019. URL https://www.researchgate.

net/publication/{340285012_Recurrent_Experience_Replay_in_

Distributed_Reinforcement_Learning}.

[166] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der
Smagt. Deep variational bayes filters: Unsupervised learning of state space
models from raw data. arXiv, may 2016. URL https://arxiv.org/abs/

1605.06432.

[167] T. Anderson Keller and Max Welling. Topographic VAEs learn equivariant
capsules. arXiv, sep 2021. URL https://arxiv.org/abs/2109.01394.

[168] Ahmed Khalifa, Diego Perez-Liebana, Simon M. Lucas, and Julian To-
gelius. General video game level generation. In Tobias Friedrich, editor,
Proceedings of the 2016 on genetic and evolutionary computation confer-
ence - GECCO ’16, pages 253–259, New York, New York, USA, July 2016.
ACM Press. ISBN 978-1-4503-4206-3. doi: 10.1145/2908812.2908920.
URL http://dl.acm.org/citation.cfm?doid=2908812.2908920.

[169] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. PC-
GRL: Procedural Content Generation via Reinforcement Learning, Au-
gust 2020. URL http://arxiv.org/abs/2001.09212. arXiv:2001.09212
[cs, stat].

[170] Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon.
Domain adaptive imitation learning. arXiv, sep 2019. URL https://

arxiv.org/abs/1910.00105.

[171] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv, dec 2013. URL https://arxiv.org/abs/1312.6114.

[172] David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland
Brendel, Matthias Bethge, and Dylan Paiton. Towards nonlinear disen-
tanglement in natural data with temporal sparse coding. arXiv, jul 2020.
URL https://arxiv.org/abs/2007.10930.

[173] Varun Raj Kompella, Matthew Luciw, and Juergen Schmidhuber. Incre-
mental slow feature analysis: Adaptive and episodic learning from high-
dimensional input streams. arXiv, dec 2011. URL https://arxiv.org/

abs/1112.2113.

193

https://www.researchgate.net/publication/{340285012_Recurrent_Experience_Replay_in_Distributed_Reinforcement_Learning}
https://www.researchgate.net/publication/{340285012_Recurrent_Experience_Replay_in_Distributed_Reinforcement_Learning}
https://www.researchgate.net/publication/{340285012_Recurrent_Experience_Replay_in_Distributed_Reinforcement_Learning}
https://arxiv.org/abs/1605.06432
https://arxiv.org/abs/1605.06432
https://arxiv.org/abs/2109.01394
http://dl.acm.org/citation.cfm?doid=2908812.2908920
http://arxiv.org/abs/2001.09212
https://arxiv.org/abs/1910.00105
https://arxiv.org/abs/1910.00105
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2007.10930
https://arxiv.org/abs/1112.2113
https://arxiv.org/abs/1112.2113

[174] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels. arXiv,
apr 2020. URL https://arxiv.org/abs/2004.13649.

[175] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[176] Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud,
Malcolm Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsuper-
vised learning of object keypoints for perception and control. arXiv, jun
2019. URL https://arxiv.org/abs/1906.11883.

[177] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu,
Marco Selvatici, Edward Grefenstette, and Tim Rocktäschel. The
NetHack Learning Environment. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[178] W. H. Kwon, A. M. Bruckstein, and T. Kailath. Stabilizing state-
feedback design via the moving horizon method. International journal
of control, 37(3):631–643, mar 1983. ISSN 0020-7179. doi: 10.1080/
00207178308932998. URL https://www.tandfonline.com/doi/full/

10.1080/00207178308932998.

[179] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu,
Marco Selvatici, Edward Grefenstette, and Tim Rocktäschel. The
NetHack learning environment. arXiv, June 2020. URL https://arxiv.

org/abs/2006.13760.

[180] Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with
deep reinforcement learning. arXiv, sep 2016. URL https://arxiv.org/

abs/1609.05521.

[181] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel,
and Aravind Srinivas. Reinforcement learning with augmented data. In
Advances in Neural Information Processing Systems 33. 2020.

[182] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLlib:
Abstractions for Distributed Reinforcement Learning. In Proceedings of

194

https://arxiv.org/abs/2004.13649
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1906.11883
https://www.tandfonline.com/doi/full/10.1080/00207178308932998
https://www.tandfonline.com/doi/full/10.1080/00207178308932998
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/1609.05521
https://arxiv.org/abs/1609.05521

the 35th International Conference on Machine Learning, pages 3053–3062.
PMLR. URL https://proceedings.mlr.press/v80/liang18b.html.

[183] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv, sep 2015. URL https:

//arxiv.org/abs/1509.02971.

[184] Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn.
Explore then execute: Adapting without rewards via factorized meta-
reinforcement learning. arXiv, aug 2020. URL https://arxiv.org/abs/

2008.02790.

[185] Simon M. Lucas, Alexander Dockhorn, Vanessa Volz, Chris Bamford,
Raluca D. Gaina, Ivan Bravi, Diego Perez-Liebana, Sanaz Mostaghim,
and Rudolf Kruse. A local approach to forward model learning: Results
on the game of life game. arXiv, mar 2019. URL https://arxiv.org/

abs/1903.12508.

[186] Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori.
Combinatorial optimization by graph pointer networks and hierarchical
reinforcement learning. arXiv, nov 2019.

[187] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness,
Matthew Hausknecht, and Michael Bowling. Revisiting the arcade learn-
ing environment: evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, mar 2018.
ISSN 1076-9757. doi: 10.1613/jair.5699. URL https://jair.org/index.

php/jair/article/view/11182.

[188] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu,
Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire,
Ankur Handa, and Gavriel State. Isaac Gym: High Performance GPU-
Based Physics Simulation For Robot Learning, August 2021. URL http:

//arxiv.org/abs/2108.10470. arXiv:2108.10470 [cs].

[189] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu,
Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire,
Ankur Handa, and Gavriel State. Isaac Gym: High Performance GPU-
Based Physics Simulation For Robot Learning, August 2021. URL http:

//arxiv.org/abs/2108.10470. arXiv:2108.10470 [cs].

[190] Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized
inference. arXiv, jul 2018. URL https://arxiv.org/abs/1807.09356.

195

https://proceedings.mlr.press/v80/liang18b.html
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2008.02790
https://arxiv.org/abs/2008.02790
https://arxiv.org/abs/1903.12508
https://arxiv.org/abs/1903.12508
https://jair.org/index.php/jair/article/view/11182
https://jair.org/index.php/jair/article/view/11182
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://arxiv.org/abs/1807.09356

[191] Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforce-
ment learning with parameterized actions. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16, page 1934–1940.
AAAI Press, 2016.

[192] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are Sam-
ple Efficient World Models. URL http://arxiv.org/abs/2209.00588.

[193] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Ke-
htarnavaz, and Demetri Terzopoulos. Image segmentation using deep
learning: A survey. arXiv, jan 2020. URL https://arxiv.org/abs/

2001.05566.

[194] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar
Pathak, Azade Nazi, et al. A graph placement methodology for fast chip
design. Nature, 594(7862):207–212, 2021.

[195] Parag K. Mital. Time domain neural audio style transfer. arXiv, nov
2017. URL https://arxiv.org/abs/1711.11160.

[196] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, feb 2015. doi:
10.1038/nature14236. URL http://dx.doi.org/10.1038/nature14236.

[197] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928–1937. PMLR, 2016.

[198] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. arXiv, feb 2016.
URL https://arxiv.org/abs/1602.01783.

[199] Arnab Kumar Mondal, Pratheeksha Nair, and Kaleem Siddiqi. Group
equivariant deep reinforcement learning. arXiv, jul 2020. URL https:

//arxiv.org/abs/2007.03437.

[200] Antti Mäkipää. A Quantitative Study of Interactions Between Cou-
pled Empowerment Maximising and General Game Playing Agents.

196

http://arxiv.org/abs/2209.00588
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/1711.11160
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2007.03437
https://arxiv.org/abs/2007.03437

July 2022. URL https://aaltodoc.aalto.fi:443/handle/123456789/

116219. Accepted: 2022-08-28T17:00:10Z.

[201] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory
Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Su-
leyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih,
Koray Kavukcuoglu, and David Silver. Massively parallel methods for
deep reinforcement learning. arXiv, jul 2015. URL https://arxiv.org/

abs/1507.04296.

[202] Elias Najarro and Sebastian Risi. Meta-learning through hebbian plastic-
ity in random networks. arXiv, jul 2020. URL https://arxiv.org/abs/

2007.02686.

[203] Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoen-
coders. arXiv, may 2016. URL https://arxiv.org/abs/1605.06197.

[204] Mark J. Nelson. Estimates for the Branching Factors of Atari Games.
In 2021 IEEE Conference on Games (CoG), pages 1–5. doi: 10.1109/
CoG52621.2021.9619137.

[205] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schul-
man. Gotta learn fast: A new benchmark for generalization in RL. arXiv,
apr 2018. URL https://arxiv.org/abs/1804.03720.

[206] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder
Singh. Action-conditional video prediction using deep networks in atari
games. arXiv, jul 2015. URL https://arxiv.org/abs/1507.08750.

[207] Onnx. ONNX | Home, 2022. URL https://onnx.ai/.

[208] Santiago Ontanon. The combinatorial multi-armed bandit problem
and its application to real-time strategy games. nov 2013. URL
https://www.aaai.org/ocs/index.php/{AIIDE}/{AIIDE13}/paper/

{viewPaper}/7377.

[209] Santiago Ontañón. The combinatorial multi-armed bandit problem and
its application to real-time strategy games. In Proceedings of the Ninth
AAAI Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, AIIDE’13, page 58–64. AAAI Press, 2013. ISBN 1577356071.

[210] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks. arXiv, jan 2016. URL https://arxiv.org/

abs/1601.06759.

197

https://aaltodoc.aalto.fi:443/handle/123456789/116219
https://aaltodoc.aalto.fi:443/handle/123456789/116219
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/2007.02686
https://arxiv.org/abs/2007.02686
https://arxiv.org/abs/1605.06197
https://arxiv.org/abs/1804.03720
https://arxiv.org/abs/1507.08750
https://onnx.ai/
https://www.aaai.org/ocs/index.php/{AIIDE}/{AIIDE13}/paper/{viewPaper}/7377
https://www.aaai.org/ocs/index.php/{AIIDE}/{AIIDE13}/paper/{viewPaper}/7377
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1601.06759

[211] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt,
Alex Graves, and Koray Kavukcuoglu. Conditional image generation with
PixelCNN decoders. arXiv, jun 2016. URL https://arxiv.org/abs/

1606.05328.

[212] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural
Discrete Representation Learning, May 2018. URL http://arxiv.org/

abs/1711.00937. arXiv:1711.00937 [cs] version: 2.

[213] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[214] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plap-
pert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin,
Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning Dexterous
In-Hand Manipulation. URL http://arxiv.org/abs/1808.00177.

[215] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi
Munos. Count-based exploration with neural density models. arXiv, mar
2017. URL https://arxiv.org/abs/1703.01310.

[216] Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan,
Jakob Foerster, Edward Grefenstette, and Tim Rocktäschel. Evolving
Curricula with Regret-Based Environment Design. URL http://arxiv.

org/abs/2203.01302.

[217] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 488–489. IEEE, jul 2017. ISBN 978-1-5386-0733-6.
doi: 10.1109/{CVPRW}.2017.70. URL http://ieeexplore.ieee.org/

document/8014804/.

[218] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised ex-
ploration via disagreement. arXiv, jun 2019. URL https://arxiv.org/

abs/1906.04161.

[219] Vihang P. Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias
Dorfer, Patrick M. Blies, Johannes Brandstetter, Jose A. Arjona-Medina,
and Sepp Hochreiter. Align-rudder: Learning from few demonstrations by
reward redistribution, 2020. URL https://arxiv.org/abs/2009.14108.

[220] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
Deepmimic. ACM transactions on graphics, 37(4):1–14, jul 2018. ISSN

198

https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
https://blog.openai.com/openai-five/
http://arxiv.org/abs/1808.00177
https://arxiv.org/abs/1703.01310
http://arxiv.org/abs/2203.01302
http://arxiv.org/abs/2203.01302
http://ieeexplore.ieee.org/document/8014804/
http://ieeexplore.ieee.org/document/8014804/
https://arxiv.org/abs/1906.04161
https://arxiv.org/abs/1906.04161
https://arxiv.org/abs/2009.14108

07300301. doi: 10.1145/3197517.3201311. URL http://dl.acm.org/

citation.cfm?doid=3197517.3201311.

[221] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Ju-
lian Togelius, and Simon M. Lucas. General video game AI: A multi-
track framework for evaluating agents, games and content generation al-
gorithms. URL https://arxiv.org/abs/1802.10363.

[222] Diego Perez Liebana, Jens Dieskau, Martin Hunermund, Sanaz
Mostaghim, and Simon Lucas. Open loop search for general video game
playing. In Sara Silva, editor, Proceedings of the 2015 on genetic and
evolutionary computation conference - GECCO ’15, pages 337–344, New
York, New York, USA, July 2015. ACM Press. ISBN 978-1-4503-3472-
3. doi: 10.1145/2739480.2754811. URL http://dl.acm.org/citation.

cfm?doid=2739480.2754811.

[223] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
arXiv, nov 2015. URL https://arxiv.org/abs/1511.06434.

[224] Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding impact-driven
exploration for procedurally-generated environments. arXiv, feb 2020.
URL https://arxiv.org/abs/2002.12292.

[225] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob
Fergus. Automatic data augmentation for generalization in deep reinforce-
ment learning. CoRR, abs/2006.12862, 2020.

[226] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know What You Don’t
Know: Unanswerable Questions for SQuAD, . URL http://arxiv.org/

abs/1806.03822.

[227] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ Questions for Machine Comprehension of Text, . URL
http://arxiv.org/abs/1606.05250.

[228] MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ro-
nan Collobert, and Sumit Chopra. Video (language) modeling: a base-
line for generative models of natural videos. arXiv, dec 2014. URL
https://arxiv.org/abs/1412.6604.

[229] B. Ravindran and A. G. Barto. Symmetries and model minimization in
markov decision processes. Technical report, USA, 2001.

199

http://dl.acm.org/citation.cfm?doid=3197517.3201311
http://dl.acm.org/citation.cfm?doid=3197517.3201311
https://arxiv.org/abs/1802.10363
http://dl.acm.org/citation.cfm?doid=2739480.2754811
http://dl.acm.org/citation.cfm?doid=2739480.2754811
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/2002.12292
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1412.6604

[230] Balaraman Ravindran and Andrew G Barto. Approximate homomor-
phisms: A framework for non-exact minimization in markov decision pro-
cesses. International Conference on Knowledge Based Computer Systems,
2004.

[231] Danilo J. Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary
Ke, Ray Jiang, Theophane Weber, Karol Gregor, Hamza Merzic, Fabio
Viola, Jane Wang, Jovana Mitrovic, Frederic Besse, Ioannis Antonoglou,
and Lars Buesing. Causally correct partial models for reinforcement learn-
ing. arXiv, feb 2020. URL https://arxiv.org/abs/2002.02836.

[232] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochas-
tic backpropagation and approximate inference in deep generative models.
arXiv, jan 2014. URL https://arxiv.org/abs/1401.4082.

[233] Martin Riedmiller. Neural Fitted Q Iteration – First Experiences with a
Data Efficient Neural Reinforcement Learning Method. In João Gama,
Rui Camacho, Pavel B. Brazdil, Alípio Mário Jorge, and Luís Torgo, edi-
tors, Machine Learning: ECML 2005, Lecture Notes in Computer Science,
pages 317–328, Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-31692-
3. doi: 10.1007/11564096_32.

[234] Sebastian Risi and Julian Togelius. Increasing generality in machine learn-
ing through procedural content generation. Nature Machine Intelligence,
2(8):428–436, 2020.

[235] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style
transfer for videos. In Bodo Rosenhahn and Bjoern Andres, editors,
Pattern Recognition, volume 9796 of Lecture notes in computer science,
pages 26–36. Springer International Publishing, Cham, 2016. ISBN 978-
3-319-45885-4. doi: 10.1007/978-3-319-45886-1_3. URL http://link.

springer.com/10.1007/978-3-319-45886-1_3.

[236] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv, nov 2015. URL
https://arxiv.org/abs/1511.06295.

[237] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regulariza-
tion with stochastic transformations and perturbations for deep semi-
supervised learning. arXiv, jun 2016. URL https://arxiv.org/abs/

1606.04586.

200

https://arxiv.org/abs/2002.02836
https://arxiv.org/abs/1401.4082
http://link.springer.com/10.1007/978-3-319-45886-1_3
http://link.springer.com/10.1007/978-3-319-45886-1_3
https://arxiv.org/abs/1511.06295
https://arxiv.org/abs/1606.04586
https://arxiv.org/abs/1606.04586

[238] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Interna-
tional Journal of Approximate Reasoning, 50(7):969–978, jul 2009. ISSN
0888613X. doi: 10.1016/j.ijar.2008.11.006. URL http://linkinghub.

elsevier.com/retrieve/pii/{S0888613X08001813}.

[239] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma.
PixelCNN++: Improving the PixelCNN with discretized logistic mix-
ture likelihood and other modifications. arXiv, jan 2017. URL https:

//arxiv.org/abs/1701.05517.

[240] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory
Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip
H. S. Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft multi-
agent challenge. arXiv, feb 2019.

[241] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder,
Minqi Jiang, Eric Hambro, Fabio Petroni, Heinrich Kuttler, Edward
Grefenstette, and Tim Rocktäschel. Minihack the planet: A sandbox
for open-ended reinforcement learning research. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 1), 2021. URL https://openreview.net/forum?

id=skFwlyefkWJ.

[242] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi
Jiang, Eric Hambro, Fabio Petroni, Heinrich Küttler, Edward Grefen-
stette, and Tim Rocktäschel. MiniHack the Planet: A Sandbox for
Open-Ended Reinforcement Learning Research. arXiv:2109.13202 [cs,
stat], November 2021. URL http://arxiv.org/abs/2109.13202. arXiv:
2109.13202.

[243] Tom Schaul. A video game description language for model-based or inter-
active learning. In 2013 IEEE Conference on Computational Inteligence
in Games (CIG), pages 1–8. IEEE, aug 2013. ISBN 978-1-4673-5311-3.
doi: 10.1109/{CIG}.2013.6633610. URL http://ieeexplore.ieee.org/

document/6633610/.

[244] Tom; Schaul, Dan; Gregor, Karol; Silver, and David. Universal value
function approximators. jun 2015. URL https://dl.acm.org/citation.

cfm?id=3045258.

[245] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. arXiv, nov 2015. URL https://arxiv.org/abs/

1511.05952.

201

http://linkinghub.elsevier.com/retrieve/pii/{S0888613X08001813}
http://linkinghub.elsevier.com/retrieve/pii/{S0888613X08001813}
https://arxiv.org/abs/1701.05517
https://arxiv.org/abs/1701.05517
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
http://arxiv.org/abs/2109.13202
http://ieeexplore.ieee.org/document/6633610/
http://ieeexplore.ieee.org/document/6633610/
https://dl.acm.org/citation.cfm?id=3045258
https://dl.acm.org/citation.cfm?id=3045258
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952

[246] Juergen Schmidhuber. On learning to think: Algorithmic information
theory for novel combinations of reinforcement learning controllers and
recurrent neural world models. arXiv, nov 2015. URL https://arxiv.

org/abs/1511.09249.

[247] Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic
motivation (1990–2010). IEEE transactions on autonomous mental de-
velopment, 2(3):230–247, sep 2010. ISSN 1943-0604. doi: 10.1109/
{TAMD}.2010.2056368. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5508364.

[248] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin
Barekatain, Ioannis Antonoglou, and David Silver. Online and offline
reinforcement learning by planning with a learned model. URL https:

//arxiv.org/abs/2104.06294.

[249] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver. Mas-
tering atari, go, chess and shogi by planning with a learned model. arXiv,
nov 2019. URL https://arxiv.org/abs/1911.08265.

[250] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and
Pieter Abbeel. Trust region policy optimization. arXiv, feb 2015. URL
https://arxiv.org/abs/1502.05477.

[251] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. High-dimensional continuous control using generalized ad-
vantage estimation. arXiv, jun 2015. URL https://arxiv.org/abs/

1506.02438.

[252] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv, jul 2017. URL
https://arxiv.org/abs/1707.06347.

[253] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron
Courville, and Philip Bachman. Data-efficient reinforcement learning with
self-predictive representations. arXiv, jul 2020. URL https://arxiv.

org/abs/2007.05929.

[254] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar
Hafner, and Deepak Pathak. Planning to explore via self-supervised world
models. arXiv, may 2020. URL https://arxiv.org/abs/2005.05960.

202

https://arxiv.org/abs/1511.09249
https://arxiv.org/abs/1511.09249
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5508364
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5508364
https://arxiv.org/abs/2104.06294
https://arxiv.org/abs/2104.06294
https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2007.05929
https://arxiv.org/abs/2007.05929
https://arxiv.org/abs/2005.05960

[255] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang,
Stefan Schaal, Sergey Levine, and Google Brain. Time-contrastive net-
works: Self-supervised learning from video. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1134–1141. IEEE,
may 2018. ISBN 978-1-5386-3081-5. doi: 10.1109/ICRA.2018.8462891.
URL https://ieeexplore.ieee.org/document/8462891/.

[256] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell.
Loss is its own reward: Self-supervision for reinforcement learning. arXiv,
dec 2016. URL https://arxiv.org/abs/1612.07307.

[257] Connor Shorten and Taghi M. Khoshgoftaar. A survey on Image
Data Augmentation for Deep Learning. 6(1):60, 2019. ISSN 2196-
1115. doi: 10.1186/s40537-019-0197-0. URL https://doi.org/10.1186/

s40537-019-0197-0.

[258] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. jan
2014. URL http://proceedings.mlr.press/v32/silver14.html.

[259] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree search. Na-
ture, 529(7587):484–489, jan 2016. doi: 10.1038/nature16961. URL
http://dx.doi.org/10.1038/nature16961.

[260] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv, dec 2017. URL https://arxiv.org/

abs/1712.01815.

[261] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton.
Reward is enough. Artificial Intelligence, 299:103535, October 2021.
ISSN 0004-3702. doi: 10.1016/j.artint.2021.103535. URL https://www.

sciencedirect.com/science/article/pii/S0004370221000862.

[262] Patrice Y. Simard, Yann A. LeCun, John S. Denker, and Bernard Vic-
torri. Transformation invariance in pattern recognition – tangent dis-
tance and tangent propagation. In Grégoire Montavon, Geneviève B.

203

https://ieeexplore.ieee.org/document/8462891/
https://arxiv.org/abs/1612.07307
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://proceedings.mlr.press/v32/silver14.html
http://dx.doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://www.sciencedirect.com/science/article/pii/S0004370221000862

Orr, and Klaus-Robert Müller, editors, Neural networks: tricks of the
trade: second edition, volume 7700 of Lecture notes in computer sci-
ence, pages 235–269. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
ISBN 978-3-642-35288-1. doi: 10.1007/978-3-642-35289-8_17. URL
http://link.springer.com/10.1007/978-3-642-35289-8_17.

[263] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv, sep 2014. URL https:

//arxiv.org/abs/1409.1556.

[264] Samarth Sinha and Adji B. Dieng. Consistency regularization for varia-
tional auto-encoders. arXiv, may 2021. URL https://arxiv.org/abs/

2105.14859.

[265] Matthew Siper, Ahmed Khalifa, and Julian Togelius. Path of Destruction:
Learning an Iterative Level Generator Using a Small Dataset, February
2022. URL http://arxiv.org/abs/2202.10184. arXiv:2202.10184 [cs].

[266] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles Nicholson, Nick
Kreeger, Ping Yu, Shanqing Cai, Eric Nielsen, David Soegel, Stan Bileschi,
et al. Tensorflow. js: Machine learning for the web and beyond. Proceed-
ings of Machine Learning and Systems, 1:309–321, 2019.

[267] Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk in the Park:
Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning.
URL http://arxiv.org/abs/2208.07860.

[268] Sam Snodgrass. Controllable Procedural Content Generation via Con-
strained Multi-Dimensional Markov Chain Sampling. page 7.

[269] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: Contrastive
unsupervised representations for reinforcement learning. arXiv, apr 2020.
URL https://arxiv.org/abs/2004.04136.

[270] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsu-
pervised learning of video representations using LSTMs. arXiv, feb 2015.
URL https://arxiv.org/abs/1502.04681.

[271] Aleksandar Stanić, Yujin Tang, David Ha, and Jürgen Schmidhuber.
Learning to Generalize with Object-centric Agents in the Open World Sur-
vival Game Crafter, August 2022. URL http://arxiv.org/abs/2208.

03374. arXiv:2208.03374 [cs].

[272] Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski.
The distracting control suite – a challenging benchmark for reinforcement

204

http://link.springer.com/10.1007/978-3-642-35289-8_17
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2105.14859
https://arxiv.org/abs/2105.14859
http://arxiv.org/abs/2202.10184
http://arxiv.org/abs/2208.07860
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/1502.04681
http://arxiv.org/abs/2208.03374
http://arxiv.org/abs/2208.03374

learning from pixels. arXiv, jan 2021. URL https://arxiv.org/abs/

2101.02722.

[273] Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola.
The Neural MMO Platform for Massively Multiagent Research, October
2021. URL http://arxiv.org/abs/2110.07594. arXiv:2110.07594 [cs].

[274] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning mul-
tiagent communication with backpropagation. arXiv, may 2016. URL
https://arxiv.org/abs/1605.07736.

[275] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer
Holmgård, Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian To-
gelius. Procedural Content Generation via Machine Learning (PCGML),
May 2018. URL http://arxiv.org/abs/1702.00539. arXiv:1702.00539
[cs].

[276] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay
Mansour. Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information processing sys-
tems, feb 2000. URL https://www.researchgate.net/publication/

{2503757_Policy_Gradient_Methods_for_Reinforcement_Learning_

with_Function_Approximation}.

[277] Keisuke Suzuki, Warrick Roseboom, David J Schwartzman, and Anil K
Seth. A deep-dream virtual reality platform for studying altered
perceptual phenomenology. Scientific Reports, 7(1):15982, nov 2017.
doi: 10.1038/s41598-017-16316-2. URL http://dx.doi.org/10.1038/

s41598-017-16316-2.

[278] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv, dec 2013. URL https://arxiv.org/abs/1312.

6199.

[279] Yunhao Tang, Michal Valko, and Rémi Munos. Taylor expansion policy
optimization. arXiv, mar 2020. URL https://arxiv.org/abs/2003.

06259.

[280] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego
de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew
Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

205

https://arxiv.org/abs/2101.02722
https://arxiv.org/abs/2101.02722
http://arxiv.org/abs/2110.07594
https://arxiv.org/abs/1605.07736
http://arxiv.org/abs/1702.00539
https://www.researchgate.net/publication/{2503757_Policy_Gradient_Methods_for_Reinforcement_Learning_with_Function_Approximation}
https://www.researchgate.net/publication/{2503757_Policy_Gradient_Methods_for_Reinforcement_Learning_with_Function_Approximation}
https://www.researchgate.net/publication/{2503757_Policy_Gradient_Methods_for_Reinforcement_Learning_with_Function_Approximation}
http://dx.doi.org/10.1038/s41598-017-16316-2
http://dx.doi.org/10.1038/s41598-017-16316-2
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2003.06259
https://arxiv.org/abs/2003.06259

[281] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Bar-
ros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max
Jaderberg, Michael Mathieu, Nat McAleese, Nathalie Bradley-Schmieg,
Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-Fitt,
Valentin Dalibard, and Wojciech Marian Czarnecki. Open-Ended Learn-
ing Leads to Generally Capable Agents. URL http://arxiv.org/abs/

2107.12808.

[282] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. Domain randomization for transferring deep neural
networks from simulation to the real world. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 23–30. IEEE,
sep 2017. ISBN 978-1-5386-2682-5. doi: 10.1109/{IROS}.2017.8202133.
URL http://ieeexplore.ieee.org/document/8202133/.

[283] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on
intelligent robots and systems, pages 5026–5033. IEEE, 2012.

[284] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[285] Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max Welling.
Plannable approximations to MDP homomorphisms: Equivariance under
actions. arXiv, feb 2020. URL https://arxiv.org/abs/2002.11963.

[286] Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek,
and Max Welling. MDP homomorphic networks: Group symmetries in
reinforcement learning. arXiv, jun 2020. URL https://arxiv.org/abs/

2006.16908.

[287] Elise van der Pol, Herke van Hoof, Frans A. Oliehoek, and Max Welling.
Multi-agent MDP homomorphic networks. arXiv, oct 2021. URL https:

//arxiv.org/abs/2110.04495.

[288] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. arXiv, sep 2015. URL https://arxiv.

org/abs/1509.06461.

[289] Herke van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Pe-
ters. Learning robot in-hand manipulation with tactile features. In

206

http://arxiv.org/abs/2107.12808
http://arxiv.org/abs/2107.12808
http://ieeexplore.ieee.org/document/8202133/
https://arxiv.org/abs/2002.11963
https://arxiv.org/abs/2006.16908
https://arxiv.org/abs/2006.16908
https://arxiv.org/abs/2110.04495
https://arxiv.org/abs/2110.04495
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461

2015 IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids), pages 121–127. IEEE, nov 2015. ISBN 978-1-4799-6885-5.
doi: 10.1109/{HUMANOIDS}.2015.7363524. URL http://ieeexplore.

ieee.org/document/7363524/.

[290] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. arXiv, jun 2017. URL https://arxiv.org/abs/1706.

03762.

[291] Prateek Verma and Julius O. Smith. Neural style transfer for audio spec-
tograms. arXiv, jan 2018. URL https://arxiv.org/abs/1801.01589.

[292] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexan-
der Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler,
John Agapiou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig
Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Sil-
ver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso,
David Lawrence, Anders Ekermo, Jacob Repp, and Rodney Tsing. Star-
Craft II: A new challenge for reinforcement learning. arXiv, aug 2017.
URL https://arxiv.org/abs/1708.04782.

[293] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel
Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P
Agapiou, Max Jaderberg, Alexander S Vezhnevets, Rémi Leblond, To-
bias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom L Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature, 575(7782):350–
354, oct 2019. ISSN 0028-0836. doi: 10.1038/s41586-019-1724-z. URL
http://www.nature.com/articles/s41586-019-1724-z.

[294] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
and Liang-Chieh Chen. Axial-deeplab: Stand-alone axial-attention for
panoptic segmentation. arXiv, mar 2020. URL https://arxiv.org/

abs/2003.07853.

[295] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired
Open-Ended Trailblazer (POET): Endlessly Generating Increasingly

207

http://ieeexplore.ieee.org/document/7363524/
http://ieeexplore.ieee.org/document/7363524/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1801.01589
https://arxiv.org/abs/1708.04782
http://www.nature.com/articles/s41586-019-1724-z
https://arxiv.org/abs/2003.07853
https://arxiv.org/abs/2003.07853

Complex and Diverse Learning Environments and Their Solutions, Febru-
ary 2019. URL http://arxiv.org/abs/1901.01753. arXiv:1901.01753
[cs].

[296] Nicholas Watters, Loic Matthey, Christopher P. Burgess, and Alexander
Lerchner. Spatial broadcast decoder: A simple architecture for learning
disentangled representations in VAEs. arXiv, jan 2019. URL https:

//arxiv.org/abs/1901.07017.

[297] Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing,
Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol
Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis
Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. arXiv, jul 2017. URL https:

//arxiv.org/abs/1707.06203.

[298] Jason Wei and Kai Zou. EDA: easy data augmentation techniques for
boosting performance on text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 6381–6387, Stroudsburg, PA, USA, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1670.
URL https://www.aclweb.org/anthology/D19-1670.

[299] Maurice Weiler and Gabriele Cesa. General $e(2)$-equivariant steerable
CNNs. arXiv, nov 2019. URL https://arxiv.org/abs/1911.08251.

[300] Nathaniel Weir, Xingdi (Eric) Yuan, Marc-Alexandre Côté, Matthew
Hausknecht, Romain Laroche, Ida Momennejad, Harm van Sei-
jen, and Ben Van Durme. One-Shot Learning from a Demon-
stration with Hierarchical Latent Language. March 2022. URL
https://www.microsoft.com/en-us/research/publication/

one-shot-learning-from-a-demonstration-with-hierarchical-latent-language/.

[301] Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Vik-
tor Makoviychuk, Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang,
Zhongwen Xu, and Shuicheng Yan. EnvPool: A Highly Parallel Rein-
forcement Learning Environment Execution Engine, June 2022. URL
http://arxiv.org/abs/2206.10558. arXiv:2206.10558 [cs].

[302] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–256,
may 1992. ISSN 0885-6125. doi: 10.1007/{BF00992696}. URL http:

//link.springer.com/10.1007/{BF00992696}.

208

http://arxiv.org/abs/1901.01753
https://arxiv.org/abs/1901.07017
https://arxiv.org/abs/1901.07017
https://arxiv.org/abs/1707.06203
https://arxiv.org/abs/1707.06203
https://www.aclweb.org/anthology/D19-1670
https://arxiv.org/abs/1911.08251
https://www.microsoft.com/en-us/research/publication/one-shot-learning-from-a-demonstration-with-hierarchical-latent-language/
https://www.microsoft.com/en-us/research/publication/one-shot-learning-from-a-demonstration-with-hierarchical-latent-language/
http://arxiv.org/abs/2206.10558
http://link.springer.com/10.1007/{BF00992696}
http://link.springer.com/10.1007/{BF00992696}

[303] Clemens Winter, Christopher Bamford, and Shengyi Huang.
Entity-neural-network, 2022. URL https://github.com/

entity-neural-network.

[304] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: unsu-
pervised learning of invariances. Neural Computation, 14(4):715–770, apr
2002. doi: 10.1162/089976602317318938. URL http://dx.doi.org/10.

1162/089976602317318938.

[305] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and
Pieter Abbeel. DayDreamer: World Models for Physical Robot Learning,
. URL http://arxiv.org/abs/2206.14176.

[306] Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. The kanerva
machine: A generative distributed memory. arXiv, apr 2018. URL https:

//arxiv.org/abs/1804.01756.

[307] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy
Ba. Scalable trust-region method for deep reinforcement learning using
Kronecker-factored approximation, . URL http://arxiv.org/abs/1708.

05144.

[308] Marek Wydmuch, Michal Kempka, and Wojciech Jaskowski. ViZDoom
competitions: Playing doom from pixels. IEEE Transactions on Games,
pages 1–1, 2018. ISSN 2475-1502. doi: 10.1109/{TG}.2018.2877047. URL
https://ieeexplore.ieee.org/document/8500330/.

[309] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V.
Le. Unsupervised data augmentation for consistency training. arXiv, apr
2019. URL https://arxiv.org/abs/1904.12848.

[310] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Master-
ing visual continuous control: Improved data-augmented reinforcement
learning. arXiv, jul 2021. URL https://arxiv.org/abs/2107.09645.

[311] Chang Ye, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Rota-
tion, translation, and cropping for zero-shot generalization. arXiv, Jan-
uary 2020. URL https://arxiv.org/abs/2001.09908.

[312] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang
Gao. Mastering atari games with limited data. URL https://arxiv.

org/abs/2111.00210.

[313] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh,
Youngjoon Yoo, and Junsuk Choe. Cutmix: regularization strategy to

209

https://github.com/entity-neural-network
https://github.com/entity-neural-network
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://arxiv.org/abs/2206.14176
https://arxiv.org/abs/1804.01756
https://arxiv.org/abs/1804.01756
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144
https://ieeexplore.ieee.org/document/8500330/
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/2107.09645
https://arxiv.org/abs/2001.09908
https://arxiv.org/abs/2111.00210
https://arxiv.org/abs/2111.00210

train strong classifiers with localizable features. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages 6022–6031.
IEEE, oct 2019. ISBN 978-1-7281-4803-8. doi: 10.1109/{ICCV}.2019.
00612. URL https://ieeexplore.ieee.org/document/9008296/.

[314] Yahia Zakaria, Magda Fayek, and Mayada Hadhoud. Procedural Level
Generation for Sokoban via Deep Learning: An Experimental Study.
IEEE Transactions on Games, pages 1–1, 2022. ISSN 2475-1510. doi:
10.1109/TG.2022.3175795. Conference Name: IEEE Transactions on
Games.

[315] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia
Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Ed-
ward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu,
Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Relational deep
reinforcement learning. arXiv, jun 2018. URL https://arxiv.org/abs/

1806.01830.

[316] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consis-
tency regularization for generative adversarial networks. arXiv, oct 2019.
URL https://arxiv.org/abs/1910.12027.

[317] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-
Paz. mixup: Beyond empirical risk minimization. arXiv, oct 2017. URL
https://arxiv.org/abs/1710.09412.

[318] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, and Honglak
Lee. Unsupervised discovery of object landmarks as structural representa-
tions. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2694–2703. IEEE, jun 2018. ISBN 978-1-5386-6420-
9. doi: 10.1109/{CVPR}.2018.00285. URL https://ieeexplore.ieee.

org/document/8578383/.

[319] Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Gener-
alising to new environment dynamics via reading. In ICLR, pages 1–17.
ICLR, 2020.

[320] Guangxiang Zhu, Zhiao Huang, and Chongjie Zhang. Object-oriented
dynamics predictor. arXiv, may 2018. URL https://arxiv.org/abs/

1806.07371.

[321] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Re-
ward shaping via meta-learning. arXiv, January 2019. URL https:

//arxiv.org/abs/1901.09330.

210

https://ieeexplore.ieee.org/document/9008296/
https://arxiv.org/abs/1806.01830
https://arxiv.org/abs/1806.01830
https://arxiv.org/abs/1910.12027
https://arxiv.org/abs/1710.09412
https://ieeexplore.ieee.org/document/8578383/
https://ieeexplore.ieee.org/document/8578383/
https://arxiv.org/abs/1806.07371
https://arxiv.org/abs/1806.07371
https://arxiv.org/abs/1901.09330
https://arxiv.org/abs/1901.09330

Appendix A

GriddlyJS

A.1 GriddlyJS UI Walkthrough

In this section we show various screenshots of the GriddlyJS user interface and
highlight various useful features.

A.1.1 Building And Testing Environment Mechanics

Variable Watch View Keyboard Mapping GDY Editor

Figure A.1: Environment Designing and Debugging interfaces..

GriddlyJS provides many tools for building and debugging environments.
Figure A.1 shows several of these. Firstly, as soon as GDY file is loaded in the
editor and a level selected, it will be playable in the editor window. Actions in
the environment are automatically mapped to the keyboard, and an explanation
of this mapping can be toggled by pressing P. Additionally all global and player-

211

wise variables can be toggled by pressing I. These variables are updated live
while the game is being played.

A.1.2 Level Design

Tool
Selection

Game
Objects

Editor
Window

Generated Level String

Figure A.2: Level Editor view and level string view..

The Level Editor view shown in Figure A.2 allows the user to choose objects
to place on the game grid in order to create levels. The user can selects an
object from the menu and then can paint it into the editing grid. The editing
grid automatically grows if objects are placed near the boundaries, so levels
of any shape or size can be created. Additionally as objects are painted into
the editor grid, a level string is automatically generated and displayed. This
level string can also be manually edited and its changes reflected in the editor
window.

New Save Copy Delete Level Selection

Figure A.3: The level selector view showing thumbnails of the the levels in the GDY..

Managing the set of levels in the environments GDY file is handled by the
Level Selection interface shown in Figure A.3. Users can create, update and
delete levels in the GDY file for quickly generating large datasets of levels.

212

A.1.3 Recording Trajectories

Recording and
Playback

Environment
View

Action List

Trajectory Seed

Figure A.4: Recording and playback menus for generating and viewing trajectories.

Recording and playback options in the GriddlyJS interface. On clicking
the Record icon, the user’s actions are recorded as they play the game in the
environment view. When the environment terminates, it is reset to its original
state and a play button is shown next to the record button. If pressed, the play
button re-plays the recorded trajectory. These options are shown in Figure A.4.
Additionally, the actions and seed are displayed as YAML in the trajectory view
in the editor. This trajectory can then be copied and stored for later use, for
example in behavioural cloning algorithms. Trajectories can also be copied into
the text-area from external sources and played within the editor.

A.1.4 Evaluating Models

Policy Playback

Figure A.5: Policy debugger view, similar to the "play" view but only visible if a
policy is loaded using TensorflowJS.

Trained policies can be loaded into GriddlyJS and replayed using the Debug
Policies view, shown in Figure A.5. If a model is loaded, a play button will be
visible which will sample actions from the policy to view its performance. once
the episode is finished, the level is reset.

213

	Introduction
	Griddly
	GriddlyJS

	Environment Interfaces
	Conditional Action Trees

	Environment Modelling
	Neural Game Engine

	Equivariant Data Augmentation
	Contributions
	Publications
	Open Source Contributions
	Documentation and Tutorials

	Background
	Policy Gradient Methods
	Exploration
	Parallelization and Distributed Methods
	Auxillary Losses
	Multi-Task Learning
	Transfer Learning
	Imitation Learning
	Unsupervised Environment Design
	Alternate methods

	Griddly
	Background
	Perception-Action Loop
	Observation Spaces
	Action Spaces
	Rewards
	Engineering Considerations

	The Case for Grid Worlds
	The Griddly Engine
	Architecture

	Griddly Description YAML (GDY)
	Environment Configuration
	Action Behaviour Configuration
	Object Configuration

	Observation Space Configuration
	Observers
	Partial Observability
	Custom Shaders

	Action Space Configuration
	Single Agent
	Single Agent - Multiple Object
	Multi-Agent
	Multi-Agent - Multiple Object
	Multiple Action Types

	Griddly GDY Example - Sokoban
	Objects
	Actions
	Environment
	Putting It All Together

	Baselines
	Random Network Distillation
	Network Architecture

	Results
	Per-Environment
	Generalization

	Framework Comparison
	Features
	Efficiency

	GriddlyJS
	Proof-of-Concept: Escape Room Puzzles
	Rapid Environment Development
	Human-in-the-Loop Level Design
	Recording and Controlling Trajectories

	Experimental Details and Hyperparameters
	Architecture
	Training And Evaluation
	Modified Crafter Environment

	Solution Trajectories
	Conclusions

	Environment Interfaces
	Background
	Conditional Action Trees
	Compatible Action Spaces
	Action Trees
	Valid Action Trees
	Conditional Masking

	Actor-Critic with Conditional Action Trees
	IMPALA
	V-trace and masking

	Experiment Setting
	The "Clusters" Game
	Action Space Variations
	Baselines
	Masking Ablation
	Model Architecture

	Results
	Discussion
	Auto regressive action spaces

	Conclusion

	Environment Modelling
	Background
	Deep Neural Network Modelling
	Image Generation
	Video Prediction
	State Space Models
	Object-Centric Models
	Transformer Models
	Model-Based Reinforcement Learning
	Neural GPU

	Neural Game Engine
	Observation Encoder - fo(Ot)
	Observation Decoder - fd(sn)
	Action Conditioning - fa(Oet, at)
	Reward Observation Encoder - fro(Ot)
	Reward Action Conditioning - fra(Ort, at)
	Reward Decoder - frd(srt)

	Neural GPU enhancements
	2D Diagonal Gating
	Selective Gating
	Evaluation Methodology
	Training

	Experiments and Results
	Comparison of gating mechanisms
	Comparison with other methods
	Ablation Testing
	Generalising to different size grids
	Results on GVGAI games

	Discussion
	Conclusion

	Equivariant Data Augmentation
	Background
	Data augmentation in Supervised Learning
	Data Augmentation in Reinforcement Learning
	Equivariant Networks in Supervised Learning
	Equivariant Networks in Reinforcement Learning

	Invariant and Equivariant Augmentation
	Augmentation Groups

	Data Augmentation using IMPALA
	Augmentation Constraint Assumptions

	Equivariant Networks
	Experiments
	Results and Discussion
	Augmentation vs Equivariance
	Ablation Study
	No Regularization
	With Regularization

	Conclusions

	Conclusions and Future Work
	Future Work
	Griddly
	GriddlyJS
	Conditional Action Trees
	Entity Neural Networks
	Environment Modelling
	Geometric Deep Reinforcement Learning

	GriddlyJS
	GriddlyJS UI Walkthrough
	Building And Testing Environment Mechanics
	Level Design
	Recording Trajectories
	Evaluating Models

