
Artificial Intelligence for Digital Twins in Energy
Systems and Turbomachinery: development of
machine learning frameworks for design, optimization
and maintenance

Department of Astronautical, Electrical and Energy Engineering
Doctor of Philosophy Degree in Energy and Environment (XXXV cycle)

PhD Candidate: Francesco Aldo Tucci

Advisor
Prof. Alessandro Corsini, Ph.D.

Co-Advisor
Prof. Giovanni Delibra, Ph.D.

Academic Year 2021/2022

Artificial Intelligence for Digital Twins in Energy Systems and Turbomachinery:
development of machine learning frameworks for design, optimization and main-
tenance
PhD thesis. Sapienza University of Rome

© Oct. 2022 - PhD Candidate: Francesco Aldo Tucci. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: francescoaldo.tucci@uniroma1.it

mailto:francescoaldo.tucci@uniroma1.it

Dedicated to
my Family and Beatrice

Acknowledgments

After three years, my PhD is coming to the end. It has been a pivotal experience
both in terms of professional and personal growth. Now it is time to thank the people
who have supported and inspired me along this journey, marked by both joys and
successes as well as doubts and fears and even a pandemic.

First and foremost, I would like to thank my supervisor, Prof. Alessandro Corsini,
for guiding and trusting me throughout my research period. His valuable advice,
constant presence and invaluable knowledge of energy systems, turbomachinery, CFD
and Artificial Intelligence instilled in me the desire to work and study hard for being
able to support the boldest ideas with belief, passion and courage. It was an honor to
be his student.

I would also like to thank Prof. Giovanni Delibra, who has followed me on a daily
basis since my master’s thesis and whom I now consider as an older brother. He has
taught me much more than programming algorithms, running CFD simulations and
analyzing the results. His support really made all this possible and he will always
have my sincerest gratitude.

Endless thanks also go to my now close friend, Dr. Lorenzo Tieghi, for every-
thing he taught me about Data Analysis and Machine Learning, for his support in
debugging every single piece of code I wrote, for his insightful comments, and for his
daily encouragement and help. And especially for the everyday picturesque desktop
wallpaper updates on my laptop.

Special thanks go to another now close friend, Dr. Valerio Barnabei, with whom,
although I rarely collaborated, I shared important moments and experiences and he
never let me lack his technical and moral support whenever I needed it.

I want to thank my workmates: Alessio, Davide, Eric, Erfan, Fabrizio, Isabella,
Paolo and Rossana. In addition to working together, we shared pleasant and funny
moments.

I also thank my family, my Mother, Father, Brother and Sister, who have always
supported me; Beatrice with whom I am sharing important moments. To them I
dedicate this important goal.

Last but not least, my deepest gratitude to Andrea and Marco. Without your
support this journey would have been definitely more difficult and less fun.

Abstract

The expression Industry4.0 identifies a new industrial paradigm that includes the
development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use
of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital
Twins aims to build a dynamic environment in which, with the help of vertical,
horizontal and end-to-end integration among industrial processes, smart technologies
can communicate and exchange data to analyze and solve production problems,
increase productivity and provide cost, time and energy savings. Specifically in
the energy systems field, the introduction of AI technologies can lead to significant
improvements in both machine design and optimization and maintenance procedures.
Over the past decade, data from engineering processes have grown in scale. In
fact, the use of more technologically sophisticated sensors and the increase in
available computing power have enabled both experimental measurements and high-
resolution numerical simulations, making available an enormous amount of data on
the performance of energy systems. Therefore, to build a Digital Twin model capable
of exploring these unorganized data pools collected from massive and heterogeneous
resources, new Artificial Intelligence and Machine Learning strategies need to be
developed.

In light of the exponential growth in the use of smart technologies in manufac-
turing processes, this thesis aims at enhancing traditional approaches to the design,
analysis, and optimization phases of turbomachinery and energy systems, which
today are still predominantly based on empirical procedures or computationally
intensive CFD-based optimizations. This improvement is made possible by the
implementation of Digital Twins models, which, being based primarily on the use of
Machine Learning that exploits performance Big-Data collected from energy systems,
are acknowledged as crucial technologies to remain competitive in the dynamic
energy production landscape. The introduction of Digital Twin models changes
the overall structure of design and maintenance approaches and results in modern
support tools that facilitate real-time informed decision making. In addition, the
introduction of supervised learning algorithms facilitates the exploration of the
design space by providing easy-to-run analytical models, which can also be used
as cost functions in multi-objective optimization problems, avoiding the need for
time-consuming numerical simulations or experimental campaings. Unsupervised
learning methods can be applied, for example, to extract new insights from turbo-
machinery performance data and improve designers’ understanding of blade-flow
interaction. Alternatively, Artificial Intelligence frameworks can be developed for
Condition-Based Maintenance, allowing the transition from preventive to predictive
maintenance.

This thesis can be conceptually divided into two parts. The first reviews the
state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial
role of Artificial Intelligence in supporting informed decision making during the
design, optimization, and maintenance phases of energy systems. The second part
covers the development of Machine Learning strategies to improve the classical
approach to turbomachinery design and maintenance strategies for energy systems
by exploiting data from numerical simulations, experimental campaigns, and sensor

viii

datasets (SCADA). The different Machine Learning approaches adopted include
clustering algorithms, regression algorithms and dimensionality reduction techniques:
Autoencoder and Principal Component Analysis.

A first work shows the potential of unsupervised learning approaches (clustering
algorithms) in exploring a Design of Experiment of 76 numerical simulations for
turbomachinery design purposes. The second work takes advantage of a non-
sequential experimental dataset, measured on a rotating turbine rig characterized
by 48 blades divided into 7 sectors that share the same baseline rotor geometry
but have different tip designs, to infer and dissect the causal relationship among
different tip geometries and unsteady aero-thermodynamic performance via a novel
Machine-Learning procedure based on dimensionality reduction techniques. The
last application proposes a new anomaly detection framework for gensets in DH
networks, based on SCADA data that exploits and compares the performance of
regression algorithms such as XGBoost and Multi-layer Perceptron.

Contents

1 Introduction 1
1.1 Background and motivations . 1
1.2 Thesis outline . 3

2 Cyber-Physical Systems, Digital Twins and Digital Thread for
Energy Systems 5
2.1 Concept of Cyber-Physical Systems 5
2.2 Digital Twin definition . 7
2.3 Digital Thread definition . 10
2.4 Digital twins in the product life-cycle perspective of turbomachinery

and energy industry . 10

3 The role of Artificial Intelligence in Digital Twins 13
3.1 Relationship between digitization technologies and Digital Twin . . . 13
3.2 Data for Holistic Understanding . 15

3.2.1 Learn from Experimental Campaigns 16
3.2.2 Learn from synthetic datasets, CFD 18
3.2.3 Learn from sensor datasets, SCADA 20

4 Machine Learning Tools and Techniques 23
4.1 A definition of Machine Learning . 23
4.2 Data Treatment: the importance of Data 23

4.2.1 Normalization Techniques . 25
4.2.2 Exploratory Data Analysis 25
4.2.3 Synthetic Data for Machine Learning 30

4.3 Supervised versus Unsupervised Learning 32
4.3.1 Classification . 33
4.3.2 Regression . 34
4.3.3 Clustering . 44
4.3.4 Dimensionality Reduction . 47

4.4 Model Evaluation and Optimization 50
4.4.1 Training and Validation . 51
4.4.2 Overfitting and Underfitting 52

CONTENTS

5 Development of Machine Learning assisted tools and framework
for Digital Twin 55
5.1 Cascade with Sinusoidal Leading Edges: Identification and Quantifi-

cation of Deflection with Unsupervised Learning 55
5.1.1 Introduction . 56
5.1.2 Methodology . 57
5.1.3 Identification of turbulent regions with GM clustering 64
5.1.4 Metamodel for regression of deflection 65
5.1.5 Final remarks . 67

5.2 Unsupervised Learning for high-fidelity compression of large experi-
mental dataset: an application on HPT blade tip contouring 69
5.2.1 Introduction . 69
5.2.2 Methodology . 70
5.2.3 Validation of the framework 77
5.2.4 Final remarks . 78

5.3 A Machine Learning Framework for Condition-Based Maintenance of
Gensets in District Heating Networks 79
5.3.1 Introduction . 79
5.3.2 Anomaly Detection Framework 81
5.3.3 SCADA signal and event log preprocessing 82
5.3.4 Feature Selection . 82
5.3.5 Machine Learning model . 83
5.3.6 Residual Indicator definition 85
5.3.7 Dataset description . 86
5.3.8 ML settings and prediction errors 87
5.3.9 Anomaly detection results . 88
5.3.10 Final Remarks . 93

6 Conclusions 95

Bibliography 99

x

Chapter 1

Introduction

1.1 Background and motivations

Industry is experiencing the transformation of the digital age, and a new industrial
paradigm is emerging. This new paradigm, through the introduction of smart
technologies such as Big-Data, Internet of Things and Artificial Intelligence, involves
rethinking industrial processes to create an environment in which these smart
technologies can communicate and share data to analyze and understand industrial
problems and solve them [1]. Deeply immersed in this context is the energy sector,
which is now more than ever driven by the concept of increasing efficiency and
reducing costs [2]. Efficiency gains are typically achieved through technological
innovations, such as upgrading available technology with new and more efficient
design solutions, design fine-tuning, or technology-specific optimization processes.
Cost reductions, on the other hand, can be achieved without affecting the final
product quality by reducing production time, reducing the possibility of failure, and
adopting newly developed materials.

It is no secret that the design of energy systems, and in particular fluid-machinery
components, is an expensive procedure in terms of both computational and experi-
mental efforts because it involves several multidisciplinary activities [3]. In fact, in
most of the cases the design relies on classical approaches based on empirical rules
from previous studies, elements of Computational Fluid Dynamics for a detailed
analysis of flow behavior and elements for laboratory tests. On operations, strategies
are also still heavily anchored in classical preventive maintenance approaches and
do not take advantage of new technologies to deploy predictive and condition-based
maintenance frameworks [4]. However, in a world of increasingly complex and
integrated problems, those approaches have proven insufficient to address the chal-
lenges of flexible and deeply customized manufacturing processes. But advances
in simulation software, combined with high-performance computing and increased
capacity of efficient data storage, open the way to possibilities for analysis of complex
multiphysical systems that were not thought possible a decade ago [5].

In this scenario, state-of-the-art approaches for energy systems design, analysis,
optimization, and maintenance have been revised through the implementation of
new frameworks and strategies that are inspired by the so-called Industry4.0; this
has led to:

2

• Digitization of value chains: the implementation of such networking results in
flexible processes that can respond quickly to new design needs or changes in
customer demand;

• Digitization of product: the introduction of smart data harvesting and analysis
methods allows to create new design procedures and maintenance strategies
using the large amount of collected information (Big-Data).

• Acceleration through exponential technologies: the introduction of Artificial
Intelligence and its sub-fields (Machine Learning and Deep Learning) reduces
costs, increases flexibility and customizes products.

Consequently, as data-driven models can quickly analyze and use data to make
informed decisions in real time instead of relying on old labor-intensive empirical
processes, their role in the design, production, and maintenance of energy systems
will continue to grow. In particular, Machine Learning and Deep Learning tools
define new programming paradigms whereby algorithms are trained rather than
programmed: using huge datasets related to a specific task, users define the input
data and the expected answers, while the algorithm finds the hidden structures within
the examples and rules to automate the task. In other words, the inclusion of machine
learning and deep learning in classical approaches changes the overall structure of
the power generation process and provides modern tools for each intermediate design,
operations monitoring, and maintenance stage.

The enormous success of Machine Learning is mainly due to the availability of
a huge amount of data that can be used during the training phase of data-driven
models; these data are collected both during the operation of machines and with
experimental campaigns by means of smart sensors or through numerical simulations
that take advantage of increased computational performance. As a consequence,
Artificial Intelligence and its subfields have been recognized as a crucial technology
to remain competitive in the modern ever-changing industrial landscape. Indeed,
the availability of an ever-growing amount of detailed data allows these alternative
digital tools to establish themselves as a technology that, if properly trained, can
yield accurate results comparable to canonical CFD or experimental approaches,
but in far less time and enhance the increase of energy systems performance while
reducing costs.

To this end, the innovation provided by the Digital Twin model, and Cyber-
Physical Systems in general, is extraordinary [5]: a Digital Twin, as will be described
below, is able to help meet the energy industry’s need for enhanced performance
through constant optimization and cost reduction. The first finding will be obvious
once the definition of Digital Twin is provided; while the second insight is not so well
highlighted by the name Digital Twin: imagine how efficient and less costly it would
be to equip a large, complex, and expensive machine with a digital counterpart that
during each design, testing, optimization, and maintenance loop could be queried
providing results that would facilitate real-time decision making or allow the study of
the machine’s behavior under certain rare conditions and thus target its development.

Closely related to the Digital Twin concept is the Digital Thread framework,
which can be seen as a data-driven architecture that connects information generated
from the entire product lifecycle and aims to become the primary or authoritative

3

data and communication platform [6]. The product development process is often
fragmented into isolated teams and tools, which poses a significant risk of delays,
defects, cost overruns, lack of verification and validation, etc. Reducing these
risks requires end-to-end process control to detect anomalies early. Therefore, an
unconstrained approach is needed that brings together the necessary metadata
between different tools in a way that links the desired outcome to upstream and
downstream activities. The digital thread is the best approach to reduce the risk of
negative product outcomes while preserving engineering autonomy and productivity
for products at all times.

Creating these tools, from a technical point of view, is far from simple, and
several critical issues must be taken into account, especially in the case of fast
machines involving complex physics, such as fluid machinery. In addition, different
technologies, such as artificial intelligence, Big-Data analytics, Machine Learning,
and cloud computing, which in most cases are themselves under development,
are combined to realize the digital twin; and the infrastructure to implement the
digital twin also needs to be improved to increase the effectiveness of this technology.
Therefore, it is necessary to push forward research on smart technologies to implement
the digital twin. Eventually, the possibility of leveraging vast data sets on which to
train algorithms leads Artificial Intelligence and Machine Learning in particular to
play a key role in the development of highly accurate Digital Twins [7].

1.2 Thesis outline
The following dissertation will be structured in chapters, as follows:

• In Chapter Cyber Physical Systems, Digital Twins and Digital Thread for
Energy Systems: the concepts of Cyber-Physical Systems (CPS), Digital Twins
and Digital Threads are presented. In particular, starting with the definitions,
the possible applications of these technologies in the field of turbomachinery
and energy systems are examined, with a particular focus on their current
limitations and possible ways to overcome them;

• In Chapter The role of Artificial Intelligence in Digital Twins: the role that
Artificial Intelligence, Machine Learning, Big Data and the Internet of Things
play in the development of successful Digital Twins is described. A Digital
Twin relies on bidirectional transfer and sharing of data collected during the
various stages of an industrial process, leading to a holistic understanding of
the same;

• In Chapter Machine Learning Tools and Techniques: a comprehensive descrip-
tion of the branches of Machine Learning is provided. The chapter discusses
in detail all the supervised and unsupervised Machine Learning algorithms
exploited in turbomachinery and energy systems applications;

• In Chapter Development of Machine-Learning assisted tools and framework
for CPS : three different applications of Artificial Intelligence-assisted tools
for the development of Digital Twin models in both energy systems and
turbomachinery are discussed. The three works will address the design of

4

turbomachinery using Big Data from numerical simulations or experimental
campaigns and the topic of Condition Based Maintenance of energy systems
via Machine Learning frameworks;

• In Chapter Conclusions: a summary of the main outcomes of the dissertation
are provided.

All the developed and implemented codes, the algorithms for machine learning
are written in Python language, using scikit-learn [8] and Tensorflow [9] libraries.
The numerical simulations needed are implemented in OpenFOAM [10] finite volume
solver written in C++. Experimental data sets are provided through collaborations
with international research institutes and companies such as the Von Karman Insitute
for Fluid Dynamics and ENGIE.

Chapter 2

Cyber-Physical Systems, Digital
Twins and Digital Thread for
Energy Systems

The purpose of this chapter is, on the one hand, to briefly introduce the concepts of
Cyber-Physical Systems, Digital Twins, and Digital Thread; on the other hand, to
provide an extensive analysis of the improvements that these new technologies can
bring to the energy industry. Today, these emerging technologies prove crucial in
the design, operation, and management phase of energy systems and the machines
that operate in them. In fact, they can harness the enormous amount of data
collected from sensors in increasingly complex energy systems and develop tools
specifically designed for predictive maintenance, design exploration and performance
optimization.

2.1 Concept of Cyber-Physical Systems

Cyber-Physical Systems (CPS) are a set of modern interconnected systems that
embed combined computing, communication and control capabilities into physical
devices in order to monitor, control and coordinate their activities [11]. The typical
structure of a CPS is illustrated in Fig. 2.1. The main component of a CPS is the
communication infrastructure through which cyber systems and physical systems
can be connected to exchange data. The physical unit includes various physical
devices such as sensors, actuators and hardware that interact with the cybernetic
system, which analyzes and processes data received from the physical systems and
produces an output (recommended action) in response [12].

6

Figure 2.1. Schematic diagram of a cyber-physical system.

At present, research in the field of CPS is aimed at increasingly detailed and
complex modeling of both the concept and applications, and also covers a wide
variety of scientific research areas, such as bio-engineering [13], automotive [14],
transportation systems [15], and eventually energy network management [16].

While there is no universal definition of CPS, the acronym CPS was first coined in
2006 [17] and refers to a wide range of next-generation multidisciplinary engineering
systems that incorporate computing technologies to build goal-oriented physical
devices [18].
According to Rajkumar et al. [19], who define CPS as: "physical and engineering
systems whose operations are monitored, coordinated, controlled and integrated by
a computational and communication core", the growing interest in the design and
adoption of CPS in many sectors can be traced to a combination of multiple factors
that can be divided into two main categories:

• Pulling factors: a wide adoption of CPS in most of their application fields
is still quite unfeasible since the technological foundation needed to develop
them are seriously lacking;

• Pushing factors: rapid deployment of low-cost, high-capacity sensors of increas-
ingly smaller size; growing availability of more powerful and smaller computing
devices; widespread accessibility of wireless and broadband connections; in-
creasing data storage and management capacity.

Therefore, the crucial aspect of CPSs is the coexistence of computing capabilities
and physical processes, which is based on some fundamental subsystems that must
stand together to give rise to a CPS model. In fact, a CPS model should always
include the following elements [20]:

• Hybrid system: because of the coupling between the cyber and physical domains,
through mathematical models it is possible to manage both continuous and
discrete domains and to match continuous signals from physical devices with
the discrete domain of computational systems;

7

• Embedded system: relies on the computational system closely integrated into a
physical system;

• Multiagent system: the cyber part of the CPS consists of several interactive
computational objects, each of which performs a specific task aimed at achieving
a specific goal;

• Real Time system: should operate with response times comparable to the
time-scales of the physical phenomena underlying the real device to which they
are coupled;

• Reliable system: designed to work continuously despite failure or malfunction
of any of its components.

Despite numerous research efforts to design and implement CPS in many industrial
sectors, this technology still has to face several challenges. Using innovative Machine
Learning-based strategies, researchers are trying to solve security problems of CPSs
in terms of external attacks and disruptive failures. They are also trying to find new
control strategies for these hybrid systems and new data storage and management
solutions, given the huge amount of data obtainable from sensors.

2.2 Digital Twin definition
A digital twin (DT) is the virtual replica of a physical entity (physical twin), both of
which are mutually linked by real-time data exchanges that enable a more realistic
and holistic evaluation of unexpected and unpredictable scenarios [21]. Ideally, a DT
will mirror the state of its physical twin in real time (and vice versa) for the entire
life cycle of the product [22]. Its concept was first introduced by Grieves [23, 24], as
a product life-cycle management model called the "Mirrored Spaces Model", which
entails three different parts: real space and virtual space, put in communication
through a network link for the exchange of data and information. As can be seen in
Fig. 2.2, the proposed model shows that the connection between virtual and real
space is bidirectional, and also that there is the possibility of multiple parallel virtual
spaces for a single real space where alternative ideas or projects can be explored.

Figure 2.2. Schematic of a Mirrored Spaces Model (as proposed by Grieves [23, 24]).

8

In 2006, the name of the model proposed by Grieves was updated to "Information
Mirroring Model" [25], while in 2010 the term Digital Twin (DT) was first introduced
by NASA and defined as: "an integrated multi-physics, multi-scale, probabilistic
simulation of a vehicle or system that uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of its physical twin" [26]. Fig. 2.3 shows
the time-line evolution of the concept of DT.

Figure 2.3. Timeline evolution of DT concept.

Besides the various definitions, DTs can be classified into different types on the
basis of different criteria. For example, according to Vickers [27], there are two types
of DTs based on the timing of their development during the product life-cycle:

• Digital Twin Prototype (DTP): it is related to the design phase, before the
prototype is created. It is a DT that contains the complete and final set
of data and information to develop its physical copy. In fact, the DTP
undergoes multiple tests before its physical twin is created; thus, it helps in
the identification and avoidance of unpredictable and unexpected situations
that are difficult to detect with traditional prototyping. Once the testing of
the DTP is completed and validated, its physical twin can be produced in the
real world. The greater the accuracy of the virtual model simulations, the
higher the quality of the physical twin;

• Digital Twin Instance (DTI): it is associated with the production/operation
phases after the product is ready. In this case, data from the real space are sent
to the virtual space and vice versa to monitor and predict the behavior of the
system; this allows action to be taken to correct system behavior if undesirable
scenarios occur. Since the link between the two systems is bidirectional, any
changes made to one will be reflected in the other.

In addition to the previous characterization, DTs can also be classified according
to their scopes [27]. A Predictive DT is useful for studying in advance the future
behaviors and performance of its physical twin, while an Interrogative DT is used
to interrogate the current or past state instead of its physical counterpart. Finally,
a further differentiation of DTs can be made with respect to the focus of their
applications [28]:

• Product DT : aimed at an efficient design of new products, provides a virtual-
physical tool for analyzing the performance of a product under various condi-
tions and making virtual changes to ensure that the developed physical product
performs exactly as expected;

9

• Production DT : with the aim of improving production planning, by simulating
the process with DTs, companies can create production methodologies that
remain efficient under different conditions. Furthermore, by using data from
product and production, companies can prevent costly downtime and even
predict when maintenance is needed;

• Performance DT : which aims at capturing data from products in operation
and analyzing them to provide useful insights for informed real-time decision
making.

To conclude the overview of DTs, from a hierarchical point of view, DTs can be
divided into three different manufacturing levels [29]:

• Unit level: relies on the geometrical, functional, and operational model of
physical twins at unit level, such as material, single component and equipment;

• System level: linking different unit-level DTs, such as the production line, shop
floor, and factory, for wider data flow and enhanced resource allocation;

• System of systems level: connection of different system-level DTs that integrate
different phases of the product during its life-cycle, such as supply chain, design,
service, maintenance, etc.

With respect to the CPSs first introduced in the previous paragraph, it is possible
to conclude that a DT is a subset of CPSs; they share many characteristics, such as
being driven by a computational unit that, in a closed loop, analyzes sensor data on
the current and past state of the physical twin and produces outputs for real time
decision making [30]. Fig. 2.4 presents an example layout for the DT architecture
embedded in a more complex CPS, from which the 3 main components can be
distinguished: the physical sphere, the cyber sphere connected by a bidirectional
IoT network.

Figure 2.4. Example of a DT architecture.

10

2.3 Digital Thread definition

A concept that is generally coupled with that of Digital Twin is the Digital Thread.
If the Digital Twin is a virtual state that represents its physical twin in real time, the
digital thread relies on the storage and diffusion of all available information about
the physical twin during its life-cycle [31]. In fact, according to Willcox et al. [6], the
Digital Thread can be formally defined as a data-driven framework that connects
data and information generated from the entire product life-cycle to make real-time
and long-term decision making. Therefore, it is important not to confuse the related
concepts of Digital Twin and Digital Thread: on the one hand, the Digital Twin
can be intended as a high-fidelity combination of models and computational tools
that simulate the performance of a product; on the other hand, the Digital Thread
represents the pipeline of data and information necessary for the generation and
updates of the Digital Twin [32].

Figure 2.5. Illustration of engineering design with Digital Thread [6].

In Fig. 2.5 is illustrated a schematic example of a Digital Thread. Since multiple
phases of the product life-cycle feed information into its architecture, it delivers
information about the status of the product development process: performance,
visible risks, and corrective actions to be considered. In this way, the information
gains more value because it can be used effectively for informed choices about future
designs, to reduce uncertainty in design parameters and process costs, and can also
reveal more efficient strategies for operation and maintenance. Hence, unlike a static
database, the key value of the Digital Thread is to enable, at any given time, an
up-to-date overview of the status of product development processes even across
multiple and isolated teams. Without a Digital Thread, a company would be flying
blind in terms of the risks it takes in product development [6].

2.4 Digital twins in the product life-cycle perspective
of turbomachinery and energy industry

Because of its multiple benefits (reduction of errors, uncertainties, inefficiencies, and
expenses in any system or process), DT technology is recognized as the cornerstone
of technological progress enabled by Industry 4.0. It is therefore easy to see that
DT models, and all the technologies required to their implementation, are perfectly

11

suited to the energy sector. Looking at the entire life cycle of a product related to
the energy and turbomachinery industry (a turbine, an aircraft engine, a specific
component of a power generation plant, or a power grid system), it is possible to
recognize the cruciality of developing a DT model that represents and supports each
stage of the product life cycle, from the design phase to the disposal and recycling
phase. In addition, this technology enables both horizontal design, developing
a specific DT model for each stage of a product’s life cycle, and vertical design,
ranging from the single component, to the product, to the system of systems.
After these considerations, it is possible to list the possible advantages of gradually
introducing the use of DT in research and development, quality control, and predictive
maintenance of the power and turbomachinery industries. Specifically, according to
Xie et al [33], the life cycle of a turbomachinery product is cyclical and entails five
consecutive phases (Fig. 2.6):

Figure 2.6. Turbomachinery product life-cycle representation with Digital Twin [33].

• Design phase: at this stage, the DT can be developed either from a previous
product, from which data can be analyzed to make improvements or even

12

start a new design, or without a physical counterpart available. However,
at the design stage, the DT allows designers to drastically reduce the time
needed to explore a large number of different design solutions, since feedback
is immediately available by evaluating the performance of virtual products.
For example, Baldassarre et al. [34] by means of DT technology redesigned an
existing wind turbine;

• Experimental phase: this phase, which is crucial for testing the prototype in
terms of safety and performance reliability, is characterized by high cost and
time. In fact, setting up an experimental campaign requires a huge amount of
very high-quality hardware and also long run times to ensure that the data
collected are as meaningful and complete as possible. At this stage, the use of
DT would minimize the time needed to acquire meaningful data. In addition,
virtual tests could provide higher definition data through the use of complex
models. Moreover, since such tests are not bound to sensors, they can provide
data even where sensors cannot be placed due to technological or operational
constraints;

• Manufacturing phase: during the production phase, a DT assisted by a deeply
interconnected network of Internet of Things (IoT)-enabled sensors could
improve both the product manufacturing and assembly process and the plant
layout [35];

• Operation & maintenance phase: at this stage, the implementation of DT
in the energy and turbomachinery industry leads to a shift from reactive to
proactive maintenance. As a result, extending the lifespan of the product and
its components results in a drastic reduction in costs due to maintenance and
failures. In fact, the DT constantly collects and processes data from the physical
device and provides fault information or triggers alarms for occurring failures.
In this way, it helps to prevent and reduce disruptive and costly failures with
enough anticipation. For example, Seshadri et al. [36] developed an integrated
Structural Health Management tool based on DT for an accurate detection
and prognosis of damaged aircraft under normal and adverse conditions during
flight;

• Disposal phase: the Digital Twin of a product at the end of its life-cycle can
provide useful information for the development of a similar product. In fact,
being a kind of interactive library of the operation of a previous device, it
can significantly speed up the process of designing a new product of the same
type and improve its performance, while reducing the cost of the design phase.
It is easy to assume that for research purposes, in terms of costs and space,
it is much easier to exploit a digital twin than to keep its old physical twin
operational.

Chapter 3

The role of Artificial Intelligence
in Digital Twins

The underlying element of the DT concept, besides the virtual representation of
a real object, is the bidirectional transfer and sharing of data between the two
counterparts. This bidirectional transfer of data, involving quantitative, qualitative,
historical, environmental, and real-time data, enables understanding of how deci-
sions and actions taken upstream in a process affect things downstream and also
facilitates activities such as: designing, optimizing, and validating new products or
processes; simulating and monitoring the state of the physical twin and increasing
its performance and reliability; predicting the performance of the physical twin; and
controlling the physical twin in real time. Hence, in this view, it is evident that a
successful DT builds on and continues to evolve with digitization technologies such
as Artificial Intelligence (AI), Machine Learning (ML), Big Data, Internet of Things
(IoT), and numerical simulations.

3.1 Relationship between digitization technologies and
Digital Twin

In recent years, the rise in the use of more technologically advanced sensors and
the inclusion of AI implementations in industrial environments have encouraged the
development of several interesting applications, above all the real-time monitoring
of physical devices [37] and real-time data collection [38], which are crucial for the
realization of a DT that accurately mirrors all the characteristics of its physical
twin [39]. In fact, proper analysis of data collected through next-generation sensors
and IoT deployments, via AI and ML tools that bidirectionally link the physical
environment to its virtual image, plays a key role in developing a DT that can
optimize design [40] and maintenance [41] strategies for the corresponding physical
component. The reason lies in the fact that identifying potential problems in
industrial processes, for example, especially when related to turbomachinery and
energy systems that have to account for multi-physics and turbulent phenomena, is
a very complex and complicated challenge if conducted with traditional techniques.
On the other hand, such problems can be more easily, accurately and quickly
extrapolated from the collected data by exploiting intelligent industrial processes

14

that require advanced AI frameworks and ML tools to handle the huge amount of
collected data and build an efficient DT. Therefore, an intelligent DT system is
based on the application of advanced AI-ML techniques to the collected data. For
that purpose, a smart industrial process is realized when a DT system can identify
the best process strategy and resource allocation [42], predict failures and schedule
early maintenance [41], optimize process planning and control [43], and, eventually,
make dynamic decisions based on physical sensor data or data generated by virtual
twins. Figure 3.1 presents a schematic view of the overall relationships between
digitization techniques and DTs.

Figure 3.1. Schematic view of the relationships between digitization techniques and DTs.

To effectively explain the benefits of integrating data analysis and AI-ML models
into digital twinning, a reference architecture is here introduced: the process begins
with data collection via sensors (physical environment) or numerical simulations
(virtual environment). The data are sent to the data analysis and decision-making
layer, where the AI-ML models are used to create the DT-based system. Therefore,
the virtual model is built by applying the AI-ML models to the generated data. Then,
once the DT is generated, data from the physical and virtual environment are fed
into other AI-ML models to achieve goals such as design optimization, performance
prediction, or predictive maintenance. In addition, these results can be further used
to update and improve current and future prototypes. Fig. 3.2 illustrates the entire
data flow for the creation of a DT based on artificial intelligence.
However, although AI plays a key role in the development of DTs, custom selection of
the best model among hundreds of available ML models is very cumbersome. Indeed,
each AI approach has different levels of accuracy and efficiency and is designed for
different datasets. Therefore, depending on the DTs purposes, selecting the best ML
algorithm and features is challenging.

15

Figure 3.2. Data flow framework for DT using data analysis and AI-ML tools.

3.2 Data for Holistic Understanding
By collecting and processing data, DTs can lead to three levels of knowledge and
control of decision making for an industrial process: first, understanding what exists
and what is happening; second, understanding and predicting future behavior; and
finally, understanding how to act to improve performance. Therefore, through the
combination of these three levels, the more a DT enables systemic understanding and
control of decision making, the more holistic understanding and value is provided to
the industrial process.

• Understanding what exists and what is happening: at this stage, through
AI-aided descriptive modeling of the components and interconnections of real
and virtual environments, a holistic representation of what is being engineered
in the present moment is achieved. Indeed, data collected by increasingly
intelligent sensors, integrated with data generated by DTs, enable efficient
monitoring of machinery, products and other assets, providing a clear and
accurate picture of what is happening now. In addition, historical operational
data, provided in the form of time series, offer insights into what has happened
in the past, and their combination with design data can facilitate the detection
of anomalies;

• Understanding what will happen: additional value can be provided by predicting
how the system will evolve, and what is likely to happen in the future. Learning
and extrapolation from historical data allow us to learn what will happen
in the future based on situations already observed in the past. Particularly
important at this stage is also the simulation of the real system using the DT.
The simulation is useful both for verifying the impact of system-level events

16

on individual processes and/or subsystems and for more reliably predicting
scenarios that never occurred or occurred only rarely. ;

• Understanding how to act and control performance: DT represents the virtual
testing environment, combining monitoring and predictive capability through
the testing of different scenarios and optimization loops. DTs offer the ability
to virtually simulate circumstances that would be impossible to test in the
field. In this way, strategies and scenarios can be simulated to discover their
impact before choosing which to implement. This holistic understanding
and subsequent value creation, consequently, results in measuring risks in
advance, optimizing safety levels, and assessing the impact of major changes
or disruptions.

DTs, therefore, provide holistic understanding in real time, offering insights into
the system, the ability to predict and investigate its future states, and ensuring its
control and optimization. However, to bring added value through this new technology
to energy industry sectors, such as exploring the feasibility of new turbomachinery
design solutions or developing a condition-based maintenance framework for energy
systems, some key points are required:

• Data connections: such as combining data collected during normal machine
operation or experimental campaigns using IoT sensors, data sampled through
numerical simulations, and historical data from both design and operation to
enable synchronization between the real and virtual worlds;

• Descriptive and predictive AI models: to inform, monitor, predict and react
accurately and promptly through data analysis and Machine Learning tools,
anticipating situations and providing awareness of a system’s evolution;

• Analytic services: to detect trends and anomalies, trigger alarm notifications
and test the robustness of alternative scenarios.

3.2.1 Learn from Experimental Campaigns

Although experimental campaigns on turbomachinery and energy systems capture the
fundamental assumptions of the phenomena, as no arbitrary assumptions or models
embedded are in the process, they are characterized by some difficult challenges to
overcome. Indeed, a single experiment cannot provide all the necessary information
at once: for example, both time-resolved and time-averaged measurements are
needed to fully map the behavior of turbomachinery turbulent flows. For this reason,
measurements with different levels of complexity and detail are combined together
at the end of an experimental campaign, and the challenge lies precisely in to choose
the right measurement tool for the right job [44].

According to Dwoyer et al. [45], the process of learning through experiments can
be summarized as in Fig. 3.3, where observations mean the set of measured variables,
i.e., both data from the physical (real) world and obtained through experimental
campaigns. Then, when enough data has been collected, theoretical ideas and
models with a coherent structure are created. This process is entirely human-driven;
everything is embedded in a closed loop, in which new observations challenge existing

17

Figure 3.3. Learning by experiments.

models and the models themselves always require new heuristic tests, so the success
or failure of an experimental campaign depends solely on the observer’s ability
to find solutions to the issues that however arise when trying to study complex
phenomena. In fact, it is really difficult to successfully develop a heuristic model
capable of accurately reproducing the underlying physics of complex energy systems
phenomena. For example, in the field of turbomachinery, existing empirical flow
models suffer mainly from inaccuracies caused by: the difficulties encountered in
modeling the chaotic nature of turbulence; the limited number of observations on
which tune a model that can be considered simultaneously; and finally, the limited
time and computational costs required to solve the problem.

In spite of these difficult challenges, great strides have been made in the past
decade due to the increasing use of big data techniques, which have moved turboma-
chinery flow modeling in a new direction. Therefore, the usual approach of learning
by observation now becomes learning by data, and with the big data perspective, a
new pattern can be developed (Fig. 3.4).

Figure 3.4. Learning by data.

The collection of raw observations is replaced by the gathering of data. These
activities are somewhat identical but present some differences involving: the amount
of observables that are simultaneously recorded (from a few thousand for the first
to several billion for the second) and also the different types of data (e.g., images,
signals, measurements) that contribute to form the organized and unorganized data

18

archives [46]. Data gathering is thus a dynamic process: observables constitute a
constant flow of data on which models can be periodically and automatically trained,
improved, and adapted. Then, the Exploratory Data Analysis (EDA) phase replaces
the theoretical ideas block. Through a variety of statistical tools, in fact, by means
of EDA it is possible to transform a data package of any given shape and origin
into a mathematical-statistical description. Eventually, the modeling phase is the
one most affected by the introduction of data analysis techniques, since Machine
Learning tools provide access to a whole new family of powerful algorithms that
improve and speed up the standard approach of learning by experiments, as they are
able to leverage more data simultaneously and better model it through statistical
tools.

3.2.2 Learn from synthetic datasets, CFD

Computational fluid dynamics (CFD) refers to the resolution of a discrete approxi-
mation of the conservation equations using numerical methods to obtain accurate
knowledge of turbomachinery performance by calculating various quantities of the
flow, such as fluid velocity, pressure, temperature and other derived quantities. CFD
is the main tool for research, design and optimization of turbomachinery processes
and prototypes in both academic and industrial settings, as it allows simulation
of geometrically complex configurations without the need to build and test very
expensive prototypes. Investigating almost any internal flow condition in turbo-
machinery, it is easy to imagine that the field of CFD is very broad. In fact, it
is possible to characterize a CFD simulation according to the system of equations
(e.g., compressible or incompressible NS equations, stationary or non-stationary,
Newtonian or non-Newtonian fluids, etc.), the discretization adopted (e.g., finite
differences, finite volumes, finite elements), the turbulence model adopted, the pres-
ence of a specific wall treatment, as well as the mesh resolution and consequently the
specific solving approach: Reynolds Averaged Navier Stokes (RANS), Large Eddy
Simulations (LES), or Direct Navier Stokes (DNS). But beyond this characterization,
it is important to state that it is the phenomena under investigation that define
the complexity of the approach, since the best accuracy corresponds to the highest
computational cost.

Based on the above concepts, especially in the early stages of a product’s
life cycle, manufacturers look to CFD as an alternative tool to extensive and
expensive preliminary experimental campaigns, as it can always improve and optimize
production processes, while constantly reducing the time and cost of prototype testing;
for the same reasons, they are more likely to use CFD strategies with the least
expenditure of resources, while remaining consistent with physics, even if sacrificing
the resolution of any scale of phenomena. Therefore, if only the overall performance
of machines are needed, the fastest and widely used approaches to solve the Navier-
Stokes equations are the RANS and URANS (Unsteady Reynolds Averaged Navier
Stokes) models, which use SA [47], k-ε [48] or k-ω [49] as turbulence models and
a wall function to the wall [50]. These approaches provide rapid results using a
relatively low amount of computational resources and relatively coarse meshes, so
lower-scale phenomena such as boundary layer resolution and small-scale turbulence
can be modeled only by using analytical equations provided by ad-hoc solutions

19

derived from the observation of few canonical flows. Transient, unstable, small-scale
or fluctuating features, however, can only be captured by models of higher level such
as LES, with all the complexity that results. In fact, although they can reproduce
a wider range of phenomena with greater fidelity, they are rarely used because
they require finer discretization and consequently higher computational resources;
they are used only for solving very specific problems. Finally, DNS is extremely
demanding in terms of both computational effort and computational time and is
practically never used during the design and production phases of turbomachines,
whereas it is sometimes employed to build high-fidelity data sets.

In contrast to the above advantages of using numerical simulations instead of
experimental campaigns, it should be clarified that CFD cannot completely replace
experimental tests, as it is not an exact science and several aspects of flows are
approximated to speed up simulations. Therefore, turbomachinery flow modeling
lives in a constant trade-off between accuracy and computational costs of numerical
simulations. Even the simple assumption of a steady flow in a RANS simulation can
lead to seriously misleading results due to incorrect modeling of the phenomena [51].
Great efforts have been made in recent times to solve these problems, and turbulence
modeling through big data-based approaches is raising great expectations in the
scientific community [52], since Machine Learning can compensate for the deficiencies
of less complex models (RANS) due to the intrinsic approximations of these models.

Figure 3.5. Turbulence modeling under big data perspective.

In particular, as highlighted in Fig. 3.5, starting from the large amount of
available data on turbomachinery performance, ML algorithms can be successfully
applied to:

• Field inversing: the goal of this approach is to reduce the discrepancies between
LES/DNS and RANS simulations. A Machine Learning algorithm is trained
on data from numerical simulations with higher degrees of accuracy or from

20

experiments, using flow variables as input features, to correct and improve the
accuracy of RANS models in inferring the correct field without increasing the
computational cost;

• Anisotropic modeling: that methodology involves ad-hoc data-driven correc-
tions to the anisotropic part of the Reynolds stress tensor or to the dissipation
term in the nutilda equation;

• Derivative approach: approaches that seek to extract information of various
kinds from fluid dynamic fields with the ultimate goal of not deriving a model
of turbulence, but exploiting Machine Learning algorithms to discover hidden
relationships.

3.2.3 Learn from sensor datasets, SCADA

Supervisory control and data acquisition (SCADA) is a control system architecture
that includes computers, networked data and communications for high-level super-
vision and data collection of machines and processes. The main components of a
SCADA system are:

• Supervisory computer : collects data and sends controls back to the process in
question;

• Remote terminal units and programmable logic controllers: Remote Terminal
Units (RTU) and Programmable Logic Controllers (PLC) are used for sensors
and actuators connections;

• Communication infrastructure: connects the RTU and PLC to the supervisory
computer;

• Human-Machine interface: Human-Machine Interface (HMI) enables the inter-
action between operators and the supervisory system by letting operators set
parameters within the process.

Applications of SCADA systems are found in a variety of industrial processes
and, in particular, are a standard and vital element in power generation plants such
as district heating networks and wind farms. The major features of the SCADA
system are [53]: monitoring operational data collected and displayed in near-real
time (SCADA system sends data on 5- or 10-minute intervals [54]); and, as for
the reporting and controlling functions, having access to all relevant information
of the energy system, the collected SCADA data enables data-driven performance
analysis and, eventually, provide remote control to change the operating mode of
the machines.

Numerous efforts have been made in recent years to develop efficient and cost-
effective monitoring techniques for energy systems; in particular, research is now
focusing on the development of AI-based frameworks for Condition-Based Monitoring
(CBM) by exploiting SCADA data. In fact, since Machine Learning tools are easily
adaptable to changing conditions, are able to model nonlinear phenomena and
leverage historical data such as SCADA data, it is possible to capture hidden

21

discrepancies within those data and provide early warnings of incipient failures
before catastrophic breakdowns occur.

To conclude this chapter, a summary of the state of the art of AI-ML developments
in digital twinning for turbomachinery and energy systems applications is presented
in Table 3.1.

Table 3.1. State-of-the-art AI-ML developments in digital twinning for turbomachinery
and energy systems applications.

Paper AI-ML Techniques DT use-case and Application
[55] Supervised Learning Turbomachinery flow modeling: wall-function for rotating passages
[56] Unsupervised Learning Turbine rotors: complex blade tip geometries design
[57] Unsupervised Learning Turbomachinery flow modeling: turbine blades internal cooling channels design
[58] Supervised Learning Aero-engine: fault detection
[59] Unsupervised Learning Photovoltaic: anomaly detection
[60] Unsupervised Learning Wind turbine: anomaly detection
[40] Supervised Learning Centrifugal impeller: aerodynamic performance optimization
[61] Supervised Learning Aero-engine: fault prediction and maintenance
[62] Unsupervised Learning Turbomachinery design: axial turbomachinery performance analysis
[63] Unsupervised Learning Turbomachinery operation monitoring: predictive maintenance
[64] Supervised Learning Wind turbine: performance analysis and fault detection
[65] Supervised Learning Diesel engine: performance analysis and fault detection
[66] Supervised Learning Turbomachinery flow modelling: turbulent heat-transfer prediction
[67] Unsupervised Learning Turbomachinery flow modelling: modelling of mixing layer
[68] Supervised Learning Aero-engine: predictive maintenance
[69] Supervised Learning Turbomachinery design: blade profile optimization

Chapter 4

Machine Learning Tools and
Techniques

The following chapter provides a definition and then complete and comprehensive
overview of Machine Learning algorithms that have been used and exploited for
the development of AI applications that can be incorporated into Digital Twin
processes related to turbomachinery and energy systems; these AI applications will
be discussed in detail later in the work.

4.1 A definition of Machine Learning

In traditional programming, coding the behavior of a program means codifying
the behavior assumed by machines; in fact, an algorithm is designed, codified in
a language understandable to the machine and finally executed by one or more
processing units. This implies that whatever the complexity of the algorithms,
machines cannot go beyond the limits set by the code, and their performance,
unambiguously defined once programs are designed and coded, can only be improved
by changing the type of input data.

Machine learning has emerged over the past decade as an answer to problems
where a challenging task coexists with the necessity for continuous self-improvement
of algorithms. In fact, Machine Learning allows machines to learn autonomously
and progressively from data. In face recognition, for example, it is crucial to have a
software that can correctly identify each individual in different poses and lighting
conditions, getting better and better as the algorithm is used. Therefore, Machine
Learning can be defined as the science of enabling computers to act in a specific way
and under a specific circumstance without being explicitly programmed.

4.2 Data Treatment: the importance of Data

A successful Machine Learning algorithm relies primarily on the "quantity and
quality" of data fed to it during the training phase. Every Machine Learning
campaign begins with the data mining phase, which is essentially the process of
collecting data related to the specific problem that one intends to solve. These data

24

can be gathered from experimental observations, numerical investigations, existing
databases or IoT sensors.

Obviously, even a deeply optimized model will perform bad if the quantity and
quality of training data are insufficient. In fact, if the training data come from
poor quality measurements and include unrepresentative data, outliers and/or noise,
it will be impossible for any Machine Learning algorithm to find the underlying
structures and relevant correlations among the data to perform successfully.

A second, no less important aspect to consider is the fact that a prediction
model will perform well only if the training data will not contain too many irrelevant
features, since these increase the complexity of the model and reduce the ability
to generalize well to unseen data. Therefore, it is important to identify and select
the number of relevant features strictly necessary to describe each training sample
within the dataset. By means of the feature engineering process, a good set of input
features is determined. This stage basically involves two main aspects:

• Feature selection: selection of the most representative features from the whole
set of features in the dataset (tools for feature selection will be introduced
later);

• Feature extraction: creation of new, more representative features by combining
existing ones (e.g., dimensionality reduction methods such as Principal Compo-
nent Analysis and Projection Latent Structures; these tools will be introduced
later).

For this reason, it is essential to spend a great deal of effort on enhancing the quality
of the data before implementing Machine Learning applications; the success of the
ML-model depends on it. This phase is known as Exploratory Data Analysis and
allows the user to take a number of actions during data preprocessing, such as
removing outliers, improving the shape of the distribution, or reducing irrelevant
features. The data treatment flow is highlighted in Fig. 4.1.

Figure 4.1. Data treatment workflow.

Typically, data treatment and preprocessing take more time than the development
of the entire predictive models. However, since Machine Learning algorithms are
seriously impaired by the structure of the harvested data, this preliminary stage
has more influence on the quality of the final model than any hyperparameter
optimization loop.

25

4.2.1 Normalization Techniques

Since Machine Learning techniques are built on statistical analysis and are therefore
strongly influenced by the distributions and quality of the data, a preliminary and
fundamental step before any deeper analysis is normalization or scaling of the data.
The procedure aims to bring all features in a dataset into the same range, because
Machine Learning algorithms are hampered by features with large variations in
magnitude; in fact, a predictor might overlook or overestimate the influence of
features with the smallest values and those with the largest values, respectively.

In general, the most commonly used normalization techniques are min-max
normalization and Z-score. The first normalization strategy represents a simple
scaling procedure, that transforms the original data in a new range between 0 and 1:

z = x − min(x)
max(x) − min(x) (4.1)

where z is the scaled feature vector.
Z-score is a standardization technique that transforms the data in the following way:

z = x − µ

σ
(4.2)

where µ is the mean value of the original dataset and σ represents its standard devia-
tion. This standardization technique is particularly effective with data characterized
by a Gaussian distribution and produces a new centered Gaussian distribution with
standard deviation equal to 1 (also known as the standard Gaussian distribution).

To focus on the topic of interest of this thesis: when processing fluid dynamic
datasets, it is very effective to use another normalization strategy called local
normalization [70]:

z = x

|x| + |y|
(4.3)

where z is still the normalized feature, x represents the original feature and y
represents a normalization factor chosen according to the local properties of the flow
field.

4.2.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) represents an approach to data analysis that
through statistical and graphical techniques maximizes insights within the dataset,
uncovers hidden structures, detects and removes anomalies and outliers, and extracts
the most relevant features.

4.2.2.1 Removing Outliers: Box and Whiskers Plot

During the exploratory data analysis phase, a very important role is played by
Box and Whiskers plots (or Boxplots), which are standardized statistical tools for
visualizing the distribution of data in graphical form using five numbers: minimum,
lower quartile (Q1), median, upper quartile (Q3) and maximum [71]. Figure 4.2
shows the sketch of a boxplot, where the median represents the middle value of the
i-th column of the dataset, and the lower and upper quartiles are the 25th and 75th

26

percentiles, respectively. As shown in the illustration, the lower and upper quartiles
define the extreme limits of the box that contains 50% of samples and is referred to
as the Inter Quartile Range (IQR), while the median is identified by the line drawn
inside the box. The whiskers range from the extreme sides of the IQR box to the
minimum and maximum values, which are:

min = Q1 − 1.5 · IQR

max = Q3 + 1.5 · IQR
(4.4)

At this point it is important to note that the minimum and maximum are not
the lowest and the biggest values in the data set, but all samples smaller than
the minimum or larger than the maximum are considered outliers. In a boxplot
the outliers are drawn as individual points below the minimum value or above the
maximum value.

Figure 4.2. Example of a Boxplot.

Boxplots are thus generally employed to identify outliers, in other words, those
samples due to errors that occurred during data generation and with values too
far out of range to be considered simple anomalies or borderline configurations.
In addition, boxplots allow the distribution of data across their quartiles to be
visualized much more quickly and compactly than histograms and density plots,
making them useful when comparing the distribution of multiple features.

Eventually, it is worth noting that the removal of outliers from a dataset results in
a change in the shape of their statistical distribution. In fact, in statistics by means
of the Kurtosis indicator one can describe the extension of the tails of distributions:
long tails denote the presence of outliers which affect the symmetry of the data.
Removing outliers means therefore reducing the size of the tail and improving the
simmetry of the data.

4.2.2.2 Data Distribution Shape Improvement

In data science when dealing with data analysis or developing Machine Learning
tools, it is very important to pay attention to the statistical distribution of the
available data. In fact, most statistical methods on which these tools are based
assume a Gaussian distribution (also called normal distribution) of the data: the

27

well-known "bell-shaped" curve, as data with this distribution make parametric
methods more powerful and improve their performance.

In general, there are many reasons why the dataset may not exhibit a Gaussian
trend; for example, some of the most common reasons are: the size of the dataset
is too small, or the presence of extreme values that generate long tails in the data
distribution. However, even if the shape of the data is not Gaussian, there are
several techniques that, once applied, help in reducing the distribution asymmetry
(or skewness), making a distorted (or skewed) data sample more normal.

The skewness quantifies the lack of symmetry in the statistical shape of the data
and thus provides a measure of the degree to which their distribution is skewed with
respect to the Gaussian distribution. A data distribution is said to be symmetric
when its skewness is equal to 0; therefore, in such a configuration the mean and
median coincide. A non-symmetric data distribution is characterized by a sharper
trend of data on one side than on the other side and can be positively skewed
(also known as right-skewed) or negatively skewed (also known as left-skewed). A
positively skewed distribution has a long tail extending toward the right side of the
distribution with the mean and median greater than the mode, which is identified
by the highest histogram within the distribution: the most observed value. The
negatively skewed distributions show an opposite trend, with mean and median
lower than the mode, while the tail of the distribution is longer on the left side
of the distribution. Figure 4.3 shows the three different categories. Moreover, a
distribution is called highly skewed when it is characterized by a skewness value
greater than +1 or less than -1; whereas, when this value is between +0.5 and -0.5,
the distribution is called moderately skewed.

Figure 4.3. Skewness.

In general, treating a skewed distribution with statistical methods that generally
assume an approximately normal distribution of the data can lead to problems such
as obtaining misleading results. To overcome this issue and enhance the effectiveness
of statistical analysis, a viable solution involves transforming the data to make the
skewed distribution more like a Gaussian distribution. This is achieved through
transformation functions that replace each data value with a new number, which is
a function of the original value.

28

When dealing with positively skewed data, the most commonly used transforma-
tion functions are: square root, cube root and logarithm. One of the transformations
that has a great effect on the shape of the distribution is the cube root transformation:
x′ = x

1
3 . This can be applied to both positive and negative values; however, it is

less powerful than the logarithmic transformation. The logarithm transformation:
x′ = log(x), among all the possible transformation functions is the most powerful
strategy for improving the skewness of distributions, but it can be applied only to
strictly positive values. Finally, the square root transformation: x′ = x

1
2 , can also

be applied only to positive values.
The quadratic transformation can be used, on the other hand, to improve data

with negative skewed trend. In fact, the quadratic transformation: x′ = x2 ,
moderately reduces the left skewness.

The focus for now has been on conventional transformation functions, which are
computationally simple and inexpensive, but present some limitations in terms of
applicability range and effectiveness of non-normality reduction. Power transforma-
tions, a new family of transformation functions that elevate numbers to a specific
exponent, were therefore developed to overcome those limitations. Underlying the
new strategy is the idea of using a potential continuum of transformations that
provides a wide range of opportunities to tailor a transformation to the target dataset
[72].

The Box-Cox transformation [73] is one of these new functions and can be
applied regardless of whether a distribution is positively or negatively skewed.
Recently, another transformation function has been added to the new family of power
transformations: the Yeo-Johnson transformation [74], which can be applied without
limitations on x and exploits different properties of the Box-Cox transformation.

4.2.2.3 Data Dimension: Feature Selection

An additional necessary step before building a Machine Learning model is feature
selection. This process has a huge effect on the model’s prediction capability, as
databases are characterized by a plethora of features detailing each sample included
in the data, but generally all features may not be necessary for building the prediction
model and, in some cases, they also impair its prediction performance. It is worth
mentioning that the feature selection procedure does not result in the generation
of new features, but merely selects the most significant features based on a specific
criterion: the correlation between features.

Correlation is a statistical technique that quantifies relationships between quan-
titative and continuous variables; it is expressed by a correlation coefficient that
gauges the strength and direction of linear dependence between each pair of features
in a dataset. The correlation coefficient, also known as Pearson correlation [75], is
expressed by the ratio between the covariance (cov) of a pair of variables and the
product of their standard deviations (σ):

ρXY = cov(X, Y)
σXσY

(4.5)

The range of the correlation coefficient value is between -1 and +1. Therefore,
directly correlated features have a correlation coefficient +1, inversely correlated

29

features have a correlation coefficient -1, and finally, uncorrelated features have
values close to zero.

Figure 4.4. Heat map representation of correlation matrix.

Correlations between features in a data set can be quickly and graphically
analyzed through the correlation matrix, an example of which is shown in Figure 4.4.
This is a graphical representation in which each element of the matrix (i.e., heat
map) is represented using a color spectrum to show the correlation value between
each pair of features.

Another feature selection technique is based on the Predictive Power Score (PPS)
[76], which is an asymmetric, data type-independent index that helps identify linear
or nonlinear relationships between features in a dataset. The spectrum of PPS
values varies between 0 and 1. Through this index we can understand how useful
one feature is in predicting the values of another feature in the dataset. In general,
a PPS score close to 1 is considered optimal, and it implies that a given column A is
very likely to predict the values of column B; whereas if the PPS score is close to 0,
then column A may not be useful in predicting the values of column B. The PPS
index is computed by considering a single input feature (xi) per time that tries to
predict the target variable (yi) via a Decision Tree algorithm with the mean absolute

30

error (MAE) as evaluation metric and is expressed by the formula:

PPS = 1 −
MAEai,bi

model

MAEbi
naive

(4.6)

where MAEai,bi
model is the mean absolute error of the regression model that predicts yi

starting from a candidate xi and MAEbi
naive is relative to a naive model that always

predicts the median of yi.
In general, it is difficult to establish a specific minimum threshold for PPS

applicability; Table 4.1 summarizes its guideline levels.

Table 4.1. PPS Levels ranking.

PPS Value Predictive Power
PPS == 0 No predictive power
PPS < 0.2 Weak predictive power
PPS > 0.2 Strong predictive power
PPS > 0.8 Deterministic relathionship between features
PPS == 1 Perfect predictive power

4.2.3 Synthetic Data for Machine Learning

AI models require large and accurately labeled datasets for efficient analysis, training
and performance; if there is a lack of data, reliable design will not be possible.
However, it may be unrealistic due to cost, sensitivity and processing time to collect
and label large datasets with thousands or even millions of objects. Therefore,
the lack of both qualitative and quantitative data in Machine Learning could be
a significant problem. But synthetic data can be a good alternative to rely on for
training Machine Learning models properly.

Synthetic data are artificial data that mimic real-world observations and are
used to train machine learning models when real data are difficult or expensive to
obtain. Basically, by creating synthetic data, one recreates something that exists in
the real world, obtains its characteristics but does not represent it directly, in other
words, a mash-up. Therefore, the generation of synthetic data is totally different
from the processes of data augmentation and randomization. In fact, the former
is essentially the process of adding slightly modified copies of existing elements to
the dataset, while the latter merely moves elements within the data pool instead of
creating new ones.

Regarding their conformation, there are two types of synthetic data: partial and
full. The partial type is a dataset that includes synthetic data and real data from
existing observations or measurements. The full type, on the other hand, refers to
datasets with only synthetic data.

Synthetic data offer several important advantages. First, they offer the ability
to customize data to fit conditions that real data do not allow, thus enabling the
generation of large training datasets while improving the quality and quantity of
available data. Hence, synthetic data can basically serve any goal of any project that

31

requires computer simulation to predict or analyze real events. There are several
key reasons for using synthetic data:

• Data quality: in addition to being complicated and expensive to collect, real-
world data is often full of errors, containing inaccuracies or representing a
bias that may affect the quality of a Machine Learning algorithm. Synthetic
data ensures higher data quality, balance, and variety. Artificially-generated
data can automatically fill in missing values and apply labels, enabling more
accurate predictions;

• Scalability: machine learning requires massive amounts of data. It is often
difficult to obtain relevant data on the necessary scale for training and testing a
predictive model. Synthetic data helps fill in the gaps, supplementing real-world
data to achieve a larger scale of inputs;

• Easy labeling and control: synthetic data is often simpler to generate and use.
When collecting real-world data, it is often necessary to ensure privacy, filter
out errors, or convert data from disparate formats. Synthetic data eliminates
inaccuracies and duplicates and ensures all data has a uniform format and
labeling.

Therefore, synthetic data should accurately represent the original data they are
enriching, and also represent an opportunity to securely use sensitive data sets for
training or testing purposes, as relevant information can be extracted from these
data without impacting privacy compliance. Typical use cases for synthetic data
include:

• Testing: synthetic test data is easier to generate than rule-based test data
and provides flexibility, scalability, and realism. This data is essential for
data-driven testing and development;

• AI/ML model training: AI model training increasingly relies on synthetic
data. Data synthesis can augment real data and upsample rarer events or
patterns, enabling the algorithm to train more effectively. Synthetic training
data typically performs better than real-world data and is crucial for building
high-quality AI models;

• Governance: synthetic data helps remove biases present in real-world data.
Synthetic data is also useful for stress-testing an AI model with data points
that rarely occur in the real world. Synthetic data is essential for explainable
AI and provides insights into how models behave.

Although synthetic data offer attractive advantages, they are not easily im-
plemented. In fact, generating synthetic data requires a deep understanding of
the phenomenon to be represented and how real data works, as well as the use of
sophisticated tools for generating and analyzing data sets. The major challenges
related to the generation of synthetic data are:

• Realism: synthetic data must accurately reflect the original real-world data.
Unless the synthetic data are sufficiently accurate, they will not reflect the

32

crucial patterns for the training or testing project. Consequently, modeling
efforts based on unrealistic data cannot generate useful insights;

• Bias: both real-world and synthetic data may contain an inherent or historical
bias. If the synthetic data accurately mimics the original, it can reproduce
the same biases in the newly generated data. Data scientists must adjust
the ML models to account for bias and ensure the synthetic dataset is more
representative.

To generate synthetic data, it is necessary to create a robust model that repro-
duces realistic synthetic data points based on the probabilities that certain data
points occur in the real dataset. There are mainly two ways to obtain synthetic
data: generative models or conventional ways, i.e., special tools and software along
with purchasing data from third parties. Here are some state-of-the-art techniques
used to generate synthetic data:

• Variational Autoencoders (VAE): also called VAEs, focus on learning dependen-
cies in the data set. They reconstruct data points from the set in a similar way
but also generate new variations. The application of variational autoencoders
covers generating different types of complex data such as handwriting, faces,
images, and tabular data;

• Generative Adversarial Networks (GAN): the task of the generator is to
synthesize new data, while the goal of the discriminator is to check whether it is
false or real data. Both work against each other, hence the name "adversarial."
The discriminator is trained on real data to differentiate generated data
from real data. The generator identifies more realistic data points that the
discriminator will classify as real. The process continues until the generator
can synthesize data elements that the discriminator cannot differentiate from
the real input data;

• Conventional methods: these methods include obtaining synthetic data by
generating it with software or a tool, or by collaborating with a third party
offering such services. Tools and software, which can be found free of charge,
can meet testing needs, but may not be sufficient for excellent performance.
In addition, choosing this method requires the presence of IT resources in the
company. On the other hand, working with companies that provide synthetic
data prevents the company from having its own IT staff. In addition, third
parties usually specialize in a precise type of synthetic data generation, making
them more experienced in the specific field.

4.3 Supervised versus Unsupervised Learning

Machine Learning algorithms can be classified mainly into two different categories:
supervised learning and unsupervised learning.

In supervised learning, a dataset is given and it is already known what the correct
output should look like, having the idea that there is a relationship between the
input and the output. Supervised learning problems are classified into regression

33

and classification problems. A regression problem tries to predict outcomes within
a continuous output, which means mapping the input variables onto a continuous
function. A classification problem, on the other hand, tries to predict outcomes
within a discrete output, in other words, it attempts to map input variables to
discrete categories.

On the contrary, unsupervised learning algorithms are able to highlight hidden
structures within the data or find correlations between features used to describe each
sample without being explicitly programmed to achieve a specific goal. Unsupervised
learning algorithms are therefore the cornerstone of data analysis and are sometimes
a necessary first step before running a supervised learning algorithm. Dimensionality
reduction and clustering are the main branches of unsupervised learning. Figure 4.5
shows a schematic representation of the Machine Learning algorithms classification.

Figure 4.5. Machine Learning algorithms classification.

The work reported in this thesis concerns the design, optimization and applica-
tion of several Machine Learning algorithms, coded in the Python language with
extensive use of the scikit-learn and Tensorflow libraries, aimed at the development of
digital twin models for solving turbomachinery and energy system problems through
regression and clustering tools. The definition and theory of these algorithms are
given below.

4.3.1 Classification

As aforementioned, classification problems fall into the supervised learning category
and aim to predict a categorical label (i.e., discrete value) of new observations, based
on the learning gained during the training phase of the model. It can be formally
defined this way, consider the training dataset as a subset S ∈ D, where D is a
domain expressed as:

D = ((x1, y1), (x2, y2), ..., (xn, yn)) (4.7)

where x ∈ Rn and y = (1, 2, ..., k) with k ≥ 2 number of categories. The labeled
sample dataset will be used to generate and train a machine learning model in the

34

form f : x → y, which will later be employed to make predictions about unseen data
(xi, yi) ̸∈ S since:

yi = f(xi) (4.8)
where f is the prediction model previously trained, xi is the input feature and yi
is the output or target feature. Therefore, during the training phase, a function
is created that, when exploited in the prediction phase, is able to map the data
described by the feature set to the correct category they belong to.

The measure of the distance between the real value of observation yi and the
predicted value f(xi) evaluate the quality of the classification task and can be
expressed by the following formula:

E = 1
|U |

∑
(xi,yi)⊆U

f(xi) ̸= yi (4.9)

where U is the set of unseen data, defined as U = D − S, the variable xi is referred
to input features and the variable yi are output variables (or labels) of classification
problem.

Figure 4.6. Classification problem.

Data classification is a very common problem in machine learning, and several
machine learning algorithms can perform this task. Classification methods range
from the simplest linear method, in which classification is based on the value of a
linear combination of features, to more complex artificial neural networks. Figure 4.6
shows a classification application whose purpose is to divide the set of observations
into different categories.

4.3.2 Regression

Regression problems represent a second branch of supervised learning. The objective
of a regression algorithm is to determine the relationship between a group of

35

independent input features and one or more dependent output variables (i.e., target
variables). In other words, they estimate the function f that maps x to y, but since
all statistical models must account for a random error term, they try to approximate
the real function that generated the observations: y = f(x)) + ε. Therefore, the
estimate function becomes f̂ and the prediction is:

ŷ = f̂(xi) (4.10)

In Figure 3.2, the line represents the true value of the samples , while the points
in the cloud are the values predicted by the trained model. Therefore, in a regression
problem the model tries to predict the continuous value of a variable based on past
observations (in contrast, in classification problems the variables are categorical).

Figure 4.7. Regression problem.

The vertical distance of each cloud point from the corresponding line point
estimates the prediction error for the i-th observation: yi − f(xi)

To estimate the best possible model, the quality of the regression analysis must
be measured, and obviously since we are dealing with a regression problem such index
must be minimized. In the literature several performance indicators are available,
but in general they are variations of the well-known mean square error for unseen
data:

E[(y − ŷ)2] = E[f(x) + ϵ − f̂(x)]2

E[(y − ŷ)2] = (f(x) − f̂(x))2 + V ar(ϵ)
(4.11)

36

where the squared difference in the left part of the equation is the reducible error that
the regression must minimize, while in the right part is the irreducible error, or noise
within the original model. The reducible error can be further decomposed into a bias
and variance terms [77], with the term bias denoting the error in approximating a
real-world problem with a simplified model f̂ and the term variance quantifying the
amount of variation in the response of the regression model if it had been modeled
on a different dataset.

4.3.2.1 Least Square Method

In regression analysis to solve overdetermined systems, a standard procedure is
the Least Squares Method (LSM) [78], which can be thought of as a method for
determining the line of best fit to a given data set. It then involves adjusting the
coefficients of a model function, also known as a response surface, so that it best fits
the data. But this procedure can be easily generalized, and instead of looking for the
line of best fit, one can also find the best fit given by any finite linear combination
of specified functions.

The theory behind the model regards the real function determining the ob-
servations as being representable by a polynomial approximation developed using
a least-squares approach [79]. The regression model is a function f(x, β), where:
β = [β1, ..., βp]T is the vector of the p regressors to be tuned, x = [x1, ..., xk]T is the
vector of k input parameters and f is a vector function of p elements consisting of
powers and crossproducts of power of x up to a certain degree d ≥ 1. In general,
the most widely used LSM models are the first-degree model (d = 1) and the
second-degree model (d = 2):

y = β0 +
k∑

i=1
(βixi) + ϵ

y = β0 +
k∑

i=1
(βixi) +

∑
j<1

∑
(βijxixj) +

k∑
i=1

(βiix
2
i) + ϵ

(4.12)

when designing a quadratic model, the minimum number of regressors needed to
determine all second order polynomial coefficients is equal to (k + 1)(k + 2) = 2,
with k being the number of factors.

This approach can be used to estimate the relationship between y and x which
can be used to address a regression problem and to derive the optimal settings of
x that result in a maximum or minimum response in a certain region of interest.
However, LSM becomes difficult to apply when a large amount of data needs to be
handled since it is more prone to errors.

4.3.2.2 Ensemble Method

One of the most commonly used supervised learning algorithms, employed for both
regression and classification, is the decision tree algorithm, which is based on binary
recursive partitioning [80]. The result predicted by the model is function of a series
of questions and conditions; specifically, taking the Figure 4.8 as a reference, each
node in the tree represents a feature (or regressor), each split represents a decision

37

to be made, and each leaf is an outcome. To assess the goodness of a split, the
algorithm must estimate a metric of impurity: i(t), where t is a potential node to
be evaluated.

Figure 4.8. Decision tree example.

When dealing with classification problem, each node must compute the probability
of incorrectly classifying the data, in other words the Gini Impurity defined as:

i(t) = Gt =
C∑

i=1
(p(i))(1 − p(i)) (4.13)

where p(i) is the probability of incorrectly classifying the i-th sample and C are the
different classes.

Otherwise, in regression problems, the impurity index is quantified using the
mean square error (mse) defined as:

i(t) = mset = 1
n

n∑
i=1

(yi − f̂(xi))2 (4.14)

where yi are the real values, f(xi) are the predicted values and n are the samples.
The process of dividing the dataset into smaller and smaller subsets continues

until no further gains can be achieved or until a predefined rule, such as maximum
depth of the tree, is met.

The main limitation of using such a simple model concerns the tendency of
the predictive model to overfit: decision trees, in fact, are so adaptable that small
variations in the training data result in large variation in the learned parameters;
therefore, such a model has high variance. On the other hand, a more robust
model that is less sensitive to noise is said to have high bias, meaning that it makes
assumptions following preconceived ideas about the data. In either scenario, the final
model cannot generalize well to new data [81]. Therefore, in order to improve the
stability and accuracy of these algorithms, ensemble methods have been developed,
which using multiple learning algorithms (decision trees), achieve better predictive
performance compared to those achieved by only one of the ensemble learning
algorithms. Examples of ensemble methods include: Random Forest and Gradient
Boosting.

38

4.3.2.3 Random Forest

One type of ensemble machine learning algorithms is the Random Forest (RF),
based on a statistical technique called bagging. This statistical technique constructs
multiple weak learners, decision trees in the case of the random forest, and combines
their predictions to obtain a more precise response.

The algorithm generates M subsets of data, each of which has m ≤ n samples
randomly selected within the original training dataset and are subsequently used to
build a tree ϕm where m = 1, ..., M . Therefore, by averaging all M predictions, one
obtains the final bagging prediction f̂b for a new sample xi:

f̂b(xi) = 1
M

M∑
m=1

f̂bϕm
(xi) (4.15)

Moreover, to achieve better performance, in addition to bagging a second random
source is also introduced into the random forest algorithm, that during the splitting
of a tree randomizes the partition procedure by considering only a random subset of
features Φm:

f̂RF (xi, Φ) = 1
M

M∑
m=1

f̂bϕm
(xi, Φm) (4.16)

A scheme of that method is shown in Figure 4.9

Figure 4.9. Random forest flow chart.

39

The theoretical basis of the random forest algorithm merging strategy is based
on two concepts:

• Random sampling of training instances during the building of trees;

• Random subsets: of features (or predictors) for splitting nodes.

In a random forest, as each tree is trained and learns from different subsets of
randomly selected samples, it decreases the overall variance of the forest without
consequently increasing its bias, since deviations in the original training dataset do
not affect the final response obtained from the aggregation [82]. For example, if each
tree trained on its own subset of data overfits them, then all models have errors, but
these are random and uncorrelated. Averaging the responses will reduce the overall
error committed by the random forest.

The random forest algorithm is driven by three hyperparameters: the minimum
node size that is used to define the terminal nodes (leaves) of each tree in the
forest, the total number of trees grown M ∈ (500 : 1000), in fact the accuracy
decreases asymptotically by using a larger number of trees [83], and finally the
number of features considered randomly for each split. Therefore, being governed
by only three hyperparameters, the algorithm is easily implementable and, despite
its simplicity, can achieve great performance for both classification and regression.
In addition, the model effectively minimizes the risk of overfitting with respect to a
single decision tree, and the user can easily evaluate the influence of each feature on
the prediction. However, it becomes computationally expensive once it is applied
to problems involving a large number of learners and is unable to extrapolate data
that lie outside its training interval.

4.3.2.4 Gradient Boosting

Gradient Boosting (GB) [84] is a second ensemble method, which predicts its outcome
by combining the results of weak learners. It differs from the RF algorithm in the
way trees are constructed; in fact, in a boosting algorithm, trees are constructed in
a sequential manner and each new tree is boosted to correct prediction errors made
by the previous learner, as shown in Figure 4.10.

Boosting focuses on the most difficult to predict samples. In fact, each new tree
is trained using all samples from the original dataset weighted taking into account
the success of the previous learner, which means that no partitioning or feature
selection is applied. Misclassified samples increase in weight and subsequent trees
focus on them during the training phase.

Consequently, the model needs a loss function L to estimate the prediction error
committed by each learner and enhance the performance of the one that follows.
Even in this case, the most widely used loss function is the aforementioned mean
square error:

L = mse = 1
2(y − f̂(x))2 (4.17)

The reason for choosing this loss function for gradient boosting is that the user
differentiates it with respect to expected value f̂(x) and the result is an easy-to-
manage negative residual −yi + f̂(xi). After the inputs are provided, the initial step

40

is initializing the model with a constant value f0(x):

f0(x) = argmin
n∑

i=1
L(yi, ŷi) = argmin

n∑
i=1

(y − f̂(x))2 (4.18)

with i = 1, ..., n representing the number of samples in D.

Figure 4.10. Gradient Boosting flow chart.

Thereafter, trees are generated cyclically, and for each new tree the algorithm
calculates:

ri,m = −
[

∂L(yi, f̂(xi))
∂f̂(xi)

]
(4.19)

where m = 1, ..., M is the number of trees generated in the gradient boosting model
and f̂(x) = f̂m−1(x). The last equation can be redrafted as:

ri,m = (yi − f̂(xi)) (4.20)

with r representing a residual for each sample.
The algorithm fits a regression tree to the ri,m values and create a terminal region
Rj,m for j = 1, ..., Jm, whit Rj,m representing the leaves and j is the index of each
leaf in the tree. As mentioned above, the output values of each leaf are determined
considering the prediction of the previous tree f̂m−1(xi):

f̂jm(xi) = argmin
∑

xi∈Rjm

L(yi, f̂m−1(xi) + f̂) (4.21)

and substituting the effective loss function

f̂jm(xi) = argmin
∑

xi∈Rjm

1
2(yi − (f̂m−1(xi) + f̂))2 (4.22)

41

the goal of gradient boosting is to find the value of f̂ that minimizes this equation,
that is, the average values of the finite residuals in the leaf Rj,m. The final prediction
for each sample becomes:

f̂GB(x) = f̂m−1(x) + ν
Jm∑
j=1

f̂jmI (4.23)

Hence, the result of the algorithm is based on the value of the previous prediction to
which the output value f̂jm is added for all Rjm leaves in which a sample is found.
ν is the learning rate of the model (ν ∈ (0, 1)). A small learning rate reduces the
effect of each tree on the final prediction, improving accuracy in the long run.

Finally, if we want to compare the performance of a random forest with that of
gradient boosting, it can be said that although the latter is characterized by a training
process with higher computational costs, especially for tuning the hyperparameters
needed to avoid overfitting, it is able to outperform the performance of the random
forest in terms of prediction ability [85].

4.3.2.5 Anatomy of Multi-layer Perceptron

The feed forward neural network [86] consists of the following elements: the layers
which are made up using neurons, the activation functions that result in the output
of each neuron within the network, the loss function which describes the feedback
signal used for learning and the optimizer that determines how learning proceeds.

The neurons receive input, change its status according to that input and produce
output also depending on the activation function. The single neuron is composed of
three functional operators: an input vector x ∈ Rk is multiplied by weight vector
w ∈ Rk and the resulting vector is summed to the scalar bias b to form the scalar
net input z.

Therefore, in a multi-layer perceptron, since each neuron is described by the
formula: a = f(z) = f(

∑k
i=1 xi · wi + b), each layer can be parametrized by a weight

matrix WR×K , with R the dimension of input vector x, that is the number of features
describing the problem, and S the specific layer neuron number, and a vector bias b
of length S.

Multilayer networks, a sketch of which is provided in Figure 4.11, are characterized
by the fact that the output of one layer becomes the input for the next layer; this
process, referred to as the back-propagation algorithm, is described by the following
equations:

am+1 = fm+1(W m+1am + bm+1) (4.24)

with m = 0, 1, ..., M where M is the number of layers in the network. Neurons in
the input layer receive the input features: a0 = x that become the starting point for
subsequent layers. Hence, output layer neurons produce the response the response
of the network:

y = a = aM (4.25)

In the back propagation algorithm, each artificial neurons have input parameters
with associated weights and biases. The weighted sum of these parameters, z, is

42

Figure 4.11. Example of a three-layer feed forward neural network.

the input value for the activation function, which applies a transformation f(z) to
establish whether or not a neuron should be activated to transmit the value to the
next level.
One of the simplest activation functions is the linear function: a = f(z) = z, which
is not confined between any range and provides in output the weighted sum of the
inputs. In this case, since activation is linear, it is unnecessary to have more than
one hidden layer; in fact, this function is generally used only in the output layer to
allow extrapolation of the neural network since the function is everywhere defined.
Another activation function is the sigmoid function: σ(z) = 1

1+e−z , which is continu-
ously differentiable and has a determined output range, a ∈ (0, 1). When the value
of z increases, the function can vanish the gradient, negatively affecting learning
accuracy. This function is mainly used in the last layer or in binary classification
models, since the probability varies in the output range of this function.
There is also a modified version of the sigmoid function: the activation function
called hyperbolic tangent, defined as: tanh = 2

1+e−2z . With this activation function,
the output values are between -1 and 1. This feature simplifies the optimization of
the neural network with multiple hidden layers, the main disadvantage still remains
the gradient vanishing problem.
Especially for regression problems, the most frequently used activation function is
the rectified linear unit (RelU), R(z) = max(0, z). The results of the function are
null for any negative z, while it returns the value of the input for positive z (as a

43

linear function). The function solves the problem of the vanishing gradient, since
the derivative is 0 for negative inputs and 1 for a positive inputs. In addition, the
computational cost is lower than that of Sigmoid and Tanh functions. The main
limitation of this function is known as the "dying RelU problem": for z < 0 the
gradient will be null and, consequently, the weights will not be adjusted during
the optimization process. Therefore, these neurons will cease to respond to input
changes, and become passive. One method to remedy this problem is to use a
modified version, called Leaky RelU, in which the horizontal line for z < 0 has a
small constant gradient.

The gradient descent method allows the values of the network weights to be
optimized by the loss function. In fact, during the training process the goal is
to minimize the distance between the predicted and actual values, and the loss
function is a measure of that distance. The most frequently used loss function for
regression problems is the mean square error (previously described, see Equation
4.14). However, in some cases, especially when the distribution of target values
contains outliers, it is more appropriate to opt for the Mean Absolute Error, more
robust to outliers:

MAE = 1
n

n∑
i=1

|yi, ŷi| (4.26)

At this point, the role of the optimizer is to iteratively update the weight and
bias coefficients to minimize the loss function. The most commonly used technique
is Gradient Descent, which starts by assigning a random value to the Gamma model
parameters, after which the model is run and the loss function calculated. The
algorithm then computes the gradient of the loss function (gt = ∆L(Γt−1)) and
decides the direction in which to shift the weights and bias to obtain a lower loss at
the next iteration:

Γt+1 = Γt − αgt (4.27)

where α is the learning rate parameter.
Stochastic Gradient Descent (SGD) reduces the computational time for performing a
randomly selected parameter update for each training example. But these frequent
updates result in high variance in parameter values, leading to intense fluctuation in
the loss function. Gradient Descent with momentum speeds up the SGD and reduces
its oscillations with the introduction of a momentum term γ that adds a fraction of
the previously updated vector Vt−1 to the current value of the parameter:

Γt+1 = Γt − αgt − γVt−1 (4.28)

A different technique for accelerating optimization convergence is to use an adaptive
learning rate. Thus, instead of updating the Gamma parameters all at once employing
the same learning rate alpha, for each Gamma(i) parameter the algorithm computes
a different learning rate.
The currently most widely used optimizer is Adaptive Moment Estimation (Adam)
[87], which calculates adaptive learning rates for each parameter and estimates the
first m̂t and second v̂t moments of the gradient to fit the learning rate for each
parameter:

Γt+1 = Γt − α

v̂t
m̂t (4.29)

44

with:

m̂t = (1 − β1)
∑

βt−1
1 gt

βt
1

v̂t = (1 − β2)
∑

βt−1
2 g2

t

βt
2

(4.30)

default values for the new hyperparameter introduced by this method are: beta1 = 0.9
and beta2 = 0.999. Over the past few years, the solver Adam has achieved such high
levels of optimization that it is currently recommended as the best default algorithm
to use for many machine learning applications [88].

4.3.3 Clustering

Clustering analysis can be considered the main application of unsupervised learning
and aims to find different structures within a dataset in order to group similar
samples in the same group. Among all the clustering algorithm (more than 100
different algorithms are available), a sketch of them is given in Figure 4.12, the most
common are: k-Means, Gaussian Mixture and DBSCAN.

Figure 4.12. Comparison of different clustering methods.

4.3.3.1 k-Means

Although many algorithms have been developed over the years to solve clustering
problems, k-Means emerges as the most popular method. The main advantage
resides in its simplicity: the algorithm, starting with a random selection of initial
centers, repeatedly assigns each sample point to the nearest center, which are then
reassigned based on the sample allocations [89]. From a technical point of view,

45

although k-Means is not the best algorithm in terms of efficiency or quality, in
practice it becomes so from the point of view of speed and simplicity [90].

The goal of the algorithm is to group different samples inside the same class
according to their similarity, which is parameterized using the squared Euclidean
distance between a pair of points x0 and x1:

d(w0, x1)2 =
m∑

j=1
(x0j − x1j)2 =∥ x0 − x1 ∥2

2 (4.31)

with j indicating the sample point dimension(i.e., feature columns). As a first step,
each point is assigned to the nearest randomly selected centroid using this distance.
Next, the algorithm calculates the cluster inertia using the sum of squared errors
within each cluster:

SSE =
n∑

i=1

k∑
j=1

w(i,j) ∥ xi − µj ∥2
2 (4.32)

where µ(j) is the centroid for cluster j and w(i, j) is 1 if the i-th sample is inside
the j-th cluster, otherwise is null. The objective of k-Means is to minimize the
cluster inertia. The centroids will be iteratively computed by taking the average
of assigned points. The hyperparameters of k-Means are: number of clusters (m),
maximum iterations and initial cluster centroids. The initial number defines the
number of times the algorithm will be executed with different centroid seeds. The
elbow method can be used to select the correct number of clusters: plot the increasing
number of clusters m with respect to the total variance explained. To obtain a good
solution, proper initialization of the initial centroids is essential. k-Means++ has
been proposed to overcome the limitation of random selection of initial centroids,
where the initial selection of centroids is based on the following steps: the first
centroid is chosen uniformly at random from the data points. Then, for each sample
xi, the distance between the point and the centroid, D(xi), is calculated and a
new point is randomly selected as the second centroid with the use of a weighted
probability distribution, P = f(D(xi)2). The procedure is repeated until all centroids
are initialized [91].

4.3.3.2 Gaussian Mixture

A Gaussian Mixture model is basically a probabilistic model that assumes all the
data points are generated from a mixture of a finite number of Gaussian distributions
with unknown parameters [92]. Mixture models can be viewed as a generalization of
k-means clustering to incorporate information about the covariance structure of the
data and the centers of latent Gaussians.

The Gaussian Mixture object implements the Expectation-maximization (EM)
algorithm for fitting mixture-of-Gaussian models [93]. In fact, the main difficulty
in learning Gaussian mixture models from unlabeled data is that one usually does
not know which points come from which latent component (if one has access to this
information, it becomes very easy to fit a separate Gaussian distribution to each set
of points). Expectation-maximization is a well-founded statistical algorithm that gets
around this problem by an iterative process. First, random components are assumed
and the probability of being generated by each model component is calculated for

46

each point. Then, you adjust the parameters to maximize the likelihood of the data
based on these assignments. Repeating this process always guarantees convergence
to a local optimum.

The number of mixture components for the clustering algorithm is selected
according to the Bayesian Information Criterion [94]. The Bayesian Information
Criterion is an index for scoring and selecting between two or more models that
basically works in this way: looks for contrasts in the density of the data points,
picks out spatially separated regions of high-density data estimating centers and
extents of these regions, and then counts the number of that regions. This index is
expressed by the formula:

BIC = kln(n) − 2ln(L̂) (4.33)
where n is the number of data points, k is the number of free parameters to be
estimated and L̂ is the maximized value of the likelihood function of the model.

4.3.3.3 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a clustering
algorithm that employs the distance between the nearest points to identify different
clusters within the data. It is based on the assumption that clusters are densely
populated regions in the data space which are divided by regions of lower density.
Therefore, for each point within a cluster, the neighborhood identified by a fixed
radius (epsilon) must include at least a minimum number of points (minimum points)
[95]. Any data point that has more neighbors than the minimum points is tagged as
a cluster core point, whereas a sample is considered a boundary point if it has fewer
neighbors than the minimum but belongs to the neighborhood of a core point.

DBSCAN operates through the following three phases:
• First step: for each point xi within the data set, the distance between that point

and the other samples is determined. Then, all points within the epsilon radius
are considered neighbors of xi, and those that have a number of neighbors
greater than or equal to the minimum points are labeled as core points;

• Second step: if a center point is not already part of an existing cluster, it
generates a new cluster. The algorithm will find all the density connected
points in order to assign them to the same cluster;

• Third step: the algorithm iteratively analyzes the remaining unvisited points.
If a point does not belong to any cluster it is treated as an outlier.

One of the main advantages of this clustering algorithm is that the number of
clusters to be generated is not required preliminarily. In addition, a second important
aspect is DBSCAN’s ability to process clusters of any shape and independently
identify outliers.

On the negative side, DBSCAN does not work well when applied to clusters
with different densities, and the user must carefully select the necessary parameters.
In addition, the value of the minimum points increases as the size of the data set
increases, and typically this value should be at least 3. To select the correct epsilon
radius, the user can use the k-distance graph, in which the distance to the k minimum
points is plotted against the value of k.

47

4.3.4 Dimensionality Reduction

Dimensionality reduction is one of most important sub-field of unsupervised learning.
The dimensionality of a dataset can be understood as to the number of features
needed to fully describe a given problem. For example, in a dataset in column-row
format, dimensionality is the number of columns, whereas each row identifies a
single training sample. The objective of an algorithm employed in dimensionality
reduction is to minimize the number of features necessary to represent the problem,
and consequently its complexity, by analyzing the hidden structures of a dataset.

It is worth noting that dimensionality reduction drastically differs from the
process of feature selection. Although both methods seek to reduce the number of
features in the dataset, dimensionality reduction succeeds in this task through the
creation of new combinations of features (i.e., the extraction of new variables), while
feature selection attempts to include and/or exclude some features that already exist
in the dataset without generating new ones.

4.3.4.1 Principal Components Analysis

The Principal Components Analysis (PCA) consists of a multivariate statistical
method that reduces the dimensionality of the data while preserving most of the
variation in the data set [96]. An orthogonal transformation allows a set of n
observations, possibly including k correlated variables, to be converted into a new
set of values of linearly uncorrelated variables, called principal components, which
are linear combinations of the initial k variables [97].

The first principal component represents the maximum possible variance in the
data and extends in the direction along which the sample points show the greatest
variation. Accordingly, the first component can be considered as the line of best
fitting between sample points. The determination of the best fit is accomplished
by an algorithm that minimizes the distances between the various points and the
line itself, typically Lapack’s Singular Value Decomposition (SVD) or, especially for
redundant data sets, the Nonlinear Partial Least Squares Algorithm (NIPALS) is
employed [98].

The second principal component, as can be seen from Figure 4.13, is calculated
with the constraint of being orthogonal to the first one and having the largest
possible variance. All subsequent principal components are then constructed using
the same criteria. It is also important to note that the amount of explained variance
increases with the number of principal components taken into consideration; a scree
plot showing the explained variance versus the number of principal components can
be used to select the appropriate number of those components. PCA is technically a
decomposition of data matrix X into two matrices T and P:

X = TP T

(n × k) = (n × a)(a × k)
(4.34)

where T and P are the score matrix and load matrix, respectively, as well as
orthogonal matrices. In addition, k is the number of features of original set, n is the
number of samples and (a<k) is the number of the considered principal components.

48

Figure 4.13. Geometric interpretation of PCA.

The loadings are the weights of each original feature in the principal component
calculation; their values quantify the statistical importance of the features for the
variability of the dataset. Highly correlated features have almost the same weights in
the loadings vectors and appear next to each other in the loadings graphs, consisting
of a graph of the loadings of one principal component versus the loadings of another
component.

The scores represent the original data in a rotated coordinate system, i.e., the
principal component space, and consist of the extracted features that can describe
the original dataset within a new lower dimensional space. In this way, it is possible
to represent the original dataset with a reduced number of new features.

4.3.4.2 Projection to Latent Structures

The Projection on Latent Structures (PLS) acts on the data similarly to PCA, but
with one main difference: in this case, unlike PCA, the variables of the original
dataset are divided into input features and output features, so the analysis aims
to find relationships between these two groups. In practice, PLS will define the
multidimensional direction in the space of input features that defines the maximum
multidimensional variance in the space of output features [99]. The PLS in its
general form builds latent vectors (i.e., orthogonal score vectors) by maximizing the
covariance between these different sets of variables [100, 101]. The results for the
input and output features are a load vector and a score vector, respectively:

ta = Xawa

ua = Y aca
(4.35)

in this set of equations ta and wa represent the score vector and the loading vector
for input features X, whereas ua and ca are the score vector and the loading vector
for output features Y.

As illustrated in Figure 4.14, the PLS model iteratively calculates loads and
scores using Nipals’ algorithm, which works as follows:

49

• First step: the algorithm regresses each column of Xa on the vector ua. Initially,
ua is estimated by a column from Ya. The coefficients of this regression are
stored in wa = X ′

aua(1
u′aua). The columns highly correlated with ua have the

largest weights in wa.

• Second step: the weight vector is normalized: wa = wa√
w′awa

.

• Third step: each row of Xa is regressed onto wa and the regression coefficients
are stored in ta = Xawa(1

w′awa).

• Fourth step: Nipals’ algorithm regresses each column of Ya onto the score
vector ta and stores the regression coefficient in ca = Y ′

ata(1
t′ata).

• Fifth step: each row of Ya is regressed onto ca, in this way ua = Y ′
aca(1

c′aca)
is computed for the first time.

This process is repeated until the vector ua reaches convergence values.

Figure 4.14. Nipals algorithm for the calculation of PLS.

After building a PLS model, the most informative result lies in the load graphs,
where there is the superposition of a graph of input feature loadings to a graph of
output feature loadings. This graph shows the relationship between latent variables
in input feature space and output feature space, as well as the relationship between
input and output variables.

4.3.4.3 Autoencoders

An autoencoder (AE) is a data compression algorithm (specifically, a special type
of neural network) trained to copy its input to its output, otherwise to learn a
compressed representation of a set of data [102]. For example, given an image

50

(Figure 4.15) of a handwritten digit, an AE first encodes the image into a lower
dimensional latent representation, then decodes the latent representation back to
an image. An AE learns to compress the data while minimizing the reconstruction
error and consists of two different parts, namely an Encoder and a Decoder.

On one hand, the Encoder maps the input x ∈ Rn to a latent space and the
output he

(l+1) of the l-th layer can be written as:

he
(l+1) = σ(W e

(l) · he
(l)) (4.36)

where We
(l) are the trainable weights of the layer and σ is a non-linear activation

function. If the Encoder has Le layers, then he
(0) = 0 and he

(Le) = h, where h ∈ Rk

is the compressed representation of the input.

Figure 4.15. General architecture of an autoencoder.

On the other hand, the Decoder maps the compressed representation h back to
its original space and therefore:

hd
(l+1) = σ(W d

(l) · hd
(l)) (4.37)

where hd
(l+1) is the output of the l-th layer, Wd is the trainable weight matrix and

σ is still a non-linear activation function. Considering Ld layers, then hd
(0) = h and

h(Ld) = x′, where x′ is the reconstruction of the vector x.
Since the goal of an AE is to reconstruct the input as accurately as possible,

ideally x′ ≈ x, it is trained by minimizing the reconstruction error L(x′, x) = ∥x′−x∥,
also referred as loss function, through the Backpropagation algorithm [103].

4.4 Model Evaluation and Optimization
The crucial stage of machine learning is the training of the model. Indeed, it is
at this stage that it is necessary to assess how well the model fits the dataset and,
above all, how well the trained model is able to generalize with respect to unseen
data. Generalization is the ability of a trained model to produce sensible and reliable
results when applied to input sets never seen before.

During the training phase, the prediction capability of the model must be
incrementally improved. For this purpose, the original data set is divided into a
training set and a validation set; the algorithm is trained using samples from the
former and tested on the latter to assess its accuracy.

51

4.4.1 Training and Validation

The simplest method for evaluating a predictive machine learning model is the
holdout method, which randomly divides the original dataset into three subsets:
training set, validation set and test set. The predictive model is trained using the
samples from the training set. The validation set is used for testing purposes and
for tuning the hyperparameters of the model. Finally, the test set, which includes
the never-seen data, is used to judge the future performance of a model. The results
obtained during this testing phase define the accuracy of the model. Although this
method is easily implementable and has high flexibility, it is characterized by high
variability, as different training and test sets can result in significantly different
models.

A second validation method used to evaluate the performance of a predictive
model is the k-fold cross-validation, which divides the original dataset into k different
folds of the same size [104]. As shown in 4.16, a single fold constitutes the validation
set, while the model is trained on the remaining k-1 folds; this procedure is repeated
k times yielding k different training and testing sets.

The accuracy is, then, estimated by averaging the results obtained for all training-
test pairs:

ŷ = 1
k

k∑
i=1

ŷ (4.38)

Figure 4.16. k-th cross validation.

Cross-validation using most of the data for the training phase significantly reduces
bias, and since all data are also used in the testing phase, it also reduces variance.
In addition, cross-exchange of test and training samples increases the efficiency and
robustness of this validation strategy, but having to train and validate k different
models might be computationally expensive.

The goal of a training-validation process is to obtain a model that performs
optimally when applied to predict data never seen before. This means avoiding,
during the training phase, overfitting of the data set, which is a phenomenon that
causes loss of information.

52

4.4.2 Overfitting and Underfitting

In any machine learning problem, it is inevitable to deal with the problem of overfit-
ting and underfitting. The key is to find the right trade-off between optimization,
which refers to adjusting model hyper-parameters to achieve the best performance
on the training set, and generalization, which refers to the model’s ability to perform
well on new data.

At the beginning of the training phase, the model is in an underfitting condition
and thus still needs to improve its prediction. As shown in Figure 4.17, by iteratively
reducing the loss on the training set, the loss on the test set also decreases. In this
case, the model has high bias and low variance: the model is unable to correctly
capture relationships and correlations among the data and has a difference in fit
between the different data sets.

Figure 4.17. Bias-Variance trade-off.

After a few iterations, the test loss stops improving. At this stage, overfitting
begins: the model learns overly specific relationships and correlations in the training
set, which are misleading for the prediction of new data. Under overfitting conditions,
the model has low bias and high variance: the model fits the training data perfectly,
but has high prediction error when applied to the test dataset. To improve the
accuracy and generalization ability of a model, it is necessary to expand the training

53

dataset. If this is not possible, it would be necessary to regularize the model by
modulating the amount of information it is able to store according to the process
called bias-variance trade off, which allows a model with limited memory to focus only
on the most important patterns, thereby increasing its generalization capabilities.

Chapter 5

Development of Machine
Learning assisted tools and
framework for Digital Twin

This chapter describes three different applications of artificial intelligence-assisted
tools for the development of Digital Twin models in both energy systems and
turbomachinery. The three works will address issues of:

• Turbomachinery Design via CFD: for the identification and quantification of
deflection by means of unsupervised learning for a cascade with sinusoidal
leading edges;

• Turbomachinery Design via Experimental Campaign: for the high-fidelity com-
pression of large experimental dataset from HPT with unsupervised learning;

• Energy Systems Operation Monitoring: for the condition based maintenance
of gensets with a machine learning framework.

5.1 Cascade with Sinusoidal Leading Edges: Identifica-
tion and Quantification of Deflection with Unsuper-
vised Learning

One of the key issues in turbomachinery design is the identification of loss mechanisms
and their quantification, both during preliminary design and in all subsequent
optimization loops.

Over the years, many correlations have been proposed, accounting for different
dissipative mechanisms that occur in blade-to-blade passages, such as the develop-
ment of boundary layers, turbulent wake mixing, shockwaves, and secondary flows
or off-design incidence. In recent years, the fan industry started the production
of more complex rotor geometries, characterized by sinusoidal leading and trailing
edges, mostly to extend stall margin and to reduce noise emissions. But literature
still lacks a quantification of the losses introduced by the secondary motions released
by serrated leading edges.

56

In this work a design of experiments that entails 76 cases of a 3D flow cascade
with NACA 4digit profiles with sinusoidal leading edges is investigated to measure
losses according to Lieblein’s approach. The flow field simulated with RANS strategy
was investigated using an unsupervised machine learning strategy to classify and
isolate the turbulent wake downstream of the cascade with a combination of Principal
Component Analysis and Gaussian Mixture clustering. Then a gradient boosting
regressor was used to derive the correlation between input parameters and cascade
deflection.

5.1.1 Introduction

In recent years, fan designers were pushed to more complex solutions to meet fan
efficiency grades introduced by EU and US legislations. Leading and trailing edge
serrations were among the possible strategies adopted to control separation dynamics
and noise [105, 106].

Developed from biomimicry of humpback whales [107], leading edge serrations
proved able to control the separation of the flow at the trailing edge of the blade
and thus to alter the stall dynamics of the rotor aerodynamic profiles. In particular,
scholars noted that the vorticity shed from the leading edge allowed the limitation of
separation at the trailing edge only to the portion of the suction surface corresponding
to the leading-edge throat, assumed at the point of lowest chord length. An example
of this finding is shown in Figure 5.1, where the regions of recirculating flow are
shown with red iso-surfaces over the suction side of the cascade profile. At an
incidence i=18.3◦ the flow is still attached over the portion of the surface that
corresponds to the leading-edge sinusoid peak.

Figure 5.1. Iso-surface of recirculating flow over WHALE4412-4-10 cascade.

Other findings show that while the amplitude of the serrations was directly

57

correlated to the capability of the leading-edge serration to control separation and
increase lift at high angles of attack, the influence of its wavelength on aerodynamic
efficiency is almost negligible.

When used in fan rotors, leading edge serrations proved to be able to alter the
stall dynamics of the fan flattening the pressure curve in stalled operations, limiting
the drop of pressure by altering the dynamics of the tip leakage vortex. In particular,
the development of the tip leakage vortex in the blade-to-blade passage is partially
blocked by the vorticity shed by the sinusoid at the leading edge of the rotor.

The acoustic performance of modified serrated leading edges was studied in
different isolated airfoil and fan configurations [108, 109]. Chong et al. [110], studied
a modified NACA 65(12)-10 airfoil with a serrated leading edge, concluding that the
serrations can suppress the laminar separation bubble at the leading edge and the
noise associated with that source. They also found that the changes induced in the
growth of the turbulent boundary layer at the trailing edge suggest that a reduction
in far field low-frequency noise can be achieved, whilst an increase of high-frequency
noise is expected. Biedermann et al. [111] measured noise from airfoils with serrated
geometries, concluding that serrations with high amplitudes and small wavelengths
are the ones with better noise reduction capability.

Biedermann et al. [112] also derived a statistical-empirical model to predict the
overall sound pressure level and noise reduction of a NACA 65(12)-10 airfoil with
leading edge serrations.

In their works Becker et al. discussed the noise performance of axial flow fans
fitted with serrated leading edges [113, 109]. An exploration of the noise performance
of un-swept blades under clean and distorted inflow conditions led to the conclusion
that serrations lead to better acoustic performance especially with clean inflow
but affect the aerodynamic performance in the pre-stall region [113]. In [114] they
compared the performance of different fans with leading edge serrations and swept
blades, concluding that a forward-skewed fan with leading edge serrations had the
highest efficiency and the lowest sound emission for nearly all operating points
considered, achieving a sound reduction of between 3 and 7 dB at different operating
conditions. Finally, in [109] the application of leading-edge serrations to flat plates
was found to improve both aerodynamic and noise performance.

At the current state of the art of performance analysis of serrated leading-
edge profiles there is a lack of information and correlations to extrapolate the
deflection capability of a cascade as a function of the cascade parameters and
sinusoid characterization of the leading edge. In the following a numerical procedure
that allowed the computation of such performances in terms of deflection capability
of the profile will be discussed.

5.1.2 Methodology

The proposed integrated and automated procedure allows to:

• setup a design of experiments (DoE) of modified NACA 4-digit airfoils (hereafter
identified as “WHALE” airfoils) with sinusoidal leading-edges;

• compute the performance of the DoE;

58

• setting up an unsupervised machine-learnt algorithm to automatically identify
the boundary layer and turbulent wake inside the computational domain;

• extract the wake velocity defect distribution;

• map the deflection capability of the cascade using a regression method on the
DoE.

5.1.2.1 Leading edge modification

In the following, the performance of a series of modified WHALE airfoils will be
discussed. A WHALE XYZZ-A-Λ airfoil is derived from a NACA XYZZ airfoil as
a sinusoidal profile with the same average chord of the original and given sinusoid
amplitude A and wavelength Λ , where A and Λ are given as a percentage of the
chord. Thus, a WHALE 5412-4-16, Figure 5.2, is an airfoil with sinusoidal leading
edge characterized by an amplitude A =4% of the chord and wavelength Λ =16% of
the chord. This profile is the interpolation of NACA 5412 profiles with 1m average
chord, maximum chord equal to 1.04m and minimum chord equal to 0.96m. All the
profiles’ trailing edges were aligned to achieve a straight trailing edge.

Figure 5.2. Whale 5412-4-16 airfoil geometry.

5.1.2.2 Cascade Design of Experiment

In this work the baseline NACA profiles is a priori selected as those of the 4-digit
family X412, so that the distance of maximum camber from the leading edge was
fixed to 40% and maximum thickness was set to 12% of the chord. The geometry of
the cascade was therefore selected changing the 1st digit of the NACA airfoil, the
amplitude A and wavelength Λ of the sinusoidal profile, the pitch (γ) and solidity
(σ) of the cascade. Operating conditions were changed by adjusting the inlet velocity
angle β1 at a constant Reynolds number Re=1.1M.

The possible range of variation of each parameter is summarized in Table 5.1. The
possible combinations of all the variations of input parameters are 86,000. To reduce

59

the number of experiments a CCDoE (Central Composite Design of Experiment)
approach was selected, and the number of simulations was reduced to 76. This
strategy was selected according to the same criteria adopted in [69]. Variability of
input parameters is summarized in Table 5.1 while a sketch of the cascade geometry
is given in Figure 5.3.

Table 5.1. Design of Experiment parameters.

min max step unit
airfoil parameters
NACA 1st 1 6 1 [-]

sinusoidal leading-edge parameters
Amplitude - A 4 16 2 [% of chord]
Wavelength - Λ 4 16 2 [% of chord]

cascade parameters
Pitch - γ 15 60 5 [◦]
Solidity - σ 0.32 1.32 0.2 [-]
β1 -4 13 1 [◦]

Figure 5.3. Reference cascade geometry.

5.1.2.3 Numerical setup

Numerical computations were carried out using OpenFOAM v-18.12 [10]. The
steady-state solution of the Reynolds Averaged Navier-Stokes equations with the
Spalart-Allmaras model [47] was computed using the simpleFoam solver with 2nd

order discretization for steady computations of incompressible flows. Convective

60

terms were discretized using central differences for velocity and upwind scheme for
turbulent quantities. The linearized system of equation was solved using, GAMG
solver for pressure equation and smoothSolver for velocity and ν̃.

The computational domain entails a blade-to-blade passage with periodic condi-
tions in the pitch-wise direction. In the span-wise direction the domain covers half of
the sinusoid at the leading edge with symmetry conditions, as shown in Figure 5.4.

Figure 5.4. Blade geometry in spanwise direction.

In stream-wise direction the computational domain extends 10 axial chords
up-stream of the leading edge and 30 axial chords downstream of the trailing edge.
These dimensions were validated against grid convergence starting from the full
sinusoid profile without symmetry conditions and 30 axial chords up-stream of
the leading edge and 60 axial chords down-stream of the trailing edge [69]. Grid
resolution depends upon wavelength, pitch and solidity and spans between 3M and
20M cells. For all the simulations the wall distance of the first cell is set to achieve
a y+ < 1.5, the maximum value obtained is y+ = 1.422.

Grid refinement around the airfoil was selected according to [69]. A grid-
independency analysis was carried out using different refinements generated through
the snappyHexMesh utility. A blowup of the grid around the airfoil is shown in
Figure 5.5. The tolerance of convergence was set to 10-3 for pressure and to 10-5 for
velocity and turbulence equations. Final tolerance of the simulation was checked
against convergence of CL, CD and δ. Simulation time is between 15000 and 90000
seconds.

Figure 5.5. Grid around the airfoil.

61

5.1.2.4 Data analysis and preprocessing

Machine Learning techniques rely on statistical analysis and are therefore strongly
influenced by the distributions and quality of data; in fact, they are seriously impaired
if the data shows large variations in magnitude. To avoid this, a normalization of
the original CFD data is required. In accordance with [70], a local normalization is
performed on each feature which are defined as any observable characteristic of the
flow:

F ′ = |f |
|f | + |N |

(5.1)

where F’ is the new normalized feature, f is the original feature, and N is the
normalization factor listed in Table 5.2, with U ref equal to the average inlet velocity
and Lref = 4U/S, where S is the magnitude of symmetric strain rate tensor (while
W is the magnitude of asymmetric strain rate tensor).

Table 5.2. Features Normalization.

Variables N
U U ref
p U2

ref
νt/ν U ref · Lref
ν̃/ν U ref · Lref
S, W U ref/Lref
ω U ref/Lref
∇(U) U ref/Lref
∇(p) U2

ref/Lref
∇(νt) U ref
∇(ν̃) U ref
DF [-]
LRANS Lref

This normalization technique, based on the properties of the local flow field, has
been previously tested in [115] and the positive results prove a better response of
the algorithm to this approach compared to other usual normalization techniques in
Machine Learning.

5.1.2.5 Unsupervised learning methodology: PCA and Gaussian Mixture
clustering

For this work, an unsupervised ML method was developed, as a combination of
features reduction and clustering. First, the correlation matrix (Figure 5.6) of
the features was analyzed to select the most suitable to predict flow deflection.
This resulted in the list of features in Table 5.2 that correspond to 28 scalars. As

62

the matrix shows a high number of uncorrelated features, Principal Component
Analysis (PCA) was used to reduce their number by projecting them on a latent
space according to dataset variance [92]. In this way, for each simulation the number
of principal components NPC was selected according to the elbow chart, Figure 5.7,
as the minimum NPC required to achieve a 95% of variance (for all the cases in DoE
9 ≤ NPC ≤ 12).

Figure 5.6. Features correlation matrix.

63

Figure 5.7. PCA elbow chart.

Vortical structures in the flow field were identified using an unsupervised cluster-
ing approach. In this case Gaussian Mixture (GM) was selected [92] among three
possible choices: k-Means, GM, and DB-SCAN. Among these, k-Means is the fastest
and more scalable, but even after hyperparameter tuning it was not possible to
achieve stable results over the complete dataset. On the contrary, both GM and
DB-SCAN performed well once tuned, yet GM was selected as it was found to be
much faster and scalable on parallel computations (DB-SCAN requires more than
20 times the time required by GM and unlike GM it is not properly parallelizable).

After hyperparameter tuning, GM was run on the NPC features. The number of
mixture components for the algorithm was selected according to Bayesian Information
Criterion (BIC) [94]. An example of a BIC plot is given in Figure 5.8. All the cases
in DoE resulted in several clusters between 8 ≤ NC ≤ 10. The cluster that entails
the largest number of individuals represents the freestream flow field. Such result is
coherent with the scope of the work, i.e. to build an automated procedure to identify
and remove it from the rest of the data. Therefore, it will be hereafter removed from
visualizations for clarity’s sake. The reader can assume it as NC=0.

Figure 5.8. Whale 5412-4-16, BIC score per model.

64

5.1.3 Identification of turbulent regions with GM clustering

GM clustering was capable of recognizing the vortical structures belonging to
boundary layer and turbulent wake. Figure 5.9 shows the clusters for three different
cascade geometries with different leading-edge profiles and incidence. First, turbulent
regions are identified as different boundary layer and wake regions. In particular one
cluster belongs to pressure side boundary layer, while two clusters are associated with
the turbulent wake according to the extent of separation. One cluster identifies the
impinging region on the leading edge and three the different regions of the boundary
layer over the suction surface. Two more clusters are due to the three-dimensional
structures released by the sinusoidal leading edge. All are recognizable for the 76
cases in the DoE and partially shown in Figure 5.9.

To improve the pattern recognition, in Figure 5.10 these clusters are shown
separately in 3D for one of the cases. NC 1, 2 and 3 identify different regions of the
boundary layer developing over the suction surface. In particular, NC=1 corresponds
to the region of the boundary layer that is more attached to the suction surface.
NC=2 is the portion in the unmodified part of the airfoil and NC=3 is the portion
on the modified leading edge. NC=4 shows the wake released at the trailing edge
(purple structures continue downstream but are cut to have consistent views), NC=5
and 6 include the turbulent structures released by the leading-edge bumps. NC=7
and 8 are the impinging regions corresponding to the leading-edge troughs and peaks
respectively and finally NC=9 the boundary layer on the pressure surface (visibility
is limited from the view to stay consistent with other figures).

Figure 5.9. Clustering at different referent sections.

65

Figure 5.10. Clusters for WHALE 5412-13-13, γ=53.4°, σ=1.174, i=13◦.

5.1.4 Metamodel for regression of deflection

Following the separation of boundary layer and wake, it was possible to compute
losses and thus to build a meta-model that predicts the deflection of whale cascades
within the range of the DoE as shown in Table 5.1. Using the following input features:
NACA 1st digit (maximum airfoil camber), A (sinusoidal amplitude), Λ (sinusoidal
wavelength), γ (pitch), σ (solidity), i (incidence), the meta-model was trained to
predict deflection δ, using RMSE as accuracy score.

Three different regression models were tested: Random Forest [116], Support
Vector Machine (SVM) [116] and XGBOOST [84]. The first two models from the
sklearn Python library [117], the latter from the XGBOOST Python library [84].
To achieve a higher generalization capability of the algorithm, the hyperparameters
of the model were optimized using a grid search process [118]. In so doing, the
best combination of hyperparameters was chosen among an initial selection of
hypothetical parameters. Such selection was aimed to obtain the maximum cross-
validation accuracy. After tuning of hyperparameters the one that was more resilient
to outliers proved to be XGBOOST [119]. Data from DoE were divided into a
training set with 70% of data and a test set with 30%. The algorithm shows a high
accuracy in both the training and test datasets, equal to 97.6 and 93.6% respectively
(Figure 5.11).

66

Figure 5.11. Accuracy of the meta-model for deflection during the training and testing
phases.

The trained meta-model allowed to fully map the DoE between extreme values
of input parameters as per Table 5.1, thus building a 6-dimensional hyperspace of
solutions to predict the correlation between incidence and deflection.

A partial graphical representation of the incidence-deflection relationships in the
DoE of serrated leading edges is shown in Figure 5.12 and Figure 5.13. In particular,
Figure 5.12 reports three different plots, showing how deflection between 0◦ and 10◦

can be achieved with A=4%, 8% or 12%. The plots show the average value of Λ
required to achieve each solidity and the standard deviation of Λ for each point as
error bars. As incidence increases from -4◦ to 12◦, increasing values of deflection
are achieved. However, a peculiar trend is found as there are sudden increases at
2◦ and 9◦. We can speculate that this is due to the limits of the DoE and that a
smoother transition could be achieved by varying the position of maximum camber
(here constant at 40% of the chord) following the results of [115]. Also, by increasing
A , the average value of Λ increases as well for high incidence (red marks at i ≥ 9◦

for A=8% and A=12%). In Figure 5.13 three different plots are presented, that
show how deflection between 0◦ and 10◦ can be achieved with Λ=4%, 8% or 12%.
In this case similar figures apply to the discussion, yet standard deviation of points
is on average larger than in Figure 5.12.

67

Figure 5.12. Deflection VS Incidence at A=4% (TOP), A=8% (MIDDLE) AND A=12%
(BOTTOM). Marker color according to Λ.

Figure 5.13. Deflection VS Incidence at Λ=4% (TOP), Λ=8% (MIDDLE) AND Λ=12%
(BOTTOM). Marker color according to A.

5.1.5 Final remarks

In this work an integrated method to derive a meta-model for deflection prediction
of a compressor cascade with modified sinusoidal leading edge is presented.

The method is based upon a series of 76 RANS computations of the flow field
in the cascade used to build a dataset according to a Central Composite DoE. The
method consists of unsupervised machine learning for feature reductions through PCA
and GM clustering to identify the boundary layer and wake inside the computational
domain and separating the far-field, the boundary layer on the airfoil and the

68

turbulent wake. While PCA was instrumental to speed-up the clustering algorithm
reducing the required number of features, the critical part of the work is constituted
by determining the clustering technique most suited for this task. GM was found as
the optimal trade-off between the speed of k-Means and the accuracy of DB-SCAN.

The data preliminary sorted using the clustering algorithm was exploited to
build a meta-model able to predict deflection of the cascade given its geometry, that
of the leading edge serrations and incidence. This was done by selecting XGBOOST
regression as it was found to be the most resilient against outliers in the original DoE.
The metamodel was able to predict the deflection of the cascade with an accuracy
of 93.67%.

69

5.2 Unsupervised Learning for high-fidelity compression
of large experimental dataset: an application on
HPT blade tip contouring

Rotor tip contouring is one of the most difficult and promising methods to enhance
the performance of high-speed turbines (HPT). In this study, a new unsupervised
machine learning approach based on dimensionality reduction is presented. By
advocating methods borne in image recognition, this methodology explores the
functional relationships between tip contouring geometry and aero-thermodynamic
performance of HPT blades. The procedure is validated against experimental
measurements carried out on the rotating turbine rig at von Karman Institute, which
operates on a rotor with multiple tip geometries divided over 7 sectors.

5.2.1 Introduction

Industry 4.0 refers to a new industrial paradigm that encourages the use of Big
Data (BD) and Artificial Intelligence (AI), as well as the creation of cyber-physical
systems (CPS) [120]. Through vertical, horizontal, and end-to-end integration of
industrial processes, CPS aims to establish a dynamic environment where smart
technologies can exchange data, assess production issues, and boost productivity
while reducing economic, time, and energy costs [121].

In the past decade, data from engineering processes have grown in scale, since
CPS-related technologies are primarily based on sharing and analyzing data from an
entire industrial production process [122]. The exploration of these unorganized data
pools has demanded the development of BD tools, that aim to explore and reorder
data collected from massive and heterogeneous resources [123]. With respect to
traditional datasets, BD involve both structured and unstructured data and require
more time and complex resources for in-depth analysis [124]. BD analytics are
now strategically found in most engineering applications, including environmental
monitoring [125], smart grids for renewable energy networks [126], manufacturing
process optimization [127], turbulence research [55], identification and quantification
of loss mechanisms during turbomachinery design processes [128], condition-based
maintenance and predictive maintenance based on SCADA signals [129], health care
applications [130] and face recognition [131].

The turbomachinery community is also reconsidering manufacturing processes in
light of the exponential growth in the usage of smart technologies, particularly those
that are connected to the creation of more intricate solutions to boost core engine
efficiency [33]. To this end, the use of surrogate models to speed up prediction time
and lower the overall number of numerical simulations and experimental campaigns
needed to perform design optimization is the state-of-the-art in turbomachinery
design at the time of writing [132]. However, standard approaches may fail in
capturing the complexities of the underlying physics, as the modelling accuracy
is limited by the number of features that are considered. As a result, designers
frequently rely on empirical approaches and review of analysis graphs to develop
design strategies because it is challenging or impracticable to explicitly describe these
features in advance. Employing AI models that can take into account every feature

70

required for design optimization may constitute an answer. In fact, in recent years,
the adoption of more sophisticated sensors and the growth in computing power have
made both high-resolution numerical simulations and experimental measurements
possible, making a vast quantity of data on turbomachinery performance available.
As an example, Cernat et al. in their work [133] used an experimental campaign
to assess the unsteady aerothermal field of various blade tip geometries, reporting
measurements of static pressure and heat transfer on the turbine rotor shroud that
were both time-averaged and time-resolved. Biedermann et al. have carried out
another extensive experimental campaign [134] to highlight how sinusoidal leading
edges of blades modify the acoustic signature of industrial fan rotors. Zhang et al.
[135] experimentally investigated the trajectory and dynamics of the tip leakage
vortex in axial flow pumps. Lavagnoli et al. [136] describe the full implementation
of a high-frequency capacitive sensor on the shroud of a large transonic turbine
stage. Consequently, today’s challenge is to assess the capabilities and limits of
BD approaches in turbomachinery performance analysis, with the goals of unveiling
useful information and assist the design process. However, in the exploration of
large datasets it is essential to reduce the number of features to a selection that
has the maximum informative capability. This process is called dimensionality
reduction that prevents dealing with a large amount of data and complicating
AI models. Principal Components Analysis (PCA) and Variational Autoencoders
(VAEs), a probabilistic form of Autoencoders, are the two main components of BD
dimensionality reduction approaches (AEs). In his research [137], Zagler trained
a VAE to simulate the compressor blade’s supersonic airflow characteristics under
various mass flow scenarios. Pongetti et al. [138] proved how AEs can be utilized
to provide compressed form insights from the complete flow field in forecasts of
quantities of interest, which can be used to improve the accuracy of AI models
employed in high load transonic compressor blade optimization cycles. Angelini et al.
[56] developed a dimensionality-reduced parametrization of complex tip geometries
based on PCA scores for gas turbine rotors, overcoming the limitations of discrete
topology approaches.

In similar multi-scale and multi-physic problems, it is difficult to find analyt-
ical modeling routes to correlate the geometric parametrization of the blade tip
and the aerodynamic and thermal performance. Therefore, this paper proposes
a novel and generalized Machine Learning (ML) methodology to exploit large ex-
perimental data sets using unsupervised dimensionality reduction tools in order to
investigate the causal relationships between various tip geometries and unsteady
aero-thermodynamic performance in HPT blading. The approach is validated using
an experimental dataset measured at the rotating turbine rig at the von Karman
Institute, which mounts a so-called rainbow rotor consisting of 48 blades separated
into 7 sectors based on the similarity of their various geometries.

5.2.2 Methodology

This manuscript reports on the use of a novel unsupervised ML workflow that,
advocating AI methods developed in the field of image recognition, aims at deriving
functional relationships between tip contouring geometry and aero-thermodynamic
performance of HPT blades rotor. The rotor features 48 rotor blades that share the

71

same baseline profile and are distributed among 7 distinct circumferential sectors.
Each sector hosts six or seven blades with a specific geometry, including: single
squealer, multi-cavity squealer or contoured profile. This testing method allows
simultaneous measurements on different tip geometries. The unsupervised ML
workflow is illustrated in Figure 5.14. According to such a description, the proposed
method:

• exploits an experimental dataset including unsteady heat transfer and pressure
measurements carried out on the casing of the HPT turbine test rig at the von
Karman Institute when operating of a series of tip contouring geometries;

• entails data augmentation with up-sampling of both geometry and measure-
ments;

• provides unsupervised dimensionality reduction by means of PCA on the tip
geometries, and AEs on the performance data;

• trains a learner, based on a neural network (ANN), to predict the latent
representation of thermo-fluid-dynamic data (performance) derived from the
AE using the Principal Components of the tip geometries as the input of the
ANN;

• finally decodes the latent representation and provides the corresponding per-
formance maps. The accuracy of the results is evaluated against the original
data using Structural-Similarity Index Measure (SSIM) as performance index
[139].

Figure 5.14. Unsupervised Machine Learning Method workflow.

5.2.2.1 Experimental dataset description

Figure 5.15 provides details of the tip designs that characterize the non-confidential
sector geometries. Available data include both information on the reduced tip
geometries and aero-thermodynamic measurements. The static pressure field above
the tip is acquired through an instrumented insert equipped with 66 pressure taps
on the casing: 33 fast-response piezo resistive pressure sensors and 33 pneumatic
lines sampled by an external pressure scanner. The unsteady casing heat flux is
measured by 35 double layer thin film gauges [133].

72

Figure 5.15. Rainbow rotor tip designs.

Data is mapped on two dimensional planes that can be also interpreted as images.
Reduced tip geometry, as reported in Figure 5.16, refers to radial measurements
at significant control locations on each of the 48 blades. Depending on the specific
baseline profile, the control points on the tip surface can range from 10 to 16. The
aero-thermodynamic performance is investigated using phase-lock-averaged (PLA)
pressure (P) and heat transfer (HT) measurements for each of the 7 sectors (Figure
5.17).

Figure 5.16. Key control points for reduced tip geometry of the B-sector baseline profile.

Figure 5.17. PLA measurements of heat transfer and pressure for C sector.

5.2.2.2 Data augmentation

The automatic detection and characterization of the blade tip shape within the
geometry’s point-cloud is the first step in the unsupervised machine learning process.
This is accomplished by utilizing a Python function that locates the tip perimeter
and assesses whether a grid point fits within it. The routine is based on the Concave
Hull algorithm [140]. The task of the algorithm is to compute the envelope of a set of

73

points in a plane, which generates convex or nonconvex hulls that represent the area
occupied by the given data points. The algorithm is based on a k-neighbor approach:
the point with the lowest y-axis value is the current vertex, then among its k-nearest
neighbors the one matching the largest right-hand turn from the horizontal line that
includes the current vertex is selected as the next vertex, and so on. Accordingly, after
identifying the envelope of the tip perimeter, the algorithm automatically assigns
the points that are identified in this way either the corresponding radius (59 mm in
the test case) or a radius of 0 mm if it lies outside the tip perimeter. Furthermore,
if a point is coincident with one of the key points reported in Figure 5.16, it assigns
the real radius measurement. In the second phase of the framework, synthetic data
for both performance and geometry are generated to enrich the training dataset.
Traditional ML approaches enrich training dataset with different operations on
images, such as cropping, rotating and resizing. However, such approach is not
feasible for fluid dynamic fields in a fixed reference system. Therefore, the dataset
was upsampled using a gaussian distribution of both geometry and performance. The
gaussian distributions are based on measurement tolerances for tip representation
and heat transfer, and measured rms for pressure. As summarized in Table 5.3, the
synthetic radius (R) is the sum of the actual radius (radiusactual) and its randomized
measurement tolerance (r1). The same applies to the synthetic heat transfer (HT),
which is the sum of the real heat transfer (htactual) and its randomized measurament
tolerance (ht1), while the synthetic pressure (P) is the sum of the static pressure
(pstatic) and the randomized rmsp (p1). The generated Synthetic database entails 5952
combinations of geometries and performance: 124 combinations for each original
blade. Figure 5.18 provides a comparison between synthetic heat transfer and
pressure data with the original data.

Table 5.3. Synthetic data generation criterion.

Radius Heat Transfer Pressure
Random data generation r1 = N × 0.0005, N ∈ (−1, 1) ht1 = N × 0.6, N ∈ (−1, 1) p1 = rmsp × N, N ∈ (−1, 1)
Synthetic Data R = radiusactual + 0r1 HT = htactual + ht1 P = pstatic + p1

5.2.2.3 Unsupervised dimensionality reduction

PRINCIPAL COMPONENTS ANALYSIS
The synthetic tip geometries database is constituted by 5952 different images of

possible tip characterizations with 11781 features, i.e., image pixels. The dataset
is then processed through a principal component analysis projection (PCA) [141].
This decomposition deriving a dimensionally reduced (latent) representation of each
synthetic geometry. This compression is achieved by projecting the data in a new
coordinate system in which the basis vectors are the directions with maximum
variance. The number of bases is chosen to limit the loss of information that
inevitably is associated with the projection on latent space.

In the case of images, a continuous analogical datum can be represented as a
matrix of pixels, which can then be combined column by column to create a 1D
vector. The total number of pixels determines the dimension of the vector space,
whereas the intensity variation of an image is expressed by the values of the pixels.

74

Figure 5.18. Synthetic and original performance fields comparison of 1 out of 124 pairs of
combinations for the 1st blade in sector C.

Six principal components are required for the training dataset to reduce the
information loss below 5%, as shown by the elbow diagram in Figure 5.19. The
corresponding loadings, also known as eigen-images (eigen-blades) are displayed in
Figure 5.20. In so doing, each database synthetic tip geometry can be obtained as a
linear combination of the original eigen-blades, weighted by their own score.

Figure 5.19. PCA elbow chart.

75

Figure 5.20. PCA graphical illustration.

AUTOENCODERS
Autoencoders (AEs) are a special class of neural network trained to learn a

compressed representation of data in an unsupervised manner to copy its input to its
output from a reduced encoding latent representation [102]. AEs consist of two parts:
an encoder function h=f(x) trained to map the input x to its latent representation h,
and a Decoder that produces a reconstruction function (r=g(h)), that maps the latent
representation back to the original form. The compression-reconstruction process
generates an error between reconstructed and original data. The minimization of
this error is the objective function of AE training.

In the reference dataset, mean squared error (MSE) is chosen as reconstruction
error metric. The encoding process is capable of derive a latent representation of
HT and pressure with a dimensionality of 16 features. The decoder then maps back
from the latent space to the original data. Figure 5.21 shows a pair of dimensionality
reduction results by AE: the upper part of the image shows the encoding in latent
representation and subsequent decoding of 1 synthetic heat transfer field out of 124
of the first blade of sector C, while the lower part shows the same procedure for 1
synthetic pressure field out 124 of the fourth blade of sector B.

Figure 5.21. Encoding and decoding procedure through AEs.

5.2.2.4 Regression

The compressed data can be more easily exploited for turbomachinery design and
optimization processes. For example, in this reference dataset it is possible to
correlate the blade tip contouring with the flow fields. This is conducted in a

76

latent space, treating geometry PCA scores and the encoded features from AEs as
input/output features. The relationship is here build exploiting an ANN, however
different algorithms may be easily applied. Table 5.4 details the final setup of
the MLP model optimized through a grid search algorithm [118], considering early
stopping to avoid overfitting.

Table 5.4. Regression.

Number of hidden layers 2
Number of neurons 32
Number of training epochs 1000
Activation function relu
Initial learning rate 1E-3
Optimizer ADAM
Cost function MSE
Batch size 250

Figure 5.22 show a schematic view of uses of the compressed data, with the
creation of a functional relationships between geometry and pressure/HT fields.

Figure 5.22. Example of network for predicting expected pressure (top) and heat transfer
fields (bottom).

This process can be also reversed to discover, given a desired field, the geometry
that is more likely to provide this distribution, Figure 5.23.

77

Figure 5.23. Example of network for predicting the expected reduced Rainbow rotor tip
geometry.

5.2.3 Validation of the framework

Results obtained from the validation of the framework are reported in Figure 5.24.
The agreement between reconstructed and experimentally sampled data has been
evaluated by means of the Structural Similarity Index Measure (SSIM). SSIM is
found in image processing, and it is used to assess the similarity between two images
[139].

A value of SSIM=1 indicates perfect similarity between two images, both in
terms of shape and contrast. A quasi-perfect similarity emerges when comparing the
original and expected pressure fields, while the similarity is complete for the heat
transfer fields (Table 5.5).

Figure 5.24. Example of SSIM evaluation between the original and expected fields of both
heat transfer and pressure for sector C.

78

Table 5.5. SSIM per sector.

SECTOR A B C
SSIMP 0.95 0.96 0.95
SSIMHT 0.99 0.99 0.99

5.2.4 Final remarks

In this manuscript an using unsupervised dimensionality reduction based on un-
supervised machine learning was proposed. The new method is tested against
experimental data from a turbine test rig at the von Karman Institute, which has 48
blades separated into 7 sectors with the same baseline rotor geometry but various
tip contouring geometries.

The aim of the framework is to discover causal relationships between different
tip geometries and unsteady aero-thermodynamic performance, exploiting methods
commonly applied to image and sound recognition. The models first up-sample
geometries and performance data and then perform unsupervised dimensionality
reduction through PCA and AEs to project the original data on latent spaces.
Latent space is eventually treated using regression algorithms for further processing
in turbomachinery design and optimization.

The resulting maps are in excellent agreement with the original data. A quasi-
perfect similarity (SSIMHT = 0.99 and SSIMP = 0.95), evaluated using similarity
algorithms, is achieved for both pressure and heat transfer fields.

79

5.3 A Machine Learning Framework for Condition-Based
Maintenance of Gensets in District Heating Net-
works

The growing interest in natural gas fired genset (a combination of engine and electric
generator used to generate electricity and/or heat) is driven by district heating
(DH) grid applications, especially in urban areas. Even if they represent customized
solutions, when used in DH duty regimes are driven by network thermal energy
demands resulting in discontinuous operation which affect their remaining useful
life. As such paying attention to effective condition-based maintenance has gained
momentum.

In this work, a novel unsupervised anomaly detection framework for gensets
in DH networks based on SCADA data is proposed. The framework relies on
multivariate ML regression models trained with a Leave-One-Out Cross-Validation
method. Model residuals generated during the testing phase are then post-processed
with a sliding threshold approach based on a rolling average. This methodology is
tested against 9 major failures occurred on the gas genset installed in the Aosta DH
plant, in Italy. The results show that the proposed framework succesfully detects
anomalies and anticipates SCADA alarms related to unscheduled downtimes.

5.3.1 Introduction

District heating (DH), also known as heat networks or teleheating, provides a platform
for heat supply based on the integration of low-carbon technologies, including
renewable energy sources, and thermal storage to improve overall efficiency and
minimize greenhouse gas emissions. In operation since the end of the XIX century,
DH represents an efficient way to provide heat to a large number of users in densely
populated urban areas [142, 143, 144, 145]. According to IEA’s 2021 report [146],
DH systems are important solutions to describe the heating sector in any NZE 2050
scenario [147].

DH systems are composed of thermal plants and a distribution network of
insulated pipes that deliver heat to the end users. The thermal plant is based on
technologies to generate heat from fossil fuels, renewable energy sourcess, or to
valorise waste heat [148]. In 2020 nearly 90% of heat was produced from fossil fuels
and one of the most common technologies in DH thermal power plants involves
the use of generator sets, with internal combustion engines (ICEs) either in CHP
configurations or directly coupled with heat pumps [149]. Wang et al. [150] reported
that in 2012 in China, more than 36% of total building energy demand was consumed
for residential heating purposes and about 62.9% of district heat was produced by
CHP systems. As another example, in Finland, DH accounts for about 50% of the
total heating market and in this context the city of Helsinki has around 20% of
district heat produced by genset with use of wastewater as low grade heat source
[151].

Gensets installed in those contexts, sepcifically when directly coupled with
heat pumps, can suffer from intermittent operation caused by the variability and
seasonality of the network heat demand. These operation modes often lead the

80

engine off-design and can be interpreted as the root-cause of genset anomalies and
failures. Therefore, the research on automatic Fault Detection (FD) of gensets
based on proper Condition-Based Maintenance (CBM) strategies is of paramount
importance to monitor operation, reduce downtime and ensure the reliability and
productivity of the overall heat supply process [152, 153].

Rooted in condition monitoring systems, CBM aims to establish frameworks
for the diagnosis of equipment under supervision indicating incipient failures using
sensor networks. CBM defines and monitors health indicators capable of signaling an
anomaly in case of deviation from reference values. Based on the evaluation of the
current state of the equipment, it is possible to identify faults and malfunctions at
early stage, thus allowing the timely planning of maintenance interventions. Despite
the fact that scheduled maintenance and CBM are complementary, CBM is by far
the most cost-effective approach and the one which enhances the life expectancy of
the equipment [154].

A recent review on ICE diagnostics [155] pointed out that a limited number of
papers dealt with analytical models specifically designed for the CBM of gensets
operating in DH networks. Most of the literature is dedicated to load prediction and
analysis of optimal network design, with few contributions focusing on operation
and maintenance of networks and distribution pipelines [156].

As reported in [157], Machine learning (ML) algorithms have been established
as a viable solution also in the DH arena, because they are easily adaptable to
changing conditions, capable of modelling non-linear phenomena, and they can
benefit from historical data readily available in modern control systems (e.g. SCADA
data). While ML approaches based on classification algorithms, such as the Bayesian
classifier or SVM, have been widely used for FD of ICEs [158, 65, 159, 160, 161,
162], regression algorithms seem to represent the most suitable option to perform an
effective CBM. This is because the first category of supervised ML tools only allows
for FD (based on training of events that have already occurred in the past), while
unsupervised models based on regression approaches, classified in [163] as Normal
Behaviour Models (NBM), are able to detect anomalies in real time that can signal
the onset of fault events in advance. As a general outline, NBM approaches for CBM
involve training a reference model representing the healthy status of the system, and
evaluating the deviation between the predicted and expected values in real time to
detect anomaly occurrence.

To date, most of the applications of NBM in unsupervised fault diagnosis in ICEs
fall in the automotive, aeronautical and naval sectors. Some examples include linear
regression [164], logistic regression [165], multiclass SVM [166], Extreme Gradient
Boosting (XGBoost) [68] and Random Forest [167]. In addition, different types of
ANNs have been used such as MLPs [168] or sparse-autoencoders [155].

However, NBM approaches can present a number of critical aspects when applied
to multivariate SCADA data. A first aspect concerns the management of the high
dimensionality of the data, which affects the response times of NBM models, making
them in many cases unsuitable for near real time applications typical of CBM. A
second aspect concerns the difficulty in isolating the interval for training the reference
model, since the seasonal operational variations of the signals together with the
possible presence of anomalies in the dataset make it difficult to identify the standard
dynamics of the system using, for example, standard clustering approaches. Finally,

81

a further critical aspect concerns the handling of residuals for alarm activation. In
this case, since residuals are evaluated as the difference between the value of a signal
predicted by the regression model trained under reference conditions and the actual
value of the same signal recorded by the SCADA sensor, in many cases they present
a high level of noise and typical signal variability, which makes it very challenging
to trigger alarms using standard control charts.

To overcome these limitations, this work proposes a framework for CBM of natural
gas gensets in DH networks, based on a NBM approach applied on multivariate
analysis of SCADA data. Specifically, the framework introduces a series of solutions
to effectively manage the entire data mining process, starting from the reduction of
dimensionality in the pre-processing phase by means of a feature selection approach,
passing through the training methods of the reference models with a Leave-One-Out
Cross-Validation approach [169], up to the prost-processing of residuals by means of
the introduction of a two-stage sliding treshold metric for triggering the alarms. For
the ML module two different regression algorithms are compared, namely XGBoost
and Multilayer Perceptron. The developed framework is tested against SCADA data
sampled on a 7.5 MW NG genset installed in the district heating plant of the city of
Aosta, Italy. The testing dataset includes 45 parameters with 5 minute sampling
during 16 months of engine operation (September 2019 to December 2020).

5.3.2 Anomaly Detection Framework

The proposed anomaly detection framework based on genset SCADA data is illus-
trated in Figure 5.25. As a first step the framework preprocesses SCADA event
logs and monitored signals in order to optimize the model performance and reduce
computational costs. Afterwards, all SCADA signals are first pre-processed in a data
cleaning phase and then a feature selection method based on a variable importance
approach is applied to select the best predictors for a specific target variable. This
optimises the performance of the ML model in terms of computational costs, making
it suitable for CBM purposes. In the next step, an XGBoost and an MLP are applied
independently for the construction of the reference model. In this case, the training
management of ML models is dealt with using a Leave-One-Out Cross-Validation
approach. This avoids any risk of overfitting, and guarantees greater robustness and
flexibility of the results by simulating an unsupervised application in real time (since
the month’s data used for testing were never seen during training). However, in
order to guarantee the effective learning of the recurring relational dynamics between
the different SCADA signals while taking into account the seasonal operational
variations typical of the analysed users, it is recommended to have at least one year
of data for the training phase. For the tesing phase, the framework provides for the
definition of a warning rule for the anomaly detection based on a sliding threshold
metric approach applied to the Local Residual Indicators (LRIs) of each parameter.
This approach involves an initial filtering of the noise of the local residual indicators
and a subsequent definition of a control chart that bases the triggering of the alarms
on the intensity and persistence of the filtered LRIs. This allows to report only
significant anomalies and thus limit the number of false alarms. Concerning the
SCADA event logs, after a preliminary filtering of the minor events, the framework
integrates the evaluation of mean-time between alarms (MTBA) indicator and the

82

quantification of the total downtime. In the final steps, the anomaly detection results
are evaluated with reference to the ability to identify specific precursors and early
detection of major faults included in the SCADA event logs. The entire framework is
implemented using Python 3.9 Scikit-Learn open source library [170]. A step-by-step
framework description is given in the following figure.

Figure 5.25. ML Framework for CBM, schematics.

5.3.3 SCADA signal and event log preprocessing

The preprocessing of the SCADA event logs filters all minor alarms unrelated to
specific faults or anomalies, along with events recorded during engine downtime.
The remaining logs are then used to estimate operation metrics such as the MTBA
and the total duration of the outage events until correct operations are recorded.
Those indicators represent key parameters for the training setup of the ML model.

The information content of each time series is evaluated using the Shannon
Entropy (H) metric [171]. Consequently, all parameters with H close to zero have
been removed from the training dataset and interpreted as not relevant. In this
way, all redundant or derived parameters have been filtered out. Furthermore, the
remaining signals have been preprocessed by applying a sigma rule to indentify and
remove extreme outliers related to measurement errors.

5.3.4 Feature Selection

The feature selection method has been implemented with a variables importance
approach, leveraging the Predictive Power Score (PPS) [76]. The output of the
PPS analysis is an asymmetric, data-type independent index that identifies the
relationships among the features in a data set. Specifically, through this algorithm
it is possible to understand how much one input variable affects the prediction of
the values of the target variable. In fact, the PPS is computed by considering a
single input feature (xi) per time that tries to predict the target variable (yi) via a
Decision Tree algorithm with the mean absolute error (MAE) as evaluation metric.

83

The index is expressed by the formula:

PPS = 1 −
MAExi,yi

model

MAEyi
naive

(5.2)

where MAExi,yi
model is the mean absolute error of the regression model that predicts

yi starting from a candidate xi and MAEyi
naive is relative to a naive model that

always predicts the median of yi. The index ranges from 0 (no predictive power)
to 1 (perfect predictive power). On this basis, as suggested by the authors of the
algorithm [76], a minimum PPS acceptability limit of 0.2 is consistently set and
for each specific target variable (yi) the vector of best predictors Bi is derived by
selectining from the set of all possible input features (xi) the ones that have a PPS
score above the set threshold. For example, as highlighted in Figure 5.26, for the
specific target variable (yi) the vector of best predictors Bi will be given by the
subset of input features ranging from x1 to x8.

Figure 5.26. Example of the criteria used for the selection of best predictors based on the
PPS score.

5.3.5 Machine Learning model

In the present work, two different regression algorithms are tested, namely a XGBoost
(XGB) [172] and a Multi-layer Perceptron (MLP) [173], as candidate for the ML
module. Both the regression algorithms were optimised using a grid search approach
[174] to select the best combination of hyper-parameters. Notably, since XGB belongs
to the category of ensemble algorithms and its structure is composed of several
decision trees, the results are independent from feature normalisation [104]. On the
contrary, being based on statistical analysis, Artificial Neural Network are strongly

84

influenced by the distribution and quality of the data and are highly dependent
on the order of magnitude of their input values. As a consequence, the predictor
may neglect or overestimate the influence of some features according to their values
[175]. To avoid this, the input signals for the MLP model are normalized using a
Standard Scaler. Then, the features predicted by the MLP are scaled back to their
original size through an inverse Standard Scaler transformation. This ensures the
comparability of results between the two ML models in terms of prediction scores.
Both models work by identifying within the training dataset one parameter at a
time as the target variable (yi) and exploiting all the others to predict it.

Figure 5.27. Leave-One-Out Cross-validation schematics.

Training Setup. The training model adopts a Leave-One-Out Cross-Validation
method [169], due to the difficulty of isolating reference operating conditions with
standard unsupervised approaches due to the highly discontinuous operation (e.g.
in the period March to September) combined with the strong seasonality of the
signals. In detail, as shown in Figure 5.27, one month is cyclically isolated as the
testing dataset Dtest and the model is trained on the remaining months split between
training Dtrain and validation Dval datasets. This approach, meant to avoid possible
overfitting, is based on the hypothesis that most of the operational data over such
a long period of time refers to normal engine operation. To further reduce the
possible presence of failure precursors in the reference model, all downtimes and
a period prior to them equal to the value of the MTBA index calculated during
the preprocessing phase of the SCADA logs have been excluded from Dtrain. By
applying this training logic, a specific regression model (ML Modeli) for each target
variable (yi) is obtained, harnessing the vector of best predictors (Bi) previously
identified.

The accuracy of the two models during the training phase on the reference period
has been evaluated with customary scores i.e. MAE (Mean Absolute Error), MSE

85

(Mean Squared Error), RMSE (Root Mean Squared Error), MDAPE (Mean Absolute
Percentage Error).

5.3.6 Residual Indicator definition

The CBM framework entails, then, an anomaly detection rule to enable the early
warning of incipient failures included in the test dataset. To this end, a Local
Residual Indicator (LRI) for each monitored variable [129] is defined. The LRI of
each signal is defined as the absolute value of the difference between the actual
values (f) and those predicted by the models trained on the reference period (fp):

LRI = |f − fp| (5.3)

Therefore, with the aim of triggering an early warning before the occurrence of
faults, while limiting false alarms associated with instantaneous peaks of LRIs, a
sliding threshold metric based on a moving average is developed. In particular, as
shown in Figure 5.28, an alarm is triggered for a signal when the following condition
is satisfied for P consecutive time steps:

LRIi ≥ 0.5 · 1
W

Σi
j=i−W LRIj (5.4)

where LRIi is the local residual indicator of the signal at time i and W is the length
of the sliding window. The value of W is selected according to the periodicity of
the observed phenomena and, in this case, is set to 288 (24 hours). Thus, when
the average LRI value of a signal undergoes a variation ≥50% compared to the last
24 recorded hours and this variation persists for at least P time steps, an alarm is
triggered for the specific sensor of that LRI. The persistence threshold P was set to
72 (6 hours) and has been optimized to effectively remove residual noise.

Figure 5.28. Sliding threshold metric.

This approach is particularly suitable for this type of dataset because a standard
control chart with a fixed threshold on the size of residuals may be ineffective due to

86

their extreme variability in different seasons. Moreover, it guarantees high robustness
in handling the noise of the residuals of the models.

Based on such a warning rule, the performance of the models in terms of anomaly
detection capability on each cross-validation datasets being cyclically isolated is
finally evaluated. This assessment aims to quantify the ability of each warning to
anticipate the major failure events included in the SCADA log.

5.3.7 Dataset description

Data is collected from a natural gas genset installed in the Aosta District heating
plant, which is equipped with a 16-cylinder turbocharged ICE. The engine has a
nominal electric power output of 7.5 MWe, and it is directly coupled to a 17.5 MWt
heat pump. ICE technical specifications are given in Table 5.6.

Table 5.6. Technical specifications of the engine

N. of Cylinders 16 [–]
Engine Speed 720 [r/min]
Electrical Output 7235 [kW]
Charge Air Cooler HT 1305 [kW]
Charge Air Cooler LT 490 [kW]
Lube Oil Cooler 730 [kW]
Jacket Water Cooler 925 [kW]
Exhaust Mass 39600 [kg/h]
Exhaust Gas Temperature 355 [°C]

A SCADA system monitors different operating parameters which are collected
by the main components of the genset togheter with environmental measurements.
In detail, the starting dataset includes 45 parameters sampled every 5 minutes for a
period of 15 months: from September 2019 to December 2020. After the application
of the signal preprocessing described before, the total number is reduced to 33
significant parameters listed in Table 5.7.

Table 5.7. List of SCADA signals

Signal ID Description
P01-P19, P23, P25-P26 Cylinder, exhaust and intake temperatures
P20-P22, P24 Cylinder and fuel subsystem pressures
P27-P31 Generator phase and bearing temperatures
P32 Active Power
P33 Ambient Temperature

87

Table 5.8. Event logs

Month Event ID SCADA Event Log Type of Event Start End Total Duration
(dd/mm/yy; hh:mm) (dd/mm/yy; hh:mm) (hh)

Oct-2020 S_01_10 Shutdown from Main Control Normal Stop 01/10/2020; 21:30 02/10/2020; 07:30 10,00
S_02_10 Shutdown from Main Control Normal Stop 02/10/2020; 14:20 02/10/2020; 16:25 2,08
S_03_10 Shutdown from Main Control Normal Stop 03/10/2020; 00:00 02/10/2020; 07:25 7,42
DS_05_10 Exh Temp Deviation Cylinder Derating + Unscheduled Downtime 05/10/2020; 03:10 05/10/2020; 13:55 10,75
S_06_10 Shutdown from Main Control Normal Stop 06/10/2020; 08:35 06/10/2020; 10:10 1,58
S_07_10 Emergency Stop Activated Unscheduled Downtime 07/10/2020; 07:30 12/10/2020; 10:30 123
DS_15_10 Exh Temp Deviation Cylinder Derating + Unscheduled Downtime 15/10/2020; 18:55 15/10/2020; 23:45 10,75
S_20_10 Emergency Stop Activated Unscheduled Downtime 20/10/2020; 10:45 20/10/2020; 16:00 5,25
DS_26_10 Exh Temp Deviation Cylinder Derating + Unscheduled Downtime 26/10/2020; 04:30 26/10/2020; 15:35 11,08

Nov-2020 S_06_11 Shutdown from Main Control Normal Stop 06/11/2020; 21:30 07/11/2020; 00:10 2,67
S_08_11 Shutdown from Main Control Normal Stop 08/11/2020; 03:16 08/11/2020; 05:00 1,73
S_09_11 Shutdown from Main Control Normal Stop 09/11/2020; 08:22 09/11/2020; 09:40 1,30
S_13_11 Emergency Stop Activated Unscheduled Downtime 13/11/2020; 10:13 13/11/2020; 14:15 4,03
D_14_11 Exh Temp Deviation Cylinder Derating 14/11/2020; 00:47 14/11/2020; 06:55 6,13
D_16_11 Charge Air Temp After Cooler High Derating 16/11/2020; 13:30 16/11/2020; 14:05 0,58
S_19_11 Emergency Stop Activated Unscheduled Downtime 19/11/2020; 02:55 21/11/2020; 03:15 48,33
S_26_11 Shutdown from Main Control Normal Stop 26/11/2020; 19:40 26/11/2020; 21:05 1,42

Dic-2020 D_12_12 Charge Air Temp After Cooler High Derating 12/12/2020; 01:15 12/12/2020; 01:35 0,33
S_13_12 Shutdown from Main Control Normal Stop 13/12/2020; 20:09 13/12/2020; 21:05 0,93
DS_16_12 Generator Stator Temp Windings Derating + Unscheduled Downtime 16/12/2020; 11:15 16/12/2020; 12:20 1,08
S_19_12 Shutdown from Main Control Normal Stop 19/12/2020; 05:13 19/12/2020; 06:40 1,45
S_21_12 Emergency stop Activated Unscheduled Downtime 21/12/2020; 06:11 21/12/2020; 18:35 12,40
D_21_12 Charge Air Temp After Cooler High Derating 21/12/2020; 00:40 21/12/2020; 04:30 3,83

In addition to the SCADA signals, to assess the anomaly detection capability of
the framework, all the alarms recorded by the SCADA system in the period October-
December 2020 are considered. During this period several major failures occurred.
After filtering out the minor alarms, the remaining events included scheduled (i.e.
normal stop) and unscheduled downtime (i.e. emergency stop or outages after engine
deratings). Table 5.8 lists all the filtered SCADA events in the reference period.

5.3.8 ML settings and prediction errors

Identical training and cross-validation phases have been carried out for the ML
models, namely XGB and MLP algorithms. The dataset is split into training set
Dtrain (70%) and a validation set Dval (30%). The testing set Dtest consists of a
specific month cyclically isolated from the available data and includes the time
periods of failure occurrences.

The XGB model learning task was set to linear regression and Table 5.9 lists the
other hyperparameters optimized through a grid search algorithm. Table 5.10, on
the other hand, details the final setup of the MLP model, considering early stopping
to avoid overfitting.

Table 5.9. Hyperparameters of the XGB Model.

Subsampling of columns 0.20
Learning rate 0.10
Max depth 50
Nr. of trees 150
Nr. of parallel trees 20
Alpha 0
Lambda 1

88

Table 5.10. Hyperparameters of the MLP Model.

Nr. of Neurons 22
Nr. of hidden layer 1
Nr. of training epochs 150
Activation function relu
Initial learning rate 1E-5
Optimizer ADAM
Batch size 1/50th

The ML models’ predictions are evaluated in terms of the reconstruction errors
of all SCADA signals (during the training phase the predicted values are compared
with the actual ones). As can be seen from Table 5.11, XGB outperforms MLP in
terms of customary scores (e.g. MAE, MSE, RMSE and MDAPE).

Table 5.11. Reconstruction errors for the proposed ML models.

XGBoost MLP
MAE 0.04 0.11
MSE 0.10 0.14
RMSE 0.21 0.31
MDAPE 0.01 0.13

5.3.9 Anomaly detection results

For the evaluation of the anomaly detection capabilities, the results of the testing
phase during the period October-December 2020 are considered.

Specifically, ML model results are discussed by plotting the LRIs against the
relative warnings activated on the individual parameters after the application of the
sliding threshold metrics. Furthermore, as a reference to identify engine derating
and shutdown, the graph of the active power together with the details of the main
alarms recorded by the SCADA system in the same time interval are shown.

Figure 5.29, first, illustrates the results in October 2020. Figure 5.29a shows the
active power, with the detail of SCADA event logs recorded in that period. Event
IDs refer to Table 5.8. Figures 5.29b and 5.29c show the LRI trends together with
the warnings triggered by the framework (highlighted in dashed red lines).

By analysing October 2020 SCADA logs, a total of five significant events can be
isolated. Those events include three anomalies that resulted in a preliminary power
output derating followed by the engine shutdown, along with two emergency stops
linked to unscheduled downtimes. Regarding the first category of events it is worth
noting that all the shutdowns are anticipated by cylinder temperature anomalies
and that the application of the proposed framework allows the early detection of
such a precursors. In detail, concerning the events detected on 05/10/2020 (event
ID: DS_05_10) and 15/10/2020 (event ID: DS_15_10) respectively, a significant
deviation of the LRI associated with cylinder temperature parameter (P16) can be
seen both in Figure 5.29b and 5.29c, which leads to early warnings with respect to
the actual SCADA log (details of the advance times relative to the two ML models

89

can be seen in Table 5.12). Furthermore, while the warning on the S_15_10 event
is triggered by the two models at the same time, for the DS_05_10 event the MLP
model detects the anomaly about ten hours earlier than the XGB model. The third
derating event followed by an engine shutdown was recorded on 26/10/2020 (event
ID: DS_26_10) and concerned a high temperature alarm on cylinder 5B (P13)
detected on 26/10/2020. Also in this case in Figure 5.29a and 5.29b it is possible
to notice a specific precursor signalled by a significant variation of the LRI of the
parameter P13 that leads to a common warning both in the MLP and XGB models
on 23/10/2020, about three days in advance compared to the SCADA log.

90

(a) Active Power

(b) MLP Model Results

(c) XGB Model Results

Figure 5.29. Results of the ML Framework for CBM with reference to October 2020. 5.29a
shows the trend of the active power, with the details of the SCADA events recorded in
that period (black dashed line); 5.29b and 5.29c show the trend of the Local Residual
Indicators (LRIs) relating to the parameters that generated specific warnings (red dashed
line) after the application of the sliding threshold metric for the MLP and XGB models,
respectively.

91

(a) Active Power

(b) MLP Model Results

(c) XGB Model Results

Figure 5.30. Results of the ML Framework for CBM with reference to November and
Dicember 2020. 5.30a shows the trend of the active power, with the details of the
SCADA events recorded in that period (black dashed line); 5.30b and 5.30c show the
trend of the Local Residual Indicators (LRIs) relating to the parameters that generated
specific warnings (red dashed line) after the application of the sliding threshold metric
for the MLP and XGB models, respectively.

92

Even more interesting are the advances found before the emergency stops on
07/10/2020 (event ID: S_07_10) and 20/10/2020 (event ID: S_20_10) since they
are not associated with a specific SCADA anomaly alarm on a component of the
gas genset. With reference to these unscheduled downtimes, the results of the ML
models show an anomaly on the LRI of cylynder temperature (P08) which causes a
warning three days in advance of the first event (84 hours for XGBoost and 62 hours
for MLP). Subsequently, the indicator of parameter P08 returns to normal values
after the maintenance intervention, as visible in the active power plot in Figure
5.29a), and then deviates significantly starting again from 16/10/2020 (see Figures
5.29b and 5.29c) up to the emergency stop event recorded on 20/10/2020.

In a similar fashion, Figure 5.30, compares the results of the CBM method during
the period of November and December 2020. Looking at the events, Table 5.8,
four significant unscheduled downtimes have been reported by the SCADA system
in these two months. Those events include three emergency stop alarms recorded
respectively on 11/13/2020 (event ID: S_13_11), 11/19/2020 (event ID: S_19_11),
and 12/21/2020 (event ID: S_21_12), and a shutdown transient due to an anomaly
found on the generator temperature on 12/16/2020 (event ID: DS_16_12). From a
global analysis of the LRI trends, shown in Figure 5.30b and 5.30c, different anomalies
appeared during period under scrutiny, affecting engine cylinders and the generator.
In detail, the anomalies already found on cylinder exhaust temperature, correlated
with two long outages in October 2020, recur from 13/11/2020, when a warning on the
involved parameter was triggered by both MLP (Figure 5.30b) and XGBoost (Figure
5.30c) models. This significant deviation of the P08 parameter indicator persists for
about three days until the emergency stop recorded on 13/11/2020. Immediately
after this 4-hour engine outages, a new significant anomaly was detected by both
models on P08 involving also other cylinder temperature and anticipating the failure
detected by SCADA on 19/11/2020 (event S_19_11).

Of particular interest are the results obtained with reference to the other two
significant events recorded by the SCADA in December 2020, namely DS_16_12 and
S_21_12. This is because, while in the evaluation of the results conducted so far, the
warnings detected by XGBoost and MLP have always involved the same parameters
(with some divergence only on the anticipation of SCADA events), in these cases the
two models highlight different precursors. In particular, the XGBoost LRIs (Figure
5.30c) highlight on 04/12/2020 a marked variation in the three temperatures of the
generator related variables, phases and bearings (P27-P31). This results in a warning
that anticipates the SCADA log DS_16_12 by about twelve days. Comparing these
results with those of the MLP model (Figure 5.30b), the same significant deviation
is not noticed on the generator stator winding, but only an alarm is triggered on the
two generator bearings. As for the unscheduled machine downtime of 12/21/2020,
it is detected about 5 days in advance by both models, with different precursors:
exhaust cylinder temperatures (P01-P19) for the XGB model and generator bearing
temperatures (P27-P31) for the MLP model.

Eventually, Table 5.12 summarizes the results discussed so far. In particular, the
ability of each of the two ML models to identify specific precursors for major faults
included in the SCADA log is assessed and then the time of advance warning of the
model relative to the occurrence of the reference SCADA alarm is quantified.

93

Table 5.12. Unscheduled downtime events recorded by the SCADA system in the period
October-December 2020.

Event ID XGB Results MLP Results
Detection Anticipation Precursors Detection Anticipation Precursors
(dd/mm/yy; hh/mm) (hh) ID (dd/mm/yy; hh/mm) (hh) ID

DS_05_10 04/10/2020; 23:30 4 P16 04/10/2020; 13:45 14 P16
S_07_10 03/10/2020; 20:25 84 P08 04/10/2020; 17:20 62 P08

06/10/2020; 13:15 18 P13, P16 06/10/2020; 14:05 17 P13, P16
DS_15_10 14/10/2020; 06:40 37 P16 14/10/2020; 08:10 34 P16
S_20_10 16/10/2020; 06:00 101 P08 16/10/2020; 07:05 100 P08
DS_26_10 23/10/2020; 09:30 67 P13 23/10/2020; 10:45 65 P13
S_13_11 10/11/2020; 12:55 69 P08 10/11/2020; 14:15 68 P08
S_19_11 14/11/2020; 00:25 123 P04, P08 14/11/2020; 01:05 122 P04, P08
DS_16_12 04/12/2020; 00:10 299 P28, P29, P30 04/12/2020; 01:25 298 P29, P31

04/12/2020; 00:20 299 P04, P31, P32 - - -
S_21_12 16/12/2020; 12:05 114 P04, P08 16/12/2020; 13:00 113 P31, P32

5.3.10 Final Remarks

This work presents an unsupervised anomaly detection framework for the CBM of
gas genset in DH networks based on SCADA data. The core of the method is a ML
model, which considers the whole SCADA data stream as input and predicts one
signal at the time. For this purpose, two different models are tested, namely MLP
and XGBoost regressor. These models was trained to learn the normal behaviour of
the system based on a Leave-One-Out Cross-Validation approach and, based on the
model reconstruction errors, a Local Residual Indicator (LRI) was defined for each
monitored variable. Therefore, with the aim of triggering an early warning before the
occurrence of faults, while limiting false alarms associated with instantaneous peaks
in LRIs, a sliding threshold metric based on a moving average is developed . In this
way, a warning is triggered for the signals having the highest reconstruction error,
allowing to isolate the parameters mostly involved in the anomaly for troubleshooting
purposes.

The proposed method was validated on 5-minute SCADA data collected from
a 7.5 MWe natural gas genset installed in the District Heating Plant of the Aosta
city, in Italy. The model was trained on normal behaviour data isolated using
an unsupervised method and was tested on anomalous periods selected using the
SCADA event log. Results show that the proposed multivariate nowcasting approach
allows to unveil hidden precursor dynamics that anticipate all the main fault events
occurred in the investigated period. It is interesting to note that these anomalies was
not detected by the single-variable operational control approaches typical of SCADA
control systems. In addition, even if both the ML models tested anticipate the
same faults with similar advance times, the better performance of XGB compared
to MLP is evident in terms of training customary scores for the nowcasting of single
parameters (Table 5.11). This is reflected in a better accuracy in detecting specific
fault precursors, as in the case of the LRIs shown in Figure 5.30, where, with reference
to a fault occurred on 16/12/2020 which involved the generator, XGB reports about
twelve days in advance an anomaly on the temperature stator windings, which was
not caught by MLP. Since the proposed multivariate framework is unsupervised and
completely data-driven, it fits well with the purposes of the CBM and also can be
potentially applicable to any gas genset equipped with a SCADA system.

Chapter 6

Conclusions

Although the concept of the Digital Twin is decades old, its real impact is only
becoming apparent in recent years. The digital market is and will continue to grow
as more and more industries adopt this technology owing to its potential in reducing
operational costs and time, increasing the productivity of the existing system,
improving maintenance, easing accessibility, creating a safer work environment, and
other purposes yet to be realized. Indeed, identifying and understanding the potential
of the Digital Twin in any industry and integrating it appropriately provides an
opportunity to develop tools for Industry 4.0. that offer numerous benefits such
as simulation and prediction capabilities. Digital Twin technology, when combined
with other technologies and/or other Digital Twins, will open the door to new
applications and potentials, and even though there are many challenges in developing
this technology, the benefits are far greater. The benefits include reduced costs,
increased results, remote access, and rationalization of services and resources, all
of which can be achieved by operating the system digitally instead of physically,
without any additional material or investment costs and in less time; while the
challenges can be attributed to the novelty of the technology: lack of consensus
on its definition and value, lack of standards and regulations, lack of competent
engineers and technicians, and lack of supporting software.

As a result, Digital Twin is still an emerging technology and the infrastructure
for its implementation needs to be improved to increase its effectiveness. Therefore,
to create a successful Digital Twin, further researches on technologies such as
high-performance computing technology, machine learning technology, real-time
virtual-real interactive technology, intelligent perception and connection technology,
among others, are needed. However, in recent years, thanks to the introduction
of Artificial Intelligence and Machine Learning into manufacturing processes that
leverage Big Data collected from them, Digital Twinning is evolving at a rapid rate,
and many new opportunities are emerging.

This thesis proposes new Artificial Intelligence strategies and Machine Learning
frameworks for the implementation of Digital Twin and Cyber-Physical systems that
realize the transition from classical design, performance optimization and mainte-
nance of energy systems to advanced procedures inspired by Industry 4.0. Great
efforts have been made to intertwine Machine Learning techniques with standard
design and performance analysis procedures for energy systems and turbomachinery.

96

Learning algorithms have been thoroughly analyzed and described, highlighting
their advantages and limitations and evaluating their role in transforming the entire
energy industry to achieve increased efficiency with reduced costs.

The first chapter provides an overview of the background and motivation for
this work, while the key concepts of Cyber-Physical Systems, Digital Twin, and
Digital Thread for energy systems are discussed in the second chapter. The growing
interest in those technologies by designers of turbomachinery and energy systems is
explained by the many benefits that would be gained by adopting them: forecasting,
design, testing and monitoring capabilities, in a real-time digital environment, would
significantly reduce costs and time consumption at multiple stages of product life.

The third chapter explores the crucial role of Artificial Intelligence tools in
developing a successful Digital Twin model. In fact, the core of a Digital Twin
is based on data, and the information contained therein facilitates all production
and monitoring activities, enabling a holistic understanding of the entire process.
Therefore, a successful Digital Twin relies on continuously evolving digitization
technologies such as Machine Learning.

All the machine learning algorithms that have been implemented in this work
and the importance of data analysis as a preprocessing tool to improve data quality
before any further analysis are detailed and discussed in the fourth chapter.

The last chapter is the focus of this thesis, in which new design and maintenance
concepts for turbomachinery and energy systems are presented that provide a digital
transition from classical and most often empirical approaches through machine
learning strategies:

• the first application deals with turbomachinery design via CFD and presents
an integrated method to derive a meta-model for predicting the deflection of a
modified sinusoidal leading-edge cascade; the method is based on unsupervised
learning techniques and explores a dataset that includes 76 RANS computations
of the flow field in a cascade according to the Central Composite Design of
Experiment;

• the second application concerns turbomachinery design through experimental
campaigns and illustrates a high-fidelity dimensionality reduction procedure
of a large experimental dataset from HPT with unsupervised learning. The
goal of the method is to discover the causal relationship between different
tip geometries and performance by first up-sampling the geometries and
performance data and then unsupervised dimensionality reduction through
PCA and AE to project the original data onto latent spaces, which are treated
with regression algorithms for further processing in turbomachinery design
and optimization;

• the third application is based on energy system operation monitoring and
involves condition-based maintenance of gensets with a machine learning
framework. The framework is trained with a Leave-One-Out Cross-Validation
approach to learn normal behavior of the system and a Local Residual Indicator
is defined and processed for triggering early warnings that anticipate failures.

To conclude, AI algorithms play an important role in the development of DTs for
decision making at any level of the product life cycle. However, selecting a particular

97

model from hundreds of ML models with a customized configuration is challenging,
since each artificial intelligence approach has different levels of accuracy and efficiency
with different applications on different datasets. Therefore, as highlighted in this
thesis, depending on the reason and application of a DT, selecting the best ML
algorithm and feature set is challenging but at the same time essential.

Bibliography

[1] Morteza Ghobakhloo. “Industry 4.0, digitization, and opportunities for sus-
tainability”. In: Journal of cleaner production 252 (2020), p. 119869.

[2] Elena Goosen et al. “Toward industry 4.0 in energy sector”. In: IOP Confer-
ence Series: Materials Science and Engineering. Vol. 865. 1. IOP Publishing.
2020, p. 012020.

[3] Abdus Samad and Kwang-Yong Kim. “Surrogate based optimization tech-
niques for aerodynamic design of turbomachinery”. In: International Journal
of Fluid Machinery and Systems 2.2 (2009), pp. 179–188.

[4] David B Durocher and Gerry R Feldmeier. “Predictive versus preventive
maintenance”. In: IEEE Industry Applications Magazine 10.5 (2004), pp. 12–
21.

[5] Kyu Tae Park et al. “Cyber physical energy system for saving energy of the
dyeing process with industrial internet of things and manufacturing big data”.
In: International Journal of Precision Engineering and Manufacturing-Green
Technology 7.1 (2020), pp. 219–238.

[6] Victor Singh and Karen E Willcox. “Engineering design with digital thread”.
In: AIAA Journal 56.11 (2018), pp. 4515–4528.

[7] M Mazhar Rathore et al. “The role of ai, machine learning, and big data in dig-
ital twinning: A systematic literature review, challenges, and opportunities”.
In: IEEE Access 9 (2021), pp. 32030–32052.

[8] Oliver Kramer. “Scikit-learn”. In: Machine learning for evolution strategies.
Springer, 2016, pp. 45–53.

[9] Peter Goldsborough. “A tour of tensorflow”. In: arXiv preprint arXiv:1610.01178
(2016).

[10] Goong Chen et al. “OpenFOAM for computational fluid dynamics”. In:
Notices of the AMS 61.4 (2014), pp. 354–363.

[11] Takeru Kuroiwa, Yusuke Aoyama, and Noriyuki Kushiro. “Testing environ-
ment for CPS by cooperating model checking with execution testing”. In:
Procedia Computer Science 96 (2016), pp. 1341–1350.

[12] A. V. Jha et al. “Smart Grid Cyber-Physical Systems: Communication Tech-
nologies, Standards and Challenges”. In: Wirel. Netw. 27.4 (2021), 2595–2613.
issn: 1022-0038. doi: 10.1007/s11276-021-02579-1. url: https://doi.
org/10.1007/s11276-021-02579-1.

https://doi.org/10.1007/s11276-021-02579-1
https://doi.org/10.1007/s11276-021-02579-1
https://doi.org/10.1007/s11276-021-02579-1

100

[13] Fan Zhang et al. “A novel CPS system for evaluating a neural-machine inter-
face for artificial legs”. In: 2011 IEEE/ACM Second International Conference
on Cyber-Physical Systems. IEEE. 2011, pp. 67–76.

[14] Stephan Weyer et al. “Future modeling and simulation of CPS-based factories:
an example from the automotive industry”. In: Ifac-Papersonline 49.31 (2016),
pp. 97–102.

[15] Gang Xiong et al. “Cyber-physical-social system in intelligent transportation”.
In: IEEE/CAA Journal of Automatica Sinica 2.3 (2015), pp. 320–333.

[16] Jay Taneja, Randy Katz, and David Culler. “Defining cps challenges in
a sustainable electricity grid”. In: 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems. IEEE. 2012, pp. 119–128.

[17] Paulo Leitão, Armando Walter Colombo, and Stamatis Karnouskos. “Indus-
trial automation based on cyber-physical systems technologies: Prototype
implementations and challenges”. In: Computers in industry 81 (2016), pp. 11–
25.

[18] Ming-Chuan Chiu, Chien-De Tsai, and Tung-Lung Li. “An integrative machine
learning method to improve fault detection and productivity performance in
a cyber-physical system”. In: Journal of Computing and Information Science
in Engineering 20.2 (2020), p. 021009.

[19] Ragunathan Rajkumar et al. “Cyber-physical systems: the next computing
revolution”. In: Design automation conference. IEEE. 2010, pp. 731–736.

[20] Walid Taha. “Lecture Notes on Cyber-Physical Systems”. In: (2013).
[21] Aaron Parrott and Lane Warshaw. “Industry 4.0 and the digital twin”. In:

Deloitte Insights (2017).
[22] Maulshree Singh et al. “Digital twin: Origin to future”. In: Applied System

Innovation 4.2 (2021), p. 36.
[23] M Grieves. “Origins of the Digital Twin Concept. 2016”. In: Publisher Full

Text ().
[24] Michael W Grieves. “Product lifecycle management: the new paradigm for

enterprises”. In: International Journal of Product Development 2.1-2 (2005),
pp. 71–84.

[25] Michael Grieves. “Back to the future: product lifecycle management and
the virtualization of product information”. In: Product Realization. Springer,
2009, pp. 1–13.

[26] Mike Shafto et al. “Modeling, simulation, information technology & processing
roadmap”. In: National Aeronautics and Space Administration 32.2012 (2012),
pp. 1–38.

[27] Michael Grieves and John Vickers. “Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems”. In: Transdisciplinary
perspectives on complex systems. Springer, 2017, pp. 85–113.

[28] Henrique Almeida et al. Progress in Digital and Physical Manufacturing.
Springer, 2020.

101

[29] Fei Tao et al. “Digital twins and cyber–physical systems toward smart manu-
facturing and industry 4.0: Correlation and comparison”. In: Engineering 5.4
(2019), pp. 653–661.

[30] David Jones et al. “Characterising the Digital Twin: A systematic literature
review”. In: CIRP Journal of Manufacturing Science and Technology 29
(2020), pp. 36–52.

[31] C Miskinis. “What does a digital thread mean and how it differs from
digital twin”. In: Retrieved from Challenge Advisory: https://www. challenge.
org/insights/digital-twin-anddigital-thread (2018).

[32] Edward Kraft. “HPCMP CREATE™-AV and the air force digital thread”.
In: 53rd AIAA Aerospace Sciences Meeting. 2015, p. 0042.

[33] Rong Xie et al. “Digital twin technologies for turbomachinery in a life cycle
perspective: a review”. In: Sustainability 13.5 (2021), p. 2495.

[34] Alessandro Baldassarre et al. “Towards a digital twin realization of the blade
system design study wind turbine blade”. In: Wind and Structures 28.5 (2019),
pp. 271–284.

[35] Iris Graessler and Alexander Poehler. “Intelligent control of an assembly
station by integration of a digital twin for employees into the decentralized
control system”. In: Procedia Manufacturing 24 (2018), pp. 185–189.

[36] Banavara R Seshadri and Thiagarajan Krishnamurthy. “Structural health
management of damaged aircraft structures using digital twin concept”. In:
25th aiaa/ahs adaptive structures conference. 2017, p. 1675.

[37] Xiao Yuan and Chimay J Anumba. “Cyber-physical systems for temporary
structures monitoring”. In: Cyber-physical systems in the built environment
(2020), pp. 107–138.

[38] Yu Zheng, Sen Yang, and Huanchong Cheng. “An application framework
of digital twin and its case study”. In: Journal of Ambient Intelligence and
Humanized Computing 10.3 (2019), pp. 1141–1153.

[39] Kai Ding et al. “Smart steel bridge construction enabled by BIM and Internet
of Things in industry 4.0: A framework”. In: 2018 IEEE 15th International
Conference on Networking, Sensing and Control (ICNSC). IEEE. 2018, pp. 1–
5.

[40] Yu Zhou et al. “Digital-twin-driven geometric optimization of centrifugal
impeller with free-form blades for five-axis flank milling”. In: Journal of
Manufacturing Systems 58 (2021), pp. 22–35.

[41] Adebena Oluwasegun and Jae-Cheon Jung. “The application of machine
learning for the prognostics and health management of control element drive
system”. In: Nuclear Engineering and Technology 52.10 (2020), pp. 2262–2273.

[42] Kazi Masudul Alam and Abdulmotaleb El Saddik. “C2PS: A digital twin
architecture reference model for the cloud-based cyber-physical systems”. In:
IEEE access 5 (2017), pp. 2050–2062.

102

[43] Meng Zhang, Fei Tao, and AYC Nee. “Digital twin enhanced dynamic job-
shop scheduling”. In: Journal of Manufacturing Systems 58 (2021), pp. 146–
156.

[44] Cameron Tropea, Alexander Yarin, and John Foss. Springer Handbook of
Experimental Fluid Mechanics. Jan. 2007. isbn: 9783540251415. doi: 10.
1007/978-3-540-30299-5.

[45] Douglas L Dwoyer, M Yousuff Hussaini, and Robert G Voigt. Theoretical
approaches to turbulence. Vol. 58. Springer Science & Business Media, 2012.

[46] Huang Fang. “Managing data lakes in big data era: What’s a data lake and
why has it became popular in data management ecosystem”. In: 2015 IEEE
International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER). IEEE. 2015, pp. 820–824.

[47] Philippe Spalart and Steven Allmaras. “A one-equation turbulence model for
aerodynamic flows”. In: 30th aerospace sciences meeting and exhibit. 1992,
p. 439.

[48] Brian Edward Launder and Bahrat I Sharma. “Application of the energy-
dissipation model of turbulence to the calculation of flow near a spinning
disc”. In: Letters in heat and mass transfer 1.2 (1974), pp. 131–137.

[49] Florian R Menter. Improved two-equation k-omega turbulence models for
aerodynamic flows. Tech. rep. 1992.

[50] Georgi Kalitzin et al. “Near-wall behavior of RANS turbulence models and
implications for wall functions”. In: Journal of Computational Physics 204.1
(2005), pp. 265–291.

[51] John D Denton. “Some limitations of turbomachinery CFD”. In: Turbo Expo:
Power for Land, Sea, and Air. Vol. 44021. 2010, pp. 735–745.

[52] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. “Turbulence mod-
eling in the age of data”. In: Annual Review of Fluid Mechanics 51 (2019),
pp. 357–377.

[53] Paul Kunzemann, Georg Jacobs, and Ralf Schelenz. “Application of CPS
within wind energy—current implementation and future potential”. In: In-
dustrial Internet of Things. Springer, 2017, pp. 647–670.

[54] Ke-Sheng Wang, Vishal S Sharma, and Zhen-You Zhang. “SCADA data based
condition monitoring of wind turbines”. In: Advances in Manufacturing 2.1
(2014), pp. 61–69.

[55] Lorenzo Tieghi et al. “A Machine-Learnt Wall Function for Rotating Diffusers”.
In: Journal of Turbomachinery 143.8 (2021).

[56] Gino Angelini, Alessandro Corsini, and Sergio Lavagnoli. “Machine-learnt
topology of complex tip geometries in gas turbine rotors”. In: Proceedings
of the Institution of Mechanical Engineers, Part A: Journal of Power and
Energy 235.3 (2021), pp. 383–392.

[57] Yuri Frey Marioni et al. “A machine learning approach to improve turbulence
modelling from DNS data using neural networks”. In: International Journal
of Turbomachinery, Propulsion and Power 6.2 (2021), p. 17.

https://doi.org/10.1007/978-3-540-30299-5
https://doi.org/10.1007/978-3-540-30299-5

103

[58] Wihan Booyse, Daniel N Wilke, and Stephan Heyns. “Deep digital twins for
detection, diagnostics and prognostics”. In: Mechanical Systems and Signal
Processing 140 (2020), p. 106612.

[59] Eleonora Arena et al. “Anomaly Detection in Photovoltaic Production Fac-
tories via Monte Carlo Pre-Processed Principal Component Analysis”. In:
Energies 14.13 (2021). issn: 1996-1073. doi: 10.3390/en14133951. url:
https://www.mdpi.com/1996-1073/14/13/3951.

[60] Eric Stefan Miele, Fabrizio Bonacina, and Alessandro Corsini. “Deep anomaly
detection in horizontal axis wind turbines using Graph Convolutional Au-
toencoders for Multivariate Time series”. In: Energy and AI 8 (2022),
p. 100145. issn: 2666-5468. doi: https://doi.org/10.1016/j.egyai.
2022.100145. url: https://www.sciencedirect.com/science/article/
pii/S2666546822000076.

[61] Zhifeng Liu et al. “Data super-network fault prediction model and mainte-
nance strategy for mechanical product based on digital twin”. In: Ieee Access
7 (2019), pp. 177284–177296.

[62] Gino Angelini et al. “A Multidimensional Extension of Balje Chart for Axial
Flow Turbomachinery Using Artificial Intelligence-Based Meta-Models”. In:
Journal of Engineering for Gas Turbines and Power 141.11 (2019), p. 111012.

[63] Mohd Dasuki Yusoff et al. “A hybrid k-means-GMM machine learning tech-
nique for turbomachinery condition monitoring”. In: MATEC Web of Con-
ferences. Vol. 255. EDP Sciences. 2019, p. 06008.

[64] Fei Tao et al. “Digital twin driven prognostics and health management for
complex equipment”. In: Cirp Annals 67.1 (2018), pp. 169–172.

[65] Justin Flett and Gary M Bone. “Fault detection and diagnosis of diesel
engine valve trains”. In: Mechanical Systems and Signal Processing 72 (2016),
pp. 316–327.

[66] Francesco Aldo Tucci, Giovanni Delibra, and Alessandro Corsini. “Develop-
ment of a data-driven model for turbulent heat transfer in turbomachinery”.
In: E3S Web of Conferences. Vol. 197. EDP Sciences. 2020, p. 11006.

[67] Eurika Kaiser et al. “Cluster-based reduced-order modelling of a mixing
layer”. In: Journal of Fluid Mechanics 754 (2014), pp. 365–414.

[68] Deepankar Singh et al. “Aircraft Engine Reliability Analysis using Machine
Learning Algorithms”. In: 2020 IEEE 15th International Conference on
Industrial and Information Systems (ICIIS). IEEE. 2020, pp. 443–448.

[69] Gino Angelini et al. “On surrogate-based optimization of truly reversible
blade profiles for axial fans”. In: Designs 2.2 (2018), p. 19.

[70] Jin-Long Wu, Heng Xiao, and Eric Paterson. “Physics-informed machine
learning approach for augmenting turbulence models: A comprehensive frame-
work”. In: Physical Review Fluids 3.7 (2018), p. 074602.

[71] Jason W Osborne. Best practices in quantitative methods. Sage, 2008.

https://doi.org/10.3390/en14133951
https://www.mdpi.com/1996-1073/14/13/3951
https://doi.org/https://doi.org/10.1016/j.egyai.2022.100145
https://doi.org/https://doi.org/10.1016/j.egyai.2022.100145
https://www.sciencedirect.com/science/article/pii/S2666546822000076
https://www.sciencedirect.com/science/article/pii/S2666546822000076

104

[72] Jason Osborne. “Improving your data transformations: Applying the Box-Cox
transformation”. In: Practical Assessment, Research, and Evaluation 15.1
(2010), p. 12.

[73] George EP Box and David R Cox. “An analysis of transformations”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 26.2 (1964),
pp. 211–243.

[74] In-Kwon Yeo and Richard A Johnson. “A new family of power transformations
to improve normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954–959.

[75] Jacob Benesty et al. “Pearson correlation coefficient”. In: Noise reduction in
speech processing. Springer, 2009, pp. 1–4.

[76] Florian Wetschoreck, Tobias Krabel, and Surya Krishnamurthy. 8080labs/ppscore:
zenodo release. 2020.

[77] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

[78] J Gauss. “Combinationis observationum erroribus minimis obnoxiae”. In:
Gottingen: University of Gottingen (1825).

[79] Raymond H Myers, Douglas C Montgomery, and Christine M Anderson-
Cook. Response surface methodology: process and product optimization using
designed experiments. John Wiley & Sons, 2016.

[80] Gilles Louppe. “Understanding random forests: From theory to practice”. In:
arXiv preprint arXiv:1407.7502 (2014).

[81] Tom Dietterich. “Overfitting and undercomputing in machine learning”. In:
ACM computing surveys (CSUR) 27.3 (1995), pp. 326–327.

[82] Robin Genuer. “Variance reduction in purely random forests”. In: Journal of
Nonparametric Statistics 24.3 (2012), pp. 543–562.

[83] Gérard Biau and Erwan Scornet. “A random forest guided tour”. In: Test
25.2 (2016), pp. 197–227.

[84] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 2016, pp. 785–794.

[85] Joseph O Ogutu, Hans-Peter Piepho, and Torben Schulz-Streeck. “A compar-
ison of random forests, boosting and support vector machines for genomic
selection”. In: BMC proceedings. Vol. 5. 3. BioMed Central. 2011, pp. 1–5.

[86] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics. JMLR Workshop
and Conference Proceedings. 2010, pp. 249–256.

[87] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[88] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747 (2016).

105

[89] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means
clustering algorithm”. In: Journal of the royal statistical society. series c
(applied statistics) 28.1 (1979), pp. 100–108.

[90] Bahman Bahmani et al. “Scalable k-means++”. In: arXiv preprint arXiv:1203.6402
(2012).

[91] Sergei Vassilvitskii and David Arthur. “k-means++: The advantages of careful
seeding”. In: Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. 2006, pp. 1027–1035.

[92] Douglas A Reynolds. “Gaussian mixture models.” In: Encyclopedia of bio-
metrics 741.659-663 (2009).

[93] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

[94] Gerda Claeskens, Nils Lid Hjort, et al. “Model selection and model averaging”.
In: Cambridge Books (2008).

[95] Martin Ester et al. “A density-based algorithm for discovering clusters in
large spatial databases with noise.” In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[96] Andrzej Maćkiewicz and Waldemar Ratajczak. “Principal components analysis
(PCA)”. In: Computers & Geosciences 19.3 (1993), pp. 303–342.

[97] Hervé Abdi and Lynne J Williams. “Principal component analysis”. In: Wiley
interdisciplinary reviews: computational statistics 2.4 (2010), pp. 433–459.

[98] Wen Wu, DL Massart, and S De Jong. “The kernel PCA algorithms for
wide data. Part I: theory and algorithms”. In: Chemometrics and Intelligent
Laboratory Systems 36.2 (1997), pp. 165–172.

[99] Hervé Abdi. “Partial least squares regression and projection on latent structure
regression (PLS Regression)”. In: Wiley interdisciplinary reviews: computa-
tional statistics 2.1 (2010), pp. 97–106.

[100] W Svante, M Sjöström, and Lennart Erikson. “Partial least squares projections
to latent structures (PLS) in chemistry”. In: Encycl. Comput. Chem. 3 (2002).

[101] Roman Rosipal and Nicole Krämer. “Overview and recent advances in partial
least squares”. In: International Statistical and Optimization Perspectives
Workshop" Subspace, Latent Structure and Feature Selection". Springer. 2005,
pp. 34–51.

[102] Pierre Baldi. “Autoencoders, unsupervised learning, and deep architectures”.
In: Proceedings of ICML workshop on unsupervised and transfer learning.
JMLR Workshop and Conference Proceedings. 2012, pp. 37–49.

[103] Henry J Kelley. “Gradient theory of optimal flight paths”. In: Ars Journal
30.10 (1960), pp. 947–954.

[104] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer,
2013.

106

[105] Alessandro Corsini et al. “Aeroacoustic assessment of leading edge bumps
in industrial fans”. In: Proceedings of the International Conference on Fan
Noise, Technology and Numerical Methods. 2015.

[106] Lucio Cardillo et al. “A numerical investigation into the aerodynamic effect of
pressure pulses on a tunnel ventilation fan”. In: Proceedings of the Institution
of Mechanical Engineers, Part A: Journal of Power and Energy 228.3 (2014),
pp. 285–299.

[107] Alessandro Corsini, Giovanni Delibra, and Anthony G Sheard. “The applica-
tion of sinusoidal blade-leading edges in a fan-design methodology to improve
stall resistance”. In: Proceedings of the Institution of Mechanical Engineers,
Part A: Journal of Power and Energy 228.3 (2014), pp. 255–271.

[108] Tze Pei Chong and Phillip F Joseph. “An experimental study of airfoil
instability tonal noise with trailing edge serrations”. In: Journal of Sound
and Vibration 332.24 (2013), pp. 6335–6358.

[109] Florian Krömer and Stefan Becker. “Experimental investigation of the sound
reduction by leading edge serrations on a flat-plate axial fan”. In: 2018
AIAA/CEAS Aeroacoustics Conference. 2018, p. 2955.

[110] Tze Pei Chong et al. “On the effect of leading edge serrations on aerofoil noise
production”. In: 2018 AIAA/CEAS Aeroacoustics Conference. 2018, p. 3289.

[111] Till M Biedermann et al. “Effect of inflow conditions on the noise reduction
through leading edge serrations”. In: AIAA Journal 57.9 (2019), pp. 4104–
4109.

[112] Till M Biedermann et al. “Statistical–empirical modeling of airfoil noise
subjected to leading-edge serrations”. In: AIAA Journal 55.9 (2017), pp. 3128–
3142.

[113] Florian Krömer, Andreas Renz, and Stefan Becker. “Experimental investi-
gation of the sound reduction by leading-edge serrations in axial fans”. In:
AIAA Journal 56.5 (2018), pp. 2086–2090.

[114] Florian Krömer, Felix Czwielong, and Stefan Becker. “Experimental investiga-
tion of the sound emission of skewed axial fans with leading-edge serrations”.
In: AIAA Journal 57.12 (2019), pp. 5182–5196.

[115] Gino Angelini et al. “Identification of Losses in Turbomachinery With Ma-
chine Learning”. In: Turbo Expo: Power for Land, Sea, and Air. Vol. 84058.
American Society of Mechanical Engineers. 2020, V001T10A008.

[116] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[117] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the

Journal of machine Learning research 12 (2011), pp. 2825–2830.
[118] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter

optimization.” In: Journal of machine learning research 13.2 (2012).
[119] Florent Monjalet and Thomas Leibovici. “Predicting file lifetimes with ma-

chine learning”. In: International Conference on High Performance Computing.
Springer. 2019, pp. 288–299.

107

[120] İbrahim Zeki Akyurt, Yusuf Kuvvetli, and Muhammet Deveci. “Enterprise
Resource Planning in the Age of Industry 4.0: A General Overview”. In:
Logistics 4.0 (2020), pp. 178–185.

[121] Alok Raj et al. “Barriers to the adoption of industry 4.0 technologies in
the manufacturing sector: An inter-country comparative perspective”. In:
International Journal of Production Economics 224 (2020), p. 107546.

[122] Harpreet Singh. “Big data, industry 4.0 and cyber-physical systems integra-
tion: A smart industry context”. In: Materials Today: Proceedings 46 (2021),
pp. 157–162.

[123] Xindong Wu et al. “Data mining with big data”. In: IEEE transactions on
knowledge and data engineering 26.1 (2013), pp. 97–107.

[124] Philip Russom et al. “Big data analytics”. In: TDWI best practices report,
fourth quarter 19.4 (2011), pp. 1–34.

[125] Andy S Alic et al. “BIGSEA: A Big Data analytics platform for public
transportation information”. In: Future generation computer systems 96
(2019), pp. 243–269.

[126] Ramón Fernando Colmenares-Quintero et al. “Big Data analytics in Smart
Grids for renewable energy networks: Systematic review of information
and communication technology tools”. In: Cogent Engineering 8.1 (2021),
p. 1935410.

[127] Arfan Majeed et al. “A big data-driven framework for sustainable and smart
additive manufacturing”. In: Robotics and Computer-Integrated Manufactur-
ing 67 (2021), p. 102026.

[128] Alessandro Corsini et al. “Cascade With Sinusoidal Leading Edges: Identifica-
tion And Quantification of Deflection With Unsupervised Machine Learning”.
In: Turbo Expo: Power for Land, Sea, and Air. Vol. 84898. American Society
of Mechanical Engineers. 2021, V001T10A006.

[129] Eric Stefan Miele, Fabrizio Bonacina, and Alessandro Corsini. “Deep anomaly
detection in horizontal axis wind turbines using graph convolutional autoen-
coders for multivariate time series”. In: Energy and AI 8 (2022), p. 100145.

[130] Mumtaz Karatas, Ilknur Karacan, and Hakan Tozan. “An integrated multi-
criteria decision making methodology for health technology assessment”. In:
European Journal of Industrial Engineering 12.4 (2018), pp. 504–534.

[131] Yanqing Yang and Xing Song. “Research on face intelligent perception tech-
nology integrating deep learning under different illumination intensities”. In:
Journal of Computational and Cognitive Engineering (2022), pp. 32–36.

[132] C Boursier Niutta et al. “Surrogate modeling in design optimization of
structures with discontinuous responses”. In: Structural and Multidisciplinary
Optimization 57.5 (2018), pp. 1857–1869.

[133] Bogdan C Cernat et al. “Experimental and numerical investigation of opti-
mized blade tip shapes—Part I: Turbine rainbow rotor testing and numerical
methods”. In: Journal of Turbomachinery 141.1 (2019), p. 011006.

108

[134] Till M Biedermann, Frank Kameier, and Christian O Paschereit. “Successive
aeroacoustic transfer of leading edge serrations from single airfoil to low-
pressure fan application”. In: Journal of Engineering for Gas Turbines and
Power 141.10 (2019).

[135] Simin Shen et al. “Research on Cavitation Flow Dynamics and Entropy
Generation Analysis in an Axial Flow Pump”. In: Journal of Sensors 2022
(2022).

[136] Sergio Lavagnoli et al. “High-fidelity rotor gap measurements in a short-
duration turbine rig”. In: Mechanical Systems and Signal Processing 27
(2012), pp. 590–603.

[137] Jonathan Zalger. Application of variational autoencoders for aircraft turbo-
machinery design. Tech. rep. Technical report, 2017.

[138] Julie Pongetti et al. “Using Autoencoders and Output Consolidation to
Improve Machine Learning Models for Turbomachinery Applications”. In:
Turbo Expo: Power for Land, Sea, and Air. Vol. 84935. American Society of
Mechanical Engineers. 2021, V02DT36A018.

[139] Zhou Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–
612.

[140] Adriano Moreira and Maribel Yasmina Santos. “Concave hull: A k-nearest
neighbours approach for the computation of the region occupied by a set of
points”. In: (2007).

[141] Haitao Zhao, Pong Chi Yuen, and James T Kwok. “A novel incremental
principal component analysis and its application for face recognition”. In:
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
36.4 (2006), pp. 873–886.

[142] Vittorio Verda and Francesco Colella. “Primary energy savings through
thermal storage in district heating networks”. In: Energy 36.7 (2011), pp. 4278–
4286.

[143] Dominik Franjo Dominković et al. “Technical, economic and environmental
optimization of district heating expansion in an urban agglomeration”. In:
Energy 197 (2020), p. 117243.

[144] Hanmin Cai et al. “Demand side management in urban district heating
networks”. In: Applied energy 230 (2018), pp. 506–518.

[145] GG Alexandrov and AS Ginzburg. “Anthropogenic impact of Moscow district
heating system on urban environment”. In: Energy Procedia 149 (2018),
pp. 161–169.

[146] Richard Newell et al. “Global energy outlook 2021: pathways from Paris”. In:
Resources for the Future Report (2021), pp. 11–21.

[147] Stéphanie Bouckaert et al. “Net Zero by 2050: A Roadmap for the Global
Energy Sector”. In: (2021).

109

[148] Marderos Ara Sayegh et al. “Heat pump placement, connection and opera-
tional modes in European district heating”. In: Energy and Buildings 166
(2018), pp. 122–144.

[149] Fabian Levihn. “CHP and heat pumps to balance renewable power production:
Lessons from the district heating network in Stockholm”. In: Energy 137
(2017), pp. 670–678.

[150] Haichao Wang et al. “Modelling and optimization of CHP based district
heating system with renewable energy production and energy storage”. In:
Applied Energy 159 (2015), pp. 401–421.

[151] IEA. District Heating. Report. Paris: IEA, 2021.
[152] PL Mendonça et al. “Detection and modelling of incipient failures in internal

combustion engine driven generators using electrical signature analysis”. In:
Electric Power Systems Research 149 (2017), pp. 30–45.

[153] Qinsheng Yun, Chuanqing Zhang, and Tianyuan Ma. “Fault diagnosis of
diesel generator set based on deep believe network”. In: Proceedings of the 2nd
International Conference on Artificial Intelligence and Pattern Recognition.
2019, pp. 186–190.

[154] Oihane C. Basurko and Zigor Uriondo. “Condition-Based Maintenance for
medium speed diesel engines used in vessels in operation”. In: Applied Thermal
Engineering 80 (2015), pp. 404–412.

[155] Masoud Aliramezani, Charles Robert Koch, and Mahdi Shahbakhti. “Mod-
eling, diagnostics, optimization, and control of internal combustion engines
via modern machine learning techniques: A review and future directions”. In:
Progress in Energy and Combustion Science 88 (2022), p. 100967.

[156] Charis Ntakolia et al. “Machine learning applied on the district heating and
cooling sector: a review”. In: Energy Systems (2021), pp. 1–30.

[157] Gideon Mbiydzenyuy et al. “Opportunities for machine learning in district
heating”. In: Applied Sciences 11.13 (2021), p. 6112.

[158] Jerzy Baranowski et al. “Bayesian fault detection and isolation using Field
Kalman Filter”. In: EURASIP Journal on Advances in Signal Processing
2017.1 (2017), pp. 1–11.

[159] Daniel Jung. “Data-driven open-set fault classification of residual data using
Bayesian filtering”. In: IEEE Transactions on Control Systems Technology
28.5 (2020), pp. 2045–2052.

[160] Piotr Czech and Jerzy Mikulski. “Application of Bayes classifier and entropy
of vibration signals to diagnose damage of head gasket in internal combus-
tion engine of a car”. In: International Conference on Transport Systems
Telematics. Springer. 2014, pp. 225–232.

[161] Faye Zhang et al. “Internal combustion engine fault identification based on
FBG vibration sensor and support vector machines algorithm”. In: Mathe-
matical Problems in Engineering 2019 (2019).

110

[162] SN Dandare and SV Dudul. “Support vector machine based multiple fault de-
tection in an automobile engine using sound signal”. In: Journal of Electronic
and Electrical Engineering, ISSN (2012), pp. 0976–8106.

[163] Jannis Tautz-Weinert and Simon J Watson. “Using SCADA data for wind
turbine condition monitoring–a review”. In: IET Renewable Power Generation
11.4 (2017), pp. 382–394.

[164] Yinglai Liu et al. “Fault diagnosis and prediction method for valve clearance
of diesel engine based on linear regression”. In: 2020 Annual Reliability and
Maintainability Symposium (RAMS). IEEE. 2020, pp. 1–6.

[165] David J Bryg, George Mink, and Link C Jaw. “Combining lead functions
and logistic regression for predicting failures on an aircraft engine”. In: Turbo
Expo: Power for Land, Sea, and Air. Vol. 43123. 2008, pp. 19–26.

[166] Chengtao Cai, Xiangyu Weng, and Chuanbin Zhang. “A novel approach
for marine diesel engine fault diagnosis”. In: Cluster computing 20.2 (2017),
pp. 1691–1702.

[167] Weizhong Yan. “Application of random forest to aircraft engine fault di-
agnosis”. In: The Proceedings of the Multiconference on" Computational
Engineering in Systems Applications". Vol. 1. IEEE. 2006, pp. 468–475.

[168] Daniel Maraini et al. “Development of a Data-driven Model for Marine Gas
Turbine (MGT) Engine Health Monitoring”. In: Annual Conference of the
Prognostics and Health Management Society. 2018.

[169] Mohammad Braei and Sebastian Wagner. “Anomaly detection in univariate
time-series: A survey on the state-of-the-art”. In: arXiv preprint arXiv:2004.00433
(2020).

[170] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12.85 (2011), pp. 2825–2830. url:
http://jmlr.org/papers/v12/pedregosa11a.html.

[171] Andrey Kolmogorov. “On the Shannon theory of information transmission in
the case of continuous signals”. In: IRE Transactions on Information Theory
2.4 (1956), pp. 102–108.

[172] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: CoRR abs/1603.02754 (2016). arXiv: 1603.02754. url: http:
//arxiv.org/abs/1603.02754.

[173] Trevor Hastie et al. The elements of statistical learning: data mining, inference,
and prediction. Vol. 2. Springer, 2009.

[174] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization.” In: J. Mach. Learn. Res. 13 (2012), pp. 281–305. url: http:
//dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12.

[175] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

http://jmlr.org/papers/v12/pedregosa11a.html
https://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12

	Introduction
	Background and motivations
	Thesis outline

	Cyber-Physical Systems, Digital Twins and Digital Thread for Energy Systems
	Concept of Cyber-Physical Systems
	Digital Twin definition
	Digital Thread definition
	Digital twins in the product life-cycle perspective of turbomachinery and energy industry

	The role of Artificial Intelligence in Digital Twins
	Relationship between digitization technologies and Digital Twin
	Data for Holistic Understanding
	Learn from Experimental Campaigns
	Learn from synthetic datasets, CFD
	Learn from sensor datasets, SCADA

	Machine Learning Tools and Techniques
	A definition of Machine Learning
	Data Treatment: the importance of Data
	Normalization Techniques
	Exploratory Data Analysis
	Removing Outliers: Box and Whiskers Plot
	Data Distribution Shape Improvement
	Data Dimension: Feature Selection

	Synthetic Data for Machine Learning

	Supervised versus Unsupervised Learning
	Classification
	Regression
	Least Square Method
	Ensemble Method
	Random Forest
	Gradient Boosting
	Anatomy of Multi-layer Perceptron

	Clustering
	k-Means
	Gaussian Mixture
	DBSCAN

	Dimensionality Reduction
	Principal Components Analysis
	Projection to Latent Structures
	Autoencoders

	Model Evaluation and Optimization
	Training and Validation
	Overfitting and Underfitting

	Development of Machine Learning assisted tools and framework for Digital Twin
	Cascade with Sinusoidal Leading Edges: Identification and Quantification of Deflection with Unsupervised Learning
	Introduction
	Methodology
	Leading edge modification
	Cascade Design of Experiment
	Numerical setup
	Data analysis and preprocessing
	Unsupervised learning methodology: PCA and Gaussian Mixture clustering

	Identification of turbulent regions with GM clustering
	Metamodel for regression of deflection
	Final remarks

	Unsupervised Learning for high-fidelity compression of large experimental dataset: an application on HPT blade tip contouring
	Introduction
	Methodology
	Experimental dataset description
	Data augmentation
	Unsupervised dimensionality reduction
	Regression

	Validation of the framework
	Final remarks

	A Machine Learning Framework for Condition-Based Maintenance of Gensets in District Heating Networks
	Introduction
	Anomaly Detection Framework
	SCADA signal and event log preprocessing
	Feature Selection
	Machine Learning model
	Residual Indicator definition
	Dataset description
	ML settings and prediction errors
	Anomaly detection results
	Final Remarks

	Conclusions
	Bibliography

