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THEBIGGERPICTURE Several current review studies seek to provide the scientific community with an over-
view of the existing literature on self-supervised learning (SSL). However, these studies clearly favor com-
puter vision (CV) and natural language processing (NLP) owing to their widespread use in these domains.
The success of SSL in these fields has inspired its incorporation into audio processing. Therefore, the pur-
pose of this survey is to present an overview of the SSL techniques used in audio and speech processing
applications. In addition, we summarize the empirical research that uses the audio modality in multi-modal
SSL frameworks, as well as the available benchmarks that can be used to assess the effectiveness of SSL in
the area of computer audition.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

Similar to humans’ cognitive ability to generalize knowledge and skills, self-supervised learning (SSL) targets
discovering general representations from large-scale data. This, through the use of pre-trained SSL models
for downstream tasks, alleviates the need for human annotation, which is an expensive and time-consuming
task. Its success in the fields of computer vision and natural language processing have prompted its recent
adoption into the field of audio and speech processing. Comprehensive reviews summarizing the knowledge
in audio SSL are currently missing. To fill this gap, we provide an overview of the SSLmethods used for audio
and speech processing applications. Herein, we also summarize the empirical works that exploit audio mo-
dality in multi-modal SSL frameworks and the existing suitable benchmarks to evaluate the power of SSL in
the computer audition domain. Finally, we discuss some open problems and point out the future directions in
the development of audio SSL.
INTRODUCTION

According to Piaget’s theory of cognitive development,1,2 from

their birth up to approximately 18 months, children acquire

knowledge from sensory and motor experiences. During this

stage, i.e., the ‘‘sensorimotor’’ stage, through basic actions

such as sucking, grasping, looking, and listening, the early repre-

sentational thought emerges.3 Along with the acquisition of

knowledge, over the different developmental stages until the

last one, i.e., the ‘‘formal operational’’ (adolescence and adult-

hood) stage, children’s reasoning progressively moves toward

the acquisition of abstract ideas and the use of deductive logic,

i.e., subtracting specific information from a general principle.4

During this process, in order to understand the world, the so-

called ‘‘schemas,’’ i.e., higher-order cognitive structures that

have been hypothesized to underlie many aspects of human

knowledge and skill,5 emerge. According to Piaget, child devel-
This is an open access article und
opment is interpreted trough an equilibration mechanism that

explains how new information is balanced according to old

knowledge. Equilibration involves ‘‘assimilation’’ (the process

of taking in new information to fit in with the pre-existing sche-

mas) and ‘‘accommodation’’ (the process of modifying the pre-

existing schemas as a result of new information).1,6 In this

view, learning is possible if complex structures are based on

simpler ones, i.e., when a natural development between struc-

tures exists instead of a simple external reinforcement.1 Indeed,

the interesting aspect of learning (and one of the main goals in

education) is to create dynamic structures that can lead to

generalization, i.e., the ability to apply learned knowledge and

skills for understanding in a different context. This is known as

‘‘transfer of learning.’’7 Similar to the cognitive process of devel-

oping dynamic structures with the capability of generalization,

the self-supervised learning (SSL) paradigm has been pre-

sented8–11—a machine- and deep-learning technique that has
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rapidly evolved in the last years. SSL targets at learning a model

that is able to produce universal representations. This is ap-

proached by first solving some pretext tasks (also known as up-

stream tasks in literature), i.e., a procedure that, similarly to the

sensorimotor stage, enables someone to artificially learn repre-

sentations directly from the data attributes without the need for

human annotations.12 Then, with a pre-trained model generated

on the pretext task, feature representations are extracted to un-

derstand new data, i.e., similarly to cognitive development, a

pre-trained model (previous knowledge) can be used through

generalization to understand a new context, a process known

as downstream task.13

SSL mitigates two difficulties that currently limit the applica-

tion of deep learning: the need of human annotations in repre-

sentation learning and the difficulty in designing effective

network architectures for specific tasks. First, the current suc-

cess of deep learning reckons on big data, which typically

consume uninhibited human efforts in annotations. This faces

the issue of annotation bias as well as the fact that annotation

procedures often cannot optimally preserve data privacy. As

SSL learns representations from the data itself without the

need of labels14 (sometimes creates pseudo-labels for self-

supervision), it overtakes the challenges derived by the use of

human annotations. Moreover, many works, such as Chen

et al.,15 have shown that much less labeled data are needed to

fine-tune an SSLmodel for downstream tasks in order to achieve

similar (or even better) performance compared with the conven-

tional supervised-learning setting. Second, as long as the pre-

text model can generate proper representations of the data,

these can be used for multiple downstream tasks, reducing, at

the same time, the difficulty in designing reliable downstream

models. For instance, a multi-layer perceptron (MLP) is

commonly used for this step, reaching state-of-the-art results

for different research areas in artificial intelligence. As the main

effort of SSL concentrates on the development of well-trained

upstream models, it guarantees the extraction of data represen-

tations with a sufficient level of generalization and distinctive-

ness. Furthermore, as a way to increase distinctiveness of the

learned representations, when solving pretext tasks, negative

examples can be additionally provided in order to contrast the

target sample with negative examples.16 This process formalizes

the SSL into a contrastive learning framework.17–20

The fitness of upstream and downstream tasks, i.e., howmuch

the knowledge learned from pretext tasks is applicable to down-

stream tasks, is partially determined by the data relevance used

in both steps. From a cognitive point of view, this is comparable

to the aforementioned transfer of learning, as a speaker of a

given language would find it easier to learn a related language

(near transfer) than an unrelated one (far transfer). Thus, near

transfer of knowledge is expected to ensure that the down-

stream tasks particularly benefit from the upstream training.

However, far transfer may also occur. Therefore, downstream

tasks that use data from a different domain can still benefit

from learning representations of sufficient generalizability. The

versatility of SSL has yielded to a superior performance in several

research fields, such as natural language processing (NLP)21 and

computer vision (CV),8,11 as well as in a variety of deep-learning

methods, e.g., graphical neural networks22 and reinforcement

learning,23 to name a few. Nevertheless, processing audio sour-
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ces increases further the difficulty of applying deep-learning

methods as in the real world, this modality is typically character-

ized by many uncertainties. Speech, for instance, due to within-

and cross-speaker variations, such as those produced by

disfluencies, as well as differences in language, acoustic envi-

ronments, or recording setups, usually presents considerable

variability. This makes it difficult to deduce relevant latent struc-

tures without taking into account any supervision guidance. In

addition, unlike for images, overlapping noise is typical of re-

cordings. Through its masking properties, surrounding noise

limits (and even impede) understanding, in some cases distorting

the spectrogram of the audio content of interest. Indeed, as each

pixel (time-frequency bin) of the spectrogram can be deterio-

rated, noise reduction and removal is still an open challenge in

the field.24 Similarly, compared with NLP tasks, which (despite

their inherent difficulties) process texts that are comprised of a

limited amount of possible words and characters, the infinite

possibilities of audio that represent the same meaning create

more uncertainties in audio understanding. These facts indicate

the problems that need to be especially considered when

applying SSL to audio and speech processing.

Specifically, a proper SSLmodel should be able to extract rep-

resentations that are (1) distributed, i.e., more expressive as the

dimensionality increases; (2) abstract, i.e., aggregate more ab-

stract features that are invariant to local changes in the input;

and (3) disentangled, i.e., each factor of the representation vector

should be interpretable.9 As SSL requires from a model both

generalization and discrimination (in parallel), using SSL for audio

processing becomes particularly challenging. Although several

survey articles aimed to give an overview of the existing literature

on SSL that have been presented to the research community, due

to the prominent use of SSL in CV and NLP, these works show a

clear bias toward these two fields.8,11,21 However, despite the

challenges, recent research has shown an always increasing in-

terest in applying SSL to audio sources. As this rapidly developing

area has not been systematically investigated yet, to fill this gap,

we present a survey on SSLwith a special emphasis on the recent

progress by including, for the first time, an overview of SSL in

audio within unified frameworks. By providing an overview of

the existing techniques as well as a disambiguation between ap-

proaches, this work is especially thought to support practitioners,

both beginners and more experienced researchers, interested in

the use of SSL for audio signal processing.

The rest of themanuscript is organized as follows.We first give

a general overview of SSL, which mainly explores approaches

for CV and NLP domains. This section covers different compo-

nents of the learning framework, including input data format,

data augmentation, network structures, the construction of

training objectives, and the description of the basic blocks and

operations that lead to its success. Then, we assess how these

frameworks can be related to audio processing by considering

the commonalities and differences between audio and other

data formats such as video or text. Next, SSL approaches ex-

ploiting audio as one of the modalities will be discussed. Addi-

tionally, we summarize the downstream tasks considered in

the literature and list the databases and benchmarks that are

used for evaluating the performance of pretext tasks. At last,

we discuss several aspects of SSL, including its relations to

and differences from other similar deep-learning techniques,



Table 1. An overview of the recent typical self-supervised learning methods

Model FoS Framework Encoder Pseudo-labels Loss

Negative samples

Source Strategy

TCN embedding45

(2018)

CV (d) inception

network + CNN

different but

simultaneous

viewpoints

triplet loss images of

different time

end to end

SimCLR15 (2020) CV (d) ResNet data augmentation NT-Xent loss other images end to end

SimCLR v.2193

(2020, semi)

CV (d) variants of ResNet data augmentation NT-Xent loss other images end to end

MoCo29 (2020) CV (d) ResNet data augmentation InfoNCE loss other images momentum

MoCo v.2194 (2020) CV (d) ResNet data augmentation InfoNCE loss other images momentum

MoCo v.3168(2021) CV (d) vision transformers data augmentation InfoNCE loss other images end to end

RotNet32 (2018) CV (a) ConvNet rotation directions prediction loss – –

Colorization31(2017) CV (a) AlexNet, VGG-16,

ResNet-152

color of missing

patch

regression loss,

KL divergence

– –

DIM46(2018) CV (d) – – JSD, DV, or InfoNCE loss – end to end

Word2Vec64 (2019) NLP (a) auto-encoder context words prediction loss – –

BERT67 (2019) NLP (a) MPC masked words prediction loss – –

ALBERT36(2020) NLP (a) MPC masked words,

sentence order

prediction loss – –

BYOL54 (2020) CV (b) ResNet data augmentation MSE loss – –

Barlow Twins55

(2021)

CV (b) ResNet data augmentation Equation 3 – –

SimSiam50 (2021) CV (b) ResNet data augmentation negative cosine similarity – –

DeepCluster57(2018) CV (c) AlexNet, VGG-16 clustering centroids negative log-softmax loss – –

Local Aggregation59

(2019)

CV (c) AlexNet, VGG-16 soft-clustering

centroids

negative log-softmax loss – –

SwAV60 (2020) CV (c) variants of

ResNet-50

online-clustering

centroids

modified cross-entropy – end to end

CPC42 (2018) CV, audio

NLP

(d) APC – InfoNCE loss other images end to end

CPC v.271 (2020) CV (d) APC – InfoNCE loss other images end to end

Model, field of study (FoS), type of frameworks (referring to Figure 1), encoder, pseudo-labels, and loss, as well as source and strategy for the negative

samples, are given. ‘‘Other images,’’ in the source column, indicates other images of the mini-batch.
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before drawing a conclusion and pointing out potential research

directions.

SSL: A GENERAL OVERVIEW

SSL aims at learning latent representations from large-scale data

by solving designed pretext tasks rather than using human anno-

tations. To this end, different views of an object, which are of high

natural correlation, are created. Based on the views, an SSL

model is trained to generalize, to some extent, the representa-

tions of the object in a latent high-dimensional space.25,26 By

contrasting the representations of the same object to other ob-

jects (defined as negative samples) in training, a contrastive

SSL model is expected to produce representations that are of

better distinctiveness.

In the following, we will first introduce SSL frameworks, distin-

guishing their respective principles of model construction, allo-

cation, and training objectives by having a particular emphasis

on the approaches used to create pseudo-labels as supervisory

signals for training themodel. Having the frameworks inmind, we

will also describe more advanced approaches able to produce
different views of an object, as well as their methods to generate

proper negatives for training contrastive SSL models. We will

end this section by summarizing the approaches used to fit the

SSL model for processing sequential data, such as video and

text. Considering the characteristics of different kinds of sequen-

tial data and learning objectives, additional ways to generate

different views, and negatives if needed, for training SSL models

will also be presented. A summary table of the typical SSL

methods is shown in Table 1.

SSL frameworks
We introduce the general SSL frameworks, depicted in Figure 1,

without specifying the neural networks. These frameworks

exhibit the most typical pretext tasks that need to be solved in

training an SSL model without using human annotations on

data but with the supervisory signals, i.e., pseudo-labels, that

originate from the data itself.

To easily demonstrate the following SSL frameworks, the

model inputs can be supposed to be in the ideally simplest

form. Specifically, two deformations of an image are regarded

as the image’s two views when needed. For contrastive SSL,
Patterns 3, December 9, 2022 3
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Figure 1. SSL frameworks
Predictive SSL frameworks (A–C) and contrastive SSL framework (D). For each framework, the diagram shows the components, including pseudo-labels, that are
used to construct training objectives.
(A) Auto-encoding contains an encoder (En) and a decoder (De). The En learns representations from a distorted signal input, while the De aims at recovering the
clean signal from the learned representations.
(B)ASiamesenetworkprocesses twoviewsof thesamedatapoint, hencethe latent representationofonesub-network isseenaspseudo-labelof theothersub-network.
(C) Clustering is applied for grouping the learnt representations—the clustering centroids are used as pseudo-labels for training.
(D) Contrastive SSL constructs the contrastive loss through negative samples.
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negative samples are requested and supposed to stem from

other distinct images.

Auto-encoding

The basic form of predictive SSL models uses auto-encoders,27

as depicted in Figure 1A. A standard auto-encoder learns a com-

pressed latent embedding that represents the input of the

encoder and expects to reconstruct the original input from the

latent representation, i.e., the decoder output. The dimension-

ality of the latent representation must be carefully designed as

it determines the representation reliability. When setting a too-

large latent dimensionality, an auto-encoder risks learning an

identity function, i.e., maps the input directly to the output and,

hence, becomes useless. Various techniques to prevent auto-

encoders from learning an identity function do exist, e.g., denois-

ing auto-encoders,28 which partially corrupt the input data by

randomly zeroing some input values and are trained to recover

the original undistorted input. For the denoising to be successful,

the model’s ability to retrieve useful high-level representations

becomes essential. The zero-out step can be replaced by other

data augmentation techniques, such as geometric transforma-

tions including cropping,15,29 rotation,30 reordering, coloriza-

tion,31 and distortion,15 to name a few, which often appear as

methods to create different views of data in SSL studies.

The auto-encoding framework presents the fundamental form

of predictive models for SSL, including language models and

acoustic models based on auto-regressive predictive coding

(APC) and masked predictive coding (MPC), which are intro-

duced in the sections semantic representation for sequential

data and audio SSL, respectively. Other auto-encoding predic-

tive models for SSL also aim to predict the relative position of

signal parts,32,33 including solving a jigsaw puzzle34,35 or reor-

dering the pieces of a shuffled sequence input.36–38

Contrastive SSL

Contrastive SSL is typically performed in the context of a triplet

network, as shown in Figure 1B. Given a data point, the model

requires inputs of its different views and additional negative

samples. The encoded representations of the given data serve
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as the positive pseudo-labels to each other, while the negative

samples provide the opposite pseudo-labels. Theoretical anal-

ysis has proven that when two views result in redundant infor-

mation of the label, applying linear projections to the learned

representations can guarantee the performance on down-

stream prediction tasks.20 This proof indicates that SSL can

produce high-quality representations from the multi-views of

a data point and guarantees prediction performance with sim-

ple downstream models. While the representations of the given

data with different views are attracted closest during training,

the distinctiveness of these representations can be improved

by contrasting them with the representations of the negative

samples.

The effect of contrastive losses can be decisive for the perfor-

mance of an SSL model. Some such losses were presented to

solve supervised-learning problems. For a given anchor x, the

positive sample x+ is selected from the same class as the anchor,

and the negatives x� are from different classes. To keep the

same notation in the formulations herein, x and x + should be

broadly understood as two views of the same data, and the neg-

atives originated from different data. Hereby, we go through the

typical types of contrastive loss before going through the

contrastive SSL methods in the literature.

Contrastive loss. In early versions of contrastive loss, an an-

chor is paired with only one positive and one negative sample,

leading to a positive pair and a negative pair. Recent works

have found that it is more effective to take into consideration

multiple positive and negative pairs in the training objectives.

Max margin contrastive loss, designed for deep metric

learning,39 takes a pair of inputs and minimizes the embedding

distance when they are from the same class and maximizes it

otherwise. More formally, it learns an encoder f that minimizes

Lðx; x+ Þ =
X
x˛X

kfðxÞ � fðx+ Þk22

Lðx; x�Þ =
X
x˛X

max
�
0; ε � kfðxÞ � fðx�Þk2

�2
;

(Equation 1)
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where X stands for a batch of samples including x and ε is a hy-

per-parameter that defines the lowest offset distance between

representations of different samples.

Triplet loss40 combines the two separate optimization objec-

tives into a single formulation,

Lðx; x+ ; x�Þ=
X
x˛X

max
�
0; kfðxÞ � fðx+ Þk22 �kfðxÞ � fðx�Þk22+ε

�
;

(Equation 2)

indicating the beginning prototype of contrastive learning.

Multi-class N-pair loss41 generalizes the triplet loss, enabling

the contrasts with multiple negative samples. The definition of

this loss is on multiple input pairs. It is formulated similarly to

the softmax loss:

L
�
x; x+ ; x�n˛ ½1; N� 1�

�
= log

 
1+

XN� 1

n = 1

efðxÞT fðxn�Þ� fðxÞT fðx+ Þ
!

= � log
efðxÞTfðx+ Þ

efðxÞT fðx+ Þ +
XN� 1

n = 1
efðxÞT fðxn�Þ:

(Equation 3)

The InfoNCE42 objective, inspired by noise-contrastive estima-

tion (NCE), is also known as NT-Xent loss, short for normalized

temperature-scaled cross-entropy loss. It introduces an addi-

tional temperature parameter for controlling the penalty on the ef-

fect of negative samples, similarly as ε in Equations 1 and 2:

L
�
x; x+ ; x�n˛ ½1; N� 1�

�
= � log

efðxÞT fðx+ Þ=t

efðxÞT fðx + Þ=t +
PN� 1

n = 1e
fðxÞTfðxn�Þ=t :

(Equation 4)

Its denominator terms contain one positive andN� 1 negative

samples. Hence, we can construct a softmax classifier that is

optimized using cross-entropy loss for N classes. The classifier

assigns large and small values to the positive and negative ex-

amples, respectively. In this regard, InfoNCE can be seen as us-

ing categorical cross-entropy loss to identify a positive sample

within a set of (unrelated) noise samples. Contrasting the dis-

tance of a data point to its positive samples with respect to the

one to its negative samples prevents the model from falling

into representational collapse. To analyze this effect, we can split

it into two parts:

L = E

"
� log

efðxÞTfðx + Þ=t

efðxÞT fðx + Þ=t +
PN� 1

n = 1e
fðxÞT fðxn �Þ=t

#

= E
h
� fðxÞTfðx + Þ

.
t
i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
alignment

+ E

"
log

 
efðxÞT fðx + Þ=t +

XN� 1

n = 1

efðxÞT fðxn �Þ=t
!#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uniformity

;

(Equation 5)

where the ‘‘alignment’’ term targets at maximizing the similarity

between the learned embeddings of the positive pairs. Then,
the ‘‘uniformity’’ term helps the contrastive learning to learn

separable features by maximal-uniformly distributing the em-

beddings on a unit sphere given the normalization condition.

Both terms are crucial to the downstream tasks according to

Wang and Isola.43 Different from an instance discrimination

objective, which pushes all different instances apart and con-

siders no underlying relations between samples, the design of

contrastive loss requires a proper temperature coefficient t

that finds a balance between learning separable features and

at the same time providing some degree of tolerance to the

closeness of semantically similar samples. A too-small t loses

the tolerance to group the similar input samples and hence

may break the underlying semantic structure, thus harming the

learned features for its use in downstream tasks. The effect of

the temperature parameter is similar as the margin value set in

Equation 1, which has been investigated in detail by Liu et al.44

In Wang and Liu,16 Wang suggests adjusting the alignment

and uniformity loss to

Lalign = E
�kfðxÞ � fðx + Þka2

�
Luniform = logE

h
e� tkfðxÞ� fðx�Þk22

i
;

(Equation 6)

indicating that both terms should be minimized simultaneously.

Maintaining a good balance between these two terms has

been found to be more effective than standard contrastive loss.

Two representative SSL architectures that are trained by using

contrastive loss are SimCLR15 and momentum contrast

(MoCo).29 SimCLR15 exploits several different data-augmenta-

tion techniques for transforming an input image, including

random cropping, resizing, color distortions, and Gaussian blur.

The transformed images are then coded into representations us-

ing ResNet. After going through projection heads built on Dense-

ReLU-Dense structure, NT-Xent is used as objective function for

SSL. The authors of SimCLR emphasized the importance of

‘‘scaling up,’’ i.e., using a larger batch size and a deeper and

wider network, as well as training for longer epochs, in order to

guarantee the success of the method. Unlike SimCLR, which

uses only one encoder f, MoCo29 exploits an additional mo-

mentum encoder fm. The encoder and momentum encoder,

sharing the same architecture and being identically initialized,

process two viewsof an image. Themethod also applies contras-

tive loss, where the negative samples are provided by previous

batches. For this, representations of previous samples are stored

into a queue during training. Representations from a new batch

are pushed into the queue after training, and old representations

are excluded. Theencoder is updatedbyapplyingbackpropaga-

tion as in SimCLR, while the momentum encoder is updated by

linear interpolation of the two encoders, as introduced in Equa-

tion 7. The momentum parameter is set to x = 0:999 by default,

meaning that the update of the momentum encoder is much

slower. However, the update mode of the momentum encoder

avoids back propagation, which can hence increase the number

of negative samples for training. The synchronize update of the

encoder and momentum encoder also solves the problem of

inconsistently encoded representations happening in works us-

ing memory bank.29 Posterior architectures such as MoCo

v.230 integrate the effective components presented in SimCLR.

MoCo v.2 incorporates stronger data-augmentation techniques,
Patterns 3, December 9, 2022 5



A CB Figure 2. Diagrams for predictive models
using Siamese architectures
SimSiam50 (shown in B) simplifies the structure of
BYOL (A) by removing its projection layers used
in both sub-networks. Unlike BYOL, the two
branches of SimSiam share their parameters, and
therefore, it is also seen as an approach of
SimCLR without using negative samples. Its
success in preventing the model from collapsing
into trivial representations can be attributed to
two essential factors, i.e., the extra learnable
predictor and a stop-gradient operation.51
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i.e., using an additional Gaussian deblur method and a larger

batch size. Moreover, its projection head layer is increased as a

two-layer MLP for both the encoder and momentum encoder.

Similarly, SimCLR v.228 upgrades the system proposed in

SimCLR by scaling up the model size from ResNet-50 to

ResNet-152 and improving the depth of the projection head. In

addition, the authors leave one projection layer for fine-tuning

on semi-supervised tasks, aiming to learn from few labeled ex-

amples while making the best use of a large amount of unlabeled

data. Furthermore, in order to efficiently provide a largenumber of

negative samples for training, the idea of memory mechanism

used in MoCo v.2 is employed in SimCLR v.2, too. Differently,

the latest MoCo v.331 removes the memory queue with the cost

of requiring a bigger batch size. In addition, it applies a prediction

layer after the projection head, similarly as proposed in bootstrap

your own latent (BYOL; introduced in non-contrastive SSL),

which successfully improves the representation capability.

Multiple views of the same context can also be obtained by

recording it using multiple sensors, such as multiple cameras

shooting a scene from different angles.45 More broadly, these

views can be of different modalities. The mutual supervision of

these modalities provides the basis to perform multi-modal

SSL, which will be introduced in multi-modal audio representa-

tion. Considering the spatial coherence and consistency in

data, local features of different patches of an image can be

considered as multiple views of the same type of data. In this

case, an SSL approach aims to maximize the mutual information

between local features and global representation, which aggre-

gates the information of the entire context global information.46

An SSL model then learns to represent local features by

capturing meaningful information relevant to the aggregated

global representation. Deep InfoMax46 codes an image into a

global context vector and contrasts its distance to the spatial

patches of the same image against the distance to spatial

patches of different images. However, Tschannen et al.47 pro-

vide some empirical evidence indicating that the contrastive

loss is not only attributed to mutual information. Similarly, Poole

et al.48 investigates the effect of the redundancy in two views of

the positive pair, suggesting that the viewswith lessmutual infor-

mation should be selected for training. The idea is to compress
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the redundancy in the embeddings of

the two views that are not relevant to the

labels.

Non-contrastive SSL

Discarding the use of negative samples in

SSL, the framework turns into a Siamese
architecture as shown in Figure 1C. A Siamese network consists

of two parallel sub-networks; each can process a view of a data

sample. Considering the natural similarity between the two views

of the same sample, the encoded representations in the high-

dimensional latent space should be close to each other. Hence,

during training, the representations from one sub-network can

be seen as the training target, i.e., pseudo-labels, for the other

sub-network. The neural encoders of both sub-networks share

the same or similar architecture—their parameters can be

shared or independent. However, training such a symmetric

model without using negative samples is prone to mode

collapse, i.e., when the model’s output is very similar (or even

identical) for different inputs. To avoid trivial solutions, asymme-

try configurations in the architecture need to be considered for

the two branches of the Siamese network. Alternatively, for iden-

tical branches, these should be trained asynchronously.

BYOL49 trains two sub-networks separately denoted as an on-

line network and a target network, as shown in Figure 2A. Both

sub-networks contain an encoder f and a projection layer g,

and the online network has an additional predictor layer p build

on MLP. The online network is learning to equate its predicted

representation and the pseudo-labels, i.e., the projected embed-

ding from the target network. To get rid of mode collapse, the

two networks are asynchronously optimized in an iterative

way. The target network is randomly initialized, and then its pa-

rameters are updated using an exponential moving average

(EMA) strategy during training, similar to that presented in

MoCo29 and defined as

x) tx+ ð1 � tÞq; (Equation 7)

where q and x stand for the parameters of the online and target

networks and t˛ ½0; 1� is a given decay rate for updating. The

online network follows the guidance of the slowly updated target

network and is optimized by minimizing the mean-squared error

(MSE) between the two network outputs:

L = kqq � pxk22
= 2 � 2

Cqq;pxD
kqqk2,kzxk2

;
(Equation 8)
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where qq and px are L2-normalized qq and px, i.e., qq=
				qq

		j2 and
px=
				px

		j2. The two views are exchanged once as the input of on-

line and target networks to create a symmetric loss, denoted as
~L, leading to a complete training loss of L+ ~L. The slow update of

the target network progressively aggregates the parameters

from the online network. This enables the production of more

stable representations, which are used as the guidance to train

the online network, thus progressively yielding better represen-

tations. As updating the online parameters is a sensitive proced-

ure that requires very careful fine-tuning, in order to avoid mode

collapse, the authors additionally exploit LARS52 as an optimizer

to update the parameters of different layers with different

strengths, guiding the model to gradually reach a meaningful

convergence.

In addition, the theoretical analysis and experimental study in

Tian et al.51 has raised two additional suggestions for training

non-contrastive SSL models like BYOL and SimSiam. First, the

predictor is expected to be updated with a moderately larger

learning rate or more frequently (to some degree) than the rest

of the network so that mode collapse can be better avoided. Still,

a too-frequent update or a too-large learning rate may impair the

learning of an optimal predictor capable of achieving a minimal

L2 error between the outputs of network twins, hence making

it unable to guarantee the quality of the learned representations.

Second, applying weight decay has been shown to be very help-

ful in achieving stable convergence. Although the use of batch

normalization53 was hypothesized to be crucial for preventing

collapse in BYOL (https://generallyintelligent.ai/blog/2020-08-

24-understanding-self-supervised-contrastive-learning/), in pre-

vious work,54 batch normalization has been successfully re-

placed with group normalization and weight standardization,

thus refuting the need of batch statistics for BYOL.

Barlow Twins (BT)55 is a neural network that holds a symmetric

structure with its two branches, as depicted in Figure 2C. It is

inspired by the redundancy reduction principle described in

the work of the neuroscientist H. Barlow.56 The two branches

of BT process two distorted versions of the same sample to pro-

duce their representations. The model measures the cross-cor-

relation matrix between the two learned representations, which

is expected to be close to the identity matrix. BT simplifies the

training procedure compared with BYOL and SimSiam, which

require asymmetric components, such as a predictor layer, as

well as operations, including gradient stopping and EMA. A BT

model benefits from very high-dimensional output vectors, and

its loss function is formulated as

L =
X
i

ð1 � CiiÞ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
invariance term

+ l
X
i

X
jsi

C2
ij|fflfflfflfflfflffl{zfflfflfflfflfflffl}

redundancy reduction term

; (Equation 9)

where the cross-correlation matrix computed between the out-

puts of the two networks along batch direction is defined as

Cij =

P
np

A
n;ip

B
n;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n

�
pA
n;i

�r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n

�
pB
n;j

�r ; (Equation 10)

where n indexes samples in the batch of size N. By minimizing

the training objective, the invariance term pushes the diagonal
elements of the correlation matrix to 1, which makes the learned

representations of the two distorted versions of a sample as

close as possible. The redundancy reduction term compresses

the correlations between the off-diagonal elements of the corre-

lation matrix. This reduction of the redundancy between output

elements in a representation vector results in representations

of sufficient disentanglement.

Clustering

A general approach to yield pseudo-labels for SSL instead of

creating additional data views. Considering that different objects

are naturally associated with distinct categories, each category

should occupy a separate manifold in the representation space.

Deep Cluster,57 as shown in Figure 1D, performs two steps iter-

atively. First, it exploits the K-means clustering method57,58 to

group the encoded representations and produce pseudo-labels

for each sample. Then, with the created pseudo-labels assigned

to each sample, the encoder network can be optimized by mini-

mizing the classification loss, such as by negative log-likelihood

function. Instead of the global clustering method of K-means

clustering, local aggregation (LA)59 allows for modeling more

flexible statistical structures by separately identifying neighbors

for each example. Moreover, LA proposes an objective function

that directly optimizes a local soft-clustering metric, leading to

better training efficiency. Another clustering method used in

SSL is SwAV,60 which introduces online clustering ideas into a

Siamese architecture, thus avoiding the time consumption due

to the two-step training paradigm. The online clustering assign-

ment provides pseudo-labels within mini-batches, projecting the

encoded embeddings to codes (based on the clustering cen-

troids, defined as prototypes). The prototypes are learned along

with encoder parameters in a swapped prediction problem. In

addition, the authors introduce multi-crop augmentation,

enabling the mix of image views of different resolutions.

Interrelationships between SSL frameworks
The introduced SSL frameworks differ in the way they create the

optimization target, i.e., pseudo-labels, for training the model.

From the viewpoint of the deformed data’s representation, the

auto-encoding framework guides it to predict the original data.

In this sense, the deformed data can be seen as one view of

the sample, while the original data are the other view, which

also serves as the pseudo-label for training the auto-encoder.

The non-contrastive SSL framework learns the representation

of one view by predicting the representation of the other view

rather than predicting the other view itself. Suppose the total rep-

resentation space is limited: contrastive SSL additionally con-

trasts this representation with some negative samples. This

can further restrict the allowed space to represent specific

data and can potentially improve the learned representations

with better distinctiveness. With multiple views of the same

data, non-contrastive and contrastive SSL can directly minimize

their distance in representations. Differently, the clustering

framework requires no additional-view generation but explicitly

groups the learned representations based on the underlying sim-

ilarity between each input. The clustering centroids are taken as

pseudo-labels that attract the learning of the representations of

the similar samples. The representations are then centralized

to multiple centroids by jointly minimizing the distance of the

samples’ representations to their centroids.
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Figure 3. Two architectures of Word2Vec
(A) CBoW predicts a single word from the previous and future words. The
context words are fed into an En to aggregate a context vector, which is used
to produce the target word using a De.
(B) Skip gram makes the opposite prediction from CBoW, i.e., predicting
previous and future words from a single center word.
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Recent works have experimentally tested the importance of

components for achieving effective SSL models.61 The training

objectives have been shown to be more important than the

network architecture, and the quality of the learned representa-

tions can be improved by scaling up the model size and the rep-

resentation size. Furthermore, the quantity and quality of the

negative samples have also shown to be important for the perfor-

mance of SSL using contrastive learning.62

The non-contrastive SSLmodels, auto-encodingmethods, and

clustering methods aim at reducing the distance between the

latent representations of similar data. Contrastive SSL aims at

contrasting the distance between positive samples against the

distance to negative ones. The advantages and disadvantages

of these two training strategies can be traced back to the differ-

ence between generative and discriminative models in the wide

field of machine-learningmethods. Training SSLwithout negative

samples may be less effective in learning discriminative features

between samples but has more potential to code more complete

information into representations. Differently, contrastive SSL ap-

proachesareexpected to learnmorediscriminative featuresbeing

compared with negative samples, at expense of dropping com-

mon attributes, which are salient to represent the sample itself

but are not very informative for distinguishing between samples.

Based on this, we infer that non-contrastive SSL may be able to

capture representations of more completeness, which should be

considered when expecting the SSL model to work as a general

featureextractor.However, theparametersof a pre-trainedmodel

can be further fine-tuned for a downstream task in a specific

domain, acontrastiveSSLmodel canbe improved tocomplement

its generalization ability to capture more complete representa-

tions, and a non-contrastive SSL model can also be further

improved to reduce the redundant information in the representa-

tions for the downstream tasks. Even though recent works have

conducted comparative experiments of the efficacy of non-

contrastive SSL and contrastive SSL,49,50 a clear explanation of

their performance differences is still missing.

Semantic representation for sequential data
To solve a machine-learning problem using sequential data,

such as video, text, and audio (including speech signals), the in-

formation of different levels in the data should be considered de-

pending on the learning objective. For the tasks that attend to the
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global information of sequential data, the basic SSL frameworks

and methods, introduced in the section SSL frameworks, can be

exploited directly on the sequential data, as well as on a trans-

formed, augmented, or segmented version of it. However, since

some tasks rely on the transient information of the sequential

data, in such a case, the sequential data should be frame-wisely

processed to retrieve the semantic features. Each frame, or its

representation, e.g., a word embedding for an NLP task, is first

taken as an independent sample. Then, a context network is

responsible for aggregating the representations along time,

yielding a context vector as the representative of the global infor-

mation of fine temporal resolution. The same principle holds for

SSL when processing sequential data. However, attending to

the features of different levels affects the way to perform views

generation and negatives sampling for SSL training.

Views and negatives generation

For the purpose of distilling global information, multiple views of

the same data can be created by segmenting sequential data

while keeping the temporal coherence and consistency of a

signal.45,63Negative samples of the same form can be generated

from other data. Taking video as an example,45 in a sequence of

image frames, two frames in a short temporal range can be

considered as a positive pair, while frames that are far away in

the same sequence or from other sequences can be taken as

negative samples. To improve the temporal resolution of the rep-

resentations of sequential data, each frame of the data is taken

as an independent sample. Based on this, when performing

contrastive SSL, the positive and negative samples can be

generated from the frames within the same sequential data.

For instance, in order to train a predictive coding model (cf. pre-

dictivemodels), a frame to be predicted is equated to the context

vector, which is seen as another view of the frame, while other

frames within the same data serve as the negative samples.

Predictive models

The SSL models using auto-encoding framework, introduced in

auto-encoding, do not always require predicting the entire orig-

inal sample, i.e., the prediction can be restricted to only recover

the distorted part. This is typically the case for sequential data,

as inWord2Vec,64which is used tomap one-hot representations

of words to word embeddings. In Word2Vec, two formulations

are used to learn underlying word representations: Continuous

Bag-of Words (CBoW) and Skip-gram, depicted in Figures 3A

and 3B, respectively. CBoW is trained to predict a single word

from its context words, whereas Skip-gram does the opposite,

aiming at predicting the left and right context words of a single

input word. CBoW performs better in learning syntactic relation-

ships between words; however, it is prone to overfit frequent

words. Differently, Skip-grams are better at capturing semantic

relationships and suffer less from overfitting, leading to a more

effective solution in learning representations for general pur-

poses.65 The success of Word2Vec is based on the consistency

of the context surrounding the component to predict.

Predictive coding is suggested to be used for tasks concern-

ing transient information in sequential data, such as NLP and

some speech-based tasks. An auto-regressive model can

learn representations bymaking predictions of future information

conditioning on past context. APC66 encodes segments of

sequential data into representations (cf. Figure 4A). An additional

context network aggregates these representations up to the
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Figure 4. Diagrams of auto-regressive predictive coding (APC) and masked predictive coding (MPC)
To apply contrastive loss, the embeddings zn, except for the one to predict, can be taken as negatives (distractors). APC shown in (A); MPC shown in (B).
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current time step. Hence, the context network is usually a recur-

rent neural network (RNN) for modeling the temporal information.

Its output context vector is then used to predict the next audio

representations, for example, t steps ahead of the current time

step. The APC method codes only on a sequence in the forward

direction. In order to achieve a representation conditioned on

both directions (past and future), a combination of separately

trained models for forward and backward directions is needed.

Alternatively, a bidirectional architecture can be realized using

MPC, presented in bidirectional encoder representations from

transformers (BERT),67 which masks parts of the input signals

that are subsequently predicted by conditioning on the context

from both directions (cf. Figure 4B). Transformer encoders and

bidirectional RNNs have been considered as context networks

for realizing MPC. The MPC approaches can learn effective rep-

resentations of sequential data in a non-auto-regressive way and

hence achieve considerable speed up in training. Besides, such

models seem to be very similar to a masked auto-encoder.68

Similarly, a specific non-auto-regressive predictive coding

(NPC)69 has been recently proposed, which also applies a

mask on its model input but learns representations based on

local dependencies of an input sequence rather than globally.

The optimization of Word2Vec, APC, and MPCmodels can be

performed by minimizing the prediction errors or in a contrastive

learning way.42,70 Specifically, contrastive predictive coding

(CPC)42 can exploit an APC architecture optimized to predict

the correct future information based on the aggregated global

context from past frames. In addition, to maximize the similarity

between the context vector ct, serving as the pseudo-label, and

future audio representation zt + t, CPC gets use of negative sam-

ples to improve the representation discrimination in training ob-

jectives such as InfoNCE loss (cf. Equation 4):

L
�
ct; zt + t ; z
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n˛ ½1;N� 1�

�
= E
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� log
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t
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t
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#
;

(Equation 11)

where zn
� denotes a negative data point sampled from the pro-

posal distribution of zt + t, i.e., randomly sampled from the

sequence z. From the perspective of the loss construction, tak-

ing the future frame to be predicted as the anchor, the context
vector containing global information from the past is seen as

the positive, while the other frames are considered negatives.

In CPC v.2,71 the model is scaled up to achieve larger model ca-

pacity, and the batch normalization is replaced by layer normal-

ization, as batch normalization is found to harm downstream

tasks for CPC frameworks.71Moreover, patch-based augmenta-

tion is introduced in order to add more diversity to the

model’s input.

Similarly, for MPC, the contrastive training objective can be

formalized as
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(Equation 12)

However, MPC, widely known as a powerful replacement of

other predictive coding models used to process sequential

data such as APC, is essentially presented and works in the

same way as the auto-encoding framework. The approach has

also been adopted for processing speech signal, e.g., wav2vec

2.0,72 which will be introduced in detail in the following section.
AUDIO SSL

Depending on whether transient information is essential on a

given audio task, different model frameworks and training objec-

tives should be selected for audio SSL. The basic SSL frame-

works (cf. SSL frameworks) aim to train a model to encode the

global information of its input signal into a representation vector.

Since the learned representation is void of temporal resolution,

such approaches are suitable for non-speech audio applica-

tions, such as acoustic scene classification (ASC), whose audio

recordings own good consistence in signal. Contrastive SSL and

the Siamese network are mostly exploited for this learning pur-

pose. For this, the positive pair can be segmented from the

same audio recording, or its spectrogram or Mel representa-

tions, and the negative pair can be extracted from different

recordings.73–75 Besides, the model learned though these ap-

proaches can be fitted to solve paralinguistic downstream tasks,

owing to the relatively slower change of the non-semantic
Patterns 3, December 9, 2022 9



Figure 5. Diagram of PASE

ll
OPEN ACCESS Review
aspects of the speech signal comparedwith its phonetic and lex-

ical aspects.76

To capture the transient information in speech for applications

requiring semantic features, representation learning should be

performed on each short-term segment of the speech signal or

each frame of its time-frequency representation. To this end,

predictive coding like APC and MPC can be used to learn a

representation for each time step.42,72,77–80 These short-term

segments or the representation frames can be treated as inde-

pendent samples for SSL training due to the fast time variance

in a speech signal, enabling contrastive training of these predic-

tive coding models using signal segments within the same

speech sequence.

In the following, we categorize the approaches for audio SSL

based on the above considerations. A summary table of typical

audio SSL methods is shown in Table 2. It is worth mentioning

that several artificial intelligence (AI) communities, including

Hugging Face (https://huggingface.co/) and Fairseq (https://

github.com/facebookresearch/fairseq), keep updating their

open-source toolkits to promote the development and use of

audio SSL methods.

General-purpose audio SSL
Contrastive SSL

The methods differ in the used audio input formats, such as

LIM,73 COLA,74 CLAR,81 and the work by Fonseca et al.,75 and

expand the SimCLR approach for learning auditory representa-

tions. The LIM model,73 which aims at learning useful speaker

representations, directly processes speech samples with the

expectation of maximizing local mutual information between

the encoded representations of chunks of speech sampled

from the same utterance. In COLA74 and the work by Fonseca

et al.,75 the presentedmodels take segments randomly extracted

from time-frequency features along the temporal direction.

Several data augmentations are adopted for the patches before

feeding to the model in Fonseca et al.75 such as random size

cropping and Gaussian noise addition, as well as their proposed

mix back, i.e., mixing the incoming patch with a background

patch but ensuring that the incoming patch is dominant in the

mixture. In CLAR,81 the paired views of the model’s input are

generated by applying data augmentations on raw audio signals

and time-frequency audio features, for which effective composi-
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tions of data augmentation are explored. In addition, the authors

suggest combining the training of SSL with supervised learning

using substantially less labeled data than a complete super-

vised-learning setup. Correspondingly, the contrastive loss and

cross-entropy loss are added together as the complete training

objective. This method provides significant improvements in

terms of convergence speed and representation effectiveness,

with respect to using SSL only. Similarly, Wang82 also suggests

training audio SSLmodelswith different formats of an audio sam-

ple. More precisely, the training objective is to maximize the

agreement between the rawwaveform and its spectral represen-

tation. The approach is shown to be effective for downstream

classification tasks on both AudioSet and ESC-50 datasets.

Siamese network

BYOL, as a representative SSL framework using the Siamese

network, has been adopted in the audio domain, named

BYOL-A,83 which learns representations from a single audio

without using negative samples. To generate two views of an

audio segment as the input of the Siamese network, its log mel

spectrogram is unequally processed using two data augmenta-

tion techniques, i.e., Mixup and Random Resize Crop (RRC),

which randomly resizes and crops the signal in the two model

branches. Pre-normalization and post-normalization are addi-

tionally applied to stabilize the data-augmentation procedure.

The remaining parts of the model are consistent with the archi-

tecture of BYOL. The method has been found to be effective

for learning a general-purpose audio representation for several

classification tasks, including those based on non-speech sig-

nals, e.g., music instrument family classification, as well as

speech signals, e.g., speaker identification, language identifica-

tion, and speech command recognition.

Auto-encoding

Another predictive model, i.e., Audio Word2Vec,37 makes use of

a sequence-to-sequence auto-encoder to represent audio

frames into latent attributes. For this, two RNNs serve as the

encoder and decoder, which are jointly optimized by minimizing

the reconstruction error.Meanwhile, a segmentation gate is intro-

duced in AudioWord2Vec to estimate word boundaries, enabling

it to segment an utterance into its spoken words. The parameters

of the segmentation gate can be updated based on rewards

computed using reinforcement learning. The auto-encoder and

the segmentation gate are updated in an iterative way, i.e., opti-

mizing the parameters of one of them while fixing the other one.

As a special case of applying auto-encoding, Carr et al.37 pro-

posed a training strategy based on permutations, i.e., training a

model that can reorder shuffled patches of an audio spectrogram,

analogous to solving a jigsaw puzzle.34 The method draws inspi-

ration from ‘‘Shuffle and Learn’’ 84 and has also been considered

in another work for industrial audio classification.38 In Carr et al.,37

the authors also leverage differentiable ranking to integrate per-

mutation inversions into an end-to-end training, which enables

solving the permutation inversion for the whole set of permuta-

tions, i.e., reducing the space of permutations that might be ex-

ploited and performing the reordering as a classification task.

Semantic representation for speech
Multi-task resembling

The first to be introduced is the problem-agnostic speech

encoder (PASE; Figure 5),85 an approach that combines a

https://huggingface.co/
https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq


Table 2. An overview of the recent audio self-supervised learning methods

Model Speech Input format Framework Encoder Loss Inspired by

LIM73 (2019) U raw waveform 1(b) SincNet BCE, MINE, or NCE loss SimCLR

COLA74 (2021) 7 log mel-filterbanks 1(b) EfficientNet InfoNCE loss SimCLR

CLAR81 (2021, semi) 7 raw waveform log

mel-spectrogram

1(b) 1D ResNet-18

ResNet-18

NT-Xent + cross-entropy SimCLR

Fonseca et al.75 (2021) 7 log mel-spectrogram 1(b) ResNet, VGG, CRNN NT-Xent loss SimCLR

Wang et al.82 (2020) 7 raw waveform + log

mel-filterbanks

1(b) CNN ResNet NT-Xent loss +

cross-entropy

SimCLR

BYOL-A83 (2021) 7 log mel-spectrogram 2(a) CNN MSE loss BYOL

Carr37 (2021) U MFCCs 1(a) context-free network Fenchel-Young loss –

Ryan38 (2020) 7 constant-Q transform

spectrogram

1(a) AlexNet triplet loss –

Speech2Vec90 (2018) U mel spectrogram 3 RNN MSE loss Word2Vec

Audio2Vec89 (2020) U7 MFCCs 3 CNN MSE loss Word2Vec

DeCoAR91 (2020) U log filterbank features 3 RNN L1 loss Word2Vec

Audio Word2Vec195 (2019) U MFCCs 3 RNN MSE loss Word2Vec

Mockingjay95 (2020) U mel spectrogram 4(b) transformer L1 loss BERT

TERA96 (2021) U log mel spectrogram 4(b) transformer L1 loss BERT

Audio ALBERT98 (2021) U log mel spectrogram 4(b) transformer L1 loss BERT

DAPC99 (2021) U spectrogram 4(b) transformer modified MSE loss +

orthogonality penalty

BERT

PASE85 (2019) U raw waveform 1(a) SincNet + CNN L1, BCE loss MTL

PASE+87 (2020) U raw waveform 1(a) SincNet + CNN + QRNN MSE, BCE loss MTL

APC66 (2019) U log mel spectrogram 4(a) RNN L1 loss –

VQ-APC114 (2020) U log mel spectrogram 4(a) RNN, transformer L1 loss –

NPC69 (2021) U log mel spectrogram – CNN + masked CNN L1 loss –

CPC42 (2018) U raw waveform 4(a) ResNet + GRU InfoNCE loss –

CPC v271 (2020) U raw waveform 4(a) ResNet + masked CNN InfoNCE loss –

CPC293 (2021) U raw waveform 4(a) ResNet + LSTM InfoNCE loss –

wav2vec77 (2019) U raw waveform 4(a) 1D CNN contrastive loss –

VQ-wav2vec78 (2019) U raw waveform 4(a) 1D CNN + BERT contrastive loss BERT

wav2vec 2.072 (2020) U raw waveform 4(b) 1D CNN + transformer contrastive loss BERT

HuBERT112 (2021) U raw waveform 4(b) 1D CNN + transformer contrastive loss BERT

WavLM113 (2022) U raw waveform 4(b) 1D CNN + transformer contrastive loss BERT

Model, speech (i.e., whether amethod addresses speech tasks or it is designed for general audio representations), framework (referring to Figures 1, 2,

3, and 4), encoder, loss, and the previous technology by which the methods are inspired, are given.
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convolutional neural network (CNN) encoder with multiple neu-

ral decoders, defined as workers in the literature. The workers,

fed with learnt representations from the encoder, aim at solving

regression or binary discrimination tasks. The regression tasks

include, for instance, recovering the raw audio waveform in a

similar way as auto-encoding, the log power spectrogram,

mel frequency cepstral coefficients (MFCCs), and prosody.

Regarding binary discrimination tasks, contrastive training ob-

jectives are used. Local info max (LIM) exploits the same

method as in Ravanelli and Bengio73 to maximize local informa-

tion for the embedding of each frame created by the PASE

encoder. By averaging the embeddings of these frames, maxi-

mize global information (GIM) is also considered to be comple-

mentary to the LIM. Moreover, the idea of CPC42 is also adop-

ted with changes made in sampling positive and negative

samples. Each self-supervised task is expected to provide a
different view of the speech signal; jointly solving self-super-

vised problems pushes the views into a unique representation

that contains meaningful speech information such as speaker

voice print, phonemes, or emotions. In addition, to process

the raw waveform as the encoder input, the SincNet86 model

is used as the first stage of PASE, which performs a convolu-

tion with a set of parametrized Sinc functions that implement

rectangular band-pass filters. PASE+87 incorporates additional

data-augmentation techniques and more effective workers. The

CNN encoder is combined with a quasi-RNN (QRNN)88 for

capturing long-term dependencies in sequential data in a

more efficient way.

Word2Vec

Other typical works include Audio2Vec,89 Speech2Vec,90 and

DeCoAR,91 inspired by Word2Vec,64 as introduced in predictive

models. The former two works learn audio representations using
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Review
CBoWand skip-gram formulations, while the last only considers a

method similar to CBoW. In the CBoW formulation, the task is to

reconstruct a temporal spectrogramslice of pre-determineddura-

tion from a number of past and future slices. The method has also

been shown to be effective for ASC in Gontier et al.92 Differently,

the roles of the target and surrounding slices are reversed in the

skip-gram formulation. Audio2Vec and Speech2Vec mainly differ

in the following aspects: (1) Speech2Vec applies audio segmenta-

tion, by using an explicit forced alignment technique, in order to

isolate audio slices corresponding to eachword. The forced align-

ment segmentationmay introduce supervision to some extent. (2)

Audio2Vec requires no explicit assistance and hence completely

removes the need for supervision. (3) Unlike neural network archi-

tectures, Speech2Vec isbuilt basedonanRNNencoder-decoder,

andAudio2Vec is built of stacksofCNNblocks. (4) Asmodel input,

Speech2Vec processes the mel spectrogram of an audio, while

Audio2Vec operates on MFCCs. (5) In Audio2Vec, the

TemporalGap formulation is additionally introduced, which re-

quests that the model estimates the absolute time distance be-

tween two (randomly sampled) slices taken from the same

audio clip.

CPC

Van den Oord proposed CPC,42 which can effectively learn rep-

resentations by predicting the future in a latent space using an

auto-regressivemodel, showing very promising results for audio,

images, text processing, and reinforcement learning. For audio,

a strided convolutional network is used to encode raw audio to

its latent representation. Then, a gated recurrent unit (GRU)-

RNN aggregates the information from all the past time steps to

form a context vector. More importantly, contrastive loss is

applied to learnmore discriminative representations by contrast-

ing the true future to noise representations, given an aggregated

context vector. Speech signals can be pre-processed by using a

time-domain data augmentation library, such asWavAugment,93

in order to achieve more powerful representations by CPC. The

library contains several data augmentation (DA) techniques,

including pitch modification, additive noise, reverberation,

band reject filtering, or time masking, to name a few. In Kharito-

nov et al.,93 the authors define aCPC2model, which replaces the

GRU-RNN of CPC by a two-layer long short-term memory

(LSTM)-RNN and replaces the linear prediction network by a sin-

gle multi-head transformer layer, leading to better training effi-

ciency without harming representation performance.

Wav2vec,77 as shown in Figure 6A, adjusts the CPC structure

to a fully convolutional architecture, enabling easy parallelization

over time on hardware. OneCNNencodes the rawwaveform into

audio representations for each time step, and the other captures

global context information into a context vector. Specifically, the

wav2vec approach is optimized by minimizing contrastive loss

for each step k = 1;.;K:

Lk = �
XT � k

i = 1

ðlogs�zTi + khkðciÞ + lE½logs�� ~zThkðciÞ
��
;

(Equation 13)

where ~z is the distractor uniformly sampled from the audio repre-

sentations, sðxÞ = 1=ð1 + e� xÞ. sðzTi + khkðciÞ stands for the prob-

ability of zi + k being the true future sample of ci, and
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hkðciÞ = Wkci +bk applies an affine transformation to ci, similar

as in Oord et al.42 The total loss sums up considering K steps;

L =
PK

k = 1Lk is minimized for training. After pre-training, the

affine projection layer is removed for creating the learned repre-

sentations from the raw audio. This method moves beyond

phoneme-based automatic speech recognition (ASR), as

explored in Oord et al.,42 and substantially improves a char-

acter-based ASR system.

A follow-up work by Baevski et al.78,94 (cf. Figure 6B) imple-

ments a vector quantization module after the wav2vec encoder

in order to discretize the audio representations. This aims to

find, for each representation, the closest embedding and code-

word from a fixed size codebook. The discrete representations

are fed into the context network and then optimized in the

same way as for wav2vec. We will introduce the principle of vec-

tor quantization in detail, comparing its two realization methods,

i.e., K-means clustering and Gumbel-Softmax, in the section

representation quantization.

MPC

Masked acoustic model (MAM) (cf. Figure 4B), built on trans-

former architecture, masks some parts of an audio input and re-

constructs the entire original input in order to fill the masked

parts that are not known by MAM during training.95,96 Such

model can be optimized by minimizing the reconstruction error,

contrastive loss, and clustering.

Optimization with reconstruction error. Mockingjay95 (cf.

Figure 7A) takes the mel spectrogram as input acoustic features

and exploits transformers to code randomly masked frames into

audio representations. The encoded representations are map-

ped to predict the complete frames using a projection head built

of two-layer MLP with layer normalization. The transformer

encoder and projection head are jointly optimized by minimizing

the L1 reconstruction loss. The effectiveness of self-attention in

transformer encoders has been further explored in Yang et al.;97

the authors also provide a visualization tool for understanding
the attention, based on which several attention refinement tech-

niques are proposed to improve model performance. Audio

ALBERT98 has the same network architecture as Mockingjay,

but the parameters are shared across all its transformer encoder

layers, thus achieving a faster inference and increasing training

speedwithout harming the performance of two evaluation down-

stream tasks, i.e., speaker classification and phoneme classifi-

cation. In transformer encoder representations from alternation

(TERA),96 the authors extend the used masking procedures,

including replacing contiguous segments with randomness,

masking along the channel axis, and applying Gaussian noise

for pre-training the transformers. This resulted in a better repre-

sentation performance than the one shown by Mockingjay and

audio ALBERT for downstream tasks, phoneme classification,

keyword spotting, and speaker classification.96 In addition, it

shows also promising results for ASR tasks based on the Libri-

speech and TIMIT datasets.

Unlike the works that predict the entire audio frames from their

masked version, DAPC99 (cf. Figure 7B) proposes a method to

only predict the missing components along the time and fre-

quency axes of an audio spectrogram by minimizing a masked

reconstruction loss. The method is also regarded as an exten-

sion of CBoW, for which the input’s masked spectrogram can

be easily generated using SpecAugment,100 and hence, the

missing parts to be predicted are not only temporal frames but

are also frequency bins.

Optimization using contrastive loss. Wav2vec 2.0 Figure 6D ex-

ploits a MAM as in the section MPC but is optimized using a

contrastive loss, i.e., InfoNCE.42 The raw audio is encoded using

multiple one-dimensional (1D)-CNN layers, and the resulting rep-

resentations are partly masked before being sent to a trans-

former network to learn contextualized representations. The net-

works are jointly trained to contrast the true representations from

distractors given the contextualized representations. Similar to

VQ-wav2vec, wav2vec 2.0 applies product quantization, too;

however, the quantized vector qt for each time step is not fed

into a context network but is only used in the objective function:

L = E

"
� log

ecT
t
qt=tP

~q�Qt
ecT

t
~q=t

#
; (Equation 14)

where ~q � Qt includes qt and K distractors. In addition to this

InfoNCE, the training loss is regularized by a diversity loss Ld
to encourage the model to make better use of the codebook,

which is detailed in wav2vec 2.0 and shows very promising re-

sults for ASR tasks evaluating on both Librispeech101 and

TIMIT102 datasets.

Wav2vec 2.0 has been further investigated for analyzing its

efficacy in terms of cross-domain shift103 and cross-lan-

guage.104,105 To explore the effect of cross-domain shift, the

data for pre-training, fine-tuning, and evaluation are from

different domains. The authors conclude that the matching

conditions between data of pre-training and testing are very

important in order to achieve satisfying speech recognition re-

sults. Moreover, pre-training on multiple domains can improve

the generalization ability of the learned representations. The

task of learning multi-lingual speech representations has also

been undertaken based on wav2vec 2.0104 and Babu
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et al.,105 as well as by a bidirectional CPC model in Kawakami

et al.106 Besides, the architecture of wav2vec 2.0 also reveals

promising improvements in learning general-purpose audio

representations for non-speech audio tasks as shown in

Srivastava et al.,107 where the transformer is replaced by a

conformer.108

The use of a codebook in wav2vec 2.0 aims to restrict the

number of possible audio representations, emulating the situa-

tion in the NLP domain, i.e., finite words exist, and each

of them has a unique embedding. However, the situation is

different for real-world noisy audio due to different recording

environments. To solve some difficulties in utilizing a code-

book observed for wav2vec 2.0, Sadhu et al.109 proposed

wav2vec-C, which uses an explicit consistency network to

reconstruct the original input features from the encoded discrete

representations by wav2vec 2.0. Hence, it can be seen as inte-

grating wav2vec 2.0 and the vector-quantized variational auto-

encoder (VQ-VAE)110 in a single model. The reconstruction error

is added to the InfoNCE loss of wav2vec 2.0, providing a regula-

rization effect in learning the speech representation and enforc-

ing it to explicitly carry essential information for recovering the

input features. This method has yielded some additional

improvement in ASR on real-world far-field noisy data compared

with the original wav2vec 2.0.72

Recently, data2vec111 unified the same SSL regime that works

for other different modalities, including vision and language in

addition to speech. Using front-end modality-specific encoding

modules for different data types, a standard transformer is

then trained in order to predict representations of the entire input

data given the partially masked input.

Optimization using clustering. Differently, hidden-unit BERT

(HuBERT)112 trains a MAM model without contrastive learning

and avoids using vector quantization. Instead, inspired by

DeepCluster,57 the learned audio representation is paired with

a pseudo-label provided by performing clustering, such as

K-means, to the MFCCs of the input audio. To train this model,

the losses for masked and unmasked frames are formulated

identically as a contrastive loss:

L = E

"
� log

eðActÞTek=tPK
k = 1e

ðActÞTek=t

#
; (Equation 15)

where A is a matrix to project the context vector ct, which is

trained to be close to the centroid of its belonging cluster ek
and away from other centroids. The losses of masked and un-

masked frames are added together to be minimized. Two oper-

ations can be additionally performed on the clustering to improve

the representation quality. First, themethod benefits from cluster

ensembles, as the K-means clustering can be of different

numbers of clustering centers, creating targets of different gran-

ularity. Second, the pseudo-labels can be refined throughout

the learning process by applying clustering to the learned audio

representation, which is expected to be of better quality

over MFCCs.

Later, WavLM113 improves the model robustness of the same

network as HuBERT by augmenting some training data with ad-

ditive noise (including overlapping speech) and subsequently

trains the model with the pseudo-labels created from the original
14 Patterns 3, December 9, 2022
clean data (in the masked region) using a clustering method. By

doing this, the trained SSL model can learn representations of

higher robustness against noise when performing speech tasks.

This also enhances the model’s capability to process more com-

plex audio scenarios, enabling it to learn representations for non-

speech downstream tasks.
Representation quantization
With the aim to emulate a written language having a finite vocab-

ulary of discrete units, i.e., words or sub-words, vector quantiza-

tion can convert a speech representation in the continuous

space into the discrete space of finite possible representations.

The idea is used in VQ-wav2vec, wav2vec 2.0, and HuBERT, as

previously introduced, as well as other methods including VQ-

VAE,110 VQ-APC,114 NPC,69 and SeqRA-AE.80 Specifically, the

quantization aims to find each latent feature zt, i.e., speech rep-

resentation at time step t, and the closest embedding from a

fixed size codebook e˛RV3d containing V codewords of size

d. This can be realized by using either the Gumbel-Softmax

approach or K-means clustering.

Gumbel-Softmax

As depicted in Figure 8A, the first method selects a codeword by

learning a one-hot vector from the speech representation.

Hence, the length of the one-hot vector equals the possible num-

ber of codewords, and the codeword is of the same size of the

speech representation. To this end, the speech representation

is projected onto a vector of length V via two dense layers. The

resulting logits l1;.;V are fed into Gumbel-Softmax to emit the

probabilities of selecting each codeword:

pv =
eðlv + nvÞ=tPV
k = 1e

ðlk + nk Þ=t
; (Equation 16)

where n = � logð� logðuÞÞ stands for Gumbel noise, in which

the u is sampled from the uniform distribution Uð0; 1Þ, and t is

a non-negative temperature parameter. Gumbel-Softmax is a

differentiable approximation of argmax, specifically when t ap-

proaches 0, Equation 16 becomes the same as argmax. Hence,

the output of Gumbel-Softmax approximates a one-hot vector.

In practical training, argmax is further used to turn the possibil-

ities into the one-hot vector, with the ‘‘1’’ indicating the index

of the codeword to choose. However, the back propagation

only computes the gradients with respect to Gumbel-Softmax

outputs—the exact probabilities rather than the one-hot

result—for the parameters’ optimization.

Using a single codebook for coding representations tends to

mode collapse, i.e., only some of the codewords are actually

used. To solve this issue, multiple codebooks are used for quan-

tization.115 To useG codebooks, a speech representation should

be split into G isometric representation segments, each of size

d=G. Then, a codeword from one codebook can be chosen in

the same way as introduced above. The complete quantized

representation concatenates these chosen codewords into one

vector.

To encourage the use of V codebook entries equally often, a

diversity loss can be additionally used, as shown, e.g., in wav2-

vec2.0. The diversity loss forG codebooks is minimized to maxi-

mize the entropy of the probabilities:
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1
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XG
g = 1

�H
�
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�
=

1

GV

XG
g = 1

XV
v = 1

pg;v log pg;v;

(Equation 17)

expecting to make use of all possible codewords with the same

frequency.

An application to utilize the quantization results is to group

quantized audio representations into phoneme sequences,

which is named phonetic clustering in SeqRA-AE.80 In this

work, the discrete representation is learned in an auto-encoder

architecture with vector quantization. Moreover, the consecutive
repeated quantized representations are further grouped to form

phonetic units. Each phoneme can therefore correspond to

several repeated codewords, which is similar to the format of

connectionist temporal classification (CTC).116

K-means clustering

As an alternative solution to realize differentiable vector quanti-

zation, K-means clustering can assign a speech representation

to a cluster according to the distance between the representa-

tion and the clustering centroid. As shown in Figure 8B, the dis-

tances between zt and all the centroids are calculated; then, the

closet centroid is selected as the quantized representation. To

train a model that learns discrete speech representations using

this approach, additional loss components are needed:

Lcluster =
�
ksgðzÞ � qk2 + gkz � sgðqÞk2

�
; (Equation 18)

where sgð:Þ is the stop gradient operator and g is a hyper-param-

eter. By immunizing the loss, the term
						sgðzÞ � q

			j2 freezes the

encoder output z and forces the codewords Q to be closer to

the encoder output. The other term
						z � sgðqÞ

			j2 drives each

encoder output to be close to one codeword, which is one

centroid of the K-means clustering. Note that for HuBERT,

K-means clustering is similarly used to create pseudo-labels.

However, the optimization of the learned speech representation

is trained using all cluster centroids in a contrastive way, i.e.,

contrast its similarity to the belonging centroid with the similarity

to other centroids, as formulated in Equation 15.
Regression tasks
Although the research of audio SSL began with learning repre-

sentations able to solve classification downstream tasks, the

application of SSL to audio regression tasks has recently

received attention. An example can be seen in the popular

benchmark SUPERB-SG,117 which extends its previous version

SUPERB118 containing only classification tasks with five audio

regression tasks, such as speech enhancement and separation

or voice conversion, among others.

In fact, we noticed that the classic formulation of several front-

end audio processing tasks that have been explored for a long

history are essentially using the framework audio SSL, especially

auto-encoding predictive models as the one shown in Figure 1A.

Indeed, methods for speech enhancement (SE), i.e., able to pro-

cess a noisy audio input and output clean speech, has been pre-

sented.119,120 For generating the noisy input, clean speech is

typically mixed with a noise recording. This is exactly the same

as the processing of input to an auto-encoding predictive model,

while the noise addition is seen as a step for DA. Hence, the

latent features in the middle layers of an SE model are seen as

a kind of audio representation of the clean speech. The formula-

tion is not limited to SE but is applicable to all the pre-processing

tasks that aim at predicting an audio of interest from additive and

multiplicative noise or interference, such as source separation,

de-reverberation, and echo cancellation.

In some very recent works, audio SSL approaches have

been chosen to solve some special regression tasks related to

SE121–123 and source separation.124 In Wang et al.,121 a pair of

VAEs, named clean auto-encoder (CAE) and mixture auto-

encoder (MAE), were exploited. A CAE is trained to learn
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representations of clean speech by minimizing the reconstruc-

tion error of its input spectrogram. An MAE encodes a noisy ut-

terance and enforces the encoded representation into the same

latent space of the CAE by using a cycle-consistency loss term.

This paradigm leans feature mapping or spectral mapping from

the domain of mixtures to the domain of clean sounds. Mixture

invariant training (MixIT) is proposed in Wisdom et al.125 for solv-

ing unsupervised sound separation. In MixIT, a separation

network takes a mixture of multiple single-channel acoustic mix-

tures (MOMs) as model input, where each of the acoustic mix-

tures is comprised of several speech sources. The separation

network decomposes the MOMs into separate audio sources,

which are then selected to be re-mixed up to approximately

each acoustic mixture of the MOM. Similar to permutation

invariant training (PIT),126 the remix matrix is optimized by

choosing the best match between the separated sources and

the acoustic mixtures. The method shows improvements for re-

verberant speech separation and universal sound separation

and is effective for SE, too. MixIT, as a typical universal sound-

separation method, is verified to be a valid DA approach to

generate positive views for contrastive learning.127 It learns to

associate sound mixtures with separated channels, thus this re-

taining semantic structure in learned representations. Finally, us-

ing denoising pre-training is an alternative solution to solve the

permutation switching problem of source separation.124 In this

work, the authors use speech denoising as a self-supervised

pre-training task to learn the structure information of speech

from large-scale data. The model is subsequently fine-tuned

with the normal training objective of source separation. As

knowledge about the speech structure has been captured in

the pre-trained model, it relaxes the permutation problem.

To develop an SE system specialized in a particular person

(PSE), Sivaraman and Kim122 present two SSL algorithms, pseu-

doSE and contrastive mixtures (CMs), for extracting speaker-

specific discriminative features. A pseudoSE model is trained

to recover a pre-mixture signal (i.e., clean speech contaminated

by noise) from a pseudo-source (i.e., a mixup of the pre-mixture

signal and additional noise). The CM method generalizes the

training via contrastive learning, for which a positive pair shares

the same pre-mixture signal (but is deformed with different addi-

tional noises), while a negative pair stems from two different pre-

mixture sources mixed with the same additional noise. The

trained model, using either contrastive or non-contrastive SSL,

is trained to recover pre-mixture sources rather than clean

speech, and hence, it requires fine-tuning for the downstream

task. Data purification (DP)128 is later introduced in the pseudoSE

training. Specifically, a separate model is trained to estimate the

segmental signal-to-noise ratio (SNR) of the pre-mixture signals,

measuring the different importances of the audio frames. Inject-

ing the importance measurement in pseudoSE training enables

the model to benefit from segments of higher quality, and hence,

enables it to derive more meaningful speaker-specific features.

Multi-modal audio representation
The successful adoption of SSL has spread overmany academic

and industrial fields, including, but not limited to, CV, audio pro-

cessing, and NLP, to cite a few. Moreover, exploiting multi-

modal SSL has also been explored for a variety of applications

whereby the representation learning of different modalities can
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be performed simultaneously. The mutual complementarity be-

tween different modalities, treated as different views represent-

ing one unique object, is beneficial for the representation

learning of each considered modality. In this section, we discuss

multi-modal SSL approaches that use audio as one modality.

Most of these works are based on audio-visual processing,

which aims, for example, at determining the correspondence be-

tween video frames and its audio sequence. Other visual-audio

methods, similar to the SSL works previously described, make

use of the synchronization of the visual and audio streams of a

video, taking the two views as input of a Siamese network. In

this case, each modality of the two can be seen as the supervi-

sory signal for the other. Audio representation can also be

learned during a task of video generation, where the representa-

tion of each segment of an utterance is expected to carry

adequate speech information in order to transfer the knowledge

into video frames. Some more interesting approaches are moti-

vated by classic tasks in CV, i.e., object segmentation and local-

ization, and audio processing, i.e., source separation. On the

other hand, text is also considered as one modality that assists

in the learning of speech representations, because speech and

text have a similar linguistic structure.

Audio and visual
Visual-audio correspondence (AVC) decision

By splitting a video into visual and audio streams, both L3-Net129

(cf. Figure 9A) and AVE-Net130 (cf. Figure 9B) exploit two convo-

lutional networks, named vision sub-network and audio sub-

network, to separately encode the two streams into a common

space for cross-modal retrieval. Specifically, based on the align-

ment between both streams, one second of an audio segment

and the corresponding center video frame are fed into these

two networks. The model is required to decide whether the

two inputs are in correspondence or not. For a video clip, the

audio segment and the video frame at the same time step are

considered as a positive pair for model input, while a negative

input pair is the audio segment paired with a video frame from

another different video clip. In L3-Net,129 the audio and visual

representations are concatenated before being sent into fully

connected layers to predict the correspondence score. In

contrast, AVE-Net130 measures the correspondence degree by

computing the Euclidean distance between audio and visual rep-

resentations that are designed to be of the same dimensionality.

Moreover, both L3-Net and AVE-Net are especially designed for

recognizing where the sound is generated in the video frame, for

example, the location of specific instruments in a band. The

vision sub-network of L3-Net has the intrinsic ability to recognize

semantic entities that make sound, while AVE-Net needs addi-

tional modifications on its model architecture, incorporating a

comparison mechanism to the audio representation with each

spatial grid of the 3D visual representations (cf. Figure 9C). The

method encourages at least one region to respond highly for a

corresponding audio and video frame and, hence, enables the

localization of the object that sounds. As these two visual-audio

correspondence (AVC) works formulate the task as a binary clas-

sification problem, the models can be optimized by minimizing a

logistic loss. For the C3 learning method presented in Jansen

et al.,131 the task to predict the correspondence between audio

and image frames is relaxed to a less-restrictive notion of
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coincidence. Moreover, three auxiliary tasks (ATs), each of them

introducing an auxiliary network and an additional loss, are

involved in a curriculum way in order to train the audio model

while improving its representation capability. After the conver-

gence of AV coincidence loss, a prediction task aimed at only

deciding the coincidence of audio pairs (audio-audio correspon-

dence) is performed and jointly trained with the AV coincidence

loss. For this, a critical timescale needs to be considered to

qualify as coinciding. Afterward, an improved clustering method,

entropy-based clustering, is used to categorize the audio repre-

sentations from the audio embedding network. The model can

be further advanced via explicit supervision, but only one label

for each cluster is requested given the sufficiently pure clustering

results.

In Owens and Efros,132 a model to predict whether the visual

and audio streams are synchronized is trained, with contrastive

objectives, using a sequence of video frames instead of a single

frame. Nagrani et al.133 suggest applying curriculum learning,

i.e., starting the training with relatively easier negative and posi-

tive pairs for good model initialization and gradually increasing

the difficulty of input pairs for easier model convergence. The

approach has shown promising results in learning cross-modal

embeddings for the recognition of a person’s identity. However,

an incoming problem is that the model tends to rapidly learn to

differentiate easy negative pairs from positive pairs, while harder

input pairs have very limited effect on learning discriminative rep-

resentations. An opposite curriculum schedule has been shown

to be effective for training a model that learns the cross-modal

embeddings for ultrasound.134 The visual and audio streams

used in this work are medical ultrasound videos and the voice

of a sonographer during the video recording. Due to the sparse

correlation between the two inputs, hard positive and negative

input pairs are first used in order to force the model to learn

more strongly correlated representations. In Zhang et al.,135

the authors introduced a two-stage curriculum learning solution

based on teacher-student training and identified it as self-

supervised curriculum learning for audio-visual representation

learning. Before joint training of vision and audio sub-networks,

one of the sub-networks is updated using the representations

from the other sub-network as a teacher, which is frozen for up-
dating. The two sub-networks exchange

the role of training with the other sub-

network. In addition, to enlarge the num-

ber of negative samples for training, a

memory bank is applied, resulting in

considerable improvements in a visual

task of action recognition and an acoustic

task of audio sound recognition.

Differently, in Korbar et al.,136 the au-

thors make use of margin loss in order to

contrast positive and negative pairs that

are of equal proportion. The negative ex-

amples of different hardness difficulty are
considered, including easy negatives, hard negatives, and su-

per-hard negatives (shown in Figure 10). The easy negatives are

video frames and audio segments from different videos, while

hard negatives are those pairs taken from the same video but

that are at least half a second distant from one other. The su-

per-hard negatives are the pairs that overlap for a certain tempo-

ral extent. The authors also confirmed the need to start to train the

model with easy negatives and then gradually add harder nega-

tives, which has shown to be effective for learning high-quality

representations. Similarly, treating negative pairs of different spe-

cialties, i.e., different difficulty levels, is investigated in Ding

et al.137 for audio-visual speaker diarization. In this work, the

margin value used in a triplet loss is controlled by the shifted range

between audio and visual streams, thus representing a different

difficulty degree of negatives. Nagrani et al.138 optimized a model

to learn audio-visual representations by formulating negative

samples from the same video and different videos in content

loss and identity loss. Additionally, in order to encourage explicit

separation of representations, they used a disentanglement loss,

which is implemented as confusion loss in Alvi et al.139

Harwath et al.140–142 proposed another interesting pretext task

by associating spoken audio captions with their corresponding

image for learning audio-visual representations. Two networks

are used to process the audio and image as inputs. In Harwath

et al.,140 the dot product of a pair of visual and audio representa-

tions is calculated as their similarity score. Similar to AVOL-Net,

similarity between audio representation and the visual embed-

ding of each pixel can be computed to construct spatial activa-

tion maps, leading to a solution for object localization.141 In a

different way, in Harwath et al.,142 the generated audio and visual

representations are pushed into a common latent space using

triplet loss as well as by contrasting the positive pair to the nega-

tive pairs that contain either an unmatched caption or an un-

matched image. Hsu et al.143 solve the same task by building a

system based on ResDAVEnet-VQ142 and an image-to-unit

model.144 Although each of these models is used to process

an input stream, the two representations are pushed into the

same latent space. Instead of using contrastive training objec-

tives to reproduce the audio input, the learned discrete linguistic

units, learned through ResDAVEnet-VQ from the input
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Figure 10. Diagrams for demonstrating a
negative sampling strategy
The strategy was introduced in Korbar et al.136
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utterances, are fed to Tacotron2,145 i.e., a text-to-speech (TTS)

model for speech synthesis. The visual sub-network, i.e.,

ResDAVEnet-VQ, is then expected to learn representations

that are close to the discrete linguistic units, thus enabling repre-

sentation learning to retrieve information from both modalities.

Based on their mutual correspondence, the audio and visual

streams of a video clip can be seen (to each other) as the su-

pervisory signal for representation learning. An earlier study

has shown the success of using synchronously recorded

ambient sounds as supervision for visual learning.146 Later

on, Alwassel et al.147 and Morgado et al.148 empirically verified

that exploiting the representation of one modality to create

pseudo-labels for training the encoder network of the other mo-

dality outperforms not only SSL on a single modality but also

SSL based on pseudo-labels of both modalities. In Alwassel

et al.,147 the pseudo-labels are generated using a deep clus-

tering method (cf. Figure 11A). Differently, Morgado et al.148 ag-

gregates ‘‘memory features’’ by computing the slow EMA and

subsequently applies contrastive learning (cf. Figure 11B),

similar to Grill et al.49 In Morgado et al.,148 cross-modal agree-

ment (CMA) is additionally introduced to enhance the interac-

tions between instances, specifically to calibrate within-modal

similarities between positive pairs. Both methods, i.e., clus-

tering- and contrastive-learning-based modeling, learn effective

audio-visual representations, evaluated on a downstream task

of action recognition based on video. For the same down-

stream task, Morgado et al.149 further address the robustness

in learning audio-visual representation learning, considering

two noisy input cases: faulty positives and faulty negatives.

The effect of faulty positives, representing the audio and video

signals that are of scarce information for each other, are allevi-

ated by assigning less weights in the overall contrastive loss.

Faulty negatives indicate the sampled negatives that are

semantically similar to the base instance; this is tackled by esti-

mating softening scores between the base instance and nega-

tives instead of assuming that every negative instance is

‘‘equally negative.’’

Incorporating spatial cues occurring in audio and video

streams, learning audio-visual representations can be extended

to be from 360� video and spatial audio.150 This is done by per-

forming audio-visual spatial alignment (AVSA) in contrastive

learning, where negative samples are audio and video clips

generated from different viewpoints within a 360� video, and

spatially misaligned audio and video pairs. Alternatively, in Ma-

suyama et al.,151 multi-channel audio is associated with the
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candidate direction of arrivals (DoAs) esti-

mated using a visual network from

360� video.
Audio-visual source separation

The PixelPlayer152 effort proposed a mix-

and-separate framework that solves vi-

sual object segmentation and audio

source separation together. The frame-
work consists of three networks: a video analysis network, an

audio analysis network, and an audio synthesizer network, as

shown in Figure 12A. The video analysis network extracts visual

features from a sequence of video frames, while the audio anal-

ysis network processes the mixture sound from two different

video clips. The audio synthesizer network aims to separate

the audio sources based on the learned audio representations

of the mixture, conditioned on the corresponding video frames.

In this way, the model can learn a better semantic visual repre-

sentation that is highly associated with its own audio but is

less relevant to the audio of the other video clips. Although the

learned audio representations enable the model to retrieve infor-

mation from the mixture sound, it cannot separate audio from

each video. In a later work, the same authors also indicate that

having synchronized audio and visual data is a requirement to

disentangle the learned audio and visual representations before

feeding them into the audio synthesizer network.154 By doing

this, the learned audio and visual representations can be used

independently.

AudioScope155 expands the conditioning audio separation

approach and exploits an additional audio embedding network

toprocess the separatedaudios.Anaudio representation thenag-

gregates the global information from each resulting audio embed-

ding using temporal pooling. Subsequently, attention is used to

retrieve themutual information between the local spatial-temporal

videoembedding (learnedwith the videoembeddingnetwork) and

the global audio representations. This allows us to generate an

audio-visual representation that combines the audio and visual in-

formation. Finally, the audio-visual representations, i.e., global

video embedding and global audio embedding, are concatenated

together. By this, based on the separated audios, it is expected to

create the MixIT assignment.125

LWTNet156 designs a model that can ingest a video and trans-

form it into a set of discrete audio-visual objects using SSL. Simi-

larly, an audio network and a video network encode the audio

and video frames; then, a fine-grained audio-visual attention

map is computed by solving a synchronization task, i.e.,

measuring the similarity between the audio and the visual fea-

tures at every spatial location. The model can detect and track

multiple audio-visual objects and extract an embedding for

each of them. Given negative audio samples from shifted audio

segments of the same video clip, contrastive loss is applied to

maximize the similarity between a video frame and its true audio

track. This, which is made in the form of an attention map, also

minimizes the similarity of the misaligned versions of the audio.
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Video generation

Given a starting video frame of a speaker, previous work has

shown that a model can be trained to generate the subsequent

video sequences based on the corresponding speech utter-

ance.157–159 In these works, a U-Net is used to code the starting

video frame into a latent representation, while an audio encoder

is used to learn a representation of the speech utterance. In Shu-

kla et al.,157 the visual and audio representations are concate-

nated and then fed into the decoder of the U-Net to generate

the full sequence of video frames. Using neural decoders, the

rawwaveform, the logmel spectrogram, and theMFCC spectro-

gram of the audio input are expected to be constructed from the

learned audio representation. L1 reconstruction errors between

the output of the decoders (both audio and video) and the ground

truth are minimized. Differently, in Shukla et al.,158 the use of

audio decoders is avoided, and the length of the input audio is

reduced to 0.2 s. In this work, a vector randomly created using

Gaussian noise is appended to the audio-visual representation,

thus injecting randomness in the procedure of face synthesis.

In Shukla et al.,157,158 the authors show the efficacy of these

two methods for spoken word classification and lip-reading

tasks. A later approach by the same authors is also developed

for emotion recognition.159

BraVe160 exploits the framework of BYOL, where the two sub-

networks process a short time frame in a video (about 1–3 s),

known as a narrow view, and the other one handles a larger

extent of the video, known as a broad view. By minimizing the

loss of BYOL with respect to each sub-network, the model is

essentially trained to predict a broad view from the narrow

view and to regress the narrow view from the broad view. Instead

of using only video as the supervisory signal for training the

model, using audio as well as a combination of visual and audio

broad views is also possible for the prediction task.

Audio and text
Baevski et al. present wav2vec unsupervised (wav2vec-U),161

which learns a mapping from audio representations to pho-

nemes directly without supervision. The method is a GAN where

the generator uses wav2vec 2.0 to extract speech representa-

tions, and based on this, it generates a phoneme sequence using

a clustering method. The generated phoneme tries to cheat a

discriminator that is conditioned on a real phoneme sequence

from unlabeled text. Similarly, Chung et al.162 proposed learning
the individual speech and text embedding

spaces by aligning the two spaces via

adversarial training and subsequently

applying a refinement procedure. Under

the assumption that embedding spaces

from two modalities share a similar

structure, in this work, the audio and

text embeddings are first learned using

Speech2Vec and Word2Vec, respec-

tively; then, adversarial training is used in

order to learn a linear mapping between
the speech embedding space and the text embedding space.

The approach has shown promising results for the task of ASR

and speech-to-text translation systems for low- or zero-resource

languages such as German, which has little audio-text pairs for

training.

The coalignment of audio and text can also be done within

an auto-encoder architecture. COALA, presented in Favory

et al.,163 applies two AEs to process an audio spectrogram

and the audio tag. Both AEs are optimized to reconstruct its

input, resulting in semantic features of the audio and the text.

The paired semantic features are pulled closer, and the unpaired

semantic features are pushed further, using a contrastive loss.

The whole system is jointly optimized by minimizing the two

reconstruction errors and the contrastive loss as a multi-task

learning problem. Affine transformations are applied to the two

learned representations, reducing the difficulty in maximizing

their agreement. An auto-encoder is also used in Haque

et al.164 for encoding audio spectrograms. As in COALA,163 the

latent representations are also expected to be able to recon-

struct the spectrogram and predict the linguistic features simul-

taneously. In these two works, one modality, either text or audio,

is used to learn an embedding that is used to predict its paired

input (in the other modality). Hence, it can be assumed that the

learned embedding contains the information from both streams.

The reconstruction can be seen as a regularization term that en-

ables the embedding to reconstruct the input stream, thus

ensuring that the learned latent contains the salient features of

the input stream. Similarly, CSTNet165 is trained for speech

translation, but speech utterances are in English, while the text

translations are in any other language from French, German,

Spanish, Portuguese, or Italian. The experimental results ob-

tained from CSTNet indicate that the speech representation

learned using this framework can achieve comparable results

for two downstream tasks, i.e., a minimal-pair ABX task and

phone recognition.

Audio, text, and video
To conclude this section, we will introduce some SSL works that

learn audio representations through the use of three modalities:

video, audio, and text. In these works, texts are commonly

achieved by using off-the-shelf ASR systems from audio. For

instance, in Sun et al.,166 the authors presented the use of

keyword localization as the pretext task. The authors also
Patterns 3, December 9, 2022 19



A CB

Figure 12. Diagrams for PixelPlayer and AudioScope and the framework for video generation
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compare the performance obtained by separately using text or

images as the supervisory signal. They conclude that the visually

supervised model performs worse than a text supervised model

based on BoW. Indeed, although the visually trained model can

sometimes locate semantically related words, this phenomenon

is not consistently observed.

A multi-modal versatile network is presented in Alayrac

et al.,153 a study that aimed to find the best combination of the

modalities (refer to Figure 13). Learning a shared space of the

three modalities, as well as two separate disjoint spaces for

video-audio and video-text (considering that text originates

from the audio), are investigated. Fine and coarse (FAC) spaces

are additionally proposed due to the fact that the visual and

audio domains differ (in terms of granularity) with respect to

the language domain. In FAC, vision and audio are compared

in a fine-grained space, while text, audio, and vision are

compared in a lower-dimensional coarse-grained space. For

this, the visual representation is first mapped into common latent

spaces of audio and video and sequentially projected into the

common latent spaces of text and audio-visual common spaces.

The authors consider no direct link between audio and text.

Similar to the FAC approach, VATT167 also presents a two-stage

multi-modal projection. In VATT, audio and video are compared

first using NCE loss. Subsequently, through the use of multiple-

instance learning (MIL)-NEC loss153 for optimization purposes,

the text is included in order to learn common latent spaces for

the three modalities. Moreover, the authors suggest using trans-

formers for encoding all three modalities, which leads to a more

uniform but efficient architecture.

DOWNSTREAM AUDIO TASKS AND BENCHMARKS

After solving pretext tasks, an audio SSL model is expected to

produce high-quality audio representations that are of sufficient

generalization and discrimination, thus guaranteeing a good per-

formance on downstream tasks. Several different downstream

audio tasks have been considered for empirically measuring

the audio representation quality. For example, ASR is used for

evaluating all wav2vec-based methods.72,77,78 Other tasks

include speaker identification (SI),73,86,168 speech emotion
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recognition (SER),169–172 speech machine translation (SMT),173

pitch detection (PD),174 ASC,92 and music classification,175

among others.

In Table 3, we summarize the information of some publicly

available benchmarks that enable fair comparisons between

different audio SSL algorithms. Most of these benchmarks

concentrate on speech-related downstream tasks. One promi-

nent pioneer benchmark is the zero-resource speech challenge

(ZeroSpeech) (https://zerospeech.com),176 which has ad-

dressed all aspects in building an end-to-end spoken dialog

(SD) system. The first challenge started in 2015 (ZR15) with

two task tracks of unsupervised discovery of linguistic units,

on different levels of linguistic structure, from raw speech in an

unknown language. The first task track targets the investigation

of unsupervised sub-word modeling methods that produce a

speech representation robust to within- and between-speaker

variation. The second presents the task of spoken term discov-

ery and audio word segmentation, which split the ‘‘words’’ in

an input raw speech using unsupervised-learning approaches.

The tasks aimed at acquiring proper acoustic modeling and

lexicon generation. The requirement of these two tasks were

raised in 2017 in order to better handle language variants rather

than just speaker variants. For the first task, ABX scores (within

and across speakers) are computed directly on the learned rep-

resentation in order to evaluate its quality. Specifically, this is

achieved by computing the average of the frame-wise cosine

distance of the representations of the tokens along the dynamic

timewrapping (DTW)-realigned path. For the second task, a total

of 17 evaluation metrics were considered for measuring each

step of spoken term discovery.177 The tasks of ZR19 and ZR20

were to address an additional problem of speech synthesis

without any text or phonetic labels. In addition to discovering

sub-word units given as raw audio, the participants were also

supposed to align the units to the voice recording (as well as

possible) for the purpose of re-synthesizing utterances of target

speakers. Low-bit rate but high quality in the representation of

linguistic units, measured based on ABX scores, were expected

for the discovery step. The synthesis accuracy was supposed

to be calculated using three measures, which needed human

assistance, i.e., character error rate (CER) between the human

https://zerospeech.com
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Figure 13. Diagrams for three modes in a multi-model versatile network
The network was based on Rouditchenko et al.153
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transcription of synthesized speech and the gold transcription,

mean opinion score (MOS), and similarity to the target voice.

The latest challenge, launched in 2021, provided several tasks

for spoken language modeling based on speech only as well

as visually grounded language modeling. Speech-based lan-

guage modeling consists of learning language models directly

from raw audio in an unknown language. Visually grounded lan-

guage modeling aims at learning language models by incorpo-

rating the visual information. The performance can be measured

with respect to four linguistic levels, i.e., phonetics, lexicon, syn-

tax, and semantics.

The speech-processing universal performance bench-

mark (SUPERB) (https://superbbenchmark.orahttps://generally

intelligent.ai/blog/2020-08-24-understanding-self-supervised-

contrastive-learning/g/)118 presents a standard and comprehen-

sive testbed for evaluating audio representations that consists of

10 tasks focusing on linguistic, shallow semantic, speaker, and

prosodic characteristics. Its later version, i.e., SUPERB-SG,117

extends the evaluation methods by five additional audio tasks

aimed at examining the semantic and generative capabilities of

audio SSL models. These tasks are speech focused, covering

the purposes of recognition, conversion, separation, translation,

and enhancement, all of which require the learned representa-

tions to be versatile in capturing linguistic, semantic, and

speaker characteristics. SUPERB and SUPERB-SG exploit the

widely applied evaluation metrics for each considered task. For

example, accuracy is used as the performance measure for all

the classification tasks involved. Word error rate (WER) and

phone error rate (PER) are used to evaluate the performance of

speech recognition and phoneme recognition. The detection

task of query by example spoken term detection can be effec-

tively measured using maximum term weighted value (MTWV),

an evaluation metric balancing misses and false alarms. As per-

formance measures of speaker diarization and verification, diari-

zation error rate (DER) and equal error rate (EER) are used. For

the task of slot filling, both slot types and slot values are consid-

ered to be important for building a spoken language understand-

ing (SLU) system, while F1 score and CER are separately adapt-

ed to evaluate each aspect. For the 10 SUPERB tasks, WavLM

dominates the state-of-the-art results in the leaderboard.

SUPERB-SG also considers standard evaluation metrics for

measuring the performance of downstream tasks. The task of

speech translation (ST) aims to translate speech signals from a
source language into another and can be evaluated using sacre-

BLEU and the case-sensitive de-tokenized BLEU.

LeBenchmark (http://lebenchmark.com/)178 is another repro-

ducible and multi-faceted benchmark providing four down-

stream tasks for evaluating speech SSL models for the French

language. For reproducibility, the LeBenchmark organizers pro-

vided pre-trained SSL models learned on different sub-sets of a

large and heterogeneous collection of read, prepared, and spon-

taneous speech utterances in French. Different from the discrete

emotion classification task presented in SUPERB, LeBenchmark

involves a SER task for continuous emotion status represented

by arousal and valence. For this, concordance correlation coef-

ficient (CCC) of emotion predictions is computed to measure the

performance.

Libri-Light179 is a benchmark specifically designed for the task

of ASR with limited or no supervision. Libri-Light is based on

spoken English audio collected from open-source audio books

of the LibriVox project.

Focusing on the evaluation of non-semantic speech represen-

tation, NOSS76 presents a set of paralinguistic tasks, including

SER, SI, LI, and medical diagnosis from speech. In particular,

SER and speech command recognition are additionally sug-

gested for measuring the speech representations generated

from the personalized models, which are trained and evaluated

for a specific speaker.

Two benchmarks that can be used to develop and examine

universal audio representations across all three (roughly catego-

rized) audio domains, i.e., speech, environmental sounds, and

music, are holistic evaluation of audio representations (HEAR)

(https://neuralaudio.ai/hear2021-holistic-evaluation-of-audio-

representations.html)180 and holistic audio representation evalu-

ation suite (HARES).181 HEAR requests participants to create an

audio representation that is as holistic as the human ear, and the

benchmark contains nineteen diverse downstream tasks.

HERAS unifies 12 existing datasets spanning multiple audio do-

mains. Accuracy is used to evaluate the classification tasks,

while the performance of the tagging tasks involved, like audio

tagging andmusic tagging, which aim to predict multiple classes

at output, are measured using mean average precision (mAP).

For audio-visual SSL, experiments for pretext tasks are typically

based on several public available datasets, including AudioSet,182

SoundNet,183 Kinetics-400,184 VoxCeleb1/2185,186, or lip reading

in the wild (LRW),187 to cite a few. The recently proposed
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Table 3. An overview of the benchmarks for evaluating audio self-supervised learning methods

Benchmark

Audio domains

Tasks SOTA methodSpeech Env. Music Semantic

ZeroSpeech176 U – – U sub-word modeling, STD, SSyn, spoken language modeling –

SUPERB118 U – – U7 ASR, PR, SCR, query by example STD, SI SV, SD, intent

classification, slot filling, SER

WavLM113

SUPERB-SG117 U – – U SUPERB tasks + ST, out-of-domain ASR, VC, SE, SS –

LeBenchmark178 U – – U ASR, SLU, ST, SER –

Libri-Light179 U – – U ASR –

NOSS76 U – – 7 SER, SI, LI, medical diagnosis –

HEAR180 U U U U7 SCR, PD, SED, IC, SER, ASC, MTrans, LI, MGC, SCI, AT,

and others

–

HARES181 U U U U7 AT, AniSC, ASC, SCR, LI, SI, IC, PD, MT Slowfast

NFNet-F0181

Name, involved audio domains (i.e., speech, environment, music), semantic (i.e., semantic or non-semantic representations), involved tasks, and the

SOTAmethod, when applicable, are given. ASR, automatic speech recognition; PR, phoneme recognition; SI, speaker identification; SV, speaker veri-

fication; SER, speech emotion recognition; SE, speech enhancement; SS, speech separation; ST, speech translation; SD, speaker diarization; VC,

voice conversation; SSyn, speech synthesis; STD, spoken term detection; SCR, speech command recognition; LI, language identification, PD, pitch

detection; AT, audio tagging; ASC, acoustic scene classification; SED, sound event detection; AniSC, animal sound classification; MT, music tagging;

IC, instrument classification; MGC, music genre classification; SCI, speaker count identification; MTrans, music transcription.
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ACAV100M188 is an automatically curated dataset of 100 million

10 s clips carefully chosen from a total of 140 million full-length

videos, thus solving the optimization problem to maximize the

mutual information between audio and video. This dataset and

its sub-sets (also provided with different scales) (https://

acav100m.github.io/) supply large-scale data of high audio-visual

correspondence, and therefore learning high-quality audio-visual

representations is foreseeable.

DISCUSSION

In this section, we first clarify the differences and similarities be-

tween SSL methods and other confusing machine-learning

mechanisms. Next, we discuss the common problems and diffi-

culties met during the development of SSL models. We further

point out some additional concerns regarding audio SSL,

considering the difference in data processing and augmenta-

tions, negative sample generation, and network construction,

compared with SSL approaches for other modalities.

Difference from other confusing learning mechanisms
Generally speaking, representation learning aims to capture the

posterior distribution of the underlying explanatory factors from

the observed input data. A good representation should be of

sufficient generalization and distinctiveness so that it carries

complete salient information of the data that is useful as input

for supervised tasks, such as classification. Representation

SSL is a representation-learning approach that trains a model

in order to produce representations. This is achieved by solving

specially defined pretext tasks based on, usually very large-

scale, data without human annotations. This is different from

the classic learning mechanisms of transfer learning and

domain adaptation, which learn to generate representations in

supervised frameworks, i.e., using labeled data. SSL is

commonly regarded as an unsupervised-learning method, as

like the ones using data without human annotations. However,
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it is also different from classic unsupervised learning, such

as clustering, because these kinds of unsupervised learning

concentrate on grouping inputs that have similar data patterns,

whereas SSL learns representations with supervision of some

automatically created training targets, such as pseudo-labels.

Likewise, it is considered unsupervised in the sense that no la-

bels from the target task are involved.

Contrastive SSL is highly related to distance metric learning

(or simply, metric learning).189 Given an anchor paired with

positive samples and negative samples, weakly supervised

metric learning constructs a distance metric that puts posi-

tives close together and negatives far away in a latent space.

Hence, contrastive SSL can be seen as a metric learning

where the positive pairs are created from the same data

source through procedures such as DA. Contrastive SSL is

also similar to instance discrimination.190 Instead of process-

ing positive and negative pairs, instance discrimination takes

each data sample as from a separate class and learns feature

representation that discriminates among individual instances.

According to our analysis of Equation 5, when the temperature

parameter is set too small, the InfoNCE loss tends to take the

two inputs of a positive pair as the different instances and op-

timizes the SSL model using the method of instance discrim-

ination.

Besides, generative adversarial networks (GANs) are also

seen as a kind of SSL framework in some works.8,11,17 For

instance, the generator creates data from a random vector by

taking the real data as training targets. Then, the discriminator

network aims to measure the similarity between generated and

real data. It is worth noticing that the similarity measure changes

as the discriminator is updated. Such a kind of generative

contrastive model has been successfully investigated for NLP

tasks, such as in ELETRA,191 but has rarely been explored for

audio SSL. Hence, we did not introduce it as an audio SSL

form in the literature review, though it should be naturally consid-

ered for future works.

https://acav100m.github.io/
https://acav100m.github.io/
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Difficulties and problems for SSL optimization
The representation quality using SSL is determined by the effi-

cacy of pretext tasks, of which the key component is the design

of training targets or objectives. The training objectives for both

predictive and contrastive SSL concentrate on the correlations

between representations of observed data. Both methods

concentrate on maximizing the similarity between the represen-

tations of the two views of one unique data sample. Additionally,

contrastive methods contrast the similarity against the distance

to other data samples.

Representational collapse often appears when training a pre-

dictive SSL model, such as using a Siamese network architec-

ture. To tackle this issue, the pair of networks is usually designed

to be of asymmetric architecture and is updated asynchro-

nously. DA techniques, used to generate different views of input

data, are used to additionally force the Siamese network to pro-

cess asymmetric input. Contrastive SSL alleviates the problem

of mode collapse by driving the representations of samples,

including positives and negatives, to maximal-uniformly distrib-

uted appearance on a unit sphere. Minimizing a contrastive

loss, such as InfoNCE, is found to be approximately equivalent

to maximize the mutual information between representations.

With the rise of the number of negative samples, a lower bound

on mutual information is raised up.17,42 Therefore, better repre-

sentations that carry more correlation information between

representations can be obtained by enlarging the amount of

negative samples, for instance, as shown in Chen et al.15 and

He et al.29 Similar considerations have led to the success of

contrastive audio SSL.42,72,77 For this to happen, however, the

requirement of memory dramatically boosts. Therefore, negative

sampling of better efficiency needs to be further explored. On the

other hand, according to the theoretical analysis in Saunshi

et al.,18 a too-large number of negative samplesmay not be prof-

itable for training contrastive SSL models. So far, no research

has been done to suggest a golden standard rule for setting a

proper number of negatives.Moreover, the setting should poten-

tially be considered differently for different tasks and applica-

tions. Another issue that can hamper contrastive SSL is early

degeneration,11 which means that the SSL model over fits to

the discriminative pretext task in very early training steps, and

therefore, the representations do not present a sufficient gener-

alization ability. Solutions that can relax this early degeneration

issue should also be addressed in future work.

Additional adjustments on SSL for audio
As introduced above, SSL approaches that have been well

explored for CV and NLP tasks are being transferred to the audio

domain. For this, some works process 1D audio data into a 2D

format in order to match the formulations of these SSL frame-

works. For example, time-frequency representations of audio

and advanced transformations based on it, such as a spectro-

gram, mel spectrogram, and MFCC, can be used as images in

some SSL models designed for CV tasks.74,83,96 For this case,

DA techniques widely used in the CV domain have also been

considered, which are essential for achieving high-quality repre-

sentations. Taking the features as sequential frames, we can

process them in similar ways as we would do for NLP tasks.89,90

An alternative way is to directly process the 1D waveform us-

ing deep-learning encoders, such as 1D convolution, which con-
verts the 1D signal into higher-dimensional features for further

processing. This solution has been successfully used in Oord

et al.,42 Baevski et al.,72 and Pascual et al.85 The focus of this re-

view was not to assess network architectures but rather to

concentrate on the framework and formulations of SSL ap-

proaches. In most visual SSL works, the research concentrates

more on the formulations rather than the network architecture,

for which a ResNet is typically used. However, the importance

of neural network architectures is not that clear for audio SSL.

Researchers tend to use network architectures that were de-

signed to respect the speech or audio structure, which can

achieve more promising results in the context of audio SSL. A

recent work has explored the influence of different neural

network architectures in learning universal audio representa-

tion.181Still, more research evaluating the effect of network com-

ponents, such as assessing the effect of the attention mecha-

nism used in transformers,97 should be carried out.

Fitness and mismatch between pretext and
downstream tasks
In general, we expect that by training a model with SSL, it is

possible to learn general representations that are effective for

downstream tasks. Although this is slightly different from classic

transfer learning, which performs pretext tasks in a supervised

framework, the gap between the source data in pretext tasks

and target data for downstream tasks is expected to be

matched.

Comparing speech and other audio signals, such as acoustic

scene recordings, the speech signal is more variable from a tem-

poral and frequency perspective, while the acoustic scene re-

cordings are usually more stationary along the temporal axis.

Hence, different kinds of pretext tasks need to be considered

in order to retrieve the acoustic features that are discriminative

in terms of global information or transient information. For down-

stream tasks concerning non-semantic features from speech,

methods’ proficiency in extracting both global and transient in-

formation has been explored.76

In the standard framework of SSL, labeled data are used in

downstream tasks for fine-tuning. It has been shown that a small

quantity of labeled data can already guide a pre-trainedmodel to

achieve very satisfying performance on downstream tasks. This

inspired semi-supervised learning using very little human-

labeled data from the target data domain to close the gap

between source and target data. Specifically, the training

objectives of SSL and supervised learning are combined and

optimized simultaneously. For many audio applications, SSL ap-

proaches have shown promising performance and reached (or

even surpassed) state-of-the-art results achieved through su-

pervised learning. Still, when labels are available or partly avail-

able, like in CLAR81 and UniSpeech,192 combining SSL and SL

together into a multi-task learning setting enables to learn better

speech representations for some audio tasks.

Conclusion
This survey has provided an overview of the existing approaches

and methods for uni-modal and multi-modal SSL approaches

using audio. The success of these methods has been analyzed

in several classic audio tasks, including speech recognition, SI,

SER, and ASC. Audio SSL methods, such as wav2vec 2.0 and
Patterns 3, December 9, 2022 23
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HuBERT, have been shown to even surpass the performance of

supervised-learning methods on the same task. Moreover, the

generalization ability of representations learned using audio

SSL can decrease the urgency of searching for hand-crafted, en-

gineered features. The superior performances obtained using

SSL-based approaches support the generalization capabilities

of this representation-learning method and encourage the use

of this technique to shape the future and advance the state of

the art in the field of audio processing.
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Karadayi, J., Liptchinsky, V., Collobert, R., Fuegen, C., et al. (2020).
28 Patterns 3, December 9, 2022
Libri-light: a benchmark for asr with limited or no supervision. In Proc.
ICASSP, pp. 7669–7673.

180. Turian, J., Shier, J., Khan, H.R., Raj, B., Schuller, B.W., Steinmetz, C.J.,
Malloy, C., Tzanetakis, G., Velarde, G., McNally, K., et al. (2022). Holistic
evaluation of audio representations. In Proc. NeurIPS, pp. 125–145.

181. Wang, L., Luc, P., Wu, Y., Recasens, A., Smaira, L., Brock, A., Jaegle, A.,
Alayrac, J.-B., Dieleman, S., Carreira, J., and van denOord, A. (2022). To-
wards learning universal audio representations. In Proc. ICASSP,
pp. 4593–4597.

182. Gemmeke, J., Ellis, D., Freedman, D., Jansen, A., Lawrence, W., Moore,
R., Plakal, M., and Ritter, M. (2017). Audio Set: an ontology and human-
labeled dataset for audio events. In Proc. ICASSP, pp. 776–780.

183. Aytar, Y., Vondrick, C., and Torralba, A. (2016). Soundnet: learning sound
representations from unlabeled video. In Proc. NeurIPS, p. 9.

184. Carreira, J., and Zisserman, A. (2017). Quo vadis, action recognition? a
new model and the kinetics dataset. In Proc. CVPR, pp. 6299–6308.

185. Nagrani, A., Chung, J., and Zisserman, A. (2017). VoxCeleb: A large-scale
speaker identification dataset. In Proc. INTERSPEECH, pp. 2616–2620.

186. Chung, J., Nagrani, A., and Zisserman, A. (2018). VoxCeleb2: deep
speaker recognition. In Proc. INTERSPEECH, pp. 1086–1090.

187. Chung, J.S., and Zisserman, A. (2016). Lip reading in the wild. In Proc.
ACCV, pp. 87–103.

188. Lee, S., Chung, J., Yu, Y., Kim, G., Breuel, T., Chechik, G., and Song, Y.
(2021). ACAV100M: Automatic curation of large-scale datasets for audio-
visual video representation learning. In Proc. ICCV, pp. 10274–10284.
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