
INTRINSIC MOTIVATION IN COMPUTATIONAL
CREATIVITY APPLIED TO VIDEOGAMES

christian guckelsberger

october 2020

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

Examiners:
Geraint A. Wiggins (Queen Mary, Vrije Universiteit Brussel),

Georgios N. Yannakakis (University of Malta)

Supervisors:
Simon Colton (Queen Mary, Monash University),

Jeremy Gow (Queen Mary), Paul Cairns (University of York),
Christoph Salge (University of Hertfordshire, New York University)

This work was supported by the EPSRC doctoral training programme
Intelligent Games - Game Intelligence (IGGI, grant no. EP/L015846/1).

It was carried out in the Computational Creativity Group, Department of
Computing, Goldsmiths, University of London, and in the Game AI Research
Group, School of Electronic Engineering and Computer Science, Queen Mary,

University of London. Further work was conducted during a research visit at the
Game Innovation Lab at New York University, Brooklyn, New York.



Truisms have the disadvantage that by dulling the senses they obscure
the truth. Almost nobody will become alarmed when told that in times of
continuity the future equals the past. Only a few will become aware that
from this follows that in times of socio-cultural change the future will not be
like the past. Moreover, with a future not clearly perceived, we do not know
how to act with only one certainty left: if we don’t act ourselves, we shall be
acted upon. Thus, if we wish to be subjects, rather than objects, what we see
now, that is, our perception, must be foresight rather than hindsight.

— Heinz von Foerster (1972/2003). Perception of the Future and the Future
of Perception, p. 199.

The Ethical Imperative: Act always so as to increase the number of choices.
The Aesthetical Imperative: If you desire to see, learn how to act.

— Heinz von Foerster (1973/2003). On Constructing a Reality, p. 227.
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ABSTRACT

Computational creativity (CC) seeks to endow artificial systems with cre-
ativity. Although human creativity is known to be substantially driven by
intrinsic motivation (IM), most CC systems are extrinsically motivated. This
restricts their actual and perceived creativity and autonomy, and consequently
their benefit to people. In this thesis, we demonstrate, via theoretical argu-
ments and through applications in videogame AI, that computational intrinsic
reward and models of IM can advance core CC goals.

We introduce a definition of IM to contextualise related work. Via two
systematic reviews, we develop typologies of the benefits and applications of
intrinsic reward and IM models in CC and game AI. Our reviews highlight
that related work is limited to few reward types and motivations, and we thus
investigate the usage of empowerment, a little studied, information-theoretic
intrinsic reward, in two novel models applied to game AI.

We define coupled empowerment maximisation (CEM), a social IM model,
to enable general co-creative agents that support or challenge their partner
through emergent behaviours. Via two qualitative, observational vignette
studies on a custom-made videogame, we explore CEM’s ability to drive
general and believable companion and adversary non-player characters which
respond creatively to changes in their abilities and the game world.

We moreover propose to leverage intrinsic reward to estimate people’s
experience of interactive artefacts in an autonomous fashion. We instantiate
this proposal in empowerment-based player experience prediction (EBPXP)
and apply it to videogame procedural content generation. By analysing think-
aloud data from an experiential vignette study on a dedicated game, we
identify several experiences that EBPXP could predict.

Our typologies serve as inspiration and reference for CC and game AI
researchers to harness the benefits of IM in their work. Our new models can
increase the generality, autonomy and creativity of next-generation video-
game AI, and of CC systems in other domains.
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1INTRODUCTION

Can we engineer artificial systems that are creative? This is one of the central
questions of computational creativity (CC), a subfield of artificial intelligence (AI)
and the backdrop of this thesis. The challenge to endow artificial systems with
creativity has accompanied the development of AI since its inception (cf. Mc-
Carthy et al., 1955/2006), and is regarded by some as its final frontier (Colton
& Wiggins, 2012): not only does creativity draw on many faculties of intel-
ligence, but it might also be necessary for artificial general intelligence. To be
perceived as intelligent across different situations, and in the absence of a
solution or even a specific problem (cf. Stanley, Lehman & Soros, 2017; Wig-
gins, 2018), an artificial systems may have to exhibit behaviours and generate
products that would be commonly considered creative.

Computational
Creativity
Goals

CC researchers draw on insights from a wide range of disciplines such
as cognitive science, engineering, mathematics, philosophy, sociology and
art (McGregor, Wiggins & Purver, 2014; Ackerman et al., 2017) to further a
twofold research agenda (Pérez y Pérez, 2018; Veale, Cardoso & Pérez y Pérez,
2019). On the one hand, they generate insights into the phenomenon of (hu-
man) creativity by means of computational modelling and empirical studies.
On the other hand, they engineer systems which embody these insights to
benefit people culturally, socially and economically (Loughran & O’Neill,
2017; Smith, 2017). This requires artificial systems to take over at least some
creative responsibility in different tasks (Colton & Wiggins, 2012). A central
challenge in this endeavour is to increase a system’s creative autonomy (Jen-
nings, 2010; Saunders, 2012; McCormack, Gifford & Hutchings, 2019), i.e.
to reduce their reliance on people during creative activity in order to be
ultimately considered creative in their own right (Colton, 2008).

Computational
Creativity
Application
Domains

Both parts of this agenda have been pursued for different types of cre-
ativity (Kaufman & Beghetto, 2009), from everyday creative acts to eminent
creative achievements. Moreover, CC research has been conducted in a large
range of creative domains (Loughran & O’Neill, 2017) such as problem solving,
mathematical theory formation, scientific discovery, graphic design, audio
design, the visual arts, the culinary arts, sculpture, choreography, musical
composition, musical accompaniment, fictional ideation and various cre-
ative language applications, such as poetry, storytelling, narrative design,
neologisms, metaphor, slogans, etc. Traditionally, CC has focussed on the pro-
duction of artistic artefacts (Colton & Wiggins, 2012), rather than on creative
behaviour or creativity in problem-solving (Besold, 2016).

VideogamesAmongst all creative domains, videogames could be considered the drosophila
of CC. Games invite research on many types of creativity in both play (Zook,
Riedl & Magerko, 2011; Liapis, Yannakakis & Togelius, 2014; Moffat, 2015)
and design (Liapis, Yannakakis & Togelius, 2014; Ventura, 2016a). As a popular
benchmark for artificial general intelligence, games facilitate the comparison
and exchange of findings with CC. They bring together different content
facets in a complex whole, some of which are already being investigated in

13



1.1 motivation 14

other CC domains, e.g. audio and narrative, and some that are unique to
games, e.g. mechanics, characters and level architecture. Their multifaceted
and interactive nature raises unique challenges, which has prompted Liapis,
Yannakakis and Togelius (2014, p. 1) to advocate videogames as a ‘killer
application’ for CC. These authors emphasise that games constitute a lens
for the study of CC, but also that game AI can benefit by employing core
concepts and existing systems from CC research. Ventura (2016a) summarises
this dichotomy: ‘if games are the “killer app” for computational creativity,
then perhaps computational creativity is the future of games’ (ibid., p. 1).
Videogames are cultural and artistic artefacts, but also motors of technological
progress: they ‘are inexorably linked to what it is possible for computers to
do’ (Cook, 2015, p. 27). Videogames industry has traditionally articulated
a strong demand for more autonomous and potentially creative systems
(Liapis, Yannakakis & Togelius, 2014); his fosters collaborations and provides
opportunities for CC to make a strong cultural, artistic and economic impact.

Computational
Game
Creativity

This thesis is an instance of computational game creativity ‘as the study of
computational creativity within and for computer games’ (ibid., p. 2). We
adopt insights from theoretical and applied CC research to develop new
computational principles with the potential to shape the next generation of
game AI. Vice versa, we leverage these applications to learn more about the
phenomenon of creativity and to explore the possibilities of CC.

StructureHaving set the scene, we next present the motivation for this work in
Sec. 1.1. We quickly transition to our overarching research questions in Sec. 1.2,
which we complement with a list of refined questions to be addressed in the
individual chapters. In Sec. 1.3, we highlight our contributions with respect
to each of these questions and the state-of-the-art in CC and game AI, and
clarify the organisation of this thesis along the way.

1.1 motivation

CC has been and continues to be substantially shaped by the work of Boden
(1992, 1990/2003), who put forward a theoretical framework for the study
of creativity in AI. Boden describes the creative process in terms of different
creative mechanisms, but she crucially does not address its very foundation: a
person’s or artificial agent’s motivation as a driving force of their agency (Saun-
ders, 2012). Today, CC researchers have filled this theoretical gap with dif-
ferent specific action-selection mechanisms; however, they rarely refer to an
agent’s motivation as a means to distinguish and compare these formalisms.

Extrinsic
Motivation

This is not surprising, as the majority of existing CC systems only realise
one type of motivation which psychologists call extrinsic: they choose actions
to satisfy specific, external goals1 of their users or designers. Even if a system
appears to follow their own internal goals, their creative activity is a means to
an end. This also characterises many instances of human creativity, e.g. in the
workplace: we perform creatively on tasks which eventually yield a separate,
instrumental value for the company and ourselves, e.g. in the form of revenue
and a wage. However, this work is typically not rewarding in itself.

1 These goals may be externally communicated, or internalised through a pre-defined evaluation
function which can be hard-coded or trained on externally provided data.



1.1 motivation 15

Intrinsic
Motivation

While extrinsic motivation dominates the CC research landscape, it crucially
does not fully explain the many facets of human creativity. From small,
everyday creative acts to major scientific or artistic achievements, the human
creative process is often guided by inherent satisfactions, rather than a separ-
ate consequence (Ryan & Deci, 2000a). Technically speaking, much of human
creativity is intrinsically motivated. One of the most prominent examples of
such intrinsic motivation (IM) is curiosity: our creative work as researchers, for
instance, is frequently driven by the desire to learn something new. Similarly,
people are more likely to push the boundaries of a mathematical theory, or to
discover a new style of painting, through acts of curiosity that are rewarding
in themselves, rather than for separate, potentially externally dictated, goals.
The central role of IM as a core mechanism of individual human creativity
is supported by decades of empirical work in psychology (Amabile, 1983;
Amabile & Pillemer, 2012; de Jesus et al., 2013; Liu et al., 2016).

Hindered
Progress in
Computational
Creativity

We believe that CC’s reliance on extrinsic motivation hinders progress on
both ends of its research agenda. CC researchers can generate only limited
insights into the nature of human creativity through computational modelling
if they do not account for the important role of IM. Moreover, the present
motivational focus might counteract the goal to build systems that unbiased
observers deem creative (Colton & Wiggins, 2012). The philosopher Kieran
(2014) observes that ‘we tend to be wary of those [people] whose goals con-
cerning [a creative] activity are stated in purely extrinsic terms’ (ibid., p. 14).
Similarly, we expect people to perceive extrinsically motivated CC systems,
assuming that these communicate the reasons for their actions (Charnley,
Pease & Colton, 2012), as less creative. Extrinsic motivation may not only
influence the perception of creativity (Colton, 2008), but also limit creativity
itself : studies in psychology show that many types of extrinsic reward have a
detrimental effect on people’s creativity (Amabile, 1998; Malik & Butt, 2017;
Amabile, 2018). The same may hold for artificial systems, especially if their
design is inspired by human cognition. Putting psychological parallels aside,
formal limitations remain: an extrinsically motivated system relies on its user
or designer to fixate often context-specific, separate goals. This intuitively
counteracts the system’s creative autonomy and the central CC goal to engineer
systems that can be considered creative in their own right (Colton, 2008).

Computational
Models of
Intrinsic
Motivation

Crucially though, AI researchers have adopted the concept of IM from
human psychology, and formalised it in computational models (Oudeyer &
Kaplan, 2007). These models drive action-selection through the optimisation
of a formal intrinsic reward (IR). Some researchers have done pioneering work
by investigating specific IM models in CC, both theoretically and in applied
studies. However, they have not related the effects of these specific models
to IM as a larger family of motivational mechanisms. In fact, most related
work does not even refer to the notion of ‘intrinsic motivation’. Until now, it
has consequently remained unclear how models of IM more generally could
benefit CC. Yet, the preliminary results on specific models are promising: they
suggest that IM could overcome the drawbacks of extrinsic motivation, most
prominently its limitations to a system’s creativity and creative autonomy.

As CC ‘killer applications’ (Liapis, Yannakakis & Togelius, 2014, p. 1),
videogames represent a particularly suitable domain to yield insights into
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CC more generally through applications of IM models. Moreover, games
are quintessential intrinsically motivating activities (Salen & Zimmerman,
2004, p. 333), and we thus expect game AI to be particularly receptive to
the use and advantages of IR and IM models. Existing work suggests that
IM can substantially improve the robustness and generality of AI applied to
videogame tasks, e.g. in driving the behaviour of game-playing agents or in
procedurally generating game content. However, this work has again mostly
considered specific models, and, if considered in isolation, tells us little about
the benefits of IM models for game AI more generally.

Thesis AimThe aim of this thesis is to understand and demonstrate how IM in general,
as a distinct class and as a family of motivational mechanisms, can advance
CC and game AI, and which challenges researchers must face. We support our
interdisciplinary, big picture view by new models and applications of IM to
game AI. To this end, we adopt and extend empowerment and empowerment
maximisation (EM) as specific intrinsic reward and intrinsic motivation,
respectively. Informally, empowerment quantifies an agent’s potential and
perceivable influence on their environment, including other agents, and EM
yields agents that maximise their options and control. We argue that IM
more generally and EM specifically have the potential to transform the game
engineering and design practice, as well as the experiences of players.

1.2 research questions

Overarching
Questions

The overarching research questions (RQs) of this thesis are:

RQ.1 Can IR and models of IM advance CC?

RQ.2 Can IR and models of IM advance videogame AI?

These questions have neither been answered yet, nor are they easy to answer.
They are not readily supported by existing work, as it has been conducted
in isolation and does not relate to an overarching, unifying concept of IM.
Moreover, a strong affirmation requires more than a single example; it ne-
cessitates a deep exploration of the meaning of IR and IM, their beneficial
properties, and potential applications across both domains. We demarcate the
fields of CC and game AI at this level to allow members of either research
community to identify and retrieve what is of immediate relevance to them.

Specific
Questions

We qualify these overarching questions separately for each discipline with
specific research questions in our contribution chapters:

RQ.3 Why have IR and models of IM been used in CC?

RQ.4 How have IR and models of IM been used in CC?

We have raised these questions to support RQ.1 through existing research.
They ask for which reasons, in the sense of properties, and for which CC
applications, i.e. to which end, IR and IM models have been used in the past.
We direct similar questions to existing work in game AI to support RQ.2:

RQ.5 Why have IR and models of IM been used in videogame AI?

RQ.6 How have IR and models of IM been used in videogame AI?
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We serve the computational game creativity research agenda by asking whether
applications of IR and IM in game AI and CC can be related to each other.
The insights allow for answers to RQ.1 to support RQ.2 and vice versa:

RQ.7 How do existing applications of IR and IM models in videogame
AI and CC overlap?

We complement these retrospective questions by asking whether IR and
models of IM can benefit CC through two novel applications. We demonstrate
the diverse uses of IR and IM models by addressing generation and evaluation
as the core components of the creative process, across the two domains of
simple creative behaviours and complex artefacts:

RQ.8 Can we use a model of intrinsic motivation to engineer general and
social co-creative agents?

RQ.9 Can we use IR to predict people’s experience of interactive artefacts
in a general and autonomous way?

We answer these questions by proposing an informal solution for the CC
scenario, and then formalising it to tackle a game AI challenge which instan-
tiates this scenario. We address RQ.8 by investigating whether a model of IM
can be used to drive the behaviour of general, believable non-player characters
that either support a player as companions, or challenge them as adversaries. To
realise different types of creativity, we particularly rely on the capacity of
IM to yield emergent behaviour. Moreover, we address RQ.9 by examining
whether IR can be used to predict players’ experiences of procedurally generated
content independently of players or designers.

We thus study CC ‘within and for computer games’ (Liapis, Yannakakis
& Togelius, 2014, p. 2), supporting RQ.1 through RQ.2. Our new models
are informed by existing work in both domains, and we hence also realise
Ventura’s (2016) proposition to shape the future of game AI through CC
research, supporting RQ.2 through answers to RQ.1.

Our research aim takes us into largely uncharted territory, and we have
hence formulated these questions in an open-ended way. To explore them
efficiently, we exclusively rely on studies that yield rich qualitative data.

1.3 contributions

We finish this introduction by summarising our main contributions to CC,
game AI, and AI more generally. We relate them to our research questions,
and highlight the structure of this thesis along the way. In the tradition of CC
research, we draw on many other fields, in particular psychology, philosophy
and AI. To make this thesis accessible to researchers across all these fields,
we introduce key theoretical and mathematical concepts from scratch. In
particular, Appxs. A – D serve as reference to the mathematical foundations.
We lay out core concepts in probability and information theory for a common
treatment of artificial and biological agents as information processing systems.
This culminates in the formalism of the perception-action (PA)-loop, which we
use throughout this thesis to describe the interaction of an agent with their
surroundings over time, and to quantify the information flows within.
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Intrinsic
Motivation:
From Theories
to Models

In Ch. 2, we introduce the reader to the concepts of IR and IM, and to their
formalisation in AI. We describe how IM emerged as a concept in psychology,
and discuss the most relevant theories as explanations of intrinsically motiv-
ated behaviour in people and as inspiration of many computational models.
We highlight the incentives of AI researchers to formalise IR and IM, and
summarise interdisciplinary efforts in defining IM more accurately. Informed
by this debate, we put forward a working definition of IM models. We introduce
well-acknowledged models of IM, negative examples, and debatable cases to
test our definition and to demonstrate the breadth of IM models to the reader.
Our working definition is a prerequisite to distinguish and relate intrinsic
and extrinsic motivational models in existing CC and game AI work in later
chapters. The main contributions of this chapter are:

• An extensive, interdisciplinary account of IR IM in psychology and AI
as means to foster mutual understanding between both disciplines.

• A tested, informal working definition of IM models, based on four
diagnostics of an IR function embedded in a motivational model.

Empowerment
Maximisation

In Ch. 3, we introduce and motivate empowerment as well as EM (Klyubin,
Polani & Nehaniv, 2005b; Salge, Glackin & Polani, 2014b), the formal IR and
IM to be adopted and extended in this thesis. We provide a generic and a
simplified formalisation of empowerment and EM that distinguishes between
an agent’s objective world and their beliefs about that world, and thus
overcomes ambiguity in prior work. To support the reader’s intuitions, we
illustrate properties of empowerment and provide examples of the behaviour
of an empowerment maximising agent. Moreover, we sketch the parts of the
empowerment research landscapes that we contribute to through our applied
work in Ch. 5 and 7. The main contributions of this chapter are:

• An updated introduction to empowerment and EM in discrete scenarios.
It comprises the strongest motivation of the intrinsic reward and motiv-
ational principle to date, drawing on more insights from psychology,
biology and physics than any instance of related work.

• A generic formalisation of empowerment and EM, which distinguishes
an agent’s objective world and their beliefs about that world, and thus
makes implicit assumptions in prior work transparent. We moreover
simplify this formalisation considerably for application in our models.

These background chapters lay the foundations for the second part of this
thesis, where we map the landscape of existing work on IR and IM in both
domains, and for the first time bring it together under one umbrella by
leveraging our working definition of IM.

Systematic
Review of IM
in CC

In Ch. 4, we present a comprehensive, systematic review to identify why
(RQ.3) and how (RQ.4) IR and models of IM have been leveraged in existing
CC work. We draw on creativity studies to highlight the challenge of defining
creativity, and to clarify our position in this thesis. We introduce the reader
to CC, and, based on a critical survey of definitions and dominant positions,
formulate a more inclusive working definition of CC that warrants the inclu-
sion of related work from a wider range of AI subfields. By applying this
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definition and our working definition of IM (Ch. 2), we retrieve 28 related
work items from 1998 to 2018. Based on an in-depth analysis of this work,
we identify four properties of IR, two corollaries and four properties of in-
trinsically motivated behaviour as reasons to embrace IM in CC. Informed by
(computational) creativity theories and empirical findings from creativity
studies, we moreover extract 12 (abstract) applications of IM to CC. We map
and connect these properties and applications in two typologies. Based on our
new insights, we motivate and contextualise our applied contributions. The
main contributions of this chapter are:

• The first systematic review of IM in CC. Related work is classified
in terms of the creative domain, system details (e.g. autonomous/co-
creative, single/multi-agent, etc.) and the IM model used.

• Two typologies of the reasons to embrace IM in CC, and the (abstract)
applications of IR and IM models to CC.

Systematic
Review of IM
in Game AI

In Ch. 5, we complement the previous study with a systematic review of
existing work using IM in game AI, as answer to RQ.5, RQ.6 and RQ.7. We
inform this by game design and games user research findings on what makes
games intrinsically motivating for people. We retrieve 11 game AI studies
from 2006 to 2019 via our working definition of IM models (Ch. 2), Yannakakis
and Togelius’s (2018, p. 4) definition of game AI, and Juul’s (2003) definition
of videogames. We bias our selection towards studies that aim to benefit games,
rather than using games as a benchmark for artificial general intelligence. We
crucially uncover the same reasons to embrace IR and models of IM identified in
Ch. 4. Leveraging the insights from game design and games user research, we
develop a typology of 11 (abstract) applications of IM across four core domains
of videogame AI. We answer RQ.7 by identifying a strong overlap between
applications of IR and IM in CC and game AI, which allows us to understand
related game AI work as instances of computational game creativity. We again
use these insights to motivate and contextualise our applied contributions.
The main contributions of this chapter are:

• The first dedicated, systematic review of IM in game AI with a focus
on how IR and IM models can benefit game engineers, designers and
players. Related work is classified in terms of the game AI domains
studied and the IM models used, amongst others.

• A typology of (abstract) applications of IR and IM models in the four
core areas of videogame AI.

Our reviews support the identification of unexplored areas of inquiry. Our
typologies can be used by researchers from both fields as inspiration and
reference to harness the benefits of IM in their research. In the third part of this
thesis, we take the identified, existing work further in two new applications
of IR and IM models to game AI with benefits to CC more generally.

Intrinsically
Motivated
Social
Co-Creativity

In Ch. 6, we raise and examine our question RQ.8 by identifying a need
for more general, co-creative artificial agents that can support or challenge their
partner in human-computer co-creativity. We argue that specific interactions of a
player and a non-player character (NPC) constitute co-creative acts, and thus
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frame NPC AI as a CC application. We consequently identify the analogue
game AI challenge to drive the behaviour of general and believable NPCs
that either support or challenge the player as companions and adversaries,
respectively. We define social models of intrinsic motivation as a blueprint for IM
models capable of realising such behaviour in NPC AI and human-computer
co-creativity more generally. We argue that empowerment as IR can give rise
to general, believable supportive and adversarial behaviour in videogames,
and instantiate coupled empowerment maximisation (CEM) as a specific social
IM model. We present two qualitative studies based on observational vignettes
to probe this ability on a custom-made videogame. Our operationalisations
of believable NPC behaviour are informed by game studies and games user
research. We find, amongst others, that CEM as the underlying principle can
yield both emergent supportive and adversarial behaviour that surprised
even the experimenters. The NPCs exhibit generality by responding with new
but sensible behaviours to changes in their environment and abilities, and we
hence deem them creative. We thus support RQ.8 through an application in
game AI. The main contributions of this chapter are:

• Social models of IM as a generic approach to yield supportive or ad-
versarial agent behaviour in open-ended interaction.

• Coupled empowerment maximisation (CEM) as a specific social IM
model. The generic and simplified formalisation entails the definition
of transfer empowerment as a novel, social IR.

• Two extensive qualitative studies using observational vignettes to probe
the capacity of CEM to drive general NPCs that either support or
challenge the player as companions or adversaries.

Intrinsic
Reward-Based
Experience
Prediction

In Ch. 7, we formulate and evaluate RQ.9 by identifying a shortcoming in
existing CC approaches to evaluating people’s experience of interactive artefacts:
whenever the artefact or generator changes, people must be involved again to
update the evaluation function. This inflexibility endangers the (perception
of) creativity and the autonomy of CC systems. We retrieve the same challenge
in the modelling of player experience (PX) in videogames, with a particularly
detrimental impact on the expressive potential of procedural content gener-
ation (PCG). We address this challenge by proposing a new approach to
predicting PX with IR calculated on simulated gameplay trajectories. Drawing
on findings in game design, games user research and human-computer interaction,
we identify empowerment as a potential PX predictor, and instantiate our
generic proposal in empowerment-based player experience prediction (EBPXP).
We explore which experiences EBPXP could predict through a qualitative
experiential vignette study. More specifically, we conduct a thematic analysis on
think-alouds of participants playing procedurally generated levels of a ded-
icated game. We find that levels which are predicted to yield different PXs
by EBPXP indeed evoke different experiences in players, with the strongest
effect on perceived challenge. This supports our RQ.9. By consulting related
games user research, we shape the hypothesis that empowerment allows for the
prediction of the foundational experiences of effectance, outcome uncertainty,
and perceived control, and only has mediating effects on experiences such as
challenge. The main contributions of this chapter are:
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• Intrinsic reward-based player experience prediction as a generic approach
to modelling player experience independently of player feedback and
designer knowledge about a game’s semantics.

• Empowerment-based player experience prediction (EBPXP) as an in-
stantiation of this approach based on empowerment as IR.

• An exploratory study based on a procedurally generated experiential
vignette to identify player experiences which EBPXP could predict.

This concludes our applied contributions and the main part of the thesis.
Future WorkIn Ch. 8, we highlight promising future directions to advance our four

clusters of contributions, and report work in progress. We consider next steps
on advancing our individual studies and, where applicable, discuss extensions
to the underlying principles and their potential application to advance CC
beyond game AI. We finally promote how our individual contributions can
be consolidated to generate new insights within and beyond game AI.

ConclusionsIn Ch. 9, we revisit our specific research questions and discuss our answers
with respect to our overarching research aim. We consider how our core
contributions could impact academic and industrial research beyond this
work, and wrap up this thesis with concluding remarks.



Part I

BACKGROUND



2INTRINSIC MOTIVATION: FROM THEORIES TO MODELS

The concept of intrinsic motivation (IM) is at the centre of this thesis. But
what is IM, precisely? Why would we want to formalise and employ it in
artificial agents? And how can we distinguish a model of IM from other
motivational mechanisms in AI? In this chapter, we answer each of these
questions in detail, and with regards to the state of the art in psychology
and AI. These preparations allow us to better grasp the meaning of (! ((!)IM)
computational creativity (CC) and videogame AI, as discussed in Ch. 4 and
Ch. 5. Moreover, they provide the foundation for a critical assessment of the
fit and the leverage of our contributions in these domains.

StructureIn Sec. 2.1 we look at the origins of IM in psychology. We show how IM
emerged as a new concept from the traditional view of motivation, introduce
the reader to key distinctions, and discuss the most common theories put
forward to explain intrinsically motivated behaviour. This foundational work
in psychology has been of great inspiration to AI researchers, whose efforts
to formalise IM into computational models are the subject of Sec. 2.2. We
contextualise the incentives to formalise IM, and discuss the cross-disciplinary
quest to define the concept. This informs our working definition of IM models,
an essential tool to distinguish them from their extrinsic counterparts in our
systematic reviews in Ch. 4 and 5, and to consider work on specific IM models
under one umbrella. We establish further reference points and probe the
quality of our definition by evaluating it against well acknowledged models
of intrinsic and extrinsic motivation. These examples are kept informal to
allow for a more straight-forward comparison to existing work.

ContributionsThe main contributions of this chapter are twofold. We present a comprehens-
ive, interdisciplinary account of how IM is understood across both psychology
and AI. Based on pioneering work and the latest state of research, we show
how psychological theories have inspired formalisations of IM in AI, and
vice versa how AI researchers’ need for a formal definition of IM, combined
with subject-specific methodology, contributes to a better understanding of
the concept across the disciplines. We synthesise these insights in our second
main contribution: a working definition of IM models which could benefit re-
searchers in a wide range of disciplines. This comprehensive approach is
an essential ingredient for this interdisciplinary thesis, and we hold on to it
throughout the next chapters.

2.1 origins and theories in psychology

The IM concept has its roots in psychology, where it is now widely studied
and applied in the fields of educational, developmental and organisational
psychology. In Sec. 2.1.1, we describe how the new concept originated as a
response to observations that were irreconcilable with existing theories of
motivation. We discuss how it has been defined, and why ‘intrinsic’ and
‘extrinsic’ are different qualifiers than ‘internal’ and ‘external’. In Sec. 2.1.2,

23
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we provide insights on how IM is commonly operationalised, and outline
the evolution of the most common psychological theories. This equips us
with the basis for understanding why AI researchers became interested in
the concept, and to recognise when and how models of IM draw on their
psychological foundations.

2.1.1 Intrinsic vs. Extrinsic Motivation

MotivationTo be motivated means ‘to be moved to do something’ (Ryan & Deci, 2000a,
p. 54), i.e. motivation drives behaviour in terms of the selection of actions.
Originally, psychologists only differentiated levels of motivation, character-
ising how much an organism is moved to act. Based on the behaviourist theory
of operant conditioning (Skinner, 1953), action-taking had been related to a sep-
arable consequence or instrumental outcome. For instance, you might be reading
this thesis as a means to collect material for your own writing.

Intrinsic vs.
Extrinsic

This status quo was challenged by experimental studies of animals (Har-
low, 1950; White, 1959), exhibiting ‘exploratory, playful, and curiosity-driven
behaviors’ (Ryan & Deci, 2000a, p. 56) that could not be explained by such
a separable consequence. Psychologists thus acknowledged that there must
be two distinct types of motivation: An organism is considered intrinsically
motivated (Harlow, 1950), if they engage in an activity because it is inherently
interesting, enjoyable and satisfying. IM is volitional, and usually ‘accompan-
ied by the experience of freedom and autonomy’ (Ryan & Deci, 2000a, p. 65).
For instance, you might be reading this thesis to learn what it means to be
intrinsically motivated in computational creativity and videogames, for no
other use but to resolve uncertainty in your understanding of the world. The
other, preceding explanation has been absorbed in the concept of extrinsic
motivation, characterising the engagement in an activity for a separable con-
sequence or instrumental value. This is often accompanied by the experience
of pressure and control by a third party, such as your superior asking you to
write a long deliverable for the project that you are working on.

Internal vs.
External

However, we can also be extrinsically motivated without such external
pressure. Consider the previous example of being asked to write a long
deliverable. You may feel ‘externally propelled into action’ (ibid., p. 55), and
do the job cursing silently with resistance and disinterest. However, you
may also accept the value of the task e.g. in keeping track of your own
progress, endorse it and commit to it with a sense of volition. While you
are still extrinsically motivated, your actions in the first case depend on an
externally imposed, and in the latter on an internal, self-determined goal.
This distinction between an external and internal perceived locus of causality
(DeCharms, 1968) is thus not the same as between extrinsic and intrinsic
motivations: if we talk about external causes, we always talk about extrinsic
motivation. However, the presence of an internal locus of causality does
not allow us to identify IM – only the other direction is true: when an
organism is intrinsically motivated, they are always driven by internal causes.
If you submit a deliverable to keep track of your own progress, your cause
of action is internal, yet your activity is a means to an end and must be
considered extrinsically motivated. But if you are intrinsically motivated, e.g.



2.1 origins and theories in psychology 25

you read this chapter out of curiosity, your actions must per definition not
serve a separate outcome. Consequently, the cause of action must be internal.
Ryan and Deci (2000a) hypothesise that external rewards can be internalised
to different degrees, i.e. they propose a continuum between external and
internal extrinsic motivation.

While these distinctions help us to understand the difference between
intrinsic and extrinsic motivation to some extent, they leave us in the dark
with respect to the nature of the internal causes of intrinsically motivated
behaviour. Psychological theories of IM add some clarity by setting themselves
apart from traditional theories of motivation and hypothesising different
mechanisms that may underlie IM specifically. Crucially, these theories have
inspired many computational models of IM, as shown in Sec. 2.2.4. In the
next section, we survey the most important theories.

2.1.2 Psychological Theories of Intrinsic Motivation

Operational-
isation

How is IM functionally rooted in an organism? And what causes the selection
of a specific action, in the absence of an instrumental value? The means of psy-
chology to answer these questions are currently mostly limited to participants’
self-reports, and ‘free choice’ experiments. In the latter, most popular form
to operationalise IM (ibid.), participants are asked to perform a task. After a
while, they are told that they have completed the exercise, and are left with
the task and a number of distractor activities. The more they keep engaging
with this task in the absence of instructions and despite the distractors, the
more they are deemed intrinsically motivated. Such behavioural observation
and self-reports can only shed little light on the functional mechanisms of
IM, and neuroscientific methods to identify and provide ‘greater resolution
on the [underlying] affective and cognitive processes’ (Di Domenico & Ryan,
2017, p. 11) are only beginning to be embraced.

Perspectives
on Intrinsic
Motivation

The landscape of existing psychological theories is twofold: some propose
candidate mechanisms to explain behaviours that are typically associated with
IM, while others focus on contextual factors that have been observed to support
or undermine such behaviour. There is substantial overlap between these
approaches, in that preferences for situational factors could be directly linked
to selecting actions that lead to the same or similar situations. In what
follows, we only outline a subset of theories that have inspired computational
models, informed creativity and game studies, or feature in computational
creativity or videogame AI. A more general, yet detailed overview of theories
is provided by Di Domenico and Ryan (ibid.).

Drive TheoryIn his drive theory, Hull (1943) has rooted traditional motivation in the
satisfaction of basic biological needs. A drive reduces a temporary physiolo-
gical deficit to reach an equilibrium. For instance, organisms act to take in
nutrients in order to maintain a certain blood sugar level. At first, research-
ers have tried to explain the early observations of intrinsically motivated
behaviour by means of drive theory: Harlow (1950) for instance proposes
the existence of a specialised drive to manipulate, and Montgomery (1954)
suggests a drive to explore (ibid.). However, this extension of traditional drive
theory was criticised by White (1959) for its inability to explain e.g. why
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organisms engage in the exploration of an unknown environment when there
is no immediate physiological deficit, or when such exploration might be
detrimental to maintaining an equilibrium on essential variables.

Cognitive
Dissonance
Theory

Festinger’s (1962) cognitive dissonance theory alleviates some of the issues of
drive theory by linking action-selection to the reduction of incompatibilities
between perceived stimuli and internal cognitive structures such as beliefs:
an organism might act to remain in a familiar environment, resulting in
perceptions that confirm their belief in the state of affairs. Much later, Kagan
(1972) proposed the reduction of uncertainty, in the form of an incompatibility
between cognitive structures, as primary motivational mechanism. However,
neither theory explains why organisms engage in e.g. activities that might
lead to an increase, rather than reduction of such incompatibilities.

Optimal
Incongruity
Theory

Hunt (1965) resolves this conflict by suggesting that children and adults
prefer to trigger stimuli that achieve optimal incongruity, marking a sweet spot
in the discrepancy between perceived and expected levels of stimuli. This
idea is also present in Berlyne’s (1960) model of curiosity, suggesting that we
prefer situations that are neither too familiar nor too novel.

Effectance,
Personal
Causation and
Self-Determi-
nation

A last group of theories considers effectance1 as IM, and competence, per-
sonal causation as well as self-determination as motivating factors. According
to the theory of effectance motivation, proposed by White (1959) and extended
by Harter (1978), humans and animals are driven by effectance to increase
competence as the ability to impose an effect on the environment. The the-
ory explains exploration as a means to develop and achieve mastery in
skills. DeCharms’s (1968) theory of personal causation is closely related in that
it proposes a universal propensity of individuals to ‘experience themselves
as causal agents, that is, to experience their own actions as having an internal
perceived locus of causality’ (Di Domenico & Ryan, 2017, p. 3). Ryan and Deci
(2000b) have adopted White and De Charm’s work on effectance and personal
causation for the concepts of competence and autonomy, featuring prominently
as basic psychological needs in their self-determination theory. Here, perceived
competence relates to effectance, and to the sense of growing mastery in
activities that are ‘optimally challenging and that further develop one’s ca-
pacities’ (Di Domenico & Ryan, 2017, p. 3). Perceived autonomy in contrast
relates to the experience of volition as well as choice, control or freedom of
‘either the means or ends of action’ (Ryan, Rigby & Przybylski, 2006, p. 349).
Cognitive evaluation theory (Deci & Ryan, 1985) is a part of self-determination
theory with strong empirical support, demonstrating that situations which
afford high perceived autonomy and competence are more likely to trigger
the explorative and challenge-seeking behaviour associated with IM.

Flow TheoryCsikszentmihalyi’s (1990) concept of flow neither considers functional mech-
anisms nor contextual factors of IM, but focusses on its phenomenology. It
is closely related to self-determination theory, in that it describes a state of
absorption and non self-conscious enjoyment of an activity, facilitated by
optimal challenge and competence. It however does not recognise autonomy
as essential to achieving a state of flow.

1 The term effectance is originalluy coined by White (1959, p. 329) together with the notion of
efficacy as the experience produced through effectance.
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The previous psychological definitions and theories have inspired the
formalisation of IM in computational models. In this ongoing process, AI
researchers have drawn on their different set of research methods to better un-
derstand the origins and workings of IM as defined by psychology. Crucially
though, the gained insights have only to a minor extent been incorporated
back into psychology and related, non-computational disciplines such as
creativity studies, game design and games user research. This is problematic,
as we consider the latter disciplines key to identifying research challenges
in our application domains of computational creativity and videogame AI.
The goal of the following, second part of this chapter is thus not only to
introduce and define computational models of IM as central concept in this
thesis; we also aim to draw a more comprehensive picture of IM to support
the translation of relevant insights between the latter disciplines and our
computational application domains.

2.2 computational models of intrinsic motivation

A motivational mechanism constitutes a core component of any artificial agent.
Although IM represents only one type of motivation in biological systems, it
has been of crucial interest for AI researchers and keeps gaining momentum.
In Sec. 2.2.1, we identify and elaborate the core incentives for AI researchers
to formalise IM into computational models. Formal modelling requires a
thorough definition of the modelled concept; we outline the efforts of AI
researchers to refine the psychological understanding of IM in Sec. 2.2.2, thus
establishing the basis for a mutually informative relationship with psychology.
As the core result of this chapter, we eventually synthesise their findings and
our stance into a working definition of IM models in Sec. 2.2.3. We probe our
working definition in the final Sec. 2.2.4, based on well-acknowledged models
of IM, negative examples, and debatable cases. This working definition allows
us to delineate related work in Ch. 4 and 5, and lays bare the key properties
of IM to benefit computational creativity and videogame AI.

2.2.1 Incentives to Formalise Intrinsic Motivation

AI has always been strongly inspired by psychology. This influence is particu-
larly well reflected in the first motivational mechanisms designed to guide the
behaviour of artificial agents. Some robots for instance implemented Hull’s
(1943) theory of drives, i.e. they acted to keep certain variables such as the en-
ergy level within fixed bounds. This allowed for high stability, but little variety
and adaptivity in behaviour. An alternative option is to employ reinforcement
learning (RL) (Sutton & Barto, 2018) with extrinsic reward signals, which is
inspired by operant conditioning (Skinner, 1953). Here, agents use experience
from interaction to learn the optimal action policy, i.e. a specification of which
action to take in which situation to maximise accumulated reward signals.
However, extrinsic reward signals are often sparse, hard to engineer manually,
and limited to specific application domains. These challenges of extrinsic reward
signals are not merely historical, but remain major constraints on (deep) RL
today. When psychologists found IM as a mechanism underlying the rich,
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explorative behaviour which has been considered key to human and an-
imal development, AI researchers were keen to formalise it in computational
models to overcome the limitations of existing motivational systems.

Most incentives to formalise IM have been there from the start, but are
stressed with varying emphasis across times and research communities.
The core incentives can be clustered into the (i) reproduction of autonomous
development, (ii) the increase of task performance, (iii) generalisation, and, more
recently, (iv) the compliance with and advancement of neuroscience.

Autonomous
Development

One of the initial and also strongest incentives behind formalising and
using models of IM in artificial agents is the (i) reproduction of human and
animal ‘autonomous mental development’ (Weng et al., 2001; Oudeyer, Kaplan &
Hafner, 2007). This agenda is strongly inspired by developmental psychology
and observations such as motor babbling or play in infants as examples of the
active, progressive and incremental learning of universally applicable skills
and knowledge in the absence of an explicit task. Rather than hard-coding
artificial agents, e.g. robots (Lungarella et al., 2003), with a specification of
a well-understood task, they are equipped with a ‘developmental program’
which permits them to learn task-independent skills and knowledge on-line
and in an open-ended way. Here, ‘knowledge acquisition’ usually refers
to an agent’s improvement of its world model, and ‘skill or competence
development’ denotes the learning of complex sequences of atomic actions,
potentially in a hierarchical way. Just as parents help children, researchers
can interact with the agents to aid learning, yet the ultimate goal is for them
to exist autonomously, i.e. without human supervision (cf. Weng et al., 2001).

Task
Performance

While employing models of IM for autonomous development can yield
a wide range of fascinating behaviours (cf. Der & Martius, 2012), artificial
agents usually serve the realisation of human-imposed tasks described in
terms of extrinsic rewards. Yet, as already noted, such extrinsic reward signals
are often sparse and hard to engineer manually. It has thus been a goal early
on (Schmidhuber, 1991a; Singh, Barto & Chentanez, 2005) to complement or
replace extrinsic with intrinsic reward signals in learning to (ii) increase task
performance. We observe a strong surge in related research in recent years,
showing that intrinsic rewards (IRs) can yield superior task performance
in combination with sparse extrinsic reward, but also good performance
when extrinsic reward is omitted from learning entirely. In other words, an
agent which is only intrinsically motivated can yet solve tasks that matter
to people. This is possible because IRs can align with the extrinsic reward
implicit in such a task. We consider this the most important property of IR
in this thesis. Many recent achievements centre on general game-playing (e.g.
Bellemare et al., 2016; Pathak et al., 2017b; Burda, Edwards, Pathak et al.,
2019), and we discuss both the underlying concept of task alignment and
these advancements in more detail in Ch. 5.

GeneralisationA related incentive is given by the observation in behavioural psychology
that knowledge and skills acquired by intrinsically motivated infants might
have no immediate instrumental value when learnt, but turn out to be
essential in solving unforeseen tasks. These skills thus (iii) generalise well,
i.e. they prove useful in a wide range of yet unspecified applications over
extended periods of time. In contrast, extrinsic rewards usually depend on a
specific domain and have to be manually adapted for the agent to perform
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well in a different domain. Generalisation represents one of the biggest
challenges in designing artificial general intelligence (Pennachin & Goertzel,
2007), and IM holds the promise to alleviate it substantially. Crucially, task
performance does not have to be strictly preceded by skill and knowledge
development in a progressive fashion; Barto (2013) suggests an iterative
approach, proposing that even if there is no specific task to solve right now,
systems equipped with IM could remain active and ‘build the competencies
needed for when they are called to action’ (ibid., p. 43).

Neuroscience
Compliance

The final core incentive for modelling IM is to increase (iv) compliance
with and support new findings in neuroscience. Neuroscientists have previously
found correlations between extrinsic rewards and dopamine production in
the human brain and observed similarities between neural activity and the be-
haviour of traditional RL algorithms (Schultz, 1998). Crucially, recent studies
have found increased activity in dopamine production also for intrinsically
motivated exploration and mastery (cf. Di Domenico & Ryan, 2017), and
have highlighted how other brain activity correlates with the learning of
novel actions and the memorisation of novel information (cf. Baldassarre
& Mirolli, 2013). These studies may inform future models of IM, and vice
versa represent an opportunity to computationally reproduce neuroscientific
findings and thus advance our understanding of IM in humans and animals.

We have highlighted the core incentives for AI researchers to formalise
IM into computational models. However, we must yet identify the formal
characteristics of such models that give rise to these properties, and that dis-
tinguish models of IM from other motivational mechanisms. This is necessary
to understand how models of IM relate to their psychological counterpart,
how they could benefit our application domains of computational creativity
and videogame AI, and which characteristics models in related work and the
new models developed in this thesis must fulfil to be deemed IM. In the next
section, we survey existing work on defining models of IM through the lens
of AI to eventually arrive at a refined working definition in Sec. 2.2.3.

2.2.2 Revisiting Intrinsic Motivation: Towards a Refined Definition

AI researchers interested in formalising IM have deemed the psychological
concept underspecified (Oudeyer & Kaplan, 2007), and consequently revisited
it with a different methodological tool-kit to produce new insights. One of
our ultimate goals to benefit AI is a formal definition of IM, towards which
we have made substantial progress in recent joint work (Biehl et al., 2018).
Crucially, a refined definition would not only benefit AI, but could be used
by researchers across the disciplines to delineate IM against other forms of
motivation, and to identify underexplored areas of inquiry. Our working
definition still has some shortcomings, which we elaborate on in Sec. 2.2.3. In
line with Baldassarre and Mirolli (2013), we thus consider both an informal
and formal definition of IM subject to ongoing work. In this section, we survey
the existing research that informs our working definition of specifically models
of IM in the following Sec. 2.2.3.

Reward
Signals

In order to be motivated, an agent has to choose actions based on the
reward signals they have triggered in the past or are expected to yield in
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the future. Our psychological account of IM in Sec. 2.1 suggests that it is
not the action-selection mechanism, but the nature of the reward associated with
individual actions that warrants a distinction between intrinsic and extrinsic
motivation. For our working definition, it is thus less important2 how an
agent chooses between different actions with associated (expected) rewards;
we primarily focus on how rewards are assigned to actions in the first place.

To investigate IM more formally, we first have to clarify the distinction
between rewards and reward signals. In psychology, rewards correspond to
objects and events that attract or repel us. Reward signals in contrast are
produced in response to rewards by the brain’s reward system (Barto, 2013).
If not specified otherwise, we abbreviate ‘reward signals’ with ‘rewards’,
which is consistent with the AI literature. We can then distinguish between
internal and external rewards in terms of the location of the mechanism that
generates the reward (cf. Sec. 2.1.1 and Oudeyer and Kaplan (2007)). If we are
externally motivated, our actions are caused by a reward provided by some
other party. But, as elaborated earlier in Sec. 2.1.1, internal rewards can yet be
extrinsic. So how can we distinguish between extrinsic and intrinsic rewards?
A definition of IR must address both which components of an agent’s internal
or external environment are permitted to shape reward, and how.

Beyond
Non-Separable
Outcomes

For this endeavour, the psychological approach of discriminating IM against
acting for a separable consequence or an instrumental value turns out to be
particularly problematic. This is because from an evolutionary perspective,
skills and knowledge acquired by means of IM must necessarily benefit an
agent in successfully performing future tasks that impact survival, to justify
the resource spending in their acquisition. As a very basic example, play can
contribute to an animal’s development of efficient sensorimotor mappings
and consequently help when escaping predators, thus increasing their fitness.
Without such a handle for evolutionary forces, there would be no explana-
tion why organisms are equipped with IM. Note that psychologists are well
aware of such separable consequences when stressing the importance of IM
for human and animal development. Yet, to consider a specific behaviour
intrinsically motivated, they require e.g. a human participant in ‘free choice’
experiments to be either unaware of these consequences, or to not act for
them (cf. Sec. 2.1.2). In contrast to the resulting psychological understatement
of such instrumental outcomes, AI researchers have emphasised their pres-
ence and differentiated between the consequences of intrinsically motivated
behaviour. This led to an ongoing debate on whether extrinsic and intrinsic
motivations can still be considered distinct categories, or rather reside on a
continuum between short- and long-term consequences, respectively (cf. Barto
(2013) vs. Baldassarre (2011)). For our objective, it only matters that both sides
agree that IM can indeed yield long-term consequences.

Knowledge vs.
Competence

There is a separate debate whether the ultimate purpose of IM in de-
velopment, realised through these instrumental outcomes, is model or skill
acquisition (cf. Schmidhuber (2010) vs. Singh, Barto and Chentanez (2005)).
This difference is mirrored in the distinction between knowledge-based and
competence-based motivations (Mirolli & Baldassarre, 2013), representing the

2 Note though that different action-selection mechanisms yet play a key role in models of
motivation as they can produce radically different behaviours given the same rewards.
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key components of Oudeyer and Kaplan’s (2007) well-established typology
of IM3. Knowledge-based IMs depend on perceived stimuli and their rela-
tion to an agent’s expectations. Their main functional role is to support the
learning of an accurate model of the agent and their environment dynamics.
Competence-based IMs in contrast depend on an agent’s capacity to achieve
self-determined goals as specific effects on the environment and thus support
the acquisition and improvement of skills. Both types are well represented in
psychology (Sec. 2.1.2): cognitive dissonance (Festinger, 1962; Kagan, 1972)
and optimal incongruity theory (Berlyne, 1960; Hunt, 1965) can be associated
with knowledge-based IMs, while theories of effectance (White, 1959; Harter,
1978), personal causation (De Charms, 2013) and self-determination (Ryan &
Deci, 2000b) relate to competence-based motivations.

But these two types are not as distinct as they may first appear. On the
one hand, model improvement relies on an agent’s capacity to perform ef-
fective and potentially complex actions. On the other hand, the efficient
learning of skills requires at least partial models of the agent-environment
dynamics. Schmidhuber (2010) argues that knowledge-based models impli-
citly introduce an objective on establishing better sensorimotor mappings,
and thus subsume competence-based models. He not only requires any eli-
gible theory or model of IM to yield model improvements, but also assumes
that such improvements are the only objective in skill development. Barto
(2013) in contrast highlights an agent’s competence as ultimate bottleneck
on their evolutionary fitness, and thus defers model improvement as a mere
facilitator for skill development. This ‘competence view’ is articulated softer
than Schmidhuber’s (2010) in that it acknowledges the importance of model
improvement, yet emphasises skill development as the ultimate aim of IM.
These two positions inform our fourth diagnostic of IM models in Sec. 2.2.3:
the capacity for open-ended development.

Components
of Intrinsic
Reward

The insight that IM yields long-term consequences – no matter the ultimate
purpose – represents a first step towards refining the concept. For behaviour
to be valuable across a long time horizon, IR must be independent of factors
that are specific to a certain situation. This may explain the ignorance of
researchers and participants with respect to the immediate consequences of
intrinsically motivated behaviour in psychological experiments. To account
for this independence, Barto (2013) argues that IRs are more likely to be
shaped by components of an agent’s internal environment:

‘Novelty, surprise, incongruity, and other features that have been
hypothesized to underlie intrinsic motivation all depend on what
the agent has already learned and experienced, that is, on its
memories, beliefs, and internal knowledge state, all of which are
components of the state of the organism’s internal environment.

3 The original typology entails morphological models as a third type for which actions are chosen
based on the properties of sensorimotor values at different timesteps and irrespective of
the agent’s current predictive model quality or skills. For instance, reward could depend
on the ‘high short-term correlation between a maximally large number of sensorimotor
channels’ (Oudeyer & Kaplan, 2007, p. 10). We have omitted this type for its presently low
popularity and because its consequences on the agent and their interaction with the environ-
ment are not clear. The original typology also contains further subtypes, but Schmidhuber
(2010) shows that their boundaries are blurry and we consequently omitted them as well.
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(...) the internal environment may play a larger – or at least,
a different – role in generating reward signals associated with
intrinsic motivation’ (Barto, 2013, p. 36).

Barto (ibid.) herewith provides a compelling argument for the dominance
of agent-internal components in shaping IR. But we cannot deny that ulti-
mately, the external environment can affect IR indirectly: it enters the agent’s
internal environment through their sensors, and can then influence internal
components such as beliefs and memory. While an embodied agent cannot
access the external environment directly, it yet appears reasonable to assume
that their perception of and beliefs about the environment could contribute to
and shape IR. This raises the question of how IR can integrate such indirect
influences of the external environment while being invariant to specific niches
or situations, thus preserving the long-term value of the resulting behaviour.

Shaping
Intrinsic
Reward

An explanation to this is implicitly given by Oudeyer and Kaplan (2008),
who characterise IM inductively based on a survey of existing models and
psychological theories. Key to their account of IM is the concept of collative
properties, which Berlyne (1965) has coined in his studies of intrinsically motiv-
ated exploration. Berlyne has observed that stimuli from the external environ-
ment that trigger exploratory behaviour score particularly high on properties
such as novelty, surprisingness or incongruity. He moreover noticed that these
properties are of a special ‘collative’ kind, in that they ‘all depend on the
collation or comparison of information from different stimuli elements’ (ibid.,
p. 246), and can thus be formalised with information-theoretical measures
based on an agent’s subjective uncertainties in a given environment. Oudeyer
and Kaplan (2008, p. 95) adopt this concept in their characterisation of IM:

‘An activity or an experienced situation, be it physical or ima-
ginary, is intrinsically motivating for an autonomous entity if
its interest depends primarily on the collation or comparison of
information from different stimuli and independently of their
semantics, whether they be physical or imaginary stimuli (...)
perceived in the present or in the past (...) or stimuli that are
simultaneously present in different parts of one stimulus field.’
(Oudeyer & Kaplan, 2008).

Oudeyer and Kaplan thus allow us to complement Barto’s account of what
shapes IR signals by an account of how they are formed.

While the debate is ongoing, we find that AI researchers, by scrutinising
the psychological concept of IM from a computational but also biological
perspective, contribute to a better understanding across the disciplines. They
assert that IM must indeed have long-term consequences, and put forward
functional theories on how IR is shaped and by what. Next, we synthesise
these insights and our stance in a working definition of IM models.

2.2.3 Models of Intrinsic Motivation: A Working Definition

In this section, we establish a working definition of IM models that comple-
ments the psychological account. Our definition is informed by the insights
introduced in the previous section, and by a formal definition jointly put
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forward in (Biehl et al., 2018). Despite these formal advances, our working
definition is decidedly informal. We briefly justify this choice. The formal
treatment in (ibid.) relies on a predictive formulation of IM, i.e. it assumes
that actions are chosen with respect to the future expected reward they are
predicted to yield. This mechanism necessitates an agent-internal generative
model to predict the future (latent) state and the dynamics of the environment
and of agent-internal components. We believe that most existing models of IM
either already comply with this predictive formulation or can be reformulated
while retaining their characteristic emergent behaviour. However, our formal
definition is complex and might not allow for a quick assessment of whether
a specific model adheres to it. In order to match existing models in related
work more easily and without reformulating them in terms of predictions, we
sacrifice the formal approach in favour of a more intuitive informal treatment.
That said, we still introduce empowerment maximisation (EM) as our core
model of IM in a formally rigorous manner in Ch. 3.

Working
Definition

Ee have earlier identified the nature of reward as the discriminator between
intrinsic and extrinsic motivation and we consequently base our definition of
IM models on the properties of an agent’s action-value function. The function
maps a sequence of actions of arbitrary length to a scalar reward, based on
how these actions have or are expected to influence the components that
contribute to reward4. The more of the following properties the function
fulfils, the more we consider its output an IR5:

agent-centricity : Intrinsic reward is computed from the perspective of an
embodied agent with potentially limited means to perceive and affect
their environment. The action-value function must thus only use agent-
internal components, i.e. sensors, actuators and an agent’s internal state,
the latter which can be further unravelled into memory, beliefs, etc.,
depending on how the agent is modelled.

freedom of semantics : Intrinsic reward is shaped by the distribution of
values of, and by the relationships between, agent-internal components. It
is invariant to a component’s specific values and permutations thereof,
as well as to the meaning of the component itself. The action-value
function must thus be free of semantics on both levels.

embodiment universality : Intrinsic reward should be both computable
for, and yet remain sensitive to any possible agent embodiment. The
action-value function must thus produce different rewards for any
possible coupling between an arbitrary number of sensors and actuators.

open-ended development : The action-value function, given a specific
action-selection mechanism, must drive an agent’s behaviour towards
ongoing model and skill improvement for a large majority of possible
embodiments and situations, leveraging all available degrees of freedom in
the agent and their environment.

4 This is similar to the action-value function in RL, but we assume that a value can be provided
for an action sequence of arbitrary length, rather than for a single action and a policy.

5 One might still wonder whether a particular intrinsic action-value function could be considered
a better fit than another for a specific agent. We elsewhere (Guckelsberger & Salge, 2016)
discuss the requirements for an arguably more natural choice of such a function.
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The first two properties follow from the previous observation (Sec. 2.2.2) that
IR is decoupled from any short-term consequences on specific situations.
With the latter two properties, we want to account for the presence of the
characteristic, generalising behaviours in a large range of organisms. The
property of open-ended development complements embodiment universality
in that it requires different embodiments to not only yield diverse, but also
sensible rewards. For the operationalisation of sensibility, we embrace both the
knowledge and competence views without giving either priority. Note that,
rather than taking the theoretical considerations from Sec. 2.2.2 as a starting
point, we can also pragmatically justify the selection of these properties as
facilitators of the incentives to embrace the IM concept in AI (Sec. 2.2.1).

Diagonistics
Formulation

We ask the reader to understand these properties as diagnostics, and not
as necessary or sufficient criteria: the more of them apply, the more we
are comfortable to call the output of the action-value function an intrinsic
reward (IR), and a model which uses these rewards for action selection an
intrinsic motivation. We have chosen this diagnostics formulation for a number
of reasons. Firstly, based on the insight that IMs also yield separate outcomes
(Sec. 2.2.2), we favour a gradual rather than a binary distinction between
these two types of motivation. Secondly, we would like to emphasise the
individual properties and their implications for our applications over a clear-
cut distinction. Thirdly, we could challenge every diagnostic with pathological
cases that can rarely be found in nature. For instance, we could define
embodiments that exploit a given value function to yield behaviour opposed
to open-ended development. Finally, we do not believe that a binary and yet
universally accepted definition of IM models is presently feasible, given their
inspiration by and relationship to the original but underspecified concept
in psychology. Note though that despite this formulation as diagnostics, we
consider some properties as more important than others, with the order above
roughly reflecting high to low priority.

Operational-
isation

Some of these diagnostics are harder to assess than others. We can check
agent-centricity by considering whether the variables used in a specific action-
value function correspond to agent-internal components only. One appealing
intuition for the freedom of semantics is that the action-value function should be
‘rewiring agnostic’: IR must be invariant to either a virtual or physical rewiring
between the agent-internal components and the action-value function. In other
words, all internal components of the same kind, e.g. different sensors, must
be treated alike. Given freedom of semantics on the level of components, we
can follow that no semantics are used on the level of their values. More
formally, we are free of semantics if we can apply a bijective transformation
on the values of a specific component as the input to the action-value function
without changing the calculated reward. Many existing models of IM satisfy
this property by relying on information-theoretic measures (Appx. C), or
alternative probabilistic options (cf. Oudeyer & Kaplan, 2008). We assess
embodiment universality with respect to the concept of objective sensorimotor
embodiment defined in Appx. D. For the sake of simplicity, we assume agents
to have unlimited processing power and memory capacity. An action-value
function must then be computable for, yet be sensitive to any possible shape
of the distribution in Eq. D.3 which encodes the coupling between an agent’s
actions and future perceptions. Crucially, this entails any possible sensor,
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actuator and environment dynamics as determinants of the coupling. An
eligible action-value function must work and produce different rewards for
an underwater robot equipped with a sonar sensor and fin actuators, but also
for a drone with a camera and propellers as well as any other combination
of sensors, actuators and environment. In practical terms, given freedom of
semantics and thus independence of specific component types, an eligible
action-value function must be able to use an arbitrary amount of sensor
signals in the calculation of reward, and assign it to an arbitrary amount
of actions. Embodiment universality for actual models of IM can be proven
analytically, and we use proof by contradiction to reject other motivational
models in the next Sec. 2.2.4. Open-endedness requires IR not to flatten out
until the agent has fully exhausted the potential of its embodiment for such
improvement, and a qualifying model must prevent the agent from getting
stuck in situations where such development is inhibited. Such situations
of e.g. sensory impoverishment are often referred to by the metaphor of
a ‘dark room’ (e.g. Friston, Thornton & Clark, 2012), which we adopt for
our evaluations. In the opposite, the development of intrinsically motivated
agents can also be inhibited by local attractors that provide insatiable reward
(cf. e.g. Burda, Edwards, Storkey et al., 2019). A systematic quantification of
open-ended development remains a grand challenge, with existing approaches
(e.g. Merrick, 2008b) being not universally applicable. Presently, we rely on
thought-experiments and empirical data on the induced long-term behaviour.

Relationship to
Psychological
Definition

Our working definition distils the understanding of IM from a compu-
tational perspective which was formulated in response to psychology, and
allows us to work out the commonalities and subtle differences between both
accounts. Recalling from Sec. 2.1.1, psychology defines IM as engaging in an
activity for its inherent satisfaction, rather than for a separable consequence
or instrumental value (Ryan & Deci, 2000a). In a computational context, the
‘engagement in an activity’ is captured by an agent’s ongoing choice of action,
based on the reward assigned to these actions by the action-value function.
While psychology operationalises IM based on participants’ behaviour via
self-reports or observations in ‘free choice’ experiments, we use four dia-
gnostic properties on the action-value function. To be deemed intrinsic, both
psychology and AI require reward not to be external of an agent, perceived
through their sensors as a separate entity, e.g. in the form of an instruction,
but to be produced within. In psychological terms, an agent must have an
internal locus of causality, and we enforce this with the properties of freedom
of semantics and agent-centricity, respectively. However, as noted in Sec. 2.1.1,
such an internal locus of causality is not sufficient to rule out extrinsic mo-
tivation; an agent must also be denied to act for a separate, instrumental
outcome. This is also warranted by freedom of semantics: without presupposing
semantics, an agent cannot act towards a specific internal state articulated e.g.
as a belief. We thus cannot a priori direct behaviour to the achievement of a
specific outcome, similar to Harlow (1950) who could not post-hoc relate the
behaviour of animals to a specific separate outcome, and consequently coined
it ‘exploratory’ and ‘playful’ (Ryan & Deci, 2000a). Instead, an agent entailed
with a model of IM can only act on the distribution of and relationship
between e.g. sensor values as abstractions of such states, yielding a heuristic
to potentially produce sensible behaviour across many situations. An agent
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may well be able to predict these separate outcomes, e.g. via planning, but
it is not permitted to use this knowledge in reward calculation. In contrast
to psychology, the AI account of IM emphasises the importance and nature
of instrumental outcomes, especially since these enable generalisation and
allow intrinsically motivated behaviour to complement as well as substitute
extrinsic reward for increased task performance (Sec. 2.2.1). As a subtle dif-
ference, while psychology seems to allow intrinsically motivated beings to
be aware of such outcomes as long as they do not guide their behaviour,
it does not strictly require them. We could thus in principle conceive of a
psychological theory of IM with actions that have no instrumental value,
and hence conflicts with the evolutionary argument made by AI researchers
(Sec. 2.2.2). Our definition consequently explicitly asks for a model of IM to
contribute to an agent’s open-ended development. A final difference concerns
the relationship of psychological theories and models of IM with respect
to different embodiments. Psychologists have observed similar, intrinsically
motivated behaviour in both people and animals, and developed theories to
explain the functional underpinnings. However, there is little evidence that
different organisms actually realise the same hypothesised principle functionally,
or only behave as if this was the case (cf. Sec. 3.4). In our AI definition in
contrast, we require a specific model of IM to be embodiment universal.

Diagnostics in
a Videogame
Context

We briefly evaluate our four diagnostics in the context of videogames. To
warrant agent-centricity, the action-value function must not require access
to the global game state or an objective account of the game’s dynamics;
instead, it must be possible to calculate IR from the perspective of an agent
in the game, such as the player. This perspective rests on the agent’s unique
means to perceive and act in the game, determined by their embodiment,
and their models of the game state and dynamics. To be free of semantics,
the action-value function must be agnostic with respect to the meaning of
game tokens as determined by the player or designer: it must not matter
whether they are facing a power-up, a weapon, or in particular any kind of
reward. An action-value function fulfils embodiment universality, if it can be
computed for any agent6 that could interact with the game world, and is yet
sensitive to their abilities to affect and perceive it. It should yield different
rewards for e.g. a player that can walk but also for an NPC, who perceive the
world in fundamentally different ways. Finally, the intrinsic value function,
in combination with a specific action-selection mechanism, should allow for
open-ended development by driving an agent towards enhancing their model of
the game world and their abilities within. In particular, it must not render
the agent stuck in set of states that is small in comparison with what they
could potentially realise in interaction with the game mechanics.

Intrinsically
Motivated
Reinforcement
Learning

Equipped with a working definition of IM models, we can resolve ambi-
guity in the relationship between models of IM and intrinsically motivated
RL7. Already in early work by Schmidhuber (1991a) as well as Singh, Barto
and Chentanez (2005), intrinsic action-value functions have been used as a
source of IR in RL, optionally in combination with an extrinsic reward signal.
This requires us to understand the reward function in (partially observable)

6 In Ch. 5, we note that this agent is not necessarily restricted to characters such as the player or
an non-player character (NPC), but could also be a procedural content generator.

7 This is not to be confused with Singh, Barto and Chentanez’s (2005) homonymous model.
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Markov Decision Processes (cf. Appx. D) as part of an agent’s internal envir-
onment (Barto, 2013). An agent then leverages experience to learn how much
reward can be expected in specific situations for a given action as the input to
a reward maximising policy, to learn such a policy directly, or both8. Closely
related, Srivastava et al. (2019) recently proposed upside down RL to bridge
the gap between supervised and reinforcement learning. Here, a state, and
a command in the form of a desired return, potentially shaped by intrinsic
reward and to be achieved within a specific time horizon, are inputs to a
behaviour function, which is subjected to supervised training to produce the
actions which are most likely to realise the command, starting from the state.

There exist further means to leverage agent experience in connection with
intrinsic action-value functions, which lead to some ambiguity. For instance,
an agent might use RL to acquire a predictive model as a requirement for
the intrinsic action-value function (e.g. Burda, Edwards, Storkey et al., 2019),
by treating the negative model error as a reward to maximise. Furthermore,
some IRs are hard to compute directly but can be estimated by sampling
from the experience of ‘partial rewards’ (e.g. Gregor, Rezende & Wierstra,
2017). IR functions that rely on one or multiple forms of these learning
mechanisms can yield different rewards in the same situation at different
times, and are consequently referred to as adaptive motivations (Oudeyer &
Kaplan, 2007). Crucially though, there also exist static (ibid.) models which
do not leverage learning from experience at all. Intrinsically motivated RL is
thus not synonymous to, but represents a subset of models of, IM.

This concludes our working definition of IM models, consisting of four
diagnostic properties for an action-value function to yield IR as the basis for
IM. We next validate this proposal based on well-acknowledged models of
IM, as well as negative examples, and we highlight borderline cases.

2.2.4 Example Models of Intrinsic Motivation

We have chosen the following examples of motivational models – intrinsic, ex-
trinsic and controversial – not to be exhaustive, but to illustrate their diversity
and to provide close reference points for identifying similar models of IM in
the related work in Ch. 4 and Ch. 5. We use the large diversity in well acknow-
ledged intrinsic and extrinsic models of motivation to demonstrate the power
of our working definition, limited to two models in each category to avoid
redundancy. We demonstrate that the differences between these categories
are often not clear cut, based on two examples that are usually considered IM,
but only qualify as borderline cases according to our definition. We describe
each model functionally and hypothesise the potential emerging short- and
long-term behaviour. Similar to our working definition though, we abstain
from a rigorous formalisation to allow for an easier comparison with slightly
different models. We maintain a chronological order to highlight influences
in the development of these models, and we point out their relationship to
psychological theories (cf. Sec. 2.1.2) where applicable.

Artificial
Curiosity

Historically, psychological theories of IM focussed on exploratory behaviour,
and it is thus not surprising that the first models of IM capture curiosity.

8 These cases correspond loosely to action-value, policy gradient and actor-critic methods.
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While the earliest formalisations go back to the 70s and 80s (e.g. Lenat, 1976;
Scott & Markovitch, 1989), most contemporary research is based on ideas
developed throughout the 90s (cf. Schmidhuber, 2010). In the arguably most
well-known formalisation, an agent acts to increase the prediction error of
their world model (Schmidhuber, 1991b) as IR. They consequently provoke
unfamiliar perceptions, and thus engage in exploration. This approach is
closely related to Festinger’s (1962) cognitive dissonance theory. We refer to
this and similar formal models as artificial curiosity.

The prediction error formulation of artificial curiosity meets all properties
of our working definition. Its action-value function only involves an agent’s
world model and sensor inputs, i.e. it is based on agent-internal components
alone and is thus agent-centric. It is free of semantics, in that the distinct sounds
of a tweeting bird and a gunshot would give rise to the same IR if they were
predicted with equal probability by the model, irrespective of their meaning.
This freedom of semantics is also demonstrated by the model’s rewiring
agnosticity, i.e. the action-value function would generate the same IR even if
e.g. audio and visual sensors had been switched. Given sufficient processing
power and memory capacity, we can scale a world model to predict the effect
of an arbitrary number of simultaneous actions on any number of future
perceptions. Artificial curiosity is thus embodiment universal. Finally, it realises
open-ended development as in the majority of situations, an agent driven by
artificial curiosity would keep exploring and improving its world model,
while avoiding dark rooms where prediction error is zero.

Learning
Progress

The exception to these situations represents the major caveat of the predic-
tion error maximisation approach to artificial curiosity: an agent can become
attached to random sources of noise, recently denoted ‘noisy TV’s’ by Burda,
Edwards, Storkey et al. (2019), as these remain unpredictable and the in-
trinsic reward in the respective states does not satiate. To overcome this,
Schmidhuber (1991b) has early on proposed an alternative motivation for
which an agent chooses actions that maximise their expected learning progress.
In a popular version, this is quantified as the difference in the prediction error
of consecutive future sensor states, provided by an agent’s world model
(Schmidhuber, 2010). Oudeyer, Kaplan and Hafner (2007) extend the original
formulation by splitting the state space into regions, which increases ro-
bustness. Similar to Schmidhuber’s (1991) version, their ‘intelligent adaptive
curiosity’ agent stays away from situations that are either too predictable or
unpredictable. This family of models is thus closely related to Hunt’s (1965)
optimal incongruity theory and Berlyne’s (1960) adaptation to curiosity.

In these models, learning progress as the difference in prediction error
is either calculated explicitly (Oudeyer, Kaplan & Hafner, 2007) or impli-
citly via separate predictive models (cf. Schmidhuber, 2010). In either case,
they assume the existence of a reliable distance measure on sensor space.
Knowledge-seeking (Storck, Hochreiter & Schmidhuber, 1995; Orseau, 2014) is
a more principled approach to modelling learning progress which is free of
such assumptions, but usually intractable. Learning progress is quantified as
an agent’s information gain, the amount of additional information about the
latent environment state and the environmental dynamics acquired through
a particular sequence of future sensor states triggered by the agent’s actions.
Each possible parametrisation of the model can be considered a different



2.2 computational models of intrinsic motivation 39

hypothesis of how the agent can affect their future perceptions, mediated by
the environment. Maximising information gain then allows an agent to select
those actions which optimally probe and limit their hypotheses about the
environment. It also likely yields a perfect model over the long term.

The previously described models of learning progress motivation also score
on all diagnostics of our working definition. Consider knowledge-seeking
as an example: The underlying information gain is given by the mutual
information (Appx. C) between an agent’s (expected) sensor perceptions
on one side, and their (expected) change in beliefs about both the latent
environment state and the environment dynamics on the other side. It is thus
both agent-centric and free of semantics. The latter is illustrated by the fact that
applying a bijective transformation on both sensor and belief states would
not change the mutual information. To get different information gain rewards,
an agent’s embodiment must only afford that different actions yield different
sensory futures, and that these give rise to different internal belief states. For
several physical or virtual sensors and actuators, we can encode these states
as vector-valued random variables and the model is thus embodiment universal.
Finally, knowledge-seeking agents realise open-ended development; they do not
get hooked on noise and avoid dark rooms as the corresponding perceptions
would offer no information gain about the environment.

Both, the prediction error and learning progress formulations of artificial
curiosity, have traditionally suffered from scaling badly to large state and
action spaces. However, with the availability of better function approximation
based on (deep) neural networks paired with RL, these models have again
gained strong momentum in recent years (e.g. Bellemare et al., 2016; Pathak
et al., 2017b; Burda, Edwards, Pathak et al., 2019).

Predictive
Information
Maximisation

The previous models are knowledge-based (cf. Sec. 2.2.2), in that rewards
depend exclusively on the prediction quality and improvement of an agent’s
model. Specific future perceptions associated with different sensorimotor
mappings only feature as a means to achieving more favourable model up-
dates. If we fixed the model parameters – i.e. the model could not incorporate
new sensorimotor evidence – exploration would likely fail9. Predictive informa-
tion maximisation (Ay et al., 2008; Ay et al., 2012) in contrast yields exploratory
behaviour but sits half-way between knowledge-based and competence-based
models. This is because IR here not only depends on the quality of an agent’s
model, but also directly on the possible sensory futures their actions can pro-
duce. A predictive information maximising agent would yield an exploration
strategy even if their model parameters were fixed (cf. Ay et al., 2008).

Introduced as a natural complexity measure for time series (Bialek, Nemen-
man & Tishby, 2001), predictive information can be calculated on an agent’s
sensor state space to measure how much information a preceding sequence of
perceptions holds about a consecutive sequence. By adjusting the parameters
of an agent’s policy to maximise this quantity, an agent realises a trade-off
between causing a rich, diverse sensory future while keeping it as predictable
as possible from past perceptions. Simulation studies (Ay et al., 2008) show
that this maximum coincides with the agent’s ‘effective bifurcation point’,

9 More precisely, artificial curiosity agents would likely get stuck in states that yield the
momentarily highest prediction error. Learning progress motivations in contrast would flatten,
potentially reducing exploration to a random walk, depending on the actual implementation.
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a dynamical systems concept describing the critical region in policy para-
meter space where different stable behaviours can be distinguished, but are
yet sensitive to the environment and switched upon perturbations (Der &
Martius, 2012, pp. 41–44). An agent would try to cause the most complex
possible sensory process, and thus engage in exploration. At the same time,
they would switch between stable behavioural modes e.g. when running
into obstacles. They would avoid random noise sources as these cannot be
predicted from past sensor values, and they would not get stuck in a dark
room as it would not allow to distinguish different sensor states. If predictive
information is measured on arbitrarily long sensor sequences (cf. Martius, Der
& Ay, 2013), agents are expected to establish an ergodic process where every
possible sensor value is created in a complex sequence which is then looped
to maintain predictability10. For short sensor sequences, we get ‘playful’ be-
haviour (Der & Martius, 2012) in which agents exercise different behavioural
modalities in response to the environment. This model has been inspired by
‘homeokinesis’ (ibid.), a dynamical systems theory developed in opposition
to the homeostasis concept in Hull’s (1943) traditional drive theory.

Free Energy
Principle

Based on the AI literature in particular, we may get the impression that IM
is synonymous with exploration; however, taking into account its conceptu-
alisation in psychology and AI, intrinsically motivated behaviour is much
broader. The free energy principle (Friston, 2010) demonstrates this nicely, as
it has attracted strong attention both in psychology and neuroscience, as
well as in AI. It has been proposed as a unified theory explaining a wide
range of cognitive processes at different levels of complexity, from the single
cell to the human brain. The free energy principle has been motivated by
the observation that biological systems must limit the range of perceived
sensor states to maintain self-organisation (ibid.). In its basic formulation, the
free energy reward corresponds to an agent’s uncertainty about their future
sensor states, given the (latent) environment states they can trigger with
their actions (cf. Friston, Parr & de Vries, 2017, supporting material Eq. A.2).
However, in contrast to the previous exploration models, an agent realising
this principle is assumed to minimise free energy and thus decrease rather than
increase the uncertainty of future sensor perceptions. It chooses actions which
are expected to lead to (latent) environment states perceived via precise,
unambiguous sensor values. The free energy principle therefore bears simil-
arities with Festinger’s (1962) cognitive dissonance theory and Kagan’s (1972)
adaptation as reduction of uncertainty.

A free energy maximising agent will avoid random noise, but may get stuck
in a dark room as the latter only yields a single sensor state. This can be partly
alleviated by extending the action-value function by a term which is identical
to the information gain in knowledge seeking (cf. Friston et al., 2017). Free
energy can be minimised by both performing actions to yield more precise
perceptions, or by changing the model that encodes the agent’s beliefs about
future perceptions given (latent) environment states. This joint optimisation
is called active inference11 (Friston, 2010). This supports our earlier observation
that the boundaries between knowledge- and competence-based IM are fluid.

10 Based on personal exchange with Martin Biehl, referring to a discussion with Georg Martius.
11 In (Biehl et al., 2018), we generalise active inference to employ other IRs beyond free energy.
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Negative
Examples

We soon argue that the free energy principle represents a controversial
example of IM. But first, we probe our definition on negative examples, i.e.
models which are generally accepted to not resemble IM. We return to the
theory of drives (Hull, 1943) which served as the primary explanation for
motivation before the conceptual divide (cf. Sec. 2.1.2). A hunger drive, i.e. a
motivation to reduce a physiological food deficit and reach an equilibrium, is
usually considered an internal but extrinsic motivation. Albeit being agent-
centric, an implementation of a hunger drive would score low on the other
diagnostics of IM models because reward would have to be formulated rel-
ative to an agent’s specific digestive system; we would have to distinguish
between different nutrients in terms of their quality or toxicity, and thus
would not be free of semantics and as an implication, not embodiment universal.
This also implies that drives are not rewiring agnostic, i.e. we cannot arbit-
rarily exchange e.g. different sensory inputs. Furthermore, while a hunger
drive might allow for short-term model and skill development, it does not
warrant open-ended development: as soon as an agent had found a niche that
supplies enough nutrients, they would reside there and stop improving their
skills and knowledge. Further development is thus inhibited through the
consummatory climax inherent to drives.

More closely related to our application domain, most motivations used
in general game-playing would not qualify as intrinsic. As a concrete model,
consider Mnih et al.’s (2015) well known deep q-network RL agent. Here, the
action-value function uses raw pixel data of the game, and a reward which
represents the change in game score. The network learns to associate different
perception-action tuples with expected accumulated reward in RL. Since the
score has been defined by the game’s designer, and is communicated as a
score difference to the agent by the model engineers, it corresponds to an
external and extrinsic reward (cf. Sec. 2.1.1) and is subject to the sparsity and
engineering challenges detailed in Sec. 2.2.1. This model does not diagnose
as IM at all; most crucially, it relies on an agent-external component and
is thus not agent-centric. But even if we considered the reward signal to be
fed to the agent through a sensor, we would have to distinguish between
higher and lower sensor values and would thus not be free of semantics. Since
the reward sensor would be treated specially, we would imply semantics
on the level of components and not be rewiring agnostic. The model would
lack embodiment universality, in that it would only be sensitive to sensors that
perceive the reward it is tuned to, and to environments that afford the reward
in question. Since this would only be the case for very few environments, the
model would not score on open-ended development either.

Controversial
Examples

We finish with two more controversial examples that score on some but
not all diagnostics of our definition. Our goal is to highlight the divergent
views on what should be considered IM, and the need for further research to
resolve these discrepancies. Singh, Barto and Chentanez’s (2005) intrinsically
motivated reinforcement learning (IMRL)12 has been emphasised as the first
competence-based model of IM (Mirolli & Baldassarre, 2013). It provides a

12 We use the abbreviation IMRL to discriminate this specific motivational model from the more
general technique of employing IR in RL.
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RL agent with rewards to learn complex skills which can trigger salient events,
such as opening a door. Skills are formalised as options (Sutton, Precup &
Singh, 1999), i.e. actions sequences that terminate in a certain state set. For
some termination states, a salient event is triggered and the agent receives a
reward proportional to how unlikely they expected to reach these states. The
agent hence keeps learning an option until performing it reliably well, and
then moves on to gradually chain options together into complex sequences
to trigger more remote events. In spite of its name, we question the intrinsic
nature of the model, as the salient events that trigger IRs are hard-coded.

A similar issue applies to the free energy principle. Most formalisations (e.g.
Friston et al., 2015) go beyond the ‘core formalism’ distinguished earlier by
minimising an additional term which quantifies the distance between the
predicted sensor states following the agent’s actions and a desired distribution
over future perceptions. An agent with this extended model will act to
approach this distribution. Friston, Thornton and Clark (2012) argue that
it is this expectation over a desired sensory future that eventually saves a
free energy minimising agent from the dark room problem. The literature is
inconclusive with respect to whether this formulation is still considered an
IM. It poses an interesting challenge, which we briefly elaborate here.

In contrast to the score in Mnih et al.’s (2015) general game-playing
agent, Singh, Barto and Chentanez’s (2005) salient events and the sensor
target distribution in free energy are not externally imposed, but internal
to the agent right from the start of an experiment. We thus cannot reject
the models on the basis of agent-centricity. However, we find it problematic
to consider the corresponding models intrinsic, as the reward computation
includes priors that are invariant with respect to the state of other internal
components. Friston, Thornton and Clark (2012) argue that the prior in free
energy is defined by evolution, a point which could be equally made for
the salient events in Singh, Barto and Chentanez’s (2005) model. But how is
such a prior different from any other hyperparameter provided to the model
at the onset? Could a motivational model as a whole not be considered an
evolutionary prior on an agent’s behaviour? These questions highlight the
need for further research. At this point, we consider both motivations as
borderline models of IM, because their priors limit the optional property of
open-ended development. Once e.g. Singh, Barto and Chentanez’s (2005) agent
has exhausted all pre-defined salient events, they might continue improving
existing skills, but further skill development will cease.

Chapter
Conclusion

In this chapter, we have introduced the concept of IM both through the
lens of psychology and AI. We have discussed its origins, and elaborated on
the distinction between internal vs. external, and intrinsic vs. extrinsic, motiv-
ations. We have summarised the most popular theories of IM in psychology,
and explained the various incentives to formalise it in computational models.
We have reviewed the efforts of AI researchers to disambiguate the psycho-
logical concept and, based on this ongoing research, devised our working
definition of IM. This definition has been evaluated on a representative set of
well acknowledged reference models of IM, negative and some controversial
examples that highlight both its power and limitations. We believe that our
definition is sufficiently precise to allow for the identification of IM models in
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our related work in Ch. 4 and Ch. 5, a task which is further supported by the
introduced reference models. Crucially, empowerment maximisation (EM) as
the central model of IM to be used in this thesis has not been addressed yet
because it requires a comprehensive and formally rigorous introduction. This
is the subject of the next chapter.



3EMPOWERMENT MAXIMISATION

Empowerment maximisation (EM) is the central model of IM to be investig-
ated, extended and applied in this thesis. Originally introduced by Klyubin,
Polani and Nehaniv in 2005, it is based on empowerment as IR reward, an
information-theoretic quantity which measures an agent’s influence on their
environment. The goal of this section is to introduce EM in an intuitive but
also formally rigorous way, and to sketch related research as context for our
novel contributions in computational creativity and videogame AI.

StructureIn Sec. 3.1, we motivate empowerment as IR and EM as a model of IM via
empirical observations and theoretical considerations in psychology, biology
and physics. We then define empowerment and the corresponding motiva-
tional model both informally and formally in Sec. 3.2. We dedicate Sec. 3.3 to
discussing the properties of empowerment and to evaluating EM against our
working definition of IM models. To support the reader’s intuitions, we use
examples that showcase the empowerment quantity and the behaviour of an
empowerment maximising agent. In Sec. 3.4, we finally differentiate the re-
lated work landscape, thus establishing reference points for the contributions
of this thesis to empowerment research and vice versa.

ContributionsFollowing its inception in 2005 (Klyubin, Polani & Nehaniv, 2005a, 2005b),
empowerment and EM have been conceptually penetrated to increasing
depth, and the original formalism has been refined and generalised several
times. In addition to providing the aforementioned overview, this chapter
also contributes a rigorous and up-to-date formalisation of EM informed by
recent joint research in (Biehl et al., 2018). Most notably, we resolve some
formal ambiguity in earlier work with respect to the modelling of an agent’s
subjective and limited perspective on their environment. More specifically,
we make an explicit formal distinction between the agent’s embodiment in
an objective, physical world and the calculation of empowerment as IR based
on their beliefs about that world. Although we simplify the empowerment
calculation to a certain extent in our later experiments, we introduce it in a
more general fashion as basis for a discussion of future work. This chapter
can be considered an update of the earlier EM survey by Salge, Glackin and
Polani (2014b), with a focus on discrete empowerment.

3.1 motivation

Presented with the choice to be poor or wealthy, sick or healthy, and im-
prisoned or free, most people would not deliberate for long (ibid.). We would
usually express a strong preference for increasing our wealth, health and
freedom, although our current plans or goals do not require it, and the impact
of these activities on our future lives remain nebulous to us. But what is the
common theme underlying these preferences? And what mechanism allows
us to respond to each of these choices without the effort or possibility of
contemplating their long-term consequences?

44
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A Unifying
Behavioural
Principle

Being wealthy, healthy and free provides us with more degrees of freedom
with respect to the things that we can do, and increases the number of possible
outcomes that we can achieve. These are flip sides of the same coin, expressing
a stronger potential and perceivable control over our environment: in each of the
preferred situations, we expect our actions to have a stronger influence on
ourselves and the world that we live in. Crucially, this equips us with a high
level of preparedness towards unforeseen events. Based on these situational
preferences, we can identify a unifying behavioural principle to explain each
of the earlier choices, a local heuristic that allows us to make decisions with
potentially inconceivable, global, long-term consequences: all else being equal,
increase your options and influence (Klyubin, Polani & Nehaniv, 2005a).

We can identify specialised behaviours deduced from this principle through-
out the animal kingdom and at many levels of complexity: Sugar-feeding
bacteria prefer locations with high sugar concentration as they bear more pos-
sibilities for further locomotion, and better chances for reproduction (Klyubin,
Polani & Nehaniv, 2008). Similarly, chimpanzees try to increase the social
status within their troop to have more mating choices (Klyubin, Polani &
Nehaniv, 2005a). For us humans, having more money, better health and more
freedom usually increases our chances for long-term survival and well-being.
We have even included this heuristic in our artefacts: in the board game
Reversi (Othello), players can perform best on average if they increase their
mobility, i.e. the number of moves they can make in any given situation
(Klyubin, Polani & Nehaniv, 2005b). A single behavioural principle to have
more potential and perceivable control unifies the wide range of seemingly
disparate drives towards higher sugar concentration, social status, money,
health, freedom and mobility.

Psychological
Support

Psychologists have discussed the importance of control in people’s situ-
ational evaluation and behaviour already at the turn of the 20th century: in
‘The Play of Man’, Groos (1901) points at peoples’ experience of joy when
being able to control sensory stimulation. More than 50 years later, White
(1959) reports observations of people repeatedly engaging in behaviours that
have an effect on their environment independently of a physiological need.
In his theory of effectance motivation, he consequently proposes such control
as driver of intrinsically motivated behaviour (cf. Sec. 2.1.2). This has been
further extended by Harter (1978) and adopted in DeCharms’s (1968) theory
of personal causation. Referencing White, Watson (1966) describes contingency
awareness, i.e. an organism’s functional knowledge that the nature of a re-
ceived stimulus is sometimes affected by the nature of executed behaviours,
as key factor in the development and learning of early infants. Similar to
White (1959), he suggests that a stimulus becomes associated with a reward
as result of being contingent on a particular action. A contingency aware or-
ganism is sensitive to and set to learn and repeat stimulus-response patterns.
Rotter (1966) proposes that individuals distinguish situations in terms of the
type of perceived control they afford, given their available actions, perceptions
and expectations. He situates an individual’s perceived control between the
two loci of external vs. internal control. In the case of an external locus of
control, a subject attributes a mismatch between their expectation and the
observed outcome of an action entirely to external forces. In the case of
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an internal locus, an individual explains control entirely in terms of their
own actions invoking the observed outcome. Closely related to the notion
of an external locus of control, Seligman (1975) argues that people learn to
avoid states where they feel helpless, i.e. where their actions seem to have
random or no outcomes. He proposes that being in such states can have
negative consequences on well-being, and describes a behavioural tendency
to avoid situations with little internal control. Oesterreich (1979) proposes
a similar behavioural principle in a quantitative, stochastic framework, in
which he associates chains of actions with potential follow-up perceptions via
transition probabilities. He characterises states by their ‘efficiency divergence’
(German: ‘Effizienzdivergenz’), representing the likelihood of different ac-
tions leading to distinct follow-up states. Oesterreich proposes that people
should act towards states with maximum efficiency divergence. His focus is
not on well-being, but he suggests that such behaviour could benefit explicit,
potentially long-term goals. The seeking of potential control also resonates
with the notions of competence and autonomy in Ryan and Deci’s (2000)
self-determination theory. Related, the cyberneticist von Foerster (1984/2003a,
1973/2003b) proposes a simple behavioural imperative: ‘I shall act always so
as to increase the total number of choices’ (von Foerster, 1984/2003a, p. 282).

These psychological theories consider control from an individual’s subject-
ive perspective on the world. They incorporate a notion of perception which
has been explicitly put forward by Gibson (1979), arguing that organisms do
not naturally understand their environment ‘in terms of a geometrical space,
independent arrow of time, and Newtonian mechanics’ (Klyubin, Polani &
Nehaniv, 2005b, p. 128), but in terms of what it affords them to perceive and
do. From this agent-centric perspective, the concept of the environment is
a by-product of its embodiment as ‘the interplay between the agent’s sensors
and actuators’ (Klyubin, Polani and Nehaniv, 2005, p. 745; and Appx. D).

Biological
Support

These theories highlight the importance of maximising potential and per-
ceivable control in human decision-making, but they do not account for the
ubiquity of behaviours in the animal kingdom that are deducible from this
principle. Polani (2009) offers a two-part explanation based on information
theory, theoretical biology and physics. As a first step, he argues that inform-
ation represents a universal ‘currency of life’. For an organism to survive, it
must continually process information, as dictated by information-theoretic
bookkeeping laws. According to e.g. one application of Ashby’s (1956) law of
requisite variety, an organism can only control their environment in terms of
reducing its entropy by a certain amount, if they acquired the same amount
of information from the environment beforehand (cf. Touchette and Lloyd,
2000, 2004; and Appx. D). For instance, animals rely on sensing their en-
vironment to source the food which maintains their metabolism. Crucially
though, information processing also comes with an energetic cost. Sensing for
instance requires energy, which must be compensated by the intake of more
food. As a consequence, sensing also imposes stronger dependencies of the
organism on the environment, which counteracts their chances for survival.
The information to be acquired through sensors must thus be traded off with
the energy available to an organism (Laughlin, 2001). Polani (2009) argues that
the same applies for other information-processing components, including an
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organism’s actuators used to cause changes in the environment by inflicting
information back. Thus, information can be considered a ‘currency of life’.

As second part of his argument, Polani (2009) formulates an information
parsimony principle (cf. Polani, Sporns & Lungarella, 2007). It ties to the first
part by considering information as ‘currency of life’ under evolutionary
pressure: an organism with suboptimal information-processing would waste
metabolic energy resulting in lower chances for survival, and would thus be
selected against by evolution. The parsimony principle therefore proposes
that well-adapted organisms must have efficient information processing in
their specific niche. Nature provides plenty of evidence: we find that evolution
caused sensor organs, e.g. the eyes of cavefish (Jeffery, 2005), to deteriorate;
but it also led to the development of extremely sensitive sense organs operat-
ing close to the limits of physics such as the photoreceptors of certain toads,
which can even identify individual photons (Baylor, Lamb & Yau, 1979). Cru-
cially, the information parsimony principle translates from the evolutionary
to the individual time-scale: an organism equipped with the capabilities for
highly efficient sensorimotor processing can only maximise their evolutionary
fitness by seeking out niches during their lifetime in which they can potentially
leverage these capabilities to the full extent (Polani, 2009). One means to probe
the sensorimotor efficiency that a certain situation affords is to measure the
maximum amount of information that an agent could pass from its actuator
through the environment back into their sensors. This corresponds to an
agent’s potential and perceivable control of the environment. Maximising
such control yields the behavioural heuristic introduced earlier.

Empowerment
Maximisation

We have referred to a ‘behavioural principle’ and ‘heuristic’ as template
from which many specialised behaviours in nature can be derived. These
can correspond to intrinsic but also to extrinsic motivations, the latter e.g. in
the case of accumulating money or social status. But we can also understand
the overarching principle itself as a motivation, which is intrinsic by virtue
of its agent-centric formulation of control. In the next section, we formal-
ise an agent’s potential and perceivable control as empowerment, and the
corresponding intrinsic motivation as empowerment maximisation.

3.2 informal and formal definition

We first define empowerment informally and discuss important properties
compared to other quantities. We then establish the necessary formalism to
model an agent’s perspective on their world as basis of the empowerment
calculation. Based on this, we introduce empowerment in a very general
way, and then defend several assumptions to simplify its calculation. We
finish with the definition of greedy deterministic EM, one popular variant of
formalising the maximisation of empowerment as a model of IM. We define
empowerment only for discrete time and state spaces; for continuous versions
cf. Jung, Polani and Stone (2011), Mohamed and Rezende (2015), Gregor,
Rezende and Wierstra (2017) and Karl et al. (2017), amongst others.

Informal
Account

Informally, empowerment measures an agent’s (i) perceivable, (ii) reliable
and (iii) potential control over the environment. We say (i) perceivable, because
an embodied agent with limited access to their external environment could
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inflict changes which they cannot distinguish afterwards; empowerment
only accounts for an agent’s distinguishable influence on the environment
as captured in their future perceptions. The environment is thus treated
as by-product of the agent’s embodiment (cf. Gibson, 1979; and Sec. 3.1).
In control-theoretic terms, empowerment is thus a combined measure of
controllability and observability. Empowerment quantifies (ii) reliability, as it
can also take uncertainty in causing different future perceptions into account,
which distinguishes it from simpler mobility measures. Finally, empowerment
is a (iii) potential quantity, as it measures only the future influence an agent
could have without the need to actually exercise this influence.

Crucially, empowerment not only quantifies an agent’s potential control
of their immediate future, but the influence they could have on their future
perceptions n steps ahead with action sequences of length n. We call this
arbitrary n ∈ N \ {0} the agent’s lookahead. By default, we always refer to
this more generic n-step formulation.

By maximising empowerment as IR, an agent acts to get into situations
which afford the full leverage of their sensorimotor equipment, thus realising
the information parsimony principle (Polani, 2009) through behaviour.

Agent-Centric
Perspective

For our formalisation, we make an explicit distinction between the objective
world that an agent is embedded in, and their beliefs about that world. The
perception-action (PA)-loop as introduced in Appx. D represents the first,
objective view. The agent’s beliefs about their world are encoded and inferred
through a generative model, representing their subjective perspective on the
world, mediated by their embodiment. The formalisation of both perspectives
draws on joint work in (Biehl et al., 2018). In comparison, we can simplify
the formalism slightly thanks to the specific requirements of empowerment.

Perception-
Action
Loop

The PA-loop in our formalisation defines the true state and dynamics of
the physical system which includes the agent and the rest of the world. This
true state and the true dynamics are usually not directly accessible to the
agent. We have originally defined the PA-loop as causal bayesian network
(BN) in Appx. D, and we repeat the illustration of the network topology
in Fig. 3.1a. To fully specify the loop, we have to define the state spaces of
the agent’s sensor s ∈ S , memory m ∈ M, actuator a ∈ A and the agent-
external environment, i.e. the rest of the world r ∈ R. We furthermore have
to define the (initial) dynamics of the agent’s sensor, memory and external
environment, i.e. p(st|

˙
rt), p(mt|

˙
st,

˙
mt−1,

˙
at−1) and p(rt+1| ˙

at,
˙
rt), respectively,

as well as the agent’s policy p(at|
˙
mt). The dot notation marks these dynamics

as interventional probability distributions (Appx. A), but for the sake of
simplicity, we drop this notation in the rest of this chapter. For a robot,
these state spaces and dynamics, except for the policy, would be dictated by
physical reality and the robot’s hardware. For a videogame character, they
would be given by the game’s mechanics and the character’s setup. For our
generic formalisation, we assume them to be arbitrarily fixed, except for the
memory state space, the memory dynamics, and the agent’s policy, which we
constrain to a specific form.

To allow for more generality, we require a ‘perfect memory’ in which the
agent’s complete sensorimotor experience, i.e. all previous perceptions and
performed actions, are retained. We thus write the memory state at time t
as mt = (a≺t, s�t), abbreviating the past sensor and actuator state sequences
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(a) Perception-action-loop with memory (repeated Fig. D.1a)

Ξ2

Ξ3

Ξ1

Θ2

Θ3

Θ1

R̂0 R̂1 R̂t R̂t+1
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(b) Agent-internal generative model of the perception-action-loop

Figure 3.1: Comparison of the perception-action loop and an agent’s internal gener-
ative model. Both are given by causal Bayesian networks unrolled in time.
The illustration shows the networks’ structure at two time slices each. An
edge connecting one to n nodes (e.g. Θ1 → Ŝ0, Ŝ1, . . . ) corresponds to n
edges from that node to each of its children (Θ1 → Ŝ0, Θ1 → Ŝ1, . . . ).

that have affected the memory up to time t with s�t = (s0, s1, . . . , st) and
a≺t = (a0, a1, . . . , at−1), respectively. The memory state space comprises all
possible sequences of sensor and actuator values up to time t:

Mt = S ∪
(

t⋃
k=1

S× (S× A)k

)
(3.1)

The initial memory state is m0 = s0. We define the memory dynamics via
Kronecker’s delta (cf. Eq. A.7) as p(mt|st, at−1, mt−1) = δmt,(st,at−1,mt−1) ∀mt ∈
Mt, t > 0, and the initial dynamics as p(m0|s0) = δm0,s0 ∀m0 ∈ M0. We drop
this requirement of a (perfect) memory later.

Generative
Model

To complete the holistic account of the objective agent-environment interac-
tion described by the PA-loop, we only have the agent’s action policy p(at|mt)
left to define. From an external perspective, it specifies the probability that the
agent picks a certain action, given their sensorimotor experience in memory.
To select an action, the agent has to assign reward to individual actions in an
action-value function, a process facilitated by their motivational model. For this
model to be intrinsic, the underlying IR must, amongst others (cf. Sec. 2.2.3),
be computed from an agent’s perspective, based on agent-internal compon-
ents only. Empowerment as specific IR requires an agent to predict how much
control a certain situation affords in terms of the potential impact the agent
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could make with their actions on their future perceptions starting from that
situation. This impact is mediated by the agent-external environment.

Crucially though, neither the actual state nor the dynamics of the external
environment are directly accessible to the agent – they must be considered
latent variables. To calculate empowerment, an agent must thus (i) use their
sensorimotor experience to infer the latent state of the external environment as
well as the environment and sensory dynamics and, based on that, (ii) predict
the consequences of their actions on their future perceptions. This inference
and prediction is facilitated via an agent-internal generative model which is
encapsulated in the action policy and plugged into the action-value function.
It is called generative, because it relates parameters Θ and latent variables R as
‘generative causes’ to sensor values S as data in a joint distribution.

Similar to the PA-loop, we define the generative model as causal BN
G = (VG, PG), with the graph structure shown in Fig. 3.1b. We distinguish
variables in the generative model from the corresponding, modelled variables
in the PA-loop with additional notation: hatted variables, e.g. Ŝ, are assumed
by the agent internally, and serve as models for variables in the PA-loop which
have not been resolved yet or cannot be accessed directly. The generative
model comprises the following random variables unrolled in time:

• Agent sensor Ŝ with state space Ŝ

• Agent actuator Â with state space Â

• The rest of the system R̂ with state space R̂

It furthermore contains continuous parameters Θ = (Θ1, Θ2, Θ3) and hyper-
parameters Ξ = (Ξ1, Ξ2, Ξ3), the latter of which we assume to be fixed to
ξ∗ = (ξ1,∗, ξ2,∗, ξ3,∗). To fully specify the model, we first have to define the
state spaces of these variables. For successful inference of the parameters,
we assume the actuator and sensor state spaces to match, i.e. Â = A and
Ŝ = S . We also assume that R̂ = R, i.e. the agent knows in principle the
possible states of their external environment. The state spaces of the (hyper-)
parameters Θ and Ξ are determined by the choice of Ŝ, Â, and R̂.

To complete the definition of the generative model, we have to define the
following probability distributions in PG. We distinguish them as models of
the true dynamics in the objective PA-loop by writing q instead of p:

• Sensor dynamics model q(ŝt|r̂t; θ1)

• Environment dynamics model q(r̂t+1|ât, r̂t; θ2)

• Initial environment state model q(r̂0; θ3)

• Belief priors q(θ1; ξ1), q(θ2; ξ2), q(θ3; ξ3)

• Belief hyperpriors q(ξ1), q(ξ2), q(ξ3)

• Action probabilities q(ât)

The individual parameters θ = (θ1, θ2, θ3) encode the agent’s beliefs in the
sensor dynamics, in the environment dynamics and in the initial state of
the environment, respectively. Because the hyperparameters are fixed to ξ∗,
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we can define the hyperpriors as Dirac distributions q(ξ i) = δ(ξ i − ξ i,∗) for
i ∈ {1, 2, 3} (cf. Eq. A.8). The agent’s memory is not explicitly represented
in the generative model as it is resolved in all previous perceptions and
performed actions up to the current time step. Furthermore, the actuator in
the generative model has no parents, implying that the agent chooses their
actions freely to initiate actual behaviour which manifests in the PA-loop
or to probe the consequences of possible future actions. Note that these
belief distributions are not interventional (cf. Appx. B). This is because the
generative model in Fig. 3.1 already respects the interventional character of
actions by considering them root nodes. Also, successful inference requires
us not to intervene in sensor states but to use actual observations.

Complete
Posterior

Empowerment is calculated on latent environment states and relies on an
agent’s ability to predict the impact of action sequences of length n on the
future perception ŝt+n. We abbreviate such n-step sequences of random vari-
ables as ân

t = (ât, ât+1, . . . , ât+n−1). The agent can infer the probability of the
current and past environment state as well as the probabilities of future action
consequences through their generative model. They are given as part of the
complete posterior, which more generally predicts the consequences of action
sequences on (yet) unobserved variables. For a convenient formalisation of
the complete posterior, we identify the following conditional independence
assumptions in the generative model by applying the d-separation criterion
(cf. Pearl, 1988; and Appx. B) on the network topology in Fig. 3.1b:

(Ŝn
t+1, R̂n

t+1 ⊥⊥ Ŝ�t, Â≺t) | Ân
t , R̂t, Θ (3.2)

Based on this, we can write the complete posterior as product of a predictive-
and a posterior factor, parametrised by θ = (θ1, θ2, θ3) and fixed ξ = (ξ1, ξ2, ξ3):

q(ŝn
t+1, r̂t+1+n

0 , θ|ân
t , mt, ξ) = q(ŝn

t+1, r̂n
t+1|ân

t , r̂t; θ)︸ ︷︷ ︸
predictive factor

q(r̂�t, θ|mt; ξ)︸ ︷︷ ︸
posterior factor

(3.3)

Note that θ3 is only used in the posterior to parametrise the initial envir-
onment state. For brevity, we write the agent’s sensorimotor experience in
memory as mt = (s�t, a≺t). The complete posterior provides us with estimates
of the past but also of future latent environment states R̂t+1+n

0 = (R̂�t, R̂n
t+1),

and with estimates of parameters Θ and future sensor states Ŝn
t+1. For our

formalisation of empowerment, we do not use the complete posterior expli-
citly but its two factors. Since open-loop empowerment does not depend on
intermediate future sensor states or past latent environment states ≺ t, we
can simplify both factors accordingly. Given the Markov assumption in our
generative model, future sensor states only depend on parameters θ = (θ1, θ2)
and the environment state rt, not on previous r≺t. We simplify the posterior
factor by marginalising out earlier latent environment states:

q(r̂t, θ|mt; ξ) = ∑̂
r≺t

q(r̂�t, θ|mt; ξ) (3.4)
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We then simplify the predictive factor to retain only the future sensor state n
steps ahead, rather than a sequence of sensor and world states:

q(ŝt+n|ân
t , r̂t; θ) = ∑

ŝn−1
t+1 ,r̂n

t+1

q(ŝn
t+1, r̂n

t+1|ân
t , r̂t; θ) (3.5)

= ∑
ŝn−1

t+1

[ t+n−1

∏
k=t

∑̂
rk+1

q(ŝk+1|r̂k+1; θ1)q(r̂k+1|âk, r̂k; θ2)

]
(3.6)

= ∑̂
rt+n

q(ŝt+n|r̂t+n; θ1)q(r̂t+n|ân
t , r̂t; θ2) (3.7)

In Eq. 3.6 we write the marginalised predictive factor as autoregressive
distribution of the sensor and environment dynamics. Since we are only
interested in the final sensor state Ŝt+n, we simplify this further in Eq. 3.7,
using a recursive definition of the k-step environment dynamics for k > 1:

q(r̂t+k|âk
t , r̂t; θ2) = ∑

r̂t+k−1

q(r̂t+k|ât+k−1, r̂t+k−1; θ2)q(r̂t+k−1|âk−1
t , r̂t; θ2)

(3.8)

Each value of e.g. Θ2 as parameter of the dynamics q(r̂t+k|ât+k−1, r̂t+k−1; θ2)
represents one hypothesis about how the agent’s environment works. Cru-
cially, the predictive factor (Eq. 3.5) needs no updating based on past ex-
perience, as it only depends on changes to Rt and θ. The posterior factor
(Eq. 3.4) in contrast needs updating at different time steps to yield good
estimates of the latent environment states and parameters. At time t, this is
done by plugging the sensorimotor experience mt = (a≺t, s�t) as data into the
generative model, i.e. Â≺t = a≺t, Ŝ�t = s�t and computing the posterior. This
procedure constitutes what is commonly referred to as Bayesian inference.
We have introduced the concept of a posterior factor here to allow for a fair
assessment of the simplifying assumptions we make in later experiments,
and to provide links for future work. We however do not detail the actual
procedure of computing the posterior factor here, but point the reader to our
treatment of its exact and variational Bayesian inference in (Biehl et al., 2018).

State-
Dependent
Empowerment

We now have everything in place to define empowerment formally. By
arguing for information as ‘currency of life’, Polani (2009) also advocates
information theory (cf. Appx. C) as universal means to formalise efficiency
principles across different agent morphologies. Empowerment is such an
information-theoretic efficiency principle, which abstracts the substrate of
agent-specific embodiment. It corresponds to the maximum causal information
flow (Ay & Polani, 2008) from an agent’s actuators An

t through the latent
environment to their future sensor state St+n. Central to its formalisation is
the interpretation of the environment as information-theoretic communication
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channel (cf. Touchette & Lloyd, 2000) with actions as inputs and perceptions as
outputs. Empowerment E is then given by the channel capacity (cf. Eq. C.24):

E(r̂t; θ) = max
q(ân

t )
I(Ân

t → Ŝt+n|r̂t; θ) (3.9)

= max
q(ân

t )
∑

ân
t ,ŝt+n

q(ân
t )q(ŝt+n|ân

t , r̂t; θ) log
q(ŝt+n|ân

t , r̂t; θ)

∑
ˆ̂an

t

q(ŝt+n| ˆ̂an
t , r̂t; θ)q( ˆ̂an

t )

(3.10)

This formalises state-dependent empowerment1, where the channel distribution
is conditioned on a specific latent environment state r̂t and parameters
θ, given by the posterior factor (Eq. 3.4). To calculate empowerment, an
agent must freely choose the distribution q(ân

t ) which maximises the amount
of information they could inject into the environment via possible n-step
action sequences and perceive again with their sensor later. This optimisation
problem can be solved by exhaustive enumeration with arbitrary precision
using the Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972), or via
approximations as in recent joint work (Salge et al., 2018).

Empowerment
Action-Value
Function

While an agent’s empowerment is inherently a state-dependent quantity,
we need to assess the expected empowerment of actions as basis of motiv-
ation. We define the empowerment action-value function2, as the expectation
of the state-dependent n-step empowerment E(r̂t+1; θ) from Eq. 3.9 over all
latent environment states r̂t+1 ∈ R̂ that a certain action ât could yield. This
distribution of states is conditioned on the possible preceding environment
states Rt and parameters Θ, obtained from the posterior factor (Eq. 3.4):

E(ât, mt; ξ) = ER̂t+1,Θ|ât,mt,ξ [E] (3.11)

=
∫

∑̂
rt+1

q(r̂t+1, θ|ât, mt; ξ)E(r̂t+1; θ)dθ (3.12)

=
∫

∑̂
rt+1

[
∑̂
rt

q(r̂t+1|ât, r̂t; θ2)q(r̂t, θ|mt; ξ)
]
E(r̂t+1; θ)dθ (3.13)

The calculation of this action-value function is a multi-stage process, and we
illustrate it in Fig. 3.2 for 3-step empowerment using coloured, dashed lines.
The figure shows the generative model from Fig. 3.1b further unrolled in
time, with hyperparameters now set to fixed values ξ. In order to calculate
the expected empowerment for an assumed action ât, an agent must first (i)
plug all sensorimotor experience up to time t, i.e. mt = (s0, a0, s1, . . . , at−1, st),
into the model. These sensor and action values have been directly observed
and performed, respectively, and are therefore not hatted. Bayesian inference
on this data yields the posterior factor q(r̂t, θ|mt; ξ) (Eq. 3.4) over parameters
and latent environment states at time t. For the expectation, the agent then (ii)

1 We can only calculate state-dependent empowerment if R̂ = R, i.e. the latent environment state
spaces match; if this is not the case, the agent can compute context-dependent empowerment (cf.
Salge, Glackin & Polani, 2014b) which further abstracts the structure of possible states of the
external environment. We capture both cases in the notion of situation-dependent empowerment.

2 This expectation differs from our definition of the action-value function in (Biehl et al., 2018),
where at is incorporated as fixed first action in otherwise freely chosen n + 1-step action
sequences used to condition the posterior over the future sensor states.
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Figure 3.2: Calculation of the 3-step empowerment action-value in the generative
model. Hyperparameters have been fixed to ξ, and sensorimotor ex-
perience a≺t, s�t has been included up to t to infer the posterior factor.
Empowerment is calculated for each pair of predicted environment states
and sensorimotor dynamics parameters (r̂t+1, θ) following the execution
of at ( ). Its calculation requires to maximise the information that can be
injected into future perceptions Ŝt+4 with action sequences Â3

t+1 ( ).

uses the environment dynamics q(r̂t+1|ât, r̂t; θ2) under these inferred states
and parameters to predict the follow-up states R̂t+1 as consequences of ât ( ).
The agent finally (iii) calculates the 3-step state-dependent empowerment
E(r̂t+1; θ) for each of these possible states and parameters, using the predictive
factor (Eq. 3.5) as channel distribution. For each such channel, this involves
finding the optimal action distribution q∗(â3

t+1) that maximises the causal
information flow from actuators Â3

t+1 = (Ât+1, Ât+2, Ât+3) to the sensor state
St+4, starting in the specific latent environment state r̂t+1 ( ).

Simplifying
Assumptions

We next introduce two simplifying assumptions to our general formalisa-
tion of empowerment. The latter assumes a strict agent-centric perspective
under which access to the environment is limited. Similar to other IR functions
(cf. Biehl et al., 2018), it thus necessitates inference of the latent environment
state and dynamics. Empowerment is distinctive from other IRs in that it
quantifies intrinsic control, and it is this characteristic which we would like to
focus on in our studies. For our experiments to qualify as proof-of-concepts
on the use of EM in computational creativity (CC) and game AI, we eliminate
inference as potential source of noise. Without inference, there is no need for
memory and we consequently represent the objective interaction of an agent
with their environment by means of the simplified, memoryless PA-loop in
Fig. D.1b. We make the following assumption:

fixed parameters : We assume that beliefs over the initial environment
state as well as sensor and environment dynamics are given or have
been acquired by the agent beforehand, and remain permanently fixed
to θ∗ = (θ1,∗, θ2,∗, θ3,∗) once the agent starts acting according to EM. The
parameters are thus delta-distributed, i.e. q(θi|ξ i) = δθi ,θi,∗δ(ξ i − ξ i,∗) for
i ∈ {1, 2, 3}, and we hide them from the distributions, i.e. q(ŝt|r̂t; θ1,∗) =
q(ât|r̂t), q(r̂t+1|ât, r̂t; θ2,∗) = q(r̂t+1|ât, r̂t), q(r̂0; θ3,∗) = q(r̂0).

To simplify the examples in Sec. 3.3 of this chapter, we furthermore assume
that the agent can fully observe their environment:
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full observability : We assume that the environment is fully observable
and that the agent can fully perceive its state, i.e. st = rt. Objectively,
this is still modelled by the memoryless PA-loop in Fig. D.1b that ac-
counts for both latent environment and sensor states, but the sensor
dynamics become the deterministic mapping p(st|rt) = δst,rt . From the
agent’s perspective, modelling the latent environment states becomes
unnecessary and we thus drop it from the agent’s model distributions.
We consequently replace their sensor and environment dynamics with
a single distribution q(ŝt+1|ŝt, ât). Both the distribution over initial en-
vironment states and the posterior factor become obsolete, as the agent
can observe their environment directly.

Full observability subsumes the prior assumption that R̂ = R. We use both
assumptions in our applied studies in Sec. 6.5 as well as 7.5, whereas only
the latter draws on the second assumption. We discuss limitations caused by
these assumptions in Sec. 6.6 as well as 7.6, and the opportunities in relaxing
them for future work in Sec. 8.2 and 8.3.

Simplified
Empowerment

Based on these assumptions, state-dependent empowerment simplifies to:

E(ŝt) = max
q(ân

t )
I(Ân

t → Ŝt+n|ŝt) (3.14)

= max
q(ân

t )
∑

ân
t ,ŝt+n

q(ân
t )q(ŝt+n|ân

t , ŝt) log
q(ŝt+n|ân

t , ŝt)

∑
ˆ̂an

t

q(ŝt+n| ˆ̂an
t , ŝt)q( ˆ̂an

t )
(3.15)

Similar to Eq. 3.8, we write the n-step sensorimotor dynamics recursively as:

q(ŝt+n|ân
t , ŝt) = ∑

ŝt+n−1

q(ŝt+n|ât+n−1, ŝt+n−1)q(ŝt+n−1|ân−1
t , ŝt) (3.16)

The empowerment action-value function also simplifies to:

E(ât, st) = EŜt+1|ât,st
[E] = ∑̂

st+1

q(ŝt+1|ât, st)E(ŝt+1) (3.17)

Note that these functions are time-invariant or static (cf. Oudeyer and Kaplan,
2007; and Sec. 2.2.3) – they provide us with the same empowerment value if
we visit the same state or state-action pair again at a later time.

Objective vs.
Epistemic
Empowerment

We can assume that the preceding inference has been perfect; the agent’s
model of the environment and sensor dynamics, or their model of the sen-
sorimotor dynamics in the simplified case, would then match the actual
distributions in the PA-loop3. An agent would calculate the same objective
empowerment that could be measured by an omniscient observer4. More gener-
ally though, we must assume imperfection and hence a mismatch between the
agent’s beliefs and the actual distributions in the PA-loop, and the agent thus
calculates an epistemic empowerment which reflects their subjective uncertainty
(Appx. A) about the world. The q-notation covers both possibilities.

3 As long as we conceptually separate an agent’s beliefs q from the objective and inaccessible
distributions p, empowerment remains an intrinsic quantity, even if the beliefs are accurate.

4 Ab initio, empowerment has also been considered on an evolutionary, rather than behavioural,
time-scale, and as an objective, rather than subjective, measure of control. Our assumptions
here can thus already be found in early work e.g. by Klyubin, Polani and Nehaniv (2005b).
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Empowerment
Maximisation
Policy

To define empowerment maximisation (EM) as a model of IM, we need
to formalise how empowerment as IR informs action selection in an agent’s
action policy. Given our assumptions of full observability, the agent performs
actions based on their current sensor reading, which unambiguously reflects
the current environment state. The objective policy is thus p(at|st), as specified
by the memoryless PA-loop. As a subtle point, we distinguish this from the
agent’s subjective policy q(ât|ŝt), which is based on the present sensor state
and an assumed action. As in the majority of related work, we formalise EM
as greedy action selection with added stochasticity:

q(ât|st) =

 1
|A∗(st)| if ât ∈ A∗(st),

0 otherwise.
with A∗(st) = arg max

ât

E(ât, st) (3.18)

The set A∗(st) ⊆ A contains all equally optimal actions â∗t , i.e. all actions
that would obtain the same same maximum empowerment action-value if
performed in the sensor state st. If there is only one such action, it is chosen
with certainty, i.e. action selection is deterministic. If there are several, each is
selected with the same probability, i.e. they are equally likely to be performed.
For a tie, we thus have stochastic action selection on A∗(st). Crucially, EM
as a model of IM thus requires a double maximisation: in (i) determining the
empowerment reward as maximum causal information flow in Eq. 3.14 and
in (ii) choosing the actions which maximise this reward in Eq. 3.18. This
distinguishes empowerment from many other models of IM that get by
without the first (i) maximisation, and complicates its approximation.

In this section, we have first introduced empowerment as IR informally. We
then formalised it based on an agent’s generative model of their environment
which requires inference of the environment’s states and dynamics. We
simplified the general formalism for this thesis by dropping inference and
assuming full observability. We finally defined EM as an action policy based
on the empowerment action-value function. These definitions are critical for
the rest of the thesis, but they do not necessarily appeal to intuition. In the next
section, we foster the reader’s understanding by discussing the properties of
empowerment and EM based on examples and formal arguments.

3.3 properties and examples

Maximisation
Trade-Off

Empowerment is measured in bits of Shannon (1948) information. It is non-
negative and increases the more potential, perceivable and reliable control
an agent has over their environment. We can understand the nature of
this control better by considering a trade-off inherent to the empowerment
calculation. It shows when writing information flow (Eq. C.21) as difference
of entropies (cf. Eqs. C.15–C.18):

E(ŝt) = max
q(ân

t )
I(Ân

t → Ŝt+n|ŝt) (3.19)

= max
q(ân

t )
H(Ŝt+n|ŝt)− H(Ŝt+n|Ân

t , ŝt) (3.20)
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For the maximisation in Eq. 3.20, an agent must find the optimal distribution
over action sequences which maximises the left-hand and minimises the
right-hand term. The left-hand entropy is maximum if each possible future
perception is equally likely. The right-hand conditional entropy is minimum
if a specific action sequence leads to exactly one sensor state. An agent’s
empowerment is thus maximum if their actions can cause a rich set of sensory
futures that are yet cleanly distinguishable based on the respective action.

Information flow as above is given by the mutual information on causal
probability distributions. If we drop the requirement for causality, we can ex-
ploit the symmetry of the mutual information for an alternative interpretation
of ‘non-causal’ (NC) empowerment (cf. Mohamed & Rezende, 2015):

ENC(ŝt) = max
q(ân

t )
I(Ân

t ; Ŝt+n|ŝt) (3.21)

= max
q(ân

t )
H(Ân

t |ŝt)− H(Ân
t |Ŝt+n, ŝt) (3.22)

An agent then maximises mutual information rather than information flow.
The left-hand entropy in Eq. 3.22 is maximum if all possible action sequences
are equally likely to be performed. The right-hand conditional entropy is
minimum, if each individual action sequence an

t could be inferred retrospect-
ively, given the state ŝt in which it was originally executed and a specific
sensory outcome st+n. Empowerment is thus maximum if an agent can per-
form as many different action sequences as possible, while keeping them
distinguishable given the resulting perception.

While the causal formulation in Eq. 3.20 emphasises the breadth of final
sensory states, the non-causal version in Eq. 3.22 highlights the importance of
maintaining as many degrees of freedom in action as possible. These obser-
vations also hold for the more general, partially observable case: empowerment
is zero when an agent believes to have no influence on their environment as
perceived through their sensors. This is reminiscent of Seligman’s (1975)’s
concept of helplessness: ‘A person or animal is helpless with respect to some
outcome when the outcome occurs independently of all his voluntary re-
sponses’ (ibid., p. 17). We usually deal with epistemic empowerment, rendering
helplessness relative to an agent’s subjective beliefs.

GridworldWe illustrate empowerment as IR based on two examples in a gridworld
simulation which is discrete in time, has discrete state and action spaces,
and affords full observability. In both cases, the environment state is defined
in terms of the agent’s absolute position in Cartesian coordinates, i.e. R =
X ×Y with X = {x ∈ N|0 ≤ x ≤ rw},Y = {y ∈ N|0 ≤ y ≤ rh} and rw, rh =
9 corresponding to the width and height of the world. The environment
state is thus a 2-component vector rt = (x, y). The agent can furthermore
sense their position perfectly, i.e. R = S and p(st|rt) = δst,rt∀st, rt ∈ R.
At each time step, they can move in straight directions or idle, i.e. A =
{north, east, south, west, idle}. For the first example, we define the (objective)
environment dynamics as:

p(rt+1|at, rt) = δrt+1,ρ(at,rt) (3.23)
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(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 6 (e) n = 8 (f) n = 10

Figure 3.3: Example of an agent’s n-step empowerment at different positions in a
deterministic gridworld surrounded by walls. The agent senses their
absolute position. They can move north, east, south, west and idle, but
they cannot penetrate the surrounding walls. The scales are relative.

with deterministic environment state transitions given by:

ρ(at, rt) =



rt if at = idle,

(rt,x, min(rh, rt,y + 1)) if at = north,

(min(rw, rt,x + 1), rt,y) if at = east,

(rt,x, max(0, rt,y − 1)) if at = south,

(max(0, rt,x − 1), rt,y) if at = west.

(3.24)

Here, rt,x corresponds to the x- and rt,y to the y-component of state rt. The
dynamics express that the agent cannot move cross the boundaries of the
grid, which we can picture as walls that cannot be penetrated. The dynamics
are deterministic, in that for a given environment state, each action leads to
exactly one follow-up environment state with certainty.

We assume that the agent’s beliefs match the actual dynamics, and that
the agent can fully perceive the current environment state. Since the sensor
dynamics are also deterministic, so is the agent’s overall n-step sensorimo-
tor mapping q(ŝt+n|ân

t , ŝt) (cf. Eq. 3.16). Fig. 3.3 shows an agent’s n-step
empowerment at different positions within this gridworld, for lookaheads
n = 1, 2, 3, 6, 8, 10. For n = 1, empowerment is very distinct and low at the
edges and in the corners. This is because the walls constrain the agent’s
mobility: in the top-left corner for instance, the agent can neither move north
or west; performing these actions yields the same sensory consequence as
idling, and empowerment is thus reduced. For larger lookaheads, we get
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higher empowerment values and a smooth gradient. Empowerment is highest
in the middle of the arena where the agent can access the maximum number
of distinct states with n-step action sequences.

Deterministic
Empowerment

Our description already indicates that in deterministic scenarios, empower-
ment becomes a simple reachability measure. More precisely, given determin-
istic sensorimotor dynamics, empowerment reduces to the logarithm of the
number of distinguishable sensor states that can be reached from a specific
origin state with the available n-step action sequences:

E(ŝt) = max
q(ân

t )
I(Ân

t → Ŝt+n|ŝt)
det.
= max

q(ân
t )

H(Ŝt+n|ŝt) (3.25)

= − ∑
s∈Ŝ Ân

ŝt

1

|Ŝ Ân

ŝt
|

log
1

|Ŝ Ân

ŝt
|
= log |Ŝ Ân

ŝt
| (3.26)

We explain this result step-by-step. For a deterministic sensorimotor dynamics
model q(ŝt+n|ân

t , r̂t), the n-step action sequences An
t resolve uncertainty in the

outcome St+n entirely. We thus get H(Ŝt+n|Ân
t , r̂t) = 0 and Eq. 3.20 simplifies

to the right-hand side of Eq. 3.25. The remaining entropy is maximum for a
uniform distribution over sensory futures (cf. Fig. C.2). We can always specify
an action distribution q(ân

t ) that yields such a uniform distribution over the
set of reachable states Ŝ Ân

ŝt
= {ŝt+n ∈ Ŝ | [∃ ân

t ∈ Ân | q(ŝt+n|ân
t , ŝt) ≥ 0]}. In

the deterministic case, empowerment is thus given by the right-hand side
of Eq. 3.26, with the maximisation simplified to finding the set of reachable
states, rather than a specific action distribution.

Consider 1-step empowerment in Fig. 3.3a: assuming the agent is situated
in the bottom-left corner, i.e. ŝt = r̂t = (0, 0), they can only produce the future
perceptions Ŝ Ân

(0,0) = {(0, 0), (0, 1), (1, 0)}, as ât ∈ {west, south, idle} yields the
same perception ŝt+1 = (0, 0). Their empowerment is thus E((0, 0)) = log 3 ≈
1.57. From the position (1, 1) though, they can reach sensory futures Ŝ Ân

(1,1) =

{(1, 1)(0, 1), (1, 0), (1, 2), (2, 1)} and their empowerment is thus E((1, 1)) =
log 5 ≈ 2.32. For larger lookaheads and a suitable position, the agent can
expand its mobility further and yield higher empowerment overall: e.g. for
3-step empowerment at ŝt = r̂t = (3, 6) in Fig. 3.3c, the agent can reach 25
sensor states, i.e. E((3, 6)) = log 25 ≈ 4.64.

Stochastic
Empowerment

Our second example in Fig. 3.4 resembles a ‘bridge’ over an abyss and
illustrates empowerment for stochastic sensorimotor dynamics and absorbing
states. The abyss is in the north and south, i.e. Rabyss = {(x, 0) ∧ (x, rh), 0 ≤
x < rw} with rw = 19, rh = 6, and the whole gridworld can again be
considered enclosed by an impenetrable wall. The sensor and action space as
well as the sensor dynamics match the previous example, but the environment
dynamics are now stochastic: each action can lead to different follow-up states
depending on the strength of a ‘wind’ blowing across the bridge from south to
west and vice-versa, depending on the agent’s x-position. The wind direction
and speed is modelled by means of a horizontal cosine wave (Fig. 3.4a). We
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(a) Wind speed and direction as cosine wave

(b) n = 1

(c) n = 2

(d) n = 4

Figure 3.4: Example of an agent’s n-step empowerment in a stochastic gridworld
corresponding to a bridge from east to west. The stochastic environment
dynamics depend on the speed and direction of a vertically blowing
wind, modelled as cosine wave with two repetitions (a). Plots (b)-(d)
show the agent’s empowerment at different positions, each plot for a
different lookahead. The agent senses their absolute position. They can
move north, east, south, west and idle, but cannot penetrate the walls.
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repeat it twice within the world’s width, i.e. the wind direction changes at
two points. In any grid cell on the x axis, the wind speed and direction is:

w(rx) = cos(
rx

rw + 1
λ) with wavelength λ = 2× 2π (3.27)

The stochastic environment dynamics extend the deterministic dynamics in
Eq. 3.24. For at, rt given, we take the outcome of the dynamics without wind,
i.e. r∗ = ρ(at, rt). The stochastic dynamics are then defined as:

p(rt+1|at, rt) =



1 if rt+1 = rt ∧ rt ∈ Rabyss,

1− abs(w(rt,x)) if rt+1 = r∗,

abs(w(rt,x)) if rt+1 = r∗∗,

0 otherwise.

(3.28)

This definition expresses that an agent which is already in the abyss, i.e.
rt ∈ Rabyss, remains in this absorbing environment state no matter which
action they perform. For any other state rt /∈ Rabyss, they either transition to
the original follow-up state r∗ given by the deterministic dynamics in Eq. 3.24,
or to a state r∗∗ shifted by one cell into the wind direction:

r∗∗(r∗) = (r∗x, min(rh, max(0, r∗y + sgn(w(r∗x))))) (3.29)

Here, sgn(w) corresponds to the sign function, and the resulting state is forced
into the interval [0, rh). The transition probabilities are based on absolute
values of the wind direction in [0, 1]: the higher the wind speed at a certain x
coordinate, the more likely the agent is to end up in the shifted state.

Again, we assume full observability and that the agent’s beliefs match
the actual dynamics. Figs. 3.4b–3.4d show an agent’s empowerment5 at
different positions on this ‘bridge’ for lookaheads n = 1, 2, 4. Similar to
the first scenario, empowerment close to the eastern and western edges is
lower because the walls restrict the agent’s movement. In contrast to the
previous example though, we have zero empowerment in the abyss in the
north and south. Here, the agent is in ‘free fall’ – they cannot influence the
next environment state, and consequently have no control over their future
perceptions either. The empowerment for positions on the bridge reflects the
stochasticity in the agent’s sensorimotor dynamics. It allows us to differentiate
positions in terms of the agent’s risk of being blown into the abyss.

For example, consider the agent’s empowerment at position ŝt = r̂t =
(0, 5) and the corresponding wind speed and direction from Fig. 3.4a. Here,
empowerment is minimum as w(r̂t,x) = cos(0) = 1, i.e. the wind blows full
force northbound. For any action, the agent is guaranteed to be blown into the
abyss but for ât = south, which yields the same state ŝt+1 = r̂t+1 = (0, 5) with
certainty. At position (5, 5) in contrast, empowerment is maximum despite the
agent standing next to the abyss, for two reasons. Firstly, the wind here blows
fully southbound, i.e. w(r̂t,x) = cos( 5

20 4π) = −1, and the agent’s potential
futures are consequently diverse, rather than collapsing in the abyss. Even

5 This empowerment landscape is slightly noisy because we estimated the sensorimotor dynam-
ics q(ŝt+n|ân

t , r̂t) by sampling from the true dynamics in Eq. 3.28.
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(a) Det., n = 1 (b) Det., n = 2 (c) Det., n = 4

(d) Stochastic environment dynamics, n = 4

Figure 3.5: Greedy empowerment maximisation in a gridworld with deterministic
(top) and stochastic environment dynamics (bottom). The agent’s traject-
ory is given by a path starting from a white dot and ending in a black
cross. For the deterministic case, empowerment is maximised for different
lookaheads, starting from the same position. Behaviour for the stochastic
case is shown for the same lookahead but two different starting positions.

moving towards the abyss with ât = north yields ŝt+1 = r̂t+1 = (5, 5), with
all other actions resulting in more southern states. Secondly, it is maximum
precisely because the wind blows strongest, and action consequences can
thus be predicted with certainty. Since the agent’s beliefs about their action
consequences match the objective dynamics, maximum empowerment here
marks the objectively safest vertical position for the given x coordinate.

Empowerment
Maximisation
Examples

Next, we consider the behaviour of agents that greedily maximise state-
dependent empowerment as IR. Figs. 3.5a–3.5c show an agent’s trajectory
from following the EM policy in Eq. 3.18 for ten time steps in the first
gridworld example with deterministic dynamics and for lookaheads n =
1, 2, 4. It fades from white to black, with the beginning and end marked by
a dot and cross, respectively. In each case, the agent starts in the top-right
corner, and moves on the shortest route to the empowerment maximum.
The stochasticity of the policy shows in random actions towards equally
empowered successor states.

The second example complicates this gradient ascent by its stochastic envir-
onment dynamics. Here, an agent’s actions can yield different outcomes with
varying probability; perturbed by wind, a move might produce a position
with sub-optimal empowerment, given the reachable states. Fig. 3.5d shows
two trajectories of length ten, starting from the centre left and right, respect-
ively, for a lookahead of n = 4. Here, diagonal lines indicate a horizontal
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Figure 3.6: A pendulum maximising continuous empowerment, from the original
position (left) to an end state (right). Actions map to the pendulum’s
angular velocity, and sensor states capture both its angle and angular ve-
locity. The solid green line represents the pendulum’s trajectory in phase
space, where the x-axis corresponds to the pendulum’s angle, and the
y-axis to its angular velocity. Darker values indicate lower empowerment.
Fig. reproduced with permission from Salge, Glackin and Polani (2013a).

move where the agent ended up one position further south, compared to
performing the same action without wind. Particularly towards the end of the
trajectory, the agent has to continuously move against the strong southbound
wind and experiences setbacks to maintain the optimum position close to
the abyss. They thus leverage their model of the environment dynamics in
navigating the gradient, potentially exploiting external perturbations. This
example highlights the importance of an accurate model of the sensorimotor
dynamics for navigating such an empowerment cliff. In contrast to the first
example, a local empowerment maximum not only warrants high reachability,
but is also furthest removed from zero-empowerment, absorbing states. In
related work, the resulting behaviour is often referred to as ‘death-averse’
(cf. Salge, Glackin & Polani, 2014b). However, in a related publication (Guck-
elsberger & Salge, 2016) we clarify that at least for living organisms, zero
empowerment should rather be associated with helplessness (Seligman, 1975)
or considered a proxy for biological death.

As our last example of EM, we reproduce a pendulum balancing task from
existing work for its similarity to popular RL benchmarks. Fig. 3.6 shows the
same pendulum at increasing time steps. The background illustrates the pen-
dulum’s empowerment at different positions, with the x-axis corresponding
to its angle and the y-axis to its angular velocity. The actions are given by
positive and negative angular velocities and the solid green line represents
the pendulum’s trajectory in this space. The progression from left to right
highlights the typical effect of maximising empowerment: the pendulum
oscillates towards and eventually balances in the top position from which the
largest number of distinct positions can be accessed in a fixed time frame.
This simulation is taken from Salge, Glackin and Polani (2013a), who used
linearised pendulum dynamics and a discretised action space (Jung, Polani &
Stone, 2011). Karl et al. (2017) reproduces the task without these assumptions
using a variational, model-based RL empowerment approximation.
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A Potential
Quantity

Crucially, an agent driven by EM maximises their potential control, without
necessarily6 having to exercise it: the agent’s actual empowerment maximising
action policy q(ât|mt) or q(ât|st) can differ from the optimal distribution of
action sequences q∗(ân

t ) that maximises the channel capacity. In the previous
example for instance, an agent does not need to throw themselves into the
abyss, although their empowerment incorporates that option. In contrast to
e.g. predictive information (cf. Ay et al., 2008; and Sec.2.2.4), empowerment thus
measures the agent’s possible, but not the actual richness of behaviour. This
potential information flow differs from the actual information flow caused by
the agent’s performance of empowerment maximising actions.

Open- vs.
Closed-Loop
Empowerment

All previous examples and most existing studies are based on open-loop
empowerment, where all possible future action sequences are considered in
the maximisation of the channel capacity. In closed-loop empowerment in con-
trast, an agent considers how their policy would affect the probability of
performing each action in the sequence. In other words, the closed-loop
formulation takes sensory feedback at each future time step along assumed
n-step trajectories into account. Crucially though, open-loop empowerment
can never over, but only underestimate closed-loop empowerment (Capdepuy,
2010). Embedded in EM as motivational model, this can lead to overcautious
behaviour: Gregor, Rezende and Wierstra (2017) show that an agent maxim-
ising open-loop empowerment does not dare to enter a hazardous area of
the world, while closed-loop empowerment maximisation would allow them
to navigate better within. Closed-loop empowerment comes with increased
computational demands (cf. Salge, Glackin & Polani, 2014b) and most exist-
ing work thus focusses on the open-loop formulation. Several approaches
have been developed to compute closed-loop empowerment exhaustively
and in approximation: Capdepuy (2010) formulates it based on a commu-
nication channel with feedback, Salge and Polani (2016) propose to evaluate
the empowerment of controllers, and Gregor, Rezende and Wierstra (2017)
as well as Binas, Ozair and Bengio (2019) optimise variational bounds on
closed-loop empowerment with a model-free RL approach and neural net-
work function approximators. For our models and experiments in Ch. 6 and
7, we exclusively use open-loop empowerment.

Empowerment
Maximisation
as Intrinsic
Motivation

According to our working definition (Sec. 2.2.3), EM qualifies as a model
of IM. In its general formulation, the empowerment action-value function is
agent-centric, in that it is calculated on an agent’s beliefs about the sensory
and environment dynamics, based on their generative model of the (objective)
PA-loop. Agent-centricity also holds for our simplified version if we assume
that these beliefs have been acquired at an earlier time by inference from
sensorimotor experience alone. Empowerment is free of semantics because of
its information-theoretic formulation. Its calculation only distinguishes the
potential sensor states an agent’s actions could yield by their probability
and irrespective of their meaning. Furthermore, empowerment is embodiment
universal in that it can be applied to any combination of sensors and actuators.
It then quantifies the potential and perceivable influence of an arbitrary num-

6 The potential nature of empowerment is contingent on the presence of a model of the agent’s
sensorimotor dynamics; in model-free approaches (e.g. Mohamed & Rezende, 2015), the agent
must necessarily exercise some influence first to estimate their empowerment.
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ber of simultaneous actions on a set of future perceptions. By summarising
multiple sensors and actuators into a vector-valued random variable each,
they can be treated like single variables in the calculation of channel capacity
to produce a scalar reward. Empowerment would be sensitive to the effect of
fins on sonar signals, but also to the sensorimotor dynamics induced between
propellers and camera images on a drone.

Finally, EM is also likely to realise the diagnostic of open-endedness, op-
erationalised earlier (Sec. 2.2.3) as the ongoing development of skills and
knowledge. In order to evaluate open-endedness for the general empower-
ment formulation, further studies on the interaction of model inference and
EM must be conducted. In the meantime, we can only consider behaviour in
the absence of model updates. We can show formally that an empowerment
maximising agent would neither get attracted to random noise, nor to a dark
room. A random noise source by definition cannot be controlled, i.e. different
sensory futures cannot be distinguished by actions. The conditional entropy
in Eq. 3.20 would reduce to the left-hand entropy, resulting in zero empower-
ment. An agent in a dark room could not differentiate sensor states in the
first place; both entropies in Eq. 3.20 thus become zero, and empowerment
vanishes. An agent motivated by EM would only step into a dark room if
it served as a passageway to states that warrant more perceivable control.
Similar ‘bottlenecks’ feature prominently in our experiments in Ch. 6.

In this section, we have offered more intuitions about empowerment as IR
and its maximisation as a model of IM. We have discussed the properties of
empowerment and investigated the behaviour of empowerment maximising
agents based on formal arguments and example simulations for both determ-
inistic and stochastic sensorimotor dynamics. In the next and final section
of this chapter, we briefly sketch the empowerment research landscape and
discuss relevant connections to work in physics.

3.4 empowerment research landscape

Since its inception in 2005, empowerment and the maximisation principle
have been investigated from many different angles, and related research
continues with growing interest. Our goal here is to structure the body of
existing studies based on three core hypotheses formulated in early work
(cf. Klyubin, Polani & Nehaniv, 2005a, 2005b). We support this by brief,
representative examples but defer the detailed discussion of immediately
related work to later sections. This provides us with reference points for the
contributions that this thesis makes to the overall study of empowerment. We
also discuss the connection of EM and causal entropic forces, a similar action
principle formulated in physics and motivated from a slightly different angle.

Empowerment
Hypotheses

Based on the theoretical motivation and empirical observations summar-
ised in Sec. 3.1, Klyubin, Polani and Nehaniv (2005a, 2005b) have implicitly
expressed several empowerment hypotheses, which have been explicitly formu-
lated by Salge, Glackin and Polani (2014b) and inspired many of the following
studies. The (i) behavioural hypothesis suggests that adaptation via evolutionary
forces led to organisms which, in the absence of specific goals, behave as
if they were maximising empowerment. This corresponds to the deduction
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of specialised behvaviours as exemplified earlier. A stronger version of this
hypothesis states that some organisms maximise empowerment directly. It
would then correspond to a local, task-independent utility function allowing
an agent to increase their fitness in the presence of only sparse evolution-
ary feedback. Both forms correspond to the application of the information
parsimony principle in an organism’s lifetime. Applied to the evolutionary
time-scale, the parsimony principle leads to the (ii) evolutionary hypothesis,
suggesting that adaptation brought about by natural evolution on average
increases the empowerment of evolved organisms. The third (iii) AI hypothesis
considers EM a task-independent motivation that can yield goal-oriented
behaviours which would otherwise have to be induced via externally im-
posed rewards. These three hypotheses closely relate to the various incentives
to formalise IM (Sec. 2.2.1): the first two are of interest for the realisation
of autonomous development in artificial agents and the compliance with and
advancement of neuroscience, while the last relates to the goals of increasing task
performance and generalisation. Next, we describe representative examples of
existing work, and the contribution of this thesis to the three hypotheses.

Behavioural
Hypothesis

One means to test the behavioural hypothesis is to demonstrate that EM in
simulated agents can yield behaviour that would also be expected in living
beings (Salge, Glackin & Polani, 2014b). In his theory of affordances, Gibson
famously stated ‘Why has man changed the shapes and substances of his en-
vironment? To change what it affords him. He has made more available what
benefits him and less pressing what injures him’ (Gibson, 1979, p. 123). Salge,
Glackin and Polani (2014a) demonstrate how empowerment maximising
agents in a three-dimensional blockworld, capable of digging out and placing
blocks, restructure their environment in a way that benefits their specific
embodiments: an agent capable of climbing builds a staircase, while a flying
agent removes blocks to reduce obstacles. Another agent, cut off by a ‘deadly’
lava stream and unable to fly, builds a bridge over the stream to access a
bigger part of the world. Considerable support for the behavioural hypothesis
has been provided by experiments where multiple agents interact. As they
mutually influence a shared environment with their actions, their individual
empowerment can become intertwined. Capdepuy, Polani and Nehaniv (2007)
show that two agents that individually maximise empowerment compromise
between remaining close and avoiding collision. Similar behaviour has been
demonstrated later for continuous, (Salge, Glackin & Polani, 2013b) and for
closed-loop, empowerment (Gregor, Rezende & Wierstra, 2017). Capdepuy,
Polani and Nehaniv (2007) also show that individual EM in large agent societ-
ies yields complex structures such as clusters, membrane-like boundaries and
regular patterns as well as pulsing behaviours reminiscent of multi-cellular
organisms. In work predating this thesis, Guckelsberger and Polani (2014)
have shown how different models to anticipate the actions of other agents
affect individual survival strategies in a multi-agent scenario with a scarce
energy resource. Although acting as individuals, agents maximise collect-
ive survival by consuming greedily, parsimoniously or according to mixed
strategies depending on the resource’s scarcity and their anticipation model.
This demonstrates the sensitivity of empowerment to an agent’s beliefs about
their environment, including other agents, and more generally that EM can
trigger biologically plausible behaviours. In Ch. 6, we contribute further evid-
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ence to the behavioural hypothesis by demonstrating how EM can yield both
supportive and adversarial behaviour in videogame characters that would
not be unexpected if exhibited by human players.

A second means to test the behavioural hypothesis is to investigate whether
the behaviour of living beings can be anticipated by considering its effects
on their empowerment (Salge, Glackin & Polani, 2014b). Trendafilov and
Murray-Smith 2013; 2015 have found that control interfaces with reduced
empowerment were correlated with feelings of frustration, potentially ex-
plaining avoidance behaviour. We discuss this study in more depth in Ch. 7.
Our contribution there supports the behavioural hypothesis by establishing
links between a person’s empowerment and their reported player experience.

Evolutionary
Hypothesis

An agent’s empowerment not only depends on the environment state they
are in, but also on their capacity to sense and act on that state, i.e. to receive
information from, and inject it back into, the environment (Klyubin, Polani &
Nehaniv, 2005b). One means to probe the evolutionary hypothesis is to adapt an
agent’s morphology with the goal to maximise empowerment, and investigate
the meaningfulness and diversity of the optimised sensors and actuators
(Salge, Glackin & Polani, 2014b). Klyubin, Polani and Nehaniv (2005b, 2008)
implement this method by using empowerment as objective function in a
genetic algorithm. They evolve both sensors and actuators in a gridworld
where a marker substance is emitted from a central source. Possible sensors
are characterised by different arrangements of detectors capable of picking
up the marker. They find two distinct types of optimal sensors, depending
on an agent’s relative position to the source during evolution. For agents
close to the centre, the detectors are aligned in a blob and can identify the
agent’s absolute displacement from the source. At a sufficiently large offset
from the centre though, the detectors re-align into an arc shape that measures
the agent’s relative bearing. In contrast to these clearly differentiated sensor
layouts, Klyubin, Polani and Nehaniv (2005b, 2008) report a higher diversity
of equally optimal actuators. A possible actuator can entail a limited amount
of actions to move the agent into different directions. The further away the
agent has been placed from the source, the more actions in the optimal
actuators have been found to direct towards the source. Both experiments
demonstrate that empowerment can be used to evolve meaningful sensors
and actuators depending on a specific niche.

AI HypothesisMany existing studies support the AI hypothesis by showing that EM can
yield behaviour which would be considered goal-directed by an external
observer, and which would normally have to be induced by extrinsic rewards.
For this to hold, the maximisation of empowerment as IR must implicitly
align with extrinsic reward achievement (cf. Sec. 2.2.1). Salge, Glackin and Po-
lani (2014a) e.g. observe that an empowerment maximising agent, threatened
by a flow of lava in the blockworld environment, shows different ‘death
avoidance’ strategies: they e.g. assemble a dam to stop the lava, construct
an island to escape it or excavate a tunnel and close it from underneath.
Mohamed and Rezende (2015) show similar behaviour for a variational ap-
proximation of empowerment via (deep) RL. They furthermore demonstrate
in a separate experiment how EM drives an agent to pick up a key and open
a door. Again, we get seemingly task-oriented behaviour due to an implicit
alignment of these events with an increase in empowerment: picking up the
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key provides the agent with the additional option to open the door, and
opening the door then warrants additional mobility and thus empowerment.
Similar mechanics can be found in many videogames; Anthony, Polani and
Nehaniv (2014) show that a bounded-rationality version of empowerment
can lead to the identification of sensible strategies in simplified versions of
the games Sokoban and Pac-Man, a study which we discuss further in Ch. 5. It
has also been shown that EM can solve other benchmarks in RL in an unsu-
pervised fashion, i.e. without relying on extrinsic rewards. One example is
the pendulum balancing task mentioned earlier (Fig. 3.6) which has originally
been investigated by Jung, Polani and Stone (2011) as well as Salge, Glackin
and Polani (2013a). It has more recently been picked up by Karl et al. (2017),
who also demonstrated that empowerment can replace extrinsic rewards in
the bipedal walker task, where a biped robot with two-joint legs must be
balanced, based on torque control and complex sensors.

Extrinsic rewards, e.g. an increase in game score triggered by unlocking a
new area, are often very sparse. For IM to replace or complement extrinsic mo-
tivation, it must establish a smooth gradient in-between such sparse rewards.
In other words, local IRs should ideally correlate with global properties of a
system. It has been found that empowerment as local quantity is sensitive
to regularities that pervade the whole system. Klyubin, Polani and Nehaniv
(2005a) for instance show that empowerment in a maze is anti-correlated
with the average shortest distance from one position to any other position,
the latter being a global property of the environment. Anthony, Polani and
Nehaniv (2008) have studied this relationship between empowerment and
global properties of a system further, by considering the environment dy-
namics as transition graph. They show that in many cases, empowerment as
a local quantity can predict the global measure of closeness centrality. We
contribute particularly to the AI hypothesis with our contribution in Ch. 6,
showing that videogame characters driven by a multi-agent extension of EM
realise task-oriented behaviour that would otherwise have to be meticulously
hard-coded or learned from manually engineered extrinsic rewards.

Causal
Entropic
Forces

Empowerment and the maximisation principle have been motivated by ob-
servations and theoretical arguments in psychology and biology (cf. Sec. 3.1).
The related concept of causal entropic forces (Wissner-Gross & Freer, 2013)
has the potential to root empowerment in physics. It is based on the more
fundamental maximum entropy production principle, which has been postulated
to arise from first thermodynamic principles (Dewar, 2003, 2005). Causal en-
tropic forces represent a general ‘thermodynamic model of adaptive behavior
as a nonequilibrium process in open systems’ (Wissner-Gross & Freer, 2013,
p. 1). More specifically, the authors define causal path entropy as a measure
of how many paths a system can follow under the laws of physics during a
fixed time horizon. At present, causal path entropy is hypothesised to corres-
pond to a proto-empowerment, with its maximisation giving rise to similar
self-organisation properties as EM: Wissner-Gross and Freer (ibid.) show in
analogy to the discrete gridworld in Figs. 3.5a–3.5c how a particle that max-
imises causal path entropy is pushed into the middle of a box. Furthermore,
the maximisation allows to solve the cart pole problem, a similar scenario
as the pendulum balancing task in Fig. 3.6. However, the derivation of the
underlying maximum entropy production principle has not been successful
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so far (Grinstein & Linsker, 2007), and a connection between empowerment
and fundamental physics is therefore yet to be demonstrated.

Chapter
Conclusion

This concludes our introduction of EM as the central model of IM to be
investigated in this thesis. We have motivated empowerment based on obser-
vations and theoretical arguments in psychology, biology and physics. We
have introduced empowerment and EM informally and formalised it in a
general and simplified way for our experiments. Empowerment is calculated
on an agent’s beliefs about their world, and we have made the distinction
between such models and the objective world particularly explicit. We have
discussed the properties of empowerment based on formal arguments and
examples, and we have finally outlined related work, structured by three core
empowerment hypotheses. In the next two chapters, we build on the pre-
ceding overview of different models of IM to systematically review existing
work on IR and IM in computational creativity (CC) and game AI.



Part II

SYSTEMATIC REVIEWS



4INTRINSIC MOTIVATION IN COMPUTATIONAL CREATIVITY

In this chapter, we support the first overarching research question of this
thesis, ‘Can IR and models of IM advance CC?’ (RQ.2) by directing the
following specific research questions at existing work:

RQ.3 Why have IR and models of IM been used in CC?

RQ.4 How have IR and models of IM been used in CC?

The findings enable us to motivate and contextualise our novel models and
applications in Ch. 6 and 7.

StructureSimilar to our introduction to IM in Ch. 2, we initially inform these ques-
tions through a non-computational angle. In Sec. 4.1, we consider which
connections between IM and human creativity have been identified in the
field of creativity research. We elaborate on the struggle of defining creativity,
and clarify our position. We then answer questions RQ.3 and RQ.4 in Sec. 4.2
through a systematic review of theoretical and applied related work. We con-
strain the scope of this review by developing a working definition of CC as
a cross-disciplinary research endeavour, and applying it together with our
working definition of IM models from Sec. 2.2.3. We finally motivate our
applied contributions in Ch. 6 and 7 relative to the state-of-the-art.

ContributionsWhile there is a surprisingly rich body of research using IR and models of
IM in CC, its theoretical grounding is narrow, and it focusses on the benefits
of specific models while remaining ignorant of IM as an overarching model
class. The main contribution of this chapter is our systematic review of the
benefits and applications of IR and IM models in CC, and we distil the
findings into two typologies. This represents the first study of its kind, and
allows us to advocate the wider use of such model. Our big picture view
connects IM research in both CC and creativity studies and thus has the
potential to inspire future work within and across both fields.

4.1 intrinsic motivation in creativity studies

We inform our review and research questions by drawing on creativity studies,
the long-standing, joint effort of psychology, sociology, philosophy, and other
non-computational disciplines to investigate the phenomenon of creativity.
Creativity studies has been substantially shaped by a tradition in which
creativity is considered an exclusively human power (cf. Boden, 1990/2003,
pp. 11-14). Most existing research concerns creativity in people, also because
of the economic value of creativity for e.g. education and workplace pro-
ductivity (Guilford, 1950). CC research has been strongly inspired by this
anthropocentric1 agenda, adopting the creativity concept as known from cre-
ativity studies, i.e. as first and foremost human. The majority of CC research

1 We understand anthropocentrism not in terms of human exceptionalism, but as an interpretation
of the world in terms of human values and experiences.
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focusses on reproducing or augmenting human-level creativity to benefit
people, or to learn more about the functional underpinnings of human creativ-
ity as a form of computational psychology (Boden, 1990/2003, pp. 283-285).
Creativity studies have long recognised the important role of IM in human
creativity (cf. Hennessey & Amabile, 2010), and there thus exists a large
track record of relevant related work. CC has traditionally translated many
important findings from creativity studies into the computational domain,
and we want to continue leveraging this heritage for our investigation of IM2.

Creativity
Research Best
Practice

We adopt Plucker, Beghetto and Dow’s (2004) recommendations for good
creativity research practice for our investigation into both human and com-
putational creativity. They argue that creativity researchers must:

(a) ‘(...) explicitly define what they mean by creativity,

(b) avoid using scores of creativity measures as the sole defini-
tion of creativity (...)

(c) discuss how the definition they are using is similar to or
different from other definitions, and

(d) address the question of creativity for whom and in what
context’ (Plucker, Beghetto & Dow, 2004, p. 92).

These best practices matter for us twice: they guide our comparison of ex-
isting experimental results on the relationship of IM and people’s creativity
in Sec. 4.1.2, and they inform the design and evaluation of our own com-
putational studies in Ch. 6 and Ch. 7. They also highlight a critical issue:
similar to the overarching study of (artificial) intelligence, the very notions of
‘creativity’ and what it means to be ‘creative’ are notoriously hard to define
and operationalise. Before discussing existing studies, we make this challenge
transparent and identify a ‘standard definition’ of creativity as a starting
point to think about creativity throughout this thesis.

4.1.1 Defining and Operationalising Creativity

From Two
Creativity
Traditions ...

Creativity is a very old and highly contested concept; in 1988, Taylor iden-
tified 50 different definitions of creativity proposed over the previous five
decades, with more definitions added to date. Still and d’Inverno (2016) argue
that this ambiguity partly comes from the fact that our contemporary under-
standing of creativity is based on two different historic traditions. The older
tradition dates back to Pagan times, in which the Latin creare was identified
in the unfolding and dissolution of natural processes, such as the birth of
a child or the growth of a plant. This creare translates to ‘having an impact
through natural forces’ (ibid., p. 149). It is different from facere which is used
in early versions of the Latin bible, and corresponds to ‘make out of available
materials’ (ibid., p. 149). The second, Christian tradition dates back to St
Jerome’s late 4th century work on the Vulgate bible. He replaced the word
facere with creare to emphasise the ‘creation out of nothing but ideas in God’s

2 We venture beyond this inherent anthropocentrism by advocating other perspectives on
(computational) creativity, e.g. in Guckelsberger, Salge and Colton (2017). Yet, we consider it
important to embrace creativity studies since findings in the study of human creativity can
likely be generalised to understand creativity more generally in living beings and machines.
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mind’ (Still & d’Inverno, 2016, p. 149). This younger creare is a mixture of the
Pagan creare and facere, and means ‘to bring about by making’ (ibid., p. 149).
Rather than a property of natural processes, the Christian creare is considered
an individual power. In contrast to the universal Pagan version, it has spe-
cifically been used to describe the creative genius in art relying on novel
ideas, in contrast to craft which was thought to be based on skill alone (ibid.).
We can moreover consider the Greek word dhmiourgÀ (dimiourgos), formed
of d¨moc (demos), i.e. ‘the people’ or ‘the public’, and êrgon (ergon), which
means ‘work’ (Babiniotis, 2019). It was used to signify the work of people
who engage in public affairs. The ‘creator’, dhmiourgìc was distinguished
from b�nausoc (vanafsos), the ‘ordinary worker’ (ibid.). This distinction hence
emphasises the social impact of creation.

... to Semantic
Chaos

The advent of modern creativity research is marked by Guilford’s 1950

presidential address to the American Psychological Association, in which
he stressed creativity as an important but neglected subject of study, with a
projected impact on business, education and society as a whole. The address
marked a tremendous growth in research effort, resulting in more than
9000 related studies until 1998 alone (Runco, Nemiro & Walberg, 1998).
In a more recent review, Hennessey and Amabile (2010) re-emphasise the
study of creativity as a ‘basic necessity’ to ‘make real strides in boosting the
creativity of scientists, mathematicians, artists, and all upon whom civilization
depends’ (ibid., p. 570). Despite the large body of theoretical and empirical
research, the very definition of creativity is still debated. Still and d’Inverno
(2016) argue that this is partly the case because Guilford has ‘unwittingly
amalgamated’ (Still & d’Inverno, 2016, p. 149) the two [Pagan and Christian]
traditions of thinking about creativity in a single notion: the English words
creativity and creative now interchangeably refer to both traditions.

Four
Perspectives

Additional complexity arises from the fact that creativity can be considered
from at least four different perspectives, identified seemingly independently
by Rhodes (1961), Mooney (1963) and potentially others (cf. Jordanous, 2016).
We can use the word ‘creative’ to describe a person, such as the designer
of a videogame. Furthermore, we can consider the creative process as the
individual steps this person engages in to be creative, such as the invention
of a new game mechanic based on blending two existing ones. We can
then consider the creative product as the outcome of this process, e.g. the
finished game. Finally, the press represents the environmental determinants
of creativity, such as the game studio. Still and d’Inverno (2016) point out an
anomaly in this usage of ‘creative’, as it can be applied to a person, process
and product, but also describes the result of the overall system of all four
entities. The person and product perspective echoes more strongly the Christian
tradition, in which an independent individual as a creative genius operates
distinctly from nature, and in which the resulting artefact can eventually
be considered separate from its creator. Similarly, process and press relate to
systems theories of creativity (e.g. Vygotsky, 1930/1971), which originated from
the Pagan tradition, and identify creativity in the ongoing interaction between
an individual and their environment. Most researchers nowadays agree that
creativity does not happen in a vacuum but is contingent on an individual,
historic and societal context. While adding to the conceptual complexity, these
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four P’s of creativity represent a useful tool applied throughout (computational)
creativity research, and we also adopt them for this thesis.

Psychological
vs. Historical
Creativity

Systems theories allow us to consider creativity beyond the limitations of an
individual, but embedded in a society of agents. This societal perspective is
the foundation for Boden’s (2003) epistemic distinction between ‘psycholo-
gical’ or ‘personal’ p-creativity, and ‘historical’ h-creativity, respectively: While
an individual may produce a process or product that is novel for them per-
sonally, the very same process or product may not be novel with respect to
the history of creative activity that is co-produced and shared by the society
of agents (ibid., p. 1, 43 ff.). Boden calls the first type ‘psychological’, as
she deems it central to understanding the psychology of creativity. Wiggins
et al. (2015) note that personal or historical novelty (and value) are relational
properties between observers, the created artefact, the creator, and the spe-
cific context. The distinction between p- and h-creativity would thus be too
simplistic if not appealing to the 4 P’s of creativity (e.g. Rhodes, 1961).

A Standard
Definition of
Creativity?

The growing wealth of definitions prompted researchers to express that
the concept of creativity has ‘almost ceased to mean anything’ (Batey &
Furnham, 2006, p. 357). In order to support rather than quench the discussion,
Jordanous and Keller (2016) suggest considering creativity an essentially
contested concept (Gallie, 1955), which ‘inevitably involves endless disputes
about their proper uses on the part of their users’ (ibid., p. 169) and for which
a fixed ‘proper general use’ (ibid., p. 167) is elusive. While being ‘internally
complex’ (ibid., p. 171) in nature, essentially contested concepts are crucially
‘amenable to being broken down into identifiable constituent elements of
varying relative importance, dependent on a number of factors such as
context and individual preference’ (Jordanous & Keller, 2016, p. 6)3. It may
appear contradictory that other authors simultaneously advocate a ‘standard
definition of creativity’ (Runco & Jaeger, 2012). However, this proposal is
compatible with the previous position as it rests on the observation that
creativity has been defined in terms of the same two underlying factors or
components across a large range of studies. Originally put forward by Stein
(1953), the definition requires a product or process to be both novel and valuable
in order to be deemed creative. Plucker, Beghetto and Dow (2004) have fused
this definition with the four P’s of creativity:

‘Creativity is the interaction among aptitude, process, and envir-
onment by which an individual or group produces a perceptible
product that is both novel and useful as defined within a social
context’ (Plucker, Beghetto & Dow, 2004, p. 90, emphasis added).

With its two components, the ‘standard definition’ echoes Sternberg’s (1999)
claim that ‘the essence of creativity cannot be captured in a single vari-
able’ (ibid., p. 83). But also this two component model can only capture this

3 Jordanous and Keller (2016) also argue that the ambiguity in the creativity concept can be
captured by means of family resemblances, an analogy proposed by Wittgenstein (2009) to
understand different uses of the same word. Wittgenstein suggests that there is no core
meaning to a word, but that different meanings form a family, ‘a complicated network of
similarities overlapping and criss-crossing’ (ibid., §66). We consider this proposal problematic
given the so-called ‘standard definition of creativity’: while value has sometimes been deemed
non-essential, it is currently not clear if creativity can be considered without novelty. This
would give the word a core meaning and thus make it too specific for a family resemblance.
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essence in an abstract sense, since the meaning of ‘novelty’ and ‘value’ varies
depending on who evaluates the creativity of what, and in which context
(Wiggins et al., 2015; Silvia, 2018). For example, most videogames would be
deemed valuable because they are fun to play. However, other games may be
valued because they also have a utility beyond the game itself, e.g. ‘serious
games’ (Marsh, 2011). Art-house games in contrast might not be fun and yet
considered valuable because they are thought-provoking or aesthetically pleasing.

Operational-
isation

Since creativity is such a multi-facetted concept, Plucker, Beghetto and
Dow (2004) advise not to measure it based on scores alone. For our related
work analysis, this raises the question of how creativity is commonly opera-
tionalised in creativity studies. Kaufman (2016) summarises that ‘there are
many different ways in which someone can be creative, and there are almost
as many different ways that people try to measure creativity’ (ibid., p. 9).
Each of the four P’s of creativity gave rise to different operationalisations,
which are further diversified through the application of different measure-
ment instruments. Based on a survey of existing studies, Batey and Furnham
(2006) distinguish divergent thinking tests, attitude, interest, personality and bio-
graphical inventories, judgements of products, ratings of eminence, self-reported
creative activities, as well as ratings by peers, teachers and supervisors.

Our PositionFor this thesis, we do not go so far to consider creativity essentially contested,
but we admit that the concept is under-specified, in that its precise definition
depends on resolving the evaluation viewpoint and context (e.g. Wiggins
et al., 2015; Silvia, 2018), and because additional factors beyond novelty
and value may play a role (Jordanous & Keller, 2016). We thus do not treat
creativity as a clear-cut concept but use the ‘standard definition’ (Runco &
Jaeger, 2012) to capture most people’s understanding to some extent, while
admitting other views. We also use this definition as the underpinning for our
study design, but follow Plucker, Beghetto and Dow’s (2004) best practices
and operationalise creativity qualitatively. Next, we leverage our knowledge
on the diverse definitions and operationalisations of creativity to understand
and summarise the key findings of creativity studies on the relationship
of IM and creativity in people. These insights serve as a preparation for
our systematic review in Sec. 4.2.2, in that they highlight why and how
computational models of such motivation can advance CC.

4.1.2 Intrinsic Motivation and Creativity

There exists a trivial relationship between motivation and creativity (as in the
‘standard definition’) in that novelty and value in the process or product are
contingent on action, and motivation is at the basis of action-taking (Amabile,
2018). However, psychologists noticed early on that the type of reward (cf.
Sec. 2.1.1) underlying motivation can have a major effect on creativity: Writers
report to be most creative when engaging in writing for its own sake, while
externally imposed deadlines or prizes are well known sources of the ‘writer’s
block’ phenomenon (Amabile, 1985). Similarly, creative luminaries such as
Einstein complained about the detrimental effect of external pressure through
academic exams, lessons and instructions on their studies (Amabile, 1979;
citing Schilpp, 1949, p. 17). Consequently, understanding the relationship
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between IM and creativity, as well as the impact of extrinsic reward4, has
always been a major concern of creativity studies (Amabile & Pillemer, 2012).

Intrinsic
Motivation
and Creativity

At this point, the importance of IM for people’s creativity is widely ac-
knowledged, both on theoretical and empirical grounds. Several theories
understand IM as a ‘primary motivational precursor to creativity’ (Liu et al.,
2016, p. 238); the componential theory of creativity, for instance, embraces IM as
a core mechanism underlying individual creativity, next to domain-relevant
expertise and creative thinking skills (Amabile, 1983, 2012). This relationship
is commonly explained as follows: ‘When people are intrinsically motivated,
they will delve into their work and spend more time and effort to collect novel
information, understand problems, and generate creative solutions’ (Liu et al.,
2016, p. 238). The philosopher Kieran (2014) argues that intrinsically motiv-
ated people are more likely to be creative because they can ‘envisage different
possibilities, and be directed (...) toward realizing the inherent values of a
given domain’ (ibid., p. 7). These theories thus consider the capacities of IM
to yield deeper task engagement, supported by exploratory behaviour and the
identification of a task’s inherent rewards as facilitators of creativity. They thus
follow closely the definition of IM as engaging ‘in an activity for the interest
and enjoyment of the activity itself’ (Liu et al., 2016, p. 242; and Sec. 2.1.2),
and focus on exploration as the most investigated type of intrinsically mo-
tivated behaviour. Martindale (1990) considers exploration in the form of
novelty search as the key motivation in artistic and literary creativity, and as
a predictor of artistic change, like in the evolution of style.

These and similar theoretical claims, however, clash with inconsistencies
in empirical studies. In an effort to reconcile past findings, researchers have
conducted a number of meta-analyses. They seek to explain the present ambi-
guity by identifying and controlling factors that might mediate or moderate
the IM–creativity relationship. de Jesus et al. (2013) suspect the use of differ-
ent conceptualisations of and perspectives on creativity (Sec. 4.1.1) as sources
of inconsistency. Their meta-analysis focusses on artistic creativity, and only
considers studies that measure creativity in the product using variations of the
‘standard definition’, i.e. with respect to the product’s novelty (or originality),
as well as value (or usefulness, or appropriateness). Eligible studies must fur-
thermore employ some measure of IM, and report a Pearson product-moment
correlation r on the IM–creativity relationship. These individual correlations
are then aggregated into a sample-size weighted mean correlation r to account for
differences in the number of participants per study, with N corresponding to
the total number of participants across all studies. Based on 26 independent
experiments in 15 English studies dating from 1990-2010, they find a mod-
erate, positive association of IM and creativity in the product (N = 6435,
r = 0.3, 95% CI = [.22; .37]). This effect however is not restricted to the
product perspective; based on an informal comparison of studies, Malik and
Butt (2017) also support a positive relationship between IM and creativity in
the process. While de Jesus et al. (2013) have considered arguably few studies
to investigate the effect of IM on artistic creativity, Liu et al. (2016) evaluate
the effect of IM on workplace creativity in a larger meta-analysis. They also

4 Psychologists distinguish different extrinsic motivators such as expected extrinsic reward,
external evaluation, externally imposed constraints, competition, etc. We consider these under
the same umbrella of positive or negative extrinsic reward.
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require studies to measure IM, and to assess creativity based on a variation of
the ‘standard definition’. In this workspace setting, the novelty and potential
usefulness of employees’ ideas are evaluated with respect to their organisation
via self-reports or external assessment. Based on 68 experiments from 63

studies in English, Chinese and Korean dating from 2001-2015, they find
that IM makes a moderate contribution to creativity (N = 19695, r = 0.34,
95% CI = [.21; .46]), thus adding to Jesus et al.’s (2013) findings. Crucially,
this relationship holds while Liu et al. (2016) control for other motivational
effects that may have an impact on creativity, including extrinsic motivation.

Similar to the psychological account of IM (Sec. 2.1), the previous insights
are limited by creativity studies’ methodology, in particular with respect
to the functional underpinnings of the IM-creativity relationship. Still, they
provide us with essential cues to investigate these underpinnings further in
artificial systems. Next, we leverage these cues to analyse how IR and IM
models have already, and can further, advance computational creativity.

4.2 review of intrinsic motivation in

computational creativity

The notion of computational creativity (CC) describes a research field and
a community. It is under constant debate by those who associate their work
with it, and at the same time unheard of by many whose work is immediately
related. In Sec. 4.2.1, we put forward a more inclusive working definition of CC
by reflecting on previous attempts to both delineate it from, and reconcile
it with other scientific endeavours. In Sec. 4.2.2, we then work out how IM
can benefit CC through a systematic review of related work informed by our
working definitions of CC and IM (cf. Sec. 2.2.3). In Sec. 4.2.3, we use these
insights to motivate and contextualise our contributions in Ch. 6 and 7.

4.2.1 Computational Creativity: A Working Definition

The study of creativity in a computational context pre-dates modern AI
research (cf. Boden, 2015), and has been intimately coupled to it since its
inception: ‘Randomness and Creativity’ was one of the topics proposed for
the 1956 ‘Dartmouth Summer Research Project on Artificial Intelligence’,
now regarded as the founding event of AI (cf. McCarthy et al., 1955/2006).
The development of what was first known as artificial creativity5 (Dartnall,
1993; Elton, 1995) has been strongly supported by Boden (e.g. 1992), who put
forward a theoretical framework for the study of creativity in AI.

Definitional
Issues

Artificial creativity eventually gave way6 to computational creativity (CC).
Adopting an earlier account by Wiggins (2006a), Colton and Wiggins (2012)
put forward a working definition of CC as ‘the art, science, philosophy
and engineering of computational systems which, by taking on particular
responsibilities, exhibit behaviours that unbiased observers would deem to
be creative’ (ibid., p. 21). By relying on the judgement of an observer, Colton

5 Not to be confused with Saunders and Gero’s (2001) homonymous systems model of creativity.
6 The details of this transition and the exact relationship between the research agendas of

artificial creativity and computational creativity are yet to be determined.
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and Wiggins bypass the need to define creativity. But this arguably most
popular definition has not remained unrivalled: Jordanous (2012) for instance
criticises it for emphasising the challenge ‘to engineer a system that appears
to be creative to its audience, rather than engineering a system that possesses
a level of creativity existing independently of an audience’s perception’ (ibid.,
p. 250, emphasis added). She later juxtaposes it with an observer-independent
definition of CC as ‘the modelling, simulating or replicating of creativity
computationally’ (Jordanous, 2016, p. 194). Pérez y Pérez (2015a) emphasises
the use of CC as a means to better understand human creativity, by defining
it as ‘the study of the creative process employing computers as the core tool
for reflection and generation of new knowledge’7 (ibid., p. 31).

Some of the variability in these definitions can be explained by CC’s
interdisciplinary scope, spanning psychology, cognitive science, mathematics,
engineering, computer science (Ackerman et al., 2017), philosophy (McGregor,
Wiggins & Purver, 2014), sociology, art, art history, and other disciplines.
Besold (2016) even permits CC research to be independent of a computational
context and thus blends the boundaries between CC and creativity studies
(Sec. 4.1), precisely because this reflects the CC research practice. On the
contrary, Veale, Cardoso and Pérez y Pérez (2019) write that CC ‘adopts an
explicitly algorithmic perspective on creativity, and seeks to tie down the
study of creative behavior to specific processes, algorithms and knowledge
structures’ (ibid., p. 2). Ultimately, this diversity in both definitions and
research practice reflects the CC research landscape at different times and the
varied goals of the community of researchers that contribute to it.

Computational
Creativity
Perspectives
and Goals

To capture this variability, different instruments to distinguish the various
goals within CC have been developed. Boden (1990/2003) marks the two ‘pro-
jects’ of ‘understanding human creativity’ and ‘producing machine creativity’
(ibid., p. 1). Similarly, Veale, Cardoso and Pérez y Pérez (2019) identify two
perspectives on CC. From the scientific perspective, researchers look for insights
into the phenomenon of (human) creativity and the ultimate capabilities of
creative people and machines by means of computational modelling and
empirical studies. The engineering perspective in contrast focusses on building
working systems that embody these theoretical insights, usually to please
and benefit people. The ultimate goal here is to engineer a system which
can be considered ‘creative in its own right’ (Colton, 2008, p. 6). Ideally, both
perspectives are brought together in a ‘symbiotic relationship (...) wherein
the artifacts that are produced also serve as empirical tests of the adequacy
of scientific theories of creativity’ (Veale, Cardoso & Pérez y Pérez, 2019, p. 1).
Similarly, Pérez y Pérez (2018) proposes a cognitive and an engineering per-
spective as poles of a CC research continuum. These two perspectives closely
relate to the diverse goals of CC researchers, summarised by Colton, Charnley
and Pease (2011) and Pease and Colton (2011). While the cognitive perspective
wants to provide (i) insights into the nature of creativity, efforts from the
engineering perspective can be differentiated further based on a system’s level
of creative responsibility (Colton & Wiggins, 2012): from (ii) creativity support
systems designed to foster human creativity, over (iii) co-creative systems taking

7 The study of human creativity through CC has been proposed by Boden (1992), re-emphasised
by e.g. Colton and Wiggins (2012), but only put in a definition by Pérez y Pérez (2015a).
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on some creative responsibility in interaction with others, to (iv) fully autonom-
ous creative systems. These two CC perspectives are different from the 4 P’s of
creativity (cf. Sec. 4.1.1); researchers have additionally advocated the study of
CC in the product and process (Colton, 2008), as well as through the agent as a
producer and the press as their socio-cultural environment (Jordanous, 2016).

Recognition
Within AI

Despite their long-lasting connection, the relationship between AI and
CC is highly ambivalent. Since creativity draws on many types of intelli-
gence, Colton and Wiggins (2012) have proposed CC as a final frontier of
AI research. But the same and other researchers have also hedged CC from
AI more generally: we believe that at present, a large body of work across
AI that is closely related to CC’s goals is not captured by CC’s prevailing
self-conception. Researchers in AI sub-disciplines like artificial life, robotics or
machine learning are presently either completely unaware of CC, or reluctant
to embrace the research heritage accumulated under this term (cf. Besold,
2016; Cook & Colton, 2018a). Relevant work is consequently often done in
mutual ignorance – arguably even more so from AI more generally – which
holds up progress in individual projects and in CC research overall. In our
review, we actively counter this situation by incorporating and linking related
work beyond the present boundaries. In an effort to disambiguate the CC
concept and to formulate a more inclusive working definition for this thesis,
we thus relax some prevailing assumptions on (i) the types of creativity con-
sidered and modelled, (ii) CC’s relationship to (creative) problem solving, and
its inherent (iii) anthropocentrism. We briefly clarify our view on each point.

Types of
Creativity

Most research under the heading of CC focusses on what people commonly
consider major creative achievements, e.g. artistic acts like poetry, storytelling,
musical composition, visual arts and design (Colton & Wiggins, 2012), but also
scientific acts such as theory formation in mathematics (Loughran & O’Neill,
2017). Related work is usually domain-specific and focusses on generating a
product or artefact that excites people by matching or surpassing the creativity
of eminent human individuals. Creativity studies denote such major creative
acts as big-c(reativity) (Kaufman & Beghetto, 2009). But there are also little-c,
everyday creative acts, from which learning and personal discovery processes
are delineated as mini-c. Boden (1990/2003) reminds us that ‘creativity enters
virtually every aspect of life’ and is ‘grounded in everyday abilities’, mean-
ing that ‘every one of us is creative, to a degree’ (ibid., p. 1). At present
though, the little/mini-c types of creativity only play a minor role within CC,
with notable work e.g. in developmental models of early creative behaviour
(Aguilar & Pérez y Pérez, 2014, 2015, 2017), and in cognitive architectures
implementing theories of human everyday creativity (Sun & Helie, 2015;
Wiggins, 2018). But a stronger emphasis on little/mini-c may well enrich CC:
the corresponding models usually focus on the individual actions that con-
stitute a creative process, rather than on generating a specific product. They
are more domain-general, and can thus serve as components in complex, big-c
systems. Moreover, Wiggins et al. (2015) argue from the cognitive perspective
that everyday creativity can help us understand the evolutionary basis of
creativity. But despite these arguments and exemplary work, little/mini-c cre-
ativity receives little attention within CC, and related research is conducted
in other AI disciplines. For instance, videogame design as a big-c act with a
focus on the final product is considered an important part of the CC research
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agenda, but general game-playing as a little-c act with a stronger focus on indi-
vidual actions in the creative process, is often not8. Yet, general game-playing
is intensely researched as a benchmark in machine learning. In line with e.g.
Wiggins et al. (2015) and Besold (2016), we believe that it would be beneficial
for CC research to expand its scope beyond big-c acts. When referring to CC
in this thesis, we consequently denote the study of all types of creativity, thus
embracing work outside the present CC canon and across all areas of AI.

Creativity
as Problem
Solving

Colton and Wiggins (2012) distinguish CC and AI more generally by
stating that AI projects adhere to a problem-solving, but CC follows an artefact
generation paradigm, ‘where the automation of an intelligent task is seen as
an opportunity to produce something of cultural value.’ (ibid., p. 22). We
need to clarify this distinction for two reasons. Firstly, it obfuscates essential
commonalities between CC and other areas of AI. Secondly, the artefact
generation paradigm can undermine the role of the creative process, and
consequently shifts attention away from types of creativity that are less likely
to be understood as a final product or artefact: the successful playing of a
previously unknown game involves a series of little/mini-c acts, and yet, it
is more appealing to consider the resulting game state as product of these
actions, than understanding the individual actions that caused this product
as artefacts in time and space. If we focus on the notion of artefacts only, the
process that gave rise to them is easily forgotten.

We understand that the notion of problem-solving appears at odds espe-
cially with artistic creativity; it seems ‘inappropriate’ (ibid., p. 22) to consider
the painting of a portrait as a problem to be solved. But this was probably not
Colton and Wiggins’ core concern; they rather introduce the notion of artefact
generation to make both a methodological and a formal distinction. They firstly
consider CC to be more closely related to the methods of artificial general
intelligence research, in contrast to the reductionist AI research of the 1980s
and 90s studying intelligence as the solution of specific problems using spe-
cialised methods (Wiggins, 2018). Secondly, they likely say artefact generation
to differentiate a specific form of problem-solving that is typical for artistic
creativity. Jennings (2012) labels this as place search, where the end point
is not known in advance and we must find the most desirable state given
some evaluation criteria. Wiggins’ later observes that in CC, ‘often there is no
“solution” and even no [specific] “problem”’ (Wiggins, 2018, p. 3, emphasis
added). The path towards this final state or product can be used to assure ob-
servers of a system’s creativity (Colton, 2008), but, apart from that, it is often
treated as a means to an end. Jennings (2012) further differentiates path search
where the final state or product is well known and the goal is to find a novel
and valuable (e.g. short) path to reach it. This characterises instances of e.g.
scientific creativity such as automated theorem proving or protein synthesis,
and is more closely related to traditional ideas of problem-solving as e.g.
‘transforming a given situation into a desired situation or goal’ (Simon, 2001,
p. 674). General game-playing serves as an example where both search types
blend together: there is an element of place search in identifying game states
that afford high score, but it is usually the path to these goal states that is of

8 Zook, Riedl and Magerko (2011) and Liapis, Yannakakis and Togelius (2014) highlight the
importance of creativity for gameplay, but this association has barely been embraced in
theoretical or applied CC research (cf. Ventura, 2016a), as also criticised by Moffat (2015).
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interest. We can thus understand both artistic and non-artistic creativity as
problem-solving: the first as finding a novel and potentially valuable artefact,
stressing artefact generation, and the latter as discovering previously unknown
and potentially valuable paths to known artefacts, emphasising path discovery.

While we can understand creativity as problem-solving, not all cases of
problem-solving require creativity. We clarify this by differentiating creative
problem-solving from the more common notion. In his creative systems frame-
work, Wiggins (2006a, 2006b) formalises Boden’s (2003) model of creativity
as search on a ‘conceptual space’ of artefacts. Traversing the space with a
search strategy can lead to the discovery of new and valuable (partial-) con-
cepts or artefacts. Wiggins (2006b) notes that any form of artefact generation
can be solved by an exhaustive search strategy, albeit subject to the halting
problem (Turing, 1936). Crucially though, he believes that ‘a human artist
who produces valued outputs by exhaustive enumeration is generally less
likely to be heralded as an important artist than an artist who is capable of
using his or her own heuristics to arrive directly at a valued artefact’ (Wiggins,
2006b, p. 220, emphasis added), and applies the same reasoning to machines.
Wiggins thus draws a connection between the search strategies employed and
the attribution of creativity. This complements the psychological theory by
McGraw (1978), who distinguishes tasks with respect to the potential creativ-
ity they require to be solved. He proposes a continuum between an algorithmic
solution9 for which participants know the necessary steps to take beforehand
(e.g. standard multiplication), and a heuristic solution, where these steps, i.e.
the solution algorithm, have to be discovered by the participant (e.g. functional
fixedness problems, for which a solution requires the non-standard use of
known objects). Translated to search, heuristic solutions would be less likely
to match an a priori, independently known search strategy. Consider the toy
examples in Fig. 4.1: The first maze (Fig. 4.1a) can be solved by the ‘wall
follower’ strategy which is not necessarily known but, once derived, can be
applied to solve any similar maze. However, there exists no similarly simple,
yet generalising strategy for solving variations of the second maze (Fig. 4.1b).
For people and any rationally bounded agent under time constraints, an
exhaustive search strategy is not feasible. If we discard this option, tasks
with such a heuristic solution require the development of a non-exhaustive,
heuristic search strategy, which makes McGraw’s and Wiggins’ accounts align.
We thus distinguish creative problem-solving from the more general concept by
associating it with heuristic solutions and search strategies.

We also note that solving problems creatively often requires finding not
one, but many solutions: many researchers modelling artistic creativity are in-
terested in discovering a variety of novel and valuable artefacts from the same
initial conditions. Fittingly, Guilford (1967) considers creativity as divergent
thinking, i.e. the ‘generation of information from given information, where the
emphasis is upon variety and quantity of output from the same source’ (ibid.,
p. 213). We conclude that different types of creativity, both from a product and
process perspective, can be understood as specific forms of problem-solving.
By making the overlap between CC and problem-solving in AI explicit, we
emphasise the differences but also the intimate connection between the fields:

9 An unfortunate choice of terminology which yet does not diminish the value of the distinction.
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(a) ‘Algorithmic’ end (b) ‘Heuristic’ end

Figure 4.1: Two ‘mazes’ illustrating the ‘algorithmic’ vs. ‘heuristic’ solution con-
tinuum (cf. McGraw, 1978). The avatar in the bottom-left corner must get
to the goal in the top-right by moving north, east, south and west. The
‘Heuristic’ end is inspired by Lehman and Stanley (2011).

while not all of AI research touches on questions of creativity, a substantial
part does, although often without explicit reference.

Anthropo-
centrism

As our final point, we note that the earlier definitions of CC are all groun-
ded in our human conception of creativity. The cognitive perspective (Pérez
y Pérez, 2015a; Jordanous, 2016) focusses explicitly on simulating human
creativity, and this focus is also present in the engineering perspective, albeit
more implicit: Colton and Wiggins’s (2012) definition for instance implicitly
assumes observers to be human, and thus constrains CC’s scope to what is
recognised as creative by people. But people’s understanding of creativity is
primarily shaped by the observation of creativity exhibited by other people.
While this human bias still dominates CC (cf. Veale, Cardoso & Pérez y Pérez,
2019), some researchers have called for a non-anthropocentric approach (e.g.
Bown, 2012, 2015; Roudavski & McCormack, 2016; Guckelsberger, Salge &
Colton, 2017; McCormack, 2019). They agree that notions of creativity can be
expanded beyond the time-scales and dimensions of normal human experi-
ence, behaviour and conventional thinking. Following an enactive account
of cognition, we argue elsewhere (Guckelsberger, Salge & Colton, 2017) that
there may be instances of creativity in artificial and biological systems that
might not be recognised by people because of their embodiment and inherent
bias towards human creativity. Yet, learning to recognise such ‘hidden creativ-
ity’ spurs the design of ‘creativity as it could be’ (Saunders & Gero, 2001b,
p. 113), and can ultimately benefit people. McCormack (2019) agrees that
studying CC from a non-anthropocentric angle can highlight ‘new possibilit-
ies for what constitutes creativity and creative behaviour’ (ibid., p. 328) with
the potential of ‘bringing a more general theory to the fore’ (McCormack,
2019, p. 328; citing Roudavski and McCormack, 2016). As a starting point
for a non-anthropocentric account, we propose to free the concepts of novelty
and value in creativity from a bias shaped by our human experience. This
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may allow us to investigate creativity from different viewpoints, while still
including and explicitly encouraging the study of human creativity.

Working
Definition

Based on the previous points, we formulate a working definition of CC that
is more inclusive than existing accounts. We do so to tear down boundaries
to related fields, and to reveal more relevant work in our systematic review:

Computational creativity (CC) is the explicit, multi-disciplinary
study, both theoretical and applied, of creativity in any type of
computational system. It considers creativity as an open-ended
concept, at any level of complexity and from any viewpoint.

We acknowledge that the notion of CC is widely used to denote a specific
research field and community that has substantially pushed related research
over the last decades. With this working definition though, we promote CC as
a general scientific endeavour, a lens of study that can be applied across various
fields and communities. This allows us to resolve CC’s relationship with AI
more generally and to state: whenever AI researchers explicitly theorise about
or design a model of creativity, they engage in CC research.

In this definition, we write multi-disciplinary to stress that CC is being
investigated in a distributed fashion from the perspectives of different dis-
ciplines. Still, we only identify research with CC if creativity is addressed
explicitly10. We write theoretical and applied, to emphasise both ends of studying
CC without imposing any restrictions on particular methods. We limit CC
to the study of creativity in computational systems to draw a clear distinction
from creativity studies (cf. Sec. 4.1) and to emphasise the requirement for
CC systems to take over some creative responsibility, rather than exclusively
supporting their users’ creativity. To include related research in the widest
range of AI sub-disciplines possible, we consider any type of computational
system. We implicitly assume that creativity can be understood as specific
instances of problem-solving, to ease comparisons with related work in AI.
In contrast to other definitions (Sec. 4.2.1), we make the open-ended nature
of the underlying creativity concept explicit. We consider work addressing
any conceptualisation of creativity, and in particular creativity at any level
of complexity. This includes big- to mini-c, but also other forms of creativity
that can only be understood from different, potentially non-human viewpoints.
This definition thus encompasses the continuum between the engineering and
cognitive perspective (Sec. 4.2.1) expressed in existing definitions, and extends
it further beyond its inherent anthropocentrism.

We next apply this and our working definition of IM (Sec. 2.2.3) in a
systematic review of related work to answer this chapters’ research questions.

4.2.2 Systematic Review

We are now sufficiently equipped to answer our first two research questions,
‘Why have IR and models of IM been used in CC?’ (RQ.3), and ‘RQApplic-
ationsIMCC’ (RQ.4). To this end, we conduct a systematic review of existing
theoretical and applied work using IR and models of IM in CC.

10 Although much of contemporary AI research touches on questions of creativity, we are thus
reluctant to consider it CC, as long as this treatment is not explicit.
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4.2.2.1 Method

Literature
Selection
Method

In light of the contentious and ongoing definition of CC and IM, respectively,
a challenge for this review has been to compromise between keeping the
amount of considered related work manageable and being as inclusive and
representative as possible. To this end, we have employed a two-stage process
of (i) identifying and coarsely filtering candidate literature by their title and
abstract and (ii) extracting qualifying work based on in-depth reviews.

For our first step (i), we systematically skimmed through publications at
traditional venues for CC research and related conferences at the intersection
of creativity and computational modelling: the International Joint Workshops
on Computational Creativity (IJWCC) (2004-2008) as a part of the International
Joint Conference on Artificial Intelligence (IJCAI), the European Conference on
Artificial Intelligence (ECAI), and the AAAI Conference on Artificial Intelligence;
the International Conference on Computational Creativity (ICCC) (2010-2019);
the Computational Creativity Workshops of the Society for the Study of Artificial
Intelligence and Simulation of Behaviour (AISB) (1999-2019); the Creativity &
Cognition Conference (1993-2017); the International Conference on Computational
Intelligence in Music, Sound, Art and Design (EvoMusArt) (2011-2019); the
Genetic and Evolutionary Computation Conference (GECCO) (1999-2020); the
Computational Creativity, Concept Invention, and General Intelligence Workshop
(C3GI) (2012-2016); as well as the Workshops on Constructive Machine Learning
(2016) and Machine Learning for Creativity and Design (2017, 2018) at the
Conference on Neural Information Processing Systems (NeurIPS). We also sought
relevant work in CC monographs and special journal issues. Using this initial
selection, we traced references to additional, potentially relevant publications.

For our second step (ii), we have filtered the set of candidates based on
detailed reviews and comparisons against our working definitions of CC
(Sec. 4.2.1) and IM models (Sec. 2.2.3). Following our definition of CC, we
have excluded AI publications that did not address creativity explicitly. Some
of these cases were just marginally out of scope, e.g. Mahadevan’s (2018)
proposal of ‘imagination machines’, which touches on many central CC
themes, without explicitly relating imagination to creativity. We have not
included work on computational game creativity, as this is treated separately in
Ch. 5. Since the notion of IM has only been adopted in AI rather late, and
because it might be used differently from our conception, we examined the
fit of individual related work candidates to our diagnostics of IM models
(cf. Sec. 2.2.3). While this has been challenging due to ambiguity or lack of
detail in the model descriptions, it affords a more fine-grained comparison of
existing approaches. We have found and included models that only partially
qualify as IM, and thus only warrant some of the (yet to be presented) benefits
for CC. Vice versa, we have excluded any work which does not model an
agent with either physical or virtual embodiment as this would violate the
most central diagnostic of agent-centricity, and serves as a prerequisite for
some of the other diagnostics. Most notably, this applies to variations of
what is commonly known as novelty (Lehman & Stanley, 2011), surprise
(Liapis et al., 2013; Yannakakis & Liapis, 2016) and quality-diversity search
(Pugh, Soros & Stanley, 2016). Furthermore, we have excluded agent-less
generative models such as creative adversarial networks (Elgammal et al., 2017).
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We have also omitted work in which a system’s dynamics are governed by
other motivational mechanisms and IR has only a minor influence, such as
the developmental model of early creative behaviour by Aguilar and Pérez
y Pérez (2014, 2015, 2017). We finally only incorporate work that uses IR
exclusively at some level of abstraction, as the joint optimisation of intrinsic
and extrinsic reward obfuscates the benefits of the former over the latter.

Our final selection comprises 29 related work items spanning two decades,
from as early as 1998 to 2018. We summarise the system details, creative
domain, and the specifics of the used IM model in Tbl. 4.1. We elaborate on
the detailed distinctions along the report of our findings in Sec. 4.2.2.2.

Typology
Method

We answer RQ.3 with a typology11 of reasons to embrace models of IM in
CC. On their own, these are (emergent) properties of both IR and intrinsically
motivated behaviour, derived from our working definition of IM (Sec. 2.2.3).
We determined their relevance for CC, thus trimming the set of candidate
properties, in a three-stage process: Firstly, we identified concrete applications
of IR and IM in related work. Secondly, we summarised these instances
into abstract applications. Thirdly and most critically, we considered each
abstract application a result of combining (i) such properties and (ii) theories
of (computational) creativity, the latter being informed by the preceding
Sec. 4.1.1, 4.1.2 and 4.2.1. These abstract applications also represent a typology,
and we later use it to partially answer RQ.4. Both typologies only reflect what
has been covered in existing work; we discuss how our contributions advance
this state-of-the-art in Sec. 4.2.3.

4.2.2.2 Findings

Fig. 4.2 illustrates our findings. We have identified four properties of intrinsic
reward (IR) (R.1-4), four properties of intrinsically motivated IM) behaviour
(B.1-4) and two corollaries (C.1, C.2) that, in combination with 14 clusters of
(computational) creativity theories, benefit 12 abstract applications of IR and
IM in CC (A.1-12). We next provide a detailed account of the related work,
structured under the abstract applications that the individual properties in
the typology afford. By moving along the order of dependencies, we start
with properties of IR and transition to properties of intrinsically motivated
behaviour. We do not cover related work chronologically, but introduce it
along with the abstract applications it serves most. For a summary of our
findings, see Sec. 4.2.2.3.

assessing p-creativity (a .1 , a .2)
A first but insufficient reason to embrace IR in CC is that a specific instance
of an IR function can be attributed different semantics (R.1). As a corollary,
specific IR functions can capture variations of novelty and value (C.1). Based on
the prominent role of these two concepts in the ‘standard definition’ (Runco &
Jaeger, 2012) and in other conceptions of creativity, IR can be applied to assess

11 We exploit the key characteristic of typologies to ‘represent concepts rather than empirical
cases’ (Smith, 2002, p. 381), with each dimension being ‘based on the notion of an ideal type’
(ibid., p. 381). The reasons to use IR and IM models can rarely be found individually or in
their pure form in existing applications, but rather blended together for emergent benefits.
Vice versa, related work can rarely be considered with respect to a single reason only.
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the creativity of (partial) artefacts (A.1). However, similar interpretations exist
for extrinsic reward, and the use of IM in existing CC studies can thus only
be understood in conjunction with a second reason: based on the defining
diagonistics of agent-centricity and embodiment universality, IR is subjective
and sensitive to an agent’s embodiment and situatedness (R.2). IR thus allows
us to model p-creativity (A.2, cf. Boden, 2003; and Sec. 4.1.1) as a subjective,
embodied and situated assessment of novelty and value. In related work,
subjective novelty is often hidden in the notions of unexpectedness and surprise;
while novelty is commonly formalised as the degree to which an outcome
is different from prior outcomes experienced by an agent, unexpectedness
measures how much an outcome deviates from expected outcomes predicted
by an agent-subjective model12 (Grace & Maher, 2015). Surprise belongs to a
separate category, as it denotes an affective response to unexpectedness (Pearce
& Wiggins, 2012; Grace & Maher, 2015).

Macedo and Cardoso (2001a) assume that a creative product must not
merely be novel, but bear unexpected novelty. Since such unexpectedness
leads to the affective state of surprise, they concede that surprise must play
an important role in the evaluation of creativity in both artistic and scientific
products. In a prototype system, they rank an existing set of simple, two-
dimensional architectural sketches with respect to the surprise computed
by an individual agent. While considering it an affective state, surprise is
calculated directly as the unexpectedness of perceiving a new object, given the
agent’s experience of previously seen objects. This is formalised by averaging
and then complementing the conditional probabilities of perceiving each of
the object’s individual components, given the previously memorised objects.

In a theoretical contribution, McGregor (2007) roots agent-centric and
embodiment-sensitive measures of novelty at the very basis of the CC agenda.
He argues that assessing novelty with an ‘objective’ or ‘impersonal’ distance
metric such as the information distance (Bennett et al., 1998) between artefacts
‘would be at fundamental odds with the goals and methods of computational
creativity’ (McGregor, 2007, p. 111) as it would rule out the existence of a
compact algorithm capable of generating maximum novelty with respect to
known examples. Referencing the intrinsic novelty functions by Saunders
(2001) and Schmidhuber (2006), he highlights the need for a ‘personal’, ‘per-
ceptual’, observer-relative account of novelty under which ‘endless apparent
novelty could be generated by a compact program by exploiting the limita-
tions of the perceiver’s ability to detect patterns’ (McGregor, 2007, p. 111).

increasing creative autonomy (a .3)
One fundamental goal of CC researchers is to endow artificial systems with
creative responsibility (Colton & Wiggins, 2012) or creative autonomy (Jennings,
2010). Without such autonomy, a system could not genuinely introduce
novelty in the creation of artefacts, and would thus become a victim of
Lovelace’s famous objection to originality in Babbage’s Analytical Engine: ‘The
Analytical Engine has no pretensions to originate anything. It can do whatever
we know how to order it to perform’ (Menabrea, 1842, p. 722). The need for

12 In the latter case, novelty is thus assessed relative to non-materialised predictions that are
based on an agent’s past experiences, rather than directly with respect to these experiences.
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autonomy is also justified empirically: autonomy is a commonly observed
character trait of creative people (Sheldon, 1995; Davis, 1999; and Sec. 4.1.2),
and has been highlighted as a central criterion for people to attribute creativity
to a machine (Mumford & Ventura, 2015). It follows from the agent-centricity
and embodiment universality diagnostics that a purely intrinsically motivated
agent neither can, nor has to follow instructions formulated at runtime in the
form of extrinsic reward; instead, they generate their own subjective goals
in response to their embodiment and situatedness (R.2). Together with the
potential for IR to model novelty and value (C.1), IM allows us to increase the
level of creative autonomy in CC systems (A.3).

Saunders (2012) summarises various meanings of autonomy into the re-
quirement for ‘self-law making, or self-governing’ (ibid., p. 219). He argues
that Boden’s (2003) theory of creativity is insufficient for the development of
such autonomous creative systems because it misses an account of motivation.
Based on a review of applied related work13, he argues that models of IM
can fill this gap, thus allowing for a system’s self-governance and reducing
dependencies on designer-imposed, fixed rules.

The importance of IM for creative autonomy has also been addressed in
applied work. Gemeinboeck and Saunders (2013) stress that IM-induced
creative agency is not predetermined ‘but evolves based on what happens
in the environment [that agents] examine and manipulate. As the agents’
embodiment evolves based on its interaction with the environment, the robots’
creative agency affects processes out of which it itself is emergent’ (ibid.,
p. 218). Saunders et al. (2010) highlight that as consequence, the interaction
dynamics between people and CC systems, here as robots, are transformed:
people enter the interaction as equals, rather than superiors, being denied
the ability to ‘dictate’ what the robots should do; Saunders and Gemeinboeck
(2014) note that ‘rather than being invited to control the course of events, the
audience is implicated in the material interventions’ (ibid., p. 3).

substituting extrinsic reward (a .4)
Most of the work from the previous paragraph has been motivated from a
cognitive (Saunders et al., 2010) or artistic (Gemeinboeck & Saunders, 2013;
Saunders & Gemeinboeck, 2014) perspective, where limiting people’s control
over the behaviour of CC systems has been an explicit goal. However, redu-
cing the need for control and increasing creative autonomy becomes more
complicated from an engineering perspective: CC researchers typically want
to leverage autonomous or co-creative systems for the benefit of people, e.g.
by solving a particular task or generating an artefact which they appreciate.
This produces a conflict, in that explicitly communicating such external goals
to a system diminishes their creative autonomy. We face similar challenges
also through the cognitive perspective: If we want to learn more about human
creativity, we must be able to explain why intrinsically motivated people
can score highly on extrinsically defined tasks as present in e.g. a workplace
creativity setting (cf. Sec. 4.1.2).

Both issues are addressed by the third reason to embrace IM in CC: IR can
align with extrinsic reward (R.4), either produced by another computational

13 We relate to this work in detail under the separate abstract applications A.6-A.11.
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model, or by an organism. An intrinsically motivated agent thus has the
potential to relate the (partial) outcomes of their decision-making to the
extrinsic but unknown goals of other agents. Given that IR can align with
extrinsic reward, and that human-intrinsic reward qualifies as such agent-
extrinsic reward, it crucially follows that some instances of computational IR
can correlate with human IR (C.2). McGregor (2007) highlights the diversity that
e.g. personal (and embodied) measures of novelty afford: the same sequence
of outcomes could be considered highly novel by one and highly similar
by another individual. This diversity presents an opportunity to solve the
control dilemma: by appropriately modelling and tuning the components
that shape IR, i.e. an agent’s specific embodiment and the parameters of their
reward function, we can control the alignment of IR. IR has consequently
been used to substitute extrinsic reward14 (A.4).

approximating human aesthetic judgement (a .5)
One specific use-case for such substitution is given when extrinsic reward is
either sparse or unavailable. A notorious example is human aesthetic preference:
‘Our aesthetic values are difficult to recognize, more difficult to put into
words, and even more difficult to state really clearly’ (Boden, 1990/2003,
p. 10). But the ability to predict a user’s aesthetic response to an artefact,
either to produce an artefact which matches their aesthetic expectations or
to subvert them, is an essential requirement for the artistically creative type
of system that has dominated CC for a long time. Unsurprisingly, some of
the earliest studies of IR in CC have focussed on exploiting IR to approximate
human aesthetic judgement (A.5). Rather than focussing on human-extrinsic,
e.g. culturally shaped, aesthetics, they draw on the work of e.g. Berlyne (1971)
and Williams (1996), who relate novelty and aesthetic preference. Existing work
thus approximates human aesthetic preference by aligning agent-intrinsic
with human-intrinsic novelty, exploiting corollaries C.1 and C.2.

Schmidhuber’s (1997) Formal Theory of Beauty is an important predecessor
to these studies. It rests on the assumption that any human observer tries
to represent input data in terms of what is familiar, i.e. they compress new
stimuli based on experience. The maximum achievable compression then
corresponds to a stimulus’ novelty or conversely, familiarity. Schmidhuber
formalises this novelty via Kolmogorov complexity (Cover & Thomas, 2006,
p. 144 ff.), i.e. the length of the shortest algorithm capable of computing the
stimulus. Inspired by formal rules in art and aesthetics, he proposes that
the most beautiful stimuli are the ones that can be compressed most, given
the individual’s current compression scheme. The latter is assumed to be
shaped by experience, which would explain individual differences in the
perception of beauty. Schmidhuber thus argues for subjective novelty to work
as a proxy to the human perception of beauty, and equates maximum beauty
with maximum compression or familiarity. Crucially though, he deems this
formal account of beauty only a pre-stage to aesthetic reward15 (Schmidhuber,

14 This abstract application does not follow straight from related work, but we yet include it to
bridge smoothly to A.5 and to motivate our contributions later on.

15 The Kolmogorov complexity is furthermore generally intractable, rendering it unavailable to
an agent’s decision-making. We consequently omit this contribution from Tbl. 4.1.



4.2 review of intrinsic motivation in computational creativity 91

2012), and does not test the hypothesised relationship of compression and
beauty by sufficiently strong empirical means.

Apparently unaware of Schmidhuber’s work, Peters (1998) proposes such
an IR to endow a machine with the means for aesthetic evaluation, through
which it could filter either algorithmically generated or ‘found’ images. He
takes inspiration from the theoretical work of Williams (1996), who, by draw-
ing on Leyton (1992) and by reference to cognitive dissonance (cf. Sec. 2.1.2),
argues that the human aesthetic response is proportional to the amount of ex-
plicable surprise, i.e. the amount of change in an individual’s beliefs caused by
the perception of an unexpected stimulus. The stimulus must be surprising16,
i.e. unexpected given the agent’s present beliefs shaping their predictions, to
provide a scope for explanation. Explicability means that the agent must be
capable of changing their beliefs to confirm with the new perception. Peters
formalises surprise as a prediction error of individual pixel values in a robot’s
sensor. He then constructs an explicability reward by stringing together sev-
eral of these surprise functions, thus rewarding a change in prediction error.
Peters thus presents an alternative formalisation of Schmidhuber’s (1991)
learning progress, motivated as an aesthetic reward.

Schmidhuber recognises the role of novelty or surprise in the modelling of
aesthetic reward later as part of his Formal Theory of Creativity (Schmidhuber,
2006; Schmidhuber, 2012; in Tbl. 4.1 comprised in the 2010 survey article).
Similar to Williams (1996), he considers something to remain aesthetically
rewarding or interesting for an observer as long as the observer makes progress
on explaining it further through adaptation of a predictive model. He thus
formalises aesthetic reward as the first derivative of subjective beauty. Based
on his hypothesised formalisation of beauty (Schmidhuber, 1997), this can
be calculated as the difference in the data’s Kolmogorov complexity before
and after learning. At a certain time, something may be beautiful but not
aesthetically rewarding, as the agent cannot compress it further based on
their present experience (Schmidhuber, 2010). Since Schmidhuber (1991b)
proposes prediction error as a tractable alternative to Kolmogorov complexity,
and formalises learning progress as the difference of prediction error, his and
Peters’ (1998) account of aesthetic reward are closely related.

Saunders (2009) probes the correlation between IR and human aesthetic
preference in an applied study. He extends earlier proposals of supporting
a human artist in their creative activity by letting an artificial agent pre-
select ‘interesting’ instances of computer-generated artefacts, thus guiding
the artist’s attention and preventing information overload (Saunders & Gero,
2001a, 2001d). The intrinsic interestingness reward used is also adopted from
earlier work (Saunders & Gero, 2001a), and, similarly to Peters (1998), is
also a function of novelty; Saunders and Gero’s (2001) formalisation however
draws on Berlyne’s (1971) popular theory of human aesthetic preference, and
could thus be argued to have the stronger grounding. Supported by empirical
data, Berlyne (ibid.) models the relationship between arousal, e.g. in the form
of novelty, and ‘hedonic value’ such as interest, by means of the Wundt curve:
a non-linear, inverted U-shaped function conceived by Wilhelm Maximilian

16 Williams (1996) understands surprise in strict information-theoretic terms as the self-information
(cf. Appx. C) of an event, e.g. the perception of a specific sensor state.
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Wundt (1874). This ‘hedonic function’ outputs high interest for stimuli that
are neither too familiar nor too novel to previous experiences. Saunders
and Gero (2001a) quantify the underlying novelty with a self-organising
map (Kohonen, 1995) which learns to categorise high-dimensional sensory
inputs in a lower-dimensional space. Each neuron in the map corresponds to
one category, and an input’s novelty corresponds to the inverted activation
of the best-matching neuron, indicating the typicality of the input for that
category. Interest or hedonic novelty reward17 is then computed by passing the
novelty value through a parametrised hedonic function. In the 2009 applied
study, a curious design assistant ranks 9 generative artworks produced in each
generation of an evolutionary algorithm with respect to the hedonic novelty
reward they afford, measured on their experience of artefacts generated in
previous iterations. Over 3 trials with 50 iterations each, the agent’s top rank
matches the user’s preference with 30-50% accuracy. Taking only the first
three ranks into account yields a higher accuracy of 60-72%.

The previous applications leverage (emergent) properties of IR only. We
next discuss how IR has been used in decision-making to model the creative
process. Related applications hereby exploit (emergent) properties of intrins-
ically motivated behaviour, arising from combining specific IRs with specific
action-selection functions.

modelling exploratory creativity (a .6 , a .7)
Boden (1990/2003) conceives creativity as the identification of surprising
and potentially valuable concepts in a conceptual space. She hereby distin-
guishes between three mechanisms of creativity, from which exploratory and
transformational creativity have been modelled with IM. Exploratory creativity
consists of discovering novel and potentially (but not necessarily) valuable18

concepts within a known conceptual space. This resonates well with creativity
studies’ emphasis on the central role of IM in human creativity (Amabile,
2012), motivating them to collect novel information (Liu et al., 2016) and
envisage different possibilities (Kieran, 2014). Based on his creative systems
framework, Wiggins (2006a, 2006b) formalises Boden’s account as search in
such a space. For such search to qualify as exploratory creativity, an agent must
be able to access new concepts in the conceptual space by following a fixed set
of traversal rules, which may utilise heuristics evaluated on (partial) concepts
(Wiggins, 2006b). Crucially, specific instances of IM models as combinations
of a specific IR and action-selection function allow for such exploratory beha-
viour (B.1). This is usually contingent on using IR that can be interpreted as
novelty and value (C.1). Mapped to Wiggins’ framework, the IR function can
be considered a heuristic used by a specific, fixed action-selection strategy

17 Since the hedonic function could be parametrised to yield the highest interest for stimuli that
stipulate but do not overburden the learning capacity of a specific agent, the resulting reward
can be interpreted as a hard-coded approximation of Schmidhuber’s (1991) learning-progress.

18 In her popular book, Boden (1990/2003) is not very clear about the importance of value
for exploratory creativity: she stresses the discovery of novel concepts to learn about the
possibilities of a conceptual space, but elaborates little on the notion of value. However, she
elsewhere relates to value by noting that a ‘main reason why most current AI-models of
creativity attempt only exploration, not transformation, is that if the space is transformed,
then the resulting structures may not have any interest or value. Such ideas are novel, certainly,
but not creative’ (Boden, 1998, p. 354, emphasis added).
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such as maximising (expected) IR. Researchers have thus embraced IM to
model exploratory creativity (A.6).

Although the following examples can be considered cases of exploratory
creativity in a post-hoc analysis, most have not been motivated as a study of
this specific mechanism, but of the creative process more generally. In many
cases, the IR function is chosen specifically to approximate human aesthetic
judgement (A.5) as a basis for producing artefacts that appeal to people (A.7). They
hereby exploit the emergent property of intrinsically motivated behaviour to
yield task performance in the presence of sparse extrinsic reward or its total absence
(B.2). This again rests on the potential of IR to align with extrinsic reward (R.4),
and, for the application to aesthetics, on its correlation with human IR (C.2).

Schmidhuber (1997) again precedes related work by proposing the genera-
tion of low-complexity art as an iterative drawing process in which a drawing’s
Kolmogorov complexity is minimised, which he claims leads to the maximisation
of beauty. We consider this only a predecessor to related compression-based
CC work because (i) calculating the Kolmogorov complexity is generally intract-
able, (ii) the latter is observer-dependent but the ‘typical observer’ is not
formally accounted for, and (iii) the process still relies on people to judge
drawings to ‘look right’ (ibid., p. 97). Schmidhuber concludes: ‘No universal
algorithm for generating low-complexity art is known. At the moment, a
human artist is still required’ (ibid., p. 102).

Macedo and Cardoso (2001a) propose to use the surprise reward introduced
earlier as a means to advance an architectural sketch. They appeal to explor-
atory creativity by noting that ‘surprise plays an important role to make the
process of producing products (...) divergent’ (ibid., p. 3). Actions hereby
map to adding a new component, e.g. a window, to an existing sketch, and
their action-selection function greedily chooses the component that would
yield the combined sketch with the highest expected surprise. They demon-
strate the calculation of expected surprise for different combinations, but
do not provide an example for the time-expanded creative process, hereby
circumventing the question of when a design can be considered finished.

Saunders and Gero (2001a) highlight three applications of artificial curiosity
to support design: (i) to search and explore unfamiliar design spaces and gain
a better understanding of a non-routine task, (ii) to guide problem-solving to
find interesting design solutions, and, on a meta-level, (iii) to guide problem-
finding to discover interesting design problems. They focus on the first case
of value-less exploratory creativity, and formalise a curious design agent that is
rewarded by a design’s hedonic novelty, as introduced earlier. Saunders and
Gero demonstrate their model on the generative space of two-dimensional
spirograph patterns, where actions correspond to a change in the spirograph’s
wheel ratios, and the action-selection function yields fewer changes when
interest is high. A simulation over 200 time steps shows patterns of novelty
peaks that tail off as soon as the self-organising map underlying the reward
calculation has learned a new ‘design category’. The initially low novelty
leads to high changes to the spirograph wheels in the beginning, thus produ-
cing a diverse set of categories for complex patterns early on. Saunders and
Gero conclude that curiosity provides a ‘general-purpose, knowledge-lean
heuristics to guide the search for potentially interesting, and possibly even
creative, design’ (ibid., p. 350). Cross (2006) later demonstrates the robustness
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of the curious design agent with respect to extreme parameterisations of the
hedonic function underlying the reward calculation. The agent keeps explor-
ing even for parametrisations that express a preference for high novelty or
familiarity, respectively. Saunders (2009) later motivates the use of curious
design agents to support human creative activity, rather than design alone.
He links curiosity to creativity by ‘the exploratory behaviour typical of the
early stages of a creative activities [sic] as a user learns about the possib-
ilities within a space’ (ibid., p. 3), allowing to ‘relieve the uncertainty that
accompanies an incomplete understanding of the conceptual space’ (ibid.,
p. 2). Boden (1990/2003, p. 58f.) has highlighted the usefulness of such state
coverage19 as preparation for goal-directed creativity, the first stage of creative
thinking put forward by Poincaré (1913) and Hadamard (1954). Saunders
(2009) proposes to use curious design assistants as a form of curious design
agents to ‘autonomously exploring a design space using a generative design
system and then prepare a report on potentially interesting solutions at the
end of the exploration’ (ibid., p. 3). However, a demonstration is missing.

Smith and Garnett (2012b) use a hedonic learning progress reward to model
an agent capable of improvising and analysing music that is valued by people.
They motivate their choice by summarising that ‘self-motivated reinforce-
ment learning models present new possibilities in computational creativity,
conceptually mimicking human learning to enable automated discovery of
interesting or surprising patterns’ (ibid., p. 223). In an effort to align the
agent’s perception of novelty with a person’s perception (cf. McGregor, 2007),
they extract a number of hand-crafted musical features from the raw musical
score. Similarly to Saunders and Gero (2001a), they first calculate learning
progress on the weight changes of an adaptive resonance theory network (Car-
penter, Grossberg & Rosen, 1991), which learns to categorise the feature
vectors. This quantity is then transformed through a hedonic function to
capture ‘yet unexplained but easily learnable regularity’ (Smith & Garnett,
2012b, p. 224). The agent’s actions are given by changes in the chromatic pitch,
and action-selection is driven by greedily maximising the hedonic learning
progress reward. Three experiments show that depending on the network’s
learning rate, the agent explores all pitch classes or finds more interest in
repetition. Biasing the network by pre-training it on Bach’s cello suites yields
more complex structure in the produced score, with some examples bearing
similarity with the input suites. Smith and Garnett (2012a) try to increase
the system’s sophistication by stacking several networks, thus abstracting
the manually engineered features on the first layer further into more com-
plex ones. The hedonic learning progress is now computed by contrasting the
expansion of the networks with the amount of change in their nodes, thus
quantifying maximum interest between boredom and chaos. Experiments
across different variations of the hierarchical model yields ‘musical material
which revealed pattern repetition and manipulation in [a] non-obvious, yet
intelligible fashion’ (ibid., p. 66).

19 Coverage of the entire conceptual space should be considered a specific, asymptotic case of
exploratory creativity. It is generally not required for behaviour to qualify as exploratory
creativity, and is crucially not supported by every model of IM that warrants the latter.
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modelling transformational creativity (a .7 , a .8)
The restriction of exploratory creativity to a fixed conceptual space and search
strategy limits the identifiable concepts to those that are conceivable within
that space, and that can be reached with the given traversal strategy. Trans-
formational creativity widens this scope by inducing a change of rules (Boden,
1990/2003). Wiggins’ (2006) search-based framework enables the distinguish-
ing of R-transformation as changing the rules that define the very search space,
and T-transformation as changing the traversal rules to navigate it (ibid.). R-
and T-transformational creativity can thus be understood as exploratory creativ-
ity on a second-order representation (ibid.) of possible search spaces, and
on the space of possible traversal strategies, respectively. Since IM models
can yield exploratory behaviour (B.1), researchers have leveraged them to model
heuristic transformational creativity (A.8). Again, much related work exploits
this mechanism to produce artefacts that appeal to people (A.7). We assume20 that
a system’s traversal strategy can be understood as an action policy, and that
any decision-making framework that allows for the on-line adaptation of a
policy necessarily has the potential for T-transformational creativity. We thus
include any related work that uses IR in RL under this heading.

Peters (1998) identifies the exploration of a problem space as an essential
component of productive thinking (Wertheimer, 1959), a Gestalt psychological
concept which denotes the ‘solving of problems in a manner that is signific-
antly new’ (Peters, 1998, p. 836); it involves ‘creating rather than recalling a
solution’ (ibid., p. 836) and is closely related to McGraw’s (1978) notion of
heuristic solutions (Sec. 4.2.1). Peters argues that exploration can help an indi-
vidual to navigate a problem space while being unable to ‘estimate how close
they are to a solution’ (ibid., p. 836). He proposes to drive such exploration
by using his earlier introduced formalisation of surprise as an RL reward to
be maximised, which allows for T-transformational creativity. Unfortunately,
his proposal remains theoretical.

In his so-called Formal Theory of Creativity, Schmidhuber (2006 and 2012, in
Tbl. 4.1 comprised in a 2010 survey article) not only introduces compression- or
learning progress as an aesthetic reward, but proposes it as the foundation of any
form of creative activity. He argues that creative people maximise the same
reward at various stages of their lives, and across different creative domains
such as jokes, music, art and scientific discovery. He moreover suggests that,
depending on whether actions map to the creation or perception of art, we get
creativity in production and aesthetics in reception, respectively: ‘When not
occupied with optimizing external reward, artists and observers of art are
just following their compression progress drive’ (ibid., p. 243). Schmidhuber
understands scientific creativity as theory formation, i.e. the narrowing down of
hypotheses to those that explain the observed phenomena best, thus yielding
compression breakthroughs. While he argues for his account of beauty based
on work in formal aesthetics, a theoretical or empirical basis for his claims on
creativity is absent. None of the referenced agents using learning progress as
a RL reward demonstrate the discussed scientific or artistic creativity, and we
hence consider this omly a theoretical contribution.

20 This is a preliminary assumption, as possible mappings between the creative systems framework
and other decision-making frameworks are subject of active research. We recently contributed
to this agenda in (Linkola, Guckelsberger & Kantosalo, 2020).
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Colin et al. (2016) propose a theoretical mapping between psychological
theories on insight-driven problem-solving as the ‘fast understanding of original,
illuminating solutions to problems’ (ibid., p. 198), intrinsically motivated
hierarchical RL, and exploratory and transformational creativity as formalised
in the creative systems framework (Wiggins, 2006a, 2006b). They focus on two
challenges of modelling insight-driven problem solving: to (i) optimise not
only extrinsic reward, defining the problem to be solved, but also intrinsic
novelty; while (ii) managing the complexity of a potentially enormous search
space. As a solution, they propose to use a variety of well-established IRs for
learning options (Sutton, Precup & Singh, 1999) in hierarchical RL. Options
are ‘temporally extended, closed-loop courses of action’ (Colin et al., 2016,
p. 201), and each option is given by a policy that is initiated and terminates in
a certain state set, and a state representation that regulates which state features
matter for the policy. They argue that options as temporal abstractions allow
‘for exploring the state space at multiple granularity sizes’, making it possible
‘to reach otherwise unattainable sections’ (ibid., p. 201). They relate this
formalisation of insight-driven problem-solving to creativity by mapping the
conceptual space in Wiggins’ framework to a problem-space, and each concept
to an option. Consequently, the second-order representation of possible
conceptual spaces becomes the space of possible options, each with a different
representation of the problem space and an initial policy to navigate it. They
conclude that under this mapping, exploratory creativity corresponds to the
learning and following of a policy defined by a specific option working on
a fixed state representation21. Furthermore, they identify transformational-
as exploratory creativity on the second-order representation in the switching
between options, learned from experience. In their theory, both processes are
driven by IR alone, or in combination with an extrinsic reward.

Grace and Maher (2015) theorise how different intrinsic surprise rewards
can facilitate creative intention in problem-solving, accompanied by different
forms of transformational creativity. They argue that ‘intentions are not created
de novo, but (...) arise from a drive to explore what the system has observed
but not understood’ (ibid., p. 261), and distinguish such specific curiosity
from diversive curiosity as commonly used in related work. They formalise
curiosity via an extension of the creative systems framework (Wiggins, 2006a,
2006b) and creative intention by distinguishing two types of search: In basic
problem-solving, an agent seeks to maximise both value and surprise, i.e. they
complement goal-optimisation with diversive curiosity. When experiencing a
particularly surprising concept, the agent transitions to a second search mode
in which they act towards maximising specific surprise, rewarded by concepts
that violate the same expectations that triggered the search mode transition.
Intentional creativity, according to Grace and Maher, then maps to the identi-
fication of specifically surprising concepts. Similar to Wiggins (2006a, 2006b),
they understand R-transformational creativity as an agent’s update of their
description of probable concepts in response to experiencing an inexplicable
or unexpected concept. In addition, they identify T-transformational creativity
in the ‘intentional’ switching to specific curiosity search. They argue that such
mode-switching can be caused by exposure to concepts from an inspiring

21 They hereby miss that learning and thus adapting a policy can qualify as T-transformation.
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set or to other agents, and by actively creating concepts that are expected to
trigger a specific curiosity episode.

We chose these examples for their focus on exploratory and transforma-
tional creativity. More generally, all related work in Tbl. 4.1 that use IM in
a decision-making process (e.g. Maher, Merrick & Macindoe, 2005; Merrick,
Saunders & Maher, 2007; Merrick, 2008a; Vigorito & Barto, 2008b; Wiggins,
2018) exhibit the property (B.1) and thus realise at least exploratory creativity.

modelling systems theories of creativity (a .9 , a .10)
The previous examples use IM to drive the exploratory and transformational
creativity of individual agents. While the goal is often to appeal to human
aesthetics, the human audience remains a passive recipient of artefacts pro-
duced by a sole creative agent. This contrasts with systems theories of creativity
(cf. Vygotsky, 1971; Csikszentmihalyi, 1988; and Sec. 4.1.1), stressing that
creativity does not happen in a vacuum but results from the interaction of
individuals in a larger societal and historical context. Very early on, IM has
been used to drive individual agent behaviour in systems theories of creativity
(A.9), by exploiting the subjective nature of IR and its sensitivity to different
agent embodiments (R.2), as well as its possible interpretations with respect to
the core components of creativity (C.1). As a closely related application (A.10),
a systems model enables us to let h-creativity emerge from p-creativity (Boden,
2003; and Sec. 4.1.1). Existing work exploits the same properties to study how
h-creativity is influenced by variations in individual agent embodiments.

Many examples of related work do not aim at producing artefacts that are
cherished by human users, but embrace a cognitive perspective to shed more
light on the functional underpinnings of (human) creativity. Macedo and
Cardoso (2001b) e.g. focus on the central role of surprise in creativity, and
investigate the relation between the level of surprise used in the production of
an artefact by an author agent, and the surprise elicited in several critic agents.
The author uses the previously introduced surprise reward (cf. Macedo &
Cardoso, 2001a) to create an artefact through the incremental addition of
maximally surprising components, eventually putting their creation into the
environment for assessment by the critics. The critics are similarly driven
by surprise but their actions are movements, bringing them closer to more
surprising artefacts. Through experimentation with the design of architectural
sketches, Macedo and Cardoso find that the higher the surprise in authoring
the sketches, the higher the critics’ surprise. Counterintuitively, their reward
function yields higher surprise for critics with large than for those with small
memory. While this can be considered a systems model, it is limited by the
absence of a feedback loop from the critics back to the author.

Saunders and Gero (2001d) are arguably first to formalise a closed-loop
systems model of creativity. The goal of their Digital Clockwork Muse is to
‘explore the role that an individual’s search for novelty plays in socially
situated creative systems’ (Saunders & Gero, 2002, p. 82). They specifically
set out to probe several hypotheses by Martindale (1990), who highlights
the maximisation of novelty as a key motivation of individuals in creative
societies. He postulates that the complexity of a new style developed by
novelty-seeking individuals must necessarily increase over time to satisfy an
increasing global demand for novelty. Individuals thus obey what he calls
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a ‘law of novelty’, punishing repetition and enforcing progress. Saunders
and Gero model a society of agents that each maximise the hedonic novelty or
interestingness (Saunders & Gero, 2001a) of individually evolved artworks. In
contrast to Macedo and Cardoso (2001b), they combine the roles of author and
critic. Each agent can perceive their own creation and those of other agents.
If an individual deems their artwork interesting enough, they send it to other
agents for review, or evolve it further if not. If an individual deems another
agent’s artwork more interesting than theirs, they use it as a replacement
for their own work to evolve further. The receiving agent can also push
this artwork into a global repository, for future agent generations to begin
their search with artworks that were once deemed creative. Their simulations
support Martindale’s (1990) hypotheses and yield his law of novelty: Searching
for higher hedonic novelty produces more complex artworks, and agents
with similar preference for novelty are deemed creative by their peers, while
others are isolated, eventually leading to the formation of cliques.

The Digital Clockwork Muse (Saunders & Gero, 2001d) instantiates what
Saunders and Gero (2001b, 2001c, 2002) later introduce as Artificial Creativ-
ity, a framework for the study of creative societies (in Tbl. 4.1 comprised
in Saunders and Gero (2001b)). They adopt the cognitive perspective for ‘the
comparative study of creativity as it is found in human societies against cre-
ativity as it can be computationally modelled in artificial societies of agents’
(Saunders & Gero, 2002, p. 113). Their framework is strongly inspired by
Csikszentmihalyi’s (1988) domain-individual-field-interaction systems model of
creativity. Csikszentmihalyi considers creativity as emergent from the interac-
tion between individual creators, a larger field of agents selecting contributions
worth preserving, and a domain as a repository of artefacts held by a culture
for future generations to draw from. This model has been adopted in Liu’s
(2000) dual generate-and-test model of social-cultural creativity in the form of a
generate-and-test loop at the level of society, complemented by a loop at the
level of individuals. While Liu defines the socio-cultural evaluation explicitly,
Saunders and Gero extend the framework to make it emerge from the evalu-
ation of individual agents, driven by a model of curiosity. This modification
turns the Artificial Creativity framework into a closed system (Saunders &
Gero, 2001c) where no agent can dictate the behaviour of other agents and
crucially, no rules dictate global behaviour (Saunders & Gero, 2001b). The
emergence of socio-cultural evaluations from IM allows to investigate how a
creative process results from a specific social situatedness of agents with po-
tentially individual differences. The Artificial Creativity framework represents
the blueprint for much later work on systems models of creativity.

Saunders and Gero (2004) later switch to the engineering perspective and use
a crowd of intrinsically motivated agents to solve the task of designing exhibi-
tion layouts that avoid blockages and afford visitors exploration and learning.
They approximate the behaviour of human visitors (cf. A.5) by simulating
the movement of agents that greedily maximise hedonic novelty (Saunders &
Gero, 2001a) in a virtual exhibition. At the end of each simulation, they assess
how evenly the various categories of the self-organising map underlying the
reward calculation have been covered. Since an even coverage indicates that
the agents have seen a wide range of paintings, it aligns with the extrinsic
goal of a good gallery layout. Saunders and Gero demonstrate this successful
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alignment via simulations on pre-made exhibition layouts. The overarching
system here cannot be considered an embodied agent, and does not use IR
directly to drive its actions. It however still leverages information of intrins-
ically motivated, (virtually) embodied agents within, and we consequently
consider this an indirect use of (intrinsic) reward.

Bown (2006) adopts Saunders and Gero’s (2001) Artificial Creativity frame-
work (ibid.) to investigate the development of human artistic creativity from
an evolutionary viewpoint, and exemplified through music. He proposes
that music could have emerged from the basic effects of social value creation,
arguing that ‘intraspecies competition is as much a driver for evolution as
adaptation to an external environment’ (Bown, 2006, p. 1), and that especially
‘artefacts resulting from [artistic] acts have no value other than that offered
by other individuals’ (ibid., p. 1), potentially raising their creator’s social
status. He furthers this argument through the lens of the Artificial Creativity
framework, equating social value with the hedonic novelty awarded between
the agents through interaction in the field. Based on the underlying model of
IM, he hypothesises how the society and the individual curious agents would
change if they were subjected to evolutionary pressure for social value. He
predicts that the agents will over time develop more sophisticated perceptual
mechanisms and become more discriminatory. He also anticipates that indi-
vidual preferences for novelty formalised through different parametrisations
of the hedonic function, as well as social structures in the form of cliques
enforcing a certain style, eventually evolve into a stable state.

Bown and Wiggins (2009) complement this theoretical contribution with an
applied study, in which they maximise a simplified version of Saunders and
Gero’s (2001) hedonic novelty reward to drive the individual development of
musical style in an agent society. In this cultural dynamical system, each agent
curiously explores new styles, and presents the style with the highest hedonic
novelty to their neighbours. These in turn reward the agent with status
proportionally to the hedonic novelty of the performed style compared to their
own. Higher status provides privileged access to energy, which allows for this
mechanism of musical ‘enchantment’ to indirectly increase individual fitness.
Via several simulation experiments, Bown and Wiggins support Bown’s (2006)
earlier claims and highlight that the evolution of human musical behaviour
could have begun with maladaptive cultural dynamics that became reinforced
through an overarching evolutionary process.

Saunders et al. (2010) later instantiate an Artificial Creativity system in the
physical domain in the form of Curious Whispers, a society of mobile robots
generating simple tunes and listening to the tunes produced by others, in-
cluding people. Following Pickering (2005), Saunders et al. (2010) note that
‘creativity cannot be properly understood, or modelled, without an account of
how it emerges from the encounter between the world and intrinsically active,
exploratory and productively playful agents’ (ibid., p. 100). By embracing
physical embodiment, they enable people to intuitively interact with and
experience creative agents in physical reality. Vice versa, our reality allows for
unbounded, complex robot behaviour to emerge in response to a rich stream
of stimuli and their materialness. Each robot is equipped with speakers and
two microphones, and maximises hedonic novelty through RL. By calculat-
ing a separate reward for each microphone, the robots steer towards more
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interesting tunes. Similar to the Digital Clockwork Muse (Saunders & Gero,
2001d), they realise both the roles of author and critic through a simulation
of ‘boredom’: as soon as their evaluation of other agent’s tunes falls below a
manually defined threshold, they switch from listening to generating their
own tunes. Saunders, Chee and Gemeinboeck (2013) later analyse the interac-
tion dynamics between Curious Whispers and people. Over three observational
studies, human participants were equipped with a synthesiser, allowing them
to create tunes which the robots can perceive, evaluate and adopt, thus be-
coming part of the field contributing new artefacts into the creative domain.
The participants understood that the intrinsically motivated robots cannot be
commanded and became competitive in attracting them. They furthermore
learned how the robots manipulate the tunes they gave them, thus building
mental models of their robotic interaction partners.

Saunders (2011) extends the Artificial Creativity framework (Saunders &
Gero, 2001b) to investigate how domain-specific languages emerge from the
interaction of intrinsically motivated individuals within a creative system,
and vice versa how language dynamics affect the system’s development.
Individual agent behaviour is again driven by the maximisation of a hedonic
novelty reward, with the explicit goal of grounding language in the subjective
experience of an agent rather than through an extrinsic prior. As in the original
account, agents create and share works with peers if it passes a reward
threshold. But in the 2011 extension, agents also communicate an utterance
as a descriptor along with their work. Saunders conducts several experiments
in which agents generate and evaluate simple, coloured shapes of different
sizes and communicate their work while adhering to the protocol of different
language games. He finds that an increased preference for novelty, formalised
through parametrisation of the hedonic function, yields a substantial growth
in the variety of produced shapes, i.e. the ontology, but only a weak growth
in the vocabulary used to describe the shapes, thus increasing ambiguity in the
descriptions. He also reports that the more agents from two distinct domains
with different vocabularies are moved together, the quicker a new domain is
formed, but an unbalanced ratio causes disruptions. Finally, he finds quicker
convergence to the same communication rate if one agent acts as a teacher
who does not update their mappings between words and shapes.

Gemeinboeck and Saunders (2013) develop Zwischenräume (German: ‘in-
between spaces’), a robotic art performance, to explore the potential synergies
between robotic art and CC research. Amongst others, they highlight that CC
can enrich art performances with open, non-determined modes of interac-
tions. They use curiosity as an IM model specifically to this end, but also to
increase the robot’s autonomy (cf. A.3) and goal-ownership (cf. A.2), and to
promote shared or distributed agency within the creative act. Zwischenräume
consists of a series of mobile robots mounted on rails inside the walls of a
gallery. Each robot is equipped with a camera on a movable arm, a motorised
hammer, and a microphone. The robots learn to control their position, cam-
era arm and hammer based on maximising a set of distinct novelty rewards
through RL, calculated separately from the microphone and camera input. To
satisfy their need for novelty, the robots explore the wall, knock against it, and
eventually punch holes into it through which they can then discover, study
and respond to the human audience in the exhibition space. They thus realise
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two distinct notions of creativity, in continuously introducing novel changes
to the environment, and in contributing to the audience’s meaning-making.
Saunders and Gemeinboeck (2014) develop Zwischenräume further into Accom-
plice, equipping the robots with more mobility, intricate chiselling patterns,
and focussing more on the implicit communication between agents, e.g.
through marks left in the wall. Both installations allow for distributed agency:
‘Rather than being invited to control the course of events, the audience is
implicated in the material interventions of Accomplice, becoming accomplices
in the works [sic] ongoing transformations’ (ibid., p. 3).

tackling the complexity of creative search (a .11)
So far, we have mainly been looking at applications of IR to modelling and
evaluating properties of creative products (Sec. 4.2.1). Next, we consider how
such reward can be used in IM for modelling the creative process, e.g. in the
form of exploratory and transformational creative search (Boden, 1990/2003; Wig-
gins, 2006a, 2006b). Vigorito and Barto (2008b) emphasise that creative search
is often characterised by sparse extrinsic reward, e.g. ‘evaluative information
may only be received upon completion of a creative endeavor’ (ibid., p. 1).
This lack of guiding feedback is reflected in Wertheimer’s (1959) notion of
productive thinking which requires ‘creating rather than recalling a solution’
(Peters, 1998, p. 836), and McGraw’s (1978) concept of a ‘heuristic solution’,
where the steps to a solution algorithm must yet be discovered. If the creative
process was only guided by such sparse extrinsic reward, it would be mostly
blind (Vigorito & Barto, 2008a) and likely inefficient. In combination with
the observation that ‘the size of this search space in most realistic domains is
astronomical’, this ‘precludes any hope for success of blind trial-and-error
processes in producing complex creative works’ (ibid., p. 135). A major reason
to use models of IM in the previously discussed work is given by its ability
to yield high performance on an extrinsically defined task in the presence of sparse
extrinsic reward or its total absence (B.2). Furthermore, IM can give rise to ex-
ploratory behaviour (B.1) that is not only effective, but efficient. Researchers
consequently leverage models of IM to tackle the complexity of creative search
(A.11), albeit often only implicitly.

Vigorito and Barto (2008b) summarise that ‘successful creative search must
(...) use self-generated, intermediate feedback as a surrogate for the sparse
reward signals provided by the environment’ (ibid., p. 1, emphasis added). IR
is used as such a surrogate when approximating human aesthetic judgement (A.5)
in the search for artefacts that appeal to people (e.g. Saunders, 2009). But
this specific case of implicit reward alignment is not commonly mentioned in
the debate; instead, researchers focus on complementing rather than replacing
extrinsic by intrinsic reward (IR), such that sparse extrinsic reward can be
obtained in fewer steps. Vigorito and Barto (2008b) for instance propose using
various competence-based models of IM (cf. Mirolli and Baldassarre, 2013; and
Sec. 2.2.2) such as intrinsically motivated reinforcement learning (cf. Singh, Barto
and Chentanez, 2005; and Sec. 2.2.4) to identify ‘behavioural building blocks
that allow [an agent] to change the values of variables in its environment
reliably by learning temporally and spatially abstract skills’ (Vigorito & Barto,
2008b, p. 1). This parallels Merrick, Saunders and Maher’s (2007) effectance
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motivation and Colin et al.’s (2016) use of various models of curiosity to
explore the space of options in hierarchical RL.

Learning complex action sequences to trigger changes in the search space
represents only one means to support creative search, with another being
efficient exploration: already Saunders and Gero (2001a) find that curiosity
as a model of IM enables an agent to discover a larger variety of patterns
than a random walk, thus allowing them to gain a better understanding
of non-routine tasks. Colin et al. (2016) note that models of curiosity can
tackle complex search spaces because they are not only better than random
search, but also more efficient than an exhaustive search strategy. Finding
a short-cut to such exhaustive search has previously been formulated by
Wiggins (2006b) as a stepping stone towards modelling behaviour which is
perceived as more creative (cf. Sec. 4.2.1). Exploration of a search space is
even more efficient when multiple agents with different embodiments are at
work. Inspired by Saunders and Gero’s (2001) Artificial Creativity framework,
Linkola, Takala and Toivonen (2016) show, amongst others, that a society
of curious agents with different memory sizes ‘can be more productive in
generating novel artifacts than a single-agent or monolithic system’ (ibid.,
p. 8). In contrast to Saunders and Gero (2001b), they maximise a less powerful
intrinsic novelty reward, but allow for agent self-criticism, veto power and voting
‘to collectively regulate which artifacts are selected to the domain’ (Linkola,
Takala & Toivonen, 2016, p. 1).

modelling mini-creativity (a .12)
The majority of related work aims at modelling big-c behaviour (cf. Kaufman
and Beghetto, 2009; and Sec. 4.2.1), ignoring how such sophisticated creative
behaviour arises from mini-c acts. Cohen (1989) relates to different types of
adaptation to model the developmental continuum between such mini-c acts in
children and more sophisticated forms of creative behaviour, including big-c
acts, in adults. She argues that all but especially the first stage of creative
behaviour require an individual to adapt to their environment by forming
new mental connections that explain its workings. Crucially, Cohen deems
‘curiosity and pleasure in novelty’ (ibid., emphasis added) as well as play as
particularly important for this p-creative act (Boden, 2003; and Sec. 4.1.1). A
small body of related work has explicitly addressed the potential of IM to
model mini-c creativity (A.12), drawing heavily on the concept of adaptation.
Researchers exploit the capacity of intrinsically motivated behaviour to induce
skill and model development (B.4) and to yield open-ended adaptation to different
domains, agent embodiments and tasks (B.3), the latter resting on the domain and
embodiment generality of IR (R.3).

Maher, Merrick and Macindoe (2005) leverage the potential of IM models
to adapt an agent to new domains without domain-specific knowledge.
Their focus is on designing an ‘intelligent room’ that adapts their behaviour
in response to novel events happening inside. To facilitate such creative
agency, they endow the room with an IM cascade, consisting of a model
of curiosity that feeds into an effectance motivation. Both models operate on
events as differences of sensor states, following actions performed by the
room or its users. The hedonic novelty underlying curiosity is given by an
earlier developed, event frequency cluster novelty detector (Kasmarik, Uther &
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Maher, 2005). The room uses the previous action, event and reward to learn
behavioural rules that are likely to trigger particularly interesting events,
and the effectance reward reflects the confidence in each rule. Maximising
effectance through RL enables the room to learn behaviours that induce
interesting changes in the perceivable parts of its interior. Merrick, Saunders
and Maher (2007) later extend this proposal by a curious room implemented
as a society of curious agents (Saunders & Gero, 2001b) with different roles,
some combining intrinsic and extrinsic reward. They hereby use curiosity
explicitly to warrant open-ended adaptation to human behaviour: ‘Human
activity is often characterised by creativity that leads to unpredictable changes
in behavioural patterns. Consequently, it is difficult for system designers to
predict in advance all the human behaviours that an intelligent environment
may need to adapt to’ (Merrick, Saunders & Maher, 2007, p. 35).

Merrick (2008a) embraces a model of curiosity to enable a reconfigurable
robot to adapt their behaviour to changes in their embodiment. Her goal
is to teach designers creativity, reflection and imagination by observing the
emergent behaviours from changing a robot’s sensors, actuators and body.
She emphasises the need for a motivational function that is agnostic with
respect to a change in sensors and actuators, and adopts an earlier developed
curiosity model (Merrick & Maher, 2007) that maximises a hedonic novelty
reward through RL. The reward is calculated for differences of sensor states,
by first assessing their novelty with a hierarchical self-organising map, and
then transforming it through a hedonic function. A study on Lego Mindstorms
robot configurations yields behaviours which ‘encourage designers to play
with different robot structures, reflect on the relationship between structure
and behaviour and imagine new structures’ (Merrick, 2008a, p. 149).

Wiggins (2018) puts a curiosity-driven attention mechanism and the on-
going adaptation of memory toward higher compression at the basis of
human everyday creativity and development. His cognitive architecture, In-
formation Dynamics of Thinking, serves to explain spontaneous, value-less
creativity, and is illustrated in the domains of music and speech. It models
the human brain as an information-efficient, predictive processing22 (Clark,
2013) machine: ‘it predicts its world, so as to use information efficiently,
and regularly re-represents it, so as to store information efficiently’ (Wig-
gins, 2018, p. 1). Both processes are driven by information-theoretic prin-
ciples similar to Schmidhuber’s (2010) notions of curiosity and compression,
respectively. External stimuli are only memorised after receiving conscious
attention, conditional on being more novel than other stimuli. Memory in
turn is regularly re-presented by chunking and linking stimuli sequences in
a multi-dimensional, hierarchical statistical model, hereby exploiting new
patterns in the data to minimise model complexity, i.e. maximise compression.
Wiggins understands spontaneous creativity as freewheeling predictions in the
absence of external stimuli, based on sampling from memory. In predicting a
sequence that is novel relative to their memory, a system may e.g. generate
new fragments of music. Wiggins predicts the developmental trajectory of a
system with this architecture: Initially, it will imitate what is shown to them,

22 It is presently unclear how Wiggins’ (2018) architecture relates to hierarchical applications of
the Free Energy Principle (Friston, 2010; and Sec. 2.2.4) to formalise predictive processing.
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and exhibit motor babbling. Further on, the system will ‘learn the relation
between motor signals and their proprioceptive or visual correspondents, and
thus build a model of its own physical capabilities’ (Wiggins, 2018, p. 32).

4.2.2.3 Summary and Discussion

The preceding review has revealed a rich landscape of often co-dependent CC
applications that, inspired by theories of (computational) creativity, leverage
(emergent) properties of IR and intrinsically motivated behaviour. Here, we
summarise our findings to answer our specific research questions.

Reasons to
Embrace IM
and Abstract
Applications

The first question (RQ.3), ‘Why have IR and models of IM been used in
CC?’, is answered in the form of the properties and the abstract applications
that IR and IM models allow for, captured by our typology in Fig. 4.2. A
specific IR function can be defined with or be attributed different semantics
(R.1), and can thus be used to quantify novelty and value (C.1) as core
components of creativity (A.1). IR is subjective and sensitive to an agent’s
embodiment and situatedness (R.2) and thus allows for autonomous creative
agency (A.3) to emerge from the perspectives of individual agents (A.2),
potentially embedded in larger societies as a basis for modelling systems
theories of creativity (A.9, A.10). By virtue of its potential alignment with
extrinsic reward (R.4), IR can be used as a surrogate for sparse or unavailable
extrinsic reward in creative systems (A.4). This includes human IR (C.2),
which is at the basis of and thus allows for the approximation of some forms
of human aesthetic judgement (A.5). Specific instances of IM models, i.e. a
specific combination of intrinsic action-value and action-selection functions,
can give rise to exploratory behaviour (B.1). Consequently, IM can be used
as a heuristic traversal strategy to realise exploratory (A.6) and transform-
ational creativity (A.8) in creative search. Since IR can align with extrinsic
reward (R.4), intrinsically motivated behaviour can yield performance on
extrinsically defined tasks in the absence of extrinsic rewards (B.2). It can
therefore drive the creative process in complex search spaces with little or
no extrinsic guidance (A.11), hereby tackling one of the biggest challenges of
creative search. In combination with specific IR functions (cf. C.2), this can be
exploited to autonomously create artefacts that appeal to people (A.7). The
complexity of creative search is further reduced by mapping the search space
and developing efficient traversal strategies, based on the potential of IM to
induce skill and model development (B.4). This and the requirement of IM
models to yield open-ended adaptation (B.3) have been leveraged to model
different forms of mini-c acts (A.12).

Classifying
Existing
Studies

The applications named above abstract from specific and often convoluted
uses of IR and IM in related CC work, and partially answer our second
specific research question (RQ.4): ‘How have IR and models of IM been used
in CC?’ We complement this answer by analysing the characteristics of the
underlying, specific studies with respect to existing schemata to classify CC
research (cf. Sec. 4.2.1). Roughly one third of the identified studies investigate
the benefits of IR and IM models through theory only, and two thirds apply
them in simulation studies. The creative domains targeted are hereby well
balanced, from creative behaviour and the development of language, through
design and culinary creativity, to artistic, musical and scientific creativity. That
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said, the majority of examples embraces a specific creative domain as an aid
for the study of (human) creativity rather than as an engineering challenge.
Further work bridges between this cognitive and the engineering perspective,
and evaluates the use of CC systems in an arts context for both scientific
and artistic benefit. Almost every proposal exploits IM for the modelling of
autonomous systems, but more than half of the contributions also motivate the
same model’s use for co-creativity23, with an even amount of work addressing
co-creativity exclusively between machines or between machines and people.
Almost half of the contributions reviewed here use IM to drive the behaviour
of multiple agents. While most systems use an agent’s IR directly to drive their
decisions, three systems propose an indirect usage, leveraging the reward
or dynamics of intrinsically motivated agents to steer the behaviour of an
overarching system that does not come with the embodiment required for
intrinsically motivated agents, e.g. an evolutionary algorithm. Only a small
majority of the existing studies assume a form of virtual embodiment, almost
astride with work considering IM in physically embodied agents.

Intrinsic
Motivation
Models:
Diversity and
Limitations

This typology crucially follows from a post-hoc analysis of existing work
using our state-of-the-art definition of IM; most instances of existing work
in fact appear unaware that the properties of the specific IM model they
focus on also apply to a larger class of motivational models. When the notion
of ‘intrinsic motivation’ is explicitly used, it is often considered synonym-
ous with exploration (e.g. Grace & Maher, 2015). Indeed, almost all existing
studies model some form of exploration-inducing curiosity, e.g. via (hedonic)
novelty, learning progress or a surprise reward. While these can be summar-
ised under the umbrella of knowledge-based models (Mirolli and Baldassarre,
2013; and Sec. 2.2.2), competence-based models such as effectance motivation and
intrinsically motivated reinforcement learning, have rarely been investigated.

Crucially, not every model in the existing work meets all diagnostics
of IM (cf. Sec. 2.2.3). We have evaluated their individual fit, but because
many studies miss a full formalisation and provide ambiguous information
with respect to the reward function used, our diagnoses in Tbl. 4.1 should
be taken with a grain of salt. Since a detailed discussion of all models is
out of scope, we support this information with only two examples. The
surprise reward proposed by Macedo and Cardoso (2001a) is agent-centric,
but does not fit any other diagnostic of IR. This is mostly due to its symbolic
nature: sensing is reduced to directly perceiving or imagining products,
which are memorised as graphs of symbolic knowledge. The approach thus
relies on a closed knowledge base, which rules out freedom of semantics and
embodiment sensitivity, and severely limits open-endedness. The hedonic learning
progress reward proposed by Smith and Garnett (2012b) in contrast fulfils all
diagnostics of IM but the behaviour resulting from maximising it would not
be open-ended. This is because it measures the change of model weights rather
than the difference of prediction error and a maximising agent can thus get
stuck with ‘noisy TVs’ (Burda, Edwards, Storkey et al., 2019; and Sec. 2.2.4).
Due to these individual shortcomings, not all models in related work can
leverage all reasons to use IM in CC.

23 Some only talk of co-creativity when multiple systems contribute to the same product; we
deem it sufficient when they mutually influence their potentially distinct creative processes.
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The fit of the reviewed models to our working definition of IM only conveys
little information about their relationship to the new empowerment-based
models developed in Ch. 6 and 7 of this thesis. We next highlight the strength
of our contributions by relating them to the reviewed work.

4.2.3 Contextualising Our Contributions

We finally outline how our applied contributions in Ch. 6 and 7 relate to and
advance the existing work identified in our systematic review. We extend
these references beyond work that uses IR and IM in the individual chapters.

Broadening
the Intrinsic
Motivation
Landscape

Our systematic review has revealed a low diversity in the IRs and IM mod-
els used in existing work and a focus on few models that yield exploratory
behaviour. This is not surprising, given the origins of the IM concept in the
observation of exploratory behaviour (cf. Sec. 2.1.1), the early introduction
and continuing popularity of curiosity-based models of IM in AI more gener-
ally (cf. Sec. 2.2.4), the dominance of novelty and surprise in the definition of
creativity (cf. Sec. 4.1.1), the central role of exploration in the mechanisms of
exploratory and transformational creativity (cf. Sec. 4.2.2), and creativity stud-
ies’ emphasis on exploration in discussions of the IM-creativity relationship
(cf. Sec. 4.1.2). Our typology highlights how models of IM more generally,
rather than e.g. curiosity as a specific model, can benefit CC, thus paving the
way for leveraging other models of IM. We demonstrate this opportunity by
applying empowerment and empowerment maximisation (EM, cf. Ch. 3) as a
different IR and IM model across the following two contributions.

Driving Social
Co-Creativity

Co-creativity is a particularly interesting application domain for models of
IM due to the challenging complexity and open-endedness introduced by
interaction partners, and people in particular. More than half of the reviewed
work focusses on driving co-creative behaviour, letting interaction emerge
from the IM of the involved agents (e.g. Macedo & Cardoso, 2001b; Saunders
& Gero, 2001b; Saunders et al., 2010). Crucially, the interaction partners are
never formalised as agents in the calculation of IR, but always treated as
mere parts of a sophisticated environment. The outcome is a vast, open space
of possible interaction dynamics, only influenced by the embodiment and
situatedness of the individual agents. While this openness may be desirable
for the study of (human) creativity from a cognitive perspective, it poses a tricky
challenge from the engineering perspective: how can we leverage the benefits
of IM in co-creativity, while limiting the emerging interaction dynamics to
those that are desirable for the interaction partners, either human or machine?
In Ch. 6, we introduce a model of social intrinsic motivation to tackle this
challenge. By calculating and combining different variants of empowerment
as IRs, based on explicitly modelling the behaviour of other agents within a
shared environment, our formalism allows us to control the emergent social
interaction dynamics: we can interpolate between the extremes of supportive to
antagonistic behaviour, while still leveraging the benefits of IM. We motivate
our model in CC through thought-experiments, and motivate as well as
evaluate it via simulation experiments in the domain of videogame AI.
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Predicting
Interactive
Experiences

While the previous contribution focusses on driving the process of mini-c
acts, our contribution in Ch. 7 concentrates on the generation and evaluation
of sophisticated, interactive products, i.e. artefacts that can be actively changed
through intervention by the audience such as a kinetic sculpture or a hap-
pening. Evaluating such dynamic artefacts is particularly complicated if the
interaction outcome can mostly be captured in terms of subjective experiences.
IR functions are promising candidates for evaluating such experiences, as
they are inherently subjective. Furthermore, they are independent of specific
domain knowledge and embodiments, and can thus be used across differ-
ent domains to model different audiences. Saunders and Gero (2004) were
the first and only to use IR in the evaluation of interactive experiences. Our
contribution takes their indirect approach to using IR further by not only
evaluating interactive artefacts through IR to predict how people would exper-
ience them, but also using the outcome to generate new interactive artefacts.
In contrast to the existing approach, we leverage the IR of artificial agents
following a policy that may differ from the one that optimises the reward.
This crucially does not violate the diagnostic of agent-centricity (Sec. 2.2.3) as
long as the intrinsic reward is calculated only on the internal components of
a model describing the embodiment of the experiencing agent. In summary,
we propose, instantiate, and evaluate a blueprint for autonomously generating
human-appreciable interactive artefacts based on an off-policy, IR estimation
of human experience. We again motivate our proposal through CC thought-
experiments, and demonstrate it in the domain of videogame AI.

Chapter
Conclusion

In this chapter, we have argued that models of IM can advance core areas
of CC research. Based on a systematic review of related work, evaluated
against a strong theoretical basis, we devised a typology that answers why
we should embrace models of IM in CC (RQ.3), and how such models have
been leveraged so far (RQ.4). We next use this typology to guide a systematic
review of how models of IM can advance computational game creativity (Liapis,
Yannakakis & Togelius, 2014) as a CC sub-field and part of videogame AI.
Based on our insights, we motivate how our contributions to videogame AI
in Ch. 6 and 7 can benefit game players, designers and AI engineers.



5INTRINSIC MOTIVATION IN VIDEOGAME AI

Videogame AI is a striving area of research, with a strong demand for
innovation by games industry and players. In this chapter, we seek to support
our second overarching research question, ‘Can IR and models of IM advance
videogame AI?’ (RQ.2), by answering two specific research questions with
respect to existing work:

RQ.5 Why have IR and models of IM been used in videogame AI?

RQ.6 How have IR and models of IM been used in videogame AI?

In the spirit of computational game creativity (Liapis, Yannakakis & Togelius,
2014), we raise a third question to understand whether some if not all in-
stances of related game AI work could also be considered examples of CC:

RQ.7 How do existing applications of IR and IM models in videogame
AI and CC overlap?

An affirmation would allow us to study CC ‘within and for computer
games’ (ibid., p. 47) and thus indirectly support our first overarching re-
search question: ‘Can IR and models of IM advance CC?’ (RQ.4).

StructureGame AI as we conceive it should ultimately benefit game engineers,
designers and players. To understand how models of IM could advance this
goal, we take the perspective of game design and games user research in Sec. 5.1
to understand what constitutes games and (game)-play, and what makes
games intrinsically motivating for people. We then leverage these insights in
Sec. 5.2 to introduce and motivate existing game AI work using models of
IM and answer RQ.5 as well as RQ.6. We constrain this non-exhaustive but
systematic review with the previous definition of games and our working
definition of IM models from Sec. 2.2.3. We moreover inform our review
by existing taxonomies of game AI research. We end up with a typology of
applications of IM in game AI, which we compare with the CC typology
from Ch. 4 to answer RQ.7. We eventually motivate and contextualise our
applied contributions by relating to the existing work.

ContributionsOur main contribution in this chapter is an elaborate, systematic review
of existing work employing models of IM in game AI. Crucially, related
surveys covering IM models only consider videogames as one of many
benchmarks for artificial general intelligence. We in contrast also highlight the
role of videogames as cultural artefacts and examine how IM models have
advanced game AI to benefit game engineers, designers and players. We have
already contributed to the state-of-the-art through a review of IM models
in simulation-based game testing (Roohi et al., 2018). This chapter extends
this review by considering all areas of game AI (cf. Yannakakis & Togelius,
2018, pp. 259-260). We furthermore provide a stronger theoretical grounding
by employing our working definition of IM models (Sec. 2.2.3). While this
constrains the body of related work further, it allows us to focus more on the
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unique benefits that this class of models offers for game AI. By combining
both a computational and non-computational perspective, we contribute a
unified view of IM across game design, games user research and game AI that
may foster future interactions between these disciplines.

5.1 intrinsic motivation in videogames

We can consider at least two roles of IM in the context of videogames: a person
can be intrinsically motivated to play, or to design a game. Our primary focus
in the next two sections is on the motivation of players. But since play is the
basis for assessing a particular game design, the way designers use the IM
concept tells us a lot about its function in play. We consequently draw on both
game design (Sec. 5.1.1) and games user research (Sec. 5.1.2) to better understand
the role of people’s IM when playing a game, and to reveal why and when
models of IM can be exploited for various kinds of game AI. But what do we
mean by ‘play’, by ‘videogames’ specifically and by ‘games’ more generally?

Defining Play‘Play’ is arguably the most ambiguous (cf. Sutton-Smith, 2009) of these
concepts, and it is closely related to IM. The philosopher Santayana writes:

‘Play is whatever is done spontaneously and for its own sake.’
(Santayana, 1896, p. 19)

The game designer Schell (2019) criticises this definition because play can
often be planned, and spontaneity is thus not a strict requirement. But he
also praises it by highlighting the doing of something for its own sake as a
persistent characteristic of play. This clearly resonates with the definition of
IM as the ‘doing of an activity for its inherent satisfactions’ (Ryan & Deci,
2000a, p. 56). Vice-versa, intrinsically motivated behaviour is often described
as ‘playful’ (e.g. Amabile, 1979; Ryan & Deci, 2000a). Despite these similarities,
the literature is ambiguous with respect to whether play is an intrinsically
motivated activity: By stating ‘If we don’t like to do it, it probably isn’t play’
(Schell, 2019, p. 28), Schell reduces play to an activity that is merely volitional,
and could thus also be extrinsically motivated through an internal locus of
causality. We complement this definition by Salen and Zimmerman’s account:

‘Play is free movement within a more rigid structure.’
(Salen & Zimmerman, 2004, p. 304)

This emphasises that play is contingent on constraints within a reference
system: ‘Play is an expression of the system, one that takes advantage of the
space of possibility created from the system’s structure’ (Salen & Zimmer-
man, 2004, p. 304). This system could be natural, or it could be artificially
constructed in the form of a ‘game’.

Defining
(Video-)Games

Similar to the definition of ‘creativity’ (Sec. 4.1.1), what constitutes a game
is subject to a long and ongoing debate, with some considering games as
‘forever indefinable or ungraspable’ (cf. Juul, 2003, p. 43). Wittgenstein even
motivates his concept of family resemblance (cf. Sec. 4.1.1) through games (ibid.,
§66-67). The struggle to find a definition has been summarised by Stenros
(2017), who examines 63 definitions of games over the past seven decades to
identify what they agree and disagree on. Since the exact differences do not
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matter as much for this thesis, we adopt a definition by Juul (2003) that is
informed by a similar but smaller analysis of existing accounts:

‘A game is a rule-based formal system with a variable and quanti-
fiable outcome, where different outcomes are assigned different
values, the player exerts effort in order to influence the outcome,
the player feels attached to the outcome, and the consequences of
the activity are optional and negotiable’ (Juul, 2003, p. 35).

We constrain our scope further by adopting Juul’s definition of ‘videogames’
as ‘all games played using computer processing power’ (ibid., p. 30). We
finally contrast games with toys. According to Schell, ‘Games have rules. Toys
do not have rules. Rules are definitely one of the defining aspects of games’
(ibid., p. 31). ‘Toys are fun to play with for their own sake. In contrast, games
have goals (...)’ (ibid., p. 119). We consider toys as systems of constraints
that afford play as free movement within, but that lack goals to guide this
movement. Games are played, while toys are played with (ibid., p. 27).

Schell’s remark that toys are played with ‘for their own sake’ again resonates
with the definition of IM (Ryan & Deci, 2000a). But is such play really an
intrinsically motivated activity? How is playing a game, where goals are
present, different from playing with a game, i.e. using it as a toy, for its own
sake? We next investigate the role of IM in play through the lens of game
design, focussing on the general IM concept rather than specific theories. By
resolving ambiguity in the literature, we address the above questions and
argue why models of IM can benefit videogame AI.

5.1.1 Intrinsic Motivation in Game Design

To diagnose intrinsically motivated behaviour, psychologists try to rule out
that a person acts for a separate outcome.Game-playing represents a particu-
larly useful activity to understand when people are intrinsically motivated.
This is because gameplay, in contrast to many other activities (cf. the examples
in Sec. 2.1.1), is mostly closed with respect to separate outcomes, and games
can be simplified to a high degree without losing expressivity.

Games are
Autotelic

Games are separated from larger reality through what Huizinga (1950)
calls the magic circle, i.e. a ‘boundary – or frame – that defines the game in
time and space’ (ibid., p. 10). When a person starts playing a game, they cross
over this boundary to adopt the artificial behaviours and rituals of a game.
During the game, the magic circle persists until the game concludes (Salen
& Zimmerman, 2004, pp. 332-333). In their influential book on game design,
Salen and Zimmerman stress that the magic circle establishes rules and goals
apart from ‘ordinary life’. They furthermore follow from the self-contained
nature of the magic circle that games are autotelic activities, i.e. they have
an end or purpose in themselves, because they ‘contain their own meanings
and provide their own goals’ (ibid., pp. 332-333). While this is a defining
characteristic of games, it does not imply that a game cannot also have
separate consequences: people engage with games to win prizes in e-sports
competitions or to impress their friends at the arcade. But, as part of his game
definition, Juul (2003) requires these consequences to be both optional and
negotiable: ‘I suggest that games are characterized by being activities with
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negotiable consequences: A specific playing of a game may have assigned
consequences, but a game is a game because the consequences are optionally
assignable on a per-play basis. That games carry a degree of separation from
the rest of the world follows from their consequences being negotiable’ (Juul,
2003, p. 34, emphasis added). Salen and Zimmerman note that games as
autotelic activities are done ‘not with the expectation of some future benefit,
but simply because the doing itself is the reward’ (ibid., p. 332). Similarly,
Caillois (1961) describes a game as ‘[...] an activity which is essentially: Free
(voluntary), separate [in time and space], uncertain, unproductive, governed
by rules [and] make-believe’ (ibid., pp. 10-11). This resonates strongly with
Ryan and Deci’s (2000) definition of IM; and since games must be autotelic by
definition, we may consequently be tempted to conclude that any game is
also intrinsically motivating.

Autotelic
Games and
Intrinsic
Motivation

Unfortunately, the game design literature is too ambiguous to confirm or
reject this idea. Salen and Zimmerman seem to support it by noting that
‘games are, to a greater or lesser extent, pursued for their own sake, for
their own intrinsic stimulation’ (ibid., p. 333) and that, ‘although there are
always some extrinsic reasons for [game] play, there are always intrinsic
motivations as well’ (ibid., p. 333, emphasis added). This stands in slight
conflict with Juul’s remark1 that games can ‘be played with or without real-life
consequences’ (Juul, 2003, p. 35, emphasis added). We also note that these
references relate to ‘stimulations’ or ‘pleasures’ as inherent properties of
games, rather than relational properties between a game and a specific player:
‘all games also provide intrinsic, autotelic pleasures that are significant only
within the artificial meanings that the game creates’ (Salen & Zimmerman,
2004, p. 360). We thus find that in game design, the terms ‘autotelic’ and
‘intrinsically motivating’ are often used synonymously to describe games, the
player as the subject of motivation is left out, and there is no consensus on
the relationship of IM and play.

A Free Choice
Experiment

We resolve this ambiguity in the literature with the following thought-
experiment: Consider playing a game in which you find yourself in a small
cabin situated within a vast and diverse world that is discernible through the
windows. The goal is to score as highly as possible, and the game increases
your score the longer you stay in the cabin. The described experience is
autotelic, in that it establishes a goal separate from, and with no bearing on,
reality. Now ask yourself: would you keep playing this game without being
told to do so? Most people would probably say no; they would deem the
game unenjoyable, and not play it in the absence of external pressure. This
imaginary ‘free choice’ experiment (cf. Sec. 2.1.2) highlights that most people
would not be intrinsically motivated to play this game. Thus, being autotelic is
not sufficient for a game to be intrinsically motivating.

In order to understand what is missing for a game to be intrinsically
motivating, we have to consider the relationship of the game and a specific
person, from the perspective of that person rather than the game. The person
as an active agent will only play the game, i.e. they will only become motivated
to work toward and achieve game-internal but player-external goals, if this

1 Juul (2003) notes that the requirement for games to have optional, separate consequences is
an ideal, as often such consequences are beyond our (conscious) control. I.e. a ‘pure autotelic’
game as in our thought-experiment probably does not exist outside lab conditions.
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activity is intrinsically rewarding. Consider altering the reward mechanic in
our thought-experiment game so that the score is increased when the player
successfully completes quests that require leaving the cabin and exploring the
game world. We believe that many more people would play this version of the
game without external pressure, and could thus be considered intrinsically
motivated. This is because engaging in these quests would allow them to
satisfy their need to experience unfamiliar situations, i.e. their curiosity. For a
person to be intrinsically motivated to play a game, progress on autotelic goals
must align with player-intrinsic reward.

Even if a player engages with a game without external pressure, we cannot
assume an alignment between the game’s goals and the player’s IRs. This is
because a person might not be intrinsically motivated to play the game, but
to play with the game, i.e. using it as a toy. This is possible because ‘many
games are built on top of toys’ (Schell, 2019, p. 119). Schell proposes to guide
game design by asking: ‘When people see my game, do they want to start
interacting with it, even before they know what to do? If not, how can I
change that?’ (ibid., p. 90). Minecraft (Mojang & Microsoft Studios, 2009) for
instance has long been a toy, and was only turned into a game later by adding
a survival mode. When engaging with a toy, a person becomes the designer
of their own experience, leveraging the free movement the toy affords for the
satisfaction of their IMs (cf. Bogost, 2016). Costikyan (2002) notes that the
game SimCity (Maxis, 1989) ‘works because it allows players to choose their
own goal, and supports a wide variety of possible goals’ (Costikyan, 2002,
p. 13). IM explains why people e.g. build vast structures in Minecraft, even if
this does not necessarily contribute to their survival and thus to the game’s
goal. We summarise that a person can be intrinsically motivated to play with a
game, rather than playing the game, by ignoring the game’s goals.

Resolving
Ambiguity

There is a reason why the game design literature is ambiguous with respect
to the role of IM: games are designed for no other reason but to be played:
‘crossing into the magic circle as well as maintaining its existence, represent
two of the chief challenges of designing meaningful play’ (Salen & Zimmer-
man, 2004, p. 333). A game must by definition be autotelic (ibid., pp. 332-333)
and separate outcomes must be optional (Juul, 2003). In its purest form, a
game is thus only played when people become intrinsically motivated to do
so. Since game design strives for continuous player engagement, games are
implicitly designed to be intrinsically motivating for as many people as pos-
sible. In other words, game design implicitly entails aligning game-internal
and yet player-external goals with player-intrinsic reward. Traditionally, IM
is often associated with curiosity (cf. Sec. 2.1.2), and the effect of curiosity on
increasing player’s engagement is so pronounced that Schell even dedicated a
game design lens to it: ‘To use this lens, think about the player’s true motivations
– not just the goals your game has set forth, but the reason the player wants
to achieve those goals’ (ibid., p. 30, emphasis added). We crucially do not
claim that IM is the only mechanism motivating human game-playing, but it
is likely one of the key factors in fostering player engagement.

Our thought-experiment reveals the central role of IM in the design and
play of and with games. But these insights only rest on the general IM concept,
and do not yet reveal how much IM really contributes to human play, and
what specific models are at work. In the next section, we complement the
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present theoretical argument by consulting empirical studies from games
user research that demonstrate the role of specific psychological IMs in driving
human play. This allows us to understand why certain IM models might be
better suited for specific game AI applications than others, and to motivate
the use of empowerment as IR in our novel models and applications.

5.1.2 Intrinsic Motivation in Games User Research

Games user research employs empirical methods from various disciplines such
as human-computer interaction and psychology (Drachen, Mirza-Babaei &
Nacke, 2018, p. 1) to help game designers and engineers creating ‘better
gameplay experiences by finding weaknesses in the design and structure of
games’ (ibid., p. 2). We have previously highlighted that fostering continuous
player engagement is a primary concern in game design, and pointed out IM
as facilitator of such engagement. It is thus not surprising that studies on
the relationship of IM and human play feature prominently in games user
research. The focus of these studies is on specific theories of IM rather than
the general concept, and we believe that they can highlight opportunities
for exploiting specific models of IM in game AI. We delineate the scope of
research, but do not provide an exhaustive review.

Challenge &
Curiosity

Malone proposes as early as 1981 to foster IM in videogames by designing
for challenge and curiosity, amongst other factors. He understands challenge as
the driving force in the development of competence and feelings of efficacy as
proposed by the theory of effectance motivation (White, 1959; Harter, 1978). He
furthermore draws on flow theory (Csikszentmihalyi, 1990) to identify features
that characterise challenging activities. Finally, he adopts Berlyne’s (1960)
theory of curiosity that is based on Hunt’s (1965) optimal incongruity theory
of IM. Malone proposes to modulate challenge as the outcome uncertainty
of game goals, and to increase player’s curiosity by making them believe
that their knowledge structures are incomplete or inconsistent. But contrary
to most studies in games user research, he does not measure these factors
quantitatively (cf. Denisova, Guckelsberger & Zendle, 2017; Denisova et
al., 2020). Yannakakis and Hallam (2004) complement Malone’s work by
turning his qualitative factors into objective2, quantitative metrics of challenge,
curiosity and fantasy in predator-and-prey games, and combine them into
a real-time measure of a game’s entertainment value. In a subsequent user
study, Yannakakis and Hallam (2007) show that their measure is highly
correlated (r = 0.44, p < 0.001) with the judgement of human players on the
entertainment value of different variants of a Pac-Man (Namco, 1980) clone.
This is within our scope because games user researchers have used fun and
enjoyment to operationalise the strength of IM.

Effectance &
Control

Klimmt and Hartmann (2006) as well as Klimmt, Hartmann and Frey
(2007) investigate more closely the effect of effectance on player’s perceived
enjoyment in videogames. They understand effectance as ‘receiving immediate,
direct feedback on one’s action and of influencing the game world’ (ibid.,

2 These metrics do not qualify as intrinsic reward according to our working definition in
Sec. 2.2.3, because they are not computed from the subjective perspective of an agent and thus
violate the basic diagnostic of agent-centricity, amongst others.
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p. 845). Based on player’s ratings of effectance and enjoyment on a dedicated
questionnaire, their findings confirm effectance as one of potentially many
factors impacting game enjoyment and thus IM: ‘players enjoy watching the
results of the actions they perform, and their fun declines if these efficacy
experiences are limited’ (Klimmt, Hartmann & Frey, 2007, p. 847). They
investigate situations in which the game controls only irregularly affect the
game, but they do not cover the case where players’ effectance is explicitly
constrained by a game’s mechanics, e.g. while a character is in the air after
jumping. They also investigate the effect of control as the player’s capacity
to anticipate the game’s dynamics and to influence them according to their
goals, but do not find a significant interaction effect with enjoyment. They
argue that the relationship of control and enjoyment is more complex, because
challenges that contribute to enjoyment often constrain control.

Autonomy,
Competence &
Relatedness

While the previous studies rely on a variety of IM theories (cf. Sec. 2.1.2),
games user research has arguably been dominated by self-determination theory
(Ryan & Deci, 2000b). Ryan, Rigby and Przybylski (2006) have applied this
theory to videogames in order to model player motivation across specific
games, based on the assumption that ‘players of all types seek to satisfy
psychological needs in the context of play’ (ibid., p. 349). Their hypothesis
is that ‘games are primarily motivating to the extent that players experi-
ence autonomy, competence and relatedness while playing’ and that satisfaction
of these needs ‘should thus predict subsequent motivation to play’ (ibid.,
p. 348). To probe their hypotheses, they have developed the Player Experience
of Need Satisfaction scale by translating items from existing self-determination
theory questionnaires to the games context. Applying this scale, they find
that perceived in-game autonomy and competence are associated with game
enjoyment and allow to predict future engagement. They recommend designers
to afford more player autonomy by allowing for ‘flexibility over movement
and strategies, choice over tasks and goals’ and give ‘feedback rather than
to control the player’s behavior’ (ibid., p. 349). Furthermore, they suggest
to increase competence by offering intuitive game controls that can be read-
ily mastered, and ‘tasks within the game [that] provide ongoing optimal
challenges and opportunities for positive feedback’ (ibid., p. 349).

The same questionnaire and self-determination theory as a formal framework
has been extensively used in further studies. Przybylski, Rigby and Ryan
(2010) for instance show empirically that the need satisfaction of competence,
autonomy and relatedness can contribute to IM and serve as a robust predictor
across player demographics, game genres and content. Peng et al. (2012)
add further support with experiments manipulating game features of an
exergame with respect to each of these three basic needs. They find that
such manipulation allows to predict need satisfaction, game enjoyment and
motivation for future play, amongst others, and that the needs for autonomy
and competence serve as mediators between game features and ongoing en-
gagement. Abuhamdeh, Csikszentmihalyi and Jalal (2015) explicitly relate
self-determination (Ryan & Deci, 2000b) and flow theory (Csikszentmihalyi,
1990) in competitive videogames. The concept of optimal challenge is central
to flow theory, and cognitive evaluation theory as a part of self-determination
theory proposes that optimal challenges are enjoyable because they maximise
perceived competence. Abuhamdeh, Csikszentmihalyi and Jalal (2015) adopt
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Malone’s (1981) early idea of linking challenge to outcome uncertainty of
goals, and investigate how outcome uncertainty and perceived competence affect
players’ IM. Their participants preferred games with high outcome uncertainty,
mediated by the feeling of suspense, over those that merely maximised per-
ceived competence. This suggest that optimal challenges, as suggested by flow
theory, yield IM because they promote outcome uncertainty experienced as
suspense, and that maximising competence and autonomy alone, as proposed by
cognitive evaluation theory, might not be enough to predict IM and engagement.

Player
Typologies

The previous findings are complemented by research into player typologies.
Hamari and Tuunanen (2014) have proposed a meta-synthesis of existing
typologies into the five dimensions of (i) achievement, (ii) exploration, (iii)
sociability, (iv) immersion and (v) domination. We can associate these player
types with different theories of IM: (i) theories of effectance motivation, personal
causation and the concept of competence in self-determination theory, (ii) theories
of curiosity, (iii) the notion of relatedness in self-determination theory, (iv) flow
theory and (v) self-determination theory’s need for autonomy in terms of not
being dominated or controlled by others. This allows us to make several
points. Firstly, we can retrieve almost every established psychological theory
of IM in games user research. This not only highlights the wide scope of
this field, but also the diversity of IM in player motivation. Player typologies
cover both intrinsic and extrinsic motivations in play, but we believe that this
association still shows the importance of IM in human play. We secondly find
that not all player types can be explained in terms of a single IM theory. This
supports that players are motivated by a complex interplay of intrinsic needs,
and challenges whether e.g. self-determination theory (Ryan & Deci, 2000b)
alone is sufficient to explain player motivation. We finally note that this
association highlights inter-subjective differences in player motivation. As a
consequence of this heterogeneity, Bartle stressed that ‘successful games must
provide gratifications for all (...) player types’ (Bartle, 2004; as paraphrased
by Ryan, Rigby and Przybylski, 2006, p. 348).

Reliability of
Results

We find that games user researchers have considered a broad spectrum
of psychological theories of IM (cf. Sec. 2.1.2), but, as in the game design
literature (cf. Sec. 5.1.1), we also notice ambiguity in the use of the IM
concept. Ryan, Rigby and Przybylski (ibid.) for instance put forward self-
determination theory hypotheses that can be applied ‘both at the level of
the player making choices between gaming products, and the motivation
of a player while “in character” within a particular gaming context’ (ibid.,
p. 349). They thus mix up a person’s IM in playing a game, and in other
activities outside the magic circle (Huizinga, 1950). The discussion of IM
in games is further complicated because definitions of core concepts such
as effectance, competence, autonomy and others are very vague and change
frequently across publications. Finally, some concepts are very high-level
and overlap between theories, e.g. competence (Ryan & Deci, 2000b) with
effectance (Klimmt & Hartmann, 2006; Klimmt, Hartmann & Frey, 2007) and
optimal challenge (Abuhamdeh, Csikszentmihalyi & Jalal, 2015). Tyack and
Mekler (2020) summarise the state-of-the-art of self-determination theory
research in games, and point out open questions.

Considered coarsely, we yet deem these findings very valuable; they not
only empirically support the importance of IM in human game-playing, thus
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complementing our theoretical argument in Sec. 5.1.1, but also highlight
specific candidate theories of IM as particularly relevant. Also, the wealth of
results highlights the challenge that human game-playing can likely not be
explained through a single theory of IM. Based on our mapping from player
types to motivations, and the need for successful games to attract different
player types (cf. Bartle, 2004), we also conclude that commercial games, unless
targetting a player niche, must provide multiple ‘hooks’ for different IMs
to attach to. In the next section, we use these insights to motivate existing
applications of IM models across different areas of videogame AI, and to
contextualise our own contributions to this field.

5.2 review of intrinsic motivation in videogame ai

Equipped with the key insights on the role of IM in game design and human
play laid out in the previous section, we are almost ready to approach
this chapter’s research questions. As final requirement, we provide a more
principled account of videogame AI in terms of its goals and stakeholders.

Defining
Game AI

Yannakakis and Togelius define videogame AI as ‘the study of AI in and
for games’ (ibid., p. 4, emphasis added). We adopt their definition, because
it uncovers widespread ambiguity in the use of the term. On the one hand,
new AI techniques are evaluated in games as benchmarks for artificial gen-
eral intelligence. Games here serve as a means to an end, with advances
benefiting a wide range of stakeholders and applications, but typically not
games specifically. On the other hand, AI is developed for games, i.e. to ulti-
mately benefit game engineers, designers and players (cf. ibid., pp. 262-264).
We distinguish four core areas of the latter kind of game AI research by
modifying3 a taxonomy originally put forward by Yannakakis and Togelius
(ibid., pp. 259-260): (i) the design of (game-)playing agents, (ii) the engineering
of non-player character (NPC) behaviour, (iii) player experience and behaviour
modelling, and (iv) procedural content generation (PCG).

In Sec. 5.2.1, we use this account of game AI to answer our three research
questions via a systematic review of existing work exploiting models of IM
for game AI. In Sec. 5.2.2, we eventually draw on our findings to contextualise
and motivate our novel IM models and applications in Ch. 6 and 7.

5.2.1 Systematic Review

We answer our first two research questions, ‘Why have IR and models of IM
been used in videogame AI?’ (RQ.5) and ‘How have IR and models of IM
been used in videogame AI?’ (RQ.6), through a systematic review of research
employing models of IM in videogame AI. We inform and structure this
review based on the preceding account of game AI, and by our working
definition of IM models (Sec. 2.2.3). In contrast to other reviews, we consider
both meanings of game AI, and all areas of research on the use of AI for
games. Based on our findings, we derive a typology of abstract applications of

3 In contrast to Yannakakis and Togelius (2018, pp. 259-260), we consider the engineering of
player- and non-player behaviour separate categories. We furthermore write (game-)playing to
stress that this class subsumes research on playing games and on playing with games.
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IM models in videogame AI, and of (emergent) properties of IR and intrinsically
motivated behaviour that these applications leverage. We finally answer RQ.7,
i.e. ‘How do existing applications of IR and IM models in videogame AI and
CC overlap?’, by comparing the first typology with its CC analogue derived
in Ch. 4. This allows us to decide whether the abstract applications identified
in related game AI work can be considered instances of computational game
creativity (Liapis, Yannakakis & Togelius, 2014).

5.2.1.1 Method

Literature
Selection
Method

We filter related work on models of IM in game AI through a three-step
process, the first two steps being similar to the strategy employed for our
review of related CC research (Sec. 4.2.2). We (i) identify and coarsely filter
candidate literature by their title and abstract, then (ii) extract qualifying work
based on in-depth reviews, and finally (iii) only select those publications that
are of direct relevance for motivating our work in Ch. 6 and 7.

For our first step (i), we manually4 combed through relevant conference
proceedings and journals publishing work on each of the two views on game
AI. For work employing AI for games, we consulted the Foundations of Digital
Games Conference (FDG) (2009-2019); the Artificial Intelligence for Interactive
Digital Entertainment Conference (AIIDE) (2005-2019) and the Conference on
Computational Intelligence and Games (CIG) (2005-2018), which has recently
been renamed to the Conference on Games (CoG) (2019). We also considered the
Experimental AI in Games (EXAG) workshop as part of AIIDE (2013-2019); the
Computational Creativity and Games Workshop (CCGW) as part of the Interna-
tional Conference on Computational Creativity (ICCC) (2015-2017); the Symposium
in AI & Games as part of the convention of the Society for the Study of Artificial
Intelligence and Simulation of Behaviour (AISB) (2009-2019); and the Computer
Games Workshop (CGW) at the International Joint Conference on Artificial Intelli-
gence (IJCAI) (2013-2018). We furthermore took into account journal articles
in Computers in Entertainment (CiE) (2003–2018); Games (MDPI, 2010-2019)
and in Transactions on Computational Intelligence and AI in Games (T-CIAIG)
(2009-2017), which has recently been renamed to Transactions on Games (ToG)
(2018, 2019). Specifically for research employing AI in games as benchmark,
we also included the Conference on Neural Information Processing Systems (Neur-
IPS) (2001-2019), the International Conference on Machine Learning (ICML) (1996,
2002, 2004-2019), and the International Conference on Learning Representations
(ICLR) (2013-2019) into our search. We identified further related work by
following up references in the initial list of candidate publications.

For our second step (ii), we have filtered the list of candidates based
on in-depth comparisons against both, Yannakakis and Togelius’ definition
of videogame AI (2018, p. 4), complemented by Juul’s (2003) definition of
videogames (Sec. 5.1), and our working definition of IM models (Sec. 2.2.3).
We crucially do not consider any work that exclusively focusses on game theory
and consequently exclude e.g. the work of Jaques et al. (2019). We leave out

4 In previous joint research (Roohi et al., 2018), we have identified related work via web
search for the keywords ‘intrinsic motivation’ and ‘videogames’, amongst others. Due to the
ambiguous usage of these concepts, this approach returns many false positives while missing
out on relevant papers that do not use these keywords. We thus use a different approach here.
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recent contributions by Merrick and Shafi (2011), Merrick (2015) and Merrick
(2016) for the same reason, but also because their motivational models are not
intrinsic, as the calculation of reward depends on an extrinsically imposed
goal. It thus violates agent-centricity as the most essential diagnostic of IR
in our definition. The same applies for variants of novelty (Isaksen et al.,
2015) or constrained novelty search (Liapis et al., 2013) as these measures are
not calculated from the perspective of an agent. We notably exclude recent
work on solving hard-exploration problems with the GO-EXPLORE algorithm
(Ecoffet et al., 2019), as it presently only uses ε-greedy exploration, rather
than e.g. a model of curiosity (cf. Sec. 2.2.4). We do not consider Melhart
et al.’s (2019) work, as it does not address the calculation of IR in artificial
agents, but the prediction of human-reported IR from gameplay data.

We have finally (iii) trimmed the results further to contributions that demon-
strate reasons to embrace models of IM in game AI and their application
particularly well, thus adding to RQ.5 and RQ.6. Moreover, we included
work that is relevant to motivating our novel models and applications in
Ch. 6 and 7. We chose this non-exhaustive review strategy as the previous
two steps have uncovered a highly unbalanced research landscape, with the
vast majority of work employing models of IM in games, but not for games.
More specifically, most of the identified work focusses on the engineering of
general game-playing agents that perform well, i.e. score highly, across many
different games (Togelius & Yannakakis, 2016) as a path towards artificial
general intelligence. New contributions to this area are characterised by incre-
mental improvements to the effectiveness, efficiency and simplicity of the
used models, and exhaustive coverage does thus not contribute to the goals
of this review. Since our contributions in this thesis leverage empowerment
as formal IR, we selected two papers leveraging variations of empowerment
in general game-playing. We complemented these with three recent contribu-
tions employing models of curiosity for their state-of-the-art demonstrations
of the potential of IM models in general game-playing.

Our final selection comprises 11 related work items dating from 2006 to
2019. We report the type of study, the area of game AI addressed, and the
details on the type and usage of IR in Tbl. 5.1. We discuss the detailed
distinctions along with our findings in the next section.

Typology
Method

We answer our research questions based on a typology of both reasons
to embrace IR and models of IM in game AI, and abstract applications that
leverage them. The reasons are given by (emergent) properties of IR and
intrinsically motivated (IM) behaviour, derived from our working definition
of IM models (Sec. 2.2.3). We extracted abstract applications of IR and IM
models in game AI from our final selection of related work by considering
each application a combination of these reasons and the requirements of
one of the four core game AI research areas derived from Yannakakis and
Togelius’ (2018, pp. 262-264) taxonomy: (game-)playing, NPCs, player behaviour
and experience modelling and PCG. Both typologies focus on what has been
concretely done, and not how IM models could be exploited in principle. We
cover the latter through our novel models and applications in Ch. 6 and 7,
and in our discussion of future work in Ch. 8.
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5.2.1.2 Findings

Fig. 5.1 summarises our findings in the form of two typologies. For the first
typology we have found the same four properties of IR (R.1-4), four properties
of intrinsically motivated (IM) behaviour (B.1-4) and two corollaries (C.1, C.2)
as in the previous review on the use of IM models in CC (Sec. 4.2.2). For the
second typology, we have identified 11 new, (abstract) applications of IR and
IM models in videogame AI (A.1-11). We next motivate and describe each of
these applications via brief reviews of the related work addressing them. We
structure this review by the core game AI areas that each related work item
can be associated with, ordered by the number of identified contributions.
Within each area, related work is introduced chronologically.

(game-)playing (a .1-a .5)
We have argued in Sec. 5.1 that IM constitutes an important mechanism in
driving human game-play, and that games are not only autotelic by definition,
but usually also intrinsically motivating by design. Any game in the strict
sense, and thus the majority of commercial games, is designed to elicit the
IM of human players to warrant continuous engagement. Working towards a
game’s goals must yield IR, but vice-versa, acting to optimise IR is also likely
to yield progress on these goals. These properties of games, in conjunction
with properties of IM models, are leveraged by the earliest applications of
such models to game AI, albeit usually unknowingly.

(Game-)
Playing
Applications

IR is subjective and sensitive to an agent’s embodiment and situatedness (R.2),
i.e. it is by definition independent of extrinsic reward. Crucially though, IR
can align with extrinsic reward (R.4), and intrinsically motivated behaviour can
consequently yield task performance in the presence of sparse or in the absence
of extrinsic reward (B.2). Assuming that in human game-playing, acting to
optimise IR is likely to yield progress on game-internal goals, we suggest
that the same holds true for intrinsically motivated artificial agents. Since
many games try to attract different player types with different motivations,
an alignment of agent-intrinsic with game-internal reward could be realised
by different models of IM. Unsurprisingly, models of IM have been used
to increase AI game-playing performance when extrinsic reward is sparse
or unavailable, i.e. to model game-playing to win (A.2). But even if no goal
alignment is present, IM-driven agents can still yield playful behaviour, and
have consequently been used to model play in the absence of goals (A.5), i.e.
when games are played with as toys. If agent-intrinsic reward aligns with
human-intrinsic reward (C.2) to a sufficient degree, it can be leveraged to
model human-like play (A.4) of or with games. The previous two applications
however are rare; most existing work concentrates on designing general game-
playing agents capable of playing different games well, with the ultimate
goal of superhuman performance. These contributions use IM models to
realise A.2, but also leverage the domain and embodiment generality of IR (R.3)
to employ the same agent across different games (A.3)5. Finally, some authors
exploit that IR must not be directed towards specific outcomes, warranted

5 This case illustrates the abstract nature of these applications, in that related work often only
uses them in combination: models of IM are not employed to yield agent behaviour across
different games only, but jointly with e.g. A.2 to facilitate high performance across games.
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by the requirement to be free of semantics (Sec. 2.2.3), in combination with
the property of many IM models to induce skill and model development (B.4) to
enable transfer learning from one game or game level to another (A.1).

(Game-)
Playing
Related Work

Anthony, Polani and Nehaniv (2014) are first to embrace empowerment
(Ch. 3) as an IR in general game-playing, thus addressing A.2., A.4 and A.5.
They take inspiration from human players who, when approaching a new
game, often manage to identify ‘good’ states with respect to the game’s goals
before learning about these goals. Following the assumption that bounded
rationality (Simon, 1957) incentivises structured decisions, they use the in-
formation bottleneck principle (Tishby, Pereira & Bialek, 1999) to realise an
information bandwidth constraint on the action sequences in the vanilla
empowerment (cf. Sec. 3.2) calculation. This ‘impoverishment’ of potential
behaviours is facilitated by a hazy prediction of action consequences beyond
the usual n-step lookahead. By incorporating these ‘soft horizon’ predictions,
impoverishment results in a set of action sequences or ‘strategies’ that are
not only expected to yield highly empowered, but also clearly distinguished
states. They first evaluate this soft-horizon empowerment in a box-pushing
scenario inspired by Sokoban (Imabayashi, 1982), where the intrinsically mo-
tivated agent successfully identifies strategies to free boxes from ‘traps’, or
to push boxes away from doorways. They furthermore conduct experiments
on a predator-and-prey game similar to Pac-Man (Namco, 1980) in which the
player in a maze scores by surviving as long as possible by escaping ghosts
that chase and kill them on touch. We have noted before (Sec. 3.3) that EM
naturally entails death aversion, and the agent unsurprisingly escapes from
the ghosts and thus scores without access to an extrinsic reward. Maximising
their perceived control over the environment, the agent also realises a ‘kiting’
strategy, lettings ghosts come close enough to exactly predict and control
their movements. The authors conclude that soft-horizon empowerment al-
lows for the intuitive identification of (sub-)goals across different games, and
propose to use it in general game-playing independently of extrinsic reward, or
as ‘proto-heuristic’ while an agent still learns to optimise extrinsic reward.

Clements and Polani (2017) follow in Anthony, Polani and Nehaniv’s (2014)
footsteps, but investigate whether EM can yield collaborative behaviour in a
team of agents that aligns with a game’s goals, without knowledge of these
goals (A.5). To this end, they propose to calculate the empowerment of an
agent collective by treating it as superorganism, with action sequences repres-
enting the turn-wise acting of the individual agents, and action outcomes
summarising their individual states. They simplify this calculation of team
empowerment considerably by assuming full observability and deterministic
dynamics. This determinism is warranted by limiting the opponent team
to idle while the current team acts. An evaluation of this approach in sim-
ulations of Ultimate Frisbee with two teams of two players each shows that
maximising team empowerment as IM realises strategies that are typical for
and would contribute to the goals of this game: When not holding the disc,
agents find space by moving away from the sides of the field and other players.
They furthermore either intercept the disc thrown by opponents, pick it up
from the ground, and pass it on to their team-mate. Their experiment thus
demonstrates recognisable team-sports play behaviour induced by IM alone.
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The previous insights on empowerment are of immediate relevance for our
contributions, but general game-playing research at present is dominated by
curiosity models of IM. To be representative, we thus include three recent
contributions with state-of-the-art results. Pathak et al. (2017b) propose a
model of curiosity which maximises the prediction error of an agent’s for-
ward model as intrinsic surprise reward in RL, and is thus closely related to
Schmidhuber’s (1991) early models of artificial curiosity (cf. Sec. 2.2.4). They
sidestep one of the major caveats of this original approach – that agents
could get attached to random sources of noise – by learning a state encoding
that only distinguishes states that the agent can influence. They demonstrate
several application of IM for game-playing through evaluations on Super
Mario Bros. (Nintendo R&D, 1985) and ViZDoom (Kempka et al., 2016), an
AI research platform based on Doom (id Software, 1993). They show that
complementing extrinsic with intrinsic reward yields quicker convergence
and higher performance than optimising extrinsic reward alone. They also
find that an agent learns useful skills and explores much of the state space by
only optimising IR. In Super Mario Bros., the agent learns how to jump over
hazards and kill enemies, and thus manages to cross 30% of the first level.
Finally, an agent that was pre-trained on one level using only IR achieves
higher performance on previously unknown levels of the same game than
an agent trained on these levels only. This serves as a quantitative proof that
curiosity can yield play performance in combination with or in the absence of
extrinsic reward (A.2), facilitates generalisation across different games (A.3),
and supports transfer learning (A.1).

Burda, Edwards, Pathak et al. (2019) add further evidence to A.2 and
A.3 through a large-scale study of the same model across 54 environments,
including Super Mario Bros. (Nintendo R&D, 1985) and 48 classic titles from
the Atari Game Suite (Bellemare et al., 2013). The latter comprises several
notoriously hard-exploration games6 such as Montezuma’s Revenge (Utopia
Software, 1984), which have proven to be very challenging for general game-
playing agents that rely on extrinsic reward alone (cf. Mnih et al., 2015).
In their study, Burda, Edwards, Pathak et al. (2019) note a ‘high degree of
alignment between the intrinsic curiosity objective and the hand designed
extrinsic rewards’ (ibid., p. 1), resulting in better performance than random
agents in 75% of the Atari games. Following an increase in the batch size to
improve training stability, their curious agent passes 11 levels of Super Mario
Bros., learning skills such as finding secret rooms and defending bosses.

Burda, Edwards, Storkey et al. (2019) outperform Pathak et al.’s 2017 sur-
prise reward model with a simpler and more efficient alternative. It consists
of a fixed and randomly initialised target network to embed observations, and
a prediction network which is given the observation and trained to predict its
embedding. With repeated exposure to the same observations, the prediction
network ‘distils’ the fixed target network. The error thus decreases the more
familiar the observation is, and is consequently used as a novelty7 reward.

6 This class covers games for which extrinsic reward derived from score is either extremely
sparse, or deceptive by providing misleading guidance to the overall goal (Ecoffet et al., 2019).

7 In contrast to Pathak et al. (2017b) who maximise the error in predicting future states, Burda,
Edwards, Storkey et al. (2019) maximise the error in predicting the embedding of present
states. They thus realise a novelty, rather than a surprise reward (cf. Grace & Maher, 2015).
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They show that learning a policy which maximises only this IR through
RL allows an agent to discover 15 rooms in Montezuma’s Revenge (Utopia
Software, 1984) on average; complementing it with sparse extrinsic reward
allows an agent to increase their performance and discover 19 rooms on
average, occasionally passing the first level. A comparison against several
baselines on five additional hard-exploration Atari games yields similar or
better performance in five of six cases, outperforming Pathak et al.’s model
in three out of six games. These results highlight the use of IM models to
realise efficient game-playing in the absence of or in combination with sparse
extrinsic reward (A.2), and they quantitatively support our claims in Sec. 5.1.

non-player characters (a .3-a .8)
Non-player characters (NPCs), i.e. any character that is not controlled by a
player, are a key ingredient of videogames, and contribute critically to player
experience: enemy characters represent one of the most popular means to
introduce challenges to a game (Denisova, Guckelsberger & Zendle, 2017;
Denisova et al., 2020), team-mates or sidekicks can ease these challenges and
familiarise a player with a game, and neutral characters such as quest givers
or conversation partners can contribute to the believability of game worlds
(cf. Warpefelt, 2016). Crucially though, NPCs also pose serious design and
engineering challenges. While the previous related work has used games
mostly as AI benchmarks, the following applications of IM models to steering
the behaviour of NPCs exploit these models for games, i.e. for the benefit of
engineers, designers and players.

Non-Player
Character
Applications

This area of game AI shares three applications with (game-)playing: models
of IM have been used to make NPCs exhibit playful behaviour in the absence
of goals (A.5), to increase their human-likeness (A.4), and to employ them
across different games (A.3) without changes to the controller. They have
furthermore been exploited to create characters with individual differences using
the same model (A.6). This is possible because IR is domain and embodiment
general (R.3), but also subjective and sensitive to an agent’s embodiment and
situatedness (R.2); characters that populate different places of a game world,
and are thus exposed to different experiences, can produce different rewards
and behaviours via the same model. The property R.2 is also exploited
to allow NPCs to respond autonomously to unanticipated events or changes in
complex, open-ended game worlds (A.8). The subjectivity of IR (R.2) warrants
independence from external stakeholders, thus enabling characters to respond
to situations that an AI engineer might not have anticipated beforehand,
and has hence not designed an extrinsic reward for. The application A.8
also requires characters to adapt to changes in open-ended game worlds,
including changes to themselves and to their abilities. This is facilitated by
the potential of intrinsically motivated behaviour to yield open-ended adaptation
to different domains, agent embodiments and tasks (B.3). Finally, models of IM
have been embraced to increase the richness and complexity of NPC behaviour
(A.7), leveraging the subjectivity of IR (R.2) combined with the potential of
intrinsically motivated behaviour to induce skill and model development (B.4).

Non-Player
Character
Related Work

This agenda has been considerably shaped by the work of Merrick and
Maher. In 2006, they highlight a discrepancy between the abilities of con-
temporary game AI, and the requirements of persistent virtual worlds such as
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massive multiplayer online role-playing games that became increasingly popular
at the time. They note that these game worlds change ‘as players create and
personalise their own virtual property’ (Merrick & Maher, 2006, p. 3), but
most NPCs ‘possess a fixed set of pre-programmed behaviours and lack the
ability to adapt and evolve in time with their surroundings’ (ibid., p. 3). To
overcome this impasse, they propose to motivate NPCs intrinsically, thus
introducing application A.8. They introduce a model of curiosity which is
strongly inspired by psychology and earlier work by Saunders and Gero
(2004, cf. Sec. 4.2.2) to make skill development independent of the specific
domain, but ‘dependent on the agent’s environment and its experiences’
(Merrick & Maher, 2006, p. 5). Their RL agents learn a policy which maxim-
ises a hedonic novelty reward calculated on events as differences of symbolic
sensor states. Each event is clustered by a habituated self-organising map, and
its novelty is determined as a function of the clustering error. The actual
reward is obtained by transforming the novelty value through an inverse-U
shaped hedonic function (Wundt, 1874; Berlyne, 1971), yielding high reward for
events that are neither too novel nor too familiar. Merrick and Maher (2006)
conduct a qualitative study of agent behaviour in a simple role-playing game
scenario implemented in Second Life (Linden Lab, 2003). The same model
is deployed on two different characters to demonstrate different emergent
behaviours, realising application A.6. A ‘partner’ character progressively
and autonomously evolves new behaviours in response to experiences while
exploring the environment, e.g. forging weapons and mining iron. A ‘support’
character furthermore demonstrates adaptation to changes in the game: once
built, another character’s house is is incorporated into their exploration route.

In a later publication, Merrick and Maher (2007) draw our attention to ‘a
new generation of virtual worlds’ (ibid., p. 127) within which anyone can
design and modify entire games in an open-ended way. While traditional
game AI such as simple reflex agents could be custom-tailored to popu-
late these games with NPCs, Merrick and Maher note that this ‘requires
development effort from game designers and, while compelling for some
gamers, is too difficult or simply uninteresting for others’ (ibid., p. 129). They
propose to overcome this need for manual labour by employing intrinsically
motivated characters capable of responding ‘autonomously to unpredictable,
open-ended changes to their environment’ (Merrick and Maher, 2007, p. 127;
A.8), across any game defined within the virtual world (A.3). A major con-
tribution of this work consists in stressing the benefits that IM models can
yield for game engineers, designers and players, in terms of saving labour
and opening up creative possibilities. The authors furthermore demonstrate
their earlier curiosity model in a multi-agent scenario: a sheep herding game
designed within Second Life (Linden Lab, 2003) in which the player must
attract and keep the attention of as many intrinsically motivated sheep as
possible. Crucially, each sheep can sense the player-controlled avatar but
not other sheep. Qualitative observations of game-play sequences show that
the sheep become attached to the player avatar and follow them into other
parts of the world where they acquire new skills, e.g. using a food dispenser.
Merrick and Maher also promote application A.6 by noting that, since ‘the
experiences of each sheep are different, their responses to similar situations
can vary, creating a cast of different characters’ (ibid., p. 133).
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Merrick (2008b) adds A.7 and A.4 to the previous applications by proposing
IM models as means to increase the richness and complexity as well as the
human-likeness of NPC behaviour. She predicts these approaches to yield
more interesting characters for the player to interact with, which can vice
versa increase the believability of game worlds. She notes that curiosity as
an IM may draw an agent’s attention away from half-learned tasks, i.e. the
achievement of a certain event, and hence complements it with a competence
motivation to maintain the ‘focus of attention for long enough to ensure
that a stable behavior has emerged for completing that task’ (ibid., p. 11).
The introduced competence reward is inspired by the self-determination theory
interpretation of competence as an optimal challenge (Deci and Ryan, 1985;
and Sec. 5.1.2), and obtained by transforming the RL agent’s q-learning error
through a hedonic function. As long as the error is high, action selection and
thus task performance is not stable; motivated by competence alone, an agent
would thus stick to tasks that it can perform to a certain extent, but has not
fully mastered yet. Merrick lets curiosity and competence motivation compete
by choosing the maximum value as a motivation signal. She evaluates this
combination by introducing the quantitative metrics of behavioural variety and
behavioural complexity, and assesses them in a custom testbed which recreates
the 2006 role-playing scenario. She finds that NPCs motivated by curiosity
and competence can learn multiple, complex tasks and adapt to changes in
those tasks and their environment on the fly, consequently increasing their
behavioural variety. Crucially, NPCs that are motivated by both curiosity and
competence are found to be more adaptable in dynamic environments than
those motivated by curiosity alone.

Merrick and Maher (2009) summarise the previous studies in a book along
with a strong grounding pf their approach in established game AI techniques
and psychological theories of motivation. They furthermore propose to use
their hedonic novelty and competence reward also in a multi-option and a hierarch-
ical RL setting to yield more complex behaviours and to speed up learning.
Counterintuitively, a quantitative evaluation shows the highest behavioural
variety and complexity for the vanilla, followed by the hierarchical RL agent.
Merrick and Maher suggest that this indicates a trade-off between the abil-
ity of intrinsically motivated NPCs ‘to adapt quickly to changes in their
environment and their ability to recall learned behaviours’ (ibid., p. 149).

All previous studies leverage IM models not to create NPCs that can win a
game, e.g. to be used as opponents, but to enhance the player’s experience
with believable, rich and interesting play (cf. Yannakakis & Togelius, 2018,
p. 266, 268). Despite considering how well such NPCs can learn and adapt
to changes in various tasks, these tasks are never evaluated against a game’s
goals. We thus hold that these studies embrace IM to model play in the absence
of goals (A.6), although this is not stated explicitly.

procedural content generation (a .9-a .11)
PCG summarises different methods ‘for generating game content either
autonomously or with only limited human input’ (ibid., p. 151). We can
distinguish constructive methods through which content is generated in one
pass without explicit evaluation, and generate-and-test methods that alternate
between generating and evaluating content until a good result is reached.
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One of the most popular examples of the latter approach is search-based
PCG (Togelius et al., 2011), in which content generation is modelled as a
search through a solution space (Yannakakis & Togelius, 2018, p. 157). Within
this paradigm, ‘evolutionary computation has so far been the method of
choice’ (Togelius et al., 2011, p. 174). We point this out, because the following
applications of IR and IM models could be combined with evolutionary
algorithms and thus expand the space of search-based PCG methods.

Procedural
Content
Generation
Applications

Existing work has specifically focussed on the application of IM models
to efficiently explore game content spaces (A.10), leveraging that IM can give rise
to exploratory behaviour (B.1). Furthermore, researchers have advocated such
models to create content without game domain knowledge (A.9). This is possible
because IR is domain and embodiment general (R.3). For the produced content to
be meaningful to others, it is important that IR can align with extrinsic reward
(R.4), e.g. in then form of expectations towards content novelty or value (C.1).

Procedural
Content
Generation
Related Work

Shaker (2016) promotes the use of IM for PCG by drawing on existing
formalisations of intrinsically motivated RL (e.g. Singh, Barto & Chentanez,
2005; Schmidhuber, 2010). Her contribution goes beyond IM, in that she
also discusses how PCG can benefit from RL more generally, irrespective of
the reward type. In the following, we only discuss proposals that leverage
the combination of RL and IR specifically. Here, we exclude several of her
proposals that violate our IM model definition8, which leaves us with two
applications. Shaker notes that existing work on IR has been effective at
modelling ‘abstract qualities such as beauty [and] novelty’ (ibid., p. 455) and
consequently proposes intrinsically motivated RL as a promising candidate to
generate ‘new, yet interesting and novel content’ (ibid., p. 452) – a central
goal of PCG. Drawing on the potential of this framework to yield exploratory
behaviour, she advocates its use for the ‘efficient exploration of the content
space and higher chances of creating diverse and interesting artefacts’ (A.10)
(ibid., p. 458). She envisages an RL agent that navigates the game content
space by advancing individual content instances through reward-optimising
actions, rather than modifying entire content populations through fitness-
based selection and random modification as in evolutionary systems. She
encourages combining intrinsic reward to yield novelty, and extrinsic reward
such as measures of playability to warrant high quality. Shaker (ibid., p. 455)
introduces a second application by pointing out that intrinsically motivated
RL is applicable ‘to problems for which domain knowledge is only partially
observable or expensive to obtain’, e.g. ‘when the goal is to improvise new
types of games from scratch with no or minimal domain knowledge’ (A.9).

In an effort to bridge from her work on intrinsically motivated NPCs to
other game AI areas, Merrick (2008b) proposes to endow game elements
such as ‘buildings, weapons, furniture, and landscape’ (ibid., p. 30) with
intrinsically motivated agency, thus transforming ‘virtual game worlds into
adaptive virtual spaces that can evolve and change over time’ (ibid., p. 30,
emphasis added). She provides several examples: ‘a weapon might develop
new fighting skills, a room might learn how to trap intruders, trees might
learn to repel lumberjacks’ (ibid., p. 30). We only mention this ‘agent-based

8 We have omitted Shaker’s (2016) use-cases of (i) experience-driven PCG and (ii) mixed initiative
design-tools as the proposed RL reward relies on player or designer feedback, thus violating
agent-centricity as a diagnostic of IM (Sec. 2.2.3). Tbl. 5.1 describes the remaining use-cases.
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approach to PCG’ (Merrick & Maher, 2009, p. 195) as a borderline case, since
the design of NPC behaviour is traditionally not considered an instance of
PCG (cf. Yannakakis & Togelius, 2018, p. 151).

player modelling (a .4 , a .11)
Player modelling concerns ‘the detection, prediction and expression of human
player characteristics that are manifested through cognitive, affective and
behavioral patterns while playing games’ (ibid., p. 203). In game AI, this
comes down to computationally modelling ‘a player’s experience or behavior
(...) based on theoretical frameworks about player experience and/or data
derived from the interaction of the player with a game’ (ibid., p. 206). Given
the important role of IM in human play (cf. Sec. 5.1) and the grounding of
IM models in psychological theories (Sec. 2.2.4), such models are promising
candidates to model human behaviour and experience in play.

Player
Modelling
Applications

Surprisingly, existing applications of IR and IM models, in the sense of our
working definition in Sec. 2.2.3 are rare. Player modelling is often utilised
within other core areas of game AI, e.g. to ‘improve the human-likeness and
believability of any agent controller’ (ibid., p. 274). We consider the use of IM
models to model human-like play (A.4) such a case of player behaviour modelling
in the service of (game-)playing and NPCs, especially as it has been strongly
grounded in observations of players (Anthony, Polani & Nehaniv, 2014) and
in psychological theories of IM (Merrick, 2008b). Similarly, models of IM have
been proposed for player experience modelling in PCG, more specifically to
predict people’s experience of fun in games (A.11), leveraging that computational
IR can correlate with human IR (C.2).

Player
Modelling
Related Work

The latter application has been introduced by Togelius and Schmidhuber
(2008) in a borderline case of experience-driven PCG (Yannakakis & Togelius,
2011). We say ‘borderline’, as instantiations of this paradigm usually use data
from actual human player experience on existing content to drive the gen-
eration of new content that elicits a certain experience. Remarkably though,
Togelius and Schmidhuber propose to evolve game rules based on a model
of player experience that is not informed by actual human data: an agent’s
learning progress (cf. Schmidhuber, 2010) as a predictor of people’s experience
of fun in games (A.11). They support their approximation with psycholo-
gical and game design theories such as Koster’s (2013), who argues that
well-designed games start easy, but afford the player to continuously learn
something new through play. They propose to use this estimate of a player’s
fun as a fitness criterion in an evolutionary algorithm, which represents an
indirect use of IR for search-based PCG. They do not clarify the benefits of their
human-less approach specifically, but treat it as a stepping stone towards
automated game design, e.g. to inspire human designers through innovative
game prototypes, or to fine-tune a human-made game to a certain difficulty
level. In their applied study, learning progress is approximated by the average
score of different evolved game-playing agents. However, this does not qualify
as an IR as it violates agent-centricity (cf. Sec. 2.2.3 and example on deep
q-learning in Sec. 2.2.4). We thus only consider their theoretical proposal on
intrinsic formalisations of learning progress as a part of related work.
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5.2.1.3 Discussion

Based on our review, we have associated reasons to embrace IR and models
of IM with abstract applications of these rewards and models in the four core
areas of game AI: (game-)playing, NPCs, player modelling and PCG (Fig. 5.1).
Through our individual summaries for each area, we have partially answered
why IR and IM models have been embraced in game AI (RQ.5) and how these
have been applied so far (RQ.6). We now add to these answers by identifying
and discussing usage patterns in the reviewed work.

Classifying
Existing
Studies

Our first two review steps have uncovered that IM models are almost ex-
clusively leveraged for general game-playing as a part of (game-)playing research.
Related work in this popular research area treats games as benchmarks for
artificial general intelligence, but does not consider how such models could
advance games by benefiting engineers, designers and players. The opposite
applies for all other game AI research areas: there is very little related work,
and it exclusively focusses on leveraging IM models for games.

Yannakakis and Togelius (2018, p. 264 ff.) highlight that all four areas of
game AI heavily rely on and influence each other. Unsurprisingly, we find a
similar overlap of IM applications in related work. Most applications outside
(game-)playing focus on the design of NPC behaviour, but they have largely
been driven by the same group of researchers. Applications of IM models for
player modelling and PCG in contrast have been advocated by different people,
but they are often only touched on and lack support through applied studies.
IM-driven PCG has notably only been addressed theoretically so far.

A Focus on
Generality

We note that strikingly many applications address some form of generality.
This resonates with Togelius and Yannakakis’ (2016) appeal to consider
generality not only in (game-)playing, but across all areas of game AI to
advance AI for and beyond games. They formulate a research agenda towards
AI that can (i) work on any game (game generality), (ii) ‘model, respond to
and/or reproduce the very large variability among humans in design style,
playing style, preferences and abilities’ (ibid., p. 469) (user/designer/player
generality), and (iii) be applied to multiple tasks in the game design process
(task generality). Related work has addressed each of these types, and in
different game AI areas. Most prominently, (i) game generality is covered by
leveraging IM models to model play to win with no extrinsic reward (A.2), to
model play in the absence of goals (A.5), to employ the same agent across different
games (A.3), to allow NPCs to respond autonomously to unanticipated events or
changes in complex, open-ended game worlds (A.8), and to create game content
without domain knowledge (A.9). Moreover, (ii) user/designer/player generality
has been addressed by using IM models to replicate human-like play (A.4), to
create NPCs with individual differences using the same AI (A.6) , and to predict
people’s experience of fun in games (A.11). Finally, task generality (iii) has only
been explicitly promoted by Merrick and Maher (2008; 2009) when proposing
a PCG application of their NPC models. More implicitly, the potential of
IM models for task generality is supported by the successful use of similar
models, e.g. curiosity, across different game AI areas. Our earlier observations
may have suggested that IM research on generality is only conducted within
(game-)playing, and in disregard of benefits for designers and players; we have
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now learned that generality is also addressed in all other areas of game AI,
but with a focus on benefiting games.

Intrinsic
Motivation
Models:
Diversity and
Limitations

The diversity and limitations of IM models in related work are reminiscent
of the CC case (Sec. 4.2.2). The motivational landscape is small. Most existing
work focusses on some form of curiosity, realised through maximisation of a
(hedonic) novelty, learning progress or surprise reward. This is complemented by
a competence motivation in Merrick and Maher’s (2008; 2009) NPC work, and
Shaker’s (2016) brief mention of the IMRL model for PCG. Most utilise IR
directly for action selection; only Togelius and Schmidhuber (2008) propose
its indirect usage as fitness in evolutionary search.

Related work considers different conceptualisations of IM, and it is thus
not unexpected that several associated models do not fit all diagnostics of
IM under our definition (cf. Sec. 2.2.3). Merrick and Maher’s (2006) curiosity
reward for instance, used throughout their later work, is calculated from a
symbolic description of sensor states. It thus relies on a closed knowledge
base, which rules out freedom of semantics and embodiment sensitivity, and
severely limits open-endedness. Most of the IM models referenced by Shaker
(2016) conform with all our diagnostics but IMRL, which, as discussed in
Sec. 2.2.4, does not warrant open-ended development. Crucially, the affected
models cannot be leveraged for all game AI applications that other, fully-
qualifying models have been used for. This particularly concerns applications
addressing different forms of generality, as discussed and summarised earlier.

Game AI and
Computational
Creativity

We conclude this discussion by answering RQ.7: ‘How do existing applic-
ations of IR and IM models in videogame AI and CC overlap?’ Our goal is
to understand to which degree related work in game AI can be considered
examples of computational game creativity (Liapis, Yannakakis & Togelius,
2014). We first consider whether game AI applications can be considered
special cases of CC applications. For this purpose, we compare the (abstract)
applications in our game AI typology in Fig. 5.1 to the CC typology in Fig. 4.2.
We begin with cases of artefact generation and evaluation, as the most pro-
moted examples of computational game creativity (cf. Liapis, Yannakakis &
Togelius, 2014; Ventura, 2016a). We can understand the efficient exploration of
game content spaces (A.10) as a means to produce novel and valuable content
in PCG a special case of exploratory and transformational creativity (CC A.6,
A.8) in CC, the latter when e.g. model or policy adaptation is involved. IM
has been proposed as the foundation of an agent-based model of content
creation within the search-based PCG paradigm (Shaker, 2016). In each step of
the process, the agent assesses the novelty and potential value of content in-
stances in the form of a (combined) reward signal, thus assessing the creativity
of (partial) artefacts (CC A.1). Based on the agent-centric nature of that system,
we should also consider it a a model of p-creativity (CC A.2). Through A.10, IM
has been applied not only to create more diverse and qualitative content, but
also to do so more efficiently – i.e. to tackle the complexity of creative search (CC
A.11). We furthermore consider the use of IR to predict people’s experience of fun
in games (A.11) in player modelling a special case of approximating the human
aesthetic judgement (CC A.5). Togelius and Schmidhuber (2008) propose to
use IR as estimate of player appreciation in game content generation, thus
creating artefacts that appeal to people (CC A.7). Albeit receiving little coverage
in discussions of computational game creativity (cf. Zook, Riedl & Magerko,
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2011; Liapis, Yannakakis & Togelius, 2014; Moffat, 2015), we can also identify
applications of IR and IM models to (game-)playing and NPCs as specialisa-
tions of CC applications. Most notably, leveraging IM models for NPCs to
respond autonomously to unanticipated events or changes in complex, open-ended
game worlds (A.8) echoes the CC applications to model mini-c creativity in de-
velopment and adaptation (CC A.12) and to increase creative autonomy (CC A.3).
Together with A.8, the creation of NPCs with individual differences from the
same IM model should be considered a case of modelling p-creativity (CC A.2).

We find that related work on game AI not only specialises existing CC
applications – it also advances CC by leveraging IM models for general game
AI. Wiggins (2018) points out that CC shares similarities to artificial general
intelligence, but notions of generality are practically rarely addressed in
what is commonly considered CC (Sec. 4.2.1). Loughran and O’Neill (2018)
for instance note that CC systems are usually tested on one domain only,
and without further inquiry into a specific domain’s effect on the system’s
performance. All facets of general game AI put forward by Togelius and
Yannakakis (2016) comprise an element of novelty, e.g. in the application of
the same game-playing agent to a new domain; moreover, they encompass
value, as in the requirement to score highly. Without advancing this argument
further, we propose that all facets of generality addressed in the reviewed
related game AI work carry a strong element of creativity, which has only
been addressed to a limited extend in CC research. We answer RQ.7 by
concluding that all applications of IR and IM models to game AI in related
work qualify as instances of computational game creativity. Research on IM
in CC and game AI can thus mutually benefit each other. In the next section,
we contextualise our applied contributions based on this heritage.

5.2.2 Contextualising Our Contributions

We have identified several applications of IR and IM models to game AI as
special cases of similar applications in CC. These bridges have likely not been
established deliberately. In this section, we account for this shortcoming and
re-introduce our CC contributions in Ch. 6 and 7 through the lens of game AI.
We later motivate these applications of IR and IM models to computational
game creativity theoretically, and support them through experiments. This
allows us to highlight hands-on applications of more generic CC research to
game AI, and to pave the way for their adaptation in other CC scenarios. We
show how each contribution draws on and takes the reviewed game AI work
further, thus complementing the CC motivation in Sec. 4.2.3.

Broadening the
Intrinsic
Motivation
Landscape

Our review has revealed a low diversity in the IRs and IM models used
especially outside (game-)playing, with different forms of curiosity dominating
the motivational landscape. We alleviate this by applying variations of em-
powerment and empowerment maximisation (EM, Ch. 3) to the engineering
of NPC behaviour (Ch. 6) and at the crossroads of player modelling and PCG
(Ch. 7), thus realising the first applications of this IR and motivational model
to game AI beyond general game-playing. We carefully justify the use of em-
powerment and EM in game AI by considering its relationship to different
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game design concepts and psychological theories of IM investigated in games
user research as discussed in Sec. 5.1.1 and 5.1.2.

General,
Believable &
Social
Non-Player
Characters

In Sec. 4.2.3, we have motivated the use of IM models in CC to steer the
behaviour of co-creative agents in complex, open-ended interactions towards
social dynamics that can benefit their interaction partners. In Ch. 6, we pro-
pose a model of social intrinsic motivation based on EM that can constrain
these social dynamics to behaviours between the extremes of support and ant-
agonism. Modern video games represent particularly complex, open-ended
environments, and we consider the interaction between an NPC, a player
and potentially other characters in advancing play a particularly fascinating
co-creative act. We bridge from CC more generally to computational game
creativity by applying our model to the design of game characters that either
support or challenge the player, thus acting as companions and adversaries.

This contribution is inspired by and advances earlier work by Merrick
and Maher (2006; 2007; 2008; 2009). We share their motivation to increase
the believability and generality of NPCs for application in and across open-
ended game-worlds. But rather than designing for human-likeness, we seek
specific social behaviour between the extremes of support and antagonism. To
this end, we embrace a combination of different empowerment rewards, thus
complementing their use of hedonic novelty and competence. In contrast to their
RL approach, we greedily maximise empowerment as a pseudo-utility; our
agent can thus respond to changes in the environment, but for now does not
adapt over time through learning. Crucially, Merrick and Maher’s NPCs do
not perceive the player as an agent, but as a mere part of the environment. This
only warrants little sensitivity to other agents, and what they consider partner-
like and supportive behaviour is thus mostly incidental and contingent on
the character’s embodiment. Unsurprisingly, they also do not address the
modelling of adversaries. Our approach in contrast rests on the explicit
modelling of the player as an agent with a stochastic policy. This crucially
allows us to couple the NPC’s motivation with that of the player, yielding a
social intrinsic motivation. We get a substantial increase in complexity, but
gain control over the emergence of genuine social dynamics through our model’s
hyperparameters. We advance related work by exploiting this added control
for the modelling of different NPC personas. We also probe the inclusion of
additional characters in the interaction of NPC and player, thus realising
what Merrick and Maher (2009, pp. 193-194) defer to future work.

The potential of empowerment to yield supportive or antagonistic beha-
viour is partially supported by studies in general game-playing, e.g. by Anthony,
Polani and Nehaniv (2014) as well as Clements and Polani (2017), showing
that empowerment can implicitly align with a game’s goals. This is com-
plemented by Pathak et al. (2017b), Burda, Edwards, Pathak et al. (2019)
and Burda, Edwards, Storkey et al. (2019), who provide substantially more
empirical evidence for such implicit goal alignment, but for curiosity as
an IM model. Clements and Polani’s (2017) contribution is also relevant in
that it investigates the emergence of cooperative behaviour through empower-
ment. Similar to Merrick and Maher though, they do not consider the state
and policy of other agents in the reward calculation. In contrast to their
cooperative behaviour, we model (unidirectional) support and antagonism.
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Intrinsic
Reward-Based
Player
Experience
Prediction

In Sec. 4.2.3, we have motivated the use of IR to predict a person’s subjective
experience of interactive artefacts. Such a predictive model can be used in
conjunction with a generative algorithm to produce interactive artefacts that
appeal to people, across different domains and independently of human
feedback. Video games are arguably the most popular interactive artefacts
in contemporary culture. But game designers never directly design play.
They ‘can only design the rules that give rise to it. Game designers create
experience, but only indirectly’ (Salen & Zimmerman, 2004, p. 168). Crucially,
the same applies when game content is generated procedurally, rendering the
prediction of a player’s experience of such generated content an interesting
research challenge. Existing approaches are limited in their generality by
relying strongly on player data and designer knowledge. In Ch. 7, we argue
that this in turn curtails the potential of PCG, and propose to overcome this
bottleneck with intrinsic reward-based player experience prediction.

We follow a similar agenda as Togelius and Schmidhuber (2008), but ad-
vance their work in several respects. Most importantly, they only address the
use of IR for modelling player experience theoretically, but for their study
refrain to a rough approximation in the form of extrinsic reward. We put their
theoretical proposal into practice, but based on empowerment as an IR, rather
than learning progress. We support this choice based on game design concepts
(Sec. 5.1.1) and findings from games user research (Sec. 5.1.2). While their
evaluation is anecdotal at best, we explore candidate player experiences that
empowerment could predict in a methodologically sound, qualitative study
with human players. Rather than focussing on the coarse concept of fun, we
aim at predicting more fine-granular player experiences with higher accuracy.
This rests on an understanding of player experience as multi-faceted and
hierarchical. Similar to them, we use a function of IR to determine the fitness
of content instances in an evolutionary algorithm. As noted in Sec. 5.2.1,
this indirect usage of IR in an evolutionary algorithm for search-based PCG
is different from Shaker’s (2016) proposal in which IR is directly optimised
by an RL agent. In contrast to related work, we compare the benefits of
such intrinsic reward-driven, human-less player experience modelling more
carefully against other approaches to experience-driven PCG (Yannakakis &
Togelius, 2011), and consider applications beyond.

Chapter
Conclusion

We have shown that models of IM can be leveraged for computational game
creativity (Liapis, Yannakakis & Togelius, 2014) by reference to three research
questions. Based on a systematic review of related work, we have answered
why (RQ.5) and how (RQ.6) IR and models of IM have been leveraged in four
core areas of game AI. We compressed these insights into two typologies of
reasons to embrace models of IM, and (abstract) applications of such models
in game AI. To answer RQ.7, we eventually compared these typologies to
their analogue in CC from Sec. 4.2.2, uncovering that all existing applications
of IR and IM models to game AI qualify as instances of computational
game creativity. Next, we complement the past two chapters as retrospective
accounts of relevant research with novel models and applications leveraging
IR and IM for computational game creativity.



Part III

MODEL DEVELOPMENT AND APPLICATIONS



6INTRINSICALLY MOTIVATED SOCIAL CO-CREATIVITY

In this chapter, we introduce coupled empowerment maximisation (CEM) as a
model of social intrinsic motivation to increase the generality of artificial agents
in co-creative interaction, while constraining their behaviour to either support
or antagonism. We bridge between CC and videogame AI by applying our
model to the development of general, believable non-player characters (NPCs)
in the form of companions and adversaries. Via qualitative experiments in
this domain, we partially answer the following research question:

RQ.8 Can we use a model of intrinsic motivation to engineer general and
social co-creative agents?

Our answer rests on understanding our game AI application as an instance
of computational game creativity (Liapis, Yannakakis & Togelius, 2014). This
chapter thus contributes to our overarching research questions by showing
directly how a model of intrinsic motivation (IM) can advance game AI
(RQ.2), and indirectly how it addresses core concerns of CC research (RQ.1).

StructureWe set out in Sec. 6.1 by introducing the concept of co-creativity. We de-
scribe how IM models have been used for the control of co-creative artificial
agents, and highlight shortcomings of these models towards realising general,
supportive and antagonistic behaviour in co-creativity. In Sec. 6.2, we show
that similar shortcomings of related work exist in our application domain of
videogame AI, specifically in engineering general and believable NPCs that can
cope with the increasing complexity of modern games. In Sec. 6.3, we intro-
duce a blueprint for social models of intrinsic motivation that can overcome the
identified shortcomings of both, NPC AI specifically, and co-creativity more
generally. In Sec. 6.4, we introduce coupled empowerment maximisation (CEM)
as such a social IM model, motivated by the goal to drive the behaviour of
intrinsically motivated companion and adversary NPCs. We argue for empower-
ment as a suitable, underlying intrinsic reward (IR) to give rise to supportive
and adversarial behaviour in videogames. We introduce CEM informally,
followed by a full and a simplified formalisation including pseudocode for
the action policy calculation. In Sec. 6.5.1 and 6.5.2, we eventually provide
a qualitative proof-of-concept for CEM to yield adaptive supportive and
adversarial behaviour, respectively. To this end, we simulate the interaction
of a CEM-driven NPC in a custom-made videogame testbed. We introduce
the qualitative method of observational vignettes as basis for two exploratory
studies. We probe the ability of CEM-driven characters to exhibit supportive
and adversarial behaviour, to be general with respect to changes in their envir-
onment and embodiment, and to be sensitive, i.e. to respond with different
behaviours, to such changes. We finally discuss the limitations of our studies
and the model in its present formulation in Sec. 6.6.

We have published many of our ideas and findings, albeit in less detail. Our
motivation in Sec. 6.1 and Sec. 6.2 expands arguments made by Guckelsberger
et al. (2016), Guckelsberger, Salge and Colton (2016), and Guckelsberger, Salge
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and Togelius (2018). In Sec. 6.4, we unify formalisations from each of these
publications in a general and thorough account that serves as solid foundation
for a discussion of future work. Our study on companion NPCs in Sec. 6.5.1
was originally published by Guckelsberger, Salge and Colton (2016), and
Sec. 6.5.2 provides a more extensive account of our study on CEM-induced
adversary behaviour published by Guckelsberger, Salge and Togelius (2018).

ContributionsThe core contribution of this chapter is CEM, a social model of IM capable
of yielding supportive or adversarial, emergent behaviour in open-ended
interaction. Its development entails the introduction of transfer empowerment as
a novel, social variant of empowerment. We contribute to CC by highlighting
additional benefits of IM models for driving the behaviour of co-creative
agents, and by arguing for the importance of steering the social dynamics of
such agents between support and antagonism via social models of IM. We
contribute to game AI research by advancing existing arguments on the use
of IM models to increasing the generality of NPC AI and to maintaining the
believability of the controlled characters. Moreover, CEM represents the first
motivational model based on IR to create non-neutral game characters, and
the first application of empowerment to NPCs as domain of game AI. By
arguing for specific interactions of a player and NPC to constitute co-creative
acts, we are first to consider NPCs in the context of computational game
creativity (Liapis, Yannakakis & Togelius, 2014). Finally, we contribute to
AI research more generally by coining observational vignettes as a qualitative
method for the study of AI behaviour. For a more detailed discussion of how
the work presented in this chapter relates to existing research on models of
IM in CC and videogame AI, see Sec. 4.2.3 and 5.2.2, respectively.

6.1 motivating social co-creative agents

The concept of co-creativity is omnipresent in creativity studies and, by virtue
of the tight connection between the disciplines, also addressed in much CC
research. However, a commonly agreed on definition is still under debate (e.g.
Kantosalo, 2019, p. 7ff.). We first clarify our understanding of co-creativity
as a starting point to motivating the benefit of IM for steering the behaviour
of artificial agents in co-creative interaction. We then argue more specifically
how social models of IM can advance human-computer co-creativity.

Human-
Computer
Co-Creativity

We can safely state that co-creative systems are interactive CC systems (cf.
ibid., pp. 10-12), instantiating systems theories of creativity (cf. Vygotsky, 1971;
and Sec. 4.1.1). As proclaimed by Saunders (2012), ‘no model of creativity can
be complete without an account of the interactions between individuals and
their social and cultural environments’ (ibid., p. 223). The definition of co-
creativity becomes more complex when considering the role of each system
in this interaction. For our account, we assume that all involved systems
contribute actively as agents to a joint creative process, thus acting as partners.

This chapter focuses on the specific case of human-computer co-creativity.
Similar to the more general concept, there exist overlapping definitions under
different labels. Davis (2013) defines it as a means to enable a computer
to ‘contribute as a partner in the creative process’ (ibid., p. 9) alongside a
person. While the focus here is on the creative process, Yannakakis, Liapis and
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Alexopoulos (2014) use the notion of mixed-initiative co-creation to describe
‘the task of creating artifacts via the interaction of a human initiative and
a computational initiative’ (Yannakakis, Liapis & Alexopoulos, 2014, p. 1,
emphasis added). We adopt the following working definition of human-
computer co-creativity as

‘collaborative creativity where both the human and the computer
take creative responsibility for the generation of a creative artefact’.
(Kantosalo et al., 2014, p. 1)

We understand creativity here as in the ‘standard definition of creativity’
(Runco and Jaeger, 2012; and Sec. 4.1.1). Kantosalo et al. (2014) borrow from
existing work to define human-computer collaboration as

‘a process in which two or more agents work together to achieve
shared goals’. (Terveen, 1995, p. 67)

We focus on alternating human-computer co-creativity in which the partners ‘take
turns in creating a new concept satisfying the requirements of both parties’
(Kantosalo & Toivonen, 2016, p. 78, emphasis added).

Support and
Antagonism in
Co-Creativity

Kantosalo and Toivonen (ibid.) formalise this type of co-creativity as an
iterative search on a space of concepts, based on the creative systems framework
(Wiggins, 2006; and Sec. 4.2.1). This formalisation allows us to intuitively
recognise the opportunities in human-computer co-creativity: ‘alternating co-
creation may help either party reach areas they could not have reached
otherwise’ (Kantosalo & Toivonen, 2016, p. 80). Similarly, d’Inverno proposes
that human-computer collaborations ‘could take the human creative into
entirely unexplored territories’ (Mark d’Inverno; as quoted by Pérez y Pérez,
2018, p. 182). We elaborate two types of social dynamics by which a human
collaborator can be taken into such new territories: by support and antagonism.

Supportive and antagonistic behaviour is omnipresent when people co-
create in the wild. If we look at a painting class, we might observe teachers
prescribing certain techniques to tackle a task, and students suggesting
to each other different brushes or materials. We understand the students’
behaviour as supportive; the teacher in contrast is not outright antagonistic1,
but constructively challenges the student. Crucially, both types of behaviour
contribute to shared goals in that they eventually allow people to overcome
constraints in the creative process (cf. Stokes, 2005). Considered through the
lens of the creative systems framework (Wiggins, 2006a, 2006b), such constraints
exist, amongst others, on a person’s representation of the creative search
space, e.g. of possible paintings, and on their strategy to traverse it, e.g. by
adding paint to the canvas. Transforming these constraints is key to accessing
previously unexplored territories, and considered a central mechanism of
creativity (cf. Boden, 1990/2003). In suggesting different brushes or materials,
the students support each other by inspiring the transformation of constraints
on their conceptualisation of possible paintings, and on their techniques to
realise them. By prescribing a certain technique, the teacher is antagonistic in
limiting the space of possible creative trajectories, but in this course allows

1 A real example of more antagonistic behaviour is the sculptor Anish Kapoor’s claiming of the
exclusive rights for the use of the Vantablack colour (Rogers, 2017).
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for the mastery of a specific technique before approaching others, and for
exploratory creativity (cf. Boden, 1990/2003) in the coverage of a smaller set of
creative possibilities. While the students’ and teacher’s contributions to the
joint creative process and product have in both examples been rather passive,
interaction partners can equally support and challenge each other actively. In
its simplest form, active support is given when one person advances creative
search towards satisfying the goals of the other, e.g. when jointly working on
the same painting. On the contrary, we have a case of active antagonism when
one person’s contributions counteract the other’s goals, providing a challenge
for the other to achieve their goals nonetheless. A teacher for instance could
demonstrate a new technique on the canvas and leave it to the pupil to finish.

Support and antagonism in co-creativity can crucially be either, the vehicle
to realise a separate shared goal, or the ultimate goal itself. In the latter case,
co-creative interaction must – following the ‘standard definition of creativity’
(Runco and Jaeger, 2012; and Sec. 4.1.1) – yield a novel and valuable experience,
with value being characterised by the quality of supportive or antagonistic
interaction. But even if support or antagonism itself is the goal, there must
exist a sub-goal towards which this behaviour is directed.

We advocate the design of artificial, co-creative agents, capable of exhibiting
both supportive and antagonistic behaviour to take their human collaborator
into new creative territories. Closely related, Kantosalo and Toivonen (2016)
propose embracing pleasing and provoking agents in co-creativity. We find
that most existing co-creative agents already realise supportive behaviour.
Consider the Drawing Apprentice (Davis et al., 2014) for example, a system
within which a person and a software agent take turns to draw on a virtual
canvas. The agent receives a line input from the user, analyses and adopts
the perceptual layer which they believe the user is currently in, and generates
an improvised response. They can support the user by advancing the paint-
ing in a previously unanticipated direction, or by using a different drawing
style which the person could adopt in an act of transformational creativity
(cf. Liapis et al., 2013). Crucially though, while supportive behaviour seems
to represent the modus operandi of co-creative artificial agents, antagonistic
behaviour is very much absent. The Drawing Apprentice (Davis et al., 2014),
for instance, could realise antagonism by revising some of the human part-
ner’s strokes, or by limiting their colour palette. An example of a similar
but implemented, antagonistic co-creative system is Adrian Ward’s digital
artwork Auto-Illustrator, which ‘subverts the utilitarian spirit of commercial
drawing software by turning graphic tools into autonomous agents with a
will of their own’ (Ryan, 2010). Amongst others, the software reacts to the
user’s input by drawing unpredictable graffiti and nonsensical words.

Kantosalo and Toivonen (2016) thus go too far by stating that provoking
agents that challenge a person’s concepts in co-creativity ‘are so far nonex-
istent’ (ibid., p. 82, emphasis added), but such systems are indeed very rare.
Kantosalo and Toivonen suspect that such a provocative stance is opposed
by the literature, in that co-creative agents are designed to not push their
own agenda. We believe that this stance must be overcome as it, perhaps
counter-intuitively, diminishes the benefits of human-computer co-creativity
to people. If we want artificial agents to be taken seriously as partners in a
creative activity, we require them to challenge us.
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The Role of
Embodiment

In agreement with our vision, d’Inverno demands artificial co-creators
that ‘stimulate, challenge, [and] provoke us to work in new ways and to
produce content that would not have been possible without the system’
(Mark d’Inverno; as quoted by Pérez y Pérez, 2018, p. 181). We value this
quote as it emphasises that an artificial co-creator can be indispensable. One
reason for this is given by the embodiment gap (Guckelsberger, Salge & Colton,
2017) between the human and artificial agent, arising e.g. through a different
sensory or motor interface to the shared physical or virtual world. The robot
Marimba player Shimon (Hoffman & Weinberg, 2010) for instance improvises
in real-time to a human pianist’s performance. In contrast to their human
partner though, the robot has four arms that can be moved independently
on a shared rail. At least in theory, this grants Shimon access to parts of
the musical space that are unreachable by the pianist alone. By virtue of
their embodiment, Shimon could advance creative search in a direction that
the human embodiment alone does not afford. This way, an agent’s unique
embodiment can enhance support and antagonism in co-creativity.

Extrinsic
Motivation
Bounds
Co-Creativity

At present, progress in CC is not only hindered by an ideological opposition
to realising antagonistic co-creative agents, but also by technical limitations to
unleashing their full potential. The vast majority of implemented co-creative
agents should be considered extrinsically motivated in that they optimise,
either implicitly2 or explicitly a pre-defined extrinsic reward landscape. Such
extrinsic motivation however limits the agent’s autonomy from their designer,
and in consequence to which extent they can generalise and sustain open-ended
collaboration in co-creativity through support and antagonism.

Davis et al. (2017) hold that through ‘creative improvisational collaboration,
a new form of distributed creativity arises that can lead to emergent, dynamic,
and unexpected meaning to support creativity in new ways’ (Davis et al.,
2017, p. 356; referencing Sawyer and DeZutter, 2009). When caused by the
artificial co-creator, such unexpectedness can benefit the human collaborator in
causing transformational creativity as argued earlier. But introduced through
the human partner, it poses an insurmountable challenge to an extrinsically
motivated agent: by adding to the creative process, the human co-creator
can advance creative search into situations that have not been anticipated
at the time of designing their artificial interaction partner – revealing an
anticipation gap3. Unexpectedness then arises from a mismatch between e.g.
the hard-coded situation-action rules of a reflex agent and the new situation,
or the absence of extrinsic reward. Unexpectedness can also be caused by the
designer failing to anticipate changes in the agent’s embodiment, altering the
effect of their actions and their perception of the present situation including
extrinsic reward. Consequentially, the system might suspend interaction and
become ‘incapable of continuing the creative search from the concept [or
artefact] provided by the other’, a scenario that Kantosalo and Toivonen (2016,
p. 81) coin generative impotence. Arguably even worse, the originally sensible
extrinsic reward may become deceptive, providing misleading guidance to
behaviour that is counter-productive to co-creativity in the present situation.

2 We also subsume traditional reflex- and goal-based agents under this heading, as they can be
defined in terms of greedily maximising a specific extrinsic reward landscape.

3 This equally applies for agents capable of adjusting their policy through a learning algorithm.
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Given a sufficiently complex creative search space and a rich interface for
the human collaborator to control its traversal, there is no means4 for the
designers to bridge this anticipation gap by means of extrinsic motivation.

System designers can acknowledge this anticipation gap and try to work
around it. This however necessitates a trade-off between the generality and
quality of the co-creative agent’s behaviour. On the one hand, an agent could
be designed for behaviours that work in many situations, but these are likely
too generic to contribute to a shared goal in co-creative interaction. On the
other hand, they could be tuned to high quality behaviours that only work in
a few situations. Since both human and technical resources are limited, it is
impossible to realise both generality and quality; using a model of extrinsic
motivation, there always remains a risk for generative impotence or behaviour
that is detrimental to co-creativity. We conclude that extrinsic motivation
puts a bound on the artificial agent’s autonomy from their designer, and
consequently their ability to remain responsive and contribute meaningfully
to shared goals in open-ended human-computer co-creativity.

Intrinsic
Motivation to
the Rescue

Models of IM can alleviate this generality–quality trade-off. They yield highly
general behaviour because, following our working definition in Sec. 2.2.3, IR
must be agent-centric and free of semantics; an intrinsically motivated agent will
consequently always remain responsive, which rules out generative impotence.
Moreover, being embodiment universal, IR does not cease, but adjusts when an
agent’s embodiment changes. It is less obvious though how IM models can
yield qualitative behaviour in co-creative interaction: while such models by
definition cannot direct agent behaviour to achieving a specific separate goal,
co-creativity explicitly requires collaboration on shared goals (cf. Kantosalo
et al., 2014). Crucially though, an artificial agent’s IR can align with both
the intrinsic and extrinsic rewards of a person, thus allowing for the design
of an artificial agent that can creatively contribute to the human partner’s
goals. Given these advantages, it is not surprising that more than one third
of existing research on models of IM in CC as identified in Sec. 4.2.2 also
addresses human-computer co-creativity (cf. Tbl. 4.1).

A particular challenge to generality is present in physical human-computer
co-creation, where the possibilities for creative search are open-ended and
clear-cut interaction interfaces are absent. With Curious Whispers (cf. Sec. 4.2.2,
Saunders et al. (2010) demonstrate that such physical co-creative interaction
with a human partner can emerge from only motivating the artificial agent
intrinsically. A motivation to maximise the hedonic novelty of simple tunes
makes simple mobile robots generate their own tunes, and listen to those
of others. Realising the roles of author and critic, the robots do not ‘care’
whether their interaction partners are other robots or people: Saunders, Chee
and Gemeinboeck (2013) show how human participants, equipped with a
synthesiser, co-create tunes with the robots. This example also demonstrates
that reward alignment is a two-way street: while an appropriate choice of
embodiment, situatedness and IM model can lead to the alignment of agent-
intrinsic reward with human reward, potential human interaction partners

4 The responsiveness of the agent could be sustained if a person continuously supplied ex-
trinsic reward at runtime that causes appropriate behaviour for the respective situation. This
‘prompting’ however would diminish the autonomy of the artificial co-creator and defy the
very purpose of human-computer co-creativity. We consequently rule out this option.



6.1 motivating social co-creative agents 141

can be similarly aligned: they could be told what intrinsic goals different
artificial peers follow, and then matched to the system with the strongest
alignment. In the case of Saunders, Chee and Gemeinboeck (2013), people’s
reward expectations have been adjusted to a certain extent through the
recruitment as study participants.

Still, in comparison to extrinsically motivated systems, IM allows to reduce
the need to manage people’s expectations, as it by definition does not con-
tribute to immediate, specific goals but allows for long-term skill and model
development with benefits for a potentially wide range of future tasks (cf.
Sec. 2.1.1 and 2.2.2). This is particularly useful when defining an extrinsic
reward landscape is impossible, e.g. because the precise goals of the human
co-creator are not known a priori. While the agent-centricity, freedom of se-
mantics and embodiment universality of IR (Sec. 2.2.3) allow a system designer
to narrow their anticipation gap with respect to an agent’s general respons-
iveness, the potential of IM for open-ended development enables this gap to be
reduced with respect to sustaining the quality of behaviour.

Drawbacks of
Intrinsic
Motivation
Approaches

We find that existing research on IM models for computational co-creativity
(cf. Sec. 4.2.2 and Tbl. 4.1) focuses on supportive behaviour only, although
antagonism is technically feasible. Crucially though, existing work exclusively
relies on the implicit alignment of IR to realise such behaviour. While this
technique provides benefits over extrinsic motivation for the design of more
general co-creative agents, it also introduces new challenges to maintaining
co-creative behaviour. We identify two central drawbacks.

Firstly, the mechanisms behind the alignment of an artificial agent’s IR with
people’s intrinsic or extrinsic rewards are complex and not well understood.
We illustrate this with a specific challenge. As discussed earlier, an embodi-
ment gap between the human and artificial partners can enhance co-creative
interaction by introducing an asymmetry in how both can perceive and affect
each other, and allowing for exclusive access to specific areas of the creative
search space. Crucially, IR is by definition sensitive to an agent’s embodiment
(cf. Sec. 2.2.3), thus producing a gap. However, it is presently still unclear
whether a reliable reward alignment can arise from different embodiments.
We thus consider existing work prone to reward misalignment.

Secondly, the co-creative relationship induced through implicit reward
alignment is spurious. From the perspective of the artificial agent, a human
partner is only a latent factor in how the creative search space reacts to their
actions5. They do not conceive their partner’s influence on a creative search
trajectory as that of a separate entity. The agent would choose a trajectory
that implicitly involves a person because the outcome is more intrinsically
rewarding. While these emerging relations are worthwhile investigating from
CC’s cognitive perspective (cf. Sec. 4.2.1), they pose a threat from the engineering
perspective which requires co-creative interaction to be sustained in order to
benefit the person. But without modelling a relationship in the first place,
there can be no commitment to sustaining it: if the person would advance
creative search towards a situation that is less rewarding than the situation

5 Here, we implicitly draw on extensions of the creative systems framework (Wiggins, 2006a, 2006b)
towards weak notions of embodiment (Grace & Maher, 2015) and multi-agent interaction
(Linkola & Kantosalo, 2019), as well as our work on incorporating actions and action selection
(Linkola, Guckelsberger & Kantosalo, 2020).
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arising from the agent’s contribution alone, or if another person in the agent’s
proximity would advance search in a more rewarding way, the agent will
break up what only from an external viewpoint appears like a relationship to
pursue the more rewarding alternatives. Such a situation is easily conceivable
when implicit reward alignment is slightly off, or when the person performs
a suboptimal move. We thus consider co-creativity in existing work fragile.

Summary of
Critique

To summarise, we have argued that support and antagonism could give
partners in human-computer co-creativity access to otherwise unreachable parts
of the creative search space, potentially enhanced by a difference in their
embodiment. However, we found that no existing approach motivates agents
to exhibit these behavioural dynamics without limiting their ability to sustain
open-ended collaboration and thus co-creativity. Extrinsically motivated agents
on the one hand are prone to creative impotence (Kantosalo & Toivonen, 2016)
and to switching to non-collaborative behaviours that can crush co-creativity.
This is because, in creating an extrinsic reward landscape, system designers
cannot exhaustively anticipate changes to the creative search space and
agent embodiment caused by the human interaction partner or a dynamic
environment. Intrinsically motivated agents on the other hand can cope with
such changes by virtue of the properties of IR, thus realising more general
behaviour. Existing work enables supportive and in principle antagonistic
behaviour for co-creativity by implicit alignment of agent-intrinsic reward
with human-intrinsic or extrinsic reward. However, this approach is prone to
reward misalignment, and the spurious co-creative relationships that emerge
from it are highly fragile. Overall, these drawbacks of existing motivational
approaches constrain the benefit of human-computer co-creativity to people.

In Sec. 6.3, we introduce a blueprint for social models of intrinsic motivation
to overcome these drawbacks. Before that, we highlight the need for such
models in our application domain of videogames, to steer the behaviour of
non-player characters (NPCs) in co-creative play. This serves as an additional
motivation and provides guidance for our proposal of social IM models.

6.2 general , believable & social non-player characters

In this section, we motivate the need for social model of intrinsic motivation
to steer the behaviour of general and believable non-player characters (NPCs)
that realise the roles of companions and adversaries. We introduce the concept
of NPCs, and identify shortcomings of existing NPC AI towards realising
general, yet believable NPC behaviour in complex videogames. We argue
that existing work on driving game characters though IM alleviates these
shortcomings, but falls short of realising non-neutral behaviours such as sup-
port and antagonism. We argue that agents overcoming these shortcomings
should be considered co-creative, and thus bridge to the previous section.

Non-Player
Characters

Non-player characters (NPCs) are ‘characters within a computer game that
are controlled by the computer, rather than the player’ (Warpefelt, 2016, p. 81).
They are not merely decorative, but must, through their appearance and their
behaviour, portray a specific role in the game world (Warpefelt & Verhagen,
2017). They can be friends, adversaries or neutral towards the player, e.g. in the
form of companions and pets, enemies and opponents, or vendors and quest-givers,
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respectively (van den Herik, Donkers & Spronck, 2005; Warpefelt & Verhagen,
2017). NPCs constitute an important tool to creating believable game worlds,
achieving the illusion of reality and increasing player immersion (Emmerich,
Ring & Masuch, 2018). Moreover, ‘well-designed, socially capable characters
can significantly increase game enjoyment’ (Emmerich, Ring and Masuch,
2018, p. 141; citing Dignum et al., 2009; Lee and Heeter, 2012; Afonso and
Prada, 2008). In this chapter, we focus on characters that exercise their social
roles as companions and adversaries by supporting and challenging the player.

As Partners in
Co-Creativity

For specific types of NPC AI, the interaction between the human player
and an NPC while playing a game or playing with a game (cf. Sec. 5.1.1) can be
considered a case of human-computer co-creativity6. By definition, both agents
in co-creativity must contribute creatively to shared goals. When playing a
game, this can take the form of jointly discovering a path to a previously
unknown goal state, e.g. when playing the game for the first time, or to
finding a new path to a well known goal state, e.g. when exploring different
possible strategies to achieving the same goal. When playing with a game as a
toy, a player’s interaction with an NPC could yield more meaningful play, e.g.
in that the latter aids in the exploration of the game’s possibilities. All these
scenarios can benefit from the potential of a co-creative partner to help reach
‘areas they could not have reached otherwise’ (Kantosalo & Toivonen, 2016,
p. 80). Crucially, our focus here is on a last case where the NPC as a co-creative
partner is particularly indispensable: when the experience of interacting with
a certain NPC itself is the goal. This requires the player to probe the NPC’s
role, which in return must act in ways that satisfy the player’s expectations.
The interaction of player and NPC however only qualifies as a co-creative act
if both partners take creative responsibility (Kantosalo et al., 2014) and initiative
(Yannakakis, Liapis & Alexopoulos, 2014).

BelievabilityThe quality of NPCs is to a large extent determined by their believability,
i.e. ‘the size and nature of the cognitive gap between the character player’s
experience [sic] and the character they expect’ (Lee & Heeter, 2008). Emmerich,
Ring and Masuch (2018) add that believability is a relational, dynamic and
emergent property, in that it captures how well an NPC fulfils a ‘players’
expectations that emerge during play (...), determined by the context the NPC
appears in (...) and the role it promotes’ (ibid., p. 143). NPC believability
contributes considerably to central game design and player goals: Warpefelt
e.g. notes that it can increase player engagement and immersion (ibid., p. 71,
emphasis added). Through an online survey, Lee and Heeter (2012) moreover
find a significant and strong correlation (r = 0.66, α = 0.01) between players’
enjoyment when interacting with NPCs and their believability.

Determinants
of Believable
Behaviour

There is common agreement that the believability of NPCs is shaped by
both, their visual appearance, and their behaviour (Loyall, 1997; Emmerich, Ring
& Masuch, 2018): ‘NPCs need to not only look the part, but also behave in
ways that are in line with the player’s expectations and that are believable’
(Warpefelt, 2016, p. 73). Related, Togelius et al. (2013) highlight that NPC

6 Our proposal extends Treanor et al.’s (2015) AI as co-creator game design pattern, which
describes the shared construction of game content or performances through play between
a human and artificial agent. While they require content generation and performance to
constitute a game goal, we also allow for co-creative performance to be a separate activity
that may or may not contribute to the game’s goals.
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Determinant Reference Description

Characterhood Warpefelt (2016) Actively and rationally por-
tray role in a way that con-
vinces the player.

Behavioural Diversity Yannakakis and Hallam
(2004)

Avoid the repetition of be-
haviour in the same or sim-
ilar situation.

Sensitivity to Body
and Surroundings

Lankoski and Björk (2007) Perceive and respond to
changes in own body and
surroundings.

Own Agenda Lankoski and Björk (2007);
Lee and Heeter (2012)

Follow own agenda and
take initiative independ-
ently of player actions.

Table 6.1: Determinants of believable NPC behaviour summarised from the literature.

believability is not only determined by the smoothness of behaviour, but
essentially about how this behaviour is being controlled. They warrant ‘player
believability’ if ‘someone believes that the player controlling the character/bot
is real, i.e. that a human is playing as that character instead of the character
being computer-controlled’. Many determinants of believable behaviour have
been proposed, but our argument in this section evolves around the four
factors in Tbl. 6.1 which we have identified based on existing theoretical
arguments, simulation experiments and user studies.

Firstly, an NPC must (i) realise characterhood, i.e. it must be ‘actively involved
in the portrayal of its role, and (...) act in ways that are conducive to convincing
the player that it is indeed in that role’ (Warpefelt, 2016, p. 33). Drawing
on Dennett’s (2017, p. 287ff.) concept of personhood, Warpefelt (2016, p. 33)
argues that characterhood requires an NPC to behave rationally and select
actions in a way that affords the attribution of intentions via the intentional
stance (Dennett, 1989). Secondly, rather than repeating the same behaviours
time and again, a believable NPC should exhibit (ii) behavioural diversity.
Related, Yannakakis and Hallam (2004) find that behavioural diversity can
contribute to interestingness, based on the simulated evolution of opponent
NPCs in a Pac-Man-like (Namco, 1980) predator-and-prey scenario. Thirdly,
Lankoski and Björk (2007) identify, through analysis of a specific character,
that believable NPCs should be (iii) sensitive to their surroundings and body,
i.e. they must be ‘aware of their surrounding [sic] and react to changes even
if the player does not directly interact with the NPC’ (Emmerich, Ring &
Masuch, 2018, p. 144). This also requires an NPC to make sensible use of their
embodiment in order to stay within their role. Finally, Lankoski and Björk
(2007) argue that believable NPCs should follow their (iv) own agenda and take
initiative. Rather than being oriented towards the player only, they should also
follow separate goals. Based on a user study, Lee and Heeter (2012) find that
the averaged general believability of five NPCs correlates strongly (N = 161,
r = 0.53, p = 0.000) with players’ ability to understand the character’s goals
and motivations. Emmerich, Ring and Masuch (2018, p. 144) summarise: ‘the
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believability and enjoyment of a character may be increased by the ability
of acting self-initiated. Performing actions that are not a direct consequence
of a game event and following an own agenda (personal goals and motivation)
brings the NPC to life’ (Emmerich, Ring & Masuch, 2018, emphasis added).
These determinants are partly interdependent: the realisation of adversary
characterhood for instance requires an NPC to have their own agenda.

Drawbacks of
Traditional
Non-Player
Character AI

Even in simple games, creating an NPC AI that realises these four determ-
inants of believable behaviour necessitates much repetitive engineering effort
and is costly. For a new game and character, a suitable AI is typically de-
veloped from scratch and custom-tailored to the specific embodiment of the
character, comprising their abilities and position in the game world. Given suf-
ficient engineering resources, traditional NPC AI such as finite state machines,
behaviour trees and scripting can indeed yield believable behaviour. Crucially
though, we argue in line with (Merrick and Maher, 2009; Sec. 5.2.1) that these
commonly used AI techniques are not suitable for realising believable NPC
behaviour in the vast and dynamic worlds that players demand in modern
games. This is because they do not generalise: a behaviour tree or script that
yields sensible NPC behaviour in one situation does not necessarily produce
similarly robust and believable behaviour in others. This also disqualifies
them as co-creative partners in play, as it rules out creative responsibility and
initiative in situations which they were not designed for.

More advanced NPC AI techniques such as supervised machine learning,
extrinsically motivated RL, evolutionary algorithms and statistical planning al-
gorithms like Monte Carlo tree search (Browne et al., 2012), n-tuple bandit (Lucas,
Liu & Pérez-Liébana, 2018) or rolling horizon evolutionary algorithms (Gaina
et al., 2017) can alleviate this to a certain extent. However, they eventually
suffer from a more fundamental problem: they all rely on AI engineers to
exactly prescribe rewards or goals during development, based on possible
game states that are only revealed at runtime. Anticipating these states is
complicated, as they emerge from the game mechanics in interaction with
the player’s behaviour and other dynamic elements such as other NPCs. This
state space may be extended even further through the use of procedural
content generation (PCG), or by players contributing new game content or
mechanics, as highlighted by Merrick and Maher (2007). Since engineering
resources are limited, the resulting anticipation gap cannot be managed in a
sufficiently complex game. Encountering a situation that has not been anticip-
ated during development, an NPC might thus fail to realise characterhood by
exhibiting behaviour that violates the player’s expectations toward their role.
This may be caused, amongst others, by failure to remain sensitive to their sur-
roundings and body. The canonical means to compensate for this shortcoming
of existing AI techniques is to keep an NPC’s operational area small.

Drawing on recent advances in general game-playing AI, one might argue
that more general, either friendly or adversarial behaviour could be designed
by training NPCs to either maximise or minimise the player’s game achieve-
ments, such as score. However, this approach comes with high training costs,
potentially little behavioural diversity, and does not equip NPCs with their own
agenda separate from either supporting or challenging the player.
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These shortcomings of established NPC AI techniques impinge negatively7

on game engineers, designers and players. More specifically, the limitation of
engineering resources necessitates a trade-off between the NPC’s generality
and believability. If not managed carefully, this trade-off can lead to ‘primitive,
unnatural behavior’ (Emmerich, Ring & Masuch, 2018, p. 142) and thus dis-
satisfaction of both designers and players. More generally, it limits designers’
creative potential, and vice-versa what players can ultimately experience
through videogames. Crucially though, in the future, the demands on NPC
AI are likely to increase further. This is particularly emphasised by progress
in PCG (cf. Smith, 2014a), with one ultimate goal being to procedurally
generate entire games from scratch (cf. Cook, Colton & Gow, 2016a, 2016b).
Existing NPC AI affords no means to yield general and believable NPCs in
such next-generation videogames.

Intrinsic
Motivation to
the Rescue

Existing work (cf. Sec. 5.2.1 and Tbl. 5.1) has successfully used models of
IM to overcome many of these drawbacks. Similar to us, Merrick and Ma-
her (2009) aim at designing NPC AI that can scale to complex, open-ended,
dynamic game worlds. However, they motivate their approach based on prop-
erties of the specific IR functions being maximised, namely hedonic novelty and
competence. We in contrast argue why models of IM more generally represent
candidates to addressing this challenge, based on our working definition
of such models in Sec. 2.2.3. Moreover, we address specific determinants of
believable NPC behaviour, rather than the generic notion.

By virtue of agent-centricity and freedom of semantics, IR is independent of
and more generic than extrinsic reward. Rather than burdening AI engineers
with anticipating good extrinsic rewards across all possible game states, we
can rely on IR to align with a wide range of rewards such as a game’s or
player’s goals. The role of IM in human (game-)play and the possibility of
such implicit reward alignment is well supported by game studies and games
user research (cf. Sec. 5.1.1 and 5.1.2). With IR being free of semantics, an in-
trinsically motivated NPC can potentially be deployed across different games
without adopting its AI to game-specific knowledge, e.g. the meaning of
game tokens such as weapons or power-ups. The embodiment universality of
IR allows to use the same AI on different characters, and thus to save engin-
eering time and effort. But this property also entails embodiment sensitivity,
allowing for NPCs with the same AI to exhibit different behaviours depend-
ing on their experience, their position within, and their means to perceive and
affect the game world. This crucially realises the requirement of believable
NPCs to be sensitive to their surroundings and body in any situation, and also
increases their behavioural diversity. Moreover, IM models give NPCs their own
agenda in a stronger sense; intrinsically motivated behaviour emerges from
the combination of this model, an agent’s embodiment and their experience,
which thus allows for behavioural initiative beyond what is anticipated at
design-time. Finally, many models of IM exhibit open-ended behaviour through
model and skill development. Amongst others, this affords an increase in
behavioural diversity, and thus contributes to an NPC’s believability.

7 In very few cases though, these shortcoming are explicitly desired. Treanor et al. (2015) for
instance propose an AI as guided game design pattern for which the player actively steers an
NPC away from situations where their behaviour would be detrimental.
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Drawbacks of
Intrinsic
Motivation
Approaches

Models of IM can alleviate the generality–believability trade-off faced by
traditional NPC AI. They allow for game-, player- (cf. Togelius & Yannakakis,
2016) and NPC-generality, the latter denoting the application of the same
method across different characters without modifications. Moreover, they
increase NPC believability by realising behavioural diversity, sensitivity to their
surroundings and body, and a stronger notion of an own agenda. Crucially
though, existing IM-driven NPC AI (Merrick and Maher, 2006, 2007, 2009;
Merrick, 2008) only partially supports the realisation of characterhood as a
central determinant of NPC believability. This is because existing approaches
only realise neutral characters8; no technique so far can give rise to supportive
and antagonistic behaviour for NPCs to realise the roles of companions and
adversaries, while retaining a high level of generality. This curtails the benefits
of this approach for game engineers, designers and players.

In the next section, we combine insights from NPC AI and human-computer
co-creativity more generally in a proposal of social models of intrinsic motivation
that overcomes the drawbacks in both bodies of existing work.

6.3 social models of intrinsic motivation

In this section, we introduce a blueprint for social models of intrinsic motivation
to overcome the drawbacks of existing work on co-creative agents and IM-
driven NPC AI identified in Sec. 6.1 and 6.2, respectively. We argue that,
once formalised and instantiated, such models can motivate artificial agents
to enter a stable co-creative relationship with a human interaction partner,
characterised by behaviour that either supports or challenges the partner’s
goals. We gradually introduce the three social components of our proposal, with
each component addressing challenges arising from the previous stage.

Overcoming
Spurious
Relationships

Stable supportive or antagonistic behaviour towards an interaction partner
requires at minimum a reference to this partner and their goals: ‘[co-creative] sys-
tems need agency, and this involves an awareness of the human creative, their
goals’ (Mark d’Inverno; as quoted by Pérez y Pérez, 2018, p. 182). Existing
work in human-computer co-creativity (e.g. Saunders, Chee & Gemeinboeck,
2013) has avoided such a reference by leveraging the implicit alignment of
agent-intrinsic reward with human-intrinsic or extrinsic reward. From an
external perspective, the emerging behaviour can appear supportive towards
the partner, albeit being entirely self-referential. However, we have found in
Sec. 6.1 that this technique is prone to reward misalignment, e.g. due to an
embodiment gap between the agents. Moreover, it relies on the emergence of a
spurious and hence fragile relationship between the partners that can easily
result in the other partner being abandoned. Social IM models address these
drawbacks of implicit reward alignment by letting the agent:

optimise a model of the partner’s intrinsic reward : The agent
models their partner’s intrinsic reward function as a proxy to the part-
ner’s intrinsic or extrinsic goals. This requires the agent to distinguish

8 Still, such neutral characters realise at least one type of NPC-player co-creativity, in that even
neutral NPCs can respond to a player’s probing in a believable and general way, cumulating in
a new and potentially sought after and thus valuable interactive experience.
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their partner explicitly from the rest of their world, and to model
all the partner’s components, e.g. their sensor dynamics, required to
compute the model of the partner’s intrinsic reward. A model of the
partner’s action policy may be necessary to calculate expectations of this
reward given their actions. Using a model of their immediate action con-
sequences, the agent selects actions that are expected to yield situations
in which their partner has optimum (expected) intrinsic reward.

This component establishes a genuine social relationship, in that the agent
acts towards situations that are expected to be rewarding to their partner,
not themselves. We hypothesise that, for a specific IR function, partner and
domain, this results in behaviour that either supports or challenges the
partner. We add further support to this hypothesis throughout the rest of this
chapter. Optimising a model of the partner’s intrinsic rather than extrinsic
reward enables an agent to leverage a potential embodiment gap between the
agent and partner in support or antagonism, while retaining generality.

Introducing
Reward
Separation

At this stage, the artificial agent would only optimise the IR modelled
on their partner. Crucially though, co-creativity by definition requires both
parties to have creative responsibility (Kantosalo et al., 2014) and to show
initiative (Yannakakis, Liapis & Alexopoulos, 2014) in interaction. If the model
of the partner’s IR happens to be accurate, using it as a single source of
motivation may make the interaction between agent and partner converge
to a single area of the creative search space and then stagnate. Moreover,
being focussed on the partner’s reward only may not allow for complex
antagonistic behaviour: Kantosalo and Toivonen (2016) note that provoking
agents ‘can be though [sic] of having stronger opinions, defending their
viewpoints and resisting changes based on human preferences’ (ibid., p. 82);
but without separating the partner’s and an agent’s own reward, distinct
and non-diametric viewpoints cannot be modelled. Specific to our game AI
application, we have shown that having an own agenda contributes to the
believability and thus quality of NPCs. Crucially though, existing work does
not distinguish between an agent’s own and their partner’s goals. We address
this lack of reward separation by letting agents:

optimise their own intrinsic reward : The agent not only selects ac-
tions to optimise a model of their partner’s intrinsic reward, but also to
optimise an intrinsic reward that is calculated on their own components
and is thus sensitive to their own embodiment.

Optimising their own IR additionally grounds the agent’s behaviour in their
own perspective on the world, shaped by their specific reward function,
embodiment and experience. If actions are selected based on an expected
future instead of a past reward (cf. Sec. 2.2.3), a model of the partner’s policy
is needed to predict their intervention and impact on this expectation.

Preventing
Social
Detachment

A straight-forward way to facilitate this dual optimisation of the agent’s
own and their model of the partner’s reward is to combine the expectations
over both rewards in a weighted sum9. However, this technique introduces
a new challenge: in some cases, the agent may select actions that result in

9 This is the standard procedure for motivating agents based on multiple rewards, as in the
combination of intrinsic and extrinsic reward by Burda, Edwards, Storkey et al. (2019).
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a situation from which they cannot affect their model of the partner’s IR,
i.e. they escape operational proximity. This situation may temporarily be more
rewarding for the partner or the agent themselves than any other alternative,
but it can break up their relationship permanently. To prevent such social
reward detachment10, we propose to let the agent:

optimise a social influence reward The agent not only optimises
their own and the model of the partner’s intrinsic reward, but also a
reward measuring their actual or potential influence on the partner.

Optimising such a social influence reward reinforces social attachment, and
ensures that the agent can also in the future maintain or even increase
their influence on the partner’s modelled IR. From the partner’s perspective,
this ascertains that the artificial agent is not going to abandon them even
if the partner decides to endure temporary reward bottlenecks, which are
characteristic of many co-creativity and videogame scenarios.

InstantiationIn summary, social models of IM require an agent to explicitly model their
interaction partner and to select actions which optimise the partner’s ex-
pected IR. Moreover, the agent must optimise their own IR, as well as an
intrinsic social influence reward that prevents social detachment. In combina-
tion, these three components can alleviate the quality–generality trade-off in
existing motivational models for co-creative agents. Social IM models allow
agents to establish a more stable social relationship, which is characterised
by supportive or antagonistic behaviour and benefits from the agent being
sensitive to their own embodiment, perspective and goals. By relying on IR
throughout, such models remain highly general with respect to the domain,
the partner, and the agent’s embodiment.

This proposal represents a blueprint that is underspecified in various ways,
and from which specific social IM models must be instantiated. To realise the
first component (i), we must select an appropriate model of IR that approximates
the partner’s actual IR well, and works as a generic proxy to their extrinsic
goals. The calculation of some rewards requires a model of the partner’s
policy. We can assume this policy to be either fully determined by the op-
timisation of the modelled IR (on-policy), to be independent (off-policy), or
anything in-between11. To realise the second component (ii), we must decide
on the agent’s own IR function. This could be informed by what type of reward
would make the interaction with their partner more worthwhile, e.g. through
establishing a particular opposition for sophisticated antagonism. To realise
our third component (iii), we must decide on what type of social influence to
optimise for through IR. To maintain operational proximity, the agent should at
least influence one of the partner’s components that contribute to the model
of the partner’s IR. Finally (iv), we must define how these three individual
rewards are combined in action selection. The framework is not restricted to a

10 Social reward detachment is an artefact of optimising the expected rewards of multiple agents.
This differs from the reward detachment introduced by Ecoffet et al. (2019) which is caused by a
single agent’s IR being adaptive (cf. Sec. 2.2.3) and thus wearing off over time.

11 We borrow this notion from RL, where an off-policy approach distinguishes between a policy
to generate behaviour, and another to be optimised (Sutton & Barto, 2018, p. 110). We use the
notion to highlight the discrepancy between a policy used to model another agent’s behaviour,
and a separate, hypothetical policy that optimises the assumed IR.
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specific number of reward functions, as long as at least one function can be
matched to each of the three components.

In the next section, we instantiate the motivational principle of coupled
empowerment maximisation (CEM) from this blueprint to drive the behaviour
of general, believable, and social NPCs.

6.4 coupled empowerment maximisation

In this section, we introduce coupled empowerment maximisation (CEM), a social
model of IM to drive the behaviour of general and believable NPCs that either
support or challenge the player, allowing them to realise full characterhood in
the roles of companions or adversaries, respectively. We first argue why empower-
ment, as the basis of our model, is a suitable IR to motivate supportive and
antagonistic behaviour in videogames. We then introduce CEM informally
and present both a general and simplified formalisation, complemented by
pseudocode. We briefly discuss related work in the end.

6.4.1 Empowerment and Game Progress

Reward
Selection
Criteria

We have argued in Sec. 5.1.1 that, to warrant continuous engagement, com-
mercial videogames are designed to be intrinsically motivating for as many
players as possible. The players in turn are motivated by a variety of IRs, as
suggested by studies in games user research (cf. Sec. 5.1.2). The first step in
instantiating a social model of IM is to decide on the three types of IR that
form its basis. We have previously hypothesised that, for a specific model of
the partner’s IR, the actual partner and the domain, social models of IM can
yield supportive or antagonistic behaviour. For this to work in videogames,
the model of the partner’s IR must (i) correspond to an IR that many players
pursue, but at the same time (ii) align with the goals provided by a wide
range of videogames, ideally from different genres. While this model of the
partner’s IR is certainly pivotal for the emerging behavioural dynamics, the
type of IR given to the agent itself can shape these dynamics further, and the
type of social influence reward is important to keep the relationship between
agent and partner stable over time.

Empowerment
& Game
Progress

Our choice of IR is based on a crucial observation: progress towards a game’s
goals often goes along with the player maintaining or increasing their options
and influence. We illustrate this based on classic titles that have considerably
influenced their respective genre. Real-time strategy games such as StarCraft
(Blizzard Entertainment, 1998) for example often require the player to collect
different kinds of resources. These resources allow players to afford new
buildings and upgrades, scale up the supply chain, build military units and
expand the player’s sphere of influence. Throughout all these steps, the
player gains more degrees of freedom. First-person shooters such as Doom (id
Software, 1993) provide the player with additional power-ups and weapons
in the progress of the game. Crucially, collecting a new weapon not only
gives the player another, but also a more efficient means to cope with their
enemies. To retain these options and influence, a player must spend their
ammunition wisely and look out for replacements. Eliminating their enemies
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gives the player access to new areas of the game, which again corresponds to
a wider range of options. This connection crosses genre boundaries, in that
e.g. collecting inventory items in role-playing games such as Diablo (Blizzard
North, 1997), or hitting checkpoints in a racing game such as the classic
arcade title Out Run (Sega, 1986) either directly contributes to a game’s goals,
or puts the player in a better position to achieve these goals.

Empowerment
Maximisation
& Human
Gameplay

Crucially, empowerment (cf. Klyubin, Polani and Nehaniv, 2005; Klyubin,
Polani and Nehaniv, 2005; Salge, Glackin and Polani, 2014; and Ch. 3) can
quantify a player’s perceivable, reliable and potential options and influence in an
IR. Existing studies in general game-playing (cf. Sec. 5.2.1) by Anthony, Polani
and Nehaniv (2014) and Clements and Polani (2017) support the notion that
empowerment can align with a game’s goals, in that their empowerment
maximising agents realise several game goals without encoding these expli-
citly. Based on the previous observations, we hypothesise that empowerment
aligns with the goals in a wide range of videogames across different genres.

Moreover, empowerment overlaps with several IRs that games user studies
have linked to human gameplay motivation (cf. Sec. 5.1.2), most prominently
autonomy and competence as part of self-determination theory (Ryan & Deci,
2000b; Ryan, Rigby & Przybylski, 2006). Empowerment relates to autonomy
in that it is sensitive to a player’s options in a certain game state; but it also
quantifies how reliably a player can influence the game world through their
actions, and thus relates to competence through the concept of effectance (White,
1959; Harter, 1978; Malone, 1981; Klimmt, Hartmann & Frey, 2007).

Summarised, we hypothesise an alignment between empowerment, a
formal IR quantifying an an agent’s potential and perceivable options and
influence (Sec. 3.2), and the goals provided by a wide range of videogames.
Moreover, we note a close relationship between EM and the IMs that are
thought to shape human gameplay. We consequently choose empowerment
as the underlying IR for the social model of IM to be defined next: coupled
empowerment maximisation (CEM).

6.4.2 Coupled Empowerment Maximisation: Intuition

Our goal is to realise general and believable NPCs. The previous argument
supports the claim that empowerment maximisation (EM) can yield high
generality in game-playing. However, we yet have to clarify why it also war-
rants NPC believability (Sec. 6.2 and Tbl. 6.1), especially in terms of allowing
them to support or challenge the player as companions or adversaries and thus
realise characterhood. To see this, recall the previously observed alignment
between a player’s options and influence, and their progress in a game: we
consequently expect a game to be more challenging if it was harder for us to
maintain and extend our options and influence. This is supported by a study
with human players conducted by Guckelsberger et al. (2017) and discussed
extensively in Ch. 7, which suggests that decreasing a player’s empowerment
in a game is linked to an increase in their perceived challenge (cf. Denisova,
Guckelsberger & Zendle, 2017; Denisova et al., 2020).
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Coupled
Empowerment
Maximisation
Hypothesis

From this follows the core idea of CEM: we drive an NPC’s action-selection
to not only maximise their own empowerment, but also to either maximise
or minimise the player’s12. We hypothesise that a character minimising the
player’s empowerment would be perceived as antagonistic, and a character
maximising it as supportive. To further this intuition, consider the following
thought-experiment about our previously used game examples. How would
you perceive an NPC in ...

• ... Starcraft (Blizzard Entertainment, 1998) who sent units to knock out
your power supply chain, compared to one that transferred resources
allowing you to build more units?

• ... Doom (id Software, 1993) that attacked and pushed you back, com-
pared to one that strengthened your defence?

• ... Diablo (Blizzard North, 1997) who stole part of your inventory, com-
pared to one that gave you a powerful artefact as a gift?

• ... Out Run (Sega, 1986) who rammed your car and slowed you down,
compared to one making space for you to take over?

Across all these fictional scenarios, the NPC has either decreased or increased
the player’s options and influence, which can be quantified by empowerment.

Informal
Description

We provide an informal account of CEM by describing how it specifies each
component of social IM models, following the blueprint in Sec. 6.3. Firstly
(i), a CEM-driven NPC chooses actions that either minimise or maximise a
model of the player’s empowerment as an approximation of the actual IR
driving human gameplay, and as a generic proxy to the extrinsic goals in a
wide range of games. Being a measure of the player’s potential and perceivable
influence on the game world, calculating player empowerment requires a
model of their sensorimotor dynamics, as well as a model of their policy. CEM
follows an off-policy approach in that the player’s policy is not assumed to be
determined from maximising their empowerment alone; rather, the model
concedes that the policy may also optimise other rewards, or be biased by
the player’s relationship towards the NPC, as detailed later. Secondly (ii),
a CEM-driven NPC selects actions to maximise their own empowerment,
and thus – given successful reward alignment – to implicitly act towards
a game’s goals. By following the same reward type as assumed for the
player, the NPC can match or oppose the player’s goals, depending on
whether they minimise or maximise the player’s model of IR. In either
case, the NPC follows their own agenda as empowerment is shaped by
their distinct embodiment and situatedness. Thirdly (iii), a CEM-driven NPC
maximises transfer empowerment, a social influence reward that we have
introduced specifically for the development of CEM, and that measures the
NPC’s potential – not actual – influence on the player’s future perceptions.
This is a suitable social influence reward, as the player’s empowerment is

12 Admittedly, the notion ‘coupled empowerment maximisation’ can be misleading: while the
NPC always maximises their own and transfer empowerment, they may also minimise their
partner’s empowerment. Formally though, this is always defined as maximising a coupled
reward, although with potentially negative weights.
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sensitive to their future perceptions. Thus, even if the NPC cannot directly
affect the player’s empowerment at the current point in time, maximising this
reward keeps them in operational proximity, i.e. in game states where they can
likely affect the player’s empowerment in the future. We demonstrate later
that this can, but does not have to coincide with spatial proximity. The CEM
policy combines these three reward signals in a weighted sum. In selecting
the next action to perform, the NPC thus trades off the action’s impact on the
player’s and their own potential and perceivable influence, as well as their
operational proximity to the player. The weights represent hyperparameters
of the model and a means to shape the emerging behavioural dynamics
further, as demonstrated in our experiments in Sec. 6.5.

6.4.3 Coupled Empowerment Maximisation: Formal Definition

CEM can be thought of as an extension of EM to the multi-agent case, and we
consequently follow a similar structure as in the original account in Ch. 3. We
first extend the perception-action (PA)-loop and the agent’s generative model
to model the multi-agent interaction from an objective, external and from
a subjective, agent-centric perspective, respectively. The complexity of the
generative model hereby increases substantially compared to the single-agent
case, especially with respect to the number of involved parameters, and the
difficulty in estimating them. We first formalise the different empowerment
variants in CEM and the action-value function calculated on this generative
model thoroughly to highlight potential avenues for future work in Ch. 8. We
then introduce assumptions to simplify the formalism for our experiments.

6.4.3.1 Multi-Agent PA-Loop and Generative Model

Similar to EM, CEM as social IM model assumes an agent-centric perspective,
and we thus also distinguish between the objective world that an agent is
embedded in, and their beliefs about that world. For CEM, we extend both
perspectives, represented by the PA-loop and generative model, to capture the
interaction of the NPC with the player. We also model an ‘other’ character in
interaction as a placeholder for agents that the NPC is not directly coupled
with, but which can intervene in their interaction with the player.

Multi-Agent
Perception-
Action
Loop

We formalise two versions of the multi-agent PA-loop as causal bayesian
networks (BNs) (cf. Appx. B). For our more general account of CEM, we
include the NPC’s memory as the basis for inference from experience, with
the graph structure shown in Fig. 6.1a. As in the single-agent version, we
assume that the game world originates at time t = 0, which can be conceived
e.g. as the start of the present game level. To accommodate multiple agents,
we decompose the rest of the world from the original model into two more
agents, player and ‘other’, that jointly contribute to the shared world. We
assume that the game is discrete in time and space, and that the different
characters interact in turn-wise order13. We distinguish consecutive interaction
cycles, with each cycle initiated by the NPC, followed by the player, and
concluded by the ‘other’ agent. Each character is represented by two random

13 This assumption is not very restrictive, as the individual characters may also idle.
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Figure 6.1: Multi-agent perception-action loop with and without NPC memory, un-
rolled in time from the initial state onwards. The random variables S, A, M
and R represent the agents’ sensor, actuator and memory as well as the
rest of the system. The loop shows the first interaction cycle, with NPC
(C), player (P) and ‘other’ agent (O) acting in turn-wise order.

variables modelling their sensor and actuator, associated with their owner
through indices C, P and O for NPC, player and ‘other’, respectively.

We introduce helper variables to conveniently deconstruct the multi-agent
interaction. We denote the length of an interaction cycle with τ = 3, and the
time when the NPC, player and ‘other’ character act next by tC, tP and tO. We
can thus consider the interaction of characters relative to each other, and, by
using τ as an offset, reference random variables across interaction cycles. Our
fixed interaction order dictates that tP = tC + 1 and tO = tC + 2. To specify
the loop, we define the following random variables and state spaces:

• NPC, player and ‘other’ sensor SC, SP, SO with state spaces SC,SP,SO

• NPC, player and ‘other’ actuator AC, AP, AO with state spacesAC,AP,AO

• NPC memory MC with state spaceMC

• The rest of the system R with state space R

The memory state space is defined in analogy to Eq. 3.1 but with memorised
actions and perceptions offset by τ. We complete the multi-agent PA-loop
specification by defining the causal dependencies between these random
variables via the following interventional distributions (cf. Appx. A):
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Figure 6.2: Generative model of the multi-agent perception-action-loop, showing one
interaction cycle initiated by the NPC (C), and followed by the player
(P) and ‘other’ agent (O). (Hyper-)parameters are shown in grey. An
edge connecting one to n nodes (e.g. Θ1

C,P → ŜC
0 , ŜC

3 . . . ) corresponds to n
edges from that node to each of its children (Θ1

C,P → ŜC
0 , Θ1

C,P → ŜC
3 , . . . ).

The multi-agent PA-loop is heterogeneous in that the player and ‘other’
character are not assumed to have memory, and thus decide on their actions
based on the present perception alone.

Generative
Model

We complement this objective view with a multi-agent generative model
encapsulated in the NPC’s policy, and representing their subjective view on
the interaction with the player and ‘other’ character. This model is not only
used for the calculation of the NPC’s own empowerment, but also the player’s
empowerment and the NPC-player transfer empowerment. This requires the
NPC to (i) infer latent variables such as the state of the environment and the
parameters of their own, the player’s and the ‘other’ character’s dynamics.
Via these inferred quantities, they can then (ii) generate predictions of how
the player’s actions affect their future perceptions, and how the NPC’s actions
affect both their and the player’s future sensor states as the basis for the
coupled empowerment calculation. To this end, the model relates parameters
and latent variables as ‘generative causes’ to the NPC’s sensor values.

We show the graph structure of the multi-agent generative model in Fig. 6.2.
The causal BN comprises the following random variables:

• NPC, player and ‘other’ sensor ŜC, ŜP, ŜO with state spaces ŜC, ŜP, ŜO

• NPC, player and ‘other’ actuator ÂC, ÂP, ÂO with state spaces ÂC, ÂP, ÂO

• The rest of the system R̂ with state space R̂
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As in the case of EM (Sec. 3.2), we use a hat to denote variables that are
assumed by the agent internally, e.g. Â and that model variables in the PA-
loop which have not been resolved yet or cannot be accessed directly, e.g. R̂.
We assume the actuator and sensor state spaces for each agent to match the
state space of the modelled, objective variable, i.e. ŜC = SC, ŜP = SP, ŜO =
SO and ÂC = AC, ÂP = AP, ÂO = AO. Moreover, we assume that R̂ = R,
i.e. the NPC knows the possible states of the external, shared world.

The model is considerably more complex than for single-agent EM, in that
we distinguish three sets of continuous (hyper-) parameters, each representing
the NPC’s beliefs about one of the interacting agents, including themselves:

• The initial state of the world14 as well as the NPC’s sensor dynamics,
environment dynamics and policy Θ = (Θ0, Θ1, Θ2, Θ3), determined by
hyperparameters Ξ = (Ξ0, Ξ1, Ξ2, Ξ3)

• The player’s sensor dynamics, environment dynamics and policy
Φ = (Φ1, Φ2, Φ3), determined by hyperparameters Σ = (Σ1, Σ2, Σ3)

• The ‘other’ character’s sensor dynamics, environment dynamics and
policy Ψ = (Ψ1, Ψ2, Ψ3), with hyperparameters Ω = (Ω1, Ω2, Ω3)

Perspective
Switching

CEM necessitates another layer of complexity. To accurately model the
player and NPC-player transfer empowerment, the NPC must switch between
their own and the player’s perspective. Consequentially, the generative model
must not only encode the NPC’s beliefs in the player’s sensor and environ-
ment dynamics, but also the NPC’s beliefs in the player’s beliefs in the player’s
dynamics. Moreover, while neither the NPC nor the player require a model of
their own policy for the calculation of empowerment, they require a model of
their peers’ policies to predict how these peers could intervene in their own
sensory futures. We represent this perspective switching by indexing individual
parameters with C, P and O. The generic calculation of coupled empower-
ment thus involves the following 17 parameters and the same number of
hyperparameters:

• The NPC’s beliefs in the initial environment state and their own sensor
and environment dynamics θC = (θ0

C, θ1
C, θ2

C), with ΞC = (Ξ0
C, Ξ1

C, Ξ2
C)

• The NPC’s beliefs in the player’s sensor dynamics, environment dy-
namics and policy φC = (φ1

C, φ2
C, φ3

C), with ΣC = (Σ1
C, Σ2

C, Σ3
C)

• The NPC’s beliefs in the ‘other’ character’s sensor dynamics, environ-
ment dynamics and policy ψC = (ψ1

C, ψ2
C, ψ3

C), with ΩC = (Ω1
C, Ω2

C, Ω3
C)

• The player’s beliefs in the NPC’s sensor dynamics, environment dy-
namics and policy θP = (θ1

P, θ2
P, θ3

P), with ΞC = (Ξ1
P, Ξ2

P, Ξ3
P)

• The player’s beliefs in their own sensor and environment dynamics
φP = (φ1

P, φ2
P), with ΣP = (Σ1

P, Σ2
P)

• The player’s beliefs in the ‘other’ character’s sensor dynamics, environ-
ment dynamics and policy ψP = (ψ1

P, ψ2
P, ψ3

P), with ΩP = (Ω1
P, Ω2

P, Ω3
P)

14 Note that, in contrast to the formalisation of EM in Sec. 3.2, the initial state of the world is
now parametrised by parameter φ0 and hyperparameter ξ0, rather than φ3 and ξ3.
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Despite modelling the player’s beliefs by proxy, all parameters are owned by
the NPC. This constitutes a cognitive theory of mind (Premack & Woodruff,
1978) insofar as the coupled empowerment maximising agent models the
dynamics, policies and beliefs of the other agents they interact with. As
in the formalisation of EM, we assume the hyperparameters to be fixed to
ξ = (ξ0

C, ξ1
C,P, ξ2

C,P, ξ3
P), σ = (σ1

C,P, σ2
C,P, ξ3

C) and ω = (ω1
C,P, ω2

C,P, ω3
C,P).

We complete the generative model definition by specifying the causal
dependencies within. These distributions represent the NPC’s models of the
true dynamics in the PA-loop, and are hence denoted by q rather than p:

• Action probabilities q(aC
t ), for the NPC only

• Initial environment state model q(r̂0; θ0), for the NPC only

• Sensor dynamics model q(ŝC
tC
|r̂tC ; θ1), q(ŝP

tP
|r̂tP ; φ1), q(ŝO

tO
|r̂tO ; ψ1)

• Environment dynamics model q(r̂tC+1|âC
tC

, r̂tC ; θ2), q(r̂tP+1|âP
tP

, r̂tP ; φ2),
q(r̂tO+1|âO

tO
, r̂tO ; ψ2)

• Policy model q(âC
tC
|ŝC

tC
; θ3), q(âP

tP
|ŝP

tP
; φ3), q(âO

tO
|ŝO

tO
; ψ3)

• Belief priors q(θi; ξ i)∀i ∈ [0, 3], q(φi; σi), q(ψi; ωi)∀i ∈ [0, 3]

• Belief hyperpriors q(ξ i)∀i ∈ [0, 3], q(σi), q(ωi)∀i ∈ [1, 3]

For the calculation of coupled empowerment, most of these dynamic models
are considered from different perspectives, as detailed earlier. The causal
dependency q(âC

tC
|ŝC

tC
; θ3) is not reflected in the model topology (Fig. 6.2)15.

InferenceWe assume that the NPC can in principle infer the latent environment state
and all parameters based on memorised sensorimotor experience and the
hyperpriors. However, working out the inference process is subject to future
work. For now, we assume the following posterior factor to be given:

q(r̂t, θ, φ, ψ|mt; ξ, σ, ω) = ∑̂
r≺t

q(r̂�t, θ, φ, ψ|mt; ξ, σ, ω) (6.1)

The latent environment states prior to t have been marginalised out here as
they are not required for the calculation of coupled empowerment. We use
variations of this posterior factor where in addition a subset of the parameters
θ, φ, ψ has been implicitly marginalised out.

6.4.3.2 Generic Coupled Empowerment Maximisation

Coupled empowerment combines a model of the player’s empowerment as a
proxy to their goals, the NPC’s own empowerment, and the NPC-player transfer
empowerment to maintain operational proximity. These IRs all measure the
potential impact of action sequences of length n on future sensor states. In
contrast to vanilla EM though, CEM requires us to account for the other

15 At this point, the network cannot (i) encode these NPC beliefs about the player’s beliefs about
the NPC’s policy and at the same time (ii) indicate that the NPC, from their own perspective,
freely chooses their actions. This could be overcome by conditioning edges on the different
perspectives. However, this would complicate the model further, and we thus omit it.
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agents interleaving this course of action. We consequently consider how
interleaved action sequences ân

t = (ât, ât+τ, . . . , ât+(n−1)τ) impact the NPC’s
sensor state n, or the player’s sensor state n − 1 interaction cycles ahead.
We first formalise each empowerment type as a state-dependent quantity,
followed by their expected value to be used in the CEM action-value function.

NPC
Empowerment

The state-dependent NPC empowerment measures how much potential in-
fluence the NPC has in a specific latent state of the environment on their
future sensor state n interaction cycles ahead. We formalise it by extending
the vanilla empowerment in Eq. 3.9 to the multi-agent case:

EC(r̂tC ; θC, φC, ψC) = max
q(âC,n

tC
)

I(ÂC,n
tC
→ ŜC

tC+nτ|r̂tC ; θC, φC, ψC) (6.2)

= max
q(âC,n

tC
)

∑
âC,n

tC
, ŝC

tC+nτ

q(âC,n
tC

)q(ŝC
tC+nτ|âC,n

tC
, r̂tC ; θC, φC, ψC)

log
q(ŝC

tC+nτ|â
C,n
tC

, r̂tC ; θC, φC, ψC)

∑
ˆ̂aC,n

tC

q(ŝC
tC+nτ| ˆ̂a

C,n
tC

, r̂tC ; θC, φC, ψC)q( ˆ̂aC,n
tC

)
(6.3)

The NPC’s actions âC,n
tC

are assumed to be executed across n consecutive
interaction cycles, starting at time tC, and offset by the cycle length τ.

This channel capacity (Appx. C) is calculated on an n-step predictive factor,
quantifying the probabilities of future NPC sensor states n interaction cycles
ahead. If the NPC was alone, these would be determined by their actions’
impact on the latent environment states, and the environment’s own dynam-
ics. In the multi-agent scenario however, we must also account for the other
characters’ potential impact on the shared environment. The factor is thus
parametrised by the NPC’s beliefs in their own, the player’s and the ‘other’
character’s dynamics:

q(ŝC
tC+nτ|âC,n

tC
, r̂tC ; θC, φC, ψC) = ∑

r̂tC+nτ

q(ŝC
tC+nτ|r̂tC+nτ; θ1

C)

q(r̂tC+nτ|âC,n
tC

, r̂tC ; θC, φC, ψC) (6.4)

The last term captures the impact of the NPC’s actions on the environment
exactly n interaction cycles ahead. We define these n-step cyclic dynamics
recursively based on the 1-step dynamics that bridge a single interaction cycle:

q(r̂t+kτ|âk
t , r̂t; θ, φ, ψ) = ∑

r̂t+(k−1)τ

q(r̂t+kτ|ât+(k−1)τ, r̂t+(k−1)τ; θ, φ, ψ)

q(r̂t+(k−1)τ|âk−1
t , r̂t; θ, φ, ψ) (6.5)

This definition is independent of the specific agent considered, and used for
different empowerment variants. We thus omit agent-specific indices.

The calculation of the 1-step cyclic dynamics in contrast is sensitive to the spe-
cific agent. It captures the influence of each agent in a single interaction cycle
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on the latent environment state, and thus relies on their relative positions.
For the NPC, we have:

q(r̂tC+τ|âC
tC

, r̂tC ; θC, φC, ψC) = ∑
r̂tO ,r̂tP

q(r̂tC+τ|r̂tO ; ψC)q(r̂tO |r̂tP ; φC)

q(r̂tP |âC
tC

, r̂tC ; θ2
C) (6.6)

The last term is the NPC’s model of their environment dynamics, and the
other two encode the player’s and ‘other’ agent’s impact on the environment:

q(r̂tP+1|r̂tP ; φ) = ∑
âP

tP
,ŝP

tP

q(r̂tP+1|âP
tP

, r̂tP ; φ2)q(âP
tP
|ŝP

tP
; φ3)q(ŝP

tP
|r̂tP ; φ1) (6.7)

q(r̂tO+1|r̂tO ; ψ) = ∑
âO

tO
,ŝO

tO

q(r̂tO+1|âO
tO

, r̂tO ; ψ2)q(âO
tO
|ŝO

tO
; ψ3)q(ŝO

tO
|r̂tO ; ψ1) (6.8)

These equations hold independently of which agent acts next in a specific in-
teraction sequence, and we hence write q(r̂tP+1|r̂tP ; φ) instead of q(r̂tO |r̂tP ; φC)
and q(r̂tO+1|r̂tO ; ψ) instead of q(r̂tP |âC

tC
, r̂tC ; θ2

C).
Player
Empowerment

The state-dependent player empowerment uses the NPC’s estimate of the
player’s potential influence on their perceptions n interaction cycles ahead.
For this to be accurate, the NPC must use their beliefs about the player’s
beliefs about their own and about the dynamics of the NPC and ‘other’ agent:

EP(r̂tP ; θP, φP, ψP) = max
q(âP,n

tP
)

I(ÂP,n
tP
→ ŜP

tP+nτ|r̂tP ; θP, φP, ψP) (6.9)

Empowerment is calculated as the channel capacity of the n-step predictive
factor with respect to the player’s future sensor states:

q(ŝP
tP+nτ|âP,n

tP
, r̂tP ; θP, φP, ψP) = ∑

r̂tP+nτ

q(ŝP
tP+nτ|r̂tP+nτ; φ1

P)

q(r̂tP+nτ|âP,n
tP

, r̂tP ; θP, φP, ψP) (6.10)

The n-step cyclic dynamics are given by Eq. 6.5, and use the following 1-step
cyclic dynamics calculated from the player’s perspective:

q(r̂tP+τ|âP
tP

, r̂tP ; θP, φP, ψP) = ∑
r̂tC ,r̂tO

q(r̂tP+τ|r̂tC ; θP)q(r̂tC |r̂tO ; ψP)

q(r̂tO |âP
tP

, r̂tP ; φ2
P) (6.11)

The last term is the player’s model of their environment dynamics. The middle
term represents the impact of the ‘other’ agent on the latent environment
state (Eq. 6.8), and the first term accounts for the NPC’s impact, given by:

q(r̂tC+1|r̂tC ; θ) = ∑
âC

tC
,ŝC

tC

q(r̂tC+1|âC
tC

, r̂tC ; θ2)q(âC
tC
|ŝC

tC
; θ3)q(ŝC

tC
|r̂tC ; θ1) (6.12)

Again, this distribution can be computed for the beliefs of different agents,
and we thus omit agent-specific indices.
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NPC-Player
Transfer
Empowerment

While the NPC and player empowerment can be considered straight-
forward extensions of vanilla empowerment, NPC-player transfer empower-
ment is special in that it only works in a multi-agent context. The state-
dependent NPC-player transfer empowerment quantifies how much the NPC can
potentially influence the player’s future perceptions with n-step interleaved
action sequences. It relies on the NPC’s beliefs about their own and the
dynamics of the player and the ‘other’ agent, and is given by:

ECP(r̂tC ; θC, φC, ψC) = max
q(âC,n

tC
)

I(ÂC,n
tC
→ ŜP

tP+(n−1)τ|r̂tC ; θC, φC, ψC) (6.13)

In contrast to the former variants, the mutual information here is calculated
not between components of the same agent, but between the NPC’s actuator
in n consecutive interaction cycles and the player’s future sensor. This is
captured by the following n-step predictive factor:

q(ŝP
tP+(n−1)τ|â

C,n
tC

, r̂tC ; θC, φC, ψC) =∑
r̂tP+(n−1)τ

q(ŝP
tP+(n−1)τ|r̂tP+(n−1)τ; φ1

C)

q(r̂tP+(n−1)τ|âC,n
tC

, r̂tC ; θC, φC, ψC) (6.14)

Because the NPC precedes the player in the same interaction cycle, their action
consequences must be assessed on the player’s future sensor n− 1, rather
than n cycles ahead. Due to the NPC’s different position in the interaction
cycle, the required n-step dynamics are not cyclic. For n > 1, we have:

q(r̂tP+(n−1)τ|âC,n
tC

, r̂tC ; θC, φC, ψC) =∑
r̂tC+(n−1)τ

q(r̂tP+(n−1)τ|âC
tC+(n−1)τ, r̂tC+(n−1)τ; θ2

C)

q(r̂tC+(n−1)τ|âC,n
tC

, r̂tC ; θC, φC, ψC) (6.15)

The first term here represents the NPC’s environment dynamics model, and
the second the n-step cyclic dynamics as recursively defined in Eq. 6.5. These
in turn are based on the NPC’s 1-step cyclic dynamics given by Eq. 6.6.

Coupled
Empowerment
Action-Value
Function

The coupled empowerment action-value function forms the basis of the
CEM policy. It associates all actions that the NPC could perform next with the
coupled empowerment they are expected to yield. This is accomplished by
combining the expected NPC, player and NPC-player transfer empowerment.
These individual expectations not only depend on the potential future latent
environment states that a specific action could cause, but also on the NPC’s
beliefs and the latent environment states which they might presently occupy.
We illustrate the calculation of the coupled empowerment action-value in
Fig. 6.3. It shows the generative model unrolled over two interaction cycles,
starting with the NPC at time tC = t. We distinguish four main stages.

The NPC firstly (i) has to account for the present latent environment state
and beliefs in the expectation. To this end, they plug all sensorimotor ex-
perience up to time tC, i.e. mC

tC
= (s0, a0, s1, . . . , atC−1, stC), into the generative

model, and use it to infer the posterior factor (Eq. 6.1) over the latent envir-
onment states r̂tC and parameters θ, φ, ψ, based on the fixed hyperparameters
ξ∗, σ∗, ω∗. Since the memorised sensor and action values have been directly



6.4 coupled empowerment maximisation (cem) 161

Θ2
C,P

Θ1
C,P

Θ3
P

Φ2
C,P

Φ1
C,P

Φ3
P

Ψ1
C,P

Ψ3
C,P

Ψ2
C,P

ξ2
C,P

ξ1
C,P

ξ3
P

σ2
C,P

σ1
C,P

σ3
P

ω1
C,P

ω3
C,P

ω2
C,P

Interaction cycle 1 Interaction cycle 2

R̂tΘ0
C R̂t+1 R̂t+2 R̂t+3 R̂t+4 R̂t+5 R̂t+6

sC
t ŜC
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Figure 6.3: Calculation of the (non-simplified) 1-step coupled empowerment action-
value in the generative model. Hyperparameters have been fixed to ξ, σ, ω,
and sensorimotor experience a≺t, s�t has been included up to time t. The
coupled empowerment calculation relies on the NPC anticipating ( )
the possible future latent environment states R̂t+1, R̂t+3 when the player
(P) and NPC (C) act next. For each anticipated state R̂t+1, the 1-step
player empowerment ( ) is calculated by considering the impact of the
player’s actions on their perception after one interaction cycle. Similarly,
for each state R̂t+3, the NPC empowerment ( ) and the NPC-player
transfer empowerment ( ) is calculated as the NPC’s potential influence
on their own and the player’s future perceptions, respectively.

observed and performed, they are not hatted in Fig. 6.3. The NPC secondly
(ii) anticipates which potential future latent environment states their assumed
action âC

t might produce when the player acts next at tP = t + 1, and when
they perform again themselves at tC + τ = t + 3. We illustrate these two
anticipation steps in Fig. 6.3 with dashed arrows ( ) from âC

tC
to the latent

environment states R̂t+1 and R̂t+3. In the first case, the NPC must only predict
their own impact on the shared environment, but in the second case they
must also account for the impact of the player and ‘other’ character interleav-
ing their actions (Eq. 6.5). Thirdly (iii), the NPC calculates the n-step player
empowerment ( , Eq. 6.9) for all potential environment states R̂t+1 which
they might take the player into. Moreover, they compute their own n-step
NPC empowerment ( , Eq. 6.2) and the NPC-player transfer empowerment ( ,
Eq. 6.13) for each potential latent environment state R̂t+3 which they predict
to be themselves in, after one interaction cycle. Due to space limitations,
Fig. 6.3 only illustrates the calculation of 1-step empowerment. Finally (iv),
the NPC calculates the expectation for each of these empowerment variants,
and combine these individual expectations in the action-value for âC

tC
.
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Since the expectations for the individual empowerment variants rely on
inferring the posterior factor (Eq. 6.1), they all depend on the NPC’s memory
and the fixed hyperparameters. The expected NPC empowerment is:

EC(âC
tC

, mC
tC

; ξC, σC, ωC) =ER̂tC+τ ,R̂tC ,ΘC ,ΦC ,ΨC |âC
tC

,mC
tC

,ξC ,σC ,ωC
[EC] (6.16)

=
∫∫∫ [

∑
r̂tC+τ ,r̂tC

q(r̂tC+τ|âC
tC

, r̂tC ; θC, φC, ψC)

q(r̂tC , θC, φC, ψC|mC
tC

, ξC, σC, ωC)

EC(r̂tC+τ; θC, φC, ψC)
]

dθC dφC dψC (6.17)

The last term in Eq. 6.17 is the NPC’s empowerment (Eq. 6.2) in the latent
environment states when they act next, i.e. one interaction cycle ahead. The
middle term is the posterior factor (Eq. 6.1), and the first term is the NPC’s
1-step cyclic dynamics given by Eq. 6.6.

The expected player empowerment is calculated over each potential present
environment state and parameter, as well as the future latent environment
state in which the player could act next, resulting from a specific NPC action:

EP(âC
tC

, mC
tC

; ξC,P, σP, ωP) =ER̂tP ,R̂tC ,ΘC,P,ΦP,ΨP|âC
tC

,mC
tC

,ξC,P,σP,ωP
[EP] (6.18)

=
∫∫∫ [

∑
r̂tP ,r̂tC

q(r̂tP |âC
tC

, r̂tC ; θ2
C)

q(r̂tC , θC,P, φP, ψP|mC
tC

, ξC,P, σP, ωP)

ECP(r̂tP ; θP, φP, ψP)
]

dθC,P dφP dψP (6.19)

The player empowerment (Eq. 6.9) is calculated from the player’s perspective
and thus relies on the player-associated set of parameters θP, φP, ψP. Crucially
though, the anticipation of the states rtP in which the player acts next, induced
by the NPC’s action, relies on the NPC’s environment dynamics and we thus
also incorporate the corresponding beliefs θ2

C.
The expected NPC-player transfer empowerment is calculated in close analogy

to the expected NPC empowerment: the expectation is taken over the same
future environment states when the NPC can act next, but with respect to
the NPC-player transfer empowerment (Eq. 6.13):

ECP(âC
tC

, mC
tC

; ξC, σC, ωC) =ER̂tC+τ ,R̂tC ,ΘC ,ΦC ,ΨC |âC
tC

,mC
tC

,ξC ,σC ,ωC
[ECP] (6.20)

=
∫∫∫ [

∑
r̂tC+τ ,r̂tC

q(r̂tC+τ|âC
tC

, r̂tC ; θC, φC, ψC)

q(r̂tC , θC, φC, ψC|mC
tC

, ξC, σC, ωC)

EC(r̂tC+τ; θC, φC, ψC)
]

dθC dφC dψC (6.21)
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The coupled empowerment action-value function is given by a linear
combination of all three empowerment types:

ECEM(âC
tC

, mC
tC

; α, ξ, σ, ω) = αC EC(âC
tC

, mC
tC

; ξC, σC, ωC) (6.22)

+ αP EP(âC
tC

, mC
tC

; ξP,C, σP, ωP)

+ αCP ECP(âC
tC

, mC
tC

; ξC, σC, ωC) (6.23)

Each empowerment variant is weighed by a coefficient α ∈ [0, 1] as hyperpara-
meters of the CEM model. They are summarised in the set α = (αC, αP, αCP).

CEM PolicyWe finally formalise the subjective CEM policy as the agent-internal counter-
part to the objective policy defined in the multi-agent PA-loop with memory
(Fig. 6.1a). As for vanilla EM (Eq. 3.18), we formalise CEM based on greedy
action selection with added stochasticity:

q(âC
tC
|mC

tC
) =


1

|ÂC,∗
tC

(mC
tC
)|

if âC
tC
∈ ÂC,∗(mC

tC
),

0 otherwise.
(6.24)

The set Â∗(r̂tC) here comprises all assumed actions that equally maximise
coupled empowerment:

Â∗(mC
tC
) = arg max

âC
tC

ECEM(âC
tC

, mC
tC

; α, ξ, σ, ω) (6.25)

We next introduce several assumptions to simplify the calculation of
coupled empowerment as an IR and CEM as a social IM model.

6.4.3.3 Simplified Coupled Empowerment Maximisation

Simplifying
Assumptions

We want to provide a proof-of-concept of CEM’s potential for engineering
more general and believable, supportive and adversarial NPCs. To this end,
we formalise a simplified account of coupled empowerment by suspending
some tough challenges that this social IM model poses, as they do not
necessarily apply in videogames. As game engineers, we can obtain full
access to the game state, the complete or a simplified forward model and the
dynamics of all involved characters; we thus do not have to consider how the
corresponding beliefs could be inferred from the NPC’s experience. We make
the following assumptions to overcome the need for inference:

fixed parameters : We assume that the beliefs over the initial environ-
ment state as well as all parameters for the NPC’s own, the player’s and
the ‘other’ character’s sensor dynamics, environment dynamics and
policy have been acquired beforehand and remain permanently fixed to
θ∗ = (θ0,∗, θ1,∗, θ2,∗, θ3,∗) for the NPC, φ∗ = (φ1,∗, φ2,∗, φ3,∗) for the player,
and ψ∗ = (ψ1,∗, ψ2,∗, ψ3,∗) for the ‘other’ character. The parameters are
thus delta-distributed, i.e. q(θi|ξ i) = δθi ,θi,∗δ(ξ i − ξ i,∗) for i ∈ [0, 3], and
q(φi|σi) = δφi ,σi,∗δ(σi − σi,∗), q(ψi|ωi) = δψi ,ωi,∗δ(ωi −ωi,∗) for i ∈ [1, 3].

known environment state : We assume that the present latent environ-
ment state rtC is known to the NPC and used for action selection. They
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must however still estimate the probability of future states r̂�tC based
on their model of their own and the other characters’ dynamics.

The first assumption has been adopted from the formalisation of vanilla EM
in Sec. 3.2. We add the second assumption to overcome the need for inference
and yet maintain partial observability. The latter is crucial to keep the NPC
and player empowerment separate and demonstrate the rewards’ sensitivity
to the embodiment of each individual character.

Without inference, there is no need for memory and we thus represent
the objective multi-agent interaction of the NPC, player and ‘other’ character
by means of the memoryless PA-loop in Fig. 6.1b. The network topology
also reflects our assumption that the NPC can directly access the latent
environment state, and uses it to select their next action. We introduce two
more assumptions to further reduce the model’s complexity:

perspective collapse : We assume that parametrisations of the same
dynamics match across perspectives, i.e. θ1,2

C = θ1,2
P , φ1,2

C = φ1,2
P , ψ1,2,3

C =

ψ1,2,3
P . We omit the agent-specific indices for these parameters.

perfect sensorimotor models : We assume that the sensor and envir-
onment dynamic models match the objective dynamics perfectly, e.g.
q(ŝC

tC
|r̂tC ; θ1) = p(sC

tC
|
˙
rtC) and q(r̂tC+1|aC

tC
, r̂tC ; θ2) = p(r̂tC+1| ˙

aC
tC

,
˙
rtC). We

omit these parameters from the corresponding model distributions.

In order to investigate the role of model accuracy for the emerging beha-
vioural dynamics, and to assess the robustness of CEM with respect to
sub-optimal models, we exclude the policies of NPC, player and the ‘other’
agent from these assumptions. We for instance do not assume the NPC to
know the player’s true policy. We retain the four corresponding parameters
θ3

P, φ3
C, ψ3

C,P in the following formalisation, and investigate how changes to
these parameters affect the emerging interaction in our later studies.

Simplified
NPC
Empowerment

The impact of these assumptions on the CEM formalism is most visible in
the expectations over the different empowerment variants for the action-value
function. More subtly, the other equations simplify in that they depend on
fewer loose parameters. The state-dependent NPC empowerment becomes:

EC(r̂tC ; φ3
C, ψ3

C) = max
q(âC,n

tC
)

I(ÂC,n
tC
→ ŜC

tC+nτ|r̂tC ; φ3
C, ψ3

C) (6.26)

The simplified n-step predictive factor relies on two instead of seven parameters:

q(ŝC
tC+nτ|âC,n

tC
, r̂tC ; φ3

C, ψ3
C) = ∑

r̂tC+nτ

q(ŝC
tC+nτ|r̂tC+nτ)q(r̂tC+nτ|âC,n

tC
, r̂tC ; φ3

C, ψ3
C)

(6.27)

For n > 1, the simplified n-step cyclic dynamics are:

q(r̂t+nτ|ân
t , r̂t; ., .) = ∑

r̂t+(n−1)τ

q(r̂t+nτ|ât+(n−1)τ, r̂t+(n−1)τ; ., .)

q(r̂t+(n−1)τ|ân−1
t , r̂t; ., .) (6.28)
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The dots represent placeholders for parameter pairs θ3, ψ3 and φ3, ψ3, de-
pending on the agent for which the cyclic dynamics are calculated. For the
NPC, the 1-step cyclic dynamics in Eq. 6.28 simplify to:

q(r̂tC+τ|âC
tC

, r̂tC ; φ3
C, ψ3

C) = ∑
r̂tO ,r̂tP

q(r̂tC+τ|r̂tO ; ψ3
C)q(r̂tO |r̂tP ; φ3

C)q(r̂tP |âC
tC

, r̂tC)

(6.29)

Assuming that the parametrisation of environment and sensor dynamics is
fixed and yields perfect models, the distributions modelling the player’s and
‘other’ agent’s impact on the latent environment state simplify to:

q(r̂tP+1|r̂tP ; φ3) = ∑
âP

tP
,ŝP

tP

q(r̂tP+1|âP
tP

, r̂tP)q(âP
tP
|ŝP

tP
; φ3)q(ŝP

tP
|r̂tP) (6.30)

q(r̂tO+1|r̂tO ; ψ3) = ∑
âO

tO
,ŝO

tO

q(r̂tO+1|âO
tO

, r̂tO)q(âO
tO
|ŝO

tO
; ψ3)q(ŝO

tO
|r̂tO) (6.31)

Simplified
Player
Empowerment

In a similar manner, the NPC’s calculation of the state-dependent player
empowerment simplifies to:

EP(r̂tP ; θ3
P, ψ3

P) = max
q(âP,n

tP
)

I(ÂP,n
tP
→ ŜP

tP+nτ|r̂tP ; θ3
P, ψ3

P) (6.32)

It is based on the simplified n-step predictive factor:

q(ŝP
tP+nτ|âP,n

tP
, r̂tP ; θ3

P, ψ3
P) = ∑

r̂tP+nτ

q(ŝP
tP+nτ|r̂tP+nτ)q(r̂tP+nτ|âP,n

tP
, r̂tP ; θ3

P, ψ3
P)

(6.33)

The n-step cyclic dynamics are given by Eq. 6.28, using the 1-step cyclic
dynamics:

q(r̂tP+τ|âP
tP

, r̂tP ; θ3
P, ψ3

P) = ∑
r̂tC ,r̂tO

q(r̂tP+τ|r̂tC ; θ3
P)q(r̂tC |r̂tO ; ψ3

P)q(r̂tO |âP
tP

, r̂tP)

(6.34)

The impact of the ‘other’ agent on the latent environment state is calculated
from Eq. 6.31. The distribution encoding the NPC’s impact simplifies to:

q(r̂tC+1|r̂tC ; θ3) = ∑
âC

tC
,ŝC

tC

q(r̂tC+1|âC
tC

, r̂tC)q(âC
tC
|ŝC

tC
; θ3)q(ŝC

tC
|r̂tC) (6.35)

In contrast to the non-simplified version, this only relies on a single parameter:
the player’s beliefs about the NPC’s policy.

Simplified
NPC-Player
Transfer
Empowerment

The simplified state-dependent NPC-player transfer empowerment is:

ECP(r̂tC ; φ3
C, ψ3

C) = max
q(âC,n

tC
)

I(ÂC,n
tC
→ ŜP

tP+(n−1)τ|r̂tC ; φ3
C, ψ3

C) (6.36)
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The n-step predictive factor, mapping from the NPC’s n-step action sequences
to the player’s future perceptions, becomes:

q(ŝP
tP+(n−1)τ|â

C,n
tC

, r̂tC ; φ3
C, ψ3

C) = ∑
r̂tP+(n−1)τ

q(ŝP
tP+(n−1)τ|r̂tP+(n−1)τ)

q(r̂tP+(n−1)τ|âC,n
tC

, r̂tC ; φ3
C, ψ3

C) (6.37)

The last term, i.e. the acyclic n-step dynamics simplify to:

q(r̂tP+(n−1)τ|âC,n
tC

, r̂tC ; φ3
C, ψ3

C) =∑
r̂tC+(n−1)τ

q(r̂tP+(n−1)τ|âC
tC+(n−1)τ, r̂tC+(n−1)τ)

q(r̂tC+(n−1)τ|âC,n
tC

, r̂tC ; φ3
C, ψ3

C) (6.38)

The first term here represents the NPC’s exact environment dynamics model,
and the second the simplified n-step cyclic dynamics in Eq. 6.28.

Simplified
Action-Value
Function

Assuming knowledge of the present latent environment state rtC and
fixed environment and sensor dynamics parameters, the complexity of the
expectations required for the coupled empowerment action-value function is
considerably reduced. In the simplified version, they are only calculated over
the potential future latent environment states caused by the NPC’s actions.
The expected NPC, player and NPC-player transfer empowerment becomes:

EC(âC
tC

, rtC ; φ3
C, ψ3

C) =ER̂tC+τ |âC
tC

,rtC ,φ3
C ,ψ3

C
[EC] (6.39)

= ∑
r̂tC+τ

q(r̂tC+τ|âC
tC

, rtC ; φ3
C, ψ3

C)E
C(r̂tC+τ; φ3

C, ψ3
C) (6.40)

EP(âC
tC

, rtC ; θ3
P, ψ3

P) =ER̂tP |â
C
tC

,rtC ,θ3
P,ψ3

P
[EP] (6.41)

= ∑̂
rtP

q(r̂tP |âC
tC

, r̂tC)E
P(r̂tP ; θ3

P, ψ3
P) (6.42)

ECP(âC
tC

, rtC ; φ3
C, ψ3

C) =ER̂tC+τ |âC
tC

,rtC ,φ3
C ,ψ3

C
[ECP] (6.43)

= ∑
r̂tC+τ

q(r̂tC+τ|âC
tC

, rtC ; φ3
C, ψ3

C)E
CP(r̂tC+τ; φ3

C, ψ3
C) (6.44)

The simplified CEM action-value function relies only on the four policy
parameters θ3

P, φ3
C, ψ3

P, ψ3
C and the three hyperparameters α = (αP, αC, αCP):

ECEM(âC
tC

, rtC ; α, θ3
P, φ3

C, ψ3
C,P) = αC EC(âC

tC
, rtC ; φ3

C, ψ3
C)

+ αP EP(âC
tC

, rtC ; θ3
P, ψ3

P)

+ αCP ECP(âC
tC

, rtC ; φ3
C, ψ3

C) (6.45)
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Algorithm 1 Coupled empowerment maximisation (CEM)

1: function π(rtC , α, θ3
P, φ3

C, ψ3
P,C)

Stage 1: Anticipation
2: for all âC

tC
∈ ÂC

tC
do

3: Calculate q(r̂tP |âC
tC

, rtC)

4: Calculate q(r̂tC+τ|âC
tC

, rtC ; φ3
C, ψ3

C) (Eq. 6.29), using q(r̂tP |âC
tC

, rtC)

Stage 2: Player Empowerment Calculation
5: for all r̂tP ∈ R̂tP : q(r̂tP |âC

tC
, rtC) > 0 and âP,n

tP
∈ ÂP,n

tP
do

6: Calculate n-step dynamics q(r̂tP+nτ|âP,n
tP

, r̂tP ; θ3
P, ψ3

P) (Eq. 6.28)
7: Calculate predictive factor q(ŝP

tP+nτ|â
P,n
tP

, r̂tP ; θ3
P, ψ3

P) (Eq. 6.33)
8: end for
9: Find q∗P(âP,n

tP
) that maximises the channel capacity for the

player predictive factor with the Blahut-Arimoto algorithm
10: Calculate and store EP(r̂tP ; θ3

P, ψ3
P) (Eq. 6.32) using q∗P(âP,n

tP
)

Stage 2: NPC and NPC-Player Transfer Empowerment Calculation
11: for all r̂tC+τ∈R̂tC+τ :q(r̂tC+τ|âC

tC
, r̂tC ; φ3

C, ψ3
C)>0 and âC,n

tC+τ∈Â
C,n
tC+τ do

12: Calculate recursively q(r̂tP+nτ|âC,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C) (Eq. 6.38)

and q(r̂tC+(n+1)τ|âC,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C) (Eq. 6.28), the (non-) cyclic

n-step dynamics, by re-using common terms

13: Calculate q(ŝP
tP+nτ|â

C,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C), the NPC-player transfer

predictive factor (Eq. 6.37), using q(r̂tP+nτ|âC,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C)

14: Calculate q(ŝC
tC+(n+1)τ|â

C,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C), the NPC predictive

factor (Eq. 6.27), using q(r̂tC+(n+1)τ|âC,n
tC+τ, r̂tC+τ; φ3

C, ψ3
C)

15: end for
16: Find q∗CP(âC,n

tC+τ) and q∗C(âC,n
tC+τ) that maximise the channel capacity

for both predictive factors with the Blahut-Arimoto algorithm
17: Calculate and store ECP(r̂tC+τ; φ3

C, ψ3
C) (Eq. 6.36) using q∗CP(âC,n

tC+τ),
and EC(r̂tC+τ; φ3

C, ψ3
C) (Eq. 6.26), using q∗C(âC,n

tC+τ)

Stage 3: Coupled Empowerment Action-Value Calculation
18: Calculate expected NPC empowerment EC(âC

tC
, rtC ; φ3

C, ψ3
C)

(Eq. 6.39) and expected NPC-player transfer empowerment
ECP(âC

tC
, rtC ; φ3

C, ψ3
C) (Eq. 6.43), using q(r̂tC+τ|âC

tC
, rtC ; φ3

C, ψ3
C)

19: Calculate expected player empowerment EP(âC
tC

, rtC ; α, θ3
P, ψ3

P)

(Eq. 6.41), using q(r̂tP |âC
tC

, rtC)

20: Calculate action-value ECEM(âC
tC

, rtC ; θ3
P, φ3

C, ψ3
P,C) (Eq. 6.45)

21: end for

Stage 4: Action Selection
22: Calculate q(âC

tC
|rtC), the greedy CEM policy (Eq. 6.46)

23: Return âC,∗
tC
∼ q(âC

tC
|rtC)

24: end function
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Simplified
CEM Policy

We finally formalise the simplified subjective CEM policy. Assuming the
present environment state to be known, the policy is conditioned on rtC rather
than the current sensor state stC :

q(âC
tC
|rtC) =


1

|ÂC,∗
tC

(rtC )|
if âC

tC
∈ ÂC,∗(rtC),

0 otherwise.
(6.46)

The set ÂC,∗(rtC) of coupled empowerment maximising actions is given by:

Â∗(rtC) = arg max
âC

tC

ECEM(âC
tC

, rtC ; θ3
P, φ3

C, ψ3
P,C) (6.47)

PseudocodeWe illustrate the computation of the simplified CEM policy with the
pseudocode in Alg. 1. It draws on the Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972) for the calculation of the channel capacity. By following
the same structure, our pseudocode complements the detailed description of
the generic coupled empowerment action-value calculation in the previous
section. It moreover allows us to emphasise how terms can be re-used, in par-
ticular in the calculation of NPC and NPC-player transfer empowerment. The
cyclic and acyclic n-step dynamics (line 12) underlying these empowerment
types share the same terms, and can be iteratively constructed without re-
dundancy. The calculation of the n-step dynamics for the player empowerment
however cannot benefit from this, as it relies on a different set of parameters.
We use this algorithm, realising the simplified CEM policy, throughout our
studies in the next section.

Related WorkWe briefly relate CEM to the work of Jaques et al. (2019), which has
been out of scope for our systematic review of IM in game AI. Inspired
by the transfer empowerment introduced in this section, Jaques et al. (ibid.)
propose an intrinsic ‘social influence’ reward to increase coordination and
communication in sequential social dilemma games in which agents must co-
operate to achieve maximum overall score. In contrast to transfer empowerment,
their reward is given by the mutual information between the actions of two
agents, rather than the actions of one agent and the other’s sensory futures.
While we rely on an exhaustive computation of rewards, they perform an RL-
based Monte-Carlo approximation. They do not optimise an agent’s potential
influence on the other’s sensor, but maximise their actual influence on the
other’s actuator. Furthermore, they investigate bi-directional co-operation
instead of uni-directional support. Most crucially, the co-operative behaviour
of their agents is ultimately based on maximising extrinsic reward. CEM, in
contrast, relies exclusively on IRs.

6.5 studies : coupled empowerment maximisation for general ,
believable companion and adversary characters

We have conducted two observational vignette studies to assess the capacity
of CEM to drive the behaviour of general, believable NPCs that either support
the player as companions, or challenge them as adversaries. We consider general
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NPCs a special case of co-creative agents (cf. Sec. 6.2), and CEM an instance
of social models of IM. Our study seeks to contribute to the overarching
research question of this chapter: ‘Can we use a model of intrinsic motivation
to engineer general and social co-creative agents?’ (RQ.8).

PredictionsTo establish a proof-of-concept, we probe five predictions16 on the behaviour
of CEM-driven NPCs. The first two concern the emerging social dynamics:

PD.1 Maximising the player’s empowerment through CEM yields sup-
portive NPC behaviour.

PD.2 Minimising the player’s empowerment through CEM yields antag-
onistic NPC behaviour.

The other three predictions relate to the NPC’s generality:

PD.3 A CEM-driven NPC responds sensibly to the behaviours of the
player and other characters.

PD.4 A CEM-driven NPC responds with new but sensible behaviour to
changes in their embodiment.

PD.5 A CEM-driven NPC responds with new but sensible behaviour to
changes in their environment.

By ‘sensible behaviour’ we denote support or antagonism towards the player
that is consistent with the targeted social dynamics.

MethodologyWe introduce the concept of observational vignettes as a qualitative method
for the study of AI, inspired by experiential vignettes (Hudson & Cairns, 2014a)
in games user research. Experiential vignettes are small-scale qualitative
studies capable of shedding light on a little explored user experience phe-
nomenon by evaluating participants’ responses to explicitly manipulated
conditions. Observational vignettes follow the same idea, but are set-up to
gather qualitative data in the form of observations of simulated AI behaviour
as the phenomenon of interest. We use them to investigate our predictions of
the generality and social dynamics exhibited by CEM-driven NPCs.

Our studies comprise several vignettes, each designed to probe a specific
aspect of our predictions. Each vignette in turn consist of several conditions as
manipulations of a simple game and the CEM hyperparameters. The human
experimenter controls the player avatar, and observes the behaviour emerging
from the interaction with the CEM-driven NPC. Our studies are not only
systematic but also exploratory, in that we explore the possible behavioural
outcomes of these manipulations beyond our predictions.

We have chosen this qualitative approach because quantitative means to
evaluate gameplay and player experience cannot yet capture NPC-induced
support and antagonism reliably and in full detail. A quantitative assessment
of the NPC’s impact on objective performance indices such as the game score
would likely allow us to distinguish supportive from antagonistic behaviour,
but not reveal its quality as perceived by the player.

16 We probe predictions rather than hypotheses, as our study results are qualitative, and hypotheses
are commonly related to quantitative evaluation.
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Studies
Overview

We provide more detail on our method in the following sections, as there
exist slight variations between the studies. The two studies are mainly distin-
guished by the type of social dynamics investigated: we probe the ability of
CEM to yield supportive NPC behaviour (PD.1) in the first, and its potential
to give rise to adversarial behaviour (PD.2) in the second. The studies also
focus on different aspects of generality. In the first, we probe whether CEM-
driven NPCs can respond in a general and yet sensible way to unknown
player behaviour and other dynamic elements in the game world (PD.3). To
this end, we introduce enemies to the NPC player interaction that provide op-
portunities for, but also challenge the NPC’s support. In the second study, we
focus more on the generality of CEM-driven NPCs in regards to dealing with
changes in their environment (PD.5) and embodiment (PD.4). We facilitate
this via an extension of the simulation testbed shared between both studies.

6.5.1 Study 1: Companion Non-Player Characters

In our first study, we evaluate whether CEM can give rise to believable NPCs
that consistently support (PD.1) the player as companions, while remaining
general with respect to different player and enemy behaviours influencing
the shared game world (PD.3). Before reporting our method and results, we
define what we mean by companions, what makes them believable, and what
makes their design challenging. This complements our general account of
NPCs in Sec. 6.2, and informs the conditions for our study.

6.5.1.1 Believable Companion Non-Player Characters

Companion
Non-Player
Characters

An NPC can ‘provide the player with help in form of advice, directions, or
resources as a sidekick, or it may fight alongside the player as an ally, or do both’
(Emmerich, Ring & Masuch, 2018, p. 142, emphasis added). While their role
thus overlaps with that of other friendly NPC types, companions specifically
are characterised by persistently accompanying17 the player throughout large
parts of a game (Warpefelt & Verhagen, 2017).

Benefits to
Player
Experience

Due to this persistence, companions contribute strongly to player experi-
ence (PX). They can serve as tutors, introduce the player into the game world
and, if perceived as believable, can evoke emotional and social responses sim-
ilar to human co-players (Emmerich, Ring & Masuch, 2018). They can support
the suspension of disbelief and increase perceived realism and immersion,
thus affecting replayability (Bailey & Katchabaw, 2008). Based on an online
survey (N = 237), Emmerich, Ring and Masuch confirm that an NPC can
make a game more interesting (M = 3.34, SD = 0.76). Moreover, players wish
for more games to feature compelling companions (M = 3.23, SD = 0.83),
and deem a well-made NPC a reason to play a game (M = 3.17, SD = 1.03).
Unsurprisingly, companions such as Dogmeat from Fallout (Interplay Pro-

17 Warpefelt and Verhagen (2017) and Emmerich, Ring and Masuch (2018) disagree on whether
an NPC must be controllable by the player. We position ourselves in the middle, in that we
consider the requirement for persistent companionship to necessarily bind the NPC to the
player, thus giving the player at least some minimum control over them.
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ductions, 1997) and Ellie from The Last of Us (Naughty Dog, 2013) became
engraved into players’ collective memory.

Design
Challenges

The same persistence poses a considerable design challenge: ‘As compan-
ions accompany the player the whole time in many different situations and
settings of the game, they have to be able to adapt to the changing context
to maintain believability’ (Emmerich, Ring & Masuch, 2018, p. 143). If com-
panions do not meet players’ expectations towards their believability, e.g. by
becoming unsupportive and hence breaking characterhood, they can become
a great source of annoyance and shatter our game immersion (Cerny, 2015).
In their study, Emmerich, Ring and Masuch (2018) find that an annoying NPC
can make players quit a game (M = 2.43, SD = 1.21). As an example, they
refer to the dog Meeko in The Elder Scrolls V: Skyrim (Bethesda Game Studios,
2011) which has been frequently criticised for setting off traps, hence endan-
gering the player, or getting killed by prematurely attacking enemies. Since
companions must maintain their believability throughout the game, their
integration through traditional game AI methods (cf. Sec. 6.2) is challenging
and costly. We address this challenge through CEM.

Companion
Believability

Players have specific expectation towards the behaviour of a believable com-
panion NPC. In their study, Emmerich, Ring and Masuch (2018) find that play-
ers on the one hand want companions to support them in reaching their goal in
the game (M = 3.24, SD = 0.92). On the other hand though, players also want
companions to act independently and on their own (M = 3.13, SD = 0.91),
to follow their own objectives and goals (M = 3.25, SD = 0.86), and to con-
tradict them by having ‘their own head’ (ibid., p. 149) (M = 3.08, SD = 1.08).
Finally, players expect a believable NPC to react appropriately to the current
game situation and their actions (M = 3.64, SD = 0.63), and to often inter-
act with the game world and their character (M = 3.51, SD = 0.74). Based
on these observations, we propose a minimal conceptualisation of believ-
able companion behaviour in terms of three duties. To realise companion
characterhood, the NPC must:

1. Maintain Operational Proximity: Act towards states where they can sup-
port the player in the future.

2. Ensure Player Integrity: Ensure that the player can continue pursuing
their goals, and act against any force that would constrain these abilities.

3. Ensure Their Own Integrity: Secure their own existence and hence the
ability to support the player in the long term.

The second (2) duty captures the player’s demand for support, (3) emphasises
the NPC’s autonomy and own agenda, and (1) ensures that the NPC keeps
supporting the player. We did not define any duties relative to a specific goal,
as this would constrain the NPC’s generality. Being intrinsically motivated,
their goal-directedness arises from their specific embodiment, based on the
game world and mechanics, and from their interaction with the player.

These duties also comprise the need for believable NPCs to follow their
own agenda. They are complemented by the other criteria for NPC believability
presented in Sec. 6.2, namely to exhibit behavioural diversity and to be sensitive
to their surroundings and body.
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Sprite Type Description Reason for inclusion

Floor Foundation of level; accom-
modates avatar.

To indicate area where charac-
ters can freely move.

Wall Immovable obstacle. Cannot be
penetrated by attacks or other
characters’ sight.

To structure level and provide
choke points for specific inter-
actions. Affords hiding.

Table 6.2: Dungeon-crawler level elements in our study of companion NPCs.

6.5.1.2 Method

To investigate our predictions PD.1 and PD.3, we conduct an exploratory study
based on three observational vignettes, each probing one companion duty as
operationalisation of believable support (PD.1). As conditions, we manipulate
the level design of a custom game introduced below and the abilities of
the game characters across five experiments across the vignettes. For each
condition, we describe the emergent behaviour, highlight the contributions of
the individual types of empowerment in the NPC’s policy, and demonstrate
how they blend together. The player avatar is controlled by the experimenters.
Since the player and enemy behaviour changes throughout the experiment,
we implicitly assess player and NPC generality (PD.3).

Our model, introduced below, is essentially the CEM formalism from
Sec. 6.4 integrated in our testbed. In the spirit of an exploratory study,
we observe shortcomings of this vanilla version with respect to realising
companion-like behaviour. We introduce modifications to overcome these
shortcomings and yet maintain the generality of the model on the fly.

6.5.1.3 Testbed

Our study is set in a dedicated, minimal dungeon-crawler game in which the
player, supported by an NPC, has to defeat enemies in a maze consisting of
rooms connected by corridors. Agents interact in turn-wise order, starting
with the companion, and followed by the player and an arbitrary number
of enemies. All characters have health points, and can either move one step
in each direction, shoot over a range of four tiles, or idle. They can only hit
other characters within a certain range in their view direction, which changes
with movement. The enemies act deterministically, in that they always shoot
at or chase whichever character is closest, either the NPC or the player, but
never other enemies. We provide an overview and brief justification of the
level elements and character abilities in Tbl. 6.2 and 6.3, respectively.

We chose this game type for various reasons. Dungeon crawlers are tradi-
tionally discrete in time and space, which affords direct application of CEM
as defined in Sec. 6.4 and simplifies the analysis of the emerging behaviour.
Moreover, the core mechanics reflect the struggle for survival in nature. Given
its biological motivation (cf. Sec. 3.1), empowerment as an IR underlying
CEM is thus likely to align with the game’s goals. Dungeon crawlers tradi-
tionally rely on PCG and elements of chance, and therefore afford interesting
challenges to a general NPC, to be addressed in future work. Classic examples
such as Nethack (The NetHack DevTeam, 1987) and recent variants such as
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Ability Description Reason for inclusion

Idle Causes no change to the current
game state.

Can serve as a fallback if other ac-
tions are disadvantageous.

Move Move character into adjacent cell
if there is no obstacle. Otherwise
only changes orientation.

Allows exploration, hiding and
change of position as a reaction to
other characters.

Range
attack

Reduces health of first character in
current direction and attack range.
Damage and range are predefined.

Allows a character to attack other
characters, both friend and foe.

Table 6.3: Character abilities in our study of companion NPCs.

PixelDungeon (Retronic Games, 2015) illustrate how our minimalistic testbed
could be extended to further probe CEM’s generality.

6.5.1.4 Model

The NPC policy is calculated as in Alg. 1, based on the simplified coupled
empowerment without inference defined in Sec. 6.4.3.3. An arbitrary num-
ber of deterministic enemies take the role of the ‘other’ character in the
formalism. We have designed the NPC and player sensors SC, SP to be local,
non-overlapping and asymmetric to keep player and NPC empowerment sens-
itive to the individual character embodiment only and hence separate. We
model locality by only accounting for level elements in a maximum distance of
two units around a character. Other characters are represented in the sensor
by an ID and their relative position. Sensors are non-overlapping, i.e. they only
comprise a character’s own absolute position, rotation, and health. They are
asymmetric, in that the player sensor also comprises the game status (running,
lost, won). By default, all characters have two out of two health points.

We assume the sensor and environment dynamics to be deterministic. Adopt-
ing our simplifying assumptions from Sec. 6.4.3.3, the characters’ individual
dynamics models match their peers’ and the objective dynamics. Only the
four policy models, parametrised by θ3

P, φ3
C, ψ3

P,C, are excluded from this. We
assume throughout our study that both NPC and player model the enemies’
deterministic policy accurately. For now, we also make the default assump-
tion that the NPC believes the players’ actions to be uniformly distributed
and vice versa, i.e. q(âP

tP
|ŝP

tP
; φ3

C) ∼ U (|ÂP
tP
|) and q(âC

tC
|ŝC

tC
; θ3

P) ∼ U (|ÂC
tC
|). We

furthermore set the lookahead to a default value of n = 2.
The only variables left to specify are the hyperparameters α that determine

how much player, NPC and NPC-player transfer empowerment are weighed
into the coupled empowerment reward. Selecting these parameters is not
straight-forward, as companion characters specifically must realise a delicate
balance between being supportive and yet independent from the player. The
non-overlapping sensor would make our NPC strictly egocentric, if they
only maximised their own empowerment. However, there is agreement that
an NPC must not be too independent or egocentric: in a qualitative study
conducted by Cerny (2015), a player said ‘I dislike that [the companion]
prioritises getting to the exit herself over helping [me] first’ (ibid., p. 6). But
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(a) NPC empowerment for different NPC positions, n = 2

(b) NPC-player transfer empowerment for different NPC positions,
and lookahead n = 2

(c) Coupled empowerment for different NPC positions, augmented
with the movement trace of CEM-driven NPC, n = 2

Figure 6.4: Experiment 1. Adding NPC-player transfer empowerment to the IR allows
the NPC to maintain operational proximity to the player, and hence to
follow them through the narrow corridor.

an NPC must also not be too supportive of the player and care too little for
themselves: Emmerich, Ring and Masuch (2018) find in their survey that
‘players neither seek for inferior companions that have to be protected, nor do
they show a strong favor for mentoring companions. The highest agreement
is found for companions who are coequal and able to take care of themselves’
(ibid., p. 148). We achieve this trade-off in our simulations by weighing the
player’s empowerment the most by αP = 0.5, the NPC’s own empowerment
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by αC = 0.2, and the NPC-player transfer empowerment by αCP = 0.3. We
found these hyperparameters experimentally, and assume them by default in
the following vignettes.

6.5.1.5 Duty 1: Maintain Operational Proximity

Experiment 1:
Narrow
Corridor

To support the player in achieving their goals, the NPC should strive for
situations in which they can affect the player and their future perceptions best.
Depending on the NPC’s action set, this operational proximity can be different
from spatial proximity: We could image an NPC that can push buttons on a
terminal, but cannot engage in close combat. Such an NPC might support
the player most by staying remote, where it could e.g. unlock doors or trap
enemies. Probing such operational proximity is subject to our first experiment.
As condition, we have designed a level with two rooms connected by a narrow
corridor. Given the characters’ default abilities and level design, operational
proximity here comes down to spatial proximity, and we expect the NPC to
stay close to the player and follow them from one room to the other.

However, such behaviour is not self-evident, as illustrated in Fig. 6.4. Here,
the NPC and player are represented by violet and purple squares with letters
‘C’ and ‘P’, respectively. The numbers on the bottom specify their current and
maximum health. The individual figures illustrate the empowerment rewards
relevant to the policy, by mapping them as grey-scale values to different
positions in the scene. Brighter hues indicate higher empowerment. They are
calculated by fixing the player’s position and moving the north-facing NPC
around. Hence, only the player avatar is shown. The value at a location in
Fig. 6.4a and 6.4b corresponds to the NPC empowerment and NPC-player
transfer empowerment, respectively, if the NPC was in that position.

Via this procedure, we find that the NPC’s empowerment (Fig. 6.4a) is
particularly low at the room edges and corners, but also in the corridor.
In these positions, the NPC can move neither north nor south and their
sequences of navigational actions collapse into very few follow-up states.
The corridor thus represents an NPC empowerment bottleneck. If the NPC’s
policy was only about maximising their own empowerment, they would thus
move to the centre of the current room, and avoid the corridors. NPC-player
transfer empowerment (Fig. 6.4b), in contrast, renders all positions but the
ones in which the NPC can influence the player’s perception directly as less
attractive. When coupled with the other empowerment types (Fig. 6.4c), it
compensates for the bottleneck induced by the NPC’s empowerment. For
the default setup and αCP ≥ 0.3, the NPC consequently follows the player
through the corridor and maintains spatial proximity, as shown in Fig. 6.4c.
The digital appendix contains a video documenting this essential behaviour.

Experiment 2:
Trust

As a result of exploring the emerging behaviour in this experiment, we have
identified a shortcoming of the vanilla CEM formalism with respect to driving
companion NPCs: in specific situations, the player may be perceived as a
threat by the NPC, which can disturb their operational proximity specifically
and supportive behaviour more generally. We dedicate our second experiment
to understanding and overcoming this shortcoming.

We reproduce a situation in which the player is not trusted in the simplest
conceivable environment: a single room (Fig. 6.5a). We calculate the NPC’s
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(a) NPC empowerment for different NPC pos-
itions, n = 2

(b) NPC empowerment for different NPC pos-
itions and trust correction, n = 2

Figure 6.5: Experiment 2. The player is reflected as a threat in the NPC’s empower-
ment and the NPC thus avoids facing them. This behaviour can be
overcome by including trust in the coupled empowerment calculation.

empowerment in this room for different positions of a north-facing NPC and
a fixed player. The resulting empowerment landscape in Fig. 6.5a highlights
that the NPC’s empowerment is particularly low when facing the player.
This is due to the NPC modelling the player’s policy as uniform; in the NPC
empowerment calculation (Eq. 6.26), they hence assume that the player would
perform an action that reduced their sensory futures and hence empower-
ment with the same probability as any other action. The NPC consequently
flees from the player, and avoids staying within their shooting range. We
suggest that this assumption and the resulting behaviour are unnatural for
the interaction of a supporting character and a player who would benefit
from ongoing support. For supportive behaviour to emerge, it is important
that player and NPC realise trust: they must not assume their peer to perform
future actions that would significantly threaten their own existence.

Extension:
Trust
Correction

We introduce a trust correction extension to overcome this shortcoming.
It modifies the NPC’s model of the player’s policy such that actions that
counteract trust are assigned zero probability and hence are not considered
in the 1-step cyclic dynamics (Eq. 6.29) for the NPC empowerment calculation.
This is accomplished in two steps. Firstly, a subset of trust-maintaining player
actions ÂP

? ⊆ ÂP in the assumed environment state r̂tP is identified as follows:

ÂP
tP,?(r̂tP) :=

âP
tP
∈ÂP

tP
: EC(r̂tP ; φ3

C, ψ3
C)>0∧∑

r̂η∈R̂η(r̂tP ,âP
tP
)

EC(r̂η ; φ3
C, ψ3

C)>0

 (6.48)

with

R̂η(r̂tP , âP
tP
) := {r̂tP+1 ∈ R̂tP+1 : q(r̂tP+1|r̂tP , âP

tP
) > η}
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The set only retains player actions that do not directly reduce the NPC’s
empowerment to zero with probability η > 0. To this end, we calculate
the expected NPC empowerment over latent environment states r̂η after the
player has acted, and before the enemies can intervene. By comparing this
to the NPC’s empowerment immediately before the player has performed in
r̂tP , we can infer whether it was the player’s action that has rendered NPC
empowerment zero, rather than another character’s. The set still comprises
player actions that reduce the NPC’s empowerment but are not fatal, as such
actions might benefit the player in some other way. As a second step, this
set is used to update the NPC’s model of the player’s policy such that trust-
maintaining actions are assigned equal, and other actions zero probability:

q(âP
tP
|ŝP

tP
; φ3

C) =


1

|ÂP
tP ,?|

if âP
tP
∈ ÂP

tP,?(r̂tP),

0 otherwise.
∀ŝP

tP
∈ ŜP

tP

Crucially, this extension does not constrain the generality of the overall model,
as it again relies on empowerment as IR. Applied to the previous scenario,
the NPC empowerment remains high in front of the player and within their
shooting range (Fig. 6.5b). Moreover, the CEM-driven NPC does not flee any
more from the player. We have documented the initial fleeing behaviour in a
video comprised in the digital appendix.

We conclude that a CEM-driven NPC can realise operational proximity
supported by trust. In our testbed, this is articulated in the NPC following
and remaining close to the player.

6.5.1.6 Duty 2: Ensure Player Integrity

Experiment 3:
Protecting the
Player

In our testbed, ensuring the player’s integrity entails protecting them, and to
prevent their death. Probing such behaviour is subject to our third experiment.
For this purpose, we design a level scenario in which the player is directly
threatened by an enemy, as illustrated in Fig. 6.6. The enemy, represented by
an orange square and the letter ‘E’, faces the player and is ready to shoot.

We illustrate the different empowerment types relevant to the policy in Fig.
6.6a and 6.6b. The value at a particular location in Fig. 6.6a corresponds to
the player’s empowerment, if the north-facing NPC was in that position and
chose to shoot. Since player empowerment quantifies their potential influence
on future perceptions, it would drop to zero if the player was killed, as their
sensory futures would collapse into one state. The player’s empowerment is
thus highest if the NPC either faces the enemy in shooting range, or positions
themselves between the two, to take the bullet. Fig. 6.6b reveals the latter
alternative in a different way. It shows the NPC-player transfer empowerment,
i.e. the NPC’s influence on the player’s future sensor state, for different NPC
positions. As such, it highlights where the NPC could act as a bodyguard
and save the player by stepping between them and the enemy from the side.

Maximising coupled empowerment leads to the NPC killing the enemy
for any value of αC and αCP, as long as αP > 0. If αP = 0, the NPC does not
value the player’s empowerment at all. As their sensors do not overlap, the
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NPC would hence not ‘care’ about the player. Importantly, the NPC would
defend the player even if the enemies did not pose a threat to themselves.

Our exploration of this specific scenario shows that the NPC protects the
player as long as they can anticipate the player’s death using their n-step
lookahead. Even for a small lookahead n = 1, the NPC would always protect
a player that only had one health point left. Crucially though, the NPC
would stop protecting the player if the player’s present health exceeded their
lookahead. The reason for this is an inconsistency in many (video-)games: In
nature, a living being’s lower health not only indicates its closeness to death,
but also corresponds to a decline in their ability to interact successfully with
the world. In games though, health or similar labels for fitness often only
represent a mere warning, and affect the character’s performance irregularly
or only when dropping to zero. An NPC can thus only foresee the tragic
consequences of the enemy’s actions if they evaluate the n-step cyclic dynamics
far enough ahead. This however is expensive to compute.

Extension:
Health-
Performance
Consistency

We thus extend the vanilla CEM model to make the relationship between a
character’s health and their performance more consistent with nature. More
specifically, we assume that a character’s actions are harder to control the
more they are injured by introducing noise into the character’s environment dy-
namics model. In the following, we define a successful action as one that results
in the follow-up states r̂t+1 expressed in the original dynamics q(r̂t+1|ât, r̂t).
An unsuccessful action leaves the present state unchanged. We introduce
noise by setting the probability for a character’s actions to be successful in a
state r̂t proportional to the fraction of their remaining and maximum health:

q(r̂t+1|ât, r̂t)
? =


q(r̂1

t+1|ât, r̂t)

q(r̂2
t+1|ât), r̂t

...
q(r̂D

t+1|ât, r̂t)

�


γ

γ
...

1− γ

 , γ =
ht

hmax
(6.49)

(a) Player empowerment for different
positions of a shooting NPC, n = 2

(b) NPC-player transfer empowerment for dif-
ferent NPC positions, n = 2

Figure 6.6: Experiment 3. The player is threatened by an enemy. The NPC could save
the player by shooting the enemy or by stepping between them.
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(a) Vanilla formalism (b) With health-performance consistency

Figure 6.7: Experiment 3. Player empowerment, given the NPC chose to shoot in a
certain position, and player health > n, with n = 2. Health-performance
consistency provides a clear indication for the NPC to shoot.

Here, � is the element-wise product, and ht, hmax stand for the character’s
current and maximum health, a representative for some arbitrary fitness
label. The state r̂D

t+1 resembles the agent’s default follow-up state, i.e. the
state resulting from idling. The more a character’s health decreases, the
more likely it becomes that their actions will lead to the default state. Since
empowerment punishes overlapping action consequences, this modification
yields a consistent, gradual decrease of a character’s empowerment with their
health, assuming that it is applied to all available actions.

When including this modification, a CEM-driven NPC not only acts when
the player faces death, but also protects the latter from being harmed. Fig. 6.7
illustrates this in the previous scenario, by comparing the player empower-
ment landscape for the vanilla and extended formalism when the player’s
current health ht is larger than the lookahead n. Again, the landscape has
been computed for a fixed player and different positions of the north-facing
NPC. Our health-performance consistency allows the NPC to clearly differentiate
between actions that contribute to the player’s empowerment, despite a short
lookahead n. Hence, we assume this extension to be active by default in the
following scenarios. A video showing how the CEM-driven NPC protects the
player can be found in the digital appendix.

Experiment 4:
Not Blocking
the Player

One of the most frequently criticised shortcomings of existing NPC AI
is that the controlled NPC blocks the player’s movement, and hence their
goal achievement. Emmerich, Ring and Masuch (2018) have asked players
what they like and dislike in companion characters, and, as an open response,
players particularly complained about companions getting in their way. In our
fourth experiment, we probe if a CEM-driven NPC would block the player’s
movement while maintaining spatial proximity.

We also investigate this in a game level representing a single room. Fig. 6.8a
shows the player’s empowerment for different NPC positions. The values are
low around the player, because the NPC would constrain their movement.
The same applies to the NPC’s periphery in respect to the player. If we
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(a) Player empowerment for different NPC po-
sitions and lookahead n = 2

(b) Coupled empowerment for different NPC
positions and lookahead n = 2

Figure 6.8: Experiment 4. The NPC is reflected as an impediment to the player’s
movement in their empowerment and, maximising the latter, the NPC
consequently avoids getting close to the player. In combination with NPC-
player transfer empowerment though, the player becomes an attractor
and the NPC seeks a position off the player’s navigation axes.

only considered these two types of empowerment, they would add up and
lead to repellent behaviour; but in combination with NPC-player transfer
empowerment, the coupled empowerment around the player increases (Fig.
6.8b), and the NPC consequently maintains spatial proximity, but avoids
blocking the player whenever possible. A CEM-driven NPC consequently
prefers to position themselves either in the corners in front or behind the
player, where they do not present an obstacle. We have included a video of
the NPC following but not blocking the player in the digital appendix.

We conclude that CEM enables NPCs to maintain the player’s integrity by
protection against enemies and by not blocking them.

6.5.1.7 Duty 3: Ensure Own Integrity

Experiment 5:
Self-Protection

We have demonstrated earlier that the companion protects the player from
threats. Various earlier studies (e.g. Guckelsberger & Polani, 2014) have
demonstrated that EM makes agents death-averse, which drives the NPC
to defend themselves against threats. In our fifth experiment, we look at
a dilemma addressing both companion’s duties to protect the player and
themselves: when NPC and player are threatened at the same time.

We probe this behaviour with a similar condition as in the first experiment,
extended by an additional enemy that threatens the NPC. We first consider
the case where the player has sufficient health to withstand the enemy for
several moves, rather than getting killed immediately. Fig. 6.9 illustrates the
behaviour of our NPC in this scenario as a series of movements. The first
image in the series shows the coupled empowerment in the initial situation.
Here, the dark area between the companion and the enemy on the left renders
the latter as a threat, while the white area towards the other enemy represents
the companion’s potential to save the player from harm. The following images
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Figure 6.9: Experiment 5. NPC and player are threatened simultaneously. Successive
moves from top left to bottom right: the NPC escapes their death, rescues
the player, and finally defends themselves. Arrows indicate shooting. Top
left: coupled empowerment for n = 2 and different NPC positions.

demonstrate that the companion first escapes from the enemy on the left,
while accepting that the player is harmed. It then kills the player’s enemy
before the latter can attack the player. The remaining enemy follows the NPC
until the latter eventually kills the enemy to save its own existence.

We moreover consider a second case, in which the player’s health is set
to one from the onset, and they are hence immediately threatened by their
enemy. For αP > 0.5 and the other hyperparameters set to default, the NPC
sacrifices themselves to rescue the player. The digital appendix comprises a
video with both scenarios. Our fifth experiment has demonstrated that a CEM-
driven NPC can protect the player and themselves in complex behavioural
sequences emerging from their social intrinsic motivation.

Conclusion
of Findings

Our experiments support the notion that a CEM-driven NPC can yield
believable and supportive behaviour towards the player, operationalised by the
three duties to maintain operational proximity, and ensure the player’s as
well as their own integrity. The NPC has realised these duties without a
policy model that is custom-tailored to a specific player, and we thus consider
CEM player-general. In conclusion, we confirm our predictions PD.1 and PD.3
for this testbed. In the next section, we study the potential of CEM to drive
adversarial characters. We combine the discussion of both studies in Sec. 6.6.
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6.5.2 Study 2: Adversary Non-Player Characters

In our second study, we investigate CEM’s capacity to drive the behaviour
of general and believable adversary NPCs. To this end, our NPC essentially
chooses actions that increase their own, and decrease the player’s empower-
ment. In analogy to our first study, we question whether CEM can sustain
characterhood, here in terms of different facets of believable antagonistic beha-
viour (PD.2). Differently though, we evaluate the generality of these characters
with respect to their ability to respond flexibly with new but consistently
antagonistic behaviours to changes in their embodiment (PD.4) and environ-
ment (PD.5). We first clarify what we mean by adversaries and what facets of
believable, adversarial behaviour we investigate in the following experiments.

6.5.2.1 Believable Adversary Non-Player Characters

Adversary
Non-Player
Characters

NPCs can realise many different roles in videogames, but the majority of
characters found in games are adversaries. They come in different flavours,
with their roles and behaviours varying according to the game genre, the
design affordances, and the underlying algorithms. The terminology used in
the literature is incoherent and overlapping. Warpefelt (2016, p. 87-90), for
instance, differentiates adversaries into enemies and opponents. While enemies
are reduced to the roles of attackers in combat, opponents are described as
more complex, acting against the player’s goal-oriented manipulation of
the game mechanics. Instead of just attacking the player, they could hinder
them ‘from moving, chase them, or force them to alter their plans’ (ibid.,
p. 90 ff). Treanor et al. (2015) in contrast distinguish adversaries and villains.
While an adversary is conceived as a character that can defeat the player
without resorting to cheating, a villain’s primary goal is seen in creating
interesting challenges for the player which they can eventually overcome. In
the following, we understand adversaries to be as complex as opponents. They
either challenge the player as villains, or actually defeat them.

Benefits to
Player
Experience

We have already foreshadowed the primary contribution of adversary
NPCs to player experience (PX): they produce challenge as a central constitu-
ent of gameplay (Adams, 2014). Adversaries can challenge players physically
through speed and accuracy, e.g. in battle, and cognitively by addressing
their problem-solving capacities, e.g. in the form of puzzles or sophistic-
ated strategies. Challenge serves as an anchor for other PXs, e.g. enjoyment,
competence, suspense and curiosity, anticipation and tension, and of course,
success and failure (Denisova, Guckelsberger & Zendle, 2017). If challenging
them optimally, adversary NPCs can thus contribute substantially to player
satisfaction and continuous engagement with a game.

Adversary
Believability

The positive effects of adversaries on PX can be obliterated if they do not
behave in a believable manner as conceived in Sec. 6.2. To realise characterhood
as a central determinant of believability, an adversary must challenge the
player through behaviour that is antagonistic with respect to the player’s own
and the goals of the game. An adversary should moreover show diversity
in behaviour both within a given game, and with respect to the player’s
expectations shaped by other games. In other words, it should behave in
non-stereotypical, new and surprising ways. This is promoted if an adversary
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leverages their environment, in combination with their own abilities, to
exploit the player’s weaknesses. Moreover, they should be attentive to the
player: Warpefelt (2016) notes that in existing games, adversaries often lack
believability as they appear ‘oblivious until actively provoked’ (ibid., p. 89).
Both points are covered by the third requirement for believable NPCs to
be sensitive to their surroundings and body. Finally, adversaries can appear
more believable if they follow their own agenda, even if it is only about self-
preservation expressed in defensive, rather than kamikaze behaviour. The
design of believable adversary behaviour is subject to the same challenges as
in designing believable NPC behaviour more generally, as outlined in Sec. 6.2.
In complex, open-ended games, existing NPC AI may break or yield blunt
behaviour. This impedes on the characters’ believability and thus on PX.

6.5.2.2 Method

As in our previous study (Sec. 6.5.1), we assess and explore our predictions
via observational vignettes to gain qualitative data on the NPC’s behaviour. The
player avatar is controlled by the experimenters. For PD.2, we probe the effect
of CEM on two factors of believable adversary behaviour: their (i) realisation
of characterhood, and (ii) sensitivity to their surroundings and body.

We operationalise (i) based on two facets of believable adversary behaviour:
predator-and-prey dynamics and attacks from a distance. We have chosen the first
for its omnipresence in many games, and the second as a more sophisticated
and unconventional ‘means to be mean’. We have dedicated two parts of our
study to probing each of these facets (Sec. 6.5.2.5 and 6.5.2.7). We investigate
(ii) in a third part (Sec. 6.5.2.6), by observing the behaviour resulting from
changes to an initial environment and set of character abilities. In our default
setup, the CEM-driven NPC bases its decision-making on the maximisation
of its own, and on the minimisation of the player’s empowerment to the same
extent. We later deviate from this equilibrium and show how unbalanced
configurations yield radically different behaviours and adversary personas.
We probe (i) and (ii) via nine experiments in total.

We investigate the generality of our NPC by two means. Firstly, we ob-
serve whether they exhibit consistently antagonistic behaviour throughout
all experimental setups. Secondly, we check whether they respond with new
antagonistic behaviours to changes in their environment (PD.5) and abilities
(PD.4). A character that can flexibly respond to such changes is also likely to
exhibit behavioural diversity, and we hence implicitly address another facet of
believable NPC behaviour.

Due to the richness of our extended testbed, an exhaustive search through
the space of environment features and character abilities is infeasible. We
hence focus on those combinations that yield the biggest difference in emer-
gent behaviour, and that can be found in many games and thus capture the
use-cases of game designers and researchers. We also cannot exhaustively
evaluate all combinations of the lookahead n and the weights α in the coupled
empowerment action-value function, and thus only study those that illustrate
CEM’s sensitivity to, and the benefits of, parameter fine-tuning best.
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Sprite Type Description Reason for inclusion

Floor Foundation of level; accom-
modates avatar.

To include avatar in game, and
allow for movement within.

Goal Once the character moves on
this tile, the game is won.

Serves as a visual indicator
and trigger for game goal.

Wall Immovable obstacle. Cannot
be penetrated by attacks or
other characters’ sight.

To structure level and provide
choke points for specific inter-
actions. Affords hiding.

Lava Decreases character’s health
by a fixed amount for each
time step spent on the field.

Serves as an environmental
hazard. Allows for rich inter-
action with the push ability.

Health
Charge

Increases character’s health by
a fixed amount for each time
step spent on the field.

Makes health a manageable re-
source to temporarily trade for
other gains.

Turret Shoots arrow, inflicting a fixed
health damage on first charac-
ter being hit.

Additional defence layer for
remote attacks. Can yield self-
inflicted damage.

Trigger Activates connected arrow
trap for each timestep that
character remains on tile.

Triggers can be far off the ac-
tivated turret and thus allow
to strike remotely.

Table 6.4: Extended dungeon-crawler level elements in our study of adversary NPCs.

6.5.2.3 Testbed

We have adopted our dungeon-crawler testbed from the previous study on
CEM-driven companion NPCs (Sec. 6.5.1.3) for its inherent benefits outlined
earlier, to support comparisons, and to provide a basis for a future joint quant-
itative evaluation. Despite being rather minimalistic, this testbed allowed us
to investigate an NPC’s generality in responding flexibly to the unknown
behaviour of the player and other characters. In this study though, we in-
vestigate generality with respect to an NPC’s ability to respond with new
antagonistic behaviours to changes in their embodiment and environment.

To this end, we have extended the testbed substantially with both new
environmental features and character abilities. Tbl. 6.4 provides an overview
of the various features, their dynamics and the rationale behind their inclusion.
As a minor change and visual guide, we have now included a goal tile which
the player must navigate to in order to win the game. Moreover, we have
changed the NPC and player avatar (excluded from the table) to a circle, and
now explicitly visualise their perceptive field. A summary of the extended
character abilities can be found in Tbl. 6.5.

6.5.2.4 Model

We essentially use the same model as in our study on companion NPCs
(Sec. 6.5.1.4), but with a negative hyperparameter αP such that maximising
coupled empowerment leads to the NPC performing actions that minimise the
player’s empowerment. Moreover, we limit our investigation to the interaction
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Ability Description Reason for inclusion

Idle Causes no change to the current
game state.

Can serve as a fallback if other ac-
tions are disadvantageous.

Move Move character into adjacent cell
if there is no obstacle. Otherwise
only changes orientation.

Allows for exploration, hiding and
change of position in reaction to
other characters.

Push In addition to moving, shift adja-
cent characters in the movement
direction if there is no obstruction.

Allows for complex interactions,
e.g. pushing others into lava, re-
chargers, or a turret’s target range.

Fly Allows to move over lava fields
without taking damage, but charac-
ter can still benefit from rechargers.

A way to access previously inac-
cessible parts of a level, and escape
other characters.

Melee
attack

Causes damage to faced, adjacent.
The amount of health damage is
predefined and fixed.

Common predator-and-prey mech-
anic. Allows for escape or kill with
range attack before others close.

Range
attack

Reduces health of first character in
current direction and attack range.
Damage and range are predefined.

Allows experimenters to imbalance
attack options based on spatial
proximity. Rewards seeking cover.

Heal Increases health of adjacent, faced
character by fixed amount up to
maximum health of that character.

To check how an unconventional
action can benefit adversary-player
interaction.

Table 6.5: Extended character abilities in our study of adversary NPCs.

of the NPC and player, and omit other characters. We adopt the health-
performance consistency extension (Eq. 6.49) of the vanilla CEM formalism
introduced earlier to make the NPC sensitive to their own and the player’s
health even for low lookaheads n. We however do not use the trust correction
extension, but assume policy models to be uniform distributions.

We adopt the previous assumptions that the characters’ sensors are asym-
metric, local and non-overlapping, and that their perceptive field spans a ra-
dius of three cells. While the characters’ abilities were previously fixed,
we now modify them across different experiments. We assume a consist-
ent default configuration, in which they can only idle and move, i.e. A =
{idle, north, east, south, west}. Furthermore, they are initialised with full health,
i.e. ht=0 = hmax = 2. This allows them to take damage without dying instantly,
and to make use of health rechargers. A character takes one health point dam-
age if hit by another’s melee attack, a range attack or through a turret. Vice
versa, they gain one health point if healed by another character. If subjected
to lava, they lose one health point per time step, and gain one while standing
on a health recharger. The remote attack range is four tiles.

We compute coupled empowerment for a 3-step lookahead, and assume
an initial weighting of empowerment types based on the hyperparameter
values αC = 0.5, αP = −0.5 and αCP = 0.1. These values have been identified
through experimentation. We only report on these settings in our experiments
if they deviate from the default configuration.
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6.5.2.5 Facet 1: Predator-and-Prey

As the first part of our study, we investigate whether CEM can give rise to the
classic predator-and-prey behaviour. This is quintessential to many games, and
represents our first facet to operationalise believable adversary characterhood.
Fig. 6.10a shows the initial state of the environment, consisting of an arena
surrounded by walls, and divided by a wall with small spaces on the sides to
pass through. The NPC (‘A’, orange) is at the top and faces south, while the
player (‘P’, purple) is situated at the bottom and faces north. Their perceptive
field is highlighted in orange and purple, respectively.

Fig. 6.10b shows the NPC’s empowerment for a 3-step lookahead if they
were moved to that specific position, but the player remained fixed. The NPC
itself is hence omitted from the empowerment landscape. Brighter hues represent
higher empowerment. In the default configuration, the characters can only
move or idle, and empowerment is consequently very sensitive to degrees of
freedom in movement: it is lower where the NPC would be blocked, e.g. close
to walls, corners and the player. The player’s 3-step empowerment is very
similar as both characters by default possess the same abilities, and we hence
do not illustrate it. Fig. 6.10c shows the NPC-player transfer empowerment
for different NPC positions. Recall that this empowerment type corresponds
to the influence the NPC has on the player’s sensor. Hence, for n=1, it is
only non-zero within and directly adjacent to the player’s perceptive field.
For larger lookaheads in contrast, it fades out to states from which the NPC
could influence the player’s perception with an n-step action sequences (Fig.
6.10d). This demonstrates that transfer empowerment does not measure
perceptibility, but operational, or in this case, spatial proximity.

Experiment 1:
Opportunist

These illustrations invite predictions on how the different empowerment
types compete in the CEM policy: If the NPC based their action-selection only
on transfer empowerment, they would move closer to the player; maximising
NPC empowerment as their own agenda however would require them to stay
in the middle of the upper part and avoid the choke points on the sides. As
this trade-off is mediated by the α hyperparameters, they can be used to
design different behaviours. For our first simulation experiment, we equip
our NPC with the ability to perform range attacks but stick to the default
parameter setup. We find that the NPC remains in the upper area, but once
the player moves into this territory, they are killed with two precise shots. We
consider this opportunistic predator-and-prey behaviour.

Experiment 2:
Daredevil

For our second experiment, we decrease the weight of the NPC’s own em-
powerment but increase the negative weight of the player’s (αC=0.1, αP=−1.0).
The NPC hence more strongly trades off losses in their own empowerment
for the decimation of player empowerment. As a result of giving their own
agenda less consideration, the NPC becomes a daredevil adversary, chasing
and shooting the player throughout the whole level as illustrated in Fig. 6.11.

Experiment 3:
Dodging
Player Attacks

As a third experiment, we probe our NPC’s generality by also allowing the
player to perform range attacks. For the default parameter configuration, the
NPC still behaves opportunistically, but now dodges the player and keeps
distance to avoid being attacked. The digital appendix contains three videos
of the described NPC behaviour in the previous experiments.
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(a) Initial state and perceptive fields (b) NPC empowerment, n = 3

(c) Transfer empowerment, n = 1 (d) Transfer empowerment, n = 3

Figure 6.10: Predator-and-prey scenario. Initial game state with characters’ percept-
ive fields, followed by the NPC and NPC-player transfer empowerment
landscapes for different NPC positions and a fixed player.

These three experiments supports the notion that CEM can yield adversary
behaviour in the form of the classic predator-and-prey dynamics present
in many games. They show that the α parameters in the CEM action-value
function should not be considered a burden, but a feature to create different
NPC personas, thus increasing the believability and diversity of our characters.

6.5.2.6 Facet 2: Sensitivity to Surroundings and Body

In a complex game, the wealth of possible interactions between a character’s
abilities and features of the environment becomes hard to anticipate even for
the game’s designers (cf. Sec. 6.2). As a consequence, most traditional NPC
AI does not fully exploit these interactions. For more advanced techniques
such as Monte-Carlo Tree Search or RL, this anticipation problem creeps into
the definition of the optimisation objective, resulting in blunt adversary
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Figure 6.11: Experiment 2. Top left to bottom right: ‘Daredevil’ NPC chasing and
killing the player with a range attack, αC=0, αP=−1.0, αCP=0.1, n=3.

behaviour. If NPCs are not sensitive to their surroundings and body, their
behaviour becomes less believable, also because it is less diverse.

Empowerment is defined on an agent’s possible interactions with their
world (cf. Sec. 3.2), and should thus be sensitive to any interaction between
any type of ‘functional content’ (Smith, 2014b). As a second facet of believable
adversary behaviour, we probe whether a CEM-driven NPC is sensitive to
their surroundings and body, and can fully leverage the possible interactions
that a game affords for adversarial behaviour. Since even small changes to
the environment and a character’s abilities can turn the emerging gameplay
around, we start with a simple scenario and modify it gradually. In this way,
we also probe CEM’s generality with respect to such changes.

Experiment 4:
Vanilla Lava
Arena

Fig. 6.12a shows the initial state of the environment for our fourth ex-
periment: NPC and player face each other in an arena surrounded by lava.
Stepping on lava reduces a character’s health by one unit per time step. To ex-
amine longer interaction sequences, we extend our characters’ health to four
units (ht=0 = hmax = 4). Mediated by health-performance-consistency (Eq. 6.49),
a decrease in health results in lower empowerment even for small lookaheads.
The NPC’s 3-step empowerment (Fig. 6.12b) is thus lower in the lava, and
decreases further away from the platform, where only few action sequences
lead back alive. Under the default configuration, the NPC gets close to the
player and blocks them, to reduce their mobility and hence empowerment.

Experiment 5:
Lava Arena &
Pushing

However, if we change the NPC’s abilities, the dynamics change consid-
erably. For our fifth experiment, we equip them with the ability to push. As
illustrated in Fig. 6.13, the NPC then kills the player by pushing them into
the lava. Importantly, they block the player from returning to the platform,
no matter which path the latter chooses. The policy thus captures how the
NPC’s new ability, in interaction with the environment, can be exploited to
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(a) Initial state (b) NPC empowerment, n = 3

(c) NPC empowerment with
ability to fly, n = 3

(d) NPC empowerment with health
recharger, n = 3

Figure 6.12: Lava arena scenario. Initial game state with perceptive field and 3-
step NPC empowerment for different NPC positions and a fixed player
position. The illustrations show the impact of different modifications to
the environment and character abilities on empowerment.

decrease the player’s empowerment. We have included a video of this more
challenging and arguably novel behaviour in the digital appendix.

Experiment 6:
Lava Arena &
Healing

In our sixth experiment, we consider the consequences of giving the NPC
an action which is typically not associated with adversarial behaviour: to
heal other characters. Surprisingly, this change takes antagonism to another
level: the NPC still pushes the player into the lava, but once they are close to
ceasing, the NPC uses healing to keep them barely alive. Our CEM-driven
NPC thus acts in a super-villain style, and in contrast to e.g. an RL approach



6.5 studies : cem for general , believable & social npcs 190

Figure 6.13: Experiment 5 (detail). Top left to bottom right: NPC pushing player into
lava and blocking them from returning to the platform.

that only rewards the player’s destruction: they keep the player’s health
just high enough to exercise control over them – thus optimising their own
empowerment and NPC-player transfer empowerment. We can modulate this
behaviour via the hyperparameters: if we reduce αC, the NPC lets the player
die. We include a video of the healing behaviour in the digital appendix.

Experiment 7:
Lava Arena &
Flying

An NPC cannot sustainably maximise coupled empowerment if they ex-
clusively exercise control over the player; in scenarios such as the lava arena,
they must also engage in acts of self-preservation, thus realising an agenda of
their own. Dodging attacks by the player as in the third experiment is such
an act. However, previously both characters had identical abilities, which
is uncommon for most games. We hence set up a seventh experiment to
examine whether CEM can exploit inequalities between characters to further
both self-preservation and adverseness. To this end, we allow our NPC to
range-attack and fly, while the player is limited to melee attacks on the ground.
In our testbed, a character that can fly is not affected by the hazardous effect
of lava, and the NPC’s empowerment is thus not affected by the lava any-
more, but only by the surrounding walls and the player. This can be seen by
comparing Fig. 6.12b and 6.12c. With their new ability, the NPC dodges the
player’s melee attacks by escaping over the lava. Once the player veers away
from the NPC, they return and attack from a distance. We have included a
video of this behaviour in the digital appendix.
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(a) Initial state (b) Transfer empowerment

(c) Transfer empowerment (d) Transfer empowerment

Figure 6.14: Experiment 9. Initial state, followed by three NPC-player transfer em-
powerment landscapes. Each individual map has been computed for a
fixed but different player position. Lookahead n = 3.

Experiment 8:
Lava Arena &
Health
Charger

In our eighth experiment, we probe another aspect of self-preservation: not
escaping harm, but recovering from it. If we allow our characters to push and
perform melee attacks, the NPC engages in close combat, using both direct
attacks and pushing the player into the lava. Meanwhile, if we place a health
charger unit in the middle of the platform, the characters start competing for
the scarce resource: once the NPC’s health gets close to zero, they capture
the recharge tile to recover, pushing the player off the tile if necessary. If we
set the NPC’s health lower than their maximum, i.e. ht=0 = 2, hmax = 4, the
health charger appears like a beacon in the NPC empowerment landscape
(Fig. 6.12d). The digital appendix contains a video of the emerging behaviour.

The preceding experiments support both, that CEM-driven agents are
sensitive to their surroundings and body as a facet of believable behaviour,
and that they are general with respect to changes to these elements.
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6.5.2.7 Facet 3: Distant Attacks

The most challenging adversaries arguably strike from a distance, where they
remain unaffected by the player’s actions, and potentially undetected. An
NPC that is inferior in direct combat could cast spells, order air strikes or
control traps remotely. In this last study part, we investigate if CEM can yield
such attacks from a distance as a facet of believable adversary behaviour.

Experiment 9:
Distant
Attacks

We have designed our last experiment to provoke a transition between a
remote and direct attack, and to examine the interplay of the three rewards
in the CEM action-value function. In the initial state (Fig. 6.14a), the player
starts on the lower right in a corridor, while the NPC is situated on the upper
left in an open area, separated by a wall with two passages. The player faces
three turrets, two on the sides and one ahead. The corresponding triggers are
positioned in front of the NPC. Both characters can perform a range attack.

The NPC’s own empowerment in this state does not convey any inform-
ation about the best trigger to affect the player, as it only quantifies their
influence on their future own sensor state. Player and NPC-player transfer
empowerment in contrast both work as a proxy to the player’s condition:
transfer empowerment measures the impact of the NPC’s turret-triggering
on the player’s health, which is captured in the latter’s sensor; the player’s
health in turn affects their empowerment, which can be exploited by the NPC.
Figs. 6.14b – 6.14d show how transfer empowerment peaks on and around
the triggers for player positions in the shooting range of different turrets.

Following the CEM policy, the NPC triggers the correct turrets to hit the
player on their way towards the goal tile (Fig. 6.15, step one to four). When
the player moves between turrets, the NPC positions themselves where they
can strike quickest, i.e. between the triggers. Once the player gets closer to
the goal and thus to the open passage towards the NPC, the latter trades

Figure 6.15: Experiment 9. Adversary harming player by triggering turrets remotely,
eventually destroying it with a range attack.
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off their own empowerment, and their NPC-player transfer empowerment:
the spatial proximity of the player results in a transfer empowerment gradi-
ent which the NPC could follow to eventually attack the player directly. By
doing so however, the NPC risks their own empowerment to be decreased
by a counter-attack. In the present configuration, the NPC eventually moves
away from the triggers and attacks the player directly (Fig. 6.15, step five).
Meanwhile, decreasing the NPC’s health (h0=1, hmax=2) makes it remain at
its current position and shoot the player from a distance. We include two
videos covering both modifications in the digital appendix. This experiment
supports the claim that CEM can also produce more sophisticated forms of
antagonistic behaviour.

Conclusion
of Findings

Our study shows that minimising the player’s empowerment in a CEM
policy allows an NPC to challenge the player with believable, antagonistic
behaviour and thus realise the role of an adversary. We have operational-
ised believable antagonism based on the classic predator-and-prey behaviour
found in many games, and sophisticated attacks from a distance. As a third
facet of believable behaviour, we have probed whether the NPC remains sens-
itive to their surroundings and body. Without modifications to the underlying
model, they have consistently responded to changes in their environment
and embodiment with new and often surprising antagonistic behaviour. For
this testbed, we hence confirm our predictions that CEM can realise envir-
onment and embodiment-general (PD.4, PD.5), believable and antagonistic (PD.2)
behaviour. We next conclude this chapter with a discussion of our two studies.

6.6 discussion

We have introduced social models of IM to increase the generality of artifi-
cial agents in co-creative interaction, while constraining their behaviour to
either support or antagonism. We have instantiated this proposal in CEM for
application in videogame AI to drive the behaviour of NPCs as co-creative
agents. Across two qualitative studies based on observational vignettes, we
have explored five predictions of the capacity of CEM to drive the behaviour
of believable NPCs that either support (PD.1) or challenge (PD.2) the player
as companions and adversaries, while remaining general with respect to the
specific player (PD.3), and with reference to changes in their embodiment
(PD.4) and environment (PD.5). We find that CEM, subject to minor modific-
ations to the original formalism, fulfils all predictions within the limits of our
dedicated game testbed. Here, we briefly reflect on the core findings of our
studies. We then discuss limitations of these studies, and restrictions of the
underlying CEM model in its present form. We finally draw on our findings
to re-evaluate how CEM could benefit CC and other fields.

Reflection on
Study Results

Reflecting on our study, we want to stress three central findings. Firstly,
we managed to drive NPCs to either support or challenge the player with
essentially the same underlying principle – we only had to flip a single hyper-
parameter, but left the rest unchanged. In contrast to established NPC AI, we
did not engineer a small set of behaviours that repeat over time, or designed
an extrinsic reward landscape that only works on a specific game. Rather
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than designing a character to populate a specific world, we created a world
that gave rise to their behaviour, emerging from the possible interplay of
the NPC’s abilities, the abilities of other characters, and the elements of the
environment. There was no need for us to update the model with semantic
annotations of new game elements; it only relied on the interaction between
these and other game elements to be encoded in the forward model.

Secondly, our NPCs have exhibited player-generality (Togelius & Yannakakis,
2016) in consistently supporting or challenging the different experimenters
without modelling their specific policy. Moreover, they have shown limited
game-generality (ibid.) by maintaining these social dynamics in response to
changes in their embodiment and environment.

Thirdly, variations of the hyperparameters yielded different, surprising
NPC personas such as an ‘opportunist’, ‘daredevil’ and ‘super-villain’. Con-
trary to the typical design process, we have discovered what types of charac-
ters a given game world affords, rather than designing them for that world.

Limitations of
Study

Our study provides the foundation for the further investigation of CEM.
Crucially though, it also has several limitations which must be overcome for
a full proof-of-concept and practical application of CEM-driven NPCs.

Observational vignettes as exploratory and qualitative study method allowed
us to describe the nature of CEM-driven behaviours in rich detail, classify
them into the somewhat ambiguous categories of support and antagonism,
and identify the formation of different personas. Due to its qualitative nature
though, the vignettes could not reveal the strength of CEM-induced support
and antagonism as perceived by a player or designer. This information how-
ever is vital for designers to afford a good player experience through sufficient
support and an optimal level of challenge. Moreover, we have noted the nov-
elty and surprisingness of the exhibited behaviour, but we could not quantify
it. This however would be desirable for the formal assessment and compar-
ison of an NPC’s believability through the determinants of characterhood
and behavioural diversity (Tbl. 6.1 and Sec. 6.2).

Our minimalistic but highly versatile, dedicated game framework enabled
us to probe specific facets of believable NPC behaviour via custom-made
conditions, and granted us maximum insight into the characters’ motivation
through the calculation of reward landscapes, amongst other means. Crucially
though, it only affords limited insights on the game-generality of CEM. While
we have applied the same model to different scenarios, they are all situated in
a small space of possible game mechanics, and only represent a single genre.
Moreover, our testing method could be misinterpreted as ‘cherry-engineering’
only those scenarios that give rise to the desired believable behaviours.

We chose to steer the player avatar ourselves to playfully explore the
possible interactions with our CEM-driven NPCs in different worlds and for
different hyperparameter configurations. However, this approach limits our
insights on CEM’s player-generality: not only were the NPCs only exposed
to the playing styles of few experimenters, but there is also the risk of them
introducing an unconscious bias into their gameplay to provoke certain
desirable behaviours, while avoiding others. We propose means to overcome
these limitations of our present study as part of future work in Ch. 8.
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Limitations of
Approach

We moreover consider limitations to CEM. We distinguish fundamental
restrictions to its game-generality, as well as temporary limitations to its prac-
tical application in commercial games resulting from its present formulation.

CEM can realise believable NPC support or antagonism only in games that
require players to either increase or decrease their options and influence in
order to progress towards the game’s goals. In other words, CEM’s game-
generality is conditional on a positive or negative implicit goal alignment
(Sec. 5.1.1) with empowerment, providing a gradient for CEM to operate on.

If a game expresses such an empowerment gradient towards goal achieve-
ment, it typically is not a constant slope but a bumpy road that provides
challenge and enjoyment: we may only be able to progress into a different
part of a Doom (id Software, 1993) level by facing a hoard of enemies in a
connecting room. Similarly, we may have to defeat a minor enemy in Star-
Craft (Blizzard Entertainment, 1998) to prepare for the final match with a
much stronger opponent. In each case, we temporarily endure situations
in which we have fewer perceivable options, captured by empowerment, in
order to multiply them later. Two distinct elements of the CEM formalism
put the NPC at risk of getting stuck into local coupled empowerment max-
ima: the greedy action-selection function, and the specific choice of model
hyperparameters, including the lookahead, which shape the reward itself.
In our experiments (Sec. 6.5), we fixed these hyperparameters to a default
configuration which produced sensible behaviour throughout all conditions,
but this is likely not universally applicable. In Ch. 8, we discuss future work
on choosing an appropriate action-selection function and on solving the
hyperparameter setup as means to increase CEM’s game-generality.

We next discuss present limitations of CEM with respect to its practical
application. A game is more than the sum of its parts (Liapis, Yannakakis &
Togelius, 2014), and CEM is sensitive to this complexity. The behaviour of a
CEM-driven NPC emerges from the interaction of the specific parametrisa-
tion of the action-value function, embodiment, environment and interaction
partners. If only one of these components changes slightly, the emerging
behaviour – within the boundaries of support or antagonism – can shift
substantially, and is hence hard to anticipate. This has been the motivation
to develop the principle in the first place (Sec. 6.2): by relying on IR, CEM
promises to yield sensible behaviour in response to such changes. The flip
side of this increased robustness and potential for diversity and generality
is a lack of predictability, as the emerging behaviour also exceeds what a
designer can anticipate. In principle though, we could predict the behaviour
of a CEM-driven NPC, if it was instantiated with a deterministic policy and
all elements in the game world as well as their interaction were known. Pre-
dictability is thus only limited by human cognitive bounds, rather than by an
element of chance. This yet threatens CEM’s practical application: Yannakakis
and Togelius (2018, p. 14) point out the games industry’s resistance towards
embracing NPC AI whose behaviour is not entirely predictable at design
time. We believe that CEM can only be fully leveraged and benefited from
if this resistance to uncertainty is overcome. Nevertheless, we still propose
means to accommodate this industry requirement as part of future work.



6.6 discussion 196

Another major industry requirement towards NPC AI is efficiency. To dis-
criminate the effect of small changes to the CEM model on NPC behaviour in
our studies, we have calculated the simplified coupled empowerment exhaust-
ively as in Alg. 1. In the following complexity estimate, we ignore the calcula-
tion of NPC-player transfer empowerment18. We assume full observability,
and that NPC and player have the same number of actions |AP|=|AC|=|A|.
The time complexity is a function of the number of actions |A|, the lookahead
n, and a branching factor k, with 1 ≤ k ≤ |R|. The latter represents the num-
ber of environment states that an action leads to on average. We distinguish
two parts of the overall coupled empowerment reward calculation.

Firstly, the computation of the NPC and player empowerment requires
calculating the n-step cyclic dynamics for the n-step predictive factor. If one
interaction cycle only comprised the interaction of the NPC and player,
and they both used a uniform model of their peer’s policy, the NPC must
perform (|A|k)2n calls on the respective environment dynamics models for
each predictive factor. This must be computed for each state in which the
player and NPC can act next, i.e. for (|A|k) states at tP and (|A|k)2 states at
tC+τ. The calculation of all predictive factors hence has a time complexity
of (|A|k)(|A|k)2n+(|A|k)2(|A|k)2n=(|A|k)2n+1+(|A|k)2n+2. Asymptotically,
we have a time complexity of OPred=O((|A|k)n).

Secondly, we must calculate empowerment for each predictive factor.
Calculating empowerment exhaustively for a single factor based on the
Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) has a time complexity
of |A|n|R?|. Here, |R?| := (|A|k)2n represents the average cardinality of
the predictive factor. Repeated for every factor, the overall time complex-
ity is (|A|k)2n+1|A|n(|A|k)2n+(|A|k)2n+2|A|n(|A|k)2n = |A|n(|A|k)4n+1 +
|A|n(|A|k)4n+2. Asymptotically, we have OE = O(|A|n(|A|k)n).

The overall time complexity of the coupled empowerment reward calcula-
tion results from summing the complexities of the n-step predictive factor and
the empowerment calculation, and is exponential in the NPC’s lookahead. It
also depends on the number of available actions and their branching factor,
but an efficient implementation of the model19 makes it independent of the
overall state space size |S|. A CEM-driven character with fixed lookahead
could thus be employed in a more sophisticated game world without increas-
ing computational complexity, as long as it does not afford characters more
actions, or branches these actions more widely.

The branching factor k is 1 for deterministic environment dynamics, and
typically small in the stochastic case. Moreover, the NPC’s and player’s action
outcomes often overlap, thus reducing |R?|. Even so, CEM can at present
only be computed for relatively small lookaheads. This limits the NPC’s
behavioural complexity, as the coupled empowerment can only reflect the
impact of near-future events on the individual characters’ potential and
perceivable influence. They would only recognise a time bomb as a threat,
once its counter falls below their lookahead. CEM’s practical application is

18 We omit the NPC-player transfer empowerment calculation as the complexity estimate of the
n-step predictive factor calculation is slightly more complicated than for the other reward
variants, but does not impact the overall asymptotic complexity estimate for all three rewards.
For the same reason, we do not consider the calculation of the expected action-value.

19 E.g. by hashing the sensor and environment states and using sparse probability distributions.
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also limited because commercial games typically only provide a small budget
for the computation of NPC AI. We discuss avenues to optimise both parts of
the computation and scale CEM up for commercial application in Ch. 8.

Our study so far only demonstrates the game and player generality (Togelius
& Yannakakis, 2016) of CEM with respect to a small set of game variants,
and a non-representative sample of players. We elaborate means to provide
stronger evidence on the principle’s capacity for generality in Ch. 8. Here,
we want to explicitly note that our health-performance consistency extension
in Eq. 6.49 does not fundamentally limit CEM’s generality; it is merely a
short-cut to make the NPC sensitive to events that lie beyond their lookahead.
This is not a necessity, and could be compensated for with a scalable approach
to calculating the IR. Trust correction as our second extension in Eq. 6.48 does
not impede generality either, as it has been specifically designed to rely on
empowerment rather than an extrinsic reward.

Transfer to
Computational
Creativity

We finally consider our study findings through the lens of CC to reflect
on human-computer co-creativity in the interaction of a player and NPC, hence
bridging between our CC and game AI motivation in Sec. 6.1 and 6.2, respect-
ively. Our CEM-driven NPCs have exhibited novel behaviours that have not
been explicitly programmed, but emerged from the interaction of the coupled
empowerment intrinsic value function, the NPC’s embodiment, environment
and their interaction partners. Even in our roles as researchers, and informed
by our theoretical understanding of CEM, some emergent behaviours took
us by surprise: we for instance neither expected the NPC in our lava scenario
(Sec. 6.5.2.6) to block the player’s way back to the platform by following
them along, nor did we expect them to heal the player and hence increase
the perception of their antagonism. To call this behaviour creative (Runco
and Jaeger, 2012; and Sec. 4.1.1), it is typically required to also have value. By
distinguishing different interpretations of value, we identify three types of
co-creativity in our study, one of which we have not anticipated ahead.

For an interaction to qualify as co-creative, the human partner and NPC
must contribute to shared goals (Sec. 6.1), and we consequently link a person’s
valuation of NPC behaviour to the fulfilment of such a goal. The first (i)
identified type of co-creativity is characterised by both NPC and player
contributing to the game’s goals. This is only realised by our companion
NPCs (Sec. 6.5.1), whose supportive behaviour is valuable for the player in
that it contributes to their achievement of the game. As example, consider
our fifth experiment in Sec. 6.5.1.7, where the NPC helps the player to
defeat their enemies and even sacrifices itself, hence ensuring the player’s
survival as the dungeon-crawler’s implicit goal. The second (ii) observed
type of co-creativity is realised in both our studies. Here, the shared goal is the
player’s experience of interacting with a specific type of NPC. This requires the
player to probe the NPC’s characterhood, and the NPC to enact it without
violating the player’s expectations. As example, consider our fifth experiment
in Sec. 6.5.2.6, where the player must pass by the NPC to reach the goal, just to
find themselves being pushed into the surrounding lava. When trying to move
back on the platform, the player is blocked by the NPC, and thus experiences
another convincing facet of their adversary characterhood. We have identified
a third (iii) type of co-creativity through our discovery of different NPC
personas (Sec. 6.5.2.5 and 6.5.2.6). Here, the CEM-driven NPC contributes
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to the designer’s goal to create enjoyable and believable characters. In our role as
designers, we have changed properties of the game environment, characters
and NPC AI; the NPC in turn has performed a series of behaviours that
informed our design of the next condition, which yielded another persona. At
development time, such acts of mixed-initiative co-creation (Yannakakis, Liapis
& Alexopoulos, 2014) could inspire new character designs, e.g. via changes
to the game that enable more diverse or unorthodox behaviours. We suspect
that, by surprising designers with unexpected behaviours, CEM-driven NPCs
can provoke transformational creativity (cf. Grace & Maher, 2015).

We have applied CEM to drive and examine human-computer co-creativity
in videogames. CEM is independent of a specific domain and could hence be
employed in other co-creativity scenarios where an increase or decrease in
options and influence is perceived as support or antagonism by the human
partner. In Ch. 8, we propose future work to advance central goals of CC
based on our work on NPC AI. Moreover, we discuss next steps to bringing
social models of IM and CEM to other creative domains.

Chapter
Conclusion

Based on our application and evaluation of CEM in NPC AI, we affirm this
chapter’s research question, ‘Can we use a model of intrinsic motivation to
engineer general and social co-creative agents?’ (RQ.8), within the limitations
of our studies. We thus contribute to the overarching questions of this thesis
by demonstrating that CEM as a new model of IM can advance videogame
AI (RQ.2), and address core concerns of CC research (RQ.1).

CEM combines different types of IR to directly drive the process of a CC
system. In the next chapter, we complement this motivational approach by
contributing a novel use of IR to evaluate the product of such a system, which
indirectly determines its overall behaviour.



7INTRINSIC REWARD-BASED EXPERIENCE PREDICTION

In this chapter, we introduce a novel approach to predicting the human
subjective experience of interactive artefacts by means of computational
intrinsic reward (IR). We apply our approach to predict players’ experiences
of videogames as arguably the most popular type of interactive artefact.
Our approach is designed to mitigate challenges in evaluating procedurally
generated content as a core area of of videogame AI, and a focal point of
computational game creativity (Liapis, Yannakakis & Togelius, 2014; Ventura,
2016a). We conduct a qualitative study to explore the research question:

RQ.9 Can we use IR to predict people’s experience of interactive artefacts
in a general and autonomous way?

This chapter contributes to answering the overarching research question
RQ.2 by showing directly how IR can advance videogame AI. Moreover, our
approach has the potential to advance the autonomous evaluation of artefacts
in CC more generally, and hence indirectly relates to RQ.1.

StructureWe dedicate the first two sections to motivating our contribution from the
perspective of CC and videogame AI. In Sec. 7.1, we highlight the system-side
evaluation of artefacts as a central requirement to advancing core CC goals.
Moreover, we identify present challenges in estimating people’s subjective
experiences, in particular of interactive artefacts. In Sec. 7.2, we reassess these
challenges in the evaluation of videogames. We focus on the task of predicting
players’ experiences of procedurally generated content, and identify shortcom-
ings of existing work. We address these with a novel approach to predicting
player experience (PX) through IR assessed on simulated AI gameplay, intro-
duced informally in Sec. 7.3. We instantiate this generic proposal in Sec. 7.4 in
the form of an empowerment-based player experience prediction (EBPXP) model.
We formalise the model, and provide pseudocode for the experience pre-
diction. As a first step towards validating our proposal, we explore which
experiences EBPXP can potentially predict through a qualitative study on a
custom-made game in Sec. 7.5. In Sec. 7.6, we contextualise the identified
experiences in games user research, highlight the limitations of our study
and model, and discuss how our findings can inform the application of our
approach to other CC domains. All parts except the first have been published
by Guckelsberger et al. (2017), in a more condensed manner. We particularly
describe the algorithm, study setup and results in more detail.

ContributionsThe main contribution of this chapter is a novel approach to predict-
ing player experience of game content, and its instantiation in EBPXP. We
moreover contribute to CC by not only identifying open challenges in estim-
ating people’s subjective experience of artefacts, but also by pointing out their
impact on the creativity, creative potential and autonomy of CC systems, as
well as on the system users. We contribute to videogame AI by uncovering
how existing approaches to predicting PX constrain the generality of game
AI and limit the potential of procedural content generation. For a detailed
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account of how the work presented in this chapter relates to existing research
on models of IM in CC and game AI, see Sec. 4.2.3 and 5.2.2, respectively.

7.1 evaluating the experience of interactive artefacts

Generation &
Evaluation in
the Creative
Process

According to the standard definition of creativity (Runco and Jaeger, 2012;
Sec. 4.1.1), a creative product should be both novel and valuable. An individual
could create such a product by accident; however, it is commonly agreed
that human creatives can not only generate artefacts, but also evaluate them
with respect to these and potentially other properties. Identifying such gen-
eration and evaluation in psychological theories of the creative process is not
straight forward. Craveirinha, Barreto and Roque (2016) e.g. uncover them
in Csikszentmihalyi’s (1997) sequential, five-phase model of creativity. They
identify preparation, incubation and insight as generative acts, followed by the
evaluation of the generated product, and its potential further elaboration.

Researchers agree that CC systems must likewise accommodate both gener-
ation and evaluation. This position has not only been shaped by an interest
in modelling human creativity or in designing artificial systems that appear
more creative, but also by the need to filter a system’s produced artefacts
to not overburden the human user. The earliest mention of these two com-
ponents is arguably in a 1993 study on computational letter design, for
which McGraw and Hofstadter relate to the iterative process of guesswork
(generation) and evaluation as ‘the central feedback loop of the creative
process’ (ibid., p. 16). In the creativity tripod, Colton (2008) captures three ne-
cessary conditions for an artificial system to be considered creative: skilfulness,
imagination and appreciation. While the first two concern the generation of
artefacts, the latter incorporates the evaluation of value and novelty, respect-
ively. For her standardised procedure for evaluating creative systems, Jordanous
(2012) has empirically identified 14 key components of creativity, amongst
which are thinking and evaluation as well as the generation of results. The creative
systems framework (Wiggins, 2006a, 2006b) as a formalisation of Boden’s (2003)
model of creativity (cf. Sec. 4.2.2) allows for the inclusion of evaluation rules
to influence the traversal and hence generation of concepts. Pérez y Pérez
(2007) distinguishes the generation and evaluation of ideas in the engagement-
reflection model of creativity, and Ventura (2017) inscribes both generation
and evaluation in a blueprint to building CC systems. The ability to evalu-
ate their products and process is considered key to advancing CC systems
beyond ‘mere generation’ (Ventura, 2016b), and a prerequisite for creative
autonomy (Jennings, 2010). As such, evaluation represents a stepping stone
towards achieving a central CC goal: to engineer artificial systems that can
be considered creative in their own right (Colton, 2008).

Estimating
Human
Artefact Value

In this chapter, we concentrate on evaluation rather than generation. More
specifically, we focus on the formative (Karimi et al., 2018) assessment of
artefact value during the creative process, in contrast to the summative (ibid.)
assessment afterwards. From the engineering perspective (cf. Veale, Cardoso
and Pérez y Pérez (2019); Pérez y Pérez (2018) and Sec. 4.2.1), CC systems
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are primarily1 designed to produce artefacts that can be appreciated by and
hence benefit people. To be perceived as creative agents in their own right or
to be accepted as equal partners in co-creativity, these systems must be able
to predict how their artefacts would be evaluated by their human users or
co-creators2, without involving them explicitly. This can be complemented by
a value assessment from the system’s own perspective3.

Existing
Theory- &
Data-Driven
Approaches

The human evaluation of an artefact can be shaped by objective criteria,
e.g. its utility, but also by subjective experience, e.g. in the form of a person’s
aesthetic judgement. Modelling the latter represents an ongoing challenge
in CC. Early on, McCormack (2005) highlights the open problem to measure
‘human aesthetic properties of phenotypes’ in a ‘machine representable and
practically computable’ (ibid., p. 432) way to introduce efficient and independ-
ent evaluation into evolutionary music and art systems. In the meantime, this
challenge has been mitigated in many CC domains and for different types of
systems. Mexica (Pérez y Pérez, 2015b) for instance, an allegedly autonomous
computational storytelling system, assesses the interest of a generated story
based on modelling the development of tension resulting from the interac-
tion of characters with different emotional links. Being strongly informed by
human storytelling, the model requires an interesting story to have an intro-
duction, a climax and a resolution. In the domain of visual art, the Drawing
Apprentice (Davis et al., 2014) as an alternating co-creative agent identifies the
recent behaviour of its human partner with one of three perceptual layers,
and contributes to the drawing via the same layer to produce ‘artistically
valuable’, co-creative (ibid.) outcomes. Each layer has a different perceptual
granularity and is psychologically grounded, e.g. in Gestalt theory (Arnheim,
1965). Ekárt, Sharma and Chalakov (2011) model the aesthetic preference of
their user in a partially interactive evolutionary art system. They initially
fit a set of formal aesthetic measures based on a user’s explicit selection of
preferred evolved images. Once fitted, the measures are used to automatically
evolve images that appeal to the individual user. The previous examples rely
on a specific theoretical model of aesthetics; in creative adversarial networks, El-
gammal et al. (2017) combine this theory-driven with a data-driven approach
to autonomously generating visual art. Similar to Saunders and Gero’s (2001)
work, their approach is inspired by psychological theories which propose
arousal as a determinant of the aesthetic experience, and which identify a
drive against habituation in human art practice (Martindale, 1990). Their
model is an extension of Goodfellow et al.’s (2014) generative adversarial net-
works, and yields images that are expected to arouse their viewers through
their resemblance with human art, but cannot be classified in existing style
categories. As their discriminator is trained on a large corpus of canonical
paintings, it approximates the human aesthetic judgement.

Shortcomings
of Existing
Approaches

Despite these advances, many CC systems still miss an evaluation of
artefact value, and in particular do not estimate human subjective value.

1 Colton et al. (2020) contrast this dominant design focus with the use of CC to enable artificial
systems to express something about their unique ‘machine condition’.

2 Note that a model of the human co-creator’s value assessment does not only benefit supportive
co-creativity, but can also inform how to challenge the human partner best (cf. Sec. 6.1).

3 We argue elsewhere (Guckelsberger, Salge & Colton, 2017) though that no existing CC system
so far can be said to genuinely model value from an agent’s own perspective.
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Kantosalo and Toivonen (2016) observe in regards to co-creativity: ‘where
generation is often held as the forte of the computational agent, evaluation
then again is very much held as the domain of the human author’ (ibid.,
p. 83). In the context of music and language generation, Pearce and Wiggins
(2012) point out that evaluation functions to identify ‘high-quality artistic
structures’ are ‘an open research topic, partly because current models tend
to be incomplete representations of the phenomena they capture but also
because quality criteria are subjective and context-dependent’ (ibid., p. 643).
Considering this and McCormack’s (2005) appraisal jointly with present work,
the evaluation of subjective value presents an ongoing challenge.

In this chapter, we focus on estimating human subjective artefact value, and
mitigate three shortcomings of existing models. Firstly, most existing models are
(i) subject-unspecific: they quantify ‘subjective experience’ generically across
subjects, but remain agnostic with respect to individual differences that
may contribute to the experience of a specific person. In particular, most
models are not sensitive to how a person’s experience is shaped by their,
embodiment and situatedness, yielding a unique perspective on a specific
artefact. Secondly, many existing approaches are (ii) context-specific. Theory-
driven approaches are usually very narrow; even within a single creative
domain such as visual art or poetry, a specific theory of e.g. aesthetics may
not be universally applicable. Similarly, people’s reports on their subjective
experience, as used in data-driven approaches, often do not scale beyond the
context in which they were originally assessed. Thirdly, existing models (iii)
are strongly dependent on people. This may sound paradoxical with regards
to models of subjective experience, and hence needs more elaboration. For a
CC system to unleash their full creative potential in acts of transformational
creativity (Boden, 1990/2003; Wiggins, 2006a, 2006b), they must be able to
self-transform by perceiving and changing their generator component (Linkola
et al., 2017). However, due to their context-specificity, the resulting new content
may render the present estimate of human subjective value inaccurate, as this
estimate was based on the previously accessible area of artefact space. Each
transformation of the generator, either induced by the system or a person,
may thus require theory-based models to be re-tuned by their designer, and
data-driven models to be re-trained with new human experience data. The
consequences are threefold. If the evaluation function is not adjusted, it may
present the user with artefacts that do not correspond to their perception of
value in the transformed space. This might de-escalate to a degree where the
system’s evaluation appears random, rendering it uncreative from the user’s
perspective. Alternatively, it may be constantly adjusted through human
involvement, which impedes the system’s creative autonomy. Finally, a system
could be denied self-transformation, which would severely restrict their
creative potential. All consequences limit the benefit to their users.

Evaluating the
Experience of
Interactive
Artefacts

We address these challenges in a particularly difficult scenario: the estima-
tion of a person’s subjective experience of interactive artefacts. We define these
as the subset of dynamic, i.e. time-varying, artefacts that are designed to be be
actively changed by the audience through continuous interaction. Just like the
artefacts themselves, their experience through people also varies over time and
with respect to an individual’s specific interaction. Conceiving an interactive
artefact as a whole would require assessing the experience resulting from
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any possible interaction. While we can often formally capture the scope of
all possible expressions of interactive artefacts, they practically refuse full
experiential access. The estimation of subjective experience of such artefacts is
particularly hard, since no designer of a theory-based approach can anticipate
all possible expressions, and human reports in a data-driven approach can
also only capture part of what we coin the artefacts’ experiential range.

Our ApproachIn Sec. 7.3, we propose to mitigate the three shortcomings of existing
approaches by estimating the human subjective experience of artefacts via
computational intrinsic reward (IR). We tackle the specific challenges of as-
sessing interactive artefacts by simulating people’s interaction with them. We
address the time-variance of experience by assessing IR along the whole inter-
action trajectory. Rather than trying to capture an artefact’s full experiential
range, we propose to determine the typical experience of a generic or specific
type of audience or an individual by sampling the expected IR for different
simulation models. In Sec. 7.4, we instantiate this proposal in a model that
uses empowerment (cf. Ch. 3) as the IR.

Many traditionally dynamic artefacts such as installations, dance, music,
film and storytelling have been adopted in interactive variants. Videogames
in contrast are inherently interactive. In the next section, we assess how our
approach can benefit videogame AI as a CC application domain.

7.2 player experience modelling on procedural game content

Choice as
Application
Domain

Videogames are the most popular kind of interactive artefact by far; Liapis,
Yannakakis and Togelius (2014) note that the ‘play experience is highly
interactive and engaging, more so than any other form of art’ (ibid., p. 46).
Videogames are a prime candidate for estimating human subjective value as
they ‘can be appreciated as an art form (...) only when experienced through
play’ (ibid., p. 46, emphasis added). The player experience (PX) describes
the personal, transient and dynamic qualities that a player experiences from
interacting with a game (Wiemeyer et al., 2016). It expands beyond aesthetics
as a sense of beauty and covers a wide range of qualities such as challenge,
curiosity, competence, autonomy, relatedness, control, immersion, presence, flow,
engagement, tension, and affect (cf. Calleja, 2011).

Computational
Creativity
Killer
Application

Videogames are interactive in at least two ways. A game not only changes
and unfolds in interaction with a player, but it is also itself a complex product
of individual, interacting content facets such as the mechanics, level design,
characters, etc. A player’s subjective experience cannot be determined based
on the individual facets, but only with respect to the complex whole. This
multifacetedness adds to the challenges of evaluating interactive artefacts
set out in the previous section. For these and other characteristics, Liapis,
Yannakakis and Togelius (2014) have advocated videogames as a ‘killer
application’ (ibid., p. 46) for the study of CC. We have chosen games as our
application domain for their tough evaluation challenges, but also because
they allow to tackle these challenges systematically: their complexity can be
kept small to support experimental inquiry, and, as autotelic activities with
negotiable consequences (cf. Sec. 5.1.1), we expect PX to be less influenced by
external societal and cultural factors that would be hard to control.
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Figure 7.1: Spectrum of possible worlds in No Man’s Sky (Hello Games, 2016), high-
lighting the relatively low expressive range of constructive PCG.

Procedural
Content
Generation

When considering videogames through the lens of CC, researchers usually
focus on procedural content generation (PCG) (e.g. Liapis, Yannakakis &
Togelius, 2014; Ventura, 2016a). An area of game AI (Yannakakis & Togelius,
2018, pp. 259-260), PCG employs AI techniques ‘for generating game content
either autonomously or with only limited human input’ (ibid., p. 151). PCG
has a long tradition in games industry, and holds great advantages for mod-
ern videogames (Shaker, Togelius & Nelson, 2016, pp. 3-4). By algorithmically
creating levels as in Spelunky (Yu, 2008), characters as in Spore (Maxis, 2008),
or other elements such as mechanics and music, game developers can satisfy
players’ demands for richer and more detailed content, while keeping produc-
tion costs and time manageable. In addition, players can benefit from content
that is automatically tailored to their needs and tastes (Shaker, 2016). Adding
new content like quests or weapons procedurally allows designers to create
open-ended games, and to increase their replay value (Summerville et al.,
2018). PCG relates to CC beyond artefact generation in that it can support
designers in becoming more creative: it can encourage new game ideas that
only become viable through automation, including games in which PCG
constitutes a game mechanic in itself (Cook et al., 2016). Moreover, designers
could draw fresh inspiration from the output of PCG algorithms, as they
operate under different constraints than their human colleagues.

Content
Quality
Assurance

Designing a PCG system however is tricky: without imposing any con-
straints, a procedural generator could produce any content instance that
its content representation affords, similar to Borges’ (1962) ‘Library of Ba-
bel’ containing all possible but mostly meaningless 410-page books. It is a
grand challenge of content quality assurance to restrict a generator’s expressive
range (Smith & Whitehead, 2010) to those instances that designers and players
desire. Crucially, their expectations typically match those of CC researchers
towards creative artefacts: adopting the standard definition of creativity (Runco
and Jaeger, 2012; and Sec. 4.1.1) and Ritchie’s (2007) empirical criteria for a
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computer program to be called creative, the produced artefacts should be
novel, typical and valuable. Procedurally generated content is likewise required
to be novel and typical, e.g. a generated quest should be different from existing
ones, but still fit the game under consideration. Defining content value is
more difficult. A generated level should without doubt be playable, i.e. there
must be a way for the player to succeed or fail. Moreover, they should ideally
experience large parts of the content instance rather than just a small frag-
ment. Crucially though, nobody would care about a level, a character or as a
consequence even the overall game, if the content in question did not elicit a
desired player experience (PX).

Experiential
Control

This is particularly striking in games that leverage PCG as their unique
selling point. No Man’s Sky (Hello Games, 2016) for instance heavily draws
on PCG to create a vast number of planets for players to explore. But while
different planets appeared varied at first, ongoing exploration could not
satisfy players’ curiosity: the expressive range of worlds was small after all
(Fig. 7.1). The game has consequently been described as ‘infinitely boring’
(Martin, 2016). We hold that PX substantially determines the value of content
instances, and consequently the acceptance and replayability of games (cf.
Smith, 2014b). A key challenge in designing a PCG system is hence to realise
experiential control, i.e. the capacity to ‘control for the kind of experience
the player will receive’ (ibid., p. 921). In this chapter, we contribute a new
approach to predicting PX as a major determinant of game content value to
serve the experiential control of procedural generators.

Challenges in
Assessing PX
in PCG

To motivate our contribution, we first highlight the specific challenges of
assessing PX in PCG by contrasting this task with the non-computational eval-
uation of PX in games user research. Here, PX is assessed e.g. to give directions
at key points of game development, or to infer more general insights about
how people interact with games. Assessment is usually done on very few
conditions, and during or after their experience through the player. To make
detailed and accurate judgements, researchers rely on rich subjective player
feedback gathered from e.g. questionnaires or interviews (Boyle et al., 2012;
Cairns, Cox & Nordin, 2014; Wiemeyer et al., 2016) and objective player data
e.g. in the form of behavioural or physiological observations (Nacke, 2013).
However, these methods are typically expensive, slow and difficult to perform.
Participants want to be paid, and the evaluation speed is limited by their
game-playing ability and information processing capacity. Moreover, subject-
ive measures become easily biased, and objective measures are sensitive to
environmental factors, hence necessitating strong experimental control.

These methods can still be employed when PCG is used as a tool by game
designers during development, providing content that is then carefully cur-
ated before inclusion into the game (cf. Craveirinha, Barreto & Roque, 2016).
However, the full power of PCG, especially for replayability and customisa-
tion, can only be unleashed when it is used in the shipped game, either offline
before, or online during play. In this scenario, usually many content instances
must be assessed before they are experienced by a player. Each instance can
be considered one experimental condition resulting from e.g. different para-
meter combinations in the generator. Speed is of prime importance, and the
subjective and objective approaches of games user research do not scale.
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(a) In-game scene (b) Experiential chunk of level (c) Assembled chunks

Figure 7.2: Constructive PCG via experiential chunks in Tom Clancy’s The Division
Underground (Massive Entertainment / Red Storm Entertainment, 2016).

To elicit a particular PX nonetheless, designers employ constructive al-
gorithms that run in fixed time and do not involve any explicit evaluation.
The quality of content is assured by only performing operations ‘that are
guaranteed to never produce broken content’ (Togelius et al., 2011, p. 174). A
popular constructive technique is to chain together experiential chunks (Smith,
2014b), i.e. content fragments that have been manually assessed for a certain
experience during development. Fig. 7.2 illustrates how level segments as
experiential chunks are procedurally arranged for the Underground expansion
of Tom Clancy’s The Division (Massive Entertainment / Red Storm Entertain-
ment, 2016). This approach is used to retain experiential control in many
other games such as Spelunky (Yu, 2008) and Diablo 3 (Blizzard Entertainment,
2012). These and related constructive approaches such as the use of generative
grammars in No Man’s Sky (Hello Games, 2016) make the explicit (Craveirinha,
Barreto & Roque, 2016) prediction of PX obsolete, but they considerably limit
the expressive range of generators.

Experience-
Driven
PCG

Researchers have sought to overcome the limitations of these constructive
approaches by leveraging models of PX in PCG as a means to automatically
evaluate candidate content. Yannakakis and Togelius (2011) classify existing
work in their experience-driven PCG framework. Their taxonomy distinguishes
components of the (i) content evaluation, encompassing how PX is modelled
and how it is assessed on content instances, from (ii) generative components,
capturing how content is represented and generated. In this chapter, we present
a complete experience-driven PCG approach, but our core innovation con-
cerns the modelling of PX (i). We motivate our contribution by addressing a
shortcoming of present experience-driven PCG. To this end, we first distin-
guish how existing approaches to PX modelling involve people in development.

Shortcomings
of Existing
PX Models

Yannakakis and Togelius (ibid.) distinguish three approaches to designing
a PX model. The first two leverage subjective or objective player data as model
input features or experience labels. For data acquisition, these approaches
rely on the same methods as games user research. The third, gameplay-based
approach uses ‘statistical spatio-temporal features of game interaction’ (ibid.,
p. 153) acquired from either human or simulated play. It also encompasses
static game features that would shape this interaction, e.g. properties of a
game’s level structure. For the sake of our argument, we distinguish the sub-
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categories of model-free and model-based gameplay PX models4. In the first case,
the mapping between gameplay features and PX is automatically learned
from player data. In model-based approaches in contrast, the mapping is manu-
ally established by the model designer, informed by intuition or theoretical
frameworks. Both approaches can be combined in hybrid models.

Most existing work leverages multiple approaches, and we provide four
examples to illustrate the above differences. Yannakakis, Martínez and Jhala
(2010) for instance use subjective preference ratings jointly with objective data
to learn linear and non-linear PX models on a 3D predator-and-prey game.
They assess players’ heart rate, pulse and skin conductance to predict a
wide range of experiences such as fun, challenge, boredom, etc. reported
through a preference rating questionnaire. Guzdial, Sturtevant and Li (2016)
also employ a model-free approach, but combine both gameplay features
and subjective player data to estimate players’ enjoyment, difficulty and
visual aesthetics of Infinite Mario Bros. (Persson, 2010) levels. They use player
ratings on a large corpus of levels from an existing dataset (Reis, Lelis et
al., 2015) to train a convolutional neural network to automatically extract
content features that correlate with these experiences. Sorenson, Pasquier and
DiPaola (2011) focus on the same game, but choose a model-based approach
to determine players’ enjoyment of levels based on gameplay features such
as the size of gaps, the player’s maximum jump length and the presence of
enemies. Their hand-crafted model is informed by several theories of fun
(e.g. Koster, 2013), flow (Sweetser & Wyeth, 2005) and challenge (Salen &
Zimmerman, 2004) and estimates players’ enjoyment of levels based on the
presence of different ‘rhythm groups’, i.e. ‘alternating periods of high and
low challenge’ (Sorenson, Pasquier & DiPaola, 2011, p. 243). While the earlier
examples rely on static gameplay features, Togelius, De Nardi and Lucas (2007)
evaluate racing game tracks via gameplay data from simulated play. They first
train an AI agent on human play data, and then use it to estimate a player’s
level progress, performance variation and difference in driving speed on
procedurally generated tracks. Their model-based approach draws on Malone’s
(1980) heuristics for engaging games and Koster’s (2013) theory of fun to map
this data to player enjoyment.

Acquiring subjective and objective player data during model development
suffers from the same drawbacks as discussed earlier in the context of games
user research. Alternatively, such data can be obtained online through inter-
active approaches to PX modelling (Yannakakis & Togelius, 2011), but this is
mostly practically infeasible: while it is possible to measure certain subjective
experiential preferences implicitly (e.g. Hastings, Guha & Stanley, 2009), richer
measurements require explicit interactions, e.g. through questionnaires, which
is usually too obtrusive. The same applies for the assessment of objective
player data, which is moreover mostly technically implausible in commercial
games outside a lab environment. Yannakakis and Togelius (2011) point out
that gameplay-, model-based approaches constitute the least intrusive option,

4 Yannakakis and Togelius’ (2011) distinction between model-free and model-based approaches
may seem confusing, as the first type of approach typically rests on machine-learning models
to learn the relationship between input features and PX. We adopt their terminology for
comparability, but promote the alternative notions of data-based and theory-based approaches.
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but usually have a lower resolution as they rest on strong assumptions on
the relationship of gameplay and PX.

These drawbacks are well known. We motivate our contribution based
on a separate shortcoming that is common to all approaches but has yet
received little attention: present PX models are too dependent on continuous
human involvement. In particular, existing models always rely on people in
their development5, and we argue that this renders them inflexible: they likely
become inaccurate as soon as new elements are introduced to a game, present
ones are altered, or parameters of the procedural generator are changed. This
is because games are multifaceted, complex systems: the PX emerges from the
interplay of many different content facets. Adding the Berserk power-up to
a battle scene in Doom (id Software, 1993) for instance is likely to change
PX drastically: if collected, the player’s health is restored and their weapon
damage multiplied, making the same scene considerably less challenging.
Once fixed, existing PX models are usually too specific to maintain their
accuracy in light of such changes. Depending on the underlying approach,
they would need to be either retrained based on new feedback from players, or
manually re-adjusted by their designers. We deem it infeasible for designers to
manually craft more flexible models, as they can anticipate the possible effects
of content facet interactions on PX only to a minor extent. Crucially though,
such changes to the game and content generator are commonplace during
development, even in the late phases when e.g. a game is being balanced.
Existing approaches hence not only rely on the involvement of players and
designers at some point, but continuously. The associated drawbacks outlined
earlier, including the time demand and costs, are hence recurring.

ChallengesThese shortcomings align with the context-specificity of existing approaches
to evaluating subjective experience in CC, and their dependency on people (cf.
Sec. 7.1). Addressing these challenges in videogame AI could hence yield
insights for CC more generally. PX substantially contributes to a game’s value,
which in turn is essential for determining the creativity of these multifaceted,
interactive artefacts. Liapis, Yannakakis and Togelius (2014) note that evaluat-
ing ‘compound game creativity which treats the game as a coherent entity
and not the sum of its parts is a key research question which can potentially
lead to breakthroughs in creativity research’ (ibid.).

Within the application domain of game AI, our immediate goal is to
develop PX models that are more robust to changes in a specific game
or content generator. Our long-term vision is for models to become game-
general (Togelius & Yannakakis, 2016), and hence suitable for application in
automated game design (e.g. Cook, Colton & Gow, 2016a, 2016b). To succeed,
we must address a somewhat paradoxical challenge: can we overcome the
continuous involvement of players and designers in the design of models
that predict human experience? Can we develop models that remain accurate
across content modifications without involving people again, thus facilitating
fast and cheap content evaluation?

5 We ignore interactive approaches here for the drawbacks elaborated earlier. Acquiring explicit,
subjective player feedback is rarely an option, as the process is either too obtrusive, e.g.
when using questionnaires, or too imprecise, e.g. when asking for binary preference ratings.
Assessing objective player feedback interactively is usually technically implausible.
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Our work is in the tradition of Nelson (2011), who has set out to evaluating
games without empirical player data. While he has proposed strategies to
uncovering which states a specific game can realise, and to explore the
boundaries of that possibility space, our work pushes this agenda further
towards modelling PX. In the next section, we introduce our novel approach
to modelling PX without continuous player or designer involvement.

7.3 predicting player experience via intrinsic reward

In an effort to overcome the shortcomings of existing PX models in experience-
driven PCG, we propose a more flexible alternative to modelling a player’s
experience that is independent of human players, and does not rely on design-
ers’ knowledge about a game’s semantics. Our approach models PX based
on computational IR calculated on the simulated gameplay of AI agents.
In this section, we motivate and introduce this approach informally and
independently of a specific reward formalism. In Sec. 7.4, we then instantiate
it based on empowerment as intrinsic reward (Ch. 3).

Following Yannakakis and Togelius’ (2011) taxonomy, we distinguish
two evaluation components: the PX model and the content quality assessment
method. Roughly speaking, the first defines the type of data used, the mod-
elled experiences, and the mapping in-between. The second specifies how
this data is acquired and how the measurement is accomplished.

Player
Experience
Model

Our model estimates human PX through computational IR, calculated on
gameplay features in the form of a play trajectory through the game state space.
We consider IR a natural fit to predict PX for several reasons6. IM has been
closely linked to human gameplay in game design theory (Sec. 5.1.1), and to
PX in games user research (Sec. 5.1.2). By definition, IR is independent of a
specific instrumental outcome (Sec. 2.1 and 2.2.2), and we thus expect it to
remain a valid, generic predictor of PX within and across different games,
making continuous re-adjustments through the model designer unnecessary.
These definitional and empirical arguments are complemented by the formal
properties7 of IR (Sec. 2.2.3). Being agent-centric, IR can be calculated inde-
pendently of any game-specific, external goals. Its embodiment universality
allows IR to be calculated across, and yet to be sensitive to the different ways
that a player avatar can interface with the game world. Being free of semantics,
the calculation of IR is independent of designers’ knowledge of the meaning
of game tokens, potentially enabling its application across different games
without adjustments. Jointly, these properties imply that IR is not specific to
one but sensitive to the interaction of many content facets, thus addressing
the challenge of quantifying the experience of games as multifaceted artefacts.
In summary, IR is a promising candidate for predicting PX independently of
human players and designers across games and game facets.

Content
Quality
Assessment

We calculate IR as PX predictor in all states along an assumed gameplay
trajectory. For our content quality assessment to be as independent of people

6 There is a strong overlap between these and the reasons to embrace IM for NPCs and player
modelling, identified in our systematic review of existing game AI work in Sec. 5.2.1.

7 We focus on our videogame AI application here, but note that its agent-centricity and embodi-
ment sensitivity allows for IR to quantify subjective differences, and its use hence accommodates
the critique of CC evaluation methods to be subject-unspecific (Sec. 7.1).
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as possible, we sample such trajectories via the simulation of AI game-
playing agents. We adopt this approach from existing work as it allows for
the unobtrusive and efficient evaluation of content candidates. Combining
it with IR moreover allows us in principle to assess PX dynamically over
the course of game-play. We hence consider it a potential non-obtrusive
alternative to measuring objective, time-variant player data.

Evaluation
Procedure

We complement this componential account with a description of the eval-
uation procedure for a given content candidate. We assume to be given a
(partial) game as input that features the content candidate to be investigated.
The calculation of a PX prediction then comprises three steps:

(1) recording state traces Perform one or multiple simulations of AI
gameplay on the input game. Each simulation is executed until the
agent ends up in a terminal state or hits a time limit. For each gameplay
instance, record the game states encountered in order. The goal is to
identify the typical states that human players would encounter when
playing the given game. Implicitly, this also serves the identification
of inaccessible states that are theoretically permitted by the game state
definition, but never realised at runtime. The AI agent’s policy can be
chosen to optimise the same reward used for PX prediction (on-policy),
to follow different goals (off-policy8), or to realise any combination
of the two. It could be provided by a general game-playing agent,
be parametrised to reflect certain player types, or be adapted during
runtime to fit the style of a particular human player. Each option has
implications on the generality of the overall approach.

(2) calculating intrinsic reward Intrinsic reward is calculated for
each state in the individual recorded gameplay traces. For adaptive (cf.
Oudeyer and Kaplan, 2007; and Sec. 2.2.3) intrinsic reward functions,
this calculation must respect the original order of the game states.
Static intrinsic rewards afford the more efficient procedure to evaluate
identical game states only once, and weight the rewards accordingly.

(3) aggregating rewards into prediction The intrinsic rewards are
aggregated into a scalar experience prediction. This transformation does
not have to, but can be sensitive to the order of intrinsic reward9. If
multiple state traces are available, it should include an expectation over
all available samples, potentially taking into account the likelihood of
each sample to reflect human gameplay. Normalisation is required to
allow for the comparison of predictions on different content instances.

If the IR function is adaptive, it is likely more efficient to interleave step (1)
and (2), i.e. to simulate gameplay and calculate IR within the same time step
before commencing the simulation.

8 Similar to Sec. 6.4, we use the off-policy notion to highlight a discrepancy between an assumed
and an executed policy: an experience estimate would be calculated based on the assumption
that the player is at least partly acting to optimise a specific intrinsic reward, but at the same
time, this reward is calculated along gameplay simulations driven by a different policy.

9 The prediction could e.g. be given by the fit of the intrinsic reward sequence to an experience
curve, similar to the ‘rhythm groups’ investigated by Sorenson, Pasquier and DiPaola (2011).
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Classification
of Approach

We hypothesise that different IR functions can be used to predict differ-
ent PXs. The choice of a specific reward function should be informed by
insights in game design theory, games user research, and other relevant
human-computer interaction (HCI) research. Any such instantiation essen-
tially represents our, i.e. the researcher’s or the game designer’s, theory of
mind (Premack & Woodruff, 1978) with respect to the human player. Not only
do we assume the human player to follow a certain policy, we also expect
intrinsic reward to affect both cognitive and affective states, and thus cross
two camps of established theories (Melhart, Yannakakis & Liapis, 2020).

Within the experience-driven PCG framework Yannakakis and Togelius (2011),
our approach represents a combination of gameplay- and model-based PX mod-
elling and simulation-based content quality assessment. It has been suggested
that model-based approaches come with a lower resolution than those using
subjective and objective player data (Yannakakis and Togelius, 2011; and
Sec. 7.2); we do not primarily target resolution, but aim to improve generality.

7.4 empowerment-based player experience prediction

We instantiate our proposed approach in an empowerment-based player experi-
ence prediction (EBPXP) model. We first defend our choice of empowerment
(Ch. 3) as IR based on its potential role in human gameplay, assessed by its
proximity to game design and games user research theories, and preliminary
empirical findings on its relationship to human experience beyond games.
We then formalise our approach and illustrate its calculation via pseudocode.

7.4.1 Choice of Empowerment

The maximisation of empowerment as an agent’s perceivable influence has
been hypothesised as a unifying principle explaining many behavioural
phenomena throughout the animal kingdom (Sec. 3.1). Some argue that ‘un-
derstanding games is approaching a phase where it is close to understanding
the psychology of individual life experiences in general’ (Takatalo et al.,
2010, p. 25); games borrow from the mechanics that govern our reality, and
it is hence little surprising that EM has been successfully used in driving
the behaviour of general game-playing agents (Sec. 5.2.1) and NPCs (Ch. 6)
towards realising a game’s latent goals. Games are designed to be intrins-
ically motivating for people (Sec. 5.1.1), and we have illustrated in Sec. 6.4
that many instances of human gameplay can be modelled as empowerment
maximising decision-making processes. In deciding on an action, IR distin-
guishes preferable from less preferable situations, and it likely also shapes
our fine-grained experiences of these situations. In summary, we hypothesise
that empowerment influences how people play and experience games.

Empowerment
& Game
Design

Our hypothesis is supported by several theories in game design. Salen and
Zimmerman (2004) describe play in the most general sense as ‘free movement
within a more rigid structure’ (Salen and Zimmerman, 2004, p. 304; and Sec. 5.1).
As a measure of controllability and observability (Sec. 3.2), empowerment
could allow players to trace these boundaries in play. For the same reasons,
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empowerment may correlate with the experience of tegotae, described by
Shigeru Miyamoto as the satisfaction from being in control (Perry, 2016). The
creator of Super Mario Bros. (Nintendo R&D, 1985) puts it at the core of his
games design: ‘if the player jumps from a high place, the amount of time
they stay in the air needs to be just right, or else they’ll feel disconnected
from the experience’ (Perry, 2016). The player’s empowerment would be zero
while being in the air. Empowerment moreover captures various factors of
outcome uncertainty, which Salen and Zimmerman (2004) deem essential for
meaningful play: ‘If the outcome of the game is completely predetermined –
then any choices a player makes are meaningless, because they do not impact
the way that the game plays out’ (ibid., p. 174). Caillois (1961) directly relates
outcome uncertainty to enjoyment. Empowerment measures the consequences
of a player’s action sequences, and could, given a sufficiently large lookahead,
quantify the breadth of a game’s outcomes to the extent that they can be
perceptually distinguished by the player. More commonly though, empower-
ment captures the richness of intermediate game states, as the lookahead
is computationally restricted. Empowerment moreover quantifies the con-
trollability of action outcomes as a second factor of outcome uncertainty: it
decreases the more the outcomes of different actions overlap (Sec. 3.2).

Empowerment
& (Games)
User Research

We suggest further links between this IR and experiences investigated in
games user research. We hypothesise empowerment to be closely related to
a player’s effectance (Sec. 5.1.2) as the experience of ‘receiving immediate,
direct feedback on one’s action and of influencing the game world’ (Klimmt,
Hartmann & Frey, 2007, p. 845). More coarsely, we consider its relationship to
two components of self-determination theory (Ryan & Deci, 2000b) (cf. Sec. 3.1).
Empowerment relates to in-game autonomy as ‘the degree of choice one has
over the sequence of actions, or the tasks and goals undertaken’ (Ryan, Rigby
& Przybylski, 2006, p. 349) in that it quantifies the availability of actions in
different game states. Moreover, its proximity to a player’s effectance also
suggests a close connection to their perceived competence as the ‘need for
challenge and feelings of effectance’ (ibid., p. 349).

Preliminary empirical support for the relationship of empowerment and hu-
man experience more generally comes from HCI research, where Trendafilov
and Murray-Smith (2013) have used empowerment to quantify the impact of
uncertainty on human experience in manual control. Interfaces with reduced
empowerment were correlated with feelings of frustration. Crucially though,
no direct connection between empowerment and player experience has been
manifested yet, motivating our study in Sec. 7.5. Based on these leads, we
choose empowerment as the foundation for our PX prediction approach.

7.4.2 Formalisation

To highlight how EBPXP instantiates our proposal of predicting PX via IR,
we formalise it along the same structure used in Sec. 7.3: we cover the
player experience model, the content quality assessment method and finish with a
description of the evaluation procedure supported by pseudocode. First of all
though, we lay out our formal assumptions.
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AssumptionsOur formalisation of EBPXP and the calculation of player empowerment
rests on the framework developed in Sec. 3.2. We model the interaction
of a single player with the game by means of the memoryless perception-
action (PA)-loop in Fig. D.1b. In this causal Bayesian network, the game state
at time t is represented by the random variable Rt, and the player by their
sensor perceptions St and actions At. A player may only have limited insight
into a game’s actual workings, and we hence distinguish between the game’s
objective dynamics p(. . . ), and the player’s models of these dynamics q(. . . ).

The EBPXP model at present draws on a simplified account of the player-
game interaction. We firstly assume full observability, i.e. the player can per-
ceive the whole game state. We thus have st = rt and can express the sensor
and environment dynamics in a single sensorimotor distribution. We secondly
assume fixed parameters: we can imagine that the player already had a chance
to familiarise themselves with the game and arrived at a stable estimate of
their sensorimotor dynamics and policy. We do not infer the corresponding
parameters, and hence omit them from the distributions. Based on these
simplifying assumptions, we have the objective and modelled sensorimotor
dynamics p(st+1| ˙

at,
˙
st), q(ŝt+1|ât, ŝt) and the objective policy p(at|

˙
st). We de-

note variables that are assumed by the player but have not yet been resolved
or realised by a hat, and intervened (Appx. A) variables by a dot. We thus use
the same assumptions as in Sec. 3.2 to formalise simplified versions of various
empowerment quantities, and draw on the respective earlier equations.

Player
Experience
Model

Our player experience model as the first evaluation component comes down
to the IR function used to assess game states. For EBPXP, we want to estimate
a player’s experience in decision-making, i.e. at a point where they can still
compare action alternatives based on the goodness of the situations which
these actions are expected to yield. Rather than using a player’s vanilla
empowerment in the present situation, we hence assess PX based on their state-
expected empowerment directed one time step into the future. It corresponds to
the expected empowerment over all successor states that could be caused by
all available actions in the present state:

EŜt+1,Ât|ŝt
[E] = ∑

ŝt+1,ât

q(ŝt+1|ât, ŝt)qU (ât|ŝt)E(ŝt+1) (7.1)

Here, q(ŝt+n| ˆ̂an
t , ŝt) are the 1-step sensorimotor dynamics, qU(ât|ŝt) ∼ U (|Ât|)

is the uniform policy, and E(ŝt+1) is the simplified vanilla empowerment at
the next time step, as originally defined in Eq. 3.14:

E(ŝt) = max
q(ân

t )
I(Ân

t → Ŝt+n|ŝt)

= max
q(ân

t )
∑

ân
t ,ŝt+n

q(ân
t )q(ŝt+n|ân

t , ŝt) log
q(ŝt+n|ân

t , ŝt)

∑
ˆ̂an

t

q(ŝt+n| ˆ̂an
t , ŝt)q( ˆ̂an

t )

The term q(ŝt+n|ân
t , ŝt) represents the recursively calculated, simplified n-

step sensorimotor dynamics (Eq. 3.16). We use the uniform policy in the
expectation (Eq. 7.1) to express an assumption of maximum ignorance about
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Algorithm 2 Empowerment-based player experience prediction (EBPXP)
1: function EBPXP(g, p(at|st), n, q(ŝt+1|ât, ŝt), T)

Stage 1: Recording state trace
Simulate AI play of game g = (s0, p(st+1|at, st),ST) with policy
p(at|st) and record state trajectory τ until terminal state hit

2: t← 0, τ(0)← s0
3: st ← τ(t)
4: while st /∈ ST and t < T do
5: at ∼ p(at|st)
6: st+1 ∼ p(st+1|at, st)
7: τ(t+1)← st+1
8: t← t+1
9: end while

Stage 2: Calculating state-expected empowerment reward
Avoid repeated calculation for identical states ŝi = ŝj, i 6= j, ŝi, ŝj ∈ Ŝt+1

10: for t ∈ [0, |τ|] do
11: st ← τ(t)
12: for ât ∈ Ât do
13: for ŝt+1 ∈ St+1 : (q(ŝt+1|ât, st) > 0∧ E(ŝt+1) = ∅) do
14: Calculate q(ŝt+n+1|ân

t , ŝt+1) recursively (Eq. 3.16)
15: Find q∗(ân

t+1) that maximises the channel capacity for
q(ŝt+n+1|ân

t+1, ŝt+1) with the Blahut-Arimoto algorithm
16: E(ŝt+1)← I(Ân

t+1 → Ŝt+n+1|ŝt+1) for q∗(ân
t+1) (Eq. 3.14)

17: end for
18: end for
19: EŜt+1,Ât|st

[E]← ∑ŝt+1,ât
q(ŝt+1|ât, st)qU (ât|st)E(ŝt+1) (Eq. 7.1)

20: end for

Stage 3: Aggregating reward into mean as experience prediction
21: E[E](τ)← 1/|τ|∑|τ|−1

t=0 EŜt+1,Ât|ŝt
[E] (Eq. 7.2)

22: Return E[E](τ)
23: end function

the next action to be chosen at the time of experience assessment. Similarly,
vanilla empowerment is calculated in an open-loop fashion (Sec. 3.3).

Content
Quality
Assessment

To predict the PX of a content instance, we must consider its interaction
with other facets of the game in which the content is embedded. We hence
perform quality assessment on the whole game and a specific content instance.
We define it as a triple g = (s0, p(st+1| ˙

at,
˙
st),ST), consisting of the game’s

initial state, its forward model, and a set of terminal states.
As basis for our PX prediction, we calculate state-expected empowerment for

each game state along a simulated AI play trajectory. A single interaction with
the game corresponds to sampling the next state st+1 from the sensorimotor
dynamics. We simulate a play trajectory τ = (s0, s1, . . . , s|τ|−1) by instantiating
the player policy p(at|

˙
st) and executing the PA-loop from the initial state s0

until a terminal state s|τ|−1 ∈ ST. EBPXP operates off policy, i.e. the policy
does not necessarily or exclusively have to optimise empowerment. We hence
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acknowledge that a player’s behaviour may not be driven by EM alone, but
yet assume that empowerment can capture a part of their experience.

Our PX prediction, and hence the output of EBPXP, is given by the mean
state-expected empowerment over the whole trajectory:

E[E](τ) :=
1
|τ|

|τ|−1

∑
t=0

EŜt+1,Ât|ŝt
[E] (7.2)

At this point, we do not consider the order of rewards in our prediction. The
rationale behind this is to not limit out approach with further theoretical
assumptions about the relationship of dynamic reward structures and PX.

Evaluation
Procedure

We describe EBPXP for a given content candidate via the pseudocode
in Alg. 2. The evaluation procedure follows the same three steps as the
generic approach outlined in Sec. 7.3. As a consequence of our simplifying
assumptions, our game-playing agent as well as their IR are static (Oudeyer
& Kaplan, 2007; Yannakakis & Togelius, 2011), i.e. neither the agent nor their
reward change over time. This allows us to speed up the computation slightly:
for recurring game states (line 13), we only have to calculate their state-
dependent n-step empowerment (line 16) once. Amongst others, the algorithm is
parametrised by T, the maximum length of a trajectory, ensuring that it does
not loop indefinitely for a playing agent that gets stuck in non-goal states.

RequirementsEBPXP comes with only few requirements: Firstly, the calculation of em-
powerment relies on access to a model of the game’s dynamics. This does not
have to be the actual game state forward model, which is often unavailable
or might be computationally expensive to evaluate. Empowerment quantifies
an agent’s perceivable control, and even a perfect dynamics model thus does
not need to reflect all action-induced changes to the game’s global state, but
only local changes that can be perceived by the player. One could thus refrain
to a local, more efficient model variant. Moreover, one can use an imperfect,
simplified forward model, potentially learned from the simulated player’s
experience, for the calculation of epistemic empowerment (cf. Sec. 3.2).

Secondly, EBPXP requires an AI game-playing agent’s policy to sample
game state trajectories. This policy can be highly general, or describe a
group or even a specific player’s behaviour. The choice of model likely
has implications on EBPXP’s prediction accuracy and its generality, and we
discuss this trade-off in Sec. 7.6. The agent’s sensorimotor dynamics model is an
optional requirement which is only needed if epistemic uncertainty (Appx. A)
on the agent side is to be captured, or if the objective dynamics, i.e. the
game’s forward model, is unavailable or must be simplified.

7.5 exploratory study

We propose to predict human PX based on IR calculated along AI-simulated
play trajectories. Our goal is to unleash the procedural generation of game
content and entire games as the most popular part of computational game
creativity (Liapis, Yannakakis & Togelius, 2014) and a CC application domain.
Through this use-case, we more generally aim to contribute to modelling
people’s subjective experiences of interactive artefacts. Our study represents
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the first step towards a proof-of-concept based on EBPXP, which instantiates
our generic approach in Sec. 7.3. Our findings contribute to the overarch-
ing research question of this chapter: ‘Can we use IR to predict people’s
experience of interactive artefacts in a general and autonomous way?’ (RQ.9).

The formal interpretation of empowerment as an AI agent’s potential and
perceivable influence over the environment (Sec. 3.2) does not warrant any
conclusions on how the computational IR relates to human PX. In order to
conduct a quantitative study based on established, reliable HCI instruments
for a full proof-of-concept in future work, we must first identify candidate
experiences which empowerment could potentially predict.

We focus on predicting PX for procedurally generated levels of an infinite
runner game specifically developed for this study. Levels are the arguably most
popular game facet in PCG research, and procedural level design represents
‘one of the oldest and most popular commercial applications of autonomous
creative systems’ (Liapis, Yannakakis & Togelius, 2014, p. 49). Moreover, levels
substantially contribute to a game’s identity: ‘A game’s tone is often set by
its levels and the challenges they pose; digital games often have a constant
or near-constant set of mechanics throughout, but vary the gameplay and
challenge through level design’ (ibid., p. 49). Our study probes the prediction:

PD.6 Game levels with different mean state-expected empowerment are
experienced differently by human players.

We not only investigate whether such levels are experienced differently, but
also explore which specific PXs our approach could predict. To this end, we
conduct a qualitative study of human player think-alouds based on experiential
vignettes (Hudson & Cairns, 2014a), and assessed through a thematic analysis
(Braun & Clarke, 2006). We describe our study details and how the conditions
have been generated, and then report and discuss our results. We eventually
inform a hypothesis for a future quantitative study by relating our results
back to game design and games user research.

7.5.1 Methodology

Experiential
Vignette

We approach this study as an instance of an experiential vignette (Hudson &
Cairns, 2014a). This qualitative method has been developed to investigate user
experience phenomena in digital games that have ‘not yet been well defined
and understood’ (ibid., p. 103), and are not amenable to quantitative meas-
urement as this would constrain the richness and complexity of responses.
Experiential vignettes are different from other qualitative approaches in that the
participant is exposed to well-defined situations that aim to ‘manipulate’ their
responses in order to probe certain aspects of the phenomenon. To probe PD.6,
we expose our participants to different levels of an (in)finite runner game. Each
level has been selected for having a different mean state-expected empowerment.
These conditions are predicted to manipulate the player’s experiences, and
the experiment thus qualifies as an experiential vignette. To gather unbiased
qualitative data, we ask participants to think aloud while playing the game.
We complement this with few targeted questions.

Thematic
Analysis

We perform a thematic analysis (Braun & Clarke, 2006) on this qualitative
data to find out which types of experiences our conditions jointly give
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rise to, and how these experiences differ between them. A thematic analysis
is a qualitative method ‘for identifying, analysing and reporting patterns
(themes)’ (Braun & Clarke, 2006, p. 79) across individual items of a data
set, in our case across individual recordings of player think-alouds. We have
chosen this method as it results in a ‘thick description’ (ibid., p. 97) of the
dataset which can uncover unanticipated insights to benefit our exploration.
At the same time, a thematic analysis is less complex than other qualitative
methods such as grounded theory (Salisbury & Cole, 2016). We decided against
a more quantifiable approach such as content analysis (Mayring, 2004), since
our goal was not to see how often people engage in a set of previously known
experiences, but to explore the range of yet unknown experiences in response
to our manipulation. Yet, the prevalence of specific experiences in the dataset
provides us with clues about which PXs our approach could predict best.
Given the ambiguity, diversity and differing foci of participants’ utterances
in the think-aloud data, we however only coarsely state such prevalence.

We adopt Braun and Clarke’s (2006) taxonomy to clarify the specific flavour
of our thematic analysis. We conceive a theme as a specific PX that has been
coded in at least two think-alouds. Our analysis is more inductive than theoret-
ical, in that our identified themes are closely linked to the data itself, rather
than to any specific questions asked in the study or to the experimenter’s pre-
conceptions. We identify our themes mostly at a latent rather than a semantic
level; instead of only considering the ‘explicit or surface meanings’ (ibid.,
p. 84) of the player’s utterances, we try to identify the features that give rise to
this meaning. More specifically, we identify these utterances with known PXs,
and seek to explicate their emergence, e.g. from a level’s structure, based on
existing theoretical frameworks. Moreover, our method is realist rather than
constructivist in that we report the ‘experiences, meanings and the reality of
participants’ (ibid., p. 81), assuming that their ‘language reflects and enables
us to articulate meaning and experience’ (ibid., p. 85).

Experiment
Design

We have evaluated player’s responses to levels with low and high mean
state-expected empowerment. We refer to these conditions as low and high,
respectively. The levels were procedurally generated, and, due to stochasticity
in the generator, vary locally despite having the same mean state-expected
empowerment. We have chosen a mixed experimental design to balance effects
of these within-condition differences on PX. In our experiment, the two condi-
tions are evaluated within subjects, while two instances of the same condition
are considered between subjects. Each participant first had to complete one of
two tutorial levels with medium state-expected empowerment to familiarise
themselves with the game. We thus presented our participants with eight
level combinations (2 instances × 2 conditions × 2 tutorials) in balanced
order. Since the resulting data is qualitative and analysed extensively, our
experiential vignette only requires a modest number of participants.

7.5.2 Testbed

RoboRunnerParticipants were asked to play different levels of RoboRunner (Fig. 7.3), a
one-button game from the infinite runner genre specifically developed for this
study. The goal is to drive a yellow robot from the left to the right through a
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Figure 7.3: RoboRunner: our deterministic, one-button (in)finite runner game testbed.

space station to escape imminent self-destruction. While RoboRunner realises
most characteristics of infinite runner games, our levels are finite to bound
the variation in shared game content that participants with different skill can
experience. In order to reach the end of the level and thus be spared, the robot
has to jump across chasms. The game has one implicit (do nothing) and one
explicit action: the robot drives to the right automatically with constant speed,
and the player can invoke jumps with a button press when their avatar is on
the floor. RoboRunner is completely deterministic to guarantee that different
runs of the same condition in principle yield the same gameplay.

Reasons for
Inclusion

We have chosen this particular testbed for several reasons. Infinite runners
are, despite their simplicity, very popular, especially on mobile platforms
and with casual gamers. Our participants have likely seen or played similar
games such as Canabalt (Saltsman, 2009) before, which should have made
it easier for them to familiarise with our testbed. Due to its linear nature,
RoboRunner allows us to determine the relevant states the player is going to
pass through with little ambiguity: while they can jump at different positions,
there are no alternative routes to reach the end of the level; the player can
only briefly branch off but eventually returns to a common trajectory. The
simple controls and linearity also eased the task to create an AI controller
which resembles human play. To the player, the game appears continuous in
space, but it is composed of modular blocks and can consequently be treated
as discrete to simplify simulated game-playing, the calculation of IR and our
analysis of the interview data. The player is the only dynamic element and
each game state is fully characterised by their position. Since the game is also
deterministic, the state space remains small and tractable for the exhaustive
computation of IR. Furthermore, the game’s low complexity allows us to
develop a level generator that can sample from the entire expressive range
of possible level representations, and thus introduces no bias prior to our
selection of experimental conditions.

7.5.3 Materials

Procedural
Level
Generation

To produce the conditions for our study while avoiding a design bias, we
have employed search-based PCG (Togelius et al., 2011) based on a genetic
algorithm (Eiben & Smith, 2015). Fig. 7.4 shows the user interface of the
custom level generator. We use a 1:1 genotype-phenotype mapping: the
platform layout is represented as a bit array, with 1 indicating the presence of
a platform module and 0 its absence. The phenotypes are rendered two ways:
as a design visualisation in the generator interface (Fig. 7.4 bottom), and as
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Figure 7.4: Interface of the procedural content generator for RoboRunner levels. The
lower part comprises a design visualisation of the previously evolved level.
It shows an AI playtrace, empowerment values at individual positions
and mean empowerment values per platform. The parameters for the
empowerment calculation and evolution of new level instances are set in
the top-left window. The middle window allows to import and export
levels and control the visualisation. The right-hand window show a log
with details about the evolutionary process, and about the empowerment
calculation at the level position highlighted in red.

the actual level to be played by the participant (Fig. 7.3). Fig. 7.5 illustrates
the genotype-phenotype mapping for the latter. The first five and last five
modules of a level are assumed protected to form a ‘safety zone’ for the player.

EBPXP LossThe loss calculation for a specific level rests on its evaluation through
EBPXP as described in Sec. 7.4. We use the following inputs to the model:

• The RoboRunner game g = (s0, p(st+1| ˙
at,

˙
st),ST). We assume that each

level to be evaluated is wrapped into a separate game instance, which
is otherwise identical. The game’s initial state s0 is given by the agent’s
position on the left-hand side of the level. The set of terminal states
ST is given by all possible positions on the very right-hand side of

Figure 7.5: The RoboRunner 1:1 genotype-phenotype mapping from a bit array to the
platform layout. We show a slice from the beginning of an example level.
1’s in the bit array correspond to platforms and 0’s to gaps in the floor.
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a level, mid-air or on a platform. The forward model p(st+1| ˙
at,

˙
st), is

deterministic, and realises the game’s previously introduced mechanics.

• The AI player policy p(at|st). This policy is deterministic and fixed a
priori via depth-first search on the game’s forward model. To increase
human-likeness, the agent only jumps when necessary. This is realised
by always evaluating the idle action first in search. Also to further
human-likeness, the agent is subjected to a reaction time constraint, which
prohibits them to jump from the same position in which they landed.

• The lookahead hyperparameter n. We have set n = 1 as this already
requires the anticipation of action consequences two steps ahead (cf.
Eq. 7.2). Given the fast pacing of RoboRunner, we would expect higher
values to exceed the anticipation capabilities of our human players.

• The agent’s sensorimotor dynamics model q(ŝt+1|ât, ŝt). We have set
this equal to the game’s forward model, as we at present do not model
any uncertainty on the side of the player.

We illustrate the three-step EBPXP procedure for a RoboRunner level in Fig. 7.6.
We did not calculate the reward for states that are either inaccessible nor
protected, indicated by the crossed-through squares in Fig. 7.6. While we
illustrate state-expected empowerment for all remaining states, the mean
state-expected empowerment as experience prediction is calculated only on
the states visited by our game-playing agent. A level’s loss is given by the
absolute distance between this PX prediction and a target mean:

l :=

|Etarget − EBPXP(g, p(at|st), n, q(ŝt+1|ât, ŝt), T)| if g playable,

∞ otherwise.
(7.3)

Optimisation is performed for 300 generations or until l<0.001. Our selection
is elitist in that the 5 best individuals are moved to the next generation
without modification. In addition, the 20 best individuals are subjected to
bitwise mutation with a rate of 0.05 and one-point crossover based on a uniform
distribution over the genotype length, and then added to the next generation.

Condition
Generation

We have generated and selected our conditions in three stages. We firstly (i)
instructed the genetic algorithm to produce level candidates over the whole
spectrum of prediction values identified through EBPXP. State-expected em-
powerment for a 1-step lookahead can be at most 1, and is larger or equal to 0

(cf. Sec. 3.3). We evolved 21 levels with Etarget = 0, 0.05, 0.1, . . . , 0.95, 1.0, real-
ising mean state-expected empowerment values E[E] in the range [0.34, 0.92].
These upper and lower optimisation bounds are not unexpected. We cannot
achieve zero empowerment as this would violate playability. For our AI agent
to reach the end of a level, platforms must be within jump distance, i.e. at
most four modules away from each other. Moreover, they must be at least
two modules wide for the agent to be able to land and jump off under our re-
action time constraint. We did not achieve the maximum mean state-expected
empowerment of one, as random mutation and crossover did not permit to
close all gaps within 300 generations. We secondly (ii) explored the generated
candidate levels to identify sensible conditions for our study. We observed
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(a) Input: RoboRunner level
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(b) Step 1: Recording state samples
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(c) Step 2: Calculating state-expected empowerment reward
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(d) Step 3: Aggregating reward into mean as experience prediction

Figure 7.6: Individual steps in empowerment-based player experience prediction
(EBPXP) for a RoboRunner level, following Alg. 2 in Sec. 7.4. Striked-
through modules represent inaccessible or protected states.

that levels with a mean state-expected empowerment below 0.65 had very
short platforms and large gaps, and were thus almost unplayable. Levels with
a mean above 0.95 in contrast had almost no gaps, and did not represent typ-
ical examples of an infinite runner. We consequently picked three values from
the range of playable and typical levels: 0.65 for our low condition, 0.85 for high,
and 0.75 for our tutorial level. We finally (iii) generated two instances of each
condition and the tutorial level to balance for local structural differences that
may affect PX. We ended up with eight unique level combinations. Fig. 7.7
shows the left third of both instances of each level condition with the AI
play trajectory. Darker hues indicate lower state-expected empowerment for a
player in that position. Protected and inaccessible states are crossed through.

To gain an intuition of empowerment in our testbed, consider the second
low condition at the bottom of Fig. 7.7a. At position 58, the player could either
jump to position 63, or keep running to position 64. Position 64 however is
an abyss and empowerment is hence zero. In position 63 in contrast, both
jumping and running would yield different futures and 1-step empowerment
is thus maximum. The state-expected empowerment back at position 63 is
consequently lower, because only jumping would allow the agent to get on
solid ground and have future perceivable control.

7.5.4 Procedure

InterviewThe experiment was run individually and under lab conditions. We first asked
the participant to read a consent form and raise any potential questions. They
then filled in a demographics questionnaire with the following items:

• Please specify your gender
(Female, Male, None of the above, Prefer not to say)

• Please specify your age range
(Under 12, 12-17, 18-24, 24-34, ..., 65-74, 75 or older, Prefer not to say)
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(a) Condition low: mean state-expected empowerment (E[E] = 0.65)
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(b) Tutorial: mean state-expected empowerment (E[E] = 0.75)
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(c) Condition high: mean state-expected empowerment (E[E] = 0.85)

Figure 7.7: Left third of all study conditions in three groups with different mean
1-step state-expected empowerment. Darker hues indicate lower em-
powerment at individual positions. An example AI playtrace is shown
above. Each level starts and ends with a 5-module safety zone.

• Do you play video games in general?

• How often do you play video games, per month?

• Which game genres do you like most?

• What does a game need for you in order to be enjoyable?

The participant was then introduced to RoboRunner, and asked to play the
tutorial level to get familiar with the game and controls. They were then
prompted to play the two remaining levels of their individual assigned
combination of conditions until completion, or for at most five times, while
thinking aloud. In the end, we asked them the following targeted questions:

• Did you spot any differences between the levels?

• Did they feel different while playing?

• Which level did you enjoy more, and why?

All participants were given the same prompts following a fixed protocol. Each
session lasted for about 25 minutes, and was recorded on audio.

Thematic
Analysis

The thematic analysis was jointly conducted by the experimenters. We
first created a rigorous, verbatim transcript of the interviews, accounting for
verbal and non-verbal utterances. We then familiarised ourselves with the data
by attentively reading the entire transcript. In the next step, we generated
an initial set of codes by going systematically through the dataset once again.
We adopt Boyatzis’ (1998, p. 63) interpretation of a code as the most basic,
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semantic feature of the raw data that can be assessed meaningfully with
respect to the investigated phenomenon. We have specifically coded around
the question of how players experienced a level, especially in relationship
to previously played levels. A code dictionary was used between the experi-
menters to ensure consistency. Participants’ responses to targeted questions
were analysed similarly to the think-aloud. Since this data is more reflective
by nature, it allowed us to better understand some of the more immediate
responses in the think-alouds and hence inform their coding. In the next step,
we collated codes that occurred across participants into potential themes, and
associated them with quotes from the interviews. In an iterative process, we
reviewed and refined the codes and themes. We constructed an interpretation
of each theme, accounting for the contribution of the associated codes. We
eventually chose representative quotes from the transcript that evocatively
illustrate our findings in the following report.

7.5.5 Participants

We recruited eight participants (5 male, 3 female) by opportunity sampling
and incentivised them with chocolates. As justified earlier, this is a sufficient
number of participants for an experiential vignette as exploratory, qualitative
study. Six participants were aged between 25-34, and two belonged to age
groups 18-24 and 35-44. Most were students in our local MSc and PhD games
programmes. They were all English native speakers and avid players.

On average, our participants played videogames for 16.25 hours per month
(SD = 5.29). Being asked about their favourite game genres, most named role-
playing (6), followed by action (4), sports (2), adventure (2) and strategy (2) games.
Individual mentions comprise horror, narrative, platformer, collecting and local
co-op games. Our participants consider games enjoyable if they provide
(optimal) challenge (6), have an immersive plot (5) and interesting mechanics (3),
express a good idea (3), provide room for skill improvement (2), have clear graphics
(1), interesting characters (1) and a good overall ‘feel’ (1).

From this data, we infer that our participants are skilled and have a diverse
videogame playing experience. This is critical, as they should be able to get
used to our testbed quickly and make some progress in the game in order
for us to gather rich and comparable responses in the think-aloud.

7.5.6 Results

Our participants have reported different experiences in response to levels with
different state-expected empowerment. The identified differences are notably
not in the type of experience, which remained consistent between conditions,
but in their strength and valency. We have identified the five major themes
challenge, involvement, attention and engagement, and emotions as PX candidates
that empowerment might allow to predict.

AnnotationsIn the following report, we have paid particular attention to supporting our
findings with quotes on both conditions that the players have been exposed to.
If not referenced directly within a quote, we indicate the condition explicitly
with a suffix. As annotations, we reserve (...) for omissions, and ... to indicate
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a pause in the utterance. Moreover, we put editorial additions and contextual
comments into square brackets, with context information put into italics.

theme : challenge

The most dominant theme in our interviews is challenge. Our participants
frequently used words such as ‘difficult’, ‘tricky’ and ‘tough’ vs. ‘easy’ to
express how challenging the current level is, and which we use as codes for
this theme. They consistently considered low more challenging than high:

Boing, boing, ouh god it’s tricky! I see, yes! God is that...! [low] (1)

This one [high] feels considerably easier. The frequency of gaps,
and the size of gaps doesn’t feel as challenging [as for low]. (2)

Being asked which condition they enjoyed more, one participant responded:

The second one [high] was quite easy. When it comes to the second
one, it was a bit too easy I feel, ..., I got it in ... one life, I think? (3)

Fig. 7.7 shows our different conditions next to each other, and hence
highlights the impact of level structure on mean state-expected empowerment. We
find that low has smaller platforms and more gaps than high. Our participants
reported different challenges with respect to these these structural differences,
which we consider in the sub-themes of physical and cognitive challenge.

sub-theme : physical challenge

Our participants articulated a physical challenge in their struggle to jump from
one platform to the next in time, especially in quick succession. In our testbed,
this and the other sub-theme of cognitive challenge can rarely be separated;
one exception is given when the player hits a short platform, e.g. at position
57 in the lower level in Fig. 7.7a. Here, they must jump off again quickly to
survive, and the imminent gap makes further reasoning unnecessary.

Reaction TimeWe have coded physical challenge via reaction time induced by threats, which
has been articulated more frequently with respect to the low condition:

When the little, the small platforms are those that are challenging,
because you have to bounce off them really quickly. [low] (4)

Yah, I’m just going over the fact that I succeeded in one, when
another one comes up, ... so it’s just about getting the time right.
Maybe it’s to do with the rhythm. [low]

(5)

Whilst playing high, one participant felt lured into a physically challenging
situation on a small platform although the level provides easier alternatives:

This is tricky, because you feel like you should jump in the middle,
and I suspect when I jump on the middle one, I won’t jump off
in time. [high]

(6)
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sub-theme : cognitive challenge

Players experienced cognitive challenge on longer platforms where they face
less instant danger but could jump off at different positions. We have coded
cognitive challenge in terms of an increased demand towards spatial reasoning
and planning, the potential to devise strategies and higher decision pressure.

Spatial
Reasoning

Deciding on the best position involves spatial reasoning about jump and
platform distances, which was almost exclusively mentioned for low:

My spatial reasoning, to determine whether or not I can actually
make that [jump]. So, it feels like ... it is asking me is whether my
judgement of the distance, ..., whether I should jump sooner or
later. It makes me question my ability to do that. [low]

(7)

If you chose the wrong thing, you would be left in a situation
where you had to jump and land in a hole. So you wouldn’t jump
at the earliest opportunity. [low]

(8)

One participant describes how they use their spatial reasoning while playing
high to avoid a small platform in-between two larger and safer ones:

Just cause they [the small platforms] are there, I like the safe bet.
It feels quite safe to do that [jump on the small platform]. But, I
can see that I can make it on the first jump. [high]

(9)

PlanningParticipants leveraged their spatial reasoning to plan their actions, some-
times several steps ahead. This was mentioned almost exclusively for low:

What I’m trying to do is to get myself into the situation where I
can get my peripheral vision to see what’s coming up. (...) So I’m
not just dealing what comes right at my doorstep. [low]

(10)

In response to whether they felt differently while playing the various
conditions, players reported:

There were certain bits I’ve come to, where there was the same
distance of gaps but the platforms themselves were smaller, and
there was a few ... they staggered, and I find it difficult to judge
where to try and land to do another successful jump. [low]

(11)

There were times were (...) you could choose to jump over either
the first hole (...) or you could jump over more than one hole.
And if you chose the wrong thing, then you would then be left in
a situation where you had to jump and you had to land in a hole.
So you wouldn’t jump at the earliest opportunity. [high]

(12)

StrategiesParticipants devised strategies to address the game’s cognitive challenges:

So my new strategy for the small platforms is to just try to jump
over them and not to land ..., well, if it’s possible to. [low] (13)

Comparing their experiences of both conditions, one player responded:
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As in ... I feel like [in low] I had to be more strategic, in terms of ...
your jumping, when you jump, at what point you take off. And
the other one [high] was a bit chilled.

(14)

The need for the player to plan ahead, reason about distances and devise
strategies while racing towards the next gap induces decision pressure. This
was highlighted almost exclusively for low:

Doesn’t feel like I have a very big window to make the decision
of whether to jump early or later. []low] (15)

The second one [low], it felt like they were a lot smaller, and less
frequent, so there [in high] wasn’t so much of a challenge of ‘I
have to make this decision now’.

(16)

theme : involvement

Participants described an either active or passive gameplay experience. We use
these two terms as codes for the player’s involvement in the game. We say
involvement to capture an increased player activity as both, a response to the
game’s demands and a voluntary act in the absence of such demands.

PassiveOur participants considered themselves passive exclusively when playing
high. Being asked to compare the conditions, one responded:

(...) the second one [high] seemed to have less of those really short
platforms, and they had longer stretches of where you just didn’t,
didn’t jump. So I kind of waited.

(17)

Deliberating about their preferred condition in the targeted interview,
another player emphasised their passivity when playing high:

Cause this one [high] has like too many ... where you’re just not
jumping. It’s got quite a looong platform. So it’s kind of, just less
interesting, than hard games.

(18)

ActiveParticipants generally considered themselves more active in low. Comparing
the conditions, one player responded:

It felt like the second one [low] was the most difficult, as it asked
more questions of me to try and make it to the end. So that was
more involving.

(19)

These ‘questions’ likely relate to the various factors of cognitive challenges
elaborated earlier. A lack of threats in high did not discourage all participants
from being active, with one jumping wildly on a long stretch without gaps:

Oh, I’m trying to do a double for fun. And another! [high] (20)
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theme : attention

The degree of involvement in a game demands different levels of attention, a
theme which we have formed from the codes of concentration and focus. Our
participants referred to their concentration in an unspecific way, but expressed
their focus with respect to particular game elements.

ConcentrationMore than half of the participants mentioned the need to concentrate while
playing low, expressed explicitly and through interrupted speech:

Yeah, I’m having to concentrate a lot harder ... than before. And
I’m, and I’m, ..., och, I’m keeping doing that. I’m keeping falling
down this one. [low]

(21)

Reflecting on whether the conditions felt differently, one participant noted:

I felt like I had to concentrate harder on the second one [low],
whereas the first one there were bigger spaces in-between each
jump I had to make, so it felt comparatively more passive.

(22)

FocusIn contrast to attention, our participants articulated their focus with respect
to different game elements. Being asked whether they had spotted any
differences between the levels, one player answered:

I don’t know if the gaps were set on random or not. I was so
focussing on jumping, I wasn’t actually looking at the sizes of
them. I think maybe, ..., the spaces changed in the game as well.

(23)

This participant did not refer to a specific condition. Another participant
in contrast, being asked whether the levels felt differently, responded:

It’s a tougher game that you get into flow quite easily, because
you’re quite focused on just jumping over the obstacles. [low] (24)

theme : engagement

When highlighting their attention, participants also expressed to be engaged
with the game. We have coded this theme based on determination, the willing-
ness to re-engage, and the ability to ‘zone in’.

DeterminationMore than half of our participants expressed their determination as the
desire to succeed in a given level, or as disappointment when running out of
chances. They mostly expressed this for low, but rarely also for high:

Uuups! Damnit! I’m feeling a bit competitive now. [low] (25)

Nooo! I’ve got no more lives? [low] (26)

I’m gonna make these lives count. Now it’s personal! [high] (27)

Re-
Engagement

Half of the participants mentioned the wish to re-engage, i.e. to play the
same level again, for both conditions:

(...) even though it is frustrating to constantly die playing a level I
feel like I would’ve gotten there eventually. So it’s like you just
play a little bit more. [low]

(28)
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Because level one [low] is so difficult, I don’t think I’d spend too
much time on that if I kept on losing. (...) Now we’re talking
about it, now I wanna go back and get it done [laughs].

(29)

Ohh rude! [disappointed] Can I restart? [high] (30)

Zoning InOur participants expressed to ‘zone in’, ‘be on a roll’, and be in ‘flow’.
These accounts of engagement are too brief to warrant further differentiation,
and we hence summarise them under the code zoning in. Being asked which
condition they preferred, one player responded:

I preferred playing the second one [high]. I was on a roll. I was
doing well, better than I was doing in this one [low]. (31)

Reflecting on how they felt when playing both conditions, another said:

[Low is] a tougher game that you get into flow quite easily, because
you’re quite focused on just jumping over the obstacles. (32)

theme : emotions

Our previous impressions, e.g. on player’s perceived challenge, attention and
engagement are reinforced by a large spectrum of emotions exhibited during
the interviews. Almost all participants expressed pleasure when succeeding in
the game and disappointment when failing, but some were also angry, tense
and even anxious. These specific emotions are our codes for this overall theme.

PleasureAlmost all participants showed pleasure when progressing in the game, but
only in one instance while playing high:

Alright, I like the width of that one. I like the width of these ones.
Yeah, nice and narrow. (...) Nice and narrow, it’s getting wider,
uuuh! ... double one, narrow one, ... oh, it’s much more satisfying
not failing. [high]

(33)

Being asked which level they enjoyed more, the same player responded:

The one that I won [high], obviously! I guess you just get that
payoff of pleasure, when you complete something. (34)

Pleasure for low was only expressed non-verbally during play. Being asked
which level was more enjoyable, another participant said:

So I think in a way I sort of enjoyed the challenges of the first one
[low] even though I didn’t manage to complete it. The second one
[high] felt a little too easy.

(35)

Disappoint-
ment

The majority of participants also experienced disappointment, usually about
their performance (cf. quote 21), or about running out of lives to master a
level. Disappointment was exclusively expressed while playing low:

Oh, fff... No more lives left. [low] (36)

Uh! Oh nooo! Went tumbling... [low] (37)
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It’s okay, it’s okay, right: we’ve got this thick one [tense]! Aaah
(fell into hole)! See, there’s not enough space... [low] (38)

AngerMost participants also experienced brief anger in both conditions, when
loosing a live and especially when failing at the same position repeatedly:

So, cause I know what’s coming now, I played it enough times, ...,
I kind of, ..., bloody hell! [low] (39)

Ohh ... rude! Can I restart? [high] (40)

TensionAlmost all participants said or appeared to feel tense, especially when
facing the unexpected and almost exclusively in low, as in quotes 39 and 38.
Only once did a participant make their tension explicit in high:

It feels really tense, ... like I’m expecting something to happen. (41)

Our participants expressed relief after releasing tension. The most impress-
ive example comes from a participant playing the tutorial level:

Sh! Uh oh oh oh, oh! Oh no! Ah! [Deep breath, exhaling] Puh!
Release now, I’m really upset! (42)

AnxietyIn few cases and only for low, participants even expressed some (joyful)
anxiety when anticipating and assessing upcoming situations in the game:

It’s this little one that gives me the heebie-jeebies. [low] (43)

Ah, oh no. I’m so scared []laughing]! [low] (44)

Assessing how the two conditions felt while playing, one participant said:

It [low] didn’t look different, I don’t think ... but it felt ... I was a
lot more ... kind of anxious of this level. Ahm, it was kind a bit
like adrenaline, because I knew ... well! Because I immediately
lost a live ...

(45)

miscellaneous themes

We have excluded three identified themes from this description. Participants
reported remembering their actions and resulting performance, and recalling
it again later. We summarised these codes into the theme of learning, but
omitted it as it has been reported with similar strength for both conditions
and hence does not help in discriminating the effect of empowerment. We also
identified the theme of game design, based on players mentions of the game’s
mechanics, aesthetics, complexity and story. They moreover related to the level
layout as well as the shape of platforms and gaps, which we have summarised
in a level structure theme. We have dismissed these themes as they do not
represent an experience, and thus do not add to our research objective.

As is common in thematic analysis, the themes identified in this study are
intended to stand alone as broad qualitative descriptions of the data. The
method is not designed to look more causally at links between the themes.
We hypothesise such potential links in the following discussion, but postpone
a detailed examination to future work (Ch. 8).
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7.6 discussion

We have developed our generic proposal to predict PX via IR calculated on
gameplay simulations, and instantiated it in EBPXP, to facilitate more general
and autonomous experiential control in PCG as a core area of videogame AI.
Although our model is not limited to this application, we have evaluated it
qualitatively as a component of a procedural content generator. The thematic
analysis of player think-alouds supports our prediction PD.6 that game
levels which are predicted to yield different PXs by EBPXP indeed evoke
different experiences in human players. We moreover identified a range
of candidate PXs which EBPXP could potentially predict; for our model
to be of practical value, these must be further investigated and confirmed
via a future quantitative study. In the following discussion, we relate the
themes identified through our thematic analysis back to PX research to form
a working hypothesis for this future quantitative study. We then highlight
the limitations of our approach, and discuss its potential use in CC.

Reflection on
Study Results

Perceived challenge represents the strongest theme in our study; players
have consistently reported levels of the low condition to be more challenging
than high, exposing it as a candidate PX which empowerment may allow to
predict. We can distinguish different types of challenge, depending on which
player abilities are being addressed (Denisova, Guckelsberger & Zendle, 2017).
In our study, players experienced physical challenge which is understood to
address a player’s physical limitations to interact with a game, e.g. the speed
and accuracy with which they can perform required actions (Cox et al.,
2012). Moreover, our participants have experienced cognitive challenge which
is thought to address the player’s cognitive capacities, and the speed and
accuracy of their prediction and problem solving facilities (ibid.). Players have
not related to any emotional challenges that typically result from emotionally
salient material, the use of strong characters and a captivating story (Cole,
Cairns & Gillies, 2015; Bopp, Opwis & Mekler, 2018). This is not surprising,
given RoboRunner’s genre and relatively simple story. In the development of
a challenge questionnaire after and independently of this study (Denisova
et al., 2020), we have identified the additional type of decision-making challenge.
It arises when a player has to make choices that are difficult or lead to a
regrettable outcome. Retrospectively, we acknowledge that this could be
separated from the theme of cognitive challenge (e.g. Quote 8).

A theme which has previously received little attention by the games user
research community is involvement; we have associated it with our participants’
active or passive play experience in the low and high condition, respectively.
In the absence of any dedicated research on this experience, we relate to
two game genres which demonstrate it in extreme form. Firstly, Juul (2010)
refers to a reduced demand for player activity as characteristic of casual games.
Moreover, idle games (Alharthi et al., 2018), also called incremental and clicker
games, typically feature a continuous decrease of the player’s involvement:
being initially in strong demand, a player must gradually replace their own
activity with more efficient substitutes to progress in the game, eventually
reducing their involvement to a minimum or making them obsolete altogether.

Our analysis moreover suggests that the low condition demanded more
player attention than high. We have coded this theme in terms of concentration
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and focus; Cutting (2018) in contrast, based on prior research by Lavie et al.
(2004) and others, understands players to pay more attention to a game
if they are less easily distracted. In our study, participants playing the low
condition were less committed to thinking aloud, which could be interpreted
as a separate, distracting task. Our conceptualisation of attention thus aligns
with his operationalisation. Moreover, Cutting identifies ambiguity in existing
research on the relationship of player attention and their cognitive load: more
specifically, his experiments do not support Lavie et al.’s (2004) finding that
increased cognitive load reduces attention. We even observe the opposite:
reports of cognitive challenge suggest that the low condition comes with a
higher cognitive load, but it yet seems to attract more player attention.

We finally contextualise engagement as the fourth identified theme. We
considered players engaged when they appeared determined, willing to re-
engage and reported to ‘zone in’, ‘be on a roll’, or be in ‘flow’. In contrast to
the other themes, no specific condition stuck out as particularly engaging.
This is not surprising, as engagement is one of the most complex PXs (Boyle
et al., 2012). Based on a review within and beyond videogames, O’Brien
and Toms (2008) define engagement as ‘a quality of user experience char-
acterized by attributes of challenge, positive affect, endurability, aesthetic
and sensory appeal, attention, feedback, variety/novelty, interactivity, and
perceived user control’ (ibid., p. 941). In the development of an engagement
questionnaire, Brockmyer et al. (2009) consider the underlying concepts of
immersion, presence, flow, psychological absorption, and dissociation. Our
coding hence only covers very few high-level attributes of this PX. At the
same time, engagement rests on other experiences identified in our study,
such as challenge and attention.

Working
Hypothesis

We deem engagement too complex and high-level to be well predicted by
empowerment as IR. This is also supported by its inconsistent association
with our conditions in the think-alouds. For similar reasons, we discard affect,
the last identified theme, as candidate experience to be predicted through
EBPXP. We moreover believe that the relationship between the state-expected
empowerment reward used in our model and the remaining three identified
experiences of challenge, involvement and attention is only intermediate, as
these experiences are still rather complex. Our study yet helps us to identify
more low-level experiences that empowerment could predict with better
accuracy: informed by our discussion of related game design concepts and
games user research findings in Sec. 7.4, we have sought experiences that
commonly influence all candidates identified in the think-aloud. We arrive at
the following hierarchical working hypothesis:

State-expected empowerment allows to predict the foundational
experiences of effectance, outcome uncertainty, and perceived control.
These have mediating effects on a player’s perceived challenge,
attention and involvement, which in turn influence high-level goal
experiences such as engagement, enjoyment and affect.

We adopt the notion of goal experiences (Cairns, 2016) for the high-level
experiences that players are explicitly seeking in gameplay, and foundational
experiences (Power et al., 2019) for the low-level building blocks that these are
formed of. We are not surprised that players did not report these foundational
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experiences explicitly, as this is not what they are primarily looking for. We
describe future work on evaluating this hypothesis in Ch. 8.

Limitations
of Study

Our study only marks the beginning to investigating intrinsic reward-based
PX prediction, and has several limitations. Firstly, think-alouds on different
level conditions can reveal the breadth of players’ experiences, and coarsely
which condition they were caused by; however, they cannot reveal their
intensity, and hence which PX our IR is best suited to predict. Moreover, the
small number of participants, while being sufficient for an experiential vignette
study, and also their limited diversity, e.g. in terms of playing experience and
cultural background, prohibits any definite conclusions. These limitations
arise naturally from this study type and were anticipated; our aim was not to
make definite statements, but to use the rich, qualitative data provided by
our participants to explore and constrain the choices for follow-up studies.
We map the path ahead in our future work Ch. 8.

Secondly, many commercial games are more complex than RoboRunner. As
a one-button, two-branching factor game, the space of possible, successful
gameplay manoeuvres is small. There is little opportunity for self-expression
and personalisation, and for different player types to evoke fundamentally
different experiences. The game for instance offers little to to spur and
satisfy the curiosity of an explorer (Hamari & Tuunanen, 2014). This leaves
open whether EBPXP and our more generic approach would perform in a
similar way as in our study; it is for instance unclear how the accuracy of
predictions would be affected by games that allow the player to progress non-
linearly, or that elicit many overlapping experiences. We decided to develop
RoboRunner instead of using a commercial game to warrant experimental
control throughout, from content generation to gameplay evaluation. Our
simplistic design allowed us to disregard different play styles as variable
in our experiments, and to put more emphasis on experience prediction
than on the construction of a complex player model. Moreover, it enables
us to polish the testbed sufficiently so that participants did not question
its authenticity, and did not become distracted by potential flaws in its
design or implementation. This simplicity also allowed us to explain the
reported experiences based on the interaction of few game elements. Crucially,
RoboRunner is not a mere abstraction of actual games, but many commercial
games of a similar kind and complexity exist, especially for mobile devices.
Within this niche, our results are of immediate relevance.

Thirdly and finally, our study does not tell us how well our generic ap-
proach or specific model would generalise to other games that are not ne-
cessarily more complex, but may e.g. represent a different genre. At present,
mainly the formal properties of IR, as argued in Sec. 7.3, and the related work
surveyed in Sec. 5.2.1, support that such generalisation is possible.

Limitations
of Approach

These points concern what can and cannot be inferred from our present
study. We next consider limitations to the underlying approach in its present
formulation. We distinguish implications of the choice of intrinsic reward (IR)
for the PX model, and the AI agent for its assessment.

A specific IR can only yield useful predictions in games that afford fluc-
tuations of this reward. Different states in RoboRunner for instance give the
player more or fewer future options, which are captured in a diverse em-
powerment landscape. In contrast, we can imagine a narrative game in which
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the player always has the same number of choices, leading to an equal amount
of non-overlapping, distinct changes to the narrative. No matter what tra-
jectory a player would take through this game, EBPXP would always predict
the same experience, as the underlying empowerment landscape is flat. Yet,
the game likely conveys many other experiences that are not related to e.g.
their perceived effectance or control. We suspect that these can be captured
by other IRs (Sec. 2.2.4). While employing IR in PX prediction likely increases
generality, the latter is yet constrained by the nature of the chosen reward.

A separate threat to the accuracy and generality of our approach is what
made it more independent from people and thus more flexible in the first
place: the AI agent used to simulate human gameplay. The accuracy of our
prediction is strongly influenced by how closely the behaviour of this AI
agent resembles common human play. Most existing work on general game-
playing relies on human designers to specify a game’s goals as target for play.
This reliance on people and game-specific goals reduces the generality of
these models. In addition, they often yield behaviour that is not human-like.
On the opposite, human-like AI agents often require human player data for
training, which also impedes on their generality. We address the limitations
of both our study and our approach as part of future work (Ch. 8).

Transfer to
Computational
Creativity

While our study is specific to games, it can inform the application of
intrinsic reward-driven experience modelling to other interactive artefacts.
As motivated in Sec. 7.1, this could advance CC evaluation by overcoming
several shortcomings in present models. We expect EBPXP to predict similar
foundational experiences as identified through our study for the interaction
of an audience with e.g. a piece of installation art, or an interactive film.
For instance, it could provide an estimate of the effectance which a kinetic
sculpture would afford to a generic audience. These insights could be used,
potentially with the help of domain-specific theories, to predict a range of
goal experiences: how much the sculpture would challenge a person’s cog-
nitive or performative abilities, how engaging it would be, and how well it
would hold their attention. These predictions could then contribute to driving
an artificial system to autonomously create and evaluate new sculptures that
are valued by a human audience. Realising these new applications requires
us to tackle some hard questions in future work, as discussed in Ch. 8.

Chapter
Conclusion

In this chapter, we have proposed and evaluated an end-to-end experience-
driven PCG approach. Following Yannakakis and Togelius’ (2011) taxonomy, it
combines global search-based content generation on a direct content representa-
tion with content evaluation based on a gameplay- and model-based PX model
and simulation-based content quality assessment. Our core innovation in
Sec. 7.3 and 7.4 concerns the evaluation component, and we hence primarily
contribute to player modelling as a separate area of game AI (Yannakakis & To-
gelius, 2018, pp. 259-260). As such, it can benefit PCG as motivated in Sec. 7.2,
but also other applications within and beyond game AI. Our exploratory
study in Sec. 7.5, subject to the limitations pointed out earlier, supports that
IR can be used predict people’s experience of games as interactive artefacts,
thus cautiously affirming our research question RQ.9. In the next chapter, we
consider future work across all contribution of this thesis.
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8FUTURE WORK

In this thesis, we have made four central contributions to help shaping
the future of CC and videogame AI by means of computational intrinsic
reward (IR) and models of intrinsic motivation (IM). Here, we present a
selection of the many promising directions that our work could be taken in
the near future and in the long term. To avoid redundancy, we describe next
steps on expanding each of our systematic reviews jointly in Sec. 8.1. We
then propose future work on advancing our applied contributions in Sec. 8.2
and 8.3 with respect to the conducted studies, the introduced model, and its
application to advance CC beyond game AI. Sec. 8.4 concludes this chapter
with examples on how our applied work could be consolidated.

8.1 systematic reviews

In Ch. 4 and 5, we conducted two systematic reviews to answer why researchers
have embraced IR and IM models in CC and videogame AI (RQ.3 and RQ.5)
and how such rewards and models have been applied in both domains so
far (RQ.4 and RQ.6). To answer these questions with respect to CC, we have
traced relevant work from a set of traditional publication venues, and filtered
it based on our working definition of both CC (Sec. 4.2.1) and models of IM
(Sec. 2.2.3). We ended up with 29 related work items from as early as 1998 to
2018. We have applied a similar systematic approach to tracing related game
AI work. We filtered the identified candidates based on our working definition
of IM models, complemented by Yannakakis and Togelius’ definition of
videogame AI (2018, p. 4) and Juul’s (2003) definition of videogames (Sec. 5.1).
Our selection is biased towards work that uses IM for the benefit of games,
putting less weight on contributions that use games as a benchmark for
artificial general intelligence. Our final selection comprises 11 related work
items dating from 2006 to 2019. We have identified the same reasons to embrace
IR and IM models in both bodies of related work, and distilled them into a
typology as answer to RQ.3 and RQ.5. Moreover, we have identified 12 abstract
applications of IR and IM in CC, linked to (computational) creativity theories
and informed by creativity research findings on the relationship of IM and
people’s creativity (Sec. 4.1). We have also identified 11 abstract applications of
IR and IM models in videogame AI. These are linked to the four core domains of
game AI (Yannakakis & Togelius, 2018, pp. 262-264), and informed by game
design and games user research findings on what makes games intrinsically
motivating for people (Sec. 5.1). We have arranged these applications in two
separate typologies as answers to RQ.5 and RQ.6. In Sec. 5.2.1.3, we identify
a strong conceptual overlap between applications of IR and IM models in
CC and videogame AI, thus answering RQ.7 and framing related game AI
work as part of computational game creativity (Liapis, Yannakakis & Togelius,
2014). We discuss how to expand these reviews in future work, and point out
underexplored areas in both domains.

235
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Expanding
Systematic
Reviews

Our systematic reviews are strictly speaking incomplete, as they do not
include our own contributions to both domains. As a first step, we must
thus integrate and contextualise our work on IM in CC and game AI directly
into the respective review narratives and typologies. Moreover, we want to
expand our CC review specifically by referring to related work in other fields
which does not address creativity explicitly and was hence excluded based
on our working definition of CC, but is yet relevant for advancing the field’s
central goals. We aim to include more work from machine learning such as
Mahadevan’s (2018) proposal of ‘imagination machines’ which shares many
common themes with other CC publications. Moreover, we are keen to draw
connections to theories and applications of IM to adaptive behaviour, artificial
life, open-ended learning and developmental robotics; related contributions in these
domains implicitly focus on creative behaviour, addressing questions of mini-
c creativity in development and adaptation, and can thus complement CC’s
research focus on big-c, artistic, artefact-oriented creativity. These connections
have previously been emphasised by Schmidhuber (2006), Saunders (2012),
as well as Aguilar and Pérez y Pérez (2015), amongst others. We consider
this an important effort in pointing out cross-disciplinary connections and
promoting CC as a joint research effort (cf. Sec. 4.2.1).

Underexplored
Research Areas

We are particularly committed to complementing our reviews with an
account of underexplored but promising areas of future research on IM.
Mapping these areas constitutes future work in itself, and we only name
a few examples here that we consider particularly crucial to be followed
up. Existing work can commonly be characterised by its strong focus on
variations of curiosity as a specific model, and an ignorance with respect to
IM as a more general family of motivational models with common properties.
We thus consider it most important to introduce other IRs and models of IM
to both CC and game AI, and to investigate how their common properties
can be leveraged to tackle challenges in both domains. In Sec. 8.2 and 8.3, we
make concrete proposals for embracing IR other than empowerment in the
applied contributions of this thesis.

We also observe a common trend in CC and game AI towards open-
endedness: Cook and Colton (2018b) propose overcoming the one-shot gener-
ation that dominates CC and to engineer systems that pursue larger goals,
draw from a wider (temporal) context, and thus have more presence in the
world. They illustrate this with the vision of turning the automated game de-
signer ANGELINA into ‘always-on’ systems, and hence bridge to computational
game creativity and game AI. Closely related, Gaina, Lucas and Pérez-Liébana
(2019) propose a ‘forever gameplayer’ that could function as a component of
such an open-ended game design system. Both visions are limited in their
potential autonomy and presence by relying on extrinsic reward. We believe
that they could be substantially advanced by the use of IR, as it affords an
embodied and subjective presence, and can be used within a model of IM
which gives rise to open-ended development (Sec. 2.2.3).

We next point out two underexplored research areas in CC and game
AI individually. Our review in Ch. 5 reveals PCG as the core game AI do-
main (Yannakakis & Togelius, 2018, pp. 262-264) which has so far been
addressed the least with models of IM. We propose to explore IR in RL-
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driven, agent-based PCG. So far, this has only been considered theoretically
by Shaker (2016) and in a borderline case by Merrick and Maher (2009).
Shaker (2016) particularly stresses the use of a novelty reward to more ef-
ficiently explore content spaces and to create more diverse and interesting
artefacts. More generally, IR promises to be most useful in domains that we
know little about or have limited access to, such as in automatic game design.
As a concrete next step, we propose to use IR in Khalifa et al’s (2020) recently
proposed, applied RL approach to PCG, and compare the system’s behaviour
to their original observations.

We furthermore prompt CC researchers to consider how models of IM can
enhance the authenticity (Colton, Pease & Saunders, 2018) of their systems.
Kieran (2014) observes that ‘we tend to be wary of those [people] whose goals
concerning an activity are stated in purely extrinsic terms’ (ibid., p. 14). This
also characterises the majority of CC systems which, in simple terms, only do
what they are told to. We believe that models of IM can be key to increasing
the authenticity of such systems as autonomous creatives by providing them
with a genuine account of intentional creative agency. We have already covered
some ground in (Guckelsberger, Salge & Colton, 2017), where we ask whether
and when an artificial system can be considered creative, independently of
human goals. Answering this question requires us to understand why an
artificial system would do anything at all in the absence of human influences,
i.e. whether there is a non-anthropocentric account of intentional, creative agency.
Contrary to popular positions in CC, we argue that such intentional agency
requires an agent to act out of a subjective and meaningful perspective
on the world that rests on an agent-centric account of value. We hereby
neither deliberately ignore value in creativity (e.g. Macedo & Cardoso, 2001a;
Maher, Merrick & Macindoe, 2005; Smith & Garnett, 2012a) nor consider it a
function of novelty (e.g. Saunders & Gero, 2001a, 2001b, 2001d; Bown, 2006;
Schmidhuber, 2010); instead, we treat both components separately and argue
that agent-internal value can be formalised via empowerment as IR. While
related work (e.g. Grace & Maher, 2015) misses a theoretical grounding of
intentional agency, we support our proposal through a firm foundation in
cognitive science, philosophy and AI. A next, ambitious step on this research
agenda would be to employ these principles on robots capable of sustaining
their precarious physical embodiment, and observe the emergent behaviour.

8.2 intrinsically motivated social co-creativity

In Ch. 6, we motivated the need for more general, co-creative artificial agents
capable of either supporting or challenging their interaction partner in human-
computer co-creativity more generally and in NPC AI specifically. Models
of IM have been successfully used to increase the generality of agents in
both domains, but existing models cannot induce stable social dynamics.
Drawing on this prior work, we have informally introduced social models of
intrinsic motivation to overcome this shortcoming. With a focus on driving the
behaviour of companion and adversary NPCs, we have introduced coupled
empowerment maximisation (CEM) as such a social IM model informally and
formally. In two exploratory, qualitative studies based on the novel method
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of observational vignettes, we have probed the capacity of CEM to drive the
behaviour of general, believable NPCs that either support or challenge the
player as companion and adversaries, respectively. Through the lens of NPC
AI, our findings affirm this chapter’s research question, ‘Can we use a model
of intrinsic motivation to engineer general and social co-creative agents?’
(RQ.8), within the studies’ limitations. Here, we propose future work to
overcome these limitations and to investigate this question further (Sec. 8.2.1).
We then outline directions for extending and applying CEM in and beyond
game AI (Sec. 8.2.2). We finally return to our motivation and consider how our
work could be applied to other creative domains in the future and advance
central goals of CC (Sec. 8.2.3).

8.2.1 Directions for Further Study

Quantitative
Measurements

Our exploratory, qualitative studies in Sec. 6.5.1 and 6.5.2 have provided
rich insights into the nature of CEM-driven NPC behaviour, helped us in
identifying different types of co-creativity, and inspired future applications
of our approach, amongst others. To apply this principle in actual games and
to advance the study of creativity in the interaction of NPC and player, we
must complement these qualitative insights with quantitative measurements.
Most importantly, we must assess how strongly CEM-driven NPCs support
and challenge the player, and quantify the diversity of the respective behaviour
as a separate determinant of NPC believability (Sec. 6.2 and Tbl. 6.1). We
propose to do this through objective and subjective quantitative measures, the
latter applied to assessing the perspective of both players and designers.

The most relevant work for the subjective assessment of social interaction
dynamics in games is Hudson and Cairns’ (2014) ‘Competitive and Cooperat-
ive Presence in Games’ questionnaire. However, their scales capture a player’s
perception of opponents and team-mates, rather than that of adversaries and
companions. These character types are assumed to work towards the same
goals as the player (Sec. 6.2), which is not necessary for behaviour to be con-
sidered supportive or adversarial. Rather than employing this sub-optimal
instrument, we suggest using it as inspiration for the future development of
a new and well-validated questionnaire to measure players’ perception of
companions and adversaries. We also propose to include a scale that assesses
people’s perception of the novelty, diversity and surprisingness of character
behaviour, as this is missing from existing work, and could contribute to the
assessment of character believability. When devising such a questionnaire, we
must consider that certain experiences, in particular affect, may be by nature
relative and could thus be more reliably assessed through ordinal, rather than
nominal and interval measurement methods (Yannakakis, Cowie & Busso,
2017, 2018). We would expect such an instrument to be of considerable use
beyond this immediate context. It could for instance be used in game devel-
opment to asses player’s perceptions of companions and adversaries, or in
games user research to investigate how this perception is affected by certain
manipulations of the player and the game.

Togelius et al. (2013) argue that ‘participatory observation, where the
human assessing believability takes part in the game, is prone to distortion’,
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e.g. due to learning effects and self-deception, the intrusiveness of self-reports
during gameplay, and their sensitivity to subjective memory limitations
if assessed post-play. We suggest to follow Togelius et al.’s proposal and
complement a participatory, subjective assessment of NPC believability with
a Turing test (Turing, 1950) like variant in which external observers rank the
performance of human and non-human controlled agents without playing
the game themselves and without knowing who is in control.

A candidate measure to objectively assess the strength of support and antagon-
ism induced by CEM is the performance difference resulting from playing with
and without a CEM-driven NPC. This performance could be assessed on
game score or other performance indicators. At present, we are not aware of a
similarly natural candidate to quantify the novelty, diversity and surprisingness
of NPC behaviour. The arguably biggest challenge is to chunk potentially
overlapping, variable-length sequences of atomic actions into meaningful be-
haviours. Existing work relies on manually annotating such action sequences
in advance (Merrick & Maher, 2006), or training a classifier on observed
typical behaviours (Soares & Bulitko, 2019). It might be worthwhile to explore
intrinsic novelty rewards (e.g. Schmidhuber, 1991; and Sec. 2.2.4) to facilitate
the chunking of action sequences and novelty detection without supervision.
Moreover, predictive information (Bialek, Nemenman and Tishby, 2001; and
Sec. 2.2.4) could be used to measure the complexity of a behavioural process.

Irrespective of the measurement type, the evaluation of NPC believability
should be conducted from an embodied perspective: we must not only
measure the impact of the AI controller on the NPC’s believability, but also
how believability is affected by the game world and the way in which it is
perceived and can be acted upon by the character. Following a brief note by
Togelius et al. (2013), Camilleri, Yannakakis and Dingli (2016) complement the
traditional controller- with a game content-centred perspective. They confirm
through a user study that NPC believability is substantially shaped by the
game world. We expect this to hold even more for intrinsically motivated
NPCs, whose rewards are strongly influenced by their embodiment.

GeneralisationOur vision is to engineer NPCs that could realise believable companion
or adversary behaviour in a wide range of different games and in response
to different players, with little or no changes to the underlying motivational
principle. As an early proof-of-concept, our two studies only provide limited
evidence of such game and player generality (Togelius & Yannakakis, 2016).

To support CEM’s game generality more strongly, we must study it beyond
our own modifications of a game in a wide range of existing games from dif-
ferent genres and with diverse mechanics. To support CEM’s player generality,
these games should not be played by the potentially biased experimenters,
but by a representative selection of players with varying skills.

We propose to investigate player generality in future work by controlling the
player avatar with game-playing agents of varying sophistication (cf. Nielsen
et al., 2015), or by recruiting a representative range of human players. Study-
ing CEM’s game generality may be more difficult. Commercial games typically
do not allow for the straight-forward integration of CEM and do not afford
sufficient experimental control to evaluate its workings. We must hence resort
to game AI benchmarks, but only few cover the multi-agent case. Moreover,
these assess exclusively cooperative and competitive behaviour, rather than
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antagonism and support. Finally, these benchmarks are considerably less rich
than commercial games, and might offer very little in terms of an empower-
ment gradient. We still propose to appropriate these existing benchmarks to
explore their potential for investigating CEM-driven NPCs. As a first next
step, CEM could be evaluated on the competitive and collaborative games
of the general video game AI (GVGAI) two-player track (Gaina, Pérez-Liébana
& Lucas, 2016). These games are discrete and come with a forward model.
The latter enables us to evaluate the simplified CEM formulation (Sec. 6.4.3.3)
separately from the model acquisition problem. The Multi-Agent Reinforce-
ment Learning in MalmÖ framework (Perez-Liebana et al., 2019) represents an
interesting candidate to evaluate more general and scalable future versions
of CEM (Sec. 6.4.3.2). The competitive and collaborative games run within
Minecraft (Mojang & Microsoft Studios, 2009) and are hence continuous and
in 3D. They do not come with a forward model, and CEM must thus either
incorporate model acquisition or leverage a model-free method to calculate
empowerment, as discussed below.

8.2.2 Improvements to and Potential Applications of Our Approach

Hyper-
parameter
Tuning

We have motivated CEM based on its potential to drive robust, supportive or
antagonistic NPC behaviour even if the game changes. A certain configura-
tion of hyperparameters of the simplified CEM model, i.e. the empowerment
weights α = (αC, αP, αCP) and the lookahead n, already warrants a high de-
gree of robustness and hence generality. This is supported by our studies, in
which one default configuration yields sensible behaviour across all condi-
tions. However, if one specific empowerment reward is weighed too strongly,
it might impose a bottleneck in the character’s movement towards a game’s
goal states, and result in them getting stuck in local coupled empowerment
maxima. We believe that future improvements should aim at eliminating the
need for manual hyperparameter tuning altogether to further enhance CEM’s
generality and avoid characters acting towards local optima. We distinguish
two complementing directions of research.

We propose to automatically tune the hyperparameters based on the simu-
lated interaction of the NPC with a game-playing agent controlling the player
avatar. To yield sensible NPCs, the cost function must quantify believability
as discussed in the previous section, especially the strength of support and
antagonism. Alternatively, actions in the CEM policy could be selected based
on the satisfaction of an empowerment constraint hierarchy, rather than the
linear combination in the action-value function (Eq. 6.45). Each such hierarchy
would model a certain NPC persona. For instance, a self-sacrificing companion
would always pick the action that maximises the player’s empowerment. If
multiple actions fit this target, the NPC would then select an action subset
that optimises the NPC-player transfer empowerment, followed by their own
empowerment. We can also imagine an NPC who selects actions to first
optimise their own empowerment, followed by the player’s and then the
NPC-player transfer empowerment. This NPC would likely be perceived as
a more cautious companion which only supports the player if this poses no
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threat to themselves. This could complement the previous approach, in that
only the lookahead remains to be tuned automatically.

Temporally
Extended
Action-
Selection

A CEM-driven NPC may also get stuck in local optima due to their use of
greedy action selection. We hence propose to determine action-value based on
aggregated coupled empowerment, e.g. through action-value, policy gradient
or actor-critic RL (Sutton & Barto, 2018). Crucially, selecting actions based
on a future coupled empowerment reward over multiple timesteps is not
equivalent to calculating the coupled empowerment reward for a longer
lookahead n. More research must be conducted on the trade-off between
temporally extended action-value and the hyperparameter n.

ScalabilityWe deem improvements to the scalability of CEM critical to increase the
behavioural complexity of the controlled agents and to deploy them in more
complex domains, in particular commercial games. We believe there is much
promise in informing the future development of an approximate, efficient
version of CEM by recent approximations of single-agent EM in RL.

Two components contribute to CEM’s present exponential complexity
(Sec. 6.6): the (i) calculation of the n-step predictive factor and the (ii) calculation
of empowerment as mutual information maximisation. Rather than tackling (ii)
with the exact but exponentially complex Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972), recent approximations all sample a variational bound (Blei,
Kucukelbir & McAuliffe, 2017) on the mutual information, parametrised as
a neural network. Existing work can be distinguished in the solution to (i):
while model-free approaches sample the variational bound straight from agent
experience, model-based approaches optimise the bound with a learned model,
and use experience only to find the empowerment maximising policy. A
model-free approach has been used by Mohamed and Rezende (2015) to
approximate open-loop and by Gregor, Rezende and Wierstra (2017) and Binas,
Ozair and Bengio (2019) to calculate closed-loop empowerment (Sec. 3.3), in
both the discrete and continuous domain. Karl et al. (2017) in contrast use a
separately acquired model to optimise continuous open-loop empowerment.
We propose to explore the approximation of CEM with a model-based ap-
proach, as model-based RL has greatly improved in recent years (Wang et al.,
2019), comes with a higher sampling efficiency, and allows us to consider
model acquisition separately from the coupled empowerment reward cal-
culation. Another promising avenue for future research is to increase the
lookahead in CEM by utilising macro-actions, e.g. in the form of options in
hierarchical RL. Finally, more informed, low-entropy policy models, e.g. acquired
through inference, could not only improve the quality of behaviour, but also
reduce the branching factor in the calculation of the n-step predictive factor.

Relaxed Model
Assumptions

Our long-term vision is to gradually relax the assumptions of the sim-
plified CEM model in Sec. 6.4.3.3 and arrive at the generic formulation in
Sec. 6.4.3.2. This requires tackling several state-of-the-art machine learning
challenges, but it should be possible to treat them separately. Each relaxed as-
sumption unlocks new features of CEM-driven NPCs to benefit videogames.
For instance, not every game provides access to a forward model, or the
model might be very complex and hence expensive to sample from. If we
manage to relax the assumption of fixed parameters and perfect sensorimotor
models, the NPC can learn only the proportion of the actual forward model
that is relevant for the calculation of the different empowerment variants.
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As a second example, learning the model of the player sensory dynamics,
environment dynamics and policy would improve coordination and hence
the quality of support or challenge. It would also enable an open-ended inter-
action with players, in which the CEM-driven NPC adapts their behaviour
to changes in e.g. the player’s strategies, thus expanding their behavioural
diversity. Such behaviour is desireable: Emmerich, Ring and Masuch (2018)
for instance find through an online survey that players deem it ‘exciting if
the relationship between [their] character and the NPC evolves during the
game’ (ibid., p. 149) (M=3.53, SD=0.80). Similarly, Yannakakis and Hallam
(2005) argue that videogames become more interesting when the player can
engagage with NPCs, e.g. opponents, that adapt on-line. Progress on this
requires the use of powerful inference mechanisms and theory of mind mod-
els (e.g. Rabinowitz et al., 2018; Raileanu et al., 2018). As a last example,
not assuming the latent environment state to be known but inferring it instead
could increase the believability of CEM-driven NPCs in incomplete information
games (e.g. Bard et al., 2020), where the inference of hidden information is
a core gameplay element. More generally, relaxing the model assumptions
is crucial for applications of CEM outside videogames as tightly controlled
environments, e.g. in human-robot interaction (Salge & Polani, 2017).

ApplicationsWe put forward two applications of CEM and social IM models (Sec. 6.3)
more generally which we would particularly like to see explored. Firstly, we
encourage the application of such models to automated game design. Existing
systems such as ANGELINA (e.g. Cook, Colton & Gow, 2016a, 2016b) already
use NPCs that realise a few generic, pre-made behaviours. While these NPCs
work in a large range of produced games and thus do not limit a system’s
expressive range (Smith & Whitehead, 2010), they may be perceived as inapt
and boring. In principle, automated game design systems can generate any
kind of NPC behaviour through code synthesis; the challenge is to generate a
custom-tailored NPC that shows sensible behaviour that is specific to a given
game. Social models of IM such as CEM represent one means to alleviate this
challenge, in that they leverage all functional interactions that the present
game design affords for sensible behaviour. We hope to see e.g. engaging and
believable, CEM-driven adversaries in automatically designed games soon.

Our second proposal addresses the games industry requirement for NPC
AI to be predictable (Yannakakis and Togelius, 2018, p. 14; and Sec. 6.6). To
mitigate this requirement and leverage more of CEM’s benefits, we suggest
employing the motivational model during development. More specifically, CEM
could be applied in game prototypes to inspire designers with new and
surprising supportive or antagonistic behaviours to drive the engineering of
traditional, predictable NPC AI. These NPCs could either be hand-authored
from observations of CEM-driven behaviour, or they could be learned from
these observations in an unsupervised fashion, e.g. in the form of decision
trees, or the utility vectors and policies of procedural personas (Holmgård et al.,
2014a, 2014b), which can be inspected and adjusted prior to deployment.
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8.2.3 Next Steps in Advancing Computational Creativity

NPC AI as
CC Laboratory

For the development of CEM, we have drawn on the strengths and weaknesses
of existing approaches to IM-driven human-computer co-creativity and NPC
AI. As argued in Sec. 6.2, we understand this as a contribution to computational
game creativity (Liapis, Yannakakis & Togelius, 2014). Here, we advocate two
directions for future work on advancing the goals of CC more generally
through social models of IM. The first direction is to leverage NPC AI as a
laboratory to study computational (co-)creativity in behaviour. At present, creativity
in behaviour is barely addressed in CC, and videogames present a unique
framework for inquiry. A game’s goals are typically clearly identifiable, and
due to games being autotelic activities (Salen & Zimmerman, 2004, pp. 332-
333), at least some of these goals are constrained to a game’s magic circle (cf.
Huizinga, 1950, p. 10; and Sec. 5.1.1). Hence, games offer us unambiguous
reference points to assess the value of creative behaviour. As entire worlds
within our reality, games allow for the investigation of systems theories of
creativity (e.g. Csikszentmihalyi, 1988) under tight experimental control, and
for the assessment of novelty within a closed frame of reference. The focus
on NPCs enables the consideration of creativity from many different angles
(Sec. 4.2.1): the autonomous creativity of the NPC, the co-creativity between the
NPC and the player as well as the designer; and the NPC’s creativity support
towards human design and gameplay.

Our studies in Sec. 6.5.1 and 6.5.2 represent first steps in addressing open
questions on the creative behaviour of artificial systems. We urge research-
ers to consider future work from different perspectives (Sec. 4.2.1). From a
cognitive and systems theories perspective, it would be interesting to see how
changes to the game world and character abilities impact the creativity of a
CEM-driven adversary. Moreover, we would be intrigued to find out how a
player’s exploratory and transformational creativity (Boden, 1990/2003; Wig-
gins, 2006a, 2006b) is influenced by the interaction with such an autonomous,
supportive or antagonistic co-creative partner. From an engineering perspective,
it would be beneficial to see which choice of IR in social IM models makes the
NPCs more creatively autonomous, or increases a player’s and/or designer’s
perception of their creativity. This framework crucially does not rely on a human
interaction partner; we can equally study the interaction between different
NPCs as in social creativity systems (Saunders & Bown, 2015).

Beyond GamesA second direction for future work is to return to our original motivation
in Sec. 6.1 and employ social models of IM in other CC domains to overcome
generative impotence (Kantosalo & Toivonen, 2016), alleviate the generality-
quality trade-off, and engineer autonomous CC systems capable of supporting
and challenging their interaction partners in open-ended co-creativity. This
requires researchers to explore which IRs as the basis of such social IM
models yields meaningful behaviour in the respective domain, just as we
did for videogames in the development of CEM (Sec. 6.4). There are many
IRs to choose from, with some discussed in Sec. 2.2.4. Crucially, a specific
reward is not necessarily restricted to one creative domain: empowerment as
the foundation of CEM could in principle be employed in any domain where
increasing and decreasing the partner’s options and influence is perceived as
support and antagonism, respectively.
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(a) Initial state (b) Realising CEM

Figure 8.1: Thought-experiment on CEM-based antagonism in Curious Whispers (Saun-
ders et al., 2010). The CEM-driven robot (blue) decreases the empower-
ment of a coupled (orange, dashed line) robot by playing a tune which
interferes with their performance to others.

(a) Initial state (b) Realising CEM

Figure 8.2: Thought-experiment on CEM-based support in Curious Whispers (Saunders
et al., 2010). The CEM-driven robot (blue) arranges blocks to shield their
coupled (orange, dashed line) partners’ rehearsal from interference by
others, hence increasing their empowerment.

To jump-start this exploration process, it might be helpful to investigate
social IM models in existing intrinsically motivated, co-creative or social CC
systems, as surveyed in Sec. 4.2.2. These embodied systems were originally
designed to provide rich input to an IR, and are typically situated in a complex
world that affords and requires open-endedness. Moreover, they have already
been evaluated for a specific kind of IR. We can put this candidate into a
social IM model, and use the existing observations for a comparison with the
previous implicit reward alignment approach (Sec. 6.1).

For instance, it would be fascinating to instantiate a model of coupled novelty
maximisation in Curious Whispers (Saunders et al., 2010). Likewise, we would
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like to see CEM applied to realise support and antagonism in this society of
tune-generating robots. We briefly motivate this with thought-experiments.
An antagonistic, CEM-driven robot could reduce the empowerment of other
robots by playing a tuned which interferes with theirs, and hence makes
it impossible for them to differentiate between their generated tunes. Con-
sequently, a robot listening to their performance would not be able to pick up
the original tune (Fig. 8.1). If the coupled robot was able to express different
tones, they could recover their empowerment by switching to a spectrum
which the antagonistic robot could not disturb. A supportive CEM-driven
robot could modify the environment to improve the empowerment of their
coupled peers: if there were movable blocks, they could shift them into a
position which shields their coupled peer from interfering robots, and hence
improves their rehearsal (Fig. 8.2). We anticipate that these social dynamics
could give rise to interesting emerging effects that influence the differen-
tiation of artefacts, formation of cliques, etc., thus supporting the goal of
Curious Whispers to investigate systems theories of creativity. Guckelsberger
et al. (2016) present further thought-experiments, and also consider equipping
previously extrinsically motivated CC systems with IM models.

8.3 intrinsic reward-based experience prediction

Our focus in Ch. 7 has been on modelling the human subjective experience
of interactive artefacts. We have pointed out the importance of this form of
evaluation for the (perception of) creativity, the autonomy of CC systems,
and for unleashing the potential of PCG as our game AI application domain.
We have argued that these goals are severely limited by existing techniques,
which must involve people when the artefact or the generator changes, ren-
dering them inflexible and constraining their generality. We have proposed
to overcome these and other shortcomings by estimating the human experi-
ence of interactive artefacts via IR and AI agent simulations. Focussing on
PCG, we have instantiated our proposal in the EBPXP model, which uses
state-expected empowerment as a PX predictor. As a first step towards a
proof-of-concept, we have explored which experiences EBPXP can potentially
predict through a qualitative study on the custom-made game RoboRunner.
Our findings support our research question RQ.9, ‘Can we use IR to predict
people’s experience of interactive artefacts in a general and autonomous
way?’, although only tentatively. Here, we discuss next steps to investigate
our research question further and to enable the practical use of our approach
(Sec. 8.3.1). We then highlight improvements to the underlying model, and
discuss its potential application in two PCG scenarios (Sec. 8.3.2). Finally, we
consider future work on applying our approach beyond games to other areas
of CC, informed by the present findings (Sec. 8.3.3).

8.3.1 Directions for Further Study

Quantitative
Measurements

Based on our qualitative study (Sec. 7.5), we have put forward the working
hypothesis (Sec. 7.6) that state-expected empowerment does not directly
predict goal experiences (Cairns, 2016) such as challenge, but the founda-
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Figure 8.3: PX prediction on the GVGAI (Pérez-Liébana et al., 2019) game Frogs via
the EBPXP model. 1-step state-expected empowerment has been calcu-
lated in our work-in-progress framework for all possible player positions
at the current time step. Dark values indicate lower empowerment.

tional experiences (Power et al., 2019) of effectance, outcome uncertainty and
perceived control. A crucial next step to supporting our research question,
and a prerequisite to the practical application of EBPXP is to evaluate this
hypothesis through quantitative studies. Since the type of AI agent used to
simulate human gameplay can severely impede the prediction accuracy, we
propose to drop this component of our model and investigate the correlation
of the IR and PX in an isolated fashion. This is possible by calculating IR
post-hoc on the play trajectory of human players. We suggest employing
both subjective and objective measures: while the first may be easier to obtain,
the latter is often time-sensitive, and can thus be directly correlated with
the IR along a recorded play trajectory. We propose to use questionnaires
to measure the foundational experiences of outcome uncertainty (ibid.) and
effectance (Klimmt, Hartmann & Frey, 2007), and to correlate them with the
found goal experiences, in particular challenge (Denisova et al., 2020). The
games user research literature could help in identifying appropriate object-
ive measures for these experiences. At this point, we deem it interesting to
correlate empowerment with a player’s electrodermal activity as a measure of
arousal, and to employ electroencephalography to assess their attention (Nacke,
2013). The next step should be to conduct these quantitative studies on differ-
ent variants of empowerment, as discussed below in Sec. 8.3.2. Our vision
is to compile a mapping of IRs to the PXs they are best suited to predict,
accounting for moderating factors such as the genre or a player’s expertise.

GeneralisationWe have conducted our exploratory study only on a single, relatively simple
game. Hence, we cannot tell whether the identified relationships between
empowerment and PX persist in other games. Another crucial next step is
thus to investigate whether our approach generalises. We propose to study
EBPXP quantitatively on games from different genres and with different
complexity. Starting with extensions of RoboRunner, we suggest a move to
linear but substantially more complex games that still afford experimental
control such as Infinite Mario Bros. (Persson, 2010), advancing to non-linear
games that are still discrete, e.g. as part of the GVGAI framework (Pérez-
Liébana et al., 2019), and eventually considering non-linear, continuous games
such as VizDoom (Kempka et al., 2016).
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To further this agenda, we have developed an evaluation framework on top
of GVGAI. It allows us to record, store and replay human or AI play trajector-
ies and hence disentangle gameplay from the PX estimation. Moreover, it can
sample state transitions in stochastic games, and be extended for the calcula-
tion of various IRs. Fig. 8.3 shows a player’s state-expected empowerment in
the Frogger (Konami, 1981) clone Frogs, evaluated with our framework. While
GVGAI comprises mostly action games, puzzles and hybrids, these show
a large diversity of mechanics. The games have been deliberately designed
to challenge general game-playing agents within the GVGAI competition,
and are thus promising candidates to probe the generality of EBPXP. GVGAI
games are written in the Video Game Description Language (Schaul, 2014),
which enables the straight-forward construction of specific test scenarios. We
propose to study first whether correlations between empowerment as IR and
PX persist across different games, as described in the previous paragraph.
These studies can then be extended by experiments with simulated gameplay,
leveraging the readily available, state-of-the-art general game-playing agents
included in the framework.

8.3.2 Improvements to and Potential Applications of Our Approach

Relaxed Model
Assumptions

EBPXP (Sec. 7.4) could realise several powerful features of our more generic,
informally described approach if we manage to relax the simplifying assump-
tions of fixed parameters and full observability. Firstly, an agent that updates
the parameters of their models while playing a game would calculate an
adaptive, rather than a static (Oudeyer & Kaplan, 2007) empowerment reward.
This may allow us to capture how changes to a player’s epistemic uncertainty,
in contrast to the aleatoric uncertainty in the game world (Costikyan, 2013;
Chua et al., 2018; Power et al., 2019; and Appx. A), influence their experience
over time. If our working hypothesis in Sec. 7.6 proves correct, we could
leverage adaptive EBPXP to estimate how foundational experiences such as
outcome uncertainty (ibid.) and effectance (Klimmt, Hartmann & Frey, 2007)
change as more gameplay experience is turned into better models. Linking
these to goal experiences such as cognitive challenge (Cox et al., 2012; Denisova,
Guckelsberger & Zendle, 2017) could enable intriguing applications such
as the procedural generation of levels that remain challenging to the player.
Secondly, dropping the requirement of full observability could facilitate the
application of EBPXP to games with incomplete or imperfect information
(e.g. Bard et al., 2020). Relaxing these assumptions requires us to replace the
simplified vanilla empowerment (Eq. 3.14) in the state-expected empower-
ment (Eq. 7.1) as PX predictor with the general version from Eq. 3.9. As a first
step towards this goal, we discuss exact and approximate Bayesian inference
schemes for the model parameters θ in (Biehl et al., 2018).

Player Model
Improvements

The prediction of PX via IR (Sec. 7.3) relies on the simulation of game state
trajectories via an accurate and general model of human player behaviour.
We have highlighted in Sec. 7.6 that achieving such generality and human-
likeness, especially in conjunction, is an open problem. We understand this as
an opportunity for a mutually beneficial, iterative refinement process: while
the PX assessment through simulated gameplay benefits from us making
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AI agents more human-like, the intrinsic reward-based PX modelling might
provide insights on how players experience and consequently act in games,
which could contribute to developing more general and human-like AI players.

We advocate three avenues for future inquiry. Firstly, we propose to mo-
tivate general game-playing agents intrinsically (Sec. 2.2) to overcome their
reliance on human-defined extrinsic rewards, hence becoming more gen-
eral. This could be realised by turning e.g. EBPXP into an on-policy approach
(Sec. 7.3) in which the simulated agent realises EM1. Likewise, it could be real-
ised in an off-policy manner where the agent optimises a (combination of) IRs
different from the one used in the PX prediction. Procedural personas represent
a particularly promising generative, off-policy model of archetypical player
behaviour. Defined in terms of a utility vector describing player preferences,
these models have been successfully used to reproduce human game-playing
behaviour (Holmgård et al., 2014a, 2014b). To increase prediction accuracy,
we secondly propose to align these simulations more closely with the style of
a particular player by tuning the IM hyperparameters based on live player
data. We expect the untuned agent to deliver a useful first approximation of
human play, and to become better over time. Such an agent could thus also
be used offline before live data becomes available. If this is not a requirement,
a third avenue of inquiry becomes relevant: a player simulation model could
be obtained through supervised learning on human play, or by reconstructing
the human reward function from empirical playtraces via inverse reinforcement
learning (Sutton & Barto, 2018, p. 470). Transfer learning promises to facilitate
the application of human-like models of play acquired on one version of a
game to another, and recent work in general game-playing (e.g. Pathak et al.,
2017b) has shown that intrinsic reward can support such transfer.

Other Intrinsic
Rewards

We plan to instantiate our generic approach in Sec. 7.3 with other IR
functions. We specifically propose to contrast the state-expected empowerment
reward in EBPXP with a player’s empowerment dispersion as the standard
deviation of their empowerment in all possible next game states. A value
of zero means that no action is expected to yield a higher future potential
and perceivable influence than any other. In contrast to state-expected em-
powerment, this variant thus relies on relative differences in empowerment
rather than absolute values and has an arguably more intuitive baseline. We
hypothesise that a player’s empowerment dispersion could predict experiences
such as tension and decision-making challenge (Denisova et al., 2020).

We also strongly advocate substituting empowerment with other IRs
(Sec. 2.2.4) and evaluating their capacity to predict PXs. One promising
candidate is surprise, e.g. formalised as prediction error (Schmidhuber, 1991a),
as it has been previously linked to the human experiences of boredom and
surprise but also to people’s aesthetic judgement (Berlyne, 1971; Williams,
1996). We would be interested to see this reward being used in the prediction
of PX arising from decorative game content (Smith, 2014b) such as graphics
and sound to produce e.g. a less boring No Man’s Sky (Hello Games, 2016;
Martin, 2016), but it could be equally applied to functional content.

ApplicationsWe finally promote two potential applications of intrinsic-reward driven
PX prediction in PCG that make extensive use of its putative flexibility and

1 The use of EM for general game-playing is supported by the related work in Sec. 5.2.1.
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independence of people. We firstly propose to employ our approach to take
Smith and Whitehead’s (2010) concept of expressive range analysis further and
calculate the experiential range of a game content space. For this instance
of state-space characterization (Nelson, 2011), we would calculate IR-based
PX predictions on a representative game content sample to visualise which
degrees of a specific experience the game can realise. Embedded in a tool
such as Danesh (Cook, Gow & Colton, 2016), this could be used to support
game designers offline in probing the limitations of a content generator
for a specific parameter configuration. By exploring the upper and lower
bound on the possible mean state-expected empowerment of RoboRunner
levels through evolutionary search in Sec. 7.5, we have already realised what
Nelson (2011) considers a threshold strategy, contributing towards the goal
of a full-on experiential range analysis by approximating the experiential
boundaries of the possibility space. In contrast to existing tools that shed light
on the relationship between a generator’s parameters and direct qualities of its
output (Cook et al., 2019), the proposed experiential range analysis would show
the expected impact of the PCG parameters on how the generated content
will be experienced by players.

We would also like to see our approach used in the demanding task of
automated game design (e.g. Cook, Colton & Gow, 2016a, 2016b). Liapis, Yan-
nakakis and Togelius (2014) note that ‘autonomous computational game
creators should attempt to design new games that can be both useful (play-
able) and deemed to be creative (or novel) considering that artifacts generated
can be experienced and possibly altered’ (ibid., p. 46, emphasis added). We
believe that our approach could evaluate subjective experience as part of a
game’s value, and remain flexible enough to warrant the production of a
large variety of different games without human involvement.

8.3.3 Next Steps in Advancing Computational Creativity

We set out to overcome major shortcomings of existing approaches to PX
modelling in PCG, most notably a lack of flexibility to changes in the con-
tent generator caused by a strong dependency on people. In Sec. 7.1, we
have identified a similar inflexibility in present techniques to evaluating the
human subjective experience of interactive artefacts more generally. Here,
we highlight central challenges in applying this approach to other types of
artefacts and thus to benefit CC beyond computational game creativity (ibid.).

Contextual
Influences

A player’s experience of a videogame as autotelic activity (Salen & Zimmer-
man, 2004, pp. 332-333) is largely shaped by events within the boundaries
of its magic circle (cf. Huizinga, 1950, p. 10; and Sec. 5.1.1). Many other in-
teractive artefacts however do not establish such a boundary, but may be
explicitly designed to connect with our wider personal, social, cultural and
political environment. To apply our approach to the evaluation of a specific
interactive artefact, we must understand to which extent these contextual
factors moderate the relationship between the audience’s IR in interacting
with the artefact, and their experience. If the contextual moderation is too big,
it may render our approach inapplicable. The reason is that we typically have
little information about e.g. the context in which an artefact will be presented,
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or the personal background of the audience members, and can hence not
account for these factors in an a priori evaluation process.

Audience
Interaction
Models

We have highlighted the development of general models of human-like
gameplay as an ongoing research challenge. Even fewer resources have been
invested into, and considerably less progress has been made on, modelling the
interaction of an audience with other types of interactive artefacts. We suspect
that this comes with particularly touch challenges in artistic domains, as e.g.
an interactive film typically does not convey a specific goal towards which an
audience interaction model could be oriented. For this reason, we propose to
employ models of IM for the simulation of audience interaction. We deem
models of curiosity a good starting point, as they have been proposed for, and
successfully employed in simulating the human aesthetic judgement of static
artefacts (e.g. Macedo and Cardoso, 2001; Schmidhuber, 2006; Saunders, 2009;
and Sec. 4.2.2). Especially for non-artistic domains, further inspiration may
also be found in research on computational design (Saunders & Gero, 2004).

The Nature of
Interactive
Artefacts

We can potentially mitigate the previous challenges and apply our ap-
proach more widely by reconsidering the concept of interactive artefacts. Our
definition in Sec. 7.1 requires such an artefact to change on user interaction.
Crucially, this only distinguishes e.g. a kinetic sculpture from a traditional,
‘static’ one as long as we ignore that human perception is subjective and
embodied. In reality, we do not directly access, but model artefacts through
sensorimotor interaction with our environment: we build a model of a sculp-
ture by walking around and perceiving it, and a model of a poem by directing
our gaze from line to line. This model undergoes constant change in response
to our interaction. If we are ready to adopt this stance and consider a person’s
reception process as one of interaction, we can apply our approach to a much
wider range of artefacts for which reception models may exist, and which we
may experience more independently of contextual factors.

8.4 consolidation

We have considered many directions for developing the contributions of
this thesis further over the short and long term, but always in isolation. We
conclude this chapter with two examples of how they could be consolidated in
future work to generate new insights within and beyond game AI.

In Sec. 8.2.2, we proposed tuning the CEM hyperparameters based on
objective measures, assessed on the simulated interaction of the CEM-driven
NPC with a game-playing agent. Crucially, measures such as performance
difference only provide us with a rough idea of how a specific CEM paramet-
risation would impact a human player’s experience; especially in games with
few opportunities to score, measures such as relative performance cannot tell
us when the NPC is challenging or supporting the player and how strongly.
We propose to leverage EBPXP specifically and intrinsic reward-based player
experience prediction more generally to tune the parameters of a a CEM-driven
NPC towards a certain PX. Once validated, such models could allow us to
track PX with high fidelity along the entire gameplay trajectory, and thus
make sure that e.g. a companion NPC supports the player homogeneously
over the course of the entire level, rather than just in the beginning.
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Our second example addresses one of the foundations of this thesis: that
human gameplay is shaped by the optimisation of IR, and can be described
with computational models of IM. We have selected empowerment as IR
for CEM because we expect that many instances of human play can be ap-
proximately described as an empowerment maximising process, and that
increasing their empowerment would thus contribute to their progress in
a game. Closely related, we also hypothesised that a player would experi-
ence such an increase in their empowerment as support, and a decrease as
challenge. Future quantitative studies on EBPXP, as outlined in Sec. 8.3.1,
will provide additional evidence to support or refute both these hypotheses:
once we have recorded a person’s play and experiences by subjective and
objective means, we can calculate empowerment on each state along their
play trajectory. We can then validate whether they indeed strived to max-
imise the reward, and experienced areas of low or high empowerment as
different degrees of challenge. This can be repeated for other types of IR, and
consequently inform the development of alternative social models of IM that
trigger certain PXs in the interaction with an NPC. Crucially, as games can
simulate any facet of our reality at almost arbitrary levels of detail, these
studies also have the potential to reveal much more far-reaching insights into
human cognition: what ultimately motivates us as people.

Chapter
Conclusion

In this chapter, we peeked into the future of IR and IM models in game
AI and CC through the lens of our own theoretical and applied work. This
marks our last contribution, and we conclude this thesis in the next chapter.



9CONCLUSION

We motivated this thesis with a crucial observation: despite the important role
of intrinsic motivation (IM) in human cognition and creativity (Ryan & Deci,
2000a; Amabile, 2018), the majority of computational creativity (CC, Colton
and Wiggins, 2012) systems are extrinsically motivated. We argued that this
motivational focus counteracts core CC research goals, in that it can negatively
impact people’s assessment of creativity (Colton, 2008) in these systems, their
actual creativity, and their creative autonomy (Jennings, 2010). A small body of
prior work has explored the alternative route of building CC systems based
on computational intrinsic reward (IR) and models of IM (Oudeyer & Kaplan,
2007). However, this work focusses on specific motivational mechanisms,
unaware of the possibility of understanding them as instances of a bigger
family, which as a whole may hold benefits for CC. Our aim for this thesis
has consequently been to investigate whether computational IR and models
of IM more generally, as a distinct class of motivation and as a family of
mechanisms, can advance central goals of CC. We approached this challenge
through the lens of computational game creativity as ‘the study of computational
creativity within and for computer games’ (Liapis, Yannakakis & Togelius,
2014, p. 2). More specifically, we have expanded our research aim to game AI
to synergistically further insights on the advantages of IM in both domains.

Research
Summary

We adopted a highly interdisciplinary approach and multiple perspectives
to assemble a big picture view of the benefits and applications of IR and
IM models in CC and game AI. As a foundation to this account, we have
synthesised insights from psychology and AI into a working definition of IM
models (Ch. 2). We then informed this big picture by considering the past,
present and future of employing IR and IM in CC and game AI. We mapped
research by means of two systematic reviews of related work in both domains
(Ch. 4 and 5), drawing on insights from creativity studies and (computational)
creativity theory as well as game design and games user research, respectively.

We complemented this retrospective account by proposing, formalising
and evaluating two new applications of IR and IM to game AI through
the lens of CC. We hereby leveraged empowerment and EM (Ch. 3) as
specific IR and IM model. We firstly (Ch. 6) proposed social models of IM as a
means to drive the behaviour of general, co-creative artificial agents that can
support or challenge their partner in an open-ended way. We instantiated this
proposal in coupled empowerment maximisation (CEM) to drive the behaviour
of general and believable non-player characters (NPCs) that either support or
challenge a player as companions and adversaries, respectively. We defined
and employed the qualitative method of observational vignettes to evaluate
the behaviour of CEM-driven NPCs in two studies. Secondly (Ch. 7), we
proposed to evaluate people’s experience of interactive artefacts based on
IR, as a means to make such evaluation in CC less dependent on people and
a specific context. We instantiated our informal proposal in empowerment-
based player experience prediction (EBPXP) for the application in videogame

252
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procedural content generation (PCG). We employed an experiential vignette to
explore qualitatively which experiences empowerment could predict. Our
two applications allowed us to illustrate the advantages of IM in CC and
game AI from very different perspectives: the (i) use of IM models vs. formal
IR in the (ii) CC generation vs. evaluation of (iii) simple creative behaviour vs.
complex artefacts, applied to (iv) NPCs vs. PCG as game AI domains.

We completed our big picture view by highlighting promising future direc-
tions for the exploration of IR and IM models in CC and game AI based on
improvements of our own studies, the underlying approaches, and potential
applications to other CC domains and beyond (Ch. 8).

StructureWe next summarise key findings for our specific research questions, and
discuss their contribution to our overarching research aim (Sec. 9.1). We then
reiterate our contributions and discuss their potential impact on various areas
of academic and industrial research (Sec. 9.2). We end this thesis with a few
concluding remarks (Sec. 9.3).

9.1 research questions revisited

In the introduction to this thesis (Ch. 1), we formulated our research aim in
terms of two overarching research questions:

RQ.1 Can IR and models of IM advance CC?

RQ.2 Can IR and models of IM advance videogame AI?

We qualified these research questions with seven specific research questions,
and evaluated them through five qualitative studies: two systematic reviews,
two observational vignette studies on CEM-driven NPCs, and one experiential
vignette study on empowerment-based PX prediction. We highlight selected
findings for each specific question, and their contribution to RQ.1 and RQ.2.

Systematic
Review of IM
in CC

We affirm RQ.1 through these two retrospective questions posed in Ch. 4:

RQ.3 Why have IR and models of IM been used in CC?

RQ.4 How have IR and models of IM been used in CC?

Our answers rest on a systematic review of 29 theoretical and applied studies
in CC, dating from 1998 to 2018. Our classification in Fig. 4.1 reveals that
these studies are well-balanced across different application domains and
system types (e.g. autonomous/co-creative, single/multi-agent, etc.), which
partially answers RQ.4. Moreover, we have identified four properties of IR,
two corollaries, and four properties of intrinsically motivated behaviour as
reasons to embrace IM in CC and as an answer to RQ.3. We have also extracted
12 (abstract) applications of IM to CC, which complements our prior answer
of RQ.4. Our full answer is given by the two typologies in Fig. 4.2. Here, we
only describe two diverse applications which leverage properties of IR and
intrinsically motivated behaviour, respectively.

IR has been used e.g. by Macedo and Cardoso (2001b) to model p-creativity
(Boden, 1990/2003, p. 1, 43 ff.). This application leverages two emergent
properties of IR. A specific IR function can be defined with or be attributed
different semantics (R.1 in Fig. 4.2), and can thus be used to quantify novelty
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and value (C.1 in Fig. 4.2) as essential components of creativity (Runco & Jae-
ger, 2012). Moreover, IR is subjective and sensitive to an agent’s embodiment
and situatedness (R.2 in Fig. 4.2). Together, these properties enable the calcu-
lation of creativity from an agent’s own perspective. Moreover, intrinsically
motivated behaviour has been used e.g. by Maher, Merrick and Macindoe
(2005) to model forms of mini-c (Kaufman & Beghetto, 2009) acts (A.12 in
Fig. 4.2), based on the potential of IM to induce skill and model development
(B.4 in Fig. 4.2), and to yield open-ended adaptation (B.3 in Fig. 4.2).

Systematic
Review of IM
in Videogame
AI

We analogously affirm RQ.2. i.e. the same question directed to game AI,
through the following two retrospective questions posed in Ch. 5:

RQ.5 Why have IR and models of IM been used in videogame AI?

RQ.6 How have IR and models of IM been used in videogame AI?

Our literature search revealed that IM is at present mostly applied to drive
general game-playing agents as a benchmark for artificial general intelligence; only
a few contributions aim to benefit game engineers, designers and players.
To further draw a diverse, representative picture of the reasons to embrace
IR and IM models in game AI and their apprlication, we biased our review
towards applications in the latter category, which yielded 11 instances of
related work from 2006 to 2019. We classified this work in Tbl. 5.1 as partial
answer to RQ.6. Amongst others, we find that many applications contribute
towards several game AI domains at once, e.g. the design of game-playing
agents and NPCs. Moreover, most of them aim to increase the generality of the
respective game AI technique. Over all domains, PCG has been addressed the
least, in only a single theoretical study (Shaker, 2016). As answer to RQ.5, we
crucially uncover the same reasons to embrace computational IR and models
of IM found in existing CC work (Ch. 4). We moreover identify 11 (abstract)
applications of IR and IM across four core domains of videogame AI. We
provide examples of two applications.

Shaker (ibid.) suggests the usage of intrinsically motivated RL to create con-
tent without game domain knowledge (A.9 in Fig. 5.1), e.g. when improvising
‘new types of games from scratch’ (ibid., p. 455). Her theoretical proposal
rests on the domain and embodiment generality of IR (R.3 in Fig. 5.1). The
same property is used by Pathak et al. (2017b) to enable transfer learning
from one game or game level to another (A.1). This application also makes
use of the fact that many IM models induce skill and model development
(B.4 in Fig. 5.1). They demonstrate that a game-playing agent can use IM to
facilitate transfer learning across different levels of the same game.

Consolidating
the Reviews

In an effort to support RQ.1 through insights in RQ.2 and vice versa, we
answer the following question in Ch. 5 through our two systematic reviews:

RQ.7 How do existing applications of IR and IM models in videogame
AI and CC overlap?

We find that that many applications of IR and IM in game AI specialise
CC applications. For instance, we can understand the efficient exploration
of game content spaces (A.10 in Fig. 5.1) to produce novel and valuable
content in videogame PCG as a special case of exploratory and transformational
creativity (Boden, 2003; Wiggins, 2006; A.6 and A.8 in Fig. 4.2) in CC. Similarly,
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we recognise applications of IR and IM models to (game-)playing and NPCs
as specialisations of CC applications. These game AI applications leverage
e.g. the potential of IM to respond autonomously to unanticipated events or
changes in complex, open-ended game worlds (A.8 in Fig. 5.1), which echoes
the CC application to model mini-c creativity in development and adaptation
(A.12 in Fig. 4.2) and to increase creative autonomy (A.3 in Fig. 4.2). We
highlight this example specifically because (game-)playing and NPCs have so
far received little attention in discussions of computational game creativity.

Moreover, we find that applications in game AI not only specialise existing
CC applications, but also advance CC by realising different notions of gener-
ality. This property is rarely addressed in mainstream CC research, despite
necessitating different forms of creativity. For instance, for the same game-
playing agent to perform well across different games, the agent must express
both novelty and value, and thus creativity, in their behaviour. These insights
thus reveal that individual answers to the questions RQ.1 and RQ.2 also
support their counterpart.

We further support that IR and IM models can be leveraged for both, CC
and game AI through two novel computational approaches, motivated in
both domains and evaluated in game AI. These address underexplored areas
of research identified in our systematic reviews, but also draw inspiration
from existing CC (Saunders & Gero, 2004; Saunders et al., 2010) and game AI
(Togelius & Schmidhuber, 2008; Merrick & Maher, 2009) research.

Intrinsically
Motivated
Social
Co-Creativity

In Ch. 6, we address RQ.1 and RQ.2 through the following question:

RQ.8 Can we use a model of intrinsic motivation to engineer general and
social co-creative agents?

We answer this question by proposing social models of IM as a means to
overcome the shortcomings of related work, instantiating this proposal in
CEM, and evaluating the potential of this computational model to drive the
behaviour of general, believable NPCs that support or challenge the player as
companions or adversaries, respectively. This link rests on our understanding
of the player-NPC interaction as an instance of human-computer co-creativity.

Our evaluation rests on 14 experiments as part of six observational vignettes,
split between two exploratory, qualitative studies. They demonstrate that CEM
as a single principle can indeed be used to yield both supportive and antag-
onistic behaviour by only switching a single hyperparameter. Moreover, we
discovered that the modulation of the hyperparameters affords the creation of
different NPC personalities such as a daredevil and a super-villain. As predicted,
the CEM-driven NPCs exhibited player-generality (Togelius & Yannakakis,
2016) in consistently supporting or challenging the different experimenters
as players without modelling their specific policy. Moreover, they demon-
strated limited game-generality (ibid.) by maintaining these social dynamics in
response to changes in their embodiment and environment.

These behaviours have not been hard-coded, but emerged from the inter-
action of CEM, the NPC’s embodiment, environment and their interaction
partners. The emergent behaviours were thus novel, and often took us by by
surprise. Moreover, they have value with respect to a person’s goals in three
forms of co-creativity: in supporting the player’s game goals as companions,
in providing them with the experience of interacting with a specific character,
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e.g. an adversary, and in inspiring a game designer’s creation of believable
characters. We consequently argued that the behaviour of CEM-driven NPCs
should be considered (co-)creative as a last building block to affirm RQ.8.

Intrinsic
Reward-Based
Experience
Prediction

In Ch. 7, we support RQ.1 and RQ.2 by answering the following question
as representative of our second applied contribution:

RQ.9 Can we use IR to predict people’s experience of interactive artefacts
in a general and autonomous way?

We approach this question with an informal and generic proposal to predict-
ing people’s experience via IR. We instantiate this proposal in EBPXP and
assess it on the prediction of players’ experiences of procedurally generated
content. We hence answer this question through an application to game AI,
by understanding a procedural content generator as a CC system.

We have conducted an exploratory, qualitative study to inform a future
quantitative study with candidate experiences that EBPXP could predict. We
chose the method of an experiential vignette, and asked our participants to
think-aloud while playing different game levels, each procedurally generated
as a distinct condition expressing a different EBPXP prediction. A thematic
analysis of the think-aloud data revealed that our conditions indeed evoked
different experiences. We found the most striking differences in players’
experience of physical and cognitive challenge, followed by their involvement,
attention, engagement and emotions. Following a critical evaluation of our
findings based on games user research, we deem most of these experiences
too complex to be directly predicted by empowerment as IR. By considering
commonalities between these experiences, we develop the hypothesis that
empowerment can predict the foundational experiences of effectance, outcome
uncertainty, and perceived control, which influence goal experiences such as
challenge. While our study provides some evidence to support RQ.9, a full
proof-of-concept requires further work, as discussed in Ch. 8.

Together, our answers affirm the overall research questions RQ.1 and RQ.2
through a big picture of the benefits of IR and IM models for CC and game
AI, and their application in past, present and future research.

9.2 contributions and potential impact

We have previously discussed how our theoretical and applied contributions
have supported the overarching aim of this thesis. We next highlight their
potential future impact beyond this thesis on AI, CC and game AI research,
as well as on game engineers, designers and players.

Intrinsic
Motivation:
From Theories
to Models

In Ch. 2, we have contributed an extensive, interdisciplinary account of
IM in psychology and AI (Sec. 2.1). Moreover, we developed and tested
an informal working definition of IM models, based on four diagnostics
of a reward function embedded in a motivational model (Sec. 2.2.3). These
contributions have served as a foundation to our big picture view of IM in
CC and game AI, but we believe that they can also benefit other disciplines.
Our overview can allow psychologists and AI researchers to familiarise
themselves with the treatment of IM in the other domain and inspire future
cross-disciplinary research. We expect our close comparison of the diagnostics
of formal IR and IM and the psychological definition of IM in Sec. 2.2.3 to
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be particularly helpful in this respect. We moreover hope that our working
definition will inspire future discussions on the nature of IM, and eventually
lead to a formal definition of IR and IM models.

Empowerment
Maximisation

In Ch. 3, we contributed an updated introduction to empowerment and EM
in discrete scenarios, with the strongest psychological motivation available to
date (Sec. 3.1). Moreover, we provided a generic and simplified formalisation
of empowerment and EM, which distinguishes an agent’s objective world
and their beliefs about that world, and thus makes implicit assumptions
in prior work transparent (Sec. 3.2). There has recently been a surge of
interest in empowerment and EM specifically, in particular employed in an
RL setting to further the goal of artificial general intelligence. We hope that
our comprehensive motivation of EM will further illuminate its potential
towards this end and inspire new research, e.g. in collaboration with cognitive
scientists. Similarly, we hope that our generic formalisation will raise people’s
awareness of the differences between an objective and epistemic account of
empowerment, which could again shape future research.

Systematic
Reviews

In Ch. 4 and 5 we presented two systematic reviews of existing work on
IM in CC and game AI as the key theoretical contributions of this thesis.
These comprise a classification of existing work in both domains (Tbl. 4.1 and
5.1). We moreover contributed typologies on the reasons to embrace IR and
IM models, and their individual application in both domains (Fig. 4.2 and
5.1). We hope that these typologies will allow CC and game AI researchers
to identify promising areas of future inquiry, and serve as inspiration and
reference to harness the benefits of IR and IM in their work. We moreover
hope that our mapping between these applications in CC and game AI have
illustrated how strongly these fields can complement each other, and thus
prompt future research in computational game creativity.

Intrinsically
Motivated
Social
Co-Creativity

In Ch. 6, we contributed a new application of IM to CC and game AI in
the form of social models of IM as a generic approach to yield supportive or
adversarial agent behaviour in open-ended interaction (Sec. 6.3). Moreover,
we introduced CEM as a specific social IM model to give rise to general,
believable companion and adversary NPCs (Sec. 6.4). CEM could benefit game
engineers, designers and players. It could increase the believability of NPCs
and thus heighten how players experience and enjoy the next generation
of videogames. At the same time, it could speed up NPC development
and decrease production costs, thus allowing a reallocation of engineering
resources. It could further afford more creative freedom to game designers,
by enabling more complex and dynamic game worlds, the integration of
user-authored content, and more sophisticated PCG. CEM could in addition
serve as a source of design inspiration, in that CEM-driven NPCs exhibit
behaviours that are novel and surprising. They could also transform the
NPC design practice: rather than hard-coding a specific character for a game
world, designers could take the opposite position and observe what emerging
behaviours, and thus characters, a specific game world gives rise to.

Kantosalo and Toivonen (2016) predict that ‘in the future, systems taking a
more provoking stance may be of particular interest for co-creativity research
(...)’ (ibid., p. 83, emphasis added). CEM represents a candidate model to
realise such systems in wider CC, but we also promote its use beyond human-
computer co-creativity. For instance, CEM could be utilised in guiding the
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emerging social dynamics of creative agent societies (Saunders & Bown, 2015)
to yield a particular, human-desired output. We furthermore advocate the
use of CEM beyond traditional CC scenarios whenever embodied agents are
required to support or challenge other agents in complex, changing environ-
ments and for different embodiments. We envision it to be used in robot-robot
interaction, e.g. to allow a swarm of heterogeneous rescue robots to reconfig-
ure flexibly in order to overcome debris, or to operate more autonomously in
remote locations. Moreover, Salge and Polani (2017) propose using CEM to
warrant safety, compliance, and robustness in human-robot interaction without
the need for natural language understanding.

Intrinsic
Reward-Based
Experience
Prediction

In Ch. 7, we introduced a new application of IR to CC and game AI.
Motivated by challenges in evaluating people’s experience of interactive
artefacts in CC more generally, we proposed intrinsic reward-based player
experience prediction as a generic approach to modelling player experience
independently of player feedback and designer knowledge about a game’s
semantics. As a second contribution, we instantiated this approach in EBPXP
and evaluated it on the prediction of players’ experience of procedurally
generated game content. This complements our previous applied contribution
in that we do not use models of IM to steer behaviour, but leverage the
underlying reward as an experience predictor.

Given a successful proof-of-concept, our approach could yield improved
experiential control of procedurally generated game content, as changes to the
game or content generator would not necessitate the costly and time-intense
provision of player data or changes to the theoretical model assumptions.
This would enable the fast and frequent assessment of PX within the devel-
opment process, and for widening the expressive range (Smith & Whitehead,
2010) of generators employed online during play. The freed resources and
increased creative potential could inspire designers to develop novel games
with improved replayability, potentially leading to higher player satisfaction.
Without the need to continuously involve human players and designers, our
approach could even be leveraged in the demanding scenario of automated
game design (e.g. Cook, Colton & Gow, 2016a, 2016b).

Beyond game AI, our approach could complement established instruments
to measure PX in games user research. Applied ahead of a user study, predic-
tions of which PXs an experimental condition is expected to cause could be
used to adjust the condition to the study goals, or to identify the best subject-
ive or objective measures to accurately capture the predicted experiences.

Finally, we believe that our generic approach could be employed in the
evaluation of user experience more generally, as supported by the work of
Trendafilov and Murray-Smith (2013). We hope that the findings of our ex-
periential vignette studies encourage researchers to examine the relationship
between other models of IR and user experience.

9.3 concluding remarks

In this thesis, we have demonstrated that, and explored why and how IR and
models of IM can advance CC and game AI, by drawing on pioneering work,
proposing new applications, and envisioning the future. This endeavour has
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substantially benefited from a highly interdisciplinary perspective, and from
leveraging the symbiotic relationship between CC and videogames. Writing
this thesis has been a thought-provoking and rewarding experience, and we
hope that our approach and findings will inspire researchers to pursue a
similar path in the future and advance knowledge in both domains.

We are excited to see how our applications will be adopted and developed
further to increase the generality, autonomy and creativity of next-generation
videogame AI, and consequently transform research and industry practice
as well as the experience of players. We moreover hope that this thesis will
increase awareness of the IM concept, contribute to a better understanding
across disciplines, and serve as inspiration for future work. We are confident
that comprehending the possibilities of IM moves us closer to tackling one of
the major challenges of CC: to engineer artificial systems that are creative.



Part V

APPENDICES: MATHEMATICAL FOUNDATIONS

In this interdisciplinary thesis, we investigate computational mod-
els of intrinsic reward and intrinsic motivation to drive the interac-
tion of an agent with their environment. The following appendices
summarise the mathematical foundations required to formalise
each of the involved concepts, and clarify our notation. We only
assume little prior knowledge to make our work accessible for
researchers from a wide range of related disciplines.



APROBABILITY THEORY

The interaction of an embodied agent with their environment is subject to
different forms of uncertainty. Probability theory allows us to make formal
statements about uncertainty, and we thus summarise some fundamental
probabilistic concepts here. This primer largely draws on the engineering-
focussed introduction by Bishop (2006). Uncertainty can originate from dif-
ferent sources (cf. Jaynes, 2003): Firstly, uncertainty can be inherent to the
system being modelled (aleatoric uncertainty), e.g. when a random number
generator is being used to determine the damage of a weapon in a videogame.
Secondly, uncertainty can stem from an agent’s limited capacity to observe
that system (epistemic uncertainty), e.g. when subjected to hidden information
or partial observability: in a game of two players, the controlled character
may have no information on the other player’s policy, or can only perceive
the other’s actions but not their remaining health. Finally, an agent might
be capable of observing a system’s state perfectly, but discard parts of the
information and thus create uncertainty where there was none (self-inflicted
uncertainty). A game character could measure the game’s state precisely but
discard some of the contained information, e.g. regarding its previous actions.
Such ‘forgetting’ is often enforced by bounded rationality (Simon, 1957),
e.g. based on memory or information processing limitations.

Random
Variable

Random variables allow us to capture such uncertain aspects of the system;
they can take on different values (or states, or realisations) based on an under-
lying random process. We denote random variables by upper case letters,
e.g. X, Y, S, A, R, etc., and specific values of these variables by lower case
letters x, y, s, a, r, etc. Random variables can take on a finite number of discrete
values, or an infinite number of continuous values. We denote these possible
values, i.e. the state space or range of a random variable, by the corresponding
calligraphic upper case letters X ,Y ,S ,A,R, etc.

Probability
Distribution

Probability distributions allow us to describe how likely a random variable
is to take on its possible values. In the case of discrete random variables, a
probability distribution is defined by a probability mass function, mapping the
values of a random variable to the probability that the variable takes on these
values, i.e. p : x 7→ [0, 1]. When a random variable X is distributed according
to p, we write X ∼ p. A probability mass function over a random variable
X must satisfy three properties. Firstly, its domain must contain all possible
states x ∈ X of X. Furthermore, it must satisfy

∀x ∈ X : 0 ≤ p(X = x) ≤ 1 (A.1)

∑
x∈X

p(X = x) = 1 (A.2)

i.e. all states must be assigned values between 0 (impossible) and 1 (guaran-
teed to happen), and the probabilities of individual states must sum up to 1.
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When a probability mass function describes the probabilities of more than
one random variable, e.g. p(X = x, Y = y), we refer to a joint distribution.
Usually, the state of a random variable is denoted by the same letter as the
variable. When relating to the probability of a specific state, we often omit the
corresponding random variable, so p(X = x) and p(X = x, Y = y) become
p(x) and p(x, y), respectively. Similarly, we usually omit the state space in
summation for brevity (Cf. Eqs. A.2 vs. A.17).

For continuous random variables, a probability distribution can be defined
by means of a probability density function f (X = x), specifying the relative
likelihood that the random variable X would take on value x, i.e. f : x 7→ R≥0.
A probability density function must be non-negative everywhere, and its
integral over the entire space must be equal to one:∫ ∞

−∞
f (X = x) dx = 1 (A.3)

The probability that a continuous random variable X takes on values no
larger than x is given by the cumulative distribution function:

p(X ≤ x) = F(X = x) =
∫ x

−∞
f (X = t) dt (A.4)

The probability that X takes values in the semi-closed interval (a, b] is:

p(a < X ≤ b) = F(X = b)− F(X = a) (A.5)

In this thesis we make frequent use of two very common, discrete probabil-
ity distributions, the discrete uniform distribution and the categorical (multinoulli)
distribution. We use them as examples to illustrate the above concept of a
probability mass function. If a random variable X is uniformly distributed,
i.e. x ∼ U , all values x ∈ X are assumed to have equal probability:

p(x) =

1/|X | if x ∈ X

0 otherwise.
(A.6)

Here, |X | represents the cardinality of the state space, i.e. the number of
values it contains. This is a proper probability mass function in that it covers
all possible values and satisfies Eqs. A.1 and A.2.

By default, we assume random variables in this thesis to be categorically
(multinoulli) distributed. The probability mass function of a categorical dis-
tribution is defined, i.e. parametrised, by a vector φ = [φ1, ..., φ|X |] with φi
representing the probability of the ith value xi, i.e. p(xi) = φi. The categorical
distribution can describe any possible distribution over its domain accurately,
at the cost of an inefficient description which enumerates the probability
of each state. This however fits the purpose of the experiments presented
later, where we are interested in exhaustive proof-of-concepts rather than
approximations, and where state spaces are reasonably small. For brevity, we
usually omit the parameter φ from the description of categorical distributions
and only refer to it explicitly when describing its estimation in pseudocode.
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We sometimes leave the specific type of distribution unspecified. We then
include parameters explicitly and write them as upper case Greek letters
Φ, Θ, etc. with values φ, θ, etc. In our notation, an arbitrary parametrised
distribution on X is then written as p(X; Θ).

Kronecker /
Dirac Delta

A special case is given if the distribution of interest, e.g. p(X), only takes
on a single value of its random variable xi with absolute certainty. If this
variable is discrete, we specify such distributions using the Kronecker delta:

δxj,xi =

1 if xi = xj,

0 otherwise.
(A.7)

The expression p(x) = δx,xi∀x ∈ X then describes a distribution which is 1 at
value xi and 0 for any other value in X . Summation over all xi ∈ X yields
1, and the requirements for a probability mass function are thus met. In few
cases, we assume a similar distribution over continuous variables, and use the
Dirac delta as shorthand. It is infinite at the origin, and zero everywhere else:

δ(x) =

+∞ if x = 0,

0 otherwise.
(A.8)

The Dirac delta satisfies the properties of probability density functions, i.e. it
is non-negative and integrates to 1 (Eq. A.3). The notation is different from
Kronecker’s delta: if we assume a distribution to take on the value xi of a
continuous random variable X with certainty, we write p(x) = δ(x− xi).

Conditional
Probability

We make intensive use of conditional probabilities to describe the probability
of some variable given the known state of another variable:

p(x|y) = p(x, y)
p(y)

(A.9)

Here, p(y) > 0. Note that a conditional probability per se does not imply
causality: x is not necessarily a consequence of y. We introduce interventional
distributions which represent such causality in Appx. B.

IndependenceTwo variables X, Y are (stochastically) independent, i.e. X ⊥⊥ Y, if their joint
distribution can be expressed as product of individual distributions:

(X ⊥⊥ Y)⇔ p(x, y) = p(x)p(y) ∀ x ∈ X , y ∈ Y (A.10)

This must hold for all, not only some values of the involved random variables.
We can find an equivalent expression by applying Eq. A.9, the definition of
conditional probability, to Eq. A.10:

(X ⊥⊥ Y)⇔ p(x|y) = p(x) (A.11)
⇔ p(y|x) = p(y) ∀ x ∈ X , y ∈ Y (A.12)

We furthermore say that X is conditionally independent of Y given a third
variable Z, i.e. (X ⊥⊥ Y) | Z, if the following condition holds:

(X ⊥⊥ Y) | Z ⇔ p(x|y, z) = p(x|z) ∀ x, y, z ∈ X ,Y ,Z (A.13)
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In analogy to Eq. A.10, we can derive an equivalent condition, expressing
that the joint distribution of X, Y is stochastically independent given Z:

(X ⊥⊥ Y) | Z ⇔ p(x, y|z) = p(x|z)p(y|z) ∀ x, y, z ∈ X ,Y ,Z (A.14)

Even though they sound similar, the equivalent conditions expressed by Eqs.
A.10–A.12 are different from the conditions in Eqs. A.13 and A.14.

Product and
Chain Rule

Using the definition of conditional probability (Eq. A.9), we can write any
joint distribution as a product of conditional probabilities. For two variables
X, Y, we get the product rule:

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (A.15)

By replacing one of the random variables with a set of variables and applying
Eq. A.15 recursively, we can derive the chain rule or general product rule:

p(x1, x2, . . . , xn) =
n

∏
i=1

p(xi|x1, . . . , xi−1) (A.16)

Marginalisa-
tion and Total
Probability

Given a joint distribution, we can calculate the distribution over any subset
of its members. The process of summing over the left-out variables is called
marginalisation. A marginal distribution for discrete variables is given by:

p(x) = ∑
y

p(x, y) (A.17)

Note that the sum runs over all elements y ∈ Y , but we have abbreviated
this expression as announced earlier. The law of total probability allows us to
marginalise over conditional probabilities, by applying Eq. A.15 to Eq. A.17:

p(x) = ∑
y

p(x|y)p(y) (A.18)

In the case of continuous variables, the sum in the calculation of the marginal
distribution and total probability is replaced by an integral.

ExpectationThe final concept required in our probability theory toolbox is the expecta-
tion of a function f (x). It corresponds to the average value the function takes
on if its arguments are drawn from distribution p(x):

EX∼p[ f ] = ∑
x

p(x) f (x) (A.19)

For continuous random variables, the sum must be replaced by the integral
over x. In most cases the distribution of X can be inferred from context, and
it might even be clear with respect to which random variable the expectation
is taken. For brevity, we then write EX[ f (x)] or just E[ f (x)], respectively.

In Appx. B, we introduce causal Bayesian networks as compact representa-
tions of joint probability distributions, and vice versa as a means to derive
such joint distributions from a more accessible, graphical model.



BCAUSAL BAYESIAN NETWORKS

Empowerment maximisation (EM) as the central model of intrinsic motivation
(IM) investigated in this thesis requires us to consider the causal influence
between different entities in the interaction of an agent with their environment.
This can be conveniently done by means of causal Bayesian networks, which we
introduce here. Causal Bayesian networks are a special kind of probabilistic
graphical model. We briefly introduce such models and their benefits. We then
define (non-causal) Bayesian networks and explain how non-local conditional
independence assumptions can be identified in the network structure. This
allows us to point out an ambiguity in the representation of causality in
bayesian networks (BNs), and motivates the introduction of specialised causal
Bayesian networks. We mainly draw on the comprehensive introductions to
Bayesian networks by Bishop (2006) as well as Koller and Friedman (2009),
and on Pearl’s (2000) original work on causality.

Probabilistic
Graphical
Model

A probabilistic model encompasses a set of random variables with assigned
probability distributions, and is used to model a certain phenomenon. A
probabilistic graphical model is a diagrammatic representation of a probabilistic
model, i.e. it is defined as a graph G = (V, E) with vertices (or nodes)
V = {V1, V2, . . . , Vm} representing random variables and edges E = V ×V =
{e1, e2, . . . , en} describing probabilistic relationships between these variables.
Crucially, a node can represent a single – potentially vector-valued – random
variable, but also sets of variables. Graphical models complement probabilistic
models in several ways (cf. Bishop, 2006, p. 360): They can (i) serve as a
primary description or a secondary representation of a probabilistic model.
As such, they (ii) afford the description and identification of model properties
such as conditional independence. Finally, they (iii) allow us to express
complex computations in terms of simpler graphical manipulations.

Bayesian
Network

bayesian networks (BNs) or directed graphical models are a specific class of
probabilistic graphical models. A BN (Fig. B.1) is defined (cf. Koller & Fried-
man, 2009, p. 62) as a tuple B = (D, PB). The first component D = (V, E)
is a directed, acyclic graph. We briefly define these two qualifiers. As in gen-
eral graphical models, nodes represent (sets of) random variables, but here
bidirectional edges have been replaced by directed arrows Vi → Vj, repres-
enting the direct influence of variable Vi over Vj. When there is an arrow
from Vi to Vj, we say that Vi is a parent of Vj, i.e. pa(Vj) = {Vi}. A path in
B is a sequence of at least two vertices Vi ∈ V where adjacent vertices are
connected by a single edge. In a directed path, all arrows must point in the
same direction. We say that the graph is acyclic, when there is no closed path
(Vi → Vj → . . . 6→ Vi), i.e. there is no directed path starting and ending
at the same vertex. This summarises the topology, i.e. the network’s first
component. The second component PB is a set of conditional probability
distributions pB(Vi|pa(Vi)), one for each node Vi ∈ V, and each conditioned
on the smallest set of predecessors pa(Vi) that renders Vi independent of all
its other predecessors, as specified by the topology. Crucially though, Vi can
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V1

V2 V3

V4 V5

Figure B.1: Bayesian network with random variables V = {V1, V2, V3, V4, V5}.

still depend on its descendants. The distributions in PB thus only encode
the local independence assumptions (Vi ⊥⊥ nd(Vi) | pa(Vi)), with nd(Vi) being
variables in V that are not descendants of Vi.

Factorising
the Joint
Distribution

By exploiting conditional independence assumptions, a BN can serve
as a compact representation of a joint distribution. Consider factorising
p(v) = p(v1, v2, v3, v4, v5) with the chain rule (Eq. A.16). For this specific
ordering of variables in the joint distribution, we get:

p(v) = p(v1)p(v2|v1)p(v3|v1, v2)p(v4|v1, v2, v3)p(v5|v1, v2, v3, v4) (B.1)

We can make this factorisation more compact by applying the local conditional
independence assumptions encoded in the BN in Fig. B.1:

p(v) = p(v1)p(v2|v1)p(v3|v1)p(v4|v2, v3)p(v5|v3) (B.2)

Chain Rule
for Bayesian
Networks

Here, we have implicitly applied the chain rule for BNs:

p(v1, v2, . . . , vm) =
m

∏
i=1

pB(vi|pa(vi)) (B.3)

If a distribution p factorises over the topology D, it satisfies the local con-
ditional independence assumptions in D. However, the topology encodes
further, non-local conditional independence assumptions that p must meet.

Non-local
Conditional
Independence

We can identify such further assumptions with the concept of d-separation
(Pearl, 1988), the graph equivalent of probabilistic conditional independence.
To begin, we define that a path is blocked if it contains a node Vi and if either:

• Vi ∈ S and the arrows meet at Vi head-to-tail (→ Vi → or← Vi ←) or
tail-to tail (← Vi →),

• or neither Vi nor any of its descendants are in S, and arrows meet Vi
head-to-head (→ Vi ←).

A set of variables A is then d-separated from a set B by a third set S with
implication that (A ⊥⊥ B) | S if all paths from A to B are blocked by S.
Consider the previous example network in Fig. B.1 for two illustrations of
d-separation. Here, we have (V2 ⊥⊥ V3) | V1 because one path is blocked by
V1 which is met tail-to-tail and the other path is blocked by V4 which is not
part of the conditioning set and met head-to-head. As a negative example, we
have (V1 6⊥⊥ V5) | V2 despite one path being blocked by V2 and V4, because
the remaining path through V3 is not blocked.
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V1 V3 V2

(a)

V3

V1 V2

(b)

V1 V3 V2

(c)

Figure B.2: Three I-equivalent Bayesian networks, encoding p(V1, V2, V3) with
(V1 ⊥⊥ V2) | V3. Adopted from Koller and Friedman (2009, p. 70).

I-EquivalenceApplying the d-separation criterion to the three graph structures in Fig. B.2,
we find that they express the same non-local conditional independence as-
sumption, despite encoding different local independences. We consider such
graphs I-equivalent (Koller & Friedman, 2009, p. 76) or observationally equivalent
(Pearl, 2000, p. 19), as they cannot be distinguished based on observational
data alone. Any distribution p that can be factorised over one I-equivalent
graph can also be factorised over other graphs in the same equivalence class;
there is no inherent property of p that warrants the association with one over
another I-equivalent graph. A distribution p(V1, V2) for instance can be fac-
torised to both p(V2)p(V1|V2) and p(V1)p(V2|V1). This is very important for
us, as p consequently only expresses associative knowledge, but is ambiguous
with respect to causality, i.e. the direction of influence.

Causal
Bayesian
Networks

In our treatment of IM, we look at possible ways that an agent can interact
with their environment, which makes a causal perspective strictly necessary.
In Appx. D, we do not learn BNs from observational data, but conversely,
define a network to describe the underlying joint distribution. However, just
as the joint distribution only conveys associational knowledge, so does the
topology of a classic BN, thus allowing for distributions with potentially
non-causal, spurious dependencies. Pearl (ibid., p. 21) observes that, when
engineering BNs, AI researchers implicitly rely on knowledge of the causal
processes underlying the involved variables to formulate reliable conditional
independence assumptions and to keep the network sparse1. He consequently
identifies such assumptions as mere by-products of causal relationships,
motivating the development of causal BNs which express causality directly in
the network topology and in a specialised, interventional probability calculus
(ibid., p. 22). A causal BN C = (D, PC) looks like a standard BN, but arrows
Vi → Vj indicate direct causal effects from Vi to Vj. Each conditional probability
distribution in PC models a causal, stochastic mechanism which determines
the value of Vi based on the values of its parent variables.

InterventionThis causal interpretation of probabilities relies on the concept of inter-
vention, where we consider a conditioning variable to be actively set to
a fixed value, rather than just being observed. For a query of the form
p(Vi|do(Vj = vj), Vk = vk), we thus want to find the distribution over val-
ues in Vi, given that we actively set Vj = vj, expressed by the do operation,
and observe Vk = vk. The difference between observation and intervention is
that the latter is done by an ‘external force’ and produces a mutilated net-
work, in which the parents of the intervened variable Vj are removed in the

1 This explains why in the literature, (classic) BNs are often treated synonymously to causal
BNs, despite substantial differences (e.g. Bishop, 2006, p. 366).
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V1

V2

pC(V2|V1)

V3

V4 V5

(a) B

V1

v2

pC(V2 = v2) = 1

V3

V4 V5

(b) BZ=z

Figure B.3: Original (a) and mutilated (b) causal Bayesian network for intervention
do(V2 = v2) with Z = {V2}, z = {v2}.

graph structure D, and the unintervened conditional probability distribution
p(Vj|pa(Vj)) is replaced by p(Vj = vj) = 1 in PC (Pearl, 2000, p. 23). More
generally, we get the mutilated network CZ=z with Z representing the set
of all intervened variables and z their values. Fig. B.3 illustrates the effect
of the intervention do(V2 = v2) in an example network. An interventional
query is answered by standard inference procedures on the mutilated graph,
i.e. pC(Y|do(z), x) = pCZ=z(Y|x). A causal BN is thus a special BN which can
answer both probabilistic and interventional queries (Koller & Friedman,
2009, p.1014–1015). The post-interventional joint distribution is given by a
modified chain rule which truncates the factorisation (Pearl, 2000, p. 24):

p(vV\Z|do(Z = z)) = ∏
v∈V\Z

pC(v|pa(v)) = ∏
v∈V

pCZ=z(v|pa(v)) (B.4)

This represents the probability of observing the remaining variables V \ Z
after the intervention do(Z = z) on variables Z. Such intervention allows us
to replace associative- with causal relationships, and causal BNs consequently
resolve the ambiguity in I-equivalent networks. Note that intervention is
not necessary when causality can be determined from additional temporal
information: we may know that one random variable Vt+1 takes on values
later than another variable Vt, thus dictating the only possible direction of
influence as Vt → Vt+1. Intervention becomes necessary though if there is not
only one, but several, potentially latent causes of Vt+1.

Causal
independence

Based on the calculus of intervention, we can complement stochastic and
conditional independence conditions with their causal equivalents. For brev-
ity, we indicate the variable to be intervened from now on with a dot, i.e.

˙
Y.

Ay and Polani (2008) write that X and Y are causally independent, imposing a
third variable Z, if the following condition applies:

(Y ⊥⊥ X) |
˙
Z ⇔ p(y|

˙
x,

˙
z) = p(y|

˙
z) ∀x, y, z ∈ X ,Y ,Z (B.5)

The interpretation of this is that intervening in X after having intervened in Z
does not change the probability of observing Y. If we condition on the empty
set, i.e. Z = ∅, we get the condition for (unimposed) causal independence:

(Y ⊥⊥ X)⇔ p(y|
˙
x) = p(y) ∀x, y ∈ X ,Y (B.6)
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If this condition applies, intervening in X has no causal effect on Y. Note that
in contrast to their standard probabilistic counterparts, these interventional
conditions are, due to the directional nature of causality, not symmetric.

In Appx. C, we draw on the probabilistic foundations summarised in
Appx. A to formulate the essential information-theoretical quantities used
throughout this thesis. The notion of causal independence as introduced here
plays a crucial role in the definition of information flow, e.g. to quantify the
interaction of an agent with their environment.



CINFORMATION THEORY

Many intrinsic motivation (IM) models covered in this thesis, in particular
empowerment maximisation (EM), are based on information theory. In this
appendix, we introduce the underlying mathematical concepts. Information
theory was originally introduced by Shannon (1948) to quantify and optimise
the amount of information that can be passed through a noisy communication
channel, e.g. in radio transmission. It is based on and extends probability
theory in that it provides us with richer means to characterise and compare
distributions and to examine probabilistic models. Our overview draws on
standard literature by MacKay (2003) and Cover and Thomas (2006).

Freedom of
Semantics

Classic information theory is free of semantics, both with respect to what
establishes information in the first place, and to the label we assign to the
agents involved in its communication. For instance, we might be interested
in the message passing between two players in a game. Information theory
allows us to quantify the information passed irrespective of the meaning of
e.g. the individual words forming the messages. It is moreover agnostic with
respect to the semantics that we might assign to the communicating agents:
as engineers, we might consider them ‘players’ that exchange messages, but
this label does not explicitly1 affect information-theoretic measurements on
this system. We can thus apply the same concepts to other domains, e.g. to
examine the information in DNA as it is reproduced from parent to daughter
cells, subject to mutation (MacKay, 2003, p. 3). Its freedom of semantics allows
for information theory to be applied across many disciplines, e.g. physics,
economics, biology and machine learning.

Communi-
cation
Problem

In order to gain a good intuition for the information-theoretic quantities
used in this thesis, we relate to their original use in communication. Fig.
C.1 illustrates an abstract communication system, consisting of three main
components: an encoder (transmitter), a decoder (receiver) and a communication
channel. The ‘fundamental problem of communication’ (Shannon, 1948, p. 379)
is to encode a message with sufficient systematic redundancy for it to be sent
through a noisy channel and be recovered without ambiguity. This noise
can be ambient, stem from physical properties of the channel, or it can be
induced by other sources of uncertainty as introduced in Appx. A.

Discrete
Memoryless
Channel

The encoder and decoder are modelled with conditional probability distri-
butions, mapping messages m to possible channel inputs X, and mapping
channel outputs Y to an estimate m̂ of the original message. The fundamental
problem of communication is approached by optimising the encoder and
decoder mappings for efficient use of the channel. We focus on the special
case of a discrete, memoryless channel. It is defined in terms of an input alphabet
X , an output alphabet Y , and a set of conditional probability distributions
p(y|x), one for each element of the input alphabet x ∈ X . These distributions

1 However, a particular label might imply a different modelling of the underlying agent e.g. in
terms of the encoding or decoding scheme p(x|m) and p(m̂|y) used in communication.
Information theory is agnostic with respect to the label, but sensitive to the agent modelling.
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Encoder
p(x|m)

Channel
p(y|x)

Decoder
p(m̂|y)

Message
m

Input

X

Output

Y

Estimated message

m̂

Figure C.1: Communication system with discrete, memoryless channel in the centre.
Extending an illustration by Cover and Thomas (2006, p. 184).

express the probability of observing a specific output y given input x. The
channel is memoryless because p(y|x) only depends on the current input, and
not on previous inputs or outputs. The measures introduced in the rest of this
appendix can be used to quantify the information that can be expressed with
a specific input- and output alphabet, and to assess how much information
can be passed through the channel with an optimal or suboptimal encoding.
In a more abstract sense, the measures are means to analyse the distribution
of- and relationship between arbitrary random variables.

Self-
Information

Information theory defines information as the reduction of uncertainty in
the value of a random variable. The intuition behind this is that learning
about a very unlikely outcome is more informative than learning about a
likely one. This is captured in the concept of self-information:

I(x) = − log p(x) (C.1)

We use the binary logarithm by default and thus measure information in bits.
The self-information satisfies three properties: (i) more likely outcomes convey
less information and a guaranteed outcome provides us with zero information;
(ii) less likely outcomes yield higher information; (iii) when X⊥⊥Y, informa-
tion is additive because log p(x, y) = log p(x)p(y) = log p(x) + log p(y).

EntropyThe self-information only considers a single outcome. The entropy, arguably
the central measure in information theory, quantifies the uncertainty of an
entire probability distribution as the expected amount of information in
values drawn from that distribution:

H(X) = EX∼p[I(x)] = EX∼p[− log p(x)] (C.2)

= −∑
x

p(x) log p(x) (C.3)

By convention we assume that 0 log 0 = 0. The entropy represents a lower
bound on the average amount of bits required to accurately describe the state
of a random variable X with the best possible compression. It is fundamental
to communication theory, in that it gives us the shortest average length of
a lossless message encoding based on the alphabet X . In other words, it
represents the limit to lossless compression. The entropy is non-negative and
reaches its minimum at zero if the random variable is guaranteed to yield
a specific outcome. It is maximum if X is uniformly distributed, i.e. X ∼ U ,
and then simplifies to log |X|. Fig. C.2 illustrates this property for a binary
variable, e.g. a coin flip, with X = {0, 1} and p(X = 0) = 1− p(X = 1).

Joint EntropyThe joint entropy of a set of random variables X1, X2, . . . , Xn follows directly
by treating the set as a single variable in Eq. C.3:

H(X1, X2, . . . , Xn) = − ∑
x1,...,xn

p(x1, . . . , xn) log p(x1, x2, . . . , xn) (C.4)
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Figure C.2: Entropy of a binary random variable X = {0, 1} measured in bits.

Note that the entropy is free of semantics in that it only depends on the
distribution of random variables and not on their specific values.

Conditional
Entropy

The conditional entropy measures the average amount of information re-
quired to describe Y if the value of X is known. It is given by the expectation
over the entropies of conditional distributions:

H(Y|X) = EX∼p[H(Y|x)] = ∑
x

p(x)H(Y|x) (C.5)

= −∑
x

p(x)∑
y

p(y|x) log p(y|x) (C.6)

= −∑
x,y

p(x, y) log p(y|x) (C.7)

= −EX,Y∼p[log p(y|x)] (C.8)

Here we applied Eq. A.15 to Eq. C.6 to rewrite the conditional entropy as an
expectation over the joint distribution of X and Y. Note that H(Y|X) = 0 if
the value of Y is completely determined by X. Furthermore, H(Y|X) = H(Y)
if and only if Y and X are independent random variables, i.e. X ⊥⊥ Y.

Chain Rule
for Entropy

The chain rule for entropy allows us to write the joint entropy as the sum of
conditional entropies:

H(X1, X2, . . . , Xn) =
n

∑
i=1

H(Xi|Xi−1, Xi−2, . . . , X1) (C.9)

Applied to a pair of random variables, we get the two alternative expressions:

H(X, Y) = H(Y) + H(X|Y) (C.10)
= H(X) + H(Y|X) (C.11)

The entropy of two variables thus corresponds to the entropy of one variable
plus the conditional entropy of the other. If X ⊥⊥ Y, we find that H(X, Y) =
H(X) + H(Y) because H(Y|X) = H(Y) as shown above.
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Relative
Entropy

The previous measures apply to a single distribution over one or a set
of random variables. The relative entropy (or Kullback-Leibler divergence) in
contrast measures the pseudo-distance between two distributions p(x) and
q(x) defined on the same state space X :

D(p||q) = EX∼p

[
log

p(x)
q(x)

]
= ∑

x
p(x) log

p(x)
q(x)

(C.12)

For this definition, we use the convention 0 log 0
q = 0 and p log p

0 = ∞. We can
interpret the relative entropy as the inefficiency of assuming p if the actual
distribution is q. It is non-negative, and zero if p = q. In communication, it
represents the expected number of extra bits required to encode samples from
p(X) using a code optimised for q(X). Importantly, the relative entropy is not
a proper distance metric because it is not symmetric, i.e. D(p||q) 6= D(q||p).

Mutual
Information

The mutual information measures the amount of information shared between
two random variables X and Y. It is the relative entropy between the joint
distribution p(X, Y) and the factorisation p(X)p(Y):

I(X; Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(C.13)

= ∑
x,y

p(x, y) log
p(x|y)
p(x)

(C.14)

Here, we use the convention 0 log 0
p(x)p(y) = 0 and p(x, y) log p(x,y)

0 = ∞, and
Eq. C.14 results from applying Eq. A.9 to Eq. C.13. By measuring the distance
between the left- and right-hand side of the two equivalent stochastic inde-
pendence conditions in Eqs. A.10 and A.12, the mutual information quantifies
how much the variables X and Y deviate from stochastic independence. We
can rewrite the mutual information as a difference of entropies:

I(X; Y) = ∑
x,y

p(x, y) log
p(x|y)
p(x)

(C.15)

= ∑
x,y

p(x, y) log p(x|y)−∑
x,y

p(x, y) log p(x) (C.16)

= −∑
x

p(x) log p(x)−
(
−∑

x,y
p(x, y) log p(x|y)

)
(C.17)

= H(X)− H(X|Y) = H(Y)− H(Y|X) (C.18)

Here, we have applied basic logarithmic identities and marginalised the right-
hand joint distribution in Eq. C.16 to get the entropy in Eq. C.17. The mutual
information is symmetric, i.e. I(X; Y) = I(Y; X), and we get I(X; X) = H(X).
Moreover, it is also non-negative because H(X|Y) ≤ H(X). Fig. C.3 illustrates
the relationship between different entropies and the mutual information.

The mutual information is zero if X and Y are stochastically independent,
and larger otherwise. We can furthermore quantify the deviation from con-
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Figure C.3: Venn diagram describing the relationship between different entropies
and mutual information. Adopted from Cover and Thomas (2006, p. 20).

ditional independence, given a third variable Z, by means of the conditional
mutual information which marginalises over the conditioning variable:

I(X; Y|Z) = ∑
z

p(z)∑
x,y

p(x, y|z) log
p(y|x, z)
p(y|z) (C.19)

= EZ I(X; Y|z) (C.20)

Applied to two (sets of) variables in a classic BN, the mutual information
measures their non-linear correlation, but is not sensitive to the direction of
influence, i.e. to causality between the variables.

Information
Flow

As a crucial ingredient for the definition of empowerment maximisation
(EM), the central model of IM in this thesis, we need a means to measure
how information is processed in a system. In other words, we require a means
to quantify the (directional) information flow2 between random variables X, Y
as the amount of information about X that is causally transmitted from X
to Y. To capture this directionality, we rely on causal BNs and interventional
probability distributions. In analogy to the conditional mutual information
in Eqs. C.19 and C.20, Ay and Polani (2008) quantify information flow by
measuring the relative entropy between the left- and right-hand side of the
causal independence condition in Eq. B.5. They define the information flow in a
causal BN between variables X and Y, imposing a third variable Z, as:

I(X → Y|
˙
Z) = ∑

z
p(z)∑

x
p(x|

˙
z)∑

y
p(y|

˙
x,

˙
z) log

p(y|
˙
x,

˙
z)

∑x′ p(y|
˙
x′,

˙
z)p(x′|

˙
z)

(C.21)

= ∑
z

p(z)∑
x,y

p(x, y|
˙
z) log

p(y|
˙
x,

˙
z)

p(y|
˙
z)

(C.22)

= EZ I(X → Y|
˙
z) (C.23)

The differences between this and Eqs. C.19 and C.20 are rather subtle. The
standard mutual information is based on probability distributions condi-

2 Information flow is often confused with the transfer entropy, but the quantities only coincide
in specific situations. Cf. Lizier and Prokopenko’s (2010) analysis for a thorough distinction.
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tioned on observations. The information flow in contrast quantifies the dis-
tance between the two distributions resulting from the interventional queries
p(y|

˙
x,

˙
z) and p(y|

˙
z); it becomes zero if intervening on X after having inter-

vened on Z makes no difference to the distribution of Y, thus confirming
causal conditional independence (Y ⊥⊥ X) |

˙
Z (cf. Eq. B.5). If we condition on

the empty set, i.e. for Z = ∅, we get I(X → Y), the deviation from (unimposed)
causal independence (Y ⊥⊥ X) (cf. Eq. B.6). If Z = V \ (X

⋃
Y), with V being

the set of all nodes in the network, we quantify the direct (unmediated) causal
effect of X on Y: it is only larger than zero if there is a causal effect between
X and Y which is not mediated by any other set of variables in V. In contrast
to the mutual information, information flow is not symmetric.

A communication channel (Fig. C.1) represents a causal mechanism between
input X and output Y. We thus express this potentially noisy mapping with
the interventional distribution p(Y|

˙
X). The information flow then corres-

ponds to the average amount of information transmitted through the channel.
By applying Eq. C.18, we can understand the information transmitted through
a given channel as the average uncertainty in the input X, reduced by the
knowledge of a specific output Y. We thus measure the amount of information
which the received signal on average contains about the transmitted one. This
reflects the prior definition of information as the reduction of uncertainty.

Channel
Capacity

This measure for information flow quantifies how much information on
average passes through a given channel for a fixed input distribution p(X).
The channel capacity for a memoryless channel corresponds to the maximum
amount of information that we can transmit for any specific distribution,
chosen from all possible input distributions:

C = max
p(x)

I(X → Y) (C.24)

The channel capacity measures the ‘maximum amount of error-free informa-
tion that can be transmitted over the channel per unit time’ (MacKay, 2003,
p. 149), thus answering another fundamental question of communication
theory. Calculating the channel capacity requires to find the optimal p∗(X)
(we indicate optimal solutions with an asterisk) which induces the maximum
information flow for the given interventional channel distribution p(Y|

˙
X).

Given such a distribution, the iterative Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972) yields the channel capacity for a memoryless channel with
arbitrary precision, albeit at a high computational expense.

In the final Appx. D, we apply the mathematical concepts introduced
in Appxs. A and B to formalise the interaction of an agent with their en-
vironment in a way which allows for information-theoretic analysis, and
thus for the formalisation of various models of IM, including empowerment
maximisation (EM) as the central model in this thesis.



DPERCEPTION-ACTION LOOP

Here, we introduce the perception-action (PA)-loop as a specific model of an
agent’s interaction with their environment, which is used throughout this
thesis, in corresponding publications, and in related work. Our formalisation
draws on joint work (Biehl et al., 2018), but both the concept and its original
formalisation date further back. We begin by sketching this heritage.

CharacteristicsWhen formalising an agent-environment interaction as a PA-loop, one (i)
considers neither the agent nor the environment as passive, but as coupled
systems that causally influence each other in a temporally expanded, closed-loop
interaction: an agent performs actions which contribute to changes in their
environment, which in turn are (partially) perceived through their sensors,
leading to changes in agent-internal states, e.g. memory, and causing new
actions. Vice versa, the environment impacts on the agent’s sensor, causing
a reaction which contributes to changes in the environment. This view (ii)
expresses a holistic understanding of the environment dynamics and the
behaviour of the agent; neither can be understood in an isolated way. At the
same time, it distinguishes agent and environment, thus (iii) emphasising an
agent’s embodiment as a unique and limited coupling with the world, (iv) while
allowing for a loose specification of the agent’s boundary, a task which remains
problematic (cf. Biehl, Ikegami & Polani, 2016).

Conceptual
Origins

The ideas inherent to the concept of a PA-loop can be traced back to at
least the 19th and early 20th century. The physiologist Sechenov proposes a
holistic perspective on an agent and their environment as early as 1861:

‘The organism cannot exist without its supporting external en-
vironment; hence a scientific definition of the organisms should
include also the environment which influences it.’
(Sechenov, 1965, p. 122; as cited in Lagerspetz, 2001)

The biologist and early cyberneticist von Uexküll strengthens this view by
opposing the mechanistic conception of biology of his time, which understood
organisms as passive subjects that conform to the laws of material causality.
Influenced by Kant (1790/1995, § 64), he considers organisms active agents:

‘But we who still hold that our sense organs serve our perceptions,
and our motor organs our actions, see in animals as well not
only the mechanical structure, but also the operator, who is built
into their organs as we are into our bodies. We no longer regard
animals as mere machines, but as subjects whose essential activity
consists of perceiving and acting.’ (Von Uexküll, 1992, p. 6).

Von Uexküll (1920) has developed a non-anthropocentric theory of meaning,
allowing us to understand organisms as embodied agents that respond and
act in their world in ways that are meaningful from their own perspective.
Based on his empirical studies of reflex arcs in marine invertebrates, he has

276
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Figure D.1: Perception-action loop with and without agent memory. Both illustra-
tions show two slices of the causal Bayesian network unrolled in time.

shown that organisms engage in circular, functional interactions1 with their
environment (Von Uexküll, 1920, pp. 97), thus shaping the understanding of
the agent-environment interaction as a coupled, closed-loop system. This holistic
perspective and his agent-centric account of sense-making have influenced
cybernetics (e.g. via Ashby, 1954, as discussed by Lagerspetz, 2001), ecological
theories of perception (e.g. Gibson, 1979), and embodied (Brooks, 1991) as
well as theories of enactive cognition (Maturana & Varela, 1991).

Formal
Origins

These theories in turn have influenced the formalisation of the PA-loop e.g.
by Beer (1995), who has modelled the closed-loop interaction of an embodied
agent with their environment as two coupled, dynamical systems. Agent
and environment are considered mutual sources of perturbation which affect
their joint future interaction. Of particular interest for us is Touchette and
Lloyd’s (2004) formalisation of closed-loop control as a (causal) BN. With
the goal to determine information-theoretic limits to optimal control and
observation, they have interpreted the arrows between sensor, actuator and a
controlled variable as communication channels2, which allows for the analysis
of information flow between these variables. However, they only model 1-step
control, without reference to the concepts of agent or environment3. Klyubin,
Polani and Nehaniv (2004) have reconciled Beer’s dynamic systems model
with Touchette and Lloyd’s information-theoretic framework by assigning
their abstract control components the semantics of an agent interacting with
their environment, and by unrolling this interaction in time. In addition, they
have introduced an agent’s memory, which can also serve as a placeholder
for other agent-internal components. Their formalisation has been used in
subsequent studies (e.g. Klyubin, Polani & Nehaniv, 2007; Bertschinger et al.,
2008; Klyubin, Polani & Nehaniv, 2008; Ay et al., 2012; Ghazi-Zahedi & Rauh,
2015; Biehl & Polani, 2017), and our account is derived from it.

1 Some interpret these functional cycles (‘Funktionszyklen’) as mere sensorimotor loops, while
others consider them inseparable from Uexküll’s theory of meaning (cf. De Jesus, 2016). This
distinction does not matter to us, as functional cycles would subsume sensorimotor loops.

2 The analogy between control and communication has been pointed out by other authors before,
but it has only been formalised by Touchette and Lloyd in 2000. The information-theoretic
treatment of sensors and actuators is already implicit in Ashby’s (1956) earlier work.

3 In contrast to Beer (1995), Touchette and Lloyd’s (2000) control-theoretic perspective does
not relate to the semantics of an agent interacting with their environment. In particular their
‘controlled system’ could be a part of a larger environment which is not accounted for as a
whole. The PA-loop as formalised here accounts for the whole environment.
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Formal
Definition

We first formalise the PA-loop for the slightly more complex case where the
agent has memory, and then simplify it. We assume that the agent is part of a
larger agent-environment system which is discrete in space (i.e. its variables
take on discrete values) and discrete in time. We then define the PA-loop as a
causal BN C = (VC, PC), with the graph structure shown in Fig. D.1a.

We assume that the agent-environment system originates at some ‘big
bang’ moment t = 0. The figure shows a brief slice of two time-steps from
the initialisation onwards, and a further two-step slice later on with generic
time indices. The set of nodes VC represents a partitioning of the overall
agent-environment system into the following random variables:

• Agent sensor S with state space S

• Agent memory M with state spaceM

• Agent actuator A with state space A

• The rest of the system R with state space R

This partitioning realises an agent-centric perspective where everything that
is not captured by the agent’s sensor, memory and actuator is encapsulated in
the rest of the system or agent-external environment. By ‘sensor’ and ‘actuator’,
we mean the values returned by or fed into either a physical or virtual sensor
or actuator, respectively. Recall from Appx. B that the nodes of a BN can
represent single, but also vector-valued and sets of random variables. Thus, S
can encompass several different sensors, A different actuators, etc.

The set PC describes the causal dependencies between these random vari-
ables by means of interventional probability distributions (cf. Appx. A).

• Sensor dynamics p(st|
˙
rt)

• Memory dynamics p(mt|
˙
st,

˙
mt−1,

˙
at−1)

• Initial memory dynamics p(m0|˙
s0)

• Action policy p(at|
˙
mt)

• Environment dynamics p(rt+1| ˙
at,

˙
rt)

• Initial environment state p(r0)

They describe the following causal dynamics: At time t = 0, the rest of the
system is initiated from a state R0, which is then perceived through the
agent’s sensor S0. The latter influences the agent’s memory state Mt. At any
subsequent time t > 0, the agent’s memory is additionally shaped by the past
memory state Mt−1 and past action At−1. The agent chooses a next action
At based on its memory Mt. This action then affects how the rest of the
system transitions from its current state Rt to its new state Rt+1. The new
state again impacts on the sensor, and the system keeps looping indefinitely.
These distributions realise the Markov property, i.e. the state of the system at
time t + 1 only depends on the system’s state at the prior time-step t.

To fully define the PA-loop, we have to specify all state spaces and interven-
tional distributions given above, and we do so for each individual experiment
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in the corresponding chapter. We assume that state spaces and interventional
distributions are time-homogeneous, i.e. that they are invariant with respect to
the current time-step. The dynamics at t = 0 are excluded from this assump-
tion. A common, additional assumption is that the initial state r0 of the rest
of the system is given. Its distribution can then be specified by Kronecker’s
delta (cf. Eq. A.7), i.e. p(ri) = δri ,r0 ∀ri ∈ R. Given time-homogeneity and
a full specification of the PA-loop, we can use Eq. B.3 to define the joint
distribution for the time slice 0, . . . , T. To this end, we use the shorthand r�T
for the sequence of states (r0, r1, . . . , rt, rt+1, . . . , rT):

p(r�T, s�T, a�T, m�T) =

[
T

∏
t=1

p(at|
˙
mt)p(mt|

˙
st,

˙
mt−1,

˙
at−1)p(st|

˙
rt) (D.1)

× p(rt|
˙
rt−1,

˙
at−1)

]
p(a0| ˙

m0)p(m0|˙
s0)p(s0|˙

r0)p(r0)

Memoryless
Perception-
Action
Loop

We use the previous formalism for a generic formalisation of EM as our
central model of IM. For our applied contributions though, we make the
simplifying assumption that agents do not have memory, with the resulting
PA-loop shown in Fig. D.1b. The causal dependencies in PC are:

• Sensor dynamics p(st|
˙
rt)

• Action policy p(at|
˙
st)

• Environment dynamics p(rt+1| ˙
at,

˙
rt)

• Initial environment state p(r0)

With these simplified causal dependencies, the factorisation of the joint
distribution also simplifies to:

p(r�T, s�T, a�T) =

[
T

∏
t=1

p(at|
˙
st)p(st|

˙
rt)p(rt|

˙
rt−1,

˙
at−1)

]
(D.2)

× p(a0|˙
s0)p(s0|˙

r0)p(r0)

Benefits of
the Formalism

The formalisation of the PA-loop as a causal BN (Klyubin, Polani & Ne-
haniv, 2004) comes with a range of benefits. Its causal probabilistic structure
allows for the consistent measurement of information-theoretic quantities,
specifically information flow (cf. Appx. C): we can trace how information is
captured by the agent’s sensors, persisted in memory, and fed back into the
environment via their actions, to be captured again later (Klyubin, Polani
& Nehaniv, 2007). We can thus analyse the effect of sensing on acting and
vice-versa in a unified framework. The PA-loop complements the universality
of information theory (cf. Appx. C) in that the abstraction into constraints
on the agent’s embodiment is agnostic with respect to a specific information
processing architecture, e.g. receptive fields or layers of neurons (ibid.). The
PA-loop can be used to model the true ‘physical’ dynamics underlying the
agent-environment system, but it can also serve as an epistemic, subjective
model of these dynamics, estimated by the agent.



perception-action loop 280

EmbodimentThe PA-loop provides us with two perspectives on an agent’s embodiment.
Ziemke (2003) points out substantial ambiguity in how this term is under-
stood, and we adopt the arguably broadest view that a system is embodied if
it is ‘structurally coupled’ to their environment (Maturana & Varela, 1987).
We extend this to what Ziemke (2003) refers to as sensorimotor embodiment,
where the coupling is facilitated by the sensors and actuators of either a
virtual or physical agent body. This coupling is formally given by:

p(st+1, . . . , sT|at, rt) (D.3)

Note that we do not account for any other ‘perturbatory channels’ (Quick et
al., 1999, p. 2) between the agent and the environment other than their sensors
and actuators (cf. Ghazi-Zahedi & Rauh, 2015, for a more comprehensive
account). To fully specify the embodiment, we need to define the state spaces
S ,A and R as well as the sensor and environment dynamics. Since the state
of the world R is not directly accessible to an agent, this corresponds to
an objective view of their embodiment. In our definition of EM in Sec. 3.2,
we distinguish a subjective perspective for which an agent constructs their
embodiment by inference. (Eqs. 3.5–3.7).

Relationship
to POMDPs

We highlight further properties of the PA-loop by comparing it against
partially observable Markov decision processes (Sutton & Barto, 2018, p. 466), a
formalism that especially reinforcement learning (RL) researchers might be
more familiar with. The definition of such processes does not entail memory
dynamics, and crucially, no action policy. They describe a sequential decision
problem to be solved by an optimal policy that maximises reward. This solution
is not part of the process definition. The PA-loop, more holistically, defines the
concrete interaction between an agent and their environment, by incorporating
their specific action policy and memory dynamics. As a minor difference, a
partially observable Markov decision process defines an intrinsic or extrinsic
reward function (cf. Barto, 2013; and Ch. 2) and a discount factor explicitly,
both of which can be implicitly captured in the PA-loop’s policy definition.
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