3,092 research outputs found

    Relaxed Spatio-Temporal Deep Feature Aggregation for Real-Fake Expression Prediction

    Get PDF
    Frame-level visual features are generally aggregated in time with the techniques such as LSTM, Fisher Vectors, NetVLAD etc. to produce a robust video-level representation. We here introduce a learnable aggregation technique whose primary objective is to retain short-time temporal structure between frame-level features and their spatial interdependencies in the representation. Also, it can be easily adapted to the cases where there have very scarce training samples. We evaluate the method on a real-fake expression prediction dataset to demonstrate its superiority. Our method obtains 65% score on the test dataset in the official MAP evaluation and there is only one misclassified decision with the best reported result in the Chalearn Challenge (i.e. 66:7%) . Lastly, we believe that this method can be extended to different problems such as action/event recognition in future.Comment: Submitted to International Conference on Computer Vision Workshop

    EmoNets: Multimodal deep learning approaches for emotion recognition in video

    Full text link
    The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches which consider combinations of features from multiple modalities for label assignment. In this paper we present our approach to learning several specialist models using deep learning techniques, each focusing on one modality. Among these are a convolutional neural network, focusing on capturing visual information in detected faces, a deep belief net focusing on the representation of the audio stream, a K-Means based "bag-of-mouths" model, which extracts visual features around the mouth region and a relational autoencoder, which addresses spatio-temporal aspects of videos. We explore multiple methods for the combination of cues from these modalities into one common classifier. This achieves a considerably greater accuracy than predictions from our strongest single-modality classifier. Our method was the winning submission in the 2013 EmotiW challenge and achieved a test set accuracy of 47.67% on the 2014 dataset

    Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition

    Full text link
    Spatio-temporal feature encoding is essential for encoding the dynamics in video sequences. Recurrent neural networks, particularly long short-term memory (LSTM) units, have been popular as an efficient tool for encoding spatio-temporal features in sequences. In this work, we investigate the effect of mode variations on the encoded spatio-temporal features using LSTMs. We show that the LSTM retains information related to the mode variation in the sequence, which is irrelevant to the task at hand (e.g. classification facial expressions). Actually, the LSTM forget mechanism is not robust enough to mode variations and preserves information that could negatively affect the encoded spatio-temporal features. We propose the mode variational LSTM to encode spatio-temporal features robust to unseen modes of variation. The mode variational LSTM modifies the original LSTM structure by adding an additional cell state that focuses on encoding the mode variation in the input sequence. To efficiently regulate what features should be stored in the additional cell state, additional gating functionality is also introduced. The effectiveness of the proposed mode variational LSTM is verified using the facial expression recognition task. Comparative experiments on publicly available datasets verified that the proposed mode variational LSTM outperforms existing methods. Moreover, a new dynamic facial expression dataset with different modes of variation, including various modes like pose and illumination variations, was collected to comprehensively evaluate the proposed mode variational LSTM. Experimental results verified that the proposed mode variational LSTM encodes spatio-temporal features robust to unseen modes of variation.Comment: Accepted in AAAI-1

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    FusionSense: Emotion Classification using Feature Fusion of Multimodal Data and Deep learning in a Brain-inspired Spiking Neural Network

    Get PDF
    Using multimodal signals to solve the problem of emotion recognition is one of the emerging trends in affective computing. Several studies have utilized state of the art deep learning methods and combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG), skin temperature, along with facial expressions, voice, posture to name a few, in order to classify emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal data, which is essentially the nature of the data encountered in emotion recognition problem, in an efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube framework, which employs an evolving SNN architecture to classify emotional valence and evaluate the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our work consists of facial expressions along with physiological signals such as ECG, skin temperature, skin conductance, respiration signal, mouth length, and pupil size. We perform classification under the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level fusion, which is comparable to other deep learning methods. We achieve this accuracy even without using EEG, which other deep learning methods have relied on to achieve this level of accuracy. In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion recognition problem with multimodal data and also provide directions for future research utilizing SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is requires incrementally trainable on new data in an adaptive way. It only one pass training, which makes it suitable for practical and on-line applications. These features are not manifested in other methods for this problem.Peer reviewe

    Discovering Gender Differences in Facial Emotion Recognition via Implicit Behavioral Cues

    Full text link
    We examine the utility of implicit behavioral cues in the form of EEG brain signals and eye movements for gender recognition (GR) and emotion recognition (ER). Specifically, the examined cues are acquired via low-cost, off-the-shelf sensors. We asked 28 viewers (14 female) to recognize emotions from unoccluded (no mask) as well as partially occluded (eye and mouth masked) emotive faces. Obtained experimental results reveal that (a) reliable GR and ER is achievable with EEG and eye features, (b) differential cognitive processing especially for negative emotions is observed for males and females and (c) some of these cognitive differences manifest under partial face occlusion, as typified by the eye and mouth mask conditions.Comment: To be published in the Proceedings of Seventh International Conference on Affective Computing and Intelligent Interaction.201
    corecore