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1 Abstract

Using multimodal signals to solve the problem of emotion recognition is one of
the emerging trends in affective computing. Several studies haved utilized state of
the art deep learning methods and combined physiological signals such as
electrocardiogram(EEG), electroencephalogram(ECG), skin temperature along
with facial expressions, voice, posture to name a few , to classify emotions. Spik-
ing neural networks (SNNs) represent the third generation of neural networks
and employ biologically plausible models of neurons. SNNs have been shown to
handle in an efficient way spatio-temporal data, which is essentially the nature of 
data encountered in emotion recognition problems. In this work, for the first 
time, we propose the application of SNNs to solve the emotion recognition
problem with multimodal datasets. Specifically, we use the NeuCube framework, 
which employs an evolving SNN architecture, to classify emotional valence and 
evaluate the performace of our approach on the MAHNOB-HCI dataset. The
multimodal data used in our work consist of facial expressions along with phys-
iological signals such as ECG, skin temperature, skin conductance, respiration 
signal, mouth length and pupil size. We perform classification under Leave-One-
Subject-Out (LOSO) cross validation mode. Our results show that , the proposed
approach achieves an accuracy of 73.15% for classifying binary valence, when
applying feature-level fusion, which is comparable to other deep learning
methods. We achieve this accuracy even without using EEG data, which other 
deep learning methods have relied on to achieve this level of accuracy. In
conclusion we have demonstrated that the SNN can be successfully used for
solving the emotion recognition problem with multimodal data and also provide 
directions for future research utilizing SNN for affective computing. In addition to 
the good accuracy, the SNN recognition system is incrementally trainable on new data 
in an adaptive way and requires only one pass training, which makes it suitable for 
practical and on-line applications. These features are not manifested in other methods 
for this problem. 

2 Introduction

The central aim of affective computing is to enable seamless communication
between humans and computers by developing systems that can detect and
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respond to the various affective states of humans [1]. Affective computing is an 
interdisciplinary field of research involving expertise from computer science, 
psychology, social and cognitive sciences. Affect recognition has important 
applications in several fields such as medicine [2], driver fatigue monitoring, 
human-computer interaction, sociable robotics [3] and security systems, to name 
a few. Modelling affect can be clasified into three categories: categorical; di-
mensional; and components. Categorical models classify emotions into a set of 
discrete classes, which are easy to describe and these include six basic emotions 
such as happiness, sadness, fear, anger, disgust and surprise. Owing to its sim-
plicity, categorical models have been extensively utilized in affect research. In 
contrast, dimensional models represent emotion as a point in multidimensional 
space, where the dimensions include valence, activation and control, allowing the 
description of more complex and subtle emotions. However, such 
multidimensional space can pose significant challenge to an automatic emotion 
recognition system and thus researchers have mostly used the simplified two-
dimensional model of arousal and valence proposed in [4], where arousal ranges 
intensity of emotion from calm to excited, and valence ranges from unpleasant 
to pleasant [5]. 
  The component model of emotions arrange emotions in a hierarchical fashion, 
where complex emotions can be derived from the combination of a pair of basic 
emotions. The most popular component model proposed by Plutchik 
[6] is based on evolutionary principles and has eight basic bipolar emotions.

Affect can be expressed via facial expression, body movements, voice be-
havior, gestures and an array of physiological signals such as heart rate, sweat, 
pupil diameter, brain signals to mention a few. The problem of recognizing 
emotions by utilizing facial expressions from videos and static images have been 
addressed by several studies [7, 8, 9]. Advances in deep learning methodolo-
gies have created huge interest in application of such methods in facial emotion 
recognition (FER) [10, 11, 12, 13, 14], most of which are based on supervised 
learning. The methods do not allow incremental, adaptive learning on new 
data and are not suitable for on-line applications. For an excellent overview 
of the application of deep learning and as well as shallow learning approaches 
to FER , the reader is directed to [15] and the references there in.

Spiking neural networks (SNNs) represent the third-generation of neural 
networks, modelling neurons and interactions between them in a biologically 
more realistic manner compared to second-generation neural networks based on 
ANNs. SNNs are an ideal choice to handle the emotion recognition task from 
video data, given their ability to handle spatio-temporal data effectively [16](see 
section 5 for details).

In this work, we propose to build FER system using SNNs. To this end, we use 
the NeuCube framework (Kasabov2014neucube), which is a type of evolving SNN 
(eSNN). In this paper we develop an encoding method to map the continuous 
facial feature values to spikes based on population coding. We use the data from 
Mahnob-HCI dataset to test the NeuCube framework for the classification of 
binary valence in response to video stimuli.

The structure of the paper is organized as follows. In section 3 we provide some 
background literature on various data modalities used in affect detection,
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whereas in section 4 we describe strategies for multimodal data fusion. In
section 5 we provide some background on SNN and the NeuCube framework.
Section 6 details the methodology used in our work and section 7 presents the
results. In section 8 we discuss our results and in section 9 direction for future
work and conclude the paper.

3 Signals for affect detection

3.1 Facial expression

One of the immediate and natural ways for humans to communicate their emo-
tions is through facial expressions, which constitute about 55 % of the infor-
mation communicated during face to face human interaction [17]. Thus, affect
research has primarily focussed on detecting emotions from the face. Research
on facial emotions have shown that the six basic emotions such as fear, anger,
sadness, enjoyment and disgust can be detected with facial expressions[18, 19]
and dectecting an emotion is equivalent to detetecting the associated proto-
typic facial expression. Based on the Facial Action Coding System (FACS),
which originally described 44 single action units (AU) including head and eye
movements, with each action unit linked with an independent motion on the
face and the correponding muscles, for example lip suck motion with the muscle
orbicularis oris [20]. Several deep learning techniques have been used to build
automatic facial emotion recognition (FER) system , including deep boltzmann
machine (DBM), deep belief networks (DBNs) [21, 22, 23], convolutional neural
networks (CNNs) [24, 25, 26, 27, 11], auto-encoders [28, 29, 30] and recurrent
neural networks (RNNs)to mention a few.

3.2 Speech

Affective information from speech can contain lingusistic and paralinguistic fea-
tures, which refer to what is said and how it is said, respectively. Although
speech is a fast and efficient method of communication which can be exploited
in affect research, detecting the emotional state of the speaker using speech
signal is still a significant challenge. There is no clarity on which features of
the speech signal are most powerful is distinguishing different emotions. It has
also been shown that, compared to facial expressions, the accuracy of affect
detection from speech is lower [31]. For instance, the basic emotions such as
sadness, anger and fear can be recognized using speech, where as disgust is
hard to detect [1]. Moreover, cultural differences among speakers has not been
adressed thoroughly with most of the affect research involving speech focussing
on monolingual emotion classification [31]. The features that are typically ex-
tracted from speech signal include both global and local features, Local features
refer to pitch and energy extracted from small segments into which a speech
signal is typically divided to make it stationary, whereas global features refer
to statistics of all the local features extracted from a long signal.Studies have
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shown that global features have better classification accuracy than local features
[32, 33, 34]. However, studies have shown that global features cannot distin-
guish between emotions that have similar arousal [35] and may prove to be
sub-optimal when using classifiers such as Hidden Markov Model (HMM) and
Support Vector Machines (SVM) due to insufficient number of training vectors
[31]. Since the properties of the different speech sounds can be altered by dif-
ferent emotions , some studies have also explored the benefits of phoneme-level
modeling for the classification of emotional states from speech rather than using
the prosodic features such as pitch and energy [36]. Their results showed that
the using phoneme-class classifiers outperformed HMM classifiers just based on
global features. Apart from using HMM or SVM classifiers, several deep learning
techniques have been explored for emotion recognition from speech signls includ-
ing DBM [37, 38], auto-encoders [39, 40], DBNs[41, 42] and CNNs [43, 44, 45],
to cite a few. Despite the aforementioned challenges, speech is still an important
signal that can be used for affect detection as it is non-intruive and has high
temporal resolution.

3.3 Posture and body movements

In comparison to speech and facial expression, perceiving emotions through
body movements and postures is a relatively less explored topic in affect re-
search. In fact, 95 % of the literature in research on human emotions focusses
on facial expressions and less than 5 % on speech and other physiological sig-
nals with the remaining little of body movements. Several studies in the past
have shown that body movements and postures can contribute to the recogni-
tion of emotional states [46, 47], with perhaps the most influential work in this
topic dating back to the second half of 19th century by Charles Darwin [48].
Body postures may offer certain advantages in affect detection given the multi-
ple degrees of freedom human body posseses, which can aid in communication
of emotions and susequently affect detection, even at long distances, at which
facial emotions are unreliable [49], indicating that postures contain information
not present in facial expressions. Another advantage of posture-based affect
system could be that in comparison to facial expression which may be inten-
tionally controlled, postures and body movements are unintentional and thus
less susceptible to social editing [1]. In a study on deception by Eckman and
Friesen [50], it was shown that liars were less successful at deception through
body movements compared to more controlled channels of communication such
as facial emotions, which they referred to as nonverbal leakage. Gestures, which
can be defined as collection of body movements or actions involving head, hands
and other parts of the body allow the communication of a range of thoughts and
emotions. Some of the basic gestures have been shown to be similar across the
cultures. Given the advantages of this non-verbal communication channel, rela-
tively few studies have utilized deep or machine learning framework to recognize
emotions using body movements, postures and gestures [51, 52].
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3.4 Physiological signals

Physiological signals such as electroencephalography (EEG), electrocardiogram
(ECG), electromyogram (EMG), skin conductance, also known as Galvanic skin
response (GSR), skin temperature and as well as pupilary diameter can be used
for affect detection, apart from the above mentioned non-physiological signals.
Physiological signals for affect detection are typically acquired in a non-invasive
manner using wearable sensors. Heart rate (HR) and hear rate variability (HRV)
can be derived from ECG signals. Skin temperatue has been shown to be
a effective indicator of the emotional state as shown in [53] and it primarily
reflects the activity of the autonomic nervous system (ANS). Another modality
that captures the activity of ANS is the GSR or skin conductance , which can
be obtained by measuring the electrical potential on the skin after passing a
negligible amont of current. GSR is considered to be a reliable indicator of
arousal [54] , as it captures the activity of the sweat glands on the skin.

In affect research , ECG signals are typically recorded by a pair of elec-
trodes,which are a subset of lead I configuration comprising of 12 electrodes.
Features such as HR and HRV can be further derived from ECG that can re-
flect the activity of the sympathetic and parasympathetic branch of ANS system.
Both HR and HRV have been used in several studies to asses the mental states
of the subject [55, 56]. An EMG signal is reflective of the strength of muscle
movements and is typically recorded by a pair of electrodes placed on the body.
Studies have shown that when the subject is under some emotional stress, the
changes in the facial expression can be measured using EMG activity [57, 58].
Apart from using electrodes on the face, other studies have also looked into
measuring the activity of jaws or shoulders to idendity emotional states [59].

Breathing is another physiological process that is shown to be altered by
basic emotions such as happiness, sadness and anxiety [60]. Researchers have
observed rapid breathing during arousal state [61] and as well as changes in
respiratory pattern of subjects looking at photographs that induce emotions [60].
Respiratory rate is shown to be modulated by emotions, particularly anxiety
affecting the expiration rate [60], where as timing and volumetric aspects of
breathing are altered by various physical and mental stress [62].

Finally, EEG is probably the most widely used physioloical signal to study
emotion. EEG is a low cost technology compared to other neuroimaging modal-
ities and has very good temporal resolution. EEG electrodes record the activity
of a large number of synchronous neurons as potential difference on the scalp.
Several studies have utilized EEG for emotion recognition [63, 64, 65] and clas-
sification of emotional states of arousal, valence and dominance. In addition to
EEG, pupilary diameter size is also an indication of emotonal state, with sev-
eral studies reporting that the size of the pupil discriminates during and after
different kinds of emotional stimuli [66, 67].

Several deep learning methodologies have been utilized for emotion recog-
nition using physiological signals [68, 69, 70, 71]. For an exhaustive list of
literature, the reader is directed to [1]
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4 Multimodal affect recognition

Although majority of the machine learning and deep learning framework for af-
fect recognition uses data from one modality, i.r., video or audio or EEG, recently 
there has been a considerable interest in fusing data from the above mentioned
modalities. Multi-sensor data fusion can be highly advantageous in terms of
improving the reliability and accuracy of affect detection and furthermore, mul-
timodal systems have shown to outperform unimodal system as discussed in
[72]. Multimodal fusion involves combining data from many different types of
sensors and such fusion can be performed primarily at two distinct levels, known
as feature-level fusion and decision level fusion.

4.1 Feature-level fusion

In feature-level fusion approach (also known as early fusion), features derived
from different modalities are combined into a single feature vector, on which a
classifier can then be trained. It is well known that humans use and integrate
multiple sensory cues during face-to-face interaction to detect affective states and 
is the fundamental idea behind feature-level fusion [73]. The main advantage of
feature-level fusion is that correlation between multimodal features at an early
stage can lead to better performance, requiring only one learning phase on the 
feature vector. Several studies have utilized this approach for affect research
[74, 8, 75]. However, feature-level fusion also has several challenges. Since fea-
tures obtained from different modalities can have different time-scales, achieving
time synchronization to bring the features in same format can be difficult and
computationally expensive. Also, given the large feature set one obtains with
feature-level fusion, the classification accuracy can be severly affected if the
training dataset is limited. Furthermore, learning cross-correlation between the
heterogenous features can prove to be difficult [76].

4.2 Decision-level fusion

In decision-level fusion approach (also known as late fusion), first the decisions
based on features derived from each modality is obtained separately. A fused
decision vector is then obtained using the local decisions, which can be used
to obtain the final decision or classification [76]. The fundamental advantage
of decision-level fusion over feature-level fusion is that the decisions all have
the same format and hence can be fused easily, thus avoiding synchronization
issues. Furthermore, using decision-level fusion allows the application of optimal
classifier or method suited for each modality, thus providing more flexibility
compared to feature-level fusion [77]. Several studies have utilized decision-
level fusion for affect research [78, 79, 80] and it has been noted that researchers
prefer decision-level fusion over feature-level fusion [77].
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5 Spiking neural networks

Human brains encode information via discrete events known as action poten-
tials or spikes, following an all-or-none principle, where a neuron fires an action
potential if the stimulus crosses a certain threshold, else it remains silent. Due
to this binary nature of information representation , the human brain still out-
performs the existing artificial neural networks (ANNs) in terms of both energy
and efficiency [81, 82]. Compared to the traditional ANNs, spiking neural net-
works (SNNs) utilize a more biologically realistic models of neurons [83], thus
bridging further the gap between neuroscience and learning algorithms. SNNs
have shown the ability to integrate information from different dimensions such
as time, phase, frequency and as well as handle large volumes of data in an
adaptive and self-organized manner [84, 16],making them particularly suitable
to solve online spatio-temporal pattern recognition. SNNs have been shown to
be computationally more efficient than ANNs both theoretically [85, 86] and in
several real-world applications [87]. SNNs have been used in several real-world
learning tasks such as unsupervised classification of non-globular clusters [88],
image segmentation and edge detection [89], epileptic seizure detection with
EEG [90]. Furthermore, Bohte and colleagues devised a supervised learning
rule for the SNNs and denonstrated its application in the XOR classification
problem and several other benchmark datasets [87]. The evolving SNN (eSNN),
is a class of SNN that utilizes rank order learning [91] and was first proposed
in [92]. The eSNN handles spatio-temporal data by increasing the number of
spiking neurons in time to learn temporal patterns from data [93]. In addition
to the open evolving structure of eSNNs that facilitate addition of new vari-
ables and neuronal connections, eSNN have the advantage of fast learning from
large amounts of data and can interact with other systems actively . eSNNs
also allows the integration of various learning rules such as supervised learning,
unsupervised learning, fuzzy rule insertion and extraction, to mention a few and
are self-evaluating in terms of system performance. These aforementioned prop-
erties consitiute the evolving connectionist systems (ECOS) principles principles
on which the eSNN is based [94].

Since in the rank-order learning scheme, the synaptic weights are adjusted
only once making it not very efficient for spatio-temporal data, where there may
be a need to adjust synaptic weights based on the spikes arriving on the same
synapse over time. To overcome this disadvantage, an extension of eSNN known
as dynamic eSNN (deSNN) was introduced in [84] that combines rank-order 
learning with temporal learning rules such as spike-timing dependent plasticity
(STDP), which allows dynamic adjustment the synaptic weights . However,
both eSNN and deSNN do not encapsulate the structural information of the
brain in terms of neuronal locations and their connectivity, which may be crucial
for modelling spatio-temporal data . The NeuCube architecture, first proposed in
[95], aims at building a eSNN that incorporates structural and as well as
functional aspects of the brain along with utilizing STDP learning rules. The
following section gives a brief introduction to the NeuCube architechure. For a
more detailed introduction, the reader is directed to [95, 96, 97]
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5.1 NeuCube

It is well known that the information in human brain is processed at different
spatiotemporal levels ranging from molecular information processing to higher
order cogitive processes . Data can be acquired at different levels of these spa-
tiotemporal processes and an efficient learning method should be able to handle
complex spatio-temporal relation ship from brain data at different levels. Some
examples of spatio-temporal brain data (STBD) include EEG, functional mag-
netric resonance imaging (fMRI), diffusion tensor imaging (DTI), and positron
emission tomography (PET) to mention a few. Traditional methods such as sup-
port vector machines (SVM) or multilayer perceptron neural networks (MLP)
typically deal with the spatial or temporal aspects of brain data and cannot
handle the dynamic interaction between these processes [97]. Furthermore, they
cannot incorporate any structural prior knowledge of the brain or handle multi-
modal brain data. NeuCube [96] and also [94, 95,98,99] is a variant of eSNN , 
initially proposed to handle problems of spatio-temporal pattern recognition
in brain data such as EEG, functional magnetic resonance imaging (fMRI) to
cite a few, has been further developed to handle various other types of spatio-
temporal data such as audio-visual data, climate data, seismic data and
ecological data [99]. The typical framework of the NeuCube system comprises
of

1. An input encoding module, which converts the STBD into trains of spikes 
that captures temporal patterns present in the data. Various methods 
have been proposed to achieve this, including population coding [100], 
address event representation [101] and Bens Spike algorithm [94].

2. A three-dimensional SNN reservoir (3D-SNNr), which takes the spike trains 
as input . The 3D-SNNr contains neurons that have pre-defined spatial co-
ordinates and are modelled as leaky integrate and fire neurons. The initial 
structural connections between the neuroons can be established in several 
ways including small-world organization [102] or based on the DTI data. 
Several studies utilizing EEG, fMRI and MEG have demon-strated the 
presence of small-world connectivity in the brain [103, 104] and thus, this is 
the preferred initial setup for the spatial structure of 3D-SNNr. Based on 
the temporal association between the input spikes, connections between the 
neurons is modified using the spike timing dependent plasticity (STDP) 
rule. This is a deep unsupervised learning as deep connectionist structures of 
many neurons are created as a results of the learning in space and time [94].  

3. A classification module, which takes the spiking patterns from 3D-SNNr as 
its input to perform classification.

4. An optional, Gene Regulatory Network (GRN) for controlling the learning 
parameter and optimization of 3D-SNNr, exploiting the fact that spiking 
activity is influenced by the gene and protein dynamics.

The details on the implementation of the NeuCube-based SNN models 
for this study are  further described in section 6.6
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6 Methods

6.1 Mahnob Database

The MAHNOB-HCI dataset is a multi-modal database for affect recognition and
implicit tagging [105]. In this database, 27 subjects (16 females and 11 males)
aged between 19 and 40 years old were monitored while watching 20 stimulus
clips (34.9 to 117 seconds long) extracted from Hollywood movies and video
websites, such as YouTube and blip. The face video, audio and elicited physio-
logical signals (EEG, ECG, respiration amplitude, skin temperature, GSR and
gaze data) were acquired while watching the clips. ECG signal was obtained by
subtracting a measurement from the upper left corner of chest, under the clavi-
cle bone, from that one on left side of abdomen, below the last rib. Respiration
signal was obtained by a belt placed in the subject’s abdomen, skin temperature
was acquired by a temperature sensor placed at the subject’s little finger and
GSR was obtained by passing a negligible current between the electrodes on the
distal phalanges of the middle and index fingers of the subject. Gaze data was
acquired with Tobii X1205 eye gaze tracker providing position of the projected
eye gaze on the screen (at 60 Hz), the pupil diameter, the moments when the
eyes were closed, and the instantaneous distance of the subject’s eyes to the
gaze tracker device.

Physiological signals, except the gaze data, were acquired at a sampling rate
of 1024 Hz (down sampled to 256 Hz for further analysis) while six different views
of subject’s facial expressions were recorded simultaneously by six video cameras
at 60 fps. In this work, the video taken only by the color camera above the screen
were used. After watching each stimulus, the participants used a keyboard
interface for answering five questions related to emotional label, arousal, valence,
dominance and predictability. Participants answered each question using nine
numerical keys, selecting nine emotional labels for the first question and nine
possible levels for the last question. In this work, only the binary valence scale
was used where levels 1 to 5 were considered as low valence (unpleasant) and
levels 6 to 9 as high valence (pleasant). The database is available online here.

The multimodal emotion recognition (valence) pipeline starts with face de-
tection in video, followed by face landmark detection, features extraction from
face and peripheral signals, and ends with training and signals classification
using NeuCube.

6.2 Face detection and tracking

The first step for analysing face emotion recognition in video is face detection
and tracking in frames. Computer Vision (CV) Matlab Toolbox was used for
this task. The output of this step is the corner coordinates for the polygon
enclosing the face for each frame in the video.

The face detection carried out in this work included the following steps,

1. The face in the first frame was detected using the vision.CascadeObjectDetector
object in the CV toolbox. This function uses the Viola-Jones algorithm
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Figure 1: Example of face detection in Mahnob- HCI dataset showing the feature
points tracked along the video

[106] to detect people’s faces, noses, eyes, mouth, or upper body. It out-
puts the region of interest (ROI) for the face as a polygon, enclosing the
face. Specifically, the algorithm uses the histogram-of-oriented gradients
(HOG), Local Binary Patterns (LBP), Haar-like features and a cascade of
classifiers trained using boosting.

2. The corner features in the first frame ROI were detected using the de-
tectMinEigenFeatures function in CV toolbox, which uses the minimum
eigenvalue algorithm [107].

3. For tracking of feature points in the remaining frames, we used Kanade-
Lucas Tomasi (KLT) algorithm [108, 107].

4. Finally, in order to estimate the motion of the face, we used estimateGeo-
metricTransform function in the CV toolbox to apply the same transfor-
mation to the ROI detected in the previous frame to obtain the ROI in
the next frame.

Figure 1 shows the output of the face detection step. We found that point
tracking in frames to detect face is computationally more efficient than face
detection in each frame. Furthermore, point tracking can manage problems
that can emerge in face detection such as making gestures with hand that may
occlude parts of the face.

6.3 Face landmarks detection

Using the detected ROIs (See section 6.2), a trained model (DLIB) for 68 facial
landmarks detection was used for each frame in the video [109]. DLIB library
can be obtained from this link. The processing time for this task was around
100 seconds per video (i.e., approximately 30 minutes per subject). Figure 2
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(a) Model template (b) Detected facial landmarks in one ex-
ample video frame

Figure 2: Facial landmarks detection.

shows the model template (a) and one example video frame with detected facial
landmarks (b) adjusted to relevant facial structures (mouth, eyebrows, eyes,
nose and face borders).

6.4 Face features extraction

We extracted the following featured from facial landmarks (see figure 3),

1. Vertical distance between the horizontal line connecting the inner corners
of the eyes and outer eyebrow (f1, f2).

2. Vertical distances between the upper eyelids and the lower eyelids (f3, f4).

3. Distances between the upper lip and mouth corners (f5, f6).

4. Distances between the lower lip and mouth corners (f7, f8).

5. Vertical distance between the upper and the lower lip (f9) and distance
between the mouth corners (f10)

We assume that participants hold a neutral face while first 2 seconds after
starting the stimulus. As we want to detect changes in facial features, therefore
the mean features in first 2 s are subtracted from facial features for each response
video.

6.5 Physiological Features

Heart rate variability (HRV), respiration variability, respiration depth, skin tem-
perature, GSR and pupil diameter are used as physiological features in this
study. ECG signal is pre-processed by mean subtraction and band pass fil-
tered with a low pass and high pass filter in cascade (Least Square FIR, 70
dB, 0.05 − 40 Hz, 1dB ripple) for reducing high frequency noise as muscular
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Figure 3: Facial features

activation and reducing shifting due to respiration. R waves are detected using
Pan and Tompkins algorithm [110] for calculating the RR interval (for HRV)
as a feature. The findpeaks.m function in Matlab (Signal Processing Toolbox)
was applied to the respiration signal to detect valleys and peaks in signal and
further obtain the respiration variability (time between cycles) and respiration
depth (cycle amplitude). The raw Temperature (Celsius) and GSR measure-
ments were also considered as feature signals. And from the gaze data the mean
pupil diameter (from both eyes) was computed as an additional feature signal.
Examples of physiological features are shown in Figure 4.

All facial and peripheral physiological features obtained in the analyzed win-
dow (last 30 seconds of video) were resampled to 64 samples. In order to capture
changes in physiological feature, all features are calculated in whole video re-
sponse too, and resampled to 64 points. The first sample is substracted from
features in windows for further analysis. We suppose that this first measure-
ment in whole video mean for resting or neutral state for physiological signals.
Figure 5 shows the distribution of normalised features. It can be noted that
mouth-related features and pupil size have better discriminative power between
low and high valence. Outliers are omitted for visualisation purposes.

6.6 NeuCube SNN for facial emotion recognition

We used NeuCube proposed in [96] to build a system for emotion valence clas-
sification. A general scheme of our approach based on NeuCube is presented in
Figure 6. As described in section 5.1, NeuCube structure includes Encoding,
3D-SNNr, output neuron layer and KNN classifier. Training and classifying
spatio-temporal data using NeuCube have the following stages:

• Encoding: Encode the spatio-temporal data (features) into trains of
spikes.

• SNNr: Construct a recurrent 3D SNNr and initialize the connection
weights among neurons.
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Figure 4: Elicited signal features in the last 30 seconds of video
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Figure 5: Boxplot for features in Mahnob-HCI dataset for valence emotional
dimension

• Input neurons location: Locate the input neurons in the SNNr keeping 
related inputs near in space.

• Deep, unsupervised learning: Feed the SNNr with training data to 
learn in an unsupervised mode the spatio-temporal patterns in the data.

• Supervised learning: Construct an eSNN classifier to learn to classify 
different dynamic pattern in SNNr activities.

• Classification: Feed the SNNr with testing data for classification pur-
poses.

We briefly explain each stage in the following sections,

6.6.1 Encoding

The coding method we used was inspired by Gaussian Receptive Field population-
based sparse coding proposed in [88, 87]. This method codes each continuous
value from a time-based feature to spikes emitted at different times by a neuron
population [94]. The whole feature range is covered for the neurons and the time 
for generating the spikes depends on the distance from the current value to the
centre of a Gaussian receptive field covering each value interval. We used a pop-
ulation of five neurons per feature, in which only a neuron from the group spikes
at the current time step. Figure 7 shows an example of coding the mouth length
feature. Note that the dimension of feature is 64 and the temporal dimension of
each spikes train is 129 because zeros are inserted between the spikes.
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Figure 6: Proposed SNN method for emotion valence classification using the NeuCube framework 

Figure 7: Encoding Continuous feature values to five spiking neurons 
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It can be noted from the distribution of mouth length feature (Figure 7,
left plot; blue: low valence, red: high valence, black: low and high valence),
that there are two peaks in the distribution indicating the separation between
the two class. In the middle plot (Figure 7), the time course of mouth length
feature in a low valence event (blue) and one high valence event (red) for the
subject 1 are shown. In the right plot (Figure 7) spikes generated for these
two events are shown (low valence in blue, high valence in red). Levels that
define the receptive fields or range for exciting each neuron are defined using
the feature distribution in the data from all detected events for all analyzed
subjects. Levels for each five neuron population are obtained automatically by
analyzing the histogram in such a way that the five ranges have the same count
of value occurrences. Levels are shown as gray lines (Left and middle plots in
Figure 7). Note that each feature value in time produces a spike in only one
neuron from the population. As we have ten facial features, and six peripheral
signal then eighty input neuron are allocated in NeuCube network.

6.6.2 Construction of SNNr

When brain imaging data such as EEG is used, the SNNr can be built with a
shape resembling the human brain [96] and the input neurons can be located
based on the anatomical location of the EEG electrodes. However, in this study,
as we are building a general classifier of facial features, we chose to build an
11×11×7 array of neurons (equally spaced in x and y axes) as shown in Figure
8. Each five neuron population are spatially arranged in NeuCube structure in
lines as illustrated in Figure 8, this way neighbor neurons code similar feature
values favoring spatial neuron specialization.

The SNNr was made with leaky integrate and fire model (LIFM) spiking
neurons with recurrent connections. In this neuron model, the post-synaptic
potential (PSP) increases or decreases with every input spike from pre-synaptic
neurons. The effect of each spike is modulated by the corresponding synaptic
connection weight. If PSP reaches a specific threshold (0.5 in this work), the
neuron emits an output spike toward its connected neighbours and the PSP
resets to a reference value. The PSP can leak between spikes with a predefined
time constant τ , if we are using an exponential model or a constant leak time.
The latter is used in this work and is set to 0.002. After a neuron spike, the
absolute refractory time (equal to 1 in this work) is simulated by disabling it to
increase the PSP until a certain unit time has passed. Figure 9 shows an example
of LIFM neuron simulation with a refractory time equal to 3 seconds, potential
leak rate equal to 0.02, a threshold of firing that is equal to 0.5 and synapses
weights of 0.1, 0.1 and 0.35. It can be noted in figure 9 that the accumulation
of spikes in time lead to an increase of PSP until a spike is generated and the
effect of disregarding input spikes immediately after a spike is generated.

We set the initial connections (synapses strength) between neurons in SNNr
using small-world connectivity [102, 111]. The connection probability was set
such that neurons were more likely to be connected to neighboring neurons than
to the distant ones. It has been shown that such an approach brings some ad-
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vantages with regard to learning speed, parallel processing, and also favours the 
linking of specialized processing cluster units [112]. Additionally, we defined a 
radius r to be the maximum distance of connections of one neuron to another 
in the reservoir (r = 25 in this study). The initial weights were assigned as 
the product of random values [−1, +1] divided by Euclidean distance between 
pre-synaptic and post-synaptic neuron so that 80% of them were positive val-
ues (excitatory connection) while 20% of them were negative values (inhibitory 
connections). Neuron connections are unidirectional, and the direction of com-
munication was selected randomly. Connections between input neurons and 
other neuron are always positive and with doubled weight in comparison with 
other random connections. These connections were modified in the unsupervised 
learning stage to adapt to spatio-temporal patterns in input data.

6.6.3 Deep, unsupervised SNN training

We adjusted the connections between the neurons using the training data and a 
learning rule-based on Hebbian plasticity called spike-time-dependent plasticity 
(STDP) [113]. STDP learning modifies the neuronal connection weights tak-
ing into account the time difference between post- and pre-synaptic firing. A 
connection is strengthened, if postsynaptic firing occurs after presynaptic firing; 
otherwise, it is decreased. After STDP learning, the spatio-temporal pattern 
was saved in the value of connection weights in the SNNr. STDP learning rule 
is given as,

∆w = sgn(∆t)
LR

|∆t|+ 1
(1)

where LR is the STDP Learning Rate (0.001 in this work), sgn(·) is the 
function sign (−1 for negative values and 1 for positive), ∆t is the difference 
between post- and pre-synaptic times (∆t = tpost − tpre) and ∆w is the change 
in the connection weight. The Hebbian relation ∆w vs ∆t is depicted in Figure 
10. The learning results in the creation of deep structures of connections between 
neurons in the SNNr.

6.6.4 Supervised output neurons training

The deSNN is applied for supervised learning [84]. For every single training 
sample, an output neuron was created and connected to all the neurons in the 
trained SNNr (see Figure 6). Each output neuron was trained using the 
corresponding training sample by propagating the signal through the network 
once more. The neuron’s connections weights wi,j between neurons i (in the 
reservoir) and j (output neuron) were initially established using rank order (RO) 
rule [84]. The RO method ranks the order in which the first spike arrives in the j 
neuron and the weights are given as,

wi,j(0) = α mod order(i,j) (2)

where α is a learning parameter (in a partial case, equal to 1), mod is
a modulation factor that defines how important the order of the spike is (0.8
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in this study), order(i, j) represents the order (the rank) of the first spike at
synapse (i, j) ranked among all spikes arriving from all synapses to the neuron
j. Furthermore, order(i, j) = 0 for the first spike to neuron j and increases
according to the input spike order at other synapses.

Once a synaptic weight wi,j is initialized, based on the order of the first
spike from i to j, the synapse becomes dynamic. It increases its value with a
small positive value (drift = 0.005) at any time t a new spike arrives at this
synapse and decreases its value if there is no spike at this time, as described in
the following formula,

wi,j(t) =

{
wi,j(t− 1) + drift, if Si,j(t) = 1

wi,j(t− 1)− drift, if Si,j(t) = 0

where Si,j(t) describes the existence of spike from neuron i entering to neuron
j at time t. Every generated output neuron was trained to recognise and classify
spatio-temporal patterns of weights adjusted by a corresponding labelled input
training sample.

6.6.5 Classification

At classification stage, the NeuCube is fed with validation data. For each sam-
ple data synaptic weights for output neurons are calculated using the same
supervised rules used in supervised training procedure. The connection weights
that are learned in this process are then classified using a K-nearest neighbor
(KNN, with K = 3 neighbors) algorithm and the labels that are known for all
the samples.

We ran the whole NeuCube framework in a leave one subject out mode
(LOSO) to test its capacity for learn spatio–temporal features from subjects
and classify an unseen new subject.

6.6.6 Fusion of multimodal signals

Two schemas for the fusion of multimodal signals were explored - 1) features-
level and 2) decision-level fusion. For features-level fusion, we coded all features
(facial and peripheral) and included as input in NeuCube. Regarding decision-
level fusion, for each subject, we calculated the accuracy of NeuCube classifi-
cation in training data (rest of subjects) for separated modalities (facial and
peripheral), and we chose the method with higher accuracy as the method for
doing validation classification for the specific subject.

6.6.7 NeuCube parameters

NeuCube performance in analysing spatio-temporal data depends on several
parameters. We chose a set of default parameter values equal to that used
in the NeuCube development system publicly available online here, with the
exception in refractory time. We used 1 time unit for this parameter in order to
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Small world radius (r) 25
STDP learning rate (LR) 0.001
Threshold of firing 0.5
Potential leak rate 0.002
Refractory time 1 second
mod 0.84
drift 0.005
K 3

Table 1: NeuCube parameters

increase neuron activity. The NeuCube parameters used in this work are given
in Table 1.

7 Results

NeuCube framework was fed with coded data under a LOSO cross validation
scheme, i.e. all the data from a specific subject were excluded from the training
set. All the parameters were fixed with values mentioned in Method section.
Table 2 shows classification accuracy results in Mahnob-HCI dataset.

In total 390 videos (207 : 53.07% low valence, 183 : 46.92% high valence)
were analyzed. Paired sample t-test comparing mean accuracy from Peripheral
and Facial features result in no difference between them (p < 0.05). Mean clas-
sification accuracy using decision-level features results minor than using facial
and greater than peripheral (p < 0.03). And feature-level fusion accuracy of
73.15% results better than decision-level fusion accuracy of 65.11% (p < 0.004).

For doing decision-level fusion of we obtained a mean accuracy of 83.7% for
classifying the training data using facial features and 80.94% using peripheral
training data.

7.1 Clustering Spike Communication

NeuCube framework has an option to analyze clusters of neuron-surrounding
input neurons using the spike amount communicated between a pair of neu-
rons. Figure 11 shows an example using this tool when the neuron reservoir
is trained separately with one class (low valence) and the other one (high va-
lence). For visualization purposes and taking account that mouth length and
pupil size have more discriminative power regarding the rest of features, only
input neurons coding higher and lower values in mouth length and pupil size
are shown. Fig. 11 shows that neurons coding high values of mouth length and
pupil size are more active for high valence and for this reason the cluster of
spiking communication surrounding these neurons are bigger. Note that neuron
coding low values of pupil size is more active for low valence. This results agree
with features distribution in Figure 4.
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Subject ID Facial features
accuracy (%)

Physiological
features accu-
racy (%)

Fusion detection
accuracy (%)

Fusion fea-
tures (%)

1 73.33 66.67 66.67 73.33
2 62.5 50 62.5 56.25
3 75 72.73 75 81.82
4 78.57 66.67 66.67 83.33
5 75 50 75 68.75
6 58.82 70.59 58.82 70.59
7 75 60 75 93.33
8 64.29 50 64.29 64.29
9 60 100 60 90
10 61.54 69.23 61.54 69.23
11 78.57 61.54 61.54 76.92
13 64.29 71.43 64.29 85.71
14 50 57.14 50 71.43
16 72.73 63.64 63.64 63.64
17 62.5 80 62.5 40
18 41.67 50 41.67 62.5
19 61.54 75 61.54 58.33
20 53.33 73.33 53.33 80
21 66.67 71.43 66.67 71.43
22 66.67 66.67 66.67 80
23 75 50 75 75
24 69.23 53.85 69.23 76.92
25 66.67 77.78 66.67 55.56
27 68.75 60 68.75 80
28 66.67 66.67 66.67 86.67
29 68.75 50 68.75 64.29
30 78.57 57.14 78.57 78.57
Total 66.67 63.84 65.11 73.15

Table 2: Video valence classification accuracy in Mahnob-HCI dataset using 
NeuCube on individual and fusion features in a LOSO mode of cross-valiadation. 
Using fusion of features results in a better accuracy of classification at average. 
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8 Discussion

In this work we developed an approach based on NeuCube [96], which is an 
eSNN framework, to classify emotional valence using multimodal dataset that 
included video and physiological signals. We used a population coding scheme, 
based on ROC to encode input data into spikes, that SNNs can handle. When 
tested on the benchmark dataset, the MAHNOB-HCI, our approach resulted in a 
accuracy about 73.15 % for emotion classification. To the best of our knowledge, 
there has not been any other study to utilize SNN for affect recognition with 
multimodal data. In addition to the good accuracy of classification, the SNN system 
can be incrementally trained on new data and new features in an adaptive way, 
allowing the system to be used in an on-line applications [94]. 

8.1 Related work

Owing to its difficulty for the classification of spontaneous emotional responses 
from subjects, the MAHNOB-HCI dataset has been used in several studies. Since 
the MAHNOB-HCI dataset also contains multimodal data in the form of 
physiological and audio signals, several studies have resorted to a multimodal 
approach.

In a study by Koelstra and Patras [114] EEG and facial expressions were 
fused to perform affect recognition and implicit tagging . In case of EEG, power 
spectral density (PSD) features were used and for facial expression, an AU de-
tection method was used, which was originally proposed in [115]. Basically, the 
AU detection was perormed using Free-form Deformations (FFDs) and Motion 
History Images to. For facial recognition, they trained the system using the MMI 
dataset [116] and obtained 64.5% of binary valence classification using only fa-
cial features and 74% by combining facial and EEG features. They performed a 
per-subject leave-one-trial-out cross-validation, where the classifier is trained on 
19 trials from the same subject and tested on the 20th. As can be seen from their 
study, only using facial features result in low accuracies and fusion with EEG 
signal improved the classification accuracy. Boxuan and colleagues developed a 
temporal information preserving framework by splitting signals into multiple 
stages in each video. They achieved a valence (unpleasant, neutral, pleasant) 
classification accuracy of 54% using only facial expression and 69% when fusing 
with physiological signals [117]. They used Affdex SDK software [118], trained in 
10,000 manually labelled facial images, which classify emotion-based on HOG 
features and support vector machine (SVM) classifier. Huang and colleagues 
obtained 50.57% for valence classification using appearance descriptors based 
facial features (Local binary pattern from three orthogonal planes, LBP-TOP) 
and 66.28% using fusion it with global EEG features [119]. They used the LOSO 
cross-validation scheme in nine emotion categories. A convolution deep belief 
network (CDBN) was proposed in [120] to learn emotional features from mul-
timodal datasets and the authors reported a classification accuracy of 58.5%with 
the MAHNOB-HCI dataset. Torres et al. [121] performed feature selec-tion using 
discriminant-based algorithms, using EEG and peripheral signals. Their resuts 
showed that EEG-related features show the highest discrimina-tion ability. 
Furthermore, it was shown that EEG features along with GSR
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achieved the highest discrimination for arousal index, whereas for the valence 
index, EEG features are accompanied by the heart rate features in achieving 
the highest discrimination power. For the MAHNOB-HCI dataset, they obtain 
a classification accuracy of 66.09% and 69.59% in the valence and arousal di-
mension respectively. Liu et al. [122] tested a deep learning approach based on 
multi-layer Long short-term memory recurrent neural network (LSTM-RNN) for 
emotion recognition, which combined temporal attention and band attention. 
They achieved an accuracy of 74.5% in valence classification (9 class) fusing 
video and EEG analysis. They used 20 participants for training, 4 participants 
for validation and 3 participants for testing. Huang et al. [123] used transfer 
learning technique (pre-trained convolutional neural network, CNN) to obtain 
an 73.33% in binary valence accuracy in MAHNOB-HCI dataset using facial 
features and 75.21 fusing with EEG features. Overall, the results we have ob-
tained from the MAHNOB-HCI dataset are comparable with the state of the art 
work learning methods applied on this database. We observe that in some cases 
, the classificationa ccuracy obtaned using our SNN approach is better than the 
ANN approach, that have also used EEG sinals, which we have excluded. It 
is also to be noted that it is difficult to establish a fair comparison with most 
of the previous works as we did not include EEG features and use pretrained 
models as in [123]. We also disregarded all the data related with the subject in 
a Leave-subject out validation scheme.

8.2 Limitations

Our work has several limitations. First, we did not include any EEG features, 
because changes in EEG features associated with emotion are lumped features 
and we wanted to test NeuCube with temporal spatial patterns. As discussed 
previously, several studies have shown that including EEG features increases 
considerably the classification accuracy. However, there are several challenges in 
using EEG for emotion recognition [124], including selection of robust features, 
continuous decoding of affective states, reliable decoding of long-term reliability 
of EEG recordings for such studies, long preparation time and most importantly 
adopting a proper model of emotion with regard to EEG and understanding the 
EEG representation of affective states. For an excellent overview of these 
challenges the reader is directed to [124]. Nonetheless, the possibility of using 
EEG with the NeuCube framework will be explored in our future studies. Second, 
other important features that could be utilized from the mulltimodal data could 
be speech and postures. Several studies have considered the implications of in-
cluding speech in affect recognition , with pitch considered to be an index into 
arousal [1], although the classification accuracy is shown to be lower than facial 
expression. Nonetheless, given the noninvasive and easy procedure to acquire 
voice, this feature should definitely be considered in the future studies with SNN. 
With regard to posture tracking, again it is a non-intrusive acquisition to the 
user’s experience, but the equipment, but requires more expensive equip-ment 
compared to speech. Also there are some constraints with regard to the user’s 
position, for example the user should be sitting [1].
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We have also assumed that the face captured during the first two seconds after 
the stimulus is presented is neutral and consider it as the baseline. This could be 
problematic, especially if the participant is tired. Since we used Otsu’s algorithm 
[125] for event detection, we do not take into account the long-lasting facial 
expression. It could be interesting if long term facial variation inside the video 
could be considered as detected events. Also, it could be interesting to incorpo-
rate detecting facial micro-expressions in our framework but this is in general 
challenging due to limited availability of such data and as well as difficulties in 
analyzing minute changes in expression [126]. Few methods have been proposed 
to address the problem of detecting micro-expressions using spatio-temporal lo-
cal texture descriptor[127], Gabor filter with SVM classifier [128] and LBP-TOP 
with nearest neighbor classifier [129], which can be incorporated to add more 
information for the SNN framework. Another improvement could be to nor-
malise expression between subjects by using pose estimation [130], correction of a 
3D model [131, 132]. Further improvements could be made along the lines of 
detecting non-frontal head poses, identity bias and as well as illumination 
variation.

Although we studied the effect of varying certain NeuCube parameters, the 
performance of the proposed system may be affected by the choice of several other 
parameters. For instance, effect of varying other NeuCube parameters such as 
small world radius, firing threshold, refractory time, time resolution should be 
carefully investigated. The NeuCube framework also provides parameter 
optimization tool, which could be utilized instead of setting the parameters in an 
ad hoc manner.

9 Conclusion

Utilizing multimodal data to solve the problem of affect recognition with state of 
the art deep learning methods has gained a lot of popularity. SNNs offer an 
alternative to ANNs, where in the former is biologically more realistic model of 
neurons. In this work, we proposed a novel SNN method and system based on the 
known NeuCube framework, which is an eSNN, to sove affect recognition problem 
using multimodal data obtained from MAHANOB-HCI dataset. The eSNN is 
based on the ECOS principles which includes, efficient processing of spatio-
temporal data and open evolving structure. Despite not including EEG, our 
approach gave results comparable to deep learning methods that utilize 
multimodal data, including EEG. In addition to the good accuracy of classification, 
the SNN system can be incrementally trained on new data and new features in an 
adaptive way, allowing the system to be used in an on-line applications. 
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Pietikäinen. A spontaneous micro-expression database: Inducement, col-
lection and baseline. In 2013 10th IEEE International Conference and
Workshops on Automatic face and gesture recognition (fg), pages 1–6.
IEEE, 2013.

[128] Qi Wu, Xunbing Shen, and Xiaolan Fu. The machine knows what you are
hiding: an automatic micro-expression recognition system. In interna-
tional conference on affective computing and intelligent Interaction, pages
152–162. Springer, 2011.

[129] Yanjun Guo, Yantao Tian, Xu Gao, and Xuange Zhang. Micro-expression
recognition based on local binary patterns from three orthogonal planes
and nearest neighbor method. In 2014 international joint conference on
neural networks (IJCNN), pages 3473–3479. IEEE, 2014.

[130] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Head pose estima-
tion in computer vision: A survey. IEEE transactions on pattern analysis
and machine intelligence, 31(4):607–626, 2008.

[131] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z Li. Face
alignment across large poses: A 3d solution. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 146–155,
2016.

34



[132] Amin Jourabloo and Xiaoming Liu. Pose-invariant 3d face alignment. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 3694–3702, 2015.

35



Figure 8: Input neurons location for facial and peripheral features classification.
n1 means for the neuron coding the lowest values and n5 the highest ones for
each feature. Note there are 3 layers of input neuron in the cube, located at
z = −30 (facial), z = 0 (peripheral) and z = 30 (facial).
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Figure 9: LIFM neuron model. Small circles at neuron inputs represent con-
nection weights. Note that input 1 has a bigger weight and it produces a larger
effect in PSP

Figure 10: Hebbian Learning rule, connection (synaptic modification) vs differ-
ence between post- and pre-synaptic times
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Figure 11: Neuron activity pattern example when NeuCube is trained using
each separately data (low and high valence).
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