1,479 research outputs found

    Deep Learning for Osteoporosis Classification Using Hip Radiographs and Patient Clinical Covariates

    Get PDF
    This study considers the use of deep learning to diagnose osteoporosis from hip radiographs, and whether adding clinical data improves diagnostic performance over the image mode alone. For objective labeling, we collected a dataset containing 1131 images from patients who underwent both skeletal bone mineral density measurement and hip radiography at a single general hospital between 2014 and 2019. Osteoporosis was assessed from the hip radiographs using five convolutional neural network (CNN) models. We also investigated ensemble models with clinical covariates added to each CNN. The accuracy, precision, recall, specificity, negative predictive value (npv), F1 score, and area under the curve (AUC) score were calculated for each network. In the evaluation of the five CNN models using only hip radiographs, GoogleNet and EfficientNet b3 exhibited the best accuracy, precision, and specificity. Among the five ensemble models, EfficientNet b3 exhibited the best accuracy, recall, npv, F1 score, and AUC score when patient variables were included. The CNN models diagnosed osteoporosis from hip radiographs with high accuracy, and their performance improved further with the addition of clinical covariates from patient records

    Weakly Supervised Universal Fracture Detection in Pelvic X-rays

    Full text link
    Hip and pelvic fractures are serious injuries with life-threatening complications. However, diagnostic errors of fractures in pelvic X-rays (PXRs) are very common, driving the demand for computer-aided diagnosis (CAD) solutions. A major challenge lies in the fact that fractures are localized patterns that require localized analyses. Unfortunately, the PXRs residing in hospital picture archiving and communication system do not typically specify region of interests. In this paper, we propose a two-stage hip and pelvic fracture detection method that executes localized fracture classification using weakly supervised ROI mining. The first stage uses a large capacity fully-convolutional network, i.e., deep with high levels of abstraction, in a multiple instance learning setting to automatically mine probable true positive and definite hard negative ROIs from the whole PXR in the training data. The second stage trains a smaller capacity model, i.e., shallower and more generalizable, with the mined ROIs to perform localized analyses to classify fractures. During inference, our method detects hip and pelvic fractures in one pass by chaining the probability outputs of the two stages together. We evaluate our method on 4 410 PXRs, reporting an area under the ROC curve value of 0.975, the highest among state-of-the-art fracture detection methods. Moreover, we show that our two-stage approach can perform comparably to human physicians (even outperforming emergency physicians and surgeons), in a preliminary reader study of 23 readers.Comment: MICCAI 2019 (early accept

    Machine learning outperforms clinical experts in classification of hip fractures

    Get PDF
    Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%

    Big Data in Studying Acute Pain and Regional Anesthesia

    Get PDF
    The digital transformation of healthcare is advancing, leading to an increasing availability of clinical data for research. Perioperative big data initiatives were established to monitor treatment quality and benchmark outcomes. However, big data analyses have long exceeded the status of pure quality surveillance instruments. Large retrospective studies nowadays often represent the first approach to new questions in clinical research and pave the way for more expensive and resource intensive prospective trials. As a consequence, the utilization of big data in acute pain and regional anesthesia research has considerably increased over the last decade. Multicentric clinical registries and administrative databases (e.g., healthcare claims databases) have collected millions of cases until today, on which basis several important research questions were approached. In acute pain research, big data was used to assess postoperative pain outcomes, opioid utilization, and the efficiency of multimodal pain management strategies. In regional anesthesia, adverse events and potential benefits of regional anesthesia on postoperative morbidity and mortality were evaluated. This article provides a narrative review on the growing importance of big data for research in acute postoperative pain and regional anesthesia

    Post-operative determinants of chronic pain after primary knee replacement surgery:Analysis of data on 258,386 patients from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (NJR)

    Get PDF
    Objective: To identify post-operative risk factors for the development of chronic pain after knee replacement. Design: Primary knee replacements in persons aged ≥18 years between April 2008 and December 2016 from the National Joint Registry, linked with English Hospital Episode Statistics data, and Patient Reported Outcome Measures. The outcome was chronic pain 6-months after surgery (Oxford Knee pain score). Logistic regression modelling identified risk factors for chronic pain outcome. Results: 258,386 patients; 56.7% women; average age 70.1 years (SD ​± ​8.8 years). 43,702 (16.9%) were identified as having chronic pain 6-months post-surgery. Within 3 months of surgery complications were uncommon: intra-operative complications 1224 (0.5%); ≥1 medical complication 6073 (2.4%)); 32,930 (12.7%) hospital readmissions; 3848 (1.5%) re-operation; 835 (0.3%) revision. Post-surgical risk factors of chronic pain were: mechanical complication of prosthesis odds ratio (OR) 1.56 (95% Confidence Interval 1.35, 1.80); surgical site infection OR 1.13 (0.99, 1.29); readmission OR 1.47 (1.42, 1.52); re-operation OR 1.39 (1.27, 1.51); revision OR 1.92 (1.64, 2.25); length of stay e.g. 6+ vs. <2 days OR 1.48 (1.35, 1.63), blood transfusion OR 0.47 (0.26, 0.86) and myocardial infarction OR 0.69 (0.49, 0.97). Discriminatory ability of the model was only fair (c-statistic 0.71) indicating that post-surgical predictors explain a limited amount of variability in chronic pain. Conclusions: We identified a number of post-operative factors relating to the operation and early recovery that are associated with chronic pain following primary knee replacement. The model had weak discriminatory ability indicating that there remains considerable unexplained variability in chronic pain outcome

    Big Data, Big Knowledge: Big Data for Personalized Healthcare.

    Get PDF
    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority

    Machine-learning vs. logistic regression for preoperative prediction of medical morbidity after fast-track hip and knee arthroplasty-a comparative study

    Get PDF
    BACKGROUND: Machine-learning models may improve prediction of length of stay (LOS) and morbidity after surgery. However, few studies include fast-track programs, and most rely on administrative coding with limited follow-up and information on perioperative care. This study investigates potential benefits of a machine-learning model for prediction of postoperative morbidity in fast-track total hip (THA) and knee arthroplasty (TKA).METHODS: Cohort study in consecutive unselected primary THA/TKA between 2014-2017 from seven Danish centers with established fast-track protocols. Preoperative comorbidity and prescribed medication were recorded prospectively and information on length of stay and readmissions was obtained through the Danish National Patient Registry and medical records. We used a machine-learning model (Boosted Decision Trees) based on boosted decision trees with 33 preoperative variables for predicting "medical" morbidity leading to LOS &gt; 4 days or 90-days readmissions and compared to a logistical regression model based on the same variables. We also evaluated two parsimonious models, using the ten most important variables in the full machine-learning and logistic regression models. Data collected between 2014-2016 (n:18,013) was used for model training and data from 2017 (n:3913) was used for testing. Model performances were analyzed using precision, area under receiver operating (AUROC) and precision recall curves (AUPRC), as well as the Mathews Correlation Coefficient. Variable importance was analyzed using Shapley Additive Explanations values.RESULTS: Using a threshold of 20% "risk-patients" (n:782), precision, AUROC and AUPRC were 13.6%, 76.3% and 15.5% vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic regression model, respectively. The parsimonious machine-learning model performed better than the full logistic regression model. Of the top ten variables, eight were shared between the machine-learning and logistic regression models, but with a considerable age-related variation in importance of specific types of medication.CONCLUSION: A machine-learning model using preoperative characteristics and prescriptions slightly improved identification of patients in high-risk of "medical" complications after fast-track THA and TKA compared to a logistic regression model. Such algorithms could help find a manageable population of patients who may benefit most from intensified perioperative care.</p
    • …
    corecore