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Machine learning outperforms 
clinical experts in classification 
of hip fractures
E. A. Murphy1, B. Ehrhardt1, C. L. Gregson2,3, O. A. von Arx4, A. Hartley2,3, 
M. R. Whitehouse2,5, M. S. Thomas4, G. Stenhouse4, T. J. S. Chesser5, C. J. Budd1,6 & 
H. S. Gill7,8*

Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and 
social care costs. Given projected population ageing, the number of incident hip fractures is predicted 
to increase globally. As fracture classification strongly determines the chosen surgical treatment, 
differences in fracture classification influence patient outcomes and treatment costs. We aimed to 
create a machine learning method for identifying and classifying hip fractures, and to compare its 
performance to experienced human observers. We used 3659 hip radiographs, classified by at least 
two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater 
accuracy than humans, achieving overall accuracy of 92%.

Hip fractures are a major cause of morbidity and mortality for the elderly, and incur high direct health  costs1. 
In 2019, 67,671 hip fractures were reported to the UK National Hip Fracture  Database2; given the projections 
for population ageing over the coming decades, the number of hip fractures is predicted to increase globally, 
particularly in  Asia3–5. Currently, across the world, an estimated 1.6 million hip fractures occur annually with sub-
stantial economic burden, approximately $6 billion per year in the  US6 and about £2 billion in the  UK7. Patients 
who sustain a hip fracture have a reported 30-day mortality of 6.9% in the UK in  20198, with 30% of patients 
dying over the course of the first year, i.e. twice the age-specific mortality rate of the general  population9,10. Thus, 
the development of strategies to improve hip fracture management and hence their impact on mortality and 
healthcare provision costs is a high  priority10,11.

When patients suffer a hip fracture, treatment aims are to restore function and relieve pain whilst minimising 
risk of morbidity and mortality, hence 98% of hip fractures are managed operatively in the  UK8. Surgical treat-
ment of hip fractures is strongly influenced by the fracture  type12,13. Hip fractures can be classified using the AO 
 system14, or by describing the fracture location and displacement with a modification of this system, as used by 
the UK Falls and Fragility Fracture Audit Programme (FFFAP)15 in their National Hip Fracture Database (NHFD) 
clinical  audit16. Figure 1 illustrates the three main classes of hip fractures: intracapsular, trochanteric (extracap-
sular), and subtrochanteric (extracapsular). The AO system further defines subclasses: Grade A1/A2 and Grade 
A3 for trochanteric fractures accordingly to trochanteric area involvement and the presence of displacement for 
intracapsular fractures. There are recognised limitations with the current methods used for the classification of 
 fractures17. Interobserver agreement is slight to fair whether using the original or new AO classification  systems18 
and fair to substantial for the NHFD classification  system19.

Fracture classification, according to these methods, aids surgeons in selecting the right surgical interventions 
to treat the fracture to restore mobility. The choice of operation and implant has a strong influence on treatment 
costs; for example sliding hip screws and intramedullary nails are two of the treatment options for trochanteric 
fractures but the cost of intramedullary devices is 3 to 4.5 times higher than for sliding hip  screws13. Further-
more, the choice of intervention for a given fracture type predicts the risk of death following  surgery20. Hence 
governance bodies such as the National Institute for Health and Care Excellence (NICE) place great emphasis 
on the choice of operation and implant that should be offered for different hip fracture types, reflecting both the 
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evidence-base and the potential cost of some implant  types13, such that NICE compliant surgery is one of the 
six key performance indicators for the provision of hip fracture care in the  UK7.

Despite fracture classification so strongly determining surgical treatment and hence patient outcomes, there 
is currently no standardised process as to who determines this classification in the UK (e.g. orthopaedic surgeon 
or radiologist specialising in musculoskeletal disorders).

A critical issue affecting the general use of diagnostic imaging is the mismatch between demand and resource. 
The total number of imaging and radiological examinations has steadily increased, for example the number 
of radiographs performed annually has increased by 25% from 1996 to  201421,22. The increasing demand on 
radiology departments often means that they cannot report all acquired radiographs in a timely manner. In the 
UK it is estimated that more than 300,000 radiographs remain unreported for over 30  days23. Annarumma et al. 
demonstrated how a machine learning approach can support hospitals to dramatically cut time needed to process 
abnormal chest  radiographs23. For hip fracture management, the ability to accurately and reliably classify the 
fracture swiftly is paramount as surgery should occur within 48 h of  admission13,24–26, because delays in surgery 
increase the risk of adverse patients outcomes such as  mortality27.

Machine learning methods offer a new and powerful approach by which to automate diagnostics and out-
come prediction across a diverse set of medical disciplines and pathologies: from  oncology28–31 and  radiology32, 
to diabetes  treatment33 and  rheumatology34,35. Beside advances in computing power, one key to the success of 
machine learning has been the development of convolutional neural networks (CNNs)36–38. For example state- 
of-the-art performance in estimating bone age from hand  radiographs39 and detecting knee  joints34. Krogue 
et al.40 were able to demonstrate that machine learning could classify hip fractures based on radiographs of 972 
patients. Following these successes, we aimed to create a machine learning method for identifying and classify-
ing hip fractures on plain radiographs acquired as part of routine clinical care to determine if this method can 
outperform trained clinical observers in identifying and classifying hip fractures.

Results
The results are presented in terms of the variables introduced in the Methods section.

CNN1: automatically locating the hip joint. CNN1 was able to correctly locate and extract hip joints 
in the vast majority of cases. This was true for both fractured and non-fractured hips; with the performance on 
radiographs of non-fractured hips being slightly better than those of fractured hips (Fig. 2). The Jaccard index 
J had higher values for the training sets than for the corresponding test sets. To assess the overall performance 
of the machine learning method, the Jaccard Index for the test data is most relevant. For the test data of Dataset 
1, the mean value of J was 0.87 (SD 0.06), all samples scored values of J > 0.5 and 98% of the hip joints scored 
J > 0.7 (indicating better than good agreement). For the test data of Dataset 2, the mean value of J was 0.83 (SD 

Intracapsular

Trochanteric

Subtrochanteric

Figure 1.  Hip fracture types.
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0.09), more than 99% of the test set scored a value of J > 0.5, with 93% exceeding a value of J > 0.7. This implies 
that CNN1 was able to extract the region around the hip joints with very close alignment to the ground truth 
region of interest.

Expert agreement in fracture classification. Agreement between expert clinicians was used to assign 
the ground truth label to each radiograph. Experts only agreed on the category (i.e. subclass) in 1399 cases 
(59.2%), leading to a Cohen’s Kappa κ = 0.49 (95% CI: 0.47 to 0.52) (Fig. 3). Comparing the overall class (instead 
of the subclasses) assigned to a radiograph, the first and second experts agreed in 1,663 cases (70.4%) (κ = 0.55, 
[95% CI: 0.52 to 0.58]).

Hospital diagnosis compared to expert classification. Within Dataset 2, 2,181 radiographs had 
fracture type recorded, which was termed the hospital diagnosis. When compared to the expert classification 
(Table S1 in the Supplementary Material), which was considered as the ground truth, the hospital diagnosis had 
an overall accuracy of 77.5% (κ = 0.63, [95% CI: 0.61 to 0.66]).
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Figure 2.  Performance assessment of CNN1 based on the Jaccard index J, which measures the agreement 
between two images. J = 0 means no agreement and J = 1 means total agreement; J > 0.5 is considered good 
agreement.
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Figure 3.  Expert fracture classification process and agreement for Dataset 2.
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CNN2: classification of hip fractures test set. CNN2 predicted the correct fracture type in 92% (which 
represents the overall accuracy) of the test set (κ = 0.87 [95%CI: 0.84 to 0.90]: NB Cohen’s kappa, κ, varies from 
κ = 1 for complete agreement to κ = 0 if the agreement is no better than expected by chance). This represents an 
18.7 (= 100*[92–77.5]/77.5) percentage points increased accuracy over the original hospital diagnosis accuracy. 
The precision varied between 0.87 for intracapsular fractures to 0.96 for trochanteric fractures (Table 1). Simi-
larly, recall varied between 0.87 for trochanteric fractures and 0.95 for no fractures (Table 1). The confidence 
intervals between the best predicted and worst predicted class did not overlap, indicating that there were signifi-
cant differences between the performance of the best and the worst classes in precision and recall. Combining 
precision and recall led to per-class F1 scores of 0.94, 0.91 and 0.89 for no fracture, trochanteric fracture and 
intracapsular fracture, respectively (Table 1). Figure 4 displays the Receiver Operating Characteristic (ROC) 
curves for all three classes with the corresponding area under the curve (AUCs) and their 95% confidence inter-
vals. We observed AUCs of 0.98 (95% CI: 0.98 to 0.99) for “No fracture”, 0.99 (95% CI: 0.98 to 0.99) for “Trochan-
teric” and 0.97 (95% CI: 0.95 to 0.98) for “Intracapsular”.

Activation maps (Fig. 5) for representative examples of each of No fracture, Trochanteric and Intracapsular 
provided an insight into the parts of the x-ray image contributing to the classification. For the No fracture the 
centre of the femoral neck region was highlighted. The region distal and lateral to the neck was highlighted for 
the Trochanteric. Finally, for the Intracapsular the region distal and medial to head was highlighted.

Table 1.  CNN2 performance assessment. Precision = (number correctly predicted as class A)/(number 
predicted as class A). Recall = (number correctly predicted as class A)/(number actually of class A). F1 varies 
from 1 = perfect classifier for class A, to 0 = no image was correctly identified as class A.

Actual

TotalNo fracture Trochanteric Intracapsular

Predicted

No fracture 304 12 13 329

Trochanteric 1 169 6 176

Intracapsular 15 14 198 227

Total 320 195 217

Precision 0.92 0.96 0.87

95% CI 0.89 to 0.95 0.92 to 0.98 0.82 to 0.91

Recall 0.95 0.87 0.91

95% CI 0.92 to 0.97 0.81 to 0.91 0.87 to 0.95

F1 0.94 0.91 0.89
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Figure 4.  Receiver Operating Characteristic (ROC) curves illustrating trade-offs between true-positive and 
false-positive rate for the three classes of hip fracture, as predicted by CNN2 using AUC = area under the curve, 
given with the 95% confidence interval (CI).
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Discussion
Hip fracture remains a common and devastating injury that places substantial pressures on healthcare systems 
around the world. The aim of the current study was to create a machine learning algorithm to identify and classify 
hip fractures. The work successfully produced two convolutional neural networks, one to automatically localise 
the hip joints within an AP pelvic radiograph (CNN1) and one to identify and classify the type of fracture within 
an AP radiograph of a hip joint (CNN2).

The hip joint localisation algorithm (CNN1) was highly accurate in locating hip joints, whether the joint was 
fractured or not. One hundred percent of the test set for the non-fractured dataset (Dataset 1), and 99% of the 
test set of the fractured dataset (Dataset 2) showed a Jaccard index J > 0.5 considered a good agreement, and 98% 
and 93% even exceeded J = 0.7 (very good agreement), respectively.

The classification algorithm showed an impressive, and potentially significant, performance with an 
AUC > 0.97 for all three classes. It is important to note that the radiographs used were acquired as part of 
routine clinical care with an NHS hospital setting, with variable quality due to the acute nature of the injury. 
The overall accuracy was 92%; a significant improvement (test for the difference of independent proportions, 
p-value < 0.0001) compared to human observers who had an accuracy of 77.5% in the original hospital diagnosis. 
While there were significant differences in precision and recall between the three classes, each class was very 
good in either precision or recall, leading to high F1 scores. Furthermore, there was no significant correlation 
between the number of experts needed to agree on the actual class and whether the radiograph was correctly 
classified by the machine learning algorithm (Chi-Square test: p = 0.65). This indicates that human observers 
and the machine learning algorithm did not find the same fractures challenging to classify. Having said that, 
a radiograph was classified by an additional expert if the experts disagreed on the subclass while the machine 
learning algorithm only classified into classes. The machine learning algorithm correctly identified significantly 
more of the non-fractured hip joints than for any other fracture type suggesting that this is the easiest class for 
the machine learning algorithm.

Machine learning has been used previously for detecting hip fractures, Adams et al.42 used a CNN trained 
on 640 images with 160 images for validation for detecting hip fractures, and were able to show accuracy of 
94.4%. Chen et al.43 also used a CNN for detecting hip fractures, the CNN was trained on 3605 pelvic x-rays and 
evaluated on 100 pelvic x-rays, they reported an accuracy of 91%. A different approach was taken by Badgeley 
et al.44, who used images as well as patient and hospital data to “predict” hip fracture, and reported an accuracy 
of 85% in detecting fracture. In terms of using CNNs for classification, Krogue et al.40 used radiographs from 
972 patients, they reported a classification accuracy of 90.8% but only had a comparison of 100 radiographs 
assessed by two residents. Yamada et al.45 reported 98% accuracy in classifying femoral neck fractures, trochan-
teric fractures, and non-fracture with an accuracy using a combination of AP and lateral x-rays, their CNN 
was trained on 1,553 AP hip radiographs and 1,070 lateral hip radiographs and validated on 150 AP and lateral 
hip radiographs. Yamada et al. concluded that using both AP and lateral x-rays improved accuracy, however in 
many clinical centres in the UK lateral x-rays are not available. The current study differed from previous studies 
in that all available clinical x-rays were used, regardless of quality whilst other studies excluded poor quality 
x-rays. This is an important consideration in working towards a clinically useful tool, we believe that excluding 
low quality x-rays artificially inflates accuracy. Previous studies did not report fully how the training sets were 
classified and level of clinical agreement, most studies did report how the test sets were evaluated. The current 
study went to considerable lengths to have consensus classification for all x-rays used in the study, for training, 
validation and test. We report that the first two clinical reviewers only agreed on sub-class for 60% of the cases, 
requiring further rounds of clinical classification to reach consensus. The current study also used considerably 
larger validation and test data sets, which consisted of 732 x-rays for each.

No fracture Trochanteric Intracapsular
Figure 5.  Activation maps for representative examples for No fracture, Trochanteric and Intracapsular classes. 
Dark red implies regions of high contribution and dark blue regions of low contribution. A custom python code 
based on the code provided by Selvaraju et al.41 downloaded from github (https:// github. com/ ramprs/ grad- cam) 
was used to generate the activation maps.

https://github.com/ramprs/grad-cam
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Due to the negative consequences of a hip fracture misclassification, we further investigated a more conserva-
tive approach where we only classified an image if the algorithm’s confidence score was greater than a threshold. 
While this led to some radiographs not being classified, it also increased the accuracy on the classified images. 
In practice, for the remaining non-classified images an expert’s opinion would be needed. There is a trade-off 
between overall accuracy and coverage (% of classified images). For example, if an accuracy of 95% was required 
(we currently achieved 92%), 87% of the data set would be covered, while the remaining 13% would not be clas-
sified by the algorithm. Furthermore, we could set different demands for different fracture types. The treatment 
differs between the classes of hip fractures in how invasive they are and in cost for the NHS. One could demand 
more certainty for some classes than others by setting different thresholds for the scores and leaving uncertain 
radiographs to be analysed by an expert.

Radiographs of patients with a hip fracture may not be of high quality. Patients are in pain following a hip 
fracture and approximately a third of the population affected have cognitive  impairment46 making it challenging 
for them to follow instructions from radiographers in terms of positioning for radiograph acquisition. Automated 
settings applied by digital radiography systems may also affect the ability to interpret  radiographs47. This can lead 
to low quality images that are difficult for clinicians to interpret. Clinicians may also follow different criteria for 
fracture classification according to their training and prior experience of interpreting radiographs and treating 
hip fracture. This may lead to variation in their interpretation of the same image. This variation in classification 
and the problems it creates in treating hip fractures are well  recognised18,19. A pre-established automated clas-
sification system may improve accuracy of diagnosis of the basis of plain radiographs, which are routine clinical 
practice in this population worldwide. The activation mapping provided some insight into the regions of the x-ray 
images contributing to each type of classification. For the trochanteric and intercapsular examples, as expected 
regions that contained the fracture contributed the most. Interestingly, for the No Fracture case, the central part 
of the femoral neck contributed the most.

Introduction of a system capable of accurate and reproducible classification of radiographs of patients with a 
hip fracture would allow the delivery of accurately targeted surgical interventions. Importantly it would reduce 
the chance of changes to the surgical plan, which can delay the delivery of treatment to the affected and other 
patients, and reduce unwarranted delay to surgery to seek information from further imaging which may be 
associated with increased risk of morbidity and mortality for  patients27,48. Such a system would also aid the 
standardisation of comparative studies, interpretation of large healthcare datasets, and the delivery and inter-
pretation of clinical studies where the population, exposures and covariates may depend upon the accurate 
classification of hip  fractures19.

A limitation of our method was that we excluded subtrochanteric fractures due to the lack of available data.

Conclusion
In this work, we have demonstrated that a trained neural network can classify hip fractures with 19% increased 
accuracy compared to human observers with experience of hip fracture classification in a clinical setting. In the 
work presented here, we used as ground truth the classification of 3,659 hip radiographs by at least two (and up 
to five) experts to achieve consensus. Thus, this analysis is a prototype only and a more extensive study is needed 
before this approach can be fully transformed to a clinical application. We envisage that this approach could be 
used clinically and aid in the diagnosis and in the treatment of patients who sustain hip fractures.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

Data sources. We used two different populations to source antero-posterior (AP) pelvis radiographs; note 
pelvis radiographs visualise both hip joints. The first (Dataset 1) was a population in which no hip fractures had 
occurred and consisted of 429 anonymized radiographs collected as part of an ethically approved (REC: 05/
Q2001/78), with informed consent obtained from all participants, multi-centred observational study of bone 
 mass49. The population comprised adults with mean age (± SD) 61.9 ± 12.0 years, 64% were female, none had a 
hip fracture.

Dataset 2 consisted of 2,364 anonymized AP pelvic radiographs from patients admitted acutely to a National 
Health Service (NHS) hospital who were diagnosed with a hip fracture. This population was identified from local 
National Hip Fracture Database (NHFD) audit records which included all hip fractures admitted between 2008 
and 2016 (mean age 80 ± 10 years, 70% female). Ethical approval (Ref: 2017 0299 05, Royal United Hospital R&D 
Ethics Committee) was obtained for anonymous re-use of radiographs, as fully anonymised existing data were 
used informed consent was not required. Using these 8 years of audit record, which included fracture type, radio-
graphs were selected by stratified random sampling to oversample less common fracture types. It is important to 
note that radiograph quality was not used as a selection criterion, the dataset was representative of the range of 
image quality in clinical radiographs taken in an acute setting. The recorded fracture type, termed the hospital 
diagnosis, was present for 2,181 radiographs. All radiographs were examined and hip fractures re-classified by 
at least two musculoskeletal experts using the National Hip Fracture Database  classification8 (Table 2); in this 
study the final classification by the musculoskeletal experts was considered the ground truth. The accuracy of 
the hospital diagnosis was established by comparing with this ground truth. The non-fractured contralateral 
hip images were also used, provided no implant was in situ. Hence this dataset contained 1,603 non-fractured 
hip images, with 1,089 intracapsular, 993 trochanteric, and 114 subtrochanteric fractures visible. A further 168 
radiographs could not be classified.
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Image processing. The radiographs were obtained in DICOM format, the average size of the AP radio-
graphs was (HxW) 2,186 (SD: 223) × 2460 (SD: 255) pixels. Typically, CNNs process images of a much smaller 
size, e.g. 200 by 300 pixels. To retain as much useful information as possible and discard the areas of the image 
that do not assist in diagnosis/classification, we introduced a first stage where we trained a CNN (CNN1) to 
automatically extract two regions of interest (ROI), each containing a hip joint. This reduced the radiograph 
size to two ROIs of about a quarter of the original size of the radiograph, i.e., approximately 1200 × 1000 pixels. 
We then down sampled the ROIs using bicubic interpolation and antialiasing to provide images of 256 × 256 
pixels (MATLAB R2016b, The MathWorks Inc, Natick, MA, USA). Each down-sampled ROI was then passed 
to a second CNN (CNN2) which was trained to determine if a fracture was present and if so, classify the type 
of hip fracture.

Training, testing and validation data. When creating both CNNs the available data sets were split at 
random into three sub-sets: training (60%), validation (20%) and test sets (20%)50. This allowed us to assess the 
performance of our analysis methods on a test set which was independent of the data upon which it was trained 
and validated, ensuring rigor in machine  learning50,51. To artificially increase the size of the training sets by a 
factor of 16, standard operations (flipping, inverting and random shifts) were applied to generate more train-
ing images. This is an established procedure for increasing size of training data sets. In addition, to address the 
imbalance in fracture types within Dataset 2 training set, less frequent fracture types (intracapsular and trochan-
teric) were oversampled so that the numbers of each fracture type in the training set were similar. Note neither 
of these operations were applied to the validation and test sets. For Dataset 1 the final number of training/vali-
dation/test images were 6128/128/127 respectively; whilst for Dataset 2 these were 47,698/732/732 respectively.

CNN1: automatically locating the hip joint. Radiographs of fractured hips (taken in an acute setting) 
were found to be much more variable in terms of quality and patient positioning (Fig. S1). For efficient CNN 
training, we therefore, first trained CNN1 on non-fractured hips (Dataset 1, taken in a scheduled clinic setting) 
where the radiographs were more homogeneous and then fine-tuned the resultant CNN using radiographs of 
fractured hips (Dataset 2).

Radiograph images were labelled manually (by EM); then the ROI containing each hip joint was identified 
(MATLAB Training Image Labeller Application, the MathWorks Inc.). To have consistent ROIs, natural features 
of the hip joint were selected as boundary markers (Supplementary Material and Fig. S2), chosen based on expert 
orthopaedic surgical opinion, ensuring that the ROIs provided sufficient coverage of the hip joint to enable clas-
sification to be performed. The ROIs were used to create a mask for each image.

The success of Antony et al.34 in locating knee joints on radiographs inspired us to use a fully convolutional 
network (FCN) to detect the ROIs. FCNs were developed to allow for pixel-wise classification (i.e., semantic 
 segmentation52) where each pixels was classified as either in or outside of the ROIs. First, the network was trained 
on Dataset 1. Second, this trained network was then retrained on the Dataset 2. As FCN ROIs were rough-edged, 
they were converted to a rectangular shape by post-processing contour detection (MATLAB).

To assess the performance of CNN1, we compared the ground-truth labels with the predicted labels for each 
radiograph in the test set using the Jaccard Index, J, which measures the agreement between two  images53. The 
Jaccard index varies between 0 (no agreement) and 1 (total agreement). By convention, the predicted ROI is 
considered to be “correct” for a value of J > 0.534,54.

CNN2: classification of hip fractures. Labelling, data preparation and augmentation. To determine the 
ground-truth labels for the radiographs, all Dataset 2 radiographs were read and classified independently by two 
musculoskeletal experts (consultant orthopaedic surgeon and/or consultant musculoskeletal radiologist) blind-
ed to patient details. Each expert routinely assesses hip fractures as part of their day-to-day work. The experts 
were able to choose one of eight possible labels listed in the first two columns of Table 2. If the two experts did 
not agree on classification for a given radiograph, independent classification by a third expert was performed. 
If this agreed with one of the two original classifications, this classification was used else the radiographs were 
jointly read and classification agreed by two further experts with the most experience (MW, TC).

Table 2.  Ground-truth classification according to musculoskeletal experts for Dataset 2.

Class NHFD subclass Subtotal Total

Intracapsular

Displaced 864

1089Undisplaced 207

Unable to determine subclass 18

Trochanteric

Grade A1/A2 818

993Grade A3 151

Unable to determine subclass 24

Subtrochanteric 114

Unfractured 1603

Not classifiable 168
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The frequencies of the NHFD subclasses of intracapsular and trochanteric fracture types varied greatly, with 
some subclasses seen on as few as 18 radiographs. As CNNs have difficulty learning from unbalanced and small 
classes, subtrochanteric fractures and non-classified fractures were excluded. Thus, we limited CNN training 
to the classification of three classes: no fracture, trochanteric and intracapsular fractures. Radiographs of hips 
with an implant in situ were excluded from the dataset, leaving 1082 intracapsular, 974 trochanteric and 1603 
non-fractured (n = 3659 total). The training set was augmented and artificially increased in size by rotating 
the images through an angle between -10° and 10°, chosen at random. Furthermore, half of the images were 
grayscale-inverted (chosen at random) to exploit the fact that some radiographs use an inverse intensity scheme: 
light illustrating bone and dark tissue. The network randomly mirrored images in the training set, so this was 
not repeated. The minority classes were sampled more frequently to address the class imbalances, resulting in a 
training set size of 47,698, evenly spread across fracture types. No augmentation was applied to the validation 
and test sets which were of size 732 (320 non-fractured, 195 trochanteric and 217 intracapsular).

Training: transfer learning with GoogLeNet. The number of radiographic images available in the classifica-
tion training set was small by traditional machine learning classification tasks, which risks reduced accuracy. 
A standard solution is transfer learning: utilizing a network that has already been trained to a high degree of 
accuracy on a similar task using a much larger dataset. This lessens overfitting, improves accuracy and greatly 
reduces the time needed to train a  network50,51.

For the transfer learning for the classification task, we exploited the success of GoogLeNet, a very success-
ful model architecture developed by  Google55. Instead of training the GoogLeNet network architecture from 
scratch, the Berkeley Vision and Learning Centre (BVLC) pretrained  model56 was used as the starting point for 
finetuning CNN2 on Dataset 2. The details of how this model was trained are given in github.com/BVLC/caffe/
tree/master/models/bvlc_googlenet.

The input for the final trained CNN2 was an AP radiograph of a hip joint, the output was a score for each 
fracture type considered (no fracture, trochanteric and intracapsular fractures) indicating the relative certainty 
that the hip belonged to the corresponding class. We assigned hips to the class with the highest score.

Performance assessment. The overall performance of the fracture classification was assessed using accuracy 
(fraction of predictions the model classified correctly) and agreement (Cohen’s kappa, κ)57. Cohen’s kappa coef-
ficient, a statistic which measures the agreement between two labelling approaches, is more robust than accuracy 
since it contrasts accuracy with results accomplished when assigning labels at random. Cohen’s kappa coefficient 
varies from κ = 1 for complete agreement to κ = 0 if the agreement is no better than expected by chance.

Fracture-specific performance was also assessed by comparing the actual versus predicted labels for each class, 
which is commonly used in machine  learning50. These were then summarized in precision (i.e. the number of 
all fractures correctly classified that were labelled with the same fracture type) and recall (i.e. the proportion of 
fractures of a given type that were correctly classified). Precision and recall for a fracture type A are defined as:

The 95% confidence intervals were calculated for precision and recall using the Clopper-Pearson method. The 
F1 score enabled combination of precision and recall into a single performance measure per class:

F1 varies from 1: perfect classifier for type A; to 0: no image was correctly identified as type A.
Additionally, performance of the classification was assessed using Receiver Operating Characteristic (ROC) 

curves. As mentioned above, CNN2 assigns each image of a hip joint three scores between 0 and 1, one per class 
indicating the relative certainty that the hip belongs to the corresponding class. A threshold was then defined for 
the score needed to reach a decision. For instance, if an image is classified as class A only if the corresponding 
score exceeds 0.9, the images labelled A are more likely to be classified correctly, but there will be many incorrect 
“not A” labels. For each class and threshold, the number of correct and incorrect classifications were computed. 
Then ROC curves per class were plotted: the true positive rate, i.e. recall, versus the rate of false negatives. The 
threshold reflects the trade-off between recall and precision. Computing the area under the ROC curve (AUC) 
measures the overall performance of the classification algorithm, independent of the choice of threshold. An 
area of 1 represents a perfect classification, while an area of 0.5 is the same as a classification by chance. The 95% 
confidence intervals (CI) of the AUC were computed using 1000 bootstrap samples.

We used gradient-weighted class activation mapping (Grad-CAM41) to produce visual explanations for our 
model. Grad-CAM propagates the gradients of a particular classification (in our case, the predicted label) back 
to the final convolutional layer of the network to produce a heatmap illustrating the regions of the image that 
contributed most strongly to that classification. By definition, our visualisation heatmaps had the same resolu-
tion as the feature maps in the final convolutional layer, 7 × 7. A custom python code based on the code provided 
by Selvaraju et al.41 downloaded from github (https:// github. com/ ramprs/ grad- cam) was used to generate the 
activation maps.

(1)Precision =
number correctly predicted as type A

number predicted as type A

(2)Recall =
number correctly predicted as type A

number actually of type A
.

(3)F1 =
2

(

1

precision +
1

recall

) .

https://github.com/ramprs/grad-cam
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Fitting the CNNs was performed using Caffe (Berkeley Artificial Intelligence Research, University of Cali-
fornia at Berkley, CA, USA)58, other computations were performed in MATLAB; except for the statistical tests 
which were performed using  R59. The machine learning was performed on a Xeon workstation with a Titan X 
GPU (Nvidia Corporation, Santa Clara, CA, USA) running a Linux operating system.

Data availability
The datasets generated during and/or analysed during the current study are available in the University of Bath 
Research Data repository, https:// doi. org/ 10. 15125/ BATH- 01011.
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