1,671 research outputs found

    Proceedings of the First European Workshop on Latent Semantic Analysis in Technology Enhanced Learning

    Get PDF
    Latent Semantic Analysis (LSA) has been successfully deployed in various educational applications to enrich learning and teaching with information-technology. The primary goal of the workshop is to bring together experts in the field in order to share knowledge gained within the scattered research about latent semantic analysis in educational applications, in particular from the context of the IST projects Cooper, iCamp,T enCompetence and ProLearn

    Proceedings of the First European Workshop on Latent Semantic Analysis in Technology Enhanced Learning

    Get PDF
    Latent Semantic Analysis (LSA) has been successfully deployed in various educational applications to enrich learning and teaching with information-technology. The primary goal of the workshop is to bring together experts in the field in order to share knowledge gained within the scattered research about latent semantic analysis in educational applications, in particular from the context of the IST projects Cooper, iCamp,T enCompetence and ProLearn

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der ĂŒberwiegende Teil textuell kodierter Information elektronisch verfĂŒgbar. Hiermit kommt der Entwicklung leistungsfĂ€higer Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die NĂŒtzlichkeit gĂ€ngiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer FunktionalitĂ€t (Flexion, Derivation und Komposition), lexikalisch-semantischer FunktionalitĂ€t und der FĂ€higkeit zu einer sprachĂŒbergreifenden Analyse großer DokumentenbestĂ€nde. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym fĂŒr Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen EintrĂ€ge mittels semantischer Relationen sprachĂŒbergreifend verknĂŒpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhĂ€ngige, konzeptklassenartige Symbole ersetzt werden. Die resultierende ReprĂ€sentation ist die Basis fĂŒr das sprachĂŒbergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von LexikoneintrĂ€gen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergĂ€nzt werden. Die BerĂŒcksichtigung sprachĂŒbergreifender PhĂ€nomene fĂŒhrt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen AmbiguitĂ€ten. Die LeistungsfĂ€higkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gĂ€ngigen Herangehensweisen gegenĂŒbergestellt

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and ProtĂ©gĂ©, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and ProtĂ©gĂ©, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Human-competitive automatic topic indexing

    Get PDF
    Topic indexing is the task of identifying the main topics covered by a document. These are useful for many purposes: as subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a document's topics helps people judge its relevance quickly. However, assigning topics manually is labor intensive. This thesis shows how to generate them automatically in a way that competes with human performance. Three kinds of indexing are investigated: term assignment, a task commonly performed by librarians, who select topics from a controlled vocabulary; tagging, a popular activity of web users, who choose topics freely; and a new method of keyphrase extraction, where topics are equated to Wikipedia article names. A general two-stage algorithm is introduced that first selects candidate topics and then ranks them by significance based on their properties. These properties draw on statistical, semantic, domain-specific and encyclopedic knowledge. They are combined using a machine learning algorithm that models human indexing behavior from examples. This approach is evaluated by comparing automatically generated topics to those assigned by professional indexers, and by amateurs. We claim that the algorithm is human-competitive because it chooses topics that are as consistent with those assigned by humans as their topics are with each other. The approach is generalizable, requires little training data and applies across different domains and languages

    Similarity Models in Distributional Semantics using Task Specific Information

    Get PDF
    In distributional semantics, the unsupervised learning approach has been widely used for a large number of tasks. On the other hand, supervised learning has less coverage. In this dissertation, we investigate the supervised learning approach for semantic relatedness tasks in distributional semantics. The investigation considers mainly semantic similarity and semantic classification tasks. Existing and newly-constructed datasets are used as an input for the experiments. The new datasets are constructed from thesauruses like Eurovoc. The Eurovoc thesaurus is a multilingual thesaurus maintained by the Publications Office of the European Union. The meaning of the words in the dataset is represented by using a distributional semantic approach. The distributional semantic approach collects co-occurrence information from large texts and represents the words in high-dimensional vectors. The English words are represented by using UkWaK corpus while German words are represented by using DeWaC corpus. After representing each word by the high dimensional vector, different supervised machine learning methods are used on the selected tasks. The outputs from the supervised machine learning methods are evaluated by comparing the tasks performance and accuracy with the state of the art unsupervised machine learning methods’ results. In addition, multi-relational matrix factorization is introduced as one supervised learning method in distributional semantics. This dissertation shows the multi-relational matrix factorization method as a good alternative method to integrate different sources of information of words in distributional semantics. In the dissertation, some new applications are also introduced. One of the applications is an application which analyzes a German company’s website text, and provides information about the company with a concept cloud visualization. The other applications are automatic recognition/disambiguation of the library of congress subject headings and automatic identification of synonym relations in the Dutch Parliament thesaurus applications

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen
    • 

    corecore