4,370 research outputs found

    Deductive reasoning about expressive statements using external graphical representations

    Get PDF
    Research in psychology on reasoning has often been restricted to relatively inexpressive statements involving quantifiers. This is limited to situations that typically do not arise in practical settings, such as ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participantsā€™ performance when reasoning with two notations. The first used topology to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topological- spatial representations were more effective than topological representations. Unlike topological-spatial representations, reasoning with topological representations was harder when involving multiple quantifiers and binary relations than single quantifiers and unary relations. These findings are compared to those for sentential reasoning tasks

    Human inference beyond syllogisms: an approach using external graphical representations.

    Get PDF
    Research in psychology about reasoning has often been restricted to relatively inexpressive statements involving quantifiers (e.g. syllogisms). This is limited to situations that typically do not arise in practical settings, like ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participants' performance when reasoning with two notations. The first notation used topological constraints to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topo-spatial representations were more effective for inferences than topological representations alone. Reasoning with statements involving multiple quantifiers was harder than reasoning with single quantifiers in topological representations, but not in topo-spatial representations. These findings are compared to those in sentential reasoning tasks

    Representation and strategy in reasoning an individual differences approach

    Get PDF

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    A comparison of languages which operationalise and formalise {KADS} models of expertise

    Get PDF
    In the field of Knowledge Engineering, dissatisfaction with the rapid-prototyping approach has led to a number of more principled methodologies for the construction of knowledge-based systems. Instead of immediately implementing the gathered and interpreted knowledge in a given implementation formalism according to the rapid-prototyping approach, many such methodologies centre around the notion of a conceptual model: an abstract, implementation independent description of the relevant problem solving expertise. A conceptual model should describe the task which is solved by the system and the knowledge which is required by it. Although such conceptual models have often been formulated in an informal way, recent years have seen the advent of formal and operational languages to describe such conceptual models more precisely, and operationally as a means for model evaluation. In this paper, we study a number of such formal and operational languages for specifying conceptual models. In order to enable a meaningful comparison of such languages, we focus on languages which are all aimed at the same underlying conceptual model, namely that from the KADS method for building KBS. We describe eight formal languages for KADS models of expertise, and compare these languages with respect to their modelling primitives, their semantics, their implementations and their applications. Future research issues in the area of formal and operational specification languages for KBS are identified as the result of studying these languages. The paper also contains an extensive bibliography of research in this area

    Description Logic for Scene Understanding at the Example of Urban Road Intersections

    Get PDF
    Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer algorithms. The present thesis investigates the suitability of a particular family of explicit, formal representation and reasoning formalisms for this task, which are subsumed under the term Description Logic
    • ā€¦
    corecore