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Abstract Research in psychology about reasoning has often been restricted to relatively
inexpressive statements involving quantifiers (e.g., syllogisms). This is limited to situations
that typically do not arise in practical settings, like ontology engineering. In order to
provide an analysis of inference, we focus on reasoning tasks presented in external graphic
representations where statements correspond to those involving multiple quantifiers and
unary and binary relations. Our experiment measured participants’ performance when
reasoning with two notations. The first notation used topological constraints to convey
information via node-link diagrams (i.e., graphs). The second used topological and spatial
constraints to convey information (Euler diagrams with additional graph-like syntax).
We found that topological-spatial representations were more effective for inferences than
topological representations alone. Reasoning with statements involving multiple quantifiers
was harder than reasoning with single quantifiers in topological representations, but not
in topological-spatial representations. These findings are compared to those in sentential
reasoning tasks.
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1 Introduction

In the literature on psychology of reasoning, categorical syllogisms, for example, All B are
A; some B are C; therefore some C are A, have been intensively studied (for a survey, see
Khemlani & Johnson-Laird 2012). However, it may not be true that categorical syllogisms
are frequently used in our daily life. Non-syllogistic forms of reasoning have attracted par-
ticular attention in the study presented in this paper, which encompasses the expressive case
of binary verbs (requiring two terms) and multiple quantifiers, such as All koalas eat only eu-
calyptuses. This is achieved through external graphical representations where quantification
is implicit in the formed statements; examples will be given later.

Some cognitive studies have already explored frameworks that are beyond the traditional
ones of categorical syllogisms. Johnson-Laird, Byrne, and Tabossi (1989) dealt with syllo-
gisms involving verbs, for example, from the premises All A are in the same place as some
B; All B are in the same place as all C to the conclusion All A are in the same place as all
C. However, the verbs are restricted to spatial binary ones with transitivity or symmetry. A
similar restriction was applied to the recent study of Ragni and Sonntag (2012). These studies
adopt an approach from the viewpoint of mental model theory, and propose that mental repre-
sentations for multiply quantified sentences consist simply of alphabets or dots with different
shapes representing individuals. However, such simple representations, by way of only using
spatial verbs, do not represent all cases that use binary verbs.

Geurts and van der Slik (2005) used mixed forms of syllogisms with single and double
quantifiers; for example, Most A played against more than two B and All B were C implies
Most A played against more than two C. They demonstrated the effect of monotonicity pro-
files of quantifiers, rather than specific mental representations and processes. In addition,
non-standard quantifiers, for example, cardinal (numerical) quantifiers such as more than
three (Kroger et al., 2008), proper nouns such as a is an A (“a” is an individual constant)
(Politzer & Mercier, 2008; Khemlani, Lotstein & Johnson-Laird, 2014), and proportional
quantifiers such as most and few (Ragni, Singmann, & Steinlein, 2014; Sato & Mineshima,
2016) have been also explored. However, the scope of the studies was still restricted to the
syllogistic form consisting of minor, major, and middle terms.1 Furthermore, each extended
case was explored separately and there have been few comparisons between single quantifiers
and multiple quantifiers.

By contrast, recent developments in ontology engineering shed new light on natural lan-
guage inferences, contributing to the expanding coverage of psychological reasoning tasks.
Nguyen et al. (2012) collected deduction patterns (inference tasks), and demonstrated their
prevalence of a wide variety of forms of reasoning with quantifiers and unary and binary
relations. Using novice participants, performance using the deduction patterns as inference

1 Middle terms appear in both major premises (containing major terms) and minor premises (containing minor terms),
and minor and major terms compose conclusions.
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tasks was evaluated. It was found that there was a difficulty gap between reasoning with sin-
gle quantifiers and reasoning with multiple quantifiers, with 76.4% accuracy for (statements
involving) single quantifiers and 59.0% for multiple quantifiers. This leads to two impor-
tant questions. What makes reasoning with multiple quantifiers hard? What kind of cognitive
processes of reasoning do people employ in the presence of quantifiers?

A main concern of these questions is inference tasks, which are distinguished from in-
terpretations, but inference necessarily follows the process of interpreting premises. So it is
important for the interpretation to be fixed in some way when exploring the nature of hu-
man inferences. Indeed, Stenning and van Lambalgen (2001) emphasised the distinction of
two kinds of reasoning: reasoning toward an interpretation of premises and reasoning from
a fixed interpretation of premises.2 Based on the approach of using easy-to-understand rep-
resentations (Sato & Mineshima, 2015; Sato, Sugimoto, & Ueda, 2018), the current study
adapts external graphical representations, instead of ordinary representations of natural lan-
guage sentences, to fix the interpretation of premises and provide a fine-grained analysis of
inference. In particular, we focus on two distinct graphical representations. The first exploits
topology to convey information via node-link diagrams (i.e., graphs), hereinafter called a
topological representation. The second exploits topological and spatial constraints to convey
information (Euler diagrams with additional graph-like syntax), hereinafter called a topo-
spatial representation. Importantly, both types of representation convey information that is
semantically rich. They give rise to statements involving either single quantifiers (and unary
relations) or involving multiple quantifiers along with binary relations.

In this paper, we explore the cognitive processes involved in graphical inferences about
semantically rich statements containing multiply quantified information. Of course, the find-
ings apply to the cases covered by the particular representations used in the study. However,
they lead us to a more general point. Even when people interpret statements of sentences in
usual sentential reasoning tasks, choices must be made about their representations. Thus, the
findings in our experiment, in which particular representations are externally given, can con-
tribute to our understanding of human inferences in sentential format. This will be explored
later in the paper. The structure of this paper is as follows. In Section 2, we present a task
analysis of deductive inference by graphical representations. In Section 3, we report on the
experiment which measured participants’ performance of the tasks. In Section 4, we discuss
the findings and implications to cognitive science of reasoning.

2 Task analysis

2.1 Topological and topo-spatial representations

As mentioned in the Introduction, human reasoning with quantifiers is necessary in a wide va-
riety of single and multiple quantified forms, in line with the recent development in ontology

2 In addition, Stenning and van Lambalgen clearly stated that “If the interpretation is not fixed, what is one actually
testing? (p.291)”.
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Fig. 1 Syntactic units constituting SOVA graphs: (1) classes, (2) individuals, (3) all things, (4) no things, (5)
anonymous classes, (6) natural numbers, (7–9) minimum/maximum/exact cardinalities, (10) negation, (11)
intersection, (12) union, (13) binary-verbs, (14) binary-verbs with universal restriction, (15) binary-verbs with
existential restriction, (16) isSubclassOf, (17) DisjointClasses, (18) EquivalentClasses, (19) IntersectionOf in
linking ∩, UnionOf in linking ∪, ComplementOf in linking ¬, (20) InstanceOf in linking between class and
individual, (21) binary-verb relation, (22) binary-verb relation with universal restriction and “everything” in
subject term, (23) binary-verb relation with universal restriction and “everything” in object term (concrete
words are inserted in nodes with italic font labels).
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Fig. 2 Basic configurations of SOVA graphs: (24) C1 is a subset of C2. (25) C1 is disjoint from C2. (26) C1 is
equivalent to C2. (27) C3 is a subset of the intersection of C1 and C2. (28) C3 is a subset of the union of C1 and
C2. (29) C1 is a subset of nothing; i.e., C1 is empty. (30) d is an instance of C1.

engineering. Historically, ontologies were defined using some kind of graphs (e.g., Brach-
man & Schmolze, 1985), before the formulations of description logics (Schmidt-Schauß &
Smolka, 1991) and web ontology languages (W3C OWL Working Group, 2012).3 As a graph
representation for OWL constructs, this study focuses on the Simple Ontology Visualization
API: SOVA4 (Itzik & Reinhartz-Berger, 2014). Note that SOVA graphs are fundamentally
composed of nodes and links but, as full ontology representations, they need a wider variety
of nodes and links.

The basic syntactic units of SOVA graphs are given in Fig.1. Nodes with oblique font
labels are used for named classes (i.e., sets), individuals, cardinalities, binary-verbs, etc. In
nodes for binary-verbs, there are two kinds of restrictions: (1) in universal restriction (∀:)
– subject class op only object class, where op is a binary verb; (2) in existential restriction
(∃:) – subject class op at least one object class. Nodes with normal font labels are used for
all things (T), no things (NT), anonymous classes (A), negation (¬), intersection (∩), etc. In
addition, various forms of links are used for two types of relations: set-theoretical ones (e.g.,
SubclassOf, DisjointClasses, IntersectionOf) and binary-verb. Fig.2 illustrates examples of
basic configurations of SOVA graphs. Examples with binary verbs of SOVA graphs will be
given in Section 2.2. SOVA graphs, whilst more complex than those in Hartley and Barnden
(1997, p.170), are still composed of topological relationships in nodes and links, giving rise
to semantic meanings of expressive statements involving quantifiers.

3 As discussed in Stenning (2002, Chap.2), graph (node-link) representations can essentially be the same as sentential
representations with respect to expressivity.

4 https://protegewiki.stanford.edu/wiki/SOVA (Accessed Dec. 2017)
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Fig. 3 Syntactic elements constituting concept diagrams: (1) all things, (2) named classes, (3) anonymous
classes, (4) named individuals, (5) the absence of things, (6) binary-verbs with universal restriction, (7) binary-
verbs with “at least” constraints, (8–10) cardinal restrictions which are written on arrows, (11) example of a
cardinal restriction: binary-verbs with existential restriction.

(12) (12’) (13) (13’) (14) (15) (16) (17) (18)

Fig. 4 Basic configurations of concept diagrams: (12–12’) C1 is a subset of C2. (13–13’) C1 is disjoint from
C2. (14) C1 is equivalent to C2. (15) C3 is a subset of the intersection of C1 and C2. (16) C3 is a subset of the
union of C1 and C2. (17) C1 is empty. (18) d is an instance of C1.

As well as topological relations, spatial relations – such as inclusion and exclusion – are
available. We focus on concept diagrams (Stapleton, Compton, & Howse, 2017) as a topo-
spatial representation of ontologies, as shown in Fig.3. The basic idea of concept diagrams
is that Euler diagrams and graphs (nodes and links) are merged; for a similar approach, see
Harel (1988) and Sugiyama and Misue (1991), although those systems are not expressive
enough to fully represent ontologies. Syntactic units constituting concept diagrams are given
in Fig.3. Rectangles are used for all things, named (labelled) curves are used for classes, un-
named curves for anonymous classes, and shading illustrates the absence of things. Solid ar-
rows with labels are used for binary-verbs with universal (only) restriction, and dashed arrows
with labels are used for binary-verbs with existential (at least one) restriction. Furthermore,
relations are divided into two types: set-theoretical and binary-verb. Set-theoretical relations
(e.g., SubclassOf, DisjointClasses, IntersectionOf, etc.) are expressed by spatial (inclusion
and exclusion) relations of the corresponding syntactic objects; see Fig.4. Binary-verb rela-
tions are expressed by arrows from source objects to target objects. Examples with binary
verbs of concept diagrams will be given in Section 2.2.

2.2 Reasoning with multiple quantifiers in topological and topo-spatial representations

We can make inferences using topological representations of SOVA graphs and using topo-
spatial representations of concept diagrams. In such diagrammatic reasoning tasks, one is
asked to judge whether the diagram transformations from premises to a conclusion are valid.
Here, the premise diagrams are true and they are transformed into the conclusion diagram. If
the conclusion diagram is true, given the information in the premise diagrams, the transfor-
mation is valid. Otherwise the transformation is not valid.
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Fig.5 shows examples of tasks in graphical reasoning, which consist of two premises and
one conclusion, and they are divided by a line. In each figure, (a) and (b) are SOVA cases (c)
and (d) are concept diagram cases. Cases (a) and (c) give rise to statements about sets and
unary relations involving single quantifiers, hereinafter called the ‘single quantifier’ case,
and are translated as Everything is a darfellan & No grippli is a darfellan; therefore, nothing
is a grippli. Cases (b) and (d) give rise to the statements about sets and binary relations
involving multiple (double) quantifiers, hereinafter called the ‘multiple quantifier’ case, and
are translated as Every daemonfey is related to at least one thing in both axani and phoera
under ‘isGuidedBy’ & No axani is a phoera; therefore, nothing is a daemonfey.

In graphical or diagrammatic reasoning, it is generally assumed that reasoners merge
premise representations into one, and then judge if a given conclusion representation can be
obtained from the merged representation (cf. Stenning & Oberlander, 1995). Fig.6 illustrates
possible intermediate representations generated by merging premise diagrams in Fig.5. In the
SOVA case of Fig.5(a), one identifies the nodes T and darfellan in the two premise graphs,
and overlays the two linking (double headed and white headed arrows) between these two
nodes, while preserving the other relations. Consequently, one can produce the merged rep-
resentation of Fig.6(a). Here T, referring to all-things, is linked with an equivalent node to
darfellan, while T is also linked by a subclass arrow from grippli (which is disjoint from dar-
fellan). In order for all the premises and conclusion to be true, it is needed as a conclusion
statement that there is no individual who is a grippli; that is, the set grippli is empty. How do
we deduce this from the SOVA graph in Fig.6(a)? Well, Fig.6(a) explicitly shows that darfel-
lan is equivalent to Thing and is disjoint from grippli. Therefore, grippli is disjoint from Thing
and, so, there can be no grippli individuals. Thus, one can judge that the conclusion statement
corresponding to Nothing is a grippli, which is expressed in the graph by linking, using a
subclass arrow from grippli to NT (which represents the empty set), is valid. In the concept
diagram case of Fig.5(c), Fig.6(c) is created by identifying the curves of darfellan in the two
premise diagrams and merging the diagrams. Here the information that the region other than
darfellan is shaded is added into the diagram in which the intersection of grippli and darfellan
is shaded. As a result, the region inside of darfellan, but outside of grippli is unshaded. From
this merged diagram, we can extract the conclusion diagram in which the region inside grippli
is entirely shaded. Again, we deduce there can be no grippli individuals. Here we can observe
that, in reasoning with single quantifiers, SOVA graph and concept diagrams are similar in
that unary relations are expressed by one basic configuration: SOVA links two nodes and
concept diagrams use spatial relations.

Fig.6(b) is created by identifying the nodes T, axani, and phoera in the two premise
diagrams of Fig.5(b) and merging the diagrams. While daemonfey is linked under a verb
to at least one thing in the intersection between axani and phoera, axani is linked using a
disjoint edge to phoera. In order for all the premises and conclusion to be true, the conclusion
statement in which daemonfey is empty is needed. Thus, one can judge that the conclusion
statement corresponding to Nothing is a daemonfey is valid. Here, understanding the relations
between daemonfey and axani/phoera through a binary verb requires processing multiple
arrows among nodes. Thus, reasoning with multiple quantifiers is expected to require much
more cognitive effort than reasoning with single quantifiers. On the other hand, in concept
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(a) (c)

——————————————————

(b)

———————————————————————————————————————————–

(d)

Fig. 5 Task examples. Two premises and one conclusion are divided by a line: (a) topological representations
in single quantifier case; (b) topological representations in multiple quantifier case; (c) topo-spatial represen-
tations in single quantifier case; (d) topo-spatial representations in multiple quantifier case.

diagrams, as shown in Fig.6(d), binary verbs are expressed by one arrow in which the source
and target are directly specified (since unary relations are expressed by spatial constraints
instead of arrows). Thus, reasoning with multiple quantifiers may not require much more
effort than reasoning with single quantifiers.

In some cases of reasoning with concept diagrams, there might be certain difficulties
in merging premise diagrams. As an example, consider the task shown in Fig.7. Judging
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(a) (c)

(b)

(d)

Fig. 6 Possible intermediate representations by merging premise diagrams, corresponding to the cases (a)–(d)
in Fig.5.

Fig. 7 A task example of ‘non-matching case’ in topo-spatial representations: premise diagrams do not match,
but can still be merged.

from curve configurations, neither inclusion nor exclusion relations necessarily hold between
the (stone and unlabelled) curves in the first premise and an unlabelled curve in the second
premise.5 Judging from binary verb relations, however, since all things (rectangle) are related

5 It should be noted that throughout the paper, each class (concept) may denote an empty or non-empty set. Conse-
quently, each minimal region (i.e., a region having no other region contained within it) in a concept diagram
also may denote an empty or a non-empty set. Thus, when the relation between two curves is unknown, they
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to only a class (curve) under has (in the second premise), one can find that a subclass of things
(curve labelled buckawn) cannot be related to something other than the above class under
has. Thus, in either possible configuration between the stone curve in the first premise and
the unlabelled curve in the second premise, the target region of the arrow ‘has at least four’
is inside the target region of the arrow ‘has at most one’. This expresses that each buckawn
has at least four stones and each buckawn has at most one stone. Accordingly, individuals in
such a subject class (buckawn) cannot exist. In order for all the premises and conclusion to be
true, the conclusion statement in which the subject class buckawn is empty is needed. Thus,
one can judge that the conclusion statement corresponding to Nothing is a buckawn is valid.
Cases in which premise diagrams do not uniquely match when merging them are relatively
complex in that the reasoner has to consider more than one possibility; we call them ‘non-
matching’ cases.6 Solving non-matching cases like Fig.7 could involve processes requiring
more cognitive effort than ‘matching’ cases like Fig.5(c-d). In reasoning with topological
representations of SOVA, there is no such classification in merging premise representations.

Based on our analysis, we have the following five hypotheses. (1) In reasoning with sin-
gle quantifiers, there is no significant difference between the two representations. (2) Topo-
spatial representations are more effective than topological representations in reasoning with
multiple quantifiers. (3) In topological representations, reasoning with multiple quantifiers is
harder than reasoning with single quantifiers. (4) In topo-spatial representations, there is no
significant difference between single and multiple quantifiers. (5) In topo-spatial representa-
tions, reasoning in the non-matching cases is harder than reasoning in the matching cases.7

3 Experiment

In order to test the above five hypotheses, we conducted an experiment measuring partic-
ipants’ performances when making inferences with topological representations and topo-
spatial representations. Before the inference tasks, the participants were given instructions on
the (informal) semantics of representations and then their comprehensions were checked by

are represented as two partially overlapping curves. Note that full understanding of diagrammatic semantics
with respect to partially overlapping curves is not required for understanding the cognitive strategy described
here. If people find that an inclusion or exclusion relationship is unspecified to be merged, they can judge
the validities of arguments. Indeed, in Sato, Wajima, and Ueda (2018) who recorded the coordinate values of
diagrams as they were moved by reasoners, it was reported that some reasoners really enumerated multiple
possible configurations of inclusion, exclusion, and overlapping relationships, instead of placing curves as
partially overlapping.

6 This kind of difficulty in premise integration can also arise in reasoning with Euler diagrams in cases of syllogisms
having an existential premise (e.g., All B are A; some C are B. Therefore, some C are A); see Sato and Mi-
neshima (2015).

7 In statistical hypothesis testing, the null hypotheses corresponding to the above predictions are that there is no sig-
nificant difference between the two conditions. While the predictions of (2), (3), and (5) indicate that the null
hypotheses are expected to be rejected, the predictions of (1) and (4) indicate that the null hypotheses are not
expected to be rejected. Of course, there is no rigorous method of validating that no statistically significant
difference (effect) exists. However, should we find no significant difference then this, at the very least, supports
our predictions (1) and (4) and, thus, allows us to discuss the nature of human inference in question here.
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a pretest (for details, see below). Given the experimental settings, it is assumed in our frame-
work that the tasks for participants involve not just syntactic transformations of the pieces
of some plane figure puzzle, but a kind of diagrammatic inference, in which the entailment
from premise to a conclusion is judged using both syntactic and semantic information of
diagrammatic or graphical representations.8

3.1 Method

3.1.1 Participants

Forty-five undergraduate students from classes on elementary computer science at the Uni-
versity of Brighton were recruited. The mean age was 22.53 (SD = 5.92) with a range of
18–48 years. All participants gave informed consent and were paid for their participation
(by way of refreshment voucher). The experiment method was approved by the CEM School
Research Ethics Panel of the University of Brighton. None had any prior training of ontol-
ogy engineering or syllogistic logic. One participant gave up on the way, and their data was
excluded. Participants were divided into two groups: the topological group (N = 19) and the
topo-spatial group (N = 25).

3.1.2 Materials

The participants in each group were presented with premise graphs/diagrams and a conclu-
sion graph/diagram (such as Fig.5). Participants were asked to answer the question of whether
the graph/diagram transformations from premises to conclusion were valid. As shown in Ta-
ble 1, we presented 20 items in total, out of which 10 items consisted only of validly trans-
formed diagrams (#01–10) and 10 items included invalidly transformed diagrams (#11–20).
The 10 valid items were selected from the medium difficulty patterns in Nguyen et al. (2012).
The invalid items were created from the valid ones with minimal changes. Furthermore, the
tasks were divided into singly quantified cases (#01–05/#11–15) and multiply quantified
cases (#06–10/#16–20), and divided into matching cases (#1, 2, 4, 5, 7, 9, 11, 14, 15, 17,
19) and in non-matching cases (#3, 6, 8, 10, 12, 13, 16, 18, 20). The tasks were presented
in one of three random orders and as a paper-and-pencil test. There was no time limit for
completing the tasks, although the approximate time (30 minutes) for taking the experiment
was suggested to the participants.

8 This is consistent with the view that diagrammatic reasoning is a kind of surrogated reasoning (Barwise & Shimojima,
1995), in which reasoning about statements having semantic values is partially taken over by operations on
external aids such as diagrams (for various examples of diagrammatic reasoning, see Glasgow, Narayanan
& Chandrasekaran, 1995). Notions related to surrogation have also been discussed as analogical mapping in
Gentner, Holyoak and Kokinov (2001), Funt (1980), Steels (1990), and Chandrasekaran (2011).
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Table 1 Lists of experimental tasks and results of accuracies. Upper rows are described in a natural lan-
guage and lower rows are described in description logic. #01–10 are valid items; #11–20 are invalid items.
#01–05/#11–15 are relevant to single quantifiers only; #06–10/#16–20 are relevant to multiple quantifiers.

No Premises ⇒ Conclusion Topo.% TopoSpa.%
01. (Every A is a B) & (no A is a B) ⇒ (nothing is an A)

(A v B)∧ (Dis(A,B))⇒ (A v⊥) 62.5 80.1
02. (No A is a B) & (every C is an A) & (every D is a B) ⇒ (no C is a D)

(Dis(A,B))∧ (C v A)∧ (D v B)⇒ (Dis(C,D)) 75.0 85.7
03. (Every A is a (every B is a C)) & (every B is a C) ⇒ (every A is a C)

(A v (B vC))∧ (B vC)⇒ (A vC) 87.5 85.7
04. (Everything is a B) & (no A is a B) ⇒ (nothing is an A)

(>v B)∧ (Dis(A,B))⇒ (A v⊥) 56.3 66.7
05. (Every A is a B) & (every A is non-B) ⇒ (nothing is an A)

(A v B)∧ (A v ¬ B)⇒ (A v⊥) 50.0 76.2
06. (Every A is related to at least one B under R) & (Everything that something is related to under R is a C)

⇒ (every C is related to at least one thing in both B and C)
(A v ∃R.B)∧ (Rang(R.,C))⇒ (C v ∃R.(BuC)) 87.5 80.1

07. (Every A is related to at least one thing in both B and C under R) & (no B is a C) ⇒ (nothing is an A)
(A v ∃R.(BuC))∧ (Dis(B,C))⇒ (A v⊥) 25.0 85.7

08. (Every A is related to at least three things in B under R) & (every A is related to at most one B under R)
⇒ (nothing is an A)
(A v≥ 3R.B)∧ (A v≤ 1R.B)⇒ (A v⊥) 43.8 52.4

09. (Every A is related to at least one B under R) & (every B is nothing) ⇒ (nothing is an A)
(A v ∃R.B)∧ (B v⊥)⇒ (A v⊥) 62.5 57.1

10. (Every A is related to at least four things in B under R) & (each thing is related to at most one thing under R)
⇒ (nothing is an A)
(A v≥ 4R.B)∧ (Fun(R.))⇒ (A v⊥) 31.3 47.6

11. (Every B is a A) & (no A is a B) ⇒ (nothing is an A)
(B v A)∧ (Dis(A,B))⇒ (A v⊥) 75.0 71.4

12. (No A is a B) & (every C is an A) & (every B is a D) ⇒ (no C is a D)
(Dis(A,B))∧ (C v A)∧ (B v D)⇒ (Dis(C,D)) 37.5 52.4

13. (Every A is a (every B is a C)) & (every B is a C) ⇒ (every A is a B)
(A v (B vC))∧ (B vC)⇒ (A v B) 43.8 47.6

14. (Everything is a B) & (every A is a B) ⇒ (nothing is an A)
(>v B)∧A v B)⇒ (A v⊥) 62.5 66.7

15. (Every A is a B) & (every non-B is an A) ⇒ (nothing is an A)
(A v B)∧ (¬ B v A)⇒ (A v⊥) 87.5 85.7

16. (Every A is related to at least one B under R) & (Everything that something is related to under R is a C)
⇒ (Everything that something is related to under R is both a C and a non-B)
(A v ∃R.B)∧ (Rang(R.,C))⇒ (Rang(R.,Cu¬B)) 43.8 38.1

17. (Every A is related to at least one thing in either B, C, or both, under R) & (no B is a C)
⇒ (nothing is an A)
(A v ∃R.(BtC))∧ (Dis(B,C))⇒ (A v⊥) 62.5 85.7

18. (Every A is related to at least 1 thing in B under R) & (every A is related to at most three things in B under R)
⇒ (every A is nothing)
(A v≥ 1R.B)∧ (A v≤ 3R.B)⇒ (A v⊥) 56.3 66.7

19. (Every A is related to at least one B under R) & (every A is nothing) ⇒ (nothing is a B)
(A v ∃R.B)∧ (A v⊥)⇒ (B v⊥) 62.5 66.7

20. (Every A is related to at least one B under R) & (each thing is related to at most one thing under R)
⇒ (nothing is an A)
(A v≥ 1R.B)∧ (Fun(R.))⇒ (A v⊥) 56.3 81.0

3.1.3 Procedures

All participants were collected in a room. First, the participants were provided with three
pages of instructions on the basic meaning of graphs or diagrams, but not on particular rules
to solve inference tasks. Second, a pretest to check whether they understood the instructions
correctly was conducted; they were asked to choose, from a list of three possibilities, the sen-
tence corresponding to a given graph/diagram, as shown in Fig.8. (the potential difference
of familiarities of representations is reduced since both groups received substantial instruc-
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Q1

Q2

Q3

Q4

Q5

Fig. 8 Five pretest tasks in topological group (left) and topo-spatial group (right): Answer options in Q1–Q3
are 1. All hiateas are robots; 2. No hiateas are robots; 3. None of the above. Correct answers are 1 for Q1; 2
for Q2; 3 for Q3. Answer options in Q4–Q5 are 1. All hiateas see at least one robot; 2. All hiateas see at most
one robot; 3. All hiateas see exactly one robot. Correct answers are 1 for Q4; 2 for Q5.

tion and underwent practice trials: cf. Sato & Mineshima, 2015). Third, the participants were
provided with one page of instruction on the meaning of valid transformation (entailment),
with two examples of graphs/diagrams: one is valid (corresponding to All C are B; All B
are A; therefore All C are A) and one is not valid (corresponding to All C are B; All A are
B; therefore All C are A). For the full details of the instruction, see the Appendix. After the
instruction phase, the participants were asked to solve the main reasoning tasks.

3.2 Results and Discussion

The data of the participants who made mistakes in more than two items (out of five) of
the pretest were removed. In the following analysis, 3 out of 19 in the topological (SOVA
graphs) group, and 4 out of 25 participants in the topo-spatial (concept diagrams) group were
removed.
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Fig. 9 Average accuracy rates for inference tasks. Error bars represent standard deviations. * refers to a
significant difference at p < 0.05.; ** refers to p < 0.01.

Figure 9 shows the average accuracy rates of inference tasks in the two groups; for each
task result, see Table 1. The data was subjected to two-way ANOVA for a mixed design
(as is standard, we start by conducting an ANOVA to explore the main effects before we
consider our five predictions.). There was a significant main effect of notation factor (i.e.,
topological versus topo-spatial), F = 4.435, p = 0.042. There was a significant main effect
of factor involving quantifiers (i.e, single versus multtiple quantifiers), F = 4.712, p = 0.037.
There was no significant interaction effect, F = 0.426, p = 0.518. So each main effect can
be considered independently, and the following positive effects were found: effect of topo-
spatial representations (69.1%) compared to topological representations (58.4%), as shown
in Figure 9 (above, left); effect of single quantifiers (68.4%) compared to multiple quantifiers
(60.5%).
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Table 2 Results of ANOVA post-hoc test on the predictions (1)–(4); ** refers to p < 0.01. n.s. refers to no
significant difference, p > 0.05.

-Topo vs. TopoSpa representations in single quantifiers (Prediction 1) F = 1.834, p = 0.071 n.s.
-Topo vs. TopoSpa representations in multiple quantifiers (Prediction 2) F = 2.938, p = 0.005 **
-Single vs. Multiple quantifiers in topological group (Prediction 3) F = 2.849, p = 0.007 **
-Single vs. Multiple quantifiers in topo-spatial group (Prediction 4) F = 1.532, p = 0.134 n.s.

A post-hoc test by Bonferroni’s method was conducted (see Table 2; the data relevant to
prediction 5 is not the target of this ANOVA and a new statistical model is needed.). Regard-
ing the reasoning with single quantifiers, there was no significant difference between the two
representations: 63.8% for the topological group and 71.9% for the topo-spatial group where
F = 1.834, p = 0.071. This is consistent with our first hypothesis. Regarding the reason-
ing with multiple quantifiers, the accuracy rates in the topo-spatial group were significantly
higher than those in the topological group: 53.1% for the topological group and 66.2% for the
topo-spatial group where F = 2.938, p = 0.005. This supports our second hypothesis. In the
topological group, reasoning with multiple quantifiers was significantly harder than reason-
ing with single quantifiers where F = 2.849, p = 0.007. This confirms our third hypothesis.
In the topo-spatial group, there was no significant difference between single quantifiers and
multiple quantifiers where F = 1.532, p = 0.134, which is consistent with our fourth hypoth-
esis.

In each comparison between valid items and invalid items, there was no significant dif-
ference at the threshold of 5% in two-tailed t-tests. (i) 58.1% for valid items vs. 58.8% for
invalid items in the topological group (t =−0.085); 71.9 for valid items vs. 66.2% for invalid
items in the topo-spatial group (t = 1.059). (ii) 66.3% for valid items with single quantifiers
vs. 61.3% for invalid items with single quantifiers in the topological group (t = 0.516); 79.0%
for valid items with single quantifiers vs. 64.8% for invalid items with single quantifiers in the
topo-spatial group (t = 1.878). (iii) 50.0% for valid items with multiple quantifiers vs. 56.3%
for invalid items with multiple quantifiers in the topological group (t = −0.682); 64.8% for
valid items with multiple quantifiers vs. 67.8% for invalid items with multiple quantifiers in
the topo-spatial group (t =−0.370). This shows that the accuracy performance is not differ-
ent between valid and invalid items.

In the topo-spatial group, the averaged data of accuracy rates in the matching cases and
in the non-matching cases were subjected to angular transformation and then t-test. The ac-
curacy rates in non-matching cases were significantly lower than those in matching cases:
61.4% for the non-matching cases and 75.3% for the matching cases (t = 2.748, p = 0.012).
This supports our fifth hypothesis.

4 General discussion

In summary, our experiment suggests that topo-spatial representations, such as concept dia-
grams, can be more effective than topological representations, such as SOVA, in reasoning
tasks containing multiply quantified information. In topological representations, reasoning
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with multiple quantifiers is harder than reasoning with single quantifiers. But in topo-spatial
representations, there was no significant difference between these cases. That is, in the topo-
spatial case, the difficulty of the inference task did not increase when richer information was
conveyed in the premises. In topo-spatial representations, furthermore, reasoning in the cases
which require premise diagrams to be merged that contain curves where an inclusion or ex-
clusion relationship is unspecified (non-matching cases) was harder than in cases where the
inclusion or exclusion relationships were determined (matching cases).

Regarding the performance difference between single and multiple quantifiers, it is
noted that our empirical findings in reasoning with topological representations are similar
to those in sentential reasoning, as reported in Nguyen et al. (2012). Our findings shed light
on the fact that mental representations elicited from sentences contain simple components
only rather than hybrid components (which are an efficient way to represent tasks). Indeed,
whether model-like representations based on linked data points (Johnson-Laird et al., 1989;
Ragni & Sonntag, 2012; Greene, 1992) or syntactic representations corresponding to pars-
ing trees/graphs of sentences (Braine, 1998), mental representations for expressing multiple
quantifiers are assumed to be more complex than those for single quantifiers. Of course, the
complexity can be reduced, for example, by using additional representations such as set-
theoretical and spatial notions, rather than linking of simple components. However, people
not trained in logic and mathematics rarely spontaneously use such additional representa-
tions. Accordingly, Bucciarelli and Johnson-Laird (1999) pointed out that the use of Euler
circles is a sophisticated method provided by school education, and is not as natural as naive
people’s mental representations of quantified assertions (p.296).

In the broader context of cognitive science on reasoning, can the result that topo-spatial
representations were effective in reasoning with multiple quantifiers provide some more gen-
eral implications? The findings of effective expression of tasks can contribute to task natu-
ralisation in the psychology of reasoning (Politzer, Bosc-Miné & Sander, 2017). If the aim
of the current research is measuring people’s actual logical (not puzzle solving) capability,
tasks involving inference, as opposed to just interpretation, should be set for participants.9

Our experiment suggests that single quantifiers should be expressed as spatial relations and
multiple quantifiers as topological relations, rather than both types being expressed as topo-
logical relations. However, according to Politzer et al. (2017), natural tasks of categorical
syllogism consist of one premise rather than two premises. This setting is realised by the
fact that the existing knowledge of meaningful terms used in the statements can bridge the
gap of an unstated premise. This approach in inference research is consistent with the recent
developments in natural language processing (Dagan et al., 2009; Bowman et al., 2015) of
recognising textual entailment challenge, where entailment relations between two sentences
are calculated. Indeed, it is unclear if such a framework using a single premise can be ap-
plied to the current case of reasoning about more expressive statements involving quantifiers.
However, our findings that there are certain difficulties in merging multiple premises shed
light on the question of whether such a process is essential in human (logical) inference. We
can explore the question by providing an environment using meaningful content (instead of

9 For example, errors caused by the misinterpretation of premises should be prevented here, as discussed in the Intro-
duction.
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terms with no implied content used in the current study) in which the existing knowledge is
available and the task complexity can be controlled.

Furthermore, our findings on inference or entailment judgement are in contrast to those
of consistency checking (Sato et al., 2017), where topological representations were more ef-
fective than topo-spatial representations. Consistency checking is a kind of logical reasoning
in which people are asked to answer the question of whether a diagram makes a contradic-
tory statement. The contrast between these empirical findings suggests that there are two
distinct cognitive process underlying logical reasoning from external diagrams. One is a pat-
tern matching strategy, especially based on syntactic forms of representations. While patterns
of conclusions entailed from premises are unlimited (but in the case of syllogisms, there are
some restrictions), there are certain (common) patterns of inconsistency that are exhibited
by statements (cf. Flouris et al., 2006). In the tasks of consistency checking, then, the strat-
egy to syntactically match patterns to target representations can be reasonable. This strategy
is suitable for the notations which are expressed in a uniform way. Thus, this suggests to
us why topological representations were superior to topo-spatial representations in consis-
tency checking tasks. Another strategy is a more semantic one, as we now explain. As shown
in Fig.5, the conclusion such as Nothing is an A requires reasoners to generate some new
objects which cannot be found only in syntactic manipulations of representations. Such pro-
cesses are available only when reasoners correctly understand semantic meanings of given
representations. This semantic process might be suitable for the topo-spatial representations.

Our findings also provide a suggestion that efficient systems realising human-like com-
puting, especially interactive theorem proving systems, should be designed in a way to be
sensitive to not only syntactic aspects but also semantic aspects. In addition, in the literature
of ontology information visualisation, graph (topology) based methods have been dominantly
used so far (for a survey, see Ramakrishnan & Vijayan, 2014); by contrast, our findings shed
light on the alternative methods using not only topological but also spatial relations. Indeed,
our findings suggest that there are merits in using topo-spatial notations for representing on-
tologies, especially when inferences need to be made.

In this study, we dealt with deductive inference patterns beyond the forms of syllogisms,
but, of course, all of them were not covered. For example, proper nouns such as a is an A (“a”
is an individual constant), as mentioned in the Introduction, were not contained in the corpus
of deduction patterns in Nguyen et al. (2012). Although their frequencies might not be so
high in the literature of ontology engineering, given the recent findings about fallacies (Mas-
carenhas & Koralus, 2017), this line of extension would be interesting in our approach using
graphical representations. Such an extension should be also applied to the cases using non-
standard quantifiers such as proportional quantifiers (e.g., most, few), which are not definable
within first-order logic or OWL 2. In addition, we did not handle relations between verbs,
for example, ‘bought’ isInverseOf ‘wasPurchsedBy’, which is a common style of premise
in ontology engineering. Some chains of single deduction patterns, as used in Nguyen et al.
(2013), are also regarded as an applied type of real world reasoning. So these should be anal-
ysed next. Through further extended studies, the nature of human reasoning in general would
be explored.
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Appendix: Materials and instructions used in the experiment

https://www.cl.cam.ac.uk/research/ard/exp/MateInst3.zip?attredirects=0&d=1
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