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Kurzfassung

Die Interpretation von Realwelt-Szenen mit Hilfe externer Sensoren ist bislang nur im Ansatz durch Al-
gorithmen gelöst. Eine allgemeingültige Lösung bedingt die Verwendung eines Formalismus, welcher
sowohl Sensordaten als auch Hintergrundwissen repräsentieren und für Schlussfolgerungen nutzen
kann. Die vorliegende Arbeit untersucht die Verwendbarkeit derjenigen Familie expliziter formaler
Sprachen für diesen Zweck, welche unter dem Begriff der Beschreibungslogik (DL) subsummiert.
DL ist ein Fragment der Prädikatenlogik erster Ordnung. Sie erbt deren wohl-definierte, deklarative
Semantik, bietet jedoch günstigere Berechenbarkeitseigenschaften und erlaubt die objekt-orientierte
Axiomatisierung von Wissen.

Im ersten Teil der Arbeit werden Ansätze herausgearbeitet, wie Szeneninformation im DL-
Formalismus repräsentiert und wie Aufgaben der Szeneninterpretation1 durch DL-Inferenz gelöst wer-
den können. Dazu werden verschiedene, generische DL-Entwurfsmuster vorgeschlagen. Zunächst
wird die Axiomatisierung der Daten externer Sensoren, darunter insbesondere die Klassen redun-
danter vs. komplementärer Sensorik bei partiellen vs. lokal vollständigen Eingangsdaten, behandelt.
Zur Erstellung und Formalisierung eines Hypothesenraumes der erlaubten Szenengeometrien wird an-
schließend eine graphische Notation eingeführt, gemeinsam mit einem Entwurfsmuster für deren Über-
setzung in DL. Schließlich wird gezeigt, wie einige klassische Aufgaben des Maschinellen Sehens mit-
tels sogenannter klassischer DL-Inferenz gelöst werden können. Darunter fallen die Objekterkennung,
Objektklassifikation, und Datenassoziation.

Teil Zwei der Arbeit beschreibt eine ausgedehnte Fallstudie für die Anwendungsdomäne
„Straßenkreuzungen“. Dazu wird die DL-Ontologie RONNY (ROad Network oNtologY) vorgestellt,
welche qualitative Geometrien und bauliche Richtlinien für Straßen und Kreuzungen zum Zwecke der
Szeneninterpretation modelliert. Hier werden die Entwurfsmuster des ersten Teils intensiv genutzt.
RONNY wird anhand eines Datensatzes komplexer Realwelt-Kreuzungen evaluiert. Als Eingangsdaten
dienen die Stereokamera, die digitale Karte, sowie die globale Ortungsplattform eines Experimental-
fahrzeuges. Die folgenden Aufgaben werden für jede Kreuzung gestellt: Objektklassifikation („Welche
Fahrtrichtungen sind auf den einzelnen Fahrspuren zulässig?“,„Welche Arten von Verkehrsteilnehmern
erlauben die einzelnen Fahrspuren?“), Objektdetektion („Zwischen welchen Fahrspur-Paaren existiert
ein erlaubter Pfad?“), und Datenassoziation für mehrfach detektierte Fahrspuren („Welche Fahrspur
der Karte entspricht der detektierten, eigenen Fahrspur?“).

Die experimentellen Ergebnisse stützen – qualitativ wie quantitativ – die Aussage, dass ein um for-
mallogische Schlussfolgerungsfähigkeiten erweitertes System in der Lage ist, die Erkennungsraten
aktueller, quantitativ arbeitender Algorithmen des Maschinellen Sehens deutlich zu verbessern, und
darüberhinaus die Lösung komplexerer Problemstellungen erst ermöglicht. Die Arbeit schliesst mit
einer Bewertung des DL-Formalismus hinsichtlich seiner Nutzbarkeit für die Szeneninterpretation.

Schlagworte: Beschreibungslogik, deduktives Schließen, Szenenverstehen, Szeneninterpretation,
Kreuzungsinterpretation, Fahrbahnerkennung.

1Die Begriffe Szenenverstehen und Szeneninterpretation werden in dieser Arbeit durchgehend synonym verwendet.
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Abstract

Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer
algorithms. Solving it for non-microworlds requires an appropriate formalism for representing and
reasoning with sensor data and domain knowledge. The present thesis investigates the suitability of a
particular family of explicit, formal languages for this task, which are subsumed under the term De-
scription Logic (DL). DL is an offspring of First Order Logic, inheriting a well-defined, declarative
semantics, but offering improved computational tractability and an object-oriented knowledge engi-
neering paradigm.

The first part of this contribution elaborates on principled approaches for representing scene informa-
tion, and for solving Scene Understanding tasks, in the DL formalism. For several typical classes of
information, generic DL representations are proposed in the form of design patterns. In particular, for
axiomatising data from an external sensor, representations are developed for a redundant vs. comple-
mentary sensor set, and for partial vs. locally complete data. For axiomatisation the hypothesis space
of admissible scene geometries with respect to a given domain, a graphical specification along with its
DL translation is developed. Several classic mid-level problems from the Computer Vision domain are
shown to be solvable using so-called classic DL reasoning services. These tasks are namely collective
object classification, object detection, and data association.

The second part describes an extensive case study in the application domain of road intersections. It
introduces the ROad Network oNtologY RONNY, a DL ontology which models the qualitative ge-
ometry and building regulations of roads and intersections for the purpose of Scene Understanding,
making extensive use of the proposed patterns. RONNY’s task-solving performance is evaluated on a
set of complex, natural intersection scenes, using as input data an experimental vehicle’s stereo vision
system, a digital map, and a global positioning system. The following tasks are posed to the system
for each intersection: Object classification (”Which driving directions are permitted on each lane?”,
”What traffic participants are allowed on each lane?”), object detection (”Between which lane pairs do
driveable paths exist?”), and data association of multiply detected lanes (”Which of the map’s lanes is
equivalent to the vehicle’s ego lane?”).

The results provide qualitative and quantitative support in favour of the argument, that a logic-enhanced
system significantly improves recognition rates of state-of-the-art quantitative Computer Vision, and
enables to tackle more complex tasks that are beyond the current scope. The contribution concludes
with an evaluation of the DL formalism with respect to its suitability to solving Scene Understanding
problems.

Keywords: Description Logic, Deductive Reasoning, Scene Understanding, Scene Interpretation,
Intersection Understanding, Road Recognition.
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1 Motivation

”The time has come to reunify AI and Vision.”
Takeo Kanade at the opening speech of the 2003 Conference on Com-
puter Vision and Pattern Recognition.

The field of Artificial Intelligence (AI) was born at the famous 1956 Dartmouth
Summer Research Conference which was organised and attended by a small group
of renowned researchers – among them John McCarthy, Marvin Minsky, Claude
Shannon, Allan Newell and Herbert Simon. The conference proposal included the
goal to endow computers with information-processing capabilities comparable to
those of biological systems (see (McCorduck 1979, p. 93)). As part of this, the
field should develop ”eyes and ears for the computer” (Selfridge 1955). The field
of Computer Vision was born.

The early years of Computer Vision were dominated by Image Understanding,
also called high-level vision. Initially, the problem was expected to be solved
within a few months. To identify and solve its subtasks, the blocks world prob-
lem was set up: An image of an artificial scene consisting of a configuration of a
stack of blocks should be interpreted by a program, so that the blocks’ edges were
labelled according to their correct physical configuration (Roberts 1965). How-
ever, promising microworld results turned out inapplicable in natural scenes. After
more than a decade of research, not even low-level line extraction had been ro-
bustly solved ((Hanson and Riseman 1978) provide a representative overview).
Abandoning the original Image Understanding goal, research for several years fo-
cussed on low-level vision. Computer Vision became independent from AI.

AI research, on the other hand, intensely focused on knowledge representation
and reasoning formalisms. Over time, a transition occurred from so-called weak
methods, which aim at general solutions to search problems with little or no do-
main assumptions, to strong methods, so-called knowledge-intensive systems (see
e. g. (Russell and Norvig 1995)). A large number of representation and reason-
ing languages were developed, among them Semantic Nets (Quillian 1967), Plan-
ner (Hewitt 1969), Prolog (Colmerauer et al. 1972), and Frames (Minsky 1975).
Probability theory resurged through the invention of the Bayesian Net formalism
(Pearl 1988). Description Logics (Brachman and Levesque 1984) and Answer Set
Programming (Gelfond and Lifschitz 1988) became established as contemporary
successors of the early logic formalisms.
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From the late seventies up to today, Computer Vision has gradually shifted its fo-
cus towards single object recognition in natural scenes, i. e. mostly a mid-level
problem. Tremendous progress in terms of recognition rates and robustness to
changing environment conditions has been made both on low- and mid-level prob-
lems, with a recent boost in the last half decade (see e. g. results obtained by (Leibe
et al. 2008a)). In the above quote, Takeo Kanade argues that Computer Vision is
now mature enough to reapproach the original AI goal of Image Understanding.

The present thesis aims for Image Understanding for the particular subclass of
sensor images which depict road intersections, therefore termed Intersection Un-
derstanding. Two questions might now arise: 1. What exactly is Intersection
Understanding? And 2. How can AI’s focus on knowledge-intensive systems help
in solving the Intersection Understanding problem?

1.1 Intersection Understanding

1.1.1 Definition

Generally speaking, Intersection Understanding is the subproblem of Image Un-
derstanding where the image to be interpreted depicts (a part of) a road intersec-
tion. However, varying definitions of the term Image Understanding exist. Any
definition faces the difficulty that the amount of understanding reached by a sys-
tem cannot be measured objectively by a human, who inherently interprets himself.
Therefore, this thesis adopts an operational definition, which provides the benefit
of testability. It is formulated in analogy to (Neumann 2003)’s definition of Image
Understanding.

Definition 1.1 (Intersection Understanding). Intersection Understanding is the re-
construction and interpretation of an arbitrary real-world scene of intersecting
roads by means of sensor data, so that at least one of the following operational
services can be accomplished:

(i) Output of a natural language intersection description.

(ii) Answering of conceptual queries about the intersection.

(iii) Output of the set of topological path plans that is in accordance with legal
road traffic rules.

(iv) Output of the set of geometric path plans (trajectories) which keep lanes.

The present thesis makes contributions in the three latter services.
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1.1.2 Problem Characteristics

A particular subproblem of Intersection Understanding, namely road recognition,
has been extensively studied. (Kastrinaki et al. 2003) and (McCall and Trivedi
2006) provide an overview. In contrast to Image Understanding, such systems
solely deal with geometric reconstruction, thus aiming for Understanding task (iv)
only.

The typical approach to road recognition is to first extract contour and/or region
based cues (edges, their aggregation to lane markings, road texture, . . . ) from im-
ages from an onboard vision sensor. Based on these cues a generic road geometry
model of low dimensionality1 is instantiated. The search window for image cues
at the next time step is constrained by this parameter estimate. An additionally
available model of the vehicle dynamics can be used for smoothing the parameter
estimates over time.

(a) (b)

Figure 1.1: Inner city intersection 1.1(a) image taken by an onboard camera
with 50◦ opening angle, 1.1(b) map from land surveying office.

This class of algorithms has been applied successively to highly constrained do-
mains like highways, or in the rare cases that consider intersections, to some very
particular and simple type of intersection (cf. (Hummel et al. 2007)). Their scal-
ability to less constrained domains has not been demonstrated yet, even though
first approaches date back to the early 1980s. Urban road intersection pose some
particular challenges here (see Fig. 1.1):

• The abundance of existing intersection geometries necessitates a high-
dimensional parameter space.

1A typical representation of a road is a clothoid. Its projection onto the image plane is typically
approximated by a second or third order polynomial.
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• A large part of the intersection does not enter the field of view of a standard
onboard camera during traversal.

• Dense traffic and inner-city infrastructure lead to a massive amount of oc-
clusion of relevant image clues.

• Frequently omitted markings on the intersection lead to a lack of image cues.

• The presence of an abundance of unmodelled objects feed as noise into the
estimation process.

• Worse road quality, more variations in marking shape, and more rapidly
changing environment conditions (lighting, ...) make cue detection more
difficult.

One reason for the limited progress on less constrained domains is that a reduced
and noisy amount of available image cues contrasts with the necessity of a high-
dimensional parameter space. Applying the above class of algorithms therefore
results in an under-determined estimation problem.

An alternative approach is required which can compute a unique solution within
a high dimensional parameter space when only a sparse set of noisy features is
available. Moreover, the parameter space itself for arbitrary intersections does not
yet exist and must be developed.

1.1.3 Requirements

Deriving from these observations, the following paragraphs list a non-exhaustive
set of prerequisites on a parameter space (termed representation below) and on a
reasoning formalism for Intersection Understanding.

Reasoning Requirements

The reasoning formalism must provide means to drastically narrow down the set of
solutions with respect to the Intersection Understanding tasks (i)-(iv) (Sec. 1.1.1),
going beyond the obvious usage of the image cues. This can be achieved by im-
posing constraints and by computing task-specific solutions.

Constraints from Background Knowledge The term background knowledge
includes common sense knowledge (as e. g. naive laws of physics) as well as task-
or domain-specific knowledge (e. g. about a stopping line on a road). Its level
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of detail might range from quantitative low-level knowledge (like the typical ap-
pearance of that stopping line in terms of vision cues) to high-level conceptual
knowledge (cars have to stop completely in front of stopping lines; after a stop-
ping line there is usually a junction or/and a pedestrian crossing). Background
knowledge is applied extensively and subconsciously by the human driver when
traversing an intersection. This procedure might be crucial for yielding a feasibly
small solution space.

Background knowledge can either be manually coded by a human knowledge en-
gineer, or learned. Both approaches have their justification; a novice human driver
will learn by gaining driving experience him/herself, as well as by listening to a
teacher (”Your car must come to a complete stop in front of a stopping line!”). Al-
though learning is more appealing from an algorithmic viewpoint because manual
intervention is not required, a pure reinforcement-style learning algorithm would
both require an excessive amount of training and exhibit bad driving behaviour
during that training. However, only high-level qualitative concepts/rules are suit-
able for teaching by language. A reasoning formalism should therefore be able to
incorporate manually coded high-level knowledge, as well as learn by itself.

Applying experience-based background knowledge to make up for lacking vision
cues amounts to hypothesisation. This however implies that the arrival of new ev-
idence will sometimes lead to the withdrawal of hypotheses. This process, known
as belief revision, should be supported by a reasoner.

Constraints through Collective Computation Constraints can also be derived
from a mutual, iterative exchange of partial results across algorithms which share
common parameters. This principle has recently become known in the classifi-
cation literature as parameter tying through collective classification, but the idea
also extends to other Scene Understanding tasks. As an example, the tasks of lane
recognition, localisation, and tracking of other cars are heavily intertwined; a joint
solution is likely to be better than solving each task in isolation.

Task-driven Computation Task-driven computation refers to computing solu-
tions only for those parameters of a parameter space that are relevant for solving
a particular task or answering a particular query. For example, if the task at hand
is "Turn right at the upcoming intersection!", then information about the types of
lane markings will only be relevant concerning the current and the prospective ego-
lane, but not concerning that intersection’s left crossroad. A task-driven solution
can drastically improve the parameter-feature-ratio.

Finally, to enable joint use of feature-, constraint- and task-based knowledge,
which naturally come from very different abstraction levels, information must be
excessively propagated along the abstraction hierarchy. In other words, a combined
bottom-up/top-down reasoner is required.
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Representational Requirements

The Intersection Understanding tasks (i) - (iii) require semantic knowledge and
thus necessitate a transition from a purely geometric to a semantics-enriched pa-
rameter space. And, as outlined in the previous paragraph, task (iv) most likely
requires semantic constraints as well. As the semantic knowledge is at least par-
tially encoded by human knowledge engineers (see previous paragraph), a read-
able, maintainable and interchangeable representation is favourable. This in turn
requires an explicit, unambiguous and modular representation: Intuitively, ex-
plicitness refers to explication of the relevant domain knowledge by a domain
expert, as opposed to implicit coding by a programmer within, for example, a
C++-function2. Ambiguity arises when two knowledge engineers assume differ-
ent meanings behind a concept name, and the chance of ambiguities is minimised
by a language with a formally well-defined semantics. Modularisation refers to a
programming methodology in which semantically connected information is also
grouped together syntactically3.

Data from widely different abstraction layers must be incorporated (ranging from
low-level vision cues to high-level rules like ”give way!”), and the domain exhibits
a rich relational structure (an appropriate explanation of the semantics of a stop-
ping line involves the concepts lane, car and junction). Therefore, instead of the
common so-called ”flat” representations, a hierarchical and relational representa-
tion is preferred.

Furthermore, a representation of the instances of the parameter space must allow
for incomplete data, that is, the value of some parameters might be unknown, be-
cause sensing is typically highly partial (see Section 1.1.2). The representation
should also allow for uncertain input, as sensing is inherently noisy.

Finally, the parameter space must be generic, as the number and types of scene
objects and their relations typically varies between intersections (an intersection
consisting of four crossing roads has more degrees of freedom than one with two),
and depending on the posed task or query.

Knowledge Engineering Requirements

Intersection Understanding in urban areas spans many domains, such as geome-
try, road markings, traffic signs, traffic rules for right of way, types and typical
behaviour of traffic participants, tram lines, interest points like gas stations and

2A much further elaborated definition of the terms explicitness and implicitness of a representation
is given by (Davies 2001).

3This is also called a structured representation in the literature.
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restaurants, and so on. Incorporating such domain knowledge will at least par-
tially be done by human domain experts (see second last paragraph).

A formal representation formalism must therefore come with an implementation
which is capable of handling a large axiom set, and which allows the integration
of several independently developed knowledge bases. As reasoning has turned out
to be a computationally highly demanding task in any strictly formal language, the
implementation must be based on a line of research on highly optimised reasoning.

Such a large-scale knowledge base project requires sound knowledge engineering
techniques, just as large software projects have been found to crucially depend on
good software engineering practices. This must be supported by the formalism
itself –for example through an object-oriented paradigm, by the implementation
infrastructure, and by knowledge engineering literature. The implementation in-
frastructure must provide tools for code inspection, such as graphical user inter-
faces (GUI) for visualisation and debuggers to find modelling errors. It should
also include ”syntactic sugar” for the language to enable concise and compact
coding. Integration with other programming languages and/or databases should
be supported by application programming interfaces (API). Knowledge engineer-
ing literature should be available to provide guidance on good code development
practices.

Prototypical and beta implementations are not capable of satisfying the above re-
quirements. Instead, language and implementations must have matured over years,
being supported by an active user and developer community. Database technol-
ogy, as an example, took about 10-15 years to progress from theoretical research
in 1970 to the first robust implementations, and another 10 years to sophisticated
end user tool support.

1.2 Knowledge-intensive AI

A knowledge-intensive system represents and manipulates a large knowledge-base
(KB). A KB is a body of explicit, high-level, and often also relational knowledge,
represented in a symbolic notation readable by humans4. This closely matches the
above identified requirements for an Intersection Understanding system. However,
although a large set of formalisms for this system family has been developed by
the AI community, no existing formalism has yet turned out to be the silver bullet
for Scene Understanding.

4However, there does not seem to exist an agreed-upon definition of the term knowledge-intensive
system in the literature.
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There is also a considerable difference between theoretical research in a represen-
tational formalism, and research in knowledge engineering based on such a for-
malism. Past research has almost exclusively addressed the former, while strong
computational limitations of language and implementations, lack of mature im-
plementations and tool support prevented research on the latter (cf. the ”Knowl-
edge Engineering Requirements” in the last paragraph)5. By contrast, research in
object-oriented software engineering, a task that can be considered comparably
challenging, has produced a vast amount of written guidance for the users of the
technique (as one prominent example cf. the book on software design patterns by
(Gamma et al. 1995)). The last decade, however, has witnessed a gradual change
of some of these determining factors.

Subsequently, closer examination will be given to a subset of formalisms, an avail-
able implementation of which has by now reached a provably stable, optimised and
workable state. This must be demonstrated by an active user and developer com-
munity, and by a number of successful applications. They are grouped into the
three families of Logic Programming, Description Logics, and graphical models.

1.2.1 Logic Programming

In very general terms, Logic Programming (LP) is the use of mathematical logic
for computer programming. The LP semantics underlies a set of commercially rel-
evant rule systems, among them Prolog, SQL relational databases, some produc-
tion systems, and the proposals for rule languages for the Semantic Web (Grosof
et al. 2003). LP is based on Horn clause logic, which is a restricted subset of
First Order Logic (FOL). While full FOL is a very expressive formalism with a
clearly defined semantics, for which sound and complete proof procedures exist,
it is computationally intractable since proof termination is not guaranteed. Such a
formalism is called undecidable6. LP constitutes a compromise between expres-
siveness and tractability by allowing only FOL formulas that are Horn clauses. A
Horn clause is a rule like hasFather(x,y ) ∧ hasBrother(y,z) → hasUncle(x,z),
which has at most one predicate (in this case hasUncle) in the rule consequence.

Pure LP provides the benefits of adhering to the well-defined semantics of FOL,
and of being fully declarative. The declarative paradigm, as opposed to the proce-
dural one that is inherent to widespread programming languages like C++ or Java,
expresses exclusively ”what” should be achieved, whereas the ”how”, i. e. the

5This is true for knowledge engineering for the purpose of enabling automated reasoning. It is
not true for knowledge engineering for data storage purposes, which is both a much simpler task and
addressed in many works

6The terms soundness, completeness, and decidability will be formally introduced in Chapter 3.
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control flow, is completely intrinsic to the reasoner. Although there is an ongo-
ing philosophical controversy between the representatives of the two paradigms
(its beginnings are traced in (Winograd 1985)), it is widely accepted that a mostly
declarative formalism provides for the above identified requirements of explicit-
ness, non-ambiguity and modularity of a KB. However, pure LP still exhibits poor
computational performance on realistic KBs7.

For improving performance, the Prolog interpreter sacrifices full declarativity for
user-defined procedural search heuristics. A reordering of clauses in Prolog can
therefore cause drastic changes in program behaviour. This hampers maintenance
(e. g. insertion of a new formula) and modularised KB development. The for-
malism nevertheless remains undecidable, and a non-terminating program can be
written in just one line of code. The biggest shortcoming of Prolog with respect to
Scene Understanding is its closed world semantics: It assumes by default that the
available information is complete, assigning truth value ”false” to all non-specified
information. This contrasts with the inherent incompleteness of knowledge ac-
quired by a sensor (see Section 1.1.2).

More recently, Answer Set Programming (ASP) emerged as a purely declarative
alternative to Prolog. Whereas in Prolog, the solutions to a query are yielded by
proving valid substitutions of the query variables using the KB, the ASP paradigm
defines the KB’s stable logical models (called answer sets) as the solution set (Gel-
fond and Lifschitz 1988). ASP allows both open and closed world predicates, mak-
ing it suitable to represent incomplete as well as complete information. Its roots
are in work on non-monotonic reasoning, the lack of which has long been identi-
fied as a shortcoming of FOL (cf. the special issue vol. 13 of the AI Journal 1980).
A monotonic formalism cannot invalidate any previously drawn conclusion, i. e. it
disallows belief revision. ASP is as well decidable. The last 10 years witnessed
a quick growth in the ASP user community. Developers begin to claim that the
leading solvers DLV8 and SMODELS9 are efficient and mature enough for dealing
with large datasets. (Baral 2003) provides a proof of concept for modularised ASP
programming by introducing a couple of programming templates.

1.2.2 Probabilistic Graphical Models

Probabilistic graphical models offer a consistent treatment of uncertainty through
the use of probability theory. The two most common types of graphical models

7The LP community uses the term logic program instead of KB. The term KB will nevertheless be
used throughout this text for maintaining consistency.

8DLV: www.dbai.tuwien.ac.at/proj/dlv/
9SMODELS: www.tcs.hut.fi/Software/smodels/

www.dbai.tuwien.ac.at/proj/dlv/
www.tcs.hut.fi/Software/smodels/
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are Bayesian Belief Networks (BBN) and Markov Networks, also called Markov
Random Fields (MRF).

Representationally, a BBN/MRF is a directed/undirected graph, each node of
which corresponds to a random variable Yi, i ∈ 1, .., n, and the set of (lacking)
edges encodes a set of conditional independence assumptions between these vari-
ables. Through exploitation of the local independencies, such a graph compactly
represents a family of joint probability distributions over the set of random vari-
ables Y = Y1, . . . , Yn. Together with an additional parameter set –conditional
probability distributions for each node in the case of the BBN, and a set of poten-
tial functions for the MRF– it uniquely determines a joint distribution P (Y).

One common inference task for graphical models is to compute the posterior prob-
ability distribution over a set of query variables X ⊂ Y, given the information e
about a set of evidence variables E ⊂ Y, that is P (X | E = e). Another common
task is to find the maximum posterior estimate (MAP) for the values of X given the
evidence: argmaxxP (X = x |E = e). For graphs with low treewidth, efficient ex-
act inference procedures can be applied. Otherwise exact inference is intractable,
but efficient approximate methods, such as Markov Chain Monte Carlo sampling,
have been developed. The reasoning allows for belief revision in the presence
of additional evidence, also known as ”explaining away evidence” here. Further-
more, the graphical model framework allows for learning of both parameters and
network structure, also known as model selection.

Graphical models thus offer a strong reasoning framework and oftentimes effi-
cient algorithms, but they severely suffer from the representational limitation that
they can only represent propositional statements. A propositional language, as op-
posed to a first-order one, does not commit to the existence of objects and relations
(cf. here also e.g. Sec. 14.6 in (Russell and Norvig 1995)). By consequence, gen-
eralising statements about the domain (”A man with a child is a father.”) cannot
be separated from knowledge about individuals (”Emily is John’s child.”), and re-
lations between individuals cannot be properly expressed. This results in vastly
more cumbersome domain descriptions and limits reasoning strength. Further-
more, network topology must be redesigned by hand whenever the problem in-
stance changes (e. g. an intersection with two crossroads may have many more
unknowns than one with one crossroad).

These limitations are addressed by recent research forming under the name of
Probabilistic Logic Learning / Statistical Relational Learning, which aims at us-
ing FOL as a template for automatically constructing a graphical model in which
reasoning then takes place. A formula written in FOL maps to a family of graph-
ical model topologies. The exact model topology is determined by the particular
constants (like ”Emily”) the formula is instantiated with. Reasoning is then per-
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formed within the probabilistic framework. Thereby the representational strength
of FOL is combined with the inferential strength offered by probabilistic graphical
models. Although a promising approach, the available implementations were not
mature enough at the time of writing to be applied here.

1.2.3 Description Logic

Research in Description Logic (DL) emerged in the 1980s –then under the label
Terminological Systems– as a consequence of the experienced shortcomings of
Semantic Nets and Frames (Brachman and Levesque 1984). Those had been de-
signed for intuitive, ad hoc specification of knowledge and reasoning procedures,
but lacked a precise underlying semantics. Seemingly identical components there-
fore exhibited differing behaviour, leading to difficulties in KB maintenance and
integration (Baader et al. 2003). DL aims at minimising ambiguities by adher-
ing to FOL semantics, while retaining as much intuitivity as possible. Modern
DL dialects are proven decidable yet expressive subsets of L2, the FOL over at
most two variables that allows for unary and binary predicates (e. g. Father(x) and
hasChild(x,y), respectively). For readability, DL adopts a variable-free notation,
e. g. Father ≡ Man u ∃hasChild (”A father is a man that has a child.”), and it
supports an object-oriented approach to KB engineering (see the (W3C Working
Group Note 2006)). DL makes an open world assumption, therefore allowing for
incomplete knowledge. It also makes an open domain assumption, which allows
the set of specified individuals to be incomplete. Pure DL is also fully declarative.

The Semantic Web initiative boosted development and use of DL implementations
and knowledge engineering tools. In 2004, DL became the underlying formal-
ism of the OWL DL Web Ontology Language, which is a W3C (World Wide Web
Consortium) recommendation and thus a de facto web standard (W3C Recommen-
dation 2004). A set of optimised and continuously maturing reasoners for expres-
sive and decidable DL dialects are now available, among them FACT++, KAON2,
PELLET and RACERPRO. The same holds for development and visualisation tools,
two examples of which are the OWL tool PROTÉGÉ and RACERPORTER, the GUI
to RACERPRO10. As an indication of the size of the user community, the search
engine for OWL ontologies SWOOGLE11 to date lists more than 10.000 entries.
Furthermore, the Semantic Web fostered research on integration of KBs from het-
erogenous sources (e.g. (Borgida and Serafini 2003)), which is why KB integration
is by now most likely understood better under OWL DL than under any other for-
mal representation.

10For corresponding references, see Chapter 3.
11SWOOGLE: http://swoogle.umbc.edu//

http://swoogle.umbc.edu//
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On the downside, classic DL inference supports deductive and thus monotonic
reasoning only (cf. Sec. 1.2.1). Research on non-monotonic language extensions
is a main subject of present research. One line of research integrates DL with
non-monotonic ASP (Schindlauer 2006), while another proposes abductive DL
reasoning (see (Möller and Neumann 2008)). Both approaches offer prototypi-
cal implementations. A second limitation, which it shares with all logic-based
formalisms, is its lacking expressiveness with regard to uncertain knowledge. It
provides such functionality only rudimentarily through the ∃- and t -constructors,
but not through soft axioms.

Conclusion

According to the brief review above, three formalisms prequalified as feasible rep-
resentation and reasoning formalisms for knowledge-intensive Scene Understand-
ing. These are namely Answer Set Programming, Probabilistic Logic Learning,
and Description Logic. Although appealing, Probabilistic Logic Learning was
ruled out because the beta status of its implementations would hamper proper
knowledge engineering. Both other formalisms are feasible. While Answer
Set Programming offers non-monotonic reasoning, Description Logic seems the
slightly more mature technology, with better tool support, and a larger developer
and user community. Description Logic has been chosen as the reference language
for the present thesis.

1.3 Thesis Overview

The present thesis investigates the feasibility of the Description Logic fragment of
formal logic as a representation and reasoning technique for Scene Understanding.

There are a lot of yet unanswered questions with respect to logic-based Scene Un-
derstanding, including, but certainly not limited to the following: Is formal logic a
suitable formalism for Scene Understanding at all? Which are the required prop-
erties of such a formalism? Which classical vision tasks (like object detection,
object classification, data association, tracking, sensor data fusion, ...) map to
which reasoning services (satisfiability, consistency, instance checking, retrieval,
non-monotonic reasoning, ...)? Which kind of knowledge should be reasonably
encoded and in what level of detail (e. g. qualitative, quantitative, or mixed knowl-
edge)? What can the interface to the quantitative, geometric layer look like? How
can geometry be represented at all? What logical paradigms do different types of
sensory input (e.g. redundant vs. complementary, object vs. feature input) map to?
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Can a combined bottom-up/top-down (with respect to abstraction layer) algorithm
be designed?

The present thesis proposes answers to these questions. Some answers are given
in a principled way and comprise so-called design patterns written in DL. Design
patterns are intended for reuse and extension by users. Other answers are given
empirically after performing and evaluating a detailed case study: A KB is de-
veloped in DL for the application domain of roads and their intersections. In a
set of reasoning experiments, classic Computer Vision tasks are solved by clas-
sic DL reasoning, and the system’s performance on these tasks is evaluated. The
evaluation is performed on a set of complex, natural scenes using realistic sensor
data.

To promote further research, the KB developed for this thesis, and all example
intersection data, have been made available on www.mrt.uni-karlsruhe.
de/ronny. The RACERPRO reasoner, which is free for academic usage, has
been used for development and testing. Experimenting with new intersections
and/or new sensors, as well as comments on modifications or extensions of the
proposed design patterns, are highly welcome.

This project is situated within the larger research initiative SFB/TR 28 ”Cognitive
Automobiles” supported by the German research foundation DFG, the eventual
goal of which is to enable driverless road driving.

1.3.1 Outline

Chapter 2 provides an up-to-date overview of existing literature on logic-based
Scene Understanding. As it turns out, few groups work on the subject, and some
of these use FOL only for representational purpose but not for reasoning, or operate
in a microworld. A proof-by-implementation of the usefulness of logic for realistic
Scene Understanding is therefore yet pending.

Chapter 3 gives an introduction into Description Logic with a focus on the partic-
ular dialect SHIQ which will be used throughout the remaining chapters. This
chapter is basically a selective synthesis of Part I of (Baader et al. 2003) and a
few other DL texts, enriched by examples from the Intersection Understanding
domain.

Chapter 4 elaborates on principled ways of mapping several important Scene Un-
derstanding issues into a DL setting. At first, several types of sensor input data
are mapped to a DL representation. These types are namely partial vs. complete
input data, and single vs. distributed input data. Afterwards, a principled way of
specifying qualitative scene geometry models in DL is proposed. Finally, several

www.mrt.uni-karlsruhe.de/ronny
www.mrt.uni-karlsruhe.de/ronny
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classic Scene Understanding tasks are mapped to suitable DL inference services.
In particular, these are object detection and classification, link prediction and data
association.

Chapter 5 introduces the Road Network Ontology (RONNY). It is a DL TBox
implemented in the dialect SHIQ, which models the qualitative geometry and
building regulations of road intersections for the purpose of Scene Understanding,
making extensive use of the findings from Chapter 4.

Chapter 6 describes the automatic generation of a RONNY ABox out of sensor
data from a digital map, a global positioning device and vision-based object detec-
tors. Afterwards, DL reasoning is applied to several Scene Understanding tasks.
These tasks are namely: In which directions is driving allowed on each lane (clas-
sification task)? Which traffic participants (bicycles, cars) are allowed on each lane
(classification task)? Between which lane pairs does a driveable path exist (detec-
tion task)? Which of the map’s lanes is equivalent to the lane the vehicle is driving
on (data association task)? The performance of task solving was evaluated using
a sample set of 23 complex, natural scene intersections from both urban areas and
freeways in Germany.

Chapter 7 concludes with a qualitative evaluation of the overall suitability of the
DL formalism for Scene Understanding.

1.3.2 Scope

The following issues are not covered in this contribution:

Computer Vision Although tremendously desirable, the development of Com-
puter Vision algorithms for detection and classification of relevant intersection in-
frastructure would have exceeded the scope of this thesis.

Uncertainty As this thesis’ focus is on knowledge engineering, a DL language
with an existing implementation was chosen. Unfortunately, this ruled out the
possibility of considering uncertainty. Undoubtedly, treatment of uncertainty is
a prerequisite to any Scene Understanding system. The DL community is ac-
tively working towards a synthesis of probability theory and description logics,
as e. g. the Dagstuhl workshop ”Logic and Probability for Scene Interpretation”
shows12, which was co-organised by R. Möller, developer of the RACERPRO DL
reasoner. Implementation efforts are under way (see e. g. (Möller and Näth 2008)).

Learning It is the author’s personal opinion that learning will play an essential
role in real world Scene Understanding tasks. However, to pave the way for a

12http://www.dagstuhl.de/08091

http://www.dagstuhl.de/08091
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learning framework, suitable knowledge representation and reasoning formalisms
need to be developed first. The formal logic formalism provides an excellent basis
for learning, exemplified by the immense body of work on inductive Logic Pro-
gramming (started by (Muggleton 1991)). Learning has also been addressed in a
DL framework (e. g. (Cohen and Hirsh 1994)). However, an implementation of a
mature learning DL reasoner is not available at present.
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2 Literature: Logic for Scene
Understanding

The following survey covers, to the best of the author’s knowledge, publications
up to spring 2008 in the field of logic-based Scene Understanding. In particular,
approaches with the following characteristics are surveyed:

1. The knowledge representation language is formal logic.

2. The primary form of reasoning is formal logic inference.

3. The application focus is on perception (as opposed to, e. g., planning).

Taking into account the characteristics of a perception system for natural scenes
from Chapter 1, a fourth characteristic can be derived from the third one above:
The reasoning architecture should support bottom-up as well as top-down reason-
ing.

These characteristics rule out a large body of well-known early work on
knowledge-based Image Understanding, which will briefly be mentioned in the
next section.

2.1 Early Approaches

Expert systems, also termed rule-based systems, were the dominant representation
scheme for a wide range of industrial applications in the 1980s. Expert systems
typically represented knowledge in the form of production rules. These are sim-
ple rules of the form ”IF condition THEN action”, which have Horn clauses as a
special case. In contrast to FOL, a special interpreter, which does not guarantee
consistency or correctness1, and is not transparent to the user, controls inferences
on the rule-base. (Ballard and Brown 1982, p. 407), in line with many other re-
searchers, argue that, in the end, expert systems have not met the expectations
of an understandable, modular, and thus maintainable knowledge representation.

1This chapter makes use of some termini from DL and from FOL without explanation. See Chapter
3 and (Russell and Norvig 1995), respectively, for reference.
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Today their use is limited to few niche applications. (Matsuyama 1989) gives an
overview of work on expert-system-based image processing until the late 1980s.

Two other families of formerly popular image processing representations are Quil-
lian’s Semantic Nets and Minsky’s Frames ((Quillian 1967) and (Minsky 1975)).
Both had been designed to mimic human representation and reasoning, to provide
for intuitive, ad hoc specification of knowledge and reasoning procedures. (Rao
and Jain 1988) give an overview of systems based on these representations. In the
end, however, those systems also turned out difficult to understand, maintain and
integrate (e. g. (Baader et al. 2003, p. 2f)). By now they have been widely aban-
doned and replaced by languages with a precisely defined semantics in terms of
subsets of FOL such as Description Logics.

2.2 Group-by-Group Survey

2.2.1 Department of Computer Science, University of Toronto,
Canada

(Reiter and Mackworth 1989) provided the first definition of the problem of image
interpretation in a logical framework. For the application of sketch map under-
standing, they showed how scene domain knowledge about geographic objects,
extracted image domain cues in terms of lines and regions, and the depiction map-
ping between image and scene domain, can be represented using FOL. Their goal
was a strictly bottom-up classification of the segmented image cues into the classes
road, river, shore, land and water. They defined such an interpretation as a logical
model of a set of FOL formulae.

In FOL, model computation is undecidable, and the number of models can be
infinite. Reiter and Mackworth therefore made the grossly simplifying assumption
of complete and noise-free image domain data, i. e. a complete, unambiguous
and correct low-level segmentation of the image into meaningful lines and regions
is assumed. Transferred to FOL, this amounts to assuming a closed domain, a
closed world with respect to the image, and unique names. These assumptions
allowed for converting the FOL formulae to propositional logic formulae. The
set of logical models of these formulae was then computed by translation into a
logically equivalent constraint satisfaction problem, for which efficient and well-
understood solvers exist. The proposed approach was not implemented in a vision
system.
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2.2.2 Institute for Software Systems, Techn. University of
Hamburg-Harburg, Germany

(Schröder 1999) and (Neumann and Möller 2006) advocate the use of Description
Logic for Scene Interpretation. They state that neither deductive nor abductive
reasoning alone are sufficient for reasoning about interpretations, and adopt Re-
iter’s idea of constructing a logical model. However, they are content with partial
models in that not all aspects of the scene must be expressed as formulae. While
Schröder requires maximally specific modelling, Neumann and Möller advocate a
level of detail that is task-dependent, as not all information seems relevant under
all contexts.

Concerning image evidence, Schröder requires an initial segmentation which fully
covers the image, while all further evidence may be incomplete. He follows Re-
iter’s idea of noise-free data, as he requires the partial model to be consistent with
all future evidence. Neumann and Möller in contrast argue that evidence is in-
herently partial which necessitates extensive hypothesisation. It must therefore be
possible for later evidence to trigger the withdrawal of previous conclusions (al-
though they leave open how this can be achieved). They thus implicitly advocate
non-monotonic reasoning for Scene Interpretation.

Examining the required language expressiveness, Neumann and Möller conclude
that at least the DL ALCF(D), which includes feature chain agreement and con-
crete domains, is necessary for Scene Interpretation. (Möller 2001) has, however,
shown that the former constructor jeopardises decidability of reasoning for ex-
pressive DLs. Therefore (Möller and Neumann 2008) have recently described
how decidability-preserving rules can function as an alternative to feature chains.
Schröder, in contrast, advocates the use of a much more expressive DL (his pro-
posal could be called an extension of ALCQFRO(D)), thereby sacrificing finite
models and decidability, and argues for the development of approximate reasoning
methods instead to ensure termination.

For constructing the logical model, Schröder describes an extended variant of a
Tableau Calculus, which is a procedure used in DL for proving satisfiability of
concepts by model construction. Möller and Neumann are inspired by Configu-
ration technology (cf. Section 2.3 on related approaches). Configuration systems
support tasks where technical components have to be configured to form a system
which meets given specifications. A typical configuration task is to configure a
computer according to customer wishes. Close analogies between Configuration
languages and DL languages had already been noticed by (Möller et al. 1996), and
(Hotz and Neumann 2005) have elaborated on the similarities between Configu-
ration and Scene Interpretation. Here, the focus is on mapping Configuration’s
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algorithm building blocks to readily available DL inference services. They first
conclude that already standard deductive DL reasoning is in principle capable of
performing some of the required steps such as classification and unification (which
they call instance specialisation and instance merging). Second, model construc-
tion cannot be realised solely based on classic DL inference, as it requires the
creation of new individuals, backtracking from previously drawn conclusions, and
preference measures during the search for interpretations. Therefore, they advo-
cate building a procedural framework around the reasoning engine. For the special
case of part-whole reasoning they show that the query language nRQL (Haarslev
and Möller 2003) can be helpful in building such a framework.

In their most recent work, which is part of the BOEMIE project2, (Möller and
Neumann 2008) abandon model construction and turn towards a combination of
abductive and deductive reasoning (see next paragraph for details) for interpreta-
tion of multimedia data. It can be seen as the first formal account of abductive-
deductive DL ABox reasoning and as a successor of the work of (Poole 1989) on
abductive-deductive reasoning in FOL. Images, text and video documents are used
as input data. Some initial thoughts about unification of individuals are laid down
as well. They have, however, not yet elaborated on an algorithmic architecture for
Scene Interpretation on the basis of this reasoning framework.

2.2.3 Matsuyama Lab, Kyoto, Japan

(Matsuyama and Hwang 1985) aim for aerial Image Understanding. They define
an image interpretation as the result of an incremental hypothesise-and-test proce-
dure. A complete initial segmentation is not required a priori, but is incrementally
constructed in the course of reasoning. Classification of detected image patches as
well as unification reasoning is performed, i. e. two image patches can be merged
into one domain object, both of which involve spatial reasoning and object appear-
ance constraints.

The authors give a logical formulation of the reasoning procedure in the spirit
of the abductive-deductive reasoning developed by (Poole 1989): Observations
in the form of formalised sensor data are to be explained by the given domain
knowledge and another set of formulae, the hypothesis or theory (abduction step).
After adding the hypothesis to the set of formulae, the observations follow as a
logical consequence (deduction step). Horn clauses are proposed as the underlying
logical language.

However, it turns out that neither the logic language nor the reasoning procedure

2http://www.boemie.org/
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are used in the implementation. A combination of frames and production rules is
used in their place.

2.2.4 School of Computing, University of Leeds, UK

This group has a long history in combining continuous Computer Vision methods
and formal logic representation and reasoning. An overview of recent projects can
be found in (Cohn et al. 2006).

One focus is on learning qualitative spatiotemporal models of events in traffic
scenes from video input. Initially, the field of view of a static camera is parti-
tioned into regions based on extracted object trajectories. Event models describing
the relative behaviour of moving objects are then built out of single frame descrip-
tions of qualitative object relationships. Relative direction and direction of motion
are used as spatial calculi. In later work this spatial vocabulary is not provided a
priori, but learned in a data driven fashion. The resulting event model database has
been used in the traffic domain to learn and recognise various event models, like
following and overtaking, and to identify unusual behaviour. However, besides the
rudimentary use of situation calculi predicates, formal logic has neither been used
for representation nor for reasoning in this work.

Another ongoing project is autonomous learning of both low level (continuous)
and high level (symbolic) models of objects and activity (Magee et al. 2004). The
learned models drive an embodied (i.e. one which interacts with its environment)
cognitive agent. The symbolic representation is explicitly grounded to the sensor
data, and is learned through Inductive Logic Programming using Progol. First
results demonstrate a game playing agent.

In a third project, (Bennett et al. 2008) demonstrate that a state-of-the-art statistical
blob tracker and classifier shows significantly increased accuracy when enhanced
by a subsequent logical analysis. A reasoner computes the set of logical mod-
els whose objects satisfy two simple spatio-temporal continuity formulae: (a) an
object cannot be in more than one place at a time; (b) object movement must be
continuous. This in particular allows for better disambiguation in the presence of
object crowds. The reasoner is provided with the complete set of relevant scene
objects (closed domain assumption). The best model is chosen according to a
quantitative voting function. The reasoning is implemented in SICStus Prolog.
The approach can be considered one of the rare cases where a logic-enhanced
approach has been proven superior in terms of recognition rate. However, no com-
parison has been made by the authors with a state-of-the-art quantitative tracker,
i. e. one that uses data association techniques to impose the same kind of spatio-
temporal constraints such as (Leibe et al. 2008b).
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2.2.5 Department of Computing, Imperial College London, UK

(Shanahan 2005) summarises the group’s body of work on logic-based percep-
tion using abduction and deduction in combination. Their most recent work is
implemented on LUDWIG, a basic upper-torso humanoid. Shanahan argues that
perception, cognition, and action must act in concert to carry out what philoso-
phers of science call hypothetico-deductive reasoning. First, the most promising
hypotheses are formed that might explain the sensor data using abduction. Second,
the consequences of these hypotheses are computed using deduction. Third, those
expectations are tested through actions, i. e. by carrying out experiments. The
value of a hypothesis is reduced if its expectations are unfulfilled, and vice versa.
Consequently, Shanahan stresses the necessity of an embodied system, which not
only passively manipulates symbols, but interacts with the environment and there-
fore gives meaning to the internal representation. Parts of the system have been
implemented as an abductive meta-interpreter written in Prolog, which interfaces
with low-level vision routines. It uses the event calculus as the underlying ontol-
ogy. LUDWIG’s vision routines currently seem restricted to edge detection. His
reasoner finds the best explanation for a set of extracted lines, e. g. an image of a
cube viewed from a certain perspective. Future work involves incorporation of a
larger set of features like colour or stereo information.

2.2.6 Institut für Algorithmen und Kognitive Systeme, Univer-
sity of Karlsuhe, Germany

The group has introduced a conceptual representation for behavioural knowledge
in the form of so-called Situation Graph Trees (SGT) (Arens and Nagel 2002).
An SGT is a set of hierarchically ordered situation graphs. They in turn consist
of situations and temporal transition edges between them. A situation is defined
by a set of states which have to be fulfilled by an agent, and a set of possible
actions. States regard the agent’s dynamics (e.g. accelerating), its relation to other
agents (e.g. overtaking) and its relation to infrastructure (e.g. approaching). States
and actions are qualitative abstractions from quantitative vision data. The SGT is
formalised using a fuzzy metric temporal Horn logic. A graph search algorithm
finds the situation an agent is currently instantiating.

Although the representation is primarily used for bottom-up reasoning about agent
behaviour, (Arens and Nagel 2005) demonstrated exemplarily how inferred quali-
tative behavioural knowledge can be used in a top-down manner to improve quan-
titative vehicle tracking on inner-city intersections. Tracking results, produced by
a Kalman Filter from images of a stationary camera, are fed into the SGT to predict
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the next action. The resulting action predicates are refined down to a quantitative
level and used to update the Kalman Filter’s motion model. The authors quali-
tatively show that this is especially useful in the case of lacking image features,
for example during partial or total vehicle occlusion. A quantitative comparison
between tracking results from Kalman Filter-only and logic-enhanced processing
has not been made.

2.2.7 Department of Computer and Systems Science, Univer-
sity of Rome, Italy

(Pirri and Finzi 1999) address active perception in a mobile robot manipulator
setting. They sketch ideas for a unified formalisation of perception, inference,
and actions within the situation calculus, which can be seen as an ontology for
reasoning about actions and their effects in First Order Logic.

In their formulation, they introduce sensing actions as queries to an environmental
sensor such as a camera, which yield so-called perceptibles. Using background
knowledge and past perceptibles, they are combined to form more complex per-
ceptibles. These are in turn used to choose the next sensing action, which aims at
maximising information gain.

The approach has been implemented on three mobile manipulators using Golog
and Prolog (Finzi et al. 2001). The focus of this work however is on the action
side rather than on the Computer Vision side.

2.3 Related Approaches

Some related approaches might also prove valuable in the context of logic-based
Scene Interpretation.

The KOGS Lab at Hamburg University focusses on Scene Interpretation based
on Configuration technology (e. g. (Terzić et al. 2007)). They incrementally re-
construct a scene by building hypotheses based on vision features and background
knowledge about the scene, which is formulated within an ontology. The approach
is relevant to logic-based Scene Interpretation for several reasons: First, in contrast
to many logic-based approaches, a working prototype SCENIC has been demon-
strated to enhance state-of-the-art Computer Vision algorithms. Second, Config-
uration languages are close to Description Logics. Third, SCENIC has a model
construction algorithm on offer which could possibly be modified towards logical
model construction.
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The ORION group at Inria Sophia-Antipolis pursues an approach to spatio-
temporal scenario representation and recognition for video surveillance (Bremond
et al. 2006), which has been extensively tested. Although the developed represen-
tation and reasoning framework is not based on logic, it is of interest in terms of
ontology design.

The NIST (National Institute of Standards and Technology) has pursued some pre-
liminary work on using Description Logic to reason about potential damages in-
curred by collisions between an autonomous vehicle and other objects (Provine
et al. 2004).

Some other, related fields display a more vivid interest in formal logic: In im-
age retrieval, the development of languages for representing and querying image
content is currently subject of intensive research. (Saathoff and Staab 2008), for
example, demonstrate how a conceptual description of image regions and typical
spatial relations can help in retrieving and labelling image regions. This commu-
nity is in the process of developing large image retrieval knowledge bases, which
should be examined with respect to their applicability in the Scene Interpretation
context. Logic-based approaches developed within the RoboCup community in-
evitably have to address the intricate issues of real-time performance and input
data uncertainty, which are relevant in the Computer Vision context. As an exam-
ple, (Lattner 2007) from TZI, Bremen University, has developed a rule learning
approach based on Prolog for discovering and predicting player behaviour pat-
terns. Finally, some work on qualitative reasoning has been pursued in the field of
dynamic robot localisation, e. g. by (Wagner et al. 2004).

2.4 Discussion

A considerable number of Computer Vision researchers have recommended the
use of qualitative knowledge representations for high-level Scene Interpretation,
among them (McCarthy and Hayes 1969) in the early days, later (Rao and Jain
1988), and, more recently, (Shah 2004) and (Kanade 2006). Early representations,
like expert systems, semantic nets and frames, were unconvincing due to lack of
formality. Rigorously formal representations, on the other hand, have so far only
rarely been applied (fewer than 10 groups worldwide to the best of the author’s
knowledge). Reiter’s pioneering logical formalisation of a vision problem, and
later Schröder’s DL-based formalisation, made unrealistic assumptions concern-
ing the vision routines and therefore were not adopted by the Computer Vision
community. Later FOL-based approaches, like Pirri’s, focused more on the action
side than on the sensing side of perception, and solved planning problems using
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the situation calculus or the event calculus as the underlying ontology. From the set
of presented approaches, only (Arens and Nagel 2005), (Magee et al. 2004), (Ben-
nett et al. 2008), (Shanahan 2005), (Neumann and Möller 2006) and (Möller and
Neumann 2008) turned out to classify as logic-based Computer Vision according
to the criteria defined above.

Logical Principles Applied

While Reiter uses a full first order representation, most other approaches use the
Horn-clause subset as used by Prolog. Magee is the only representative using
inductive Logic Programming. Recently, with the development of expressive and
at the same time tractable languages, Description Logic has become fashionable.

Most approaches impose a closed domain assumption, i. e. they introduce all possi-
ble scene objects a priori. Approaches which consider sensor uncertainty or multi-
ple sensors realised the need to abandon the unique name assumption. All systems
seem to implicitly or explicitly assume finite logical models of the scene. With
the exception of Reiter’s early work, all systems seem to assume an open world,
i. e. pay attention to the fact that visual evidence in general is incomplete.

All approaches view the resulting Scene Interpretation as a logical model of the
knowledge base, but they vary in the way this model is constructed: No system
solely relies on deduction. While some use abduction to hypothesise new for-
mulae, others hand the construction problem over to a non-logic formalism like
constraint satisfaction or build a procedural framework around a deductive rea-
soner. When a full scene reconstruction is envisaged, abduction cannot be used in
isolation, but must be combined with deduction and/or a procedural framework.

The Status Quo

Logic-enhanced systems have not yet proven their superiority over state-of-the-art
quantitative Computer Vision in terms of recognition or classification rates (al-
though Bennett and Arens come close). It has furthermore not yet been convinc-
ingly demonstrated that the use of logic enhances the transparency of incorporated
knowledge or of drawn conclusions (due to explicitness, modularity and semantic
unambiguity). These advantages can – if present – only become quantifiable with
the development of large logic-based Computer Vision knowledge bases (other-
wise simple if-then rules in the source code do, indeed, suffice).
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3 Description Logic

Description Logic (DL) is a synonym for a family of object-oriented knowledge
representation (KR) formalisms that separate background knowledge about an ap-
plication domain (intensional knowledge) from knowledge about particular indi-
viduals within that domain (extensional knowledge). Databases, in contrast, solely
capture extensional knowledge. A full First Order Logic knowledge base, on the
other hand, does not make this particular distinction and is not object-oriented.
The terms terminological systems, concept languages and term-subsumption sys-
tems are older synonyms for DL. As the name indicates, DL is equipped with a
formal, declarative semantics, making it equivalent to a set of FOL axioms.

The axiomatisation of intensional knowledge in a DL, together with its precise
semantics, allows for deductive reasoning: Knowledge, which is contained im-
plicitly in a DL knowledge base (DLKB), is made explicit through inferences.
Reasoning algorithms used in modern DL systems have been proven to be sound
and complete, i. e. any result is guaranteed to be correct and exhaustive. In contrast
to FOL theorem provers or systems based on Horn clauses with function symbols,
such as Prolog, DL reasoning is decidable. This means that there exists a reasoning
algorithm that terminates with an answer after a finite number of steps.

After an introduction into the architecture of DL-based KR systems in Section 3.1,
the syntax and semantics of a wide class of DL languages will be provided in Sec-
tion 3.2, accompanied by a set of examples from the application domain of road
network modelling. Section 3.3 describes classical DL reasoning services. Much
recent research effort is currently spent on enhancing these deductive reasoning
capabilities. Two pragmatic enhancements which are available in current reason-
ing technology, trigger rules and other so-called procedural extensions, are briefly
mentioned in Section 3.4.

This chapter is intended to serve as reference for syntax and semantic of the DL
expressions used in subsequent chapters.

3.1 DL-based Knowledge Representation Systems

A DL-based knowledge representation system is an implementation of a reasoning
system for DL knowledge bases. It connects to a knowledge-intensive application
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or to an end user via an interface to set up the knowledge base, to manipulate it,
and to reason about its content. The interface can come in the form of an applica-
tion programming interface (API) or a graphical user interface (GUI). Figure 3.1
sketches a typical software architecture.

Figure 3.1: Architecture of a knowledge-intensive application based on De-
scription Logic. The application states new facts in the form of ABox assertions
(see next Section), which are added to the DLKB. The KR system uses the DLKB
to answer queries through deductive reasoning, that are posed by the application.

Among the leading modern KR systems are FACT++ 1, KAON22, PELLET3 and
RACERPRO4. The application described in this contribution is based on RACER-
PRO 1.9.3.

All mentioned KR systems provide a DIG-compliant API (DIG is short for DL Im-
plementation Group). The DIG standard comprises an XML-specification for DL
languages, ask/tell functionality, along with a HTTP-based communication proto-
col, and support for multiple knowledge bases. It enables distributed, client/server
architectures for knowledge-intensive applications.

A widely used GUI is the open source tool PROTÉGÉ5, which connects to a rea-
soner via DIG. It uses OWL (Web Ontology Language) as the underlying language,
which corresponds to the DL language SROIQ(D) in the case of OWL 1.1, and
to SHOIN (D) in the case of OWL 1.0 (see Section 3.2.1 on DL languages).
RACERPRO comes with its own GUI named RACERPORTER.

1 (Tsarkov and Horrocks 2006), http://owl.man.ac.uk/factplusplus/
2 http://kaon2.semanticweb.org/
3 (Sirin et al. 2007), http://pellet.owldl.com/
4 (Haarslev and Möller 2003), http://www.racer-systems.com
5 http://protege.stanford.edu/

http://owl.man.ac.uk/factplusplus/
http://kaon2.semanticweb.org/
http://pellet.owldl.com/
http://www.racer-systems.com
http://protege.stanford.edu/
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3.2 DL Knowledge Bases

Knowledge is specified in a knowledge base (KB) in DL syntax. The KB com-
prises two components, the TBox and the ABox. The TBox introduces the termi-
nology, i.e. a set of axioms that describes the application domain, while the ABox
consists of assertions about particular individuals in terms of this vocabulary. A
formal account of the TBox and ABox language constructs and their set-theoretic
semantics is given in the following.

3.2.1 The TBox

Syntax of Descriptions

The TBox consists of a set of TBox axioms, which in turn contain concept and role
descriptions. Descriptions are built inductively from concept names (like Road)
and role names (like hasPart) using constructors (like ”and” or ”not”). Any con-
cept or role name is also a trivial concept or role description respectively. Let C
and D be concept descriptions, and r and s be role descriptions, then all terms
given in the first two columns of Table 3.1 are concept and role descriptions as
well.

According to this definition, the following two terms are examples of concept de-
scriptions

// Roads which only have one-way lanes
Road u ∀hasPart.OneWayLane
// Lanes which have a right turn arrow
Lane u ∃hasPart.RightTurnArrow ,

whereas the following terms are examples for role descriptions

// Individual pairs, which overlap but are not a part of each other
overlapsWith u ¬hasPart u ¬isPartOf
// Individual pairs, where the first component overlaps with
// an object that has the second component as a part
overlapsWith ◦ hasPart .

Additionally to the introduced role constructors, some further restrictions can be
imposed on a role. It can be declared functional, which means that any individual
is allowed maximally one role relation to another individual. hasMother is an
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Table 3.1:

Syntax of concept and role descriptions

Syntax Name Language

> Universal/Top concept AL
⊥ Bottom concept AL
¬ C Negation C
C u D Conjunction AL
C t D Disjunction U
∀ r.C Universal quantification AL
∃ r.C Existential quantification E
∃≤n r.C Qualified min number restriction Q
∃≥n r.C Qualified max number restriction Q
∃= r.C Qualified max number restriction Q
r .= s Agreement (requires functional roles) F
r 6 .= s Disagreement (requires functional roles) F
r− Role Inverse ·−1/ I
r u s Role Intersection · u
r t s Role Union · t
¬ r Role Complement · ¬
r ◦ s Role Chain / Role Composition · ◦
r+ Transitive Role Closure ·+

example for a functional role. Roles can also be declared symmetric, reflexive and
transitive, with the obvious semantics.

Some DL languages also allow for individual names in the TBox, which are then
called nominals, as for example TheRoadNetwork. They are also called singleton
sets.

Syntax of Axioms

The set of axioms that constitutes the TBox is constructed from the previously in-
troduced concept and role descriptions according to Table 3.2. Inclusion axioms
specify necessary conditions for concept membership. Equality axioms, by con-
trast, define a concept by formalising necessary and sufficient conditions. C ≡ D
is an abbreviation for mutual inclusion: C v D and D v C.



3.2. DL KNOWLEDGE BASES 31

Table 3.2:

Terminological Axioms

Syntax Name Language

C v D (General) Concept inclusion / Implication AL
C ≡ D Concept equality / Definition AL
r v s Role inclusion H

Example 3.1. A small example TBox is given by the following set of axioms:

T = { // A road can either be one-way or two-way.
Road ≡ OneWayRoad t TwoWayRoad ,
// Two-way roads are disjoint from one-way roads.
TwoWayRoad v ¬OneWayRoad ,
// A road contains lanes only, and it contains at least one lane.
Road v ∀hasPart.Lane u ∃hasPart.Lane ,
// A lane is either one-way or two-way.
Lane ≡ OneWayLane t TwoWayLane ,
// A one-way road contains one-way lanes only.
OneWayRoad v ∀hasPart.OneWayLane ,
// A one-way road never contains a u-turn lane.
OneWayRoad v ∀hasPart.¬UTurnLane ,
// A lane containing a u-turn marking is a u-turn lane.
Lane u ∃hasPart.UTurnMarking v UTurnLane } .

The last axiom is called a general inclusion axiom, as its left hand side contains a
non-trivial description. The role hasPart is declared inverse of the role isPartOf
(not shown in T ), which will be used later on. Both are not declared transitive, so
they must be read as ”has direct part” and ”is direct part of”.

If the fifth axiom was turned into a definition by using the ≡-constructor, it would
allow a OneWayRoad to contain one-way lanes with opposing driving directions,
which does not capture the intuitive concept semantics. A reasonable definition of
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a OneWayRoad is

TRoads = T ∪ {
// A road is one-way iff it only consists of one-way lanes either all
// pointing north, or all south (relative to the road coord. system).
OneWayRoad ≡ Road u ( ∀hasPart.OneWayLaneNorth t

∀hasPart.OneWayLaneSouth ) ,
// A one-way lane is either pointing north or south.
OneWayLane ≡ OneWayLaneNorth t OneWayLaneSouth ,
// One-way lane north is disjoint from one-way lane south.
OneWayLaneNorth v ¬OneWayLaneSouth } .

The TBox TRoads will be used for subsequent examples in this chapter.

Using definitions, an individual which ”meets” the description will automatically
be classified as an instance of the defined concept.

DL Languages

The term Description Logic denotes a whole family of knowledge representation
languages. A particular DL language is determined by the provided subset of con-
structors from Table 3.1, and its name is built through concatenation of the cor-
responding symbols given in the table’s right column. Generally speaking, using
more constructs in a language enhances its expressiveness but can jeopardise its de-
cidability. A well studied, basic DL is ALC, which only consists of conjunction,
disjunction, universal quantification, a limited form of existential quantification,
and negation. The letter S is used as an abbreviation for the languageALCR+, the
subscript ·R+ of which denotes the possibility of declaring transitive roles.

The DL used in this contribution is ALCQHIR+ , or SHIQ. It extends ALCR+

with role hierarchies, inverse roles, qualified number restrictions. It has been
proven to be decidable in EXPTIME (Tobies 2001) and it is supported by the
RACERPRO reasoner. For decidability reasons, qualified number restrictions are
only allowed for so-called simple roles in this DL. Such roles are neither transitive
themselves nor do they have a transitive subrole.

3.2.2 The ABox

The ABox captures knowledge about a specific state of affairs. It is formulated in
terms of the vocabulary that is set up in the TBox. Syntactically, the ABox consists
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Table 3.3:

Assertional Axioms

Syntax Name

a : C Concept assertion
(a, b) : r Role assertion
a = b Semantic Equality
a 6= b Semantic Inequality

of a set of assertions about individuals. The four possible types of assertions are
given in Table 3.3. Variables a and b denote individual names.

An individual a that satisfies a concept assertion a : C is also denoted an instance
of C, or said to be of type C.

If a KR system follows the open world assumption (OWA) then the absence of in-
formation in the ABox indicates lack of knowledge. The closed world assumption
(CWA) in contrast, which underlies database systems and Prolog, treats absence
of information as negative information. DL adopts the OWA.

If a reasoner applies the unique name assumption (UNA), differently named indi-
viduals must never refer to identical domain elements. UNA can be switched on
and off in RACERPRO.

Example 3.2. A small ABox for the TBox TRoads from Example 3.1 is given by:

A = { georgeSt : Road ,
(lane07, georgeSt) : isPartOf ,
(lane42, georgeSt) : isPartOf ,
arrow01 : UTurnMarking ,
(arrow01, lane42) : isPartOf }

The second individual in a role assertion is called the role filler: georgeSt is an
isPartOf filler for individual lane42.

Under CWA, from A and TRoads, it follows that

// George St. has maximally two lanes.
georgeSt: ∃≤2 hasPart.Lane ,

as only two fillers of the role hasPart were explicitly asserted, whereas under
OWA, the number of its lanes is unknown. This form of deductive reasoning is
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called entailment and will be introduced in detail in Section 3.3.2.3. When fur-
thermore UNA is switched on under OWA, it also follows that

// George St. has at least two lanes.
georgeSt : ∃≥2 hasPart.Lane ,

Without UNA, by contrast, the total number of lanes could also equal one, as it
could additionally be the case that lane42 = lane07 holds.

3.2.3 Semantics

The semantics of axioms has so far only been hinted at by means of ”speaking”
names and comments. Next, a formal semantics for all types of axioms is pro-
vided using set theory. A precisely defined semantics is crucial for minimising the
chance of semantic ambiguities in a knowledge base.

The semantics of concept and role descriptions is given through an interpretation
I. An interpretation consists of a non-empty set ∆I , called the domain of I,
and an interpretation function. This function assigns to every concept name C a
set CI ⊆ ∆I and to every role name r a binary relation RI ⊆ ∆I × ∆I . The
interpretation function is extended to concept and role descriptions according to
Table 3.4.

An interpretation I satisfies a terminological or assertional axiom iff the respective
condition in the table’s right column is satisfied. An interpretation I is a model of
a TBox T if all its terminological axioms are satisfied. I is a model of an ABox A
with respect to T , if it is a model of T and satisfies all axioms in A.

Example 3.3. For TRoads and A from Examples 3.1 - 3.2, one of many interpre-
tations is:

∆I = {georgeSt, lane42, lane07, arrow01}
RoadI = {georgeSt}
OneWayRoadI = {}
TwoWayRoadI = {georgeSt}
LaneI = {lane42, lane07}
OneWayLaneI = {lane42, lane07}
TwoWayLaneI = {}
OneWayLaneSouthI = {lane07}
OneWayLaneNorthI = {lane42}
UTurnLaneI = {lane42}
UTurnMarkingI = {arrow01}
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Table 3.4:

Semantics of concept and role descriptions,
satisfiability conditions for TBox axioms and ABox assertions

Syntax Semantics

> ∆I for concepts, ∆I ×∆I for roles
⊥ ∅
C u D CI ∩ DI

C t D CI ∪ DI

¬C ∆I \ CI

∀r.C {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃r.C {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
∃≤nr.C {a ∈ ∆I | ||{x | (a, x) ∈ RI , x ∈ CI}|| ≤ n}
∃≥nr.C {a ∈ ∆I | ||{x | (a, x) ∈ RI , x ∈ CI}|| ≥ n}
r .= s {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ (a, b) ∈ SI}
r 6 .= s {a ∈ ∆I | ∃b1, b2 ∈ ∆I , b1 6= b2 : (a, b1) ∈ RI ∧ (a, b2) ∈ SI}
I II ⊆ ∆I , with |II | = 1

r− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
r u s RI ∩ SI

r t s RI ∪ SI

¬ r ∆I ×∆I \ RI

r ◦ s RI ◦ SI

r+
⋃

n≥1(R
I)n

C v D CI ⊆ DI

C ≡ D CI = DI

r v s RI ⊆ SI

a : C aI ∈ CI

(a, b) : r (aI , bI) ∈ RI

a = b aI = bI

a 6= b aI 6= bI
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hasPartI = {(georgeSt, lane07), (georgeSt, lane42), (lane42, arrow01)}
isPartOfI = {(lane07, georgeSt), (lane42, georgeSt), (arrow01, lane42)}

This interpretation is also a model of T andA, as all terminological and assertional
axioms are satisfied.

3.3 DL Inference Services

The purpose of a DL-based KR system goes beyond mere storage of data. Its
formal semantics make it possible to explicate knowledge, which is only implic-
itly contained in the data, by means of inference steps. This type of inference
is called deduction. Looking at mathematics, theorem proving from a set of ax-
ioms is an example of deductive reasoning. In DL, deductive reasoning can be
divided into TBox and ABox inference. TBox inference is useful during termino-
logical modelling of the application domain, to test whether the declared concepts
”make sense”. ABox inference is usually employed during usage of the knowledge
base within an application. It is used there to test the input data for consistency,
to pose boolean queries to the KB, and to retrieve tuples of individuals, among
which a specified set of conditions must hold. The amount of inference services
implemented in modern KR systems varies, and, in particular, optimised ABox
reasoning is not provided by all systems.

3.3.1 TBox Inference

Subsumption

A concept D subsumes a concept C with respect to a TBox T iff CI ⊆ DI holds
for each model I. This is written as T |= C v D. The operator |= is called the
entailment operator.

Example 3.4. As a simple example, in TRoads from Example 3.1, TRoads |=
OneWayRoad v Road. From a given set of TBox axioms, all modern reasoners
can automatically infer the concept subsumption hierarchy or taxonomy. Figure
3.2 shows the subsumption hierarchy which results from TRoads.



3.3. DL INFERENCE SERVICES 37

OneWayRoad

TwoWayRoad

UTurnLane

Road

Lane

UTurn-
Marking

OneWayLane
OneWayLaneNorth

OneWayLaneSouth

TwoWayLane

Figure 3.2: Subsumption Hierarchy / Taxonomy.

Satisfiability

A concept C is called satisfiable with respect to a TBox T iff there is a model I
of T where CI 6= ∅. Otherwise the concept is called unsatisfiable. A TBox T is
satisfiable if there exists a model of T . A satisfiable TBox is also called coherent.
Satisfiability can be reduced to the subsumption problem: A concept C is called
unsatisfiable with respect to a TBox T iff T |= C v ⊥. Usually, an unsatisfiable
TBox indicates an error in domain modelling, as it contains a concept which by
definition cannot have any instances.

Example 3.5. The TBox TRoads is satisfiable, as a model was already provided in
Example 3.3. However, when adding the axiom

MixedRoad ≡ OneWayRoad u TwoWayRoad , (3.1)

then TRoads becomes unsatisfiable, as it contains the conjunction of two disjoint
concepts, which is always subsumed by the empty set.

Disjointness

Two concepts C and D are disjoint iff CI ∩ DI = ∅ holds for each model I.
Disjointness can as well be reduced to subsumption: Two concepts C and D are
disjoint iff C u D is subsumed by ⊥.

3.3.2 ABox Inference

3.3.2.1 Consistency

An ABox A is consistent with respect to T , iff there exists a model of T and
A. Otherwise the ABox is called inconsistent. An inconsistent ABox indicates
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that the input data violates at least one domain model assumption. In deduction,
false premises can lead to false conclusions, therefore an inconsistent ABox will
generally not produce correct reasoning results. In a consistent TBox, consistency
checking is used to detect erroneous input data (with respect to T ).

Example 3.6. The ABox A defined in Example 3.2 is obviously consistent, be-
cause a model has been given in Example 3.3. But when adding the axiom

georgeSt : OneWayRoad ,

the ABox will become inconsistent with respect to TRoads, as by definition, u-turn
lanes must not occur on a one-way road.

3.3.2.2 Instance Classification/Realisation Problem

Realisation or instance classification denotes the inference service, which, given
an individual i in A, returns the most specific set of concepts of which i is an
instance.

Example 3.7. Again referring to TRoads and A from Example 3.2, then instance
classification yields

i = georgeSt : {TwoWayRoad}
i = lane42 : {UTurnLane} .

A less trivial TBox might return more than one concept name per individual.

The additionally inferred assertions can usually be chosen to be automatically
added to the ABox by the reasoner. Such an augmented ABox is termed realised.

3.3.2.3 Instance Checking

Instance checking tests whether an assertion is entailed by a KB, writtenKB |= α.
An ABox assertion α is entailed by KB, iff every model of KB also satisfies α.
If α is a concept assertion a : C, and KB is known to be consistent, then instance
checking can be reduced to testing the consistency of KB ∪ {a : ¬C}.

Example 3.8. As an example, the assertion

// George St. has some lane with driving direction southwards.
α = {georgeSt : ∃hasPart.(OneWayLaneSouth t TwoWayLane)}
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is entailed by the above KB, even though neither a one-way lane pointing south-
wards nor a two-way lane have been asserted for George St. This is because
George St. is two-way, which has been axiomatised as not one-way, which is
defined implicitly from the given axioms as

// A road is a two-way road, iff it contains
// a one-way lane pointing northwards and one pointing southwards,
// or if it contains a two-way lane.
TwoWayRoad ≡ Road u (

( ∃hasPart.OneWayLaneNorth u
∃hasPart.OneWayLaneSouth ) t
∃hasPart.TwoWayLane ) .

3.3.2.4 Retrieval and Conjunctive Queries

Given a concept description C, a retrieval query returns all individuals i which are
instances of C, i. e. for which KB |= i:C holds. Conjunctive retrieval querying is
more general than retrieval: It returns all tuples of individuals (i1, . . . , in) among
which a set of conditions holds. These conditions are formulated through query
terms q of the form xi : C or (xi, xj) : r, where xi, xj are either variables or
individual names. A conjunctive retrieval query is of the form

(x1, . . . , xn)︸ ︷︷ ︸
query head

← q1 ∧ · · · ∧ qn︸ ︷︷ ︸
query body

.

The answer to a retrieval query Q with respect to a KB is the set of tuples
of individual names (i1, . . . , in) occurring in the KB, such that, by substituting
(i1, . . . , in) for (x1, . . . , xn) in the query terms of Q, the assertions in the grounded
query terms are a logical consequence of the KB.

Example 3.9. The query

(x1, x2) ← x1 : Road ∧ (x1, x2) : hasPart ∧ x2 : UTurnLane

returns all roads and their u-turn lanes. In the case of TRoads and ABoxA only the
tuple

{(georgeSt, lane42)}

is returned.
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Retrieval queries are widely known from databases, where SQL is the dominant
query language. There, retrieving instances reduces to simple model checking.
In DL no single minimal model can be computed, as, in general, a DLKB will
be nondeterministic (due to the ∃ and the t constructors) and incomplete (due
to the OWA (cf. Section 3.2.1)). Therefore, deductive reasoning is needed when
answering a query in a DL setting.

3.4 Rules

In some cases it is desirable to relate more than two ABox individuals. In full
FOL, this is easily achieved using predicates of arity greater than two. As DL
is a fragment of FOL restricted to unary and binary predicates, relating three or
more individuals requires so-called role chains, which are composition of role
names written as r1 ◦ · · · ◦ rn, and a concept constructor called role-value-map,
which is written as r

.v s for two role chains r and s (see the following Example
3.10). However, (Schmidt-Schauß 1989) have shown that role-value-maps make
reasoning undecidable already for a language as simple as ALC.

To overcome the resulting limitations in expressivity (and also for other reasons),
current research points towards an integration of DL-based and rule-based repre-
sentation formalisms, which originate from Logic Programming (e. g. (Horrocks
and Patel-Schneider 2004)). The following description of rule syntax and seman-
tics refers to a pragmatic ABox augmentation using trigger rules6 which is sup-
ported by the RACERPRO reasoner since version 1.9.

Rules consist of a body and a head:

r1 ∧ · · · ∧ rm︸ ︷︷ ︸
rule head (consequence)

← q1 ∧ · · · ∧ qn︸ ︷︷ ︸
rule body (antecedent)

.

The syntax of the rule terms qi and rj is equivalent to that of the query terms
defined in the previous section, with the restriction that only those variable names
which are mentioned in the rule body are allowed in the rule head.

The semantics of a rule-enhanced KB can be defined by a forward-chaining rea-
soning process: A rule fires, if a set of individual names can be assigned to the set
of its variables so that each assertion in its body is a logical consequence of the
KB. The assertions contained in its grounded rule consequence are then added to
the ABox. In this manner, rule consequences are added to an ABox until no more
rules can fire. This process eventually halts as a KB contains only finitely many

6The terms trigger rules and rules will be used synonymously in the following.
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individuals and finitely many rules. Because of the monotonicity of DL reasoning
(adding new assertions can never make previously asserted or inferred assertions
invalid), if the rules are also monotonic in nature, this process is independent of the
order of rule application7. The resulting augmented KB is called the procedural
extension of the initial KB.

Example 3.10. Let hasNeighbour denote a role which relates two adjacent lanes
within a road. In DL, capturing the notion that neighbouring lanes must be part of
the same road would require an axiom containing a role-value map of the form

// Roads must contain lanes, and the set of lanes is equal
// to set of the neighbours of these lanes.
Road v ∃hasPart.Lane u

(hasPart ◦ hasNeighbour
.v hasPart) ,

leading to undecidability. By contrast, this fact can easily be expressed using a
rule:

(x3, x1) : isPartOf ⇐
x1 : Road ∧ (x2, x1) : isPartOf ∧ (x2, x3) : hasNeighbour .

Although seemingly identical, there is a subtle difference in semantics between a
rule of the form x : Road ← x : OneWayRoad and a simple inclusion axiom
OneWayRoad v Road. For the inclusion axiom, the law of contraposition holds,
i. e.¬Road v ¬OneWayRoad is entailed by the above axiom. This is not true for
the corresponding rule, where no statement whatsoever is made about individuals
which are not of type OneWayRoad. This type of trigger rules thus exclusively
operates on ABoxes.

7As an example for a non-monotonic rule, consider a rule language allowing for the negation-as-
failure operator (’neg’), which is true iff the truth value of its argument cannot be proven wrong. By
contrast, classical negation (’¬’) is true iff its argument is provably wrong. Apparently, the firing of a
non-monotonic rule is dependant on whether the assertion contained in its argument is made before or
after rule execution.
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4 DL Formalisation of Scene
Understanding

Modularity and reusability are major motivations behind the use of declarative,
logic-based knowledge specifications. Unfortunately, reusable KBs and substan-
tial literature on KB engineering do not yet exist for logic-based Computer Vision.
Their accessability, however, is crucial for benefiting from these hoped-for prop-
erties.

This chapter makes one step in this direction, by elaborating on the mapping of
several classic Computer Vision issues to a DL setting. Section 4.1 treats the in-
corporation of various classes of input data from an external sensor into a formal
logic KB. Section 4.2 elaborates on the specification of qualitative scene geom-
etry models in DL. Section 4.3 describes how several classical problems within
Scene Understanding can be solved by DL inference services. In particular, object
detection and classification, link prediction and data association are covered.

Implementations will be provided in the form of design patterns. A design pat-
tern proposes a representation for a particular class of problems. It comprises
a template, a generic code fragment in DL, which can be instantiated by a do-
main modeler for his or her particular task. A template will be indicated by an
underscore, like KBMY _TEMPLATE , its instantiation will omit the underscore,
KBMY _TEMPLATE . Within a template, all concepts, roles, or individuals requir-
ing instantiation will also be indicated by an underscore, C, r and i, respectively.
All KB design patterns use the decidable DL SHIQ (cf. Section 3.2.1 for the
nomenclature for DL languages), which is also supported by the RACERPRO sys-
tem.

The KB modelling principles introduced here form the basis for the Intersection
Understanding KB presented in Chapter 5.

4.1 Formalisation of Data Input

In a Scene Interpretation system, external sensors acquire evidence about a partic-
ular scene. The characteristics of such input data can vary along several axes: 1.
Is the number of scene objects known a priori or not? 2. Is the input data partial
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or complete? 3. Does the sensing algorithm deliver sets of features (cues) or ob-
jects? 4. Is only a single sensor or a distributed set of sensors involved? 5. For
sensor sets: Is the setup complementary or redundant?1 In the most general Scene
Interpretation setup, the number of objects will be unknown, the input data will be
globally incomplete, but complete within certain subsets, and the sensor setup will
include both complementary and redundant sensors.

Subsection 4.1.1 shows that, in the Scene Interpretation context, DL’s KR
paradigms correspond to a partial number of objects and partial information about
those objects. Completeness of data, on the other hand, is not representable. There-
fore a design pattern, which approximates local completeness via a procedural ex-
tension to the KB, will be provided. Subsection 4.1.2 shows that complementary as
well as redundant sensor data, and feature as well as object input, are representable
in DL. A design pattern for each of these setups will be provided.

4.1.1 Partial vs. Complete Data

Open World Assumption vs. Closed World Assumption

KR formalisms adopting a Closed World Assumption (CWA), like database systems
or Prolog, treat absence of information as negative information (see Sec. 3.2.1):

If KB 2 α then KB |= ¬α ,

where α is an assertion. Consequently, under CWA, the truth values ”false” and
”unknown” cannot be distinguished. As elaborated in Chapter 1, visual evidence
is typically highly partial, and thus CWA semantics is not appropriate for Scene
Interpretation. It instead requires an Open World Assumption (OWA), where in-
formation is considered partial by default and no truth value is deduced for absent
information. As a fragment of FOL, the DL family of KR formalisms inherits the
OWA.

A KB interpreted under OWA inherently allows for multiple models (cf. 3.2.3).
The set of models corresponds to the set of Scene Interpretation hypotheses that is
consistent with the background knowledge and the partial sensor data. The more
sensor data is available, the smaller the number of models gets.

The usage of an OWA-based KR formalism bears the problem that not even local
completeness of information is expressible any more. The next but one paragraph
will sketch why this is problematic for certain Scene Interpretation cases, and an

1A further relevant characteristic of sensor data is data uncertainty. For reasons explained in Section
1.3.2 this aspect is outside the scope of this thesis.
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approximation to a special case of local CWA will be given in the form of a proce-
dural KB extension.

Open Domain vs. Closed Domain

Under a closed domain assumption, all individuals are known to the KB a priori:

> v {i1, i2, . . . , in} ,

where {i1, i2, . . . , in} is the set of individual names in the ABox. In a Scene In-
terpretation context this amounts to assuming that all relevant scene objects are
known. With respect to the task of image segmentation, for example, it means that
a complete low-level segmentation is provided initially. Typically, however, the
detected set of objects will be incomplete due to occlusions, imperfect sensors and
a limited field of view, and therefore new individuals need to be hypothesised by
a combination of bottom-up and top-down reasoning. Scene Interpretation thus
requires an open domain view, which is inherent to DL languages.

However, (at least) the following issues require special treatment in an open do-
main: Although existence of further individuals can be implied in a DLKB through
the existential quantifier (e. g.: RightTurnLane v ∃hasPart.RightTurnArrow),
the explicit construction of new individuals is outside the scope of classic DL rea-
soning. To enable hypothesisation of new individuals, either the pre-introduction
of all potential scene objects or non-classic DL reasoning is required. These topics
will be further elaborated in Section 4.3 on DL reasoning for Scene Interpretation.

Local Closures

Even though an open world and an open domain view are indispensable, a KR
formalism for Scene Interpretation must nevertheless be capable of interpreting
certain subsets of the provided KB information as being locally complete:

Example 4.1. In an ABox A, evidence for a junction is given in the form of data
from a topological map and from a vision sensor: A = Amap ∪ Acamera. The
topological map provides the complete set of roads for a given junction2:

Amap = { junction01 : Junction ,
road01 : Road, road02 : Road, road03 : Road ,
(junction01, road01) : hasPart ,
(junction01, road02) : hasPart ,
(junction01, road03) : hasPart } ,

2This example adopts the unique name assumption
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i. e. junction01 consists of three roads. The vision sensor has additionally detected
an arrow marking on road02:

Avision = { (road02, arrow01) : hasPart } .

The intended semantics behind these two specifications differs. Whereas the in-
formation provided in Avision is partial (many more arrows may be present in the
scene), the information inAmap is complete (the junction consists of exactly three
roads). The intended meaning of Avision is captured correctly due to DL’s open
world semantics, while the meaning of Amap is not, as the KB will allow all mod-
els where junction01 has three or more roads. More particularly, using the TBox

T = { ThreeBranchJunction ≡ Junction u ∃=3hasPart.Road }
will not result in junction01 being classified as a ThreeBranchJunction in KB =
(T ,A), because more roads than the introduced ones might exist.

A knowledge representation formalism for Scene Interpretation should therefore,
while principally adopting the OWA, provide constructs to axiomatise that infor-
mation given in the ABox is locally complete, i. e. make a local closed world
assumption (LCWA) (Etzioni et al. 1994). A DL concept or role description A
interpreted under LCWA allows only for those models in which A holds only for
individuals or individual pairs for which A is implied by the KB. (Rosati 1998)
axiomatises LCWA by using concept and role closures. Unfortunately, closures
cannot yet be axiomatised in state of the art DL languages, but require an ex-
tension towards autoepistemic DL or circumscriptive DL (see e. g. (Grimm and
Hitzler 2008)), or a combination of DL with Logic Programming (see e. g. (Motik
et al. 2006)), all of which are subject of ongoing research. Next, an axiomatisation
of LCWA for a special case termed named atomic closure is proposed. It will be
approximated using available DL technology via a procedural extension to the KB.

Named Atomic Closure

Named atomic concept closure of an atomic concept C denotes that membership
to C is interpreted under closed-world semantics for all named individuals i in the
ABox A of a knowledge base KB = (T ,A):

If KB 2 i : C, then KB |= i : ¬C .

In other words, a model of KB requires membership to C to hold exclusively
for individuals, for which this fact is already implied by KB’s axioms. All other
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individuals are instances of ¬C. An even stronger restriction will be termed named
told atomic concept closure:

If A 2 i : C, then KB |= i : ¬C .

Here a model of KB requires concept membership for an individual to hold exclu-
sively if this has been explicitly asserted in the ABox.

Named atomic role closure of an atomic role r denotes, that r is interpreted under
closed-world semantics for all named individual pairs (i, j) in the ABox:

If KB 2 (i, j) : r, then KB |= (i, j) : ¬r .

Correspondingly, for named told atomic role closure:

If A 2 (i, j) : r, then KB |= (i, j) : ¬r .

Provided that the named atomic closure semantics could be implemented, then in
Example 4.1, either concept closure for Road or role closure of hasPart would
achieve the desired reasoning results.

At least in principle, the semantics of named atomic concept closure could be
approximated through a set of TBox local domain closure axioms:

C ≡ {c1, . . . , cn} ,

where {c1, . . . , cn} is the set of all individuals for which the assertion ci : C
is implied by the KB. For Example 4.1, this would instantiate as Road ≡
{road01, road02, road03}. However, this axiomatisation involves nominals, the
use of which considerably increases the complexity of reasoning. Only recently,
(Horrocks and Sattler 2007) have proposed a tableau algorithm for the language
SHOIQ, which extends SHIQ by nominals, that is likely to perform well for
ontologies of realistic size. It is not yet implemented in the RACERPRO system.

To conclude, not even the special cases of LCWA introduced here can be realised
with currently available DL technology, nor can they be approximated by rules.

Approximation to Named Atomic Closure

At least on the assertional level, an approximation to the intended semantics can be
achieved in SHIQ by using qualified number restrictions. This will be sketched
for the case of role closures in the following.

First consider the following ABox enhancement: For any role r to be interpreted
under named told closure semantics r, one max. number restriction is added for
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each ABox individual indi. Additionally, to prepare for later automation, each
such role will be tagged as a descendant of closedWorldRole:

r v closedWorldRole
ind1 : ∃≤nR1

r
. . .
indm : ∃≤nRm

r ,

where nRi is the number of individuals which are explicitly asserted as fillers
of role r for individual indi. This results in m axioms per closedWorldRole
descendent. This ABox enhancement suffices to express the desired semantics
in Example 4.1. However, it also prevents declaration of any further road parts
detected by the vision sensor (e. g.: d01 : Divider, (road03, d01) : hasPart).
Therefore, r should only be partially closed with respect to particular concepts.
The design pattern to achieve partial named closure for atomic role r reads as
follows:

Pattern LOCALLY_CLOSED_WORLD:

Effect: Close role r with respect to fillers C1, . . . , Ck for all
individuals that are explicitly named in the ABox

Parameters: r Atomic role
C1, . . . , Ck Atomic concepts
ind1, . . . , indm Complete set of named ABox individuals
nr1 , . . . , nrm Number of r-fillers of type C1 t . . . t Ck

for individuals ind1, . . . , indm respectively
Template:

TLOCALLY _CLOSED_WORLD = {
r v closedWorldRole ,
C1 v ClosedWorldConcept ,
. . . ,
Ck v ClosedWorldConcept }

ALOCALLY _CLOSED_WORLD = {
ind1 : ∃≤nr1

r.ClosedWorldConcept ,

. . . ,
indm : ∃≤nrm

r.ClosedWorldConcept }

Adding any more ClosedWorldConcept individuals as fillers of a
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closedWorldRole will now result in an ABox inconsistency. An example
will illustrate more intuitively the effect of this pattern.

Example 4.2. To axiomatise that the list of Roads, which are part of
junction01 from Example 4.1, is complete, TBox and ABox Templates
TLOCALLY _CLOSED_WORLD and ALOCALLY _CLOSED_WORLD must be in-
stantiated as follows:

TLOCALLY _CLOSED_WORLD = {
hasPart v closedWorldRole ,
Road v ClosedWorldConcept }

ALOCALLY _CLOSED_WORLD = {
junction01 : ∃≤3hasPart.ClosedWorldConcept ,
road01 : ∃≤0hasPart.ClosedWorldConcept ,
road02 : ∃≤0hasPart.ClosedWorldConcept ,
road03 : ∃≤0hasPart.ClosedWorldConcept ,
arrow01 : ∃≤0hasPart.ClosedWorldConcept } .

Classification of the KB from Example 4.1 in union with
TLOCALLY _CLOSED_WORLD and ALOCALLY _CLOSED_WORLD yields
the desired result, namely: KB |= junction01 : ThreeBranchJunction.

Note that the above approximation requires knowledge of the cardinalities nri
.

They are readily accessible (by counting) under UNA, or under non-UNA if the
number of synonym ClosedWorldConcept individuals is known. For an un-
known number of synonyms, although the ABox will remain consistent (due to
usage of the ”∃≤”- instead of the ”∃=”-constructor), role closure cannot be ap-
proximated by the above template.

Automatic ABox Augmentation by Closures

The manual provision of closure assertions to a KB as sketched in Template
ALOCALLY _CLOSED_WORLD can be automated within RACERPRO by using
an extension of its query language nRQL called MiniLisp. MiniLisp is a
simple expression language with which, among other things, aggregation op-
erators (count, sum, average, . . . ) can be realised. The MiniLisp function
(fire-closure-rules r C), which can be downloaded from the webpage
given in the introductory chapter, automatically enhances a realised knowledge
base with partial named role closure assertions with respect to atomic role r and
fillers of atomic concept C. After declaration of that function, the following pro-
cedural extension yields KB closure as defined above for any KB implementing
Template TLOCALLY _CLOSED_WORLD.
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Algorithm 1 Named atomic closure for descendants of closedWorldRole
(full-reset)
(include-kb filename)
(realize-ABox)
(evaluate (fire-closure-rules ’closedWorldRole

’ClosedWorldConcept))

By calling (fire-closure-rules) before ABox realization, a told closure
semantics can alternatively be achieved.

4.1.2 Single vs. Distributed Sensor Setup

If only a still image acquired by a single sensor is interpreted on the object level,
the unique name assumption (UNA, cf. Sec. 3.2.1) should be imposed. Intuitively
spoken, it disallows synonym individual names in the ABox, and thus causes two
individuals (like object38 and object35) to always be interpreted as different ob-
jects. UNA can be switched on in RACER by

(set-unique-name-assumption t) .

This case changes if data is acquired by multiple, non-complementary sensors,
or if single-sensor data is accumulated over time. For overlapping fields of view,
scene elements then become multiply detected. A typical scenario in the automo-
tive context is data acquisition by an in-vehicle camera with a standard frame rate
of around 20Hz. In another scenario, a fleet of vehicles equipped with external
sensors approaches the same junction from different directions. The resulting de-
tection redundancy in these scenarios is usually desired in order to reduce the false
detection rate, and data association techniques are typically applied subsequently.
In such cases, UNA must not be used. Nevertheless, semantic inequality between
two particular individuals indi and indj should be axiomatised whenever reason-
able. First, this rules out all models where indi and indj are synonyms. Second,
UNA is often mistaken for granted by knowledge engineers, consequently leading
to counterintuitive reasoning. Semantic inequality under non-UNA is axiomatised
by the inequality constructor indi 6= indj (cf. Table 3.3). As manual provision of
these axioms is tedious and error-prone, this process should be automated.

Different classes of multi-sensor setups require different sets of inequality asser-
tions. Subsequently, an automatic provision of the required inequality axioms is
sketched for the four classes of sensor setups of redundant vs. complementary
sensors and set of features vs. object level data input.
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Example 4.3 (Sensor setup: Redundant sensors, object level input). Following
Example 4.1, a topological map provides a set of roads which are part of a junction.

Amap = { junction01 : Junction ,
road01 : Road, road02 : Road, road03 : Road ,
(junction01, road01) : hasPart ,
(junction01, road02) : hasPart ,
(junction01, road03) : hasPart } .

This time, the vision sensor detects its own road, and two arrow markings on it:

Avision = { egoroad : Road, arrow01 : Arrow, arrow02 : Arrow ,
(egoroad, arrow01) : hasPart ,
(egoroad, arrow02) : hasPart } .

Apparently, the multi sensor setup is redundant: Consider a vehicle approaching
junction01, then semantic equality holds between the ego road and exactly one of
Amap’s roads,

KB |= egoroad = road01 ∨ egoroad = road02 ∨ egoroad = road03 ,

and consequently UNA must not be used.

The input data is characterised by delivering data on an object level (in contrast to,
e.g., descriptor-based object detectors like SIFT (Lowe 2004), which deliver sets of
features). Therefore, pairwise inequality axioms must be added for the individuals
within each ABox. Otherwise, under non-UNA, junction01 will not classify as
ThreeBranchJunction even after adding the closure axioms from Sec. 4.1.1, as
some of the individual names might be synonyms. The same argumentation holds
for the arrows in Avision.

In brief, for a redundant, object-based sensor setup, UNA must be replaced by
a local UNA within each ABox part representing single sensor data. It is ac-
counted for by partitioning the set of individual names according to the sensor
image from which they were detected, and by axiomatising semantic inequality
for each individual pair in each subset. The correct partition for this example is
{{junction01, road01, road02, road03}, {egoroad, arrow01, arrow02}}.

Each of the four sensor setups requires a different set of inequality assertions and
thus a different partition of the set of individuals. The following design pattern
tags the individuals in a KB according to the type of sensor setup being used3

3The constructor disjoint(C1, . . . , Cn) is ”syntactic sugar” for the set of axioms stating disjointness
between each pair of arguments: Ci v ¬Cj ∀i, j ∈ 1, ..., n, i 6= j. It is provided by most DL
reasoners.
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and provides the correct set of inequality assertions. The tagging will be used
afterwards to provide the required assertions automatically through a procedural
extension of the KB.

Pattern SENSOR_SETUP:

Effect: Provide correct set of inequality assertions for each of four sen-
sor setups: redundant vs. complementary, objects vs. features.

Parameters: SensorInput1, ..., Names of all sensors that provide ABox
SensorInputn individuals

ind1, . . . , indm Complete set of named ABox individuals
Template:

TSENSOR_SETUP = {
SensorInput ≡ SensorInput1 t . . . t SensorInputn ,

// For each object-detecting sensor i, i ∈ {1, .., n}, add:
SensorInputi v SceneObject ,

// For each set of complementary sensors add:
disjoint(SensorInputj , . . . , SensorInputk)

}
ASENSOR_SETUP1 = {

ind1 : SensorInputi ,

. . . ,
indm : SensorInputj }

ASENSOR_SETUP2 = {
// For each i ∈ {1, .., n}:

// For each individual pair (indj ,indk) of type SensorInputi:
// If indj and indk are of type SceneObject add:

indj 6= indk }

The concept name SensorInput refers to all individuals that are detected by a
sensor. Individuals can either represent a scene object or a feature of a scene object.
In the former case the individual is of type SceneObject. The concept names
SensorInput and SceneObject will also be used in other design patterns. Pattern
SENSOR_SETUP models each sensor as either a feature- or an object-delivering
sensor. Furthermore, each pair of sensors is modelled as either complementary
or redundant. ASENSOR_SETUP2 contains the appropriate disjointness assertions
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for each of the four sensor setups. The procedural KB extension described below
provides these assertions automatically.

Example 4.4. For the above example, pattern SENSOR_SETUP instantiates as

KBSENSOR_SETUP = {
SensorInput ≡ MapInput t CameraInput ,
MapInput v SceneObject ,
CameraInput v SceneObject ,
junction01 : MapInput, . . . , road03 : MapInput ,
egoroad : CameraInput, . . . , arrow02 : CameraInput ,
junction01 6= road01, . . . , road02 6= road03 ,
egoroad 6= arrow01, . . . , arrow01 6= arrow02

} .

The precise characterisation of the sensor setup serves as the basis for data asso-
ciation reasoning (see Section 4.3.4).

Automatic ABox Enhancement by Local UNA

Calling the MiniLisp function (ensure-local-UNA ’SceneObject
’SensorInput) automatically enhances a KB containing TSENSOR_SETUP

and ASENSOR_SETUP1 by ASENSOR_SETUP2 . In other words, pairwise
disjointness is asserted among all SceneObject individuals within each named
subclass of SensorInput. The function can be downloaded from the web page
given in the introductory chapter. Summarising the present and the last subsection,
the following algorithm provides for a procedural extension of a KB that ensures
local UNA for certain individual sets and named role closure for certain roles. The
choice of individual sets and roles depends on the implementation of Templates
KBSENSOR_SETUP and KBLOCALLY _CLOSED_WORLD.

Algorithm 2 Local UNA and named role closure
(full-reset)
(include-kb filename)
(evaluate(ensure-local-UNA ’SceneObject ’SensorInput))
(realize-ABox)
(evaluate(fire-closure-rules ’closedWorldRole

’closedWorldConcept))
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The user must assign a SensorInput class to each introduced individual. This is
enforced be supplementing the instantiated template by the following rule:

x1 : ⊥ ⇐ neg(x1 : SensorInput) .

The neg-operator hereby denotes negation-as-failure (cf. Sec. 3.4) and is provided
for trigger rules in the RACER system. It asserts the unsatisfiable concept ⊥ to
all those individuals, for which membership in SensorInput cannot be proven,
resulting in an inconsistent ABox.

4.2 Modelling of Scene Geometry

This section elaborates on a principled procedure of modelling a hypothesis space
of qualitative scene geometries for some particular class of scenes (such as inter-
sections).

The hypothesis space proposed here is composed of two main components: A
discrete set of geometries for each object, and a discrete set of spatial relations
between each pair of objects. Modelling scene geometry can be viewed as impos-
ing restrictions on the admissible object geometries and on the admissible spatial
relations.

Subsection 4.2.1 provides a design pattern for axiomatising object geometry mod-
els, and Subsection 4.2.2 describes how to axiomatise qualitative spatial relations.
Subsection 4.2.3 uses those spatial relations to set up a hypothesis space for rela-
tional scene geometry.

4.2.1 Object Geometry

Any object that potentially is physically present in the scene, has some geometric
shape. One possibility of modelling that shape is as a composition of instanti-
ated geometric primitives. A geometric primitive by itself is generic, i. e. it will
typically possess some quantitative parameters (e. g. pose, width). It should be
left to the domain modeler whether he or she wants to model/infer geometry for a
particular object class or not.

This shape model can be formalised using the following design pattern:
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Pattern OBJECT_GEOMETRY:

Effect: Define a geometric primitive as a discrete set of n mutually dis-
joint concepts called GP1, ..., GPn. Define a geometric entity
as a primitive or a composition of primitives.

Parameter: n Number of geometric primitives modeled
Template:

TOBJECT _GEOMETRY = {
GeometricPrimitive ≡ GP1 t GP2 t . . . t GPn ,
disjoint(GP1, GP2, . . . , GPn) ,
GeometricEntity ≡ GeometricPrimitive t

( ∃pp.GeometricPrimitive u
∀pp.GeometricPrimitive ) ,

GeometricEntity v SceneObject }

The role pp is an abbreviation for ”proper part”, and will be formally introduced
in Section 4.2.2 on spatial relations. GP is a shortcut for geometric primitive.
Any scene object concept C introduced in the KB, like Road or TrafficSign,
for which qualitative geometry shall be modelled or inferred, must inherit from
GeometricEntity:

C v GeometricEntity .

Without further constraints, this allows instances of C to be composed of arbitrary
combinations of geometric primitives. Using Pattern OBJECT_GEOMETRY,
qualitative shape constraints can be imposed by the domain modeler for a con-
cept C, by adding axioms like:

C v GeometricPrimitive // primitives only
C v GPi // one particular GP only ,

Quantitative parameters of a primitive can be modelled using so-called concrete
domain axioms. An example is: GPi v ∃hasWidth, where hasWidth has range
integer. Concrete domain axioms can also be used for expressing quantitative pa-
rameter ranges: GP2 v ∃hasWidth.≥200 u ∃hasWidth.<300. This contribution
does not make use of concrete domains and the reader is referred to, for example,
(Baader et al. 2003) for reference. As a general rule, it is recommended to only
include information that is needed for logical inference, for the sake of simplicity
of the ontology.
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For providing semantics to the concept names, each GPi needs to be grounded
(in logical terms) or mapped (in mathematical terms) to a subset of a quantitative
geometry model space. Only when such a grounding is available, a qualitative
ABox scene description can be mapped to a set of quantitative scene geometries.
The grounding of the GPi concepts in quantitative geometry models must be done
by the domain modeler in the ontology documentation.

4.2.2 Relative Object Pose

The relative pose between individuals is typically modelled using so-called spa-
tial calculi. A spatial calculus is a qualitative abstraction of a quantitative pa-
rameter space (e. g. relative angular position ∈ [0, 360)) by a finite set of re-
lations (e. g. northOf, southOf, eastOf, westOf). A multitude of spatial calculi
have been proposed in the literature, addressing different kinds of spatial infor-
mation (e. g. distance, orientation, topology, size) and different geometric entities
(e. g. points, line segments). For an overview, see (Cohn and Renz 2007) or (Wall-
grün et al. 2006). Spatial calculi have however only been axiomatised in First Or-
der Logic, intuitionistic logic, and modal logic, but not yet in Description Logic,
due to decidability reasons (Wessel 2001).

Formalisation of Base Relations

Subsequently, spatial calculi are formalised for the decidable DL SHIQ, which
necessarily comes at the cost of incomplete inference with respect to their intended
semantics. Therefore, an approximating design pattern will be provided, which
uses the named role closures introduced in Sec. 4.1.1. The formalisation is exem-
plified for the well-known Region Connection Calculus (RCC).

The RCC8 calculus describes the degree of overlap between two regions using
eight base relations. Figure 4.1 displays the semantics for each relation. For a for-
mal introduction the reader is referred to (Randell et al. 1992). The implementation
of the calculus in SHIQ comprises the following role inclusion axioms:

TRCC8 = {
// Any calculus is a subrole of spatialRelation
rcc8 v spatialRelation ,

// Declaration of calculus role names
dc v rcc8 ,

ec v rcc8 ,
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po v rcc8 ,

tpp v rcc8 ,

tppi v rcc8 ,

ntpp v rcc8 ,

ntppi v rcc8 ,

eq v rcc8 ,

// Declaration of role inverses
tppi ≡ tpp− ,

ntppi ≡ ntpp−

} .

With the exception of tpp and ntpp and their inverses, all roles are declared sym-
metric. The role eq is declared reflexive. If reflexive roles cannot be declared
in a DL dialect, it can be approximated with the simple rule: (x2, x1) : eq ⇐
(x1, x2) : eq . A slightly coarser calculus is yielded by replacing tpp and ntpp
and their inverses by pp (”proper part”) and its inverse ppi. This coarser calculus
will be referred to as rcc6 and be used in the remainder of this contribution.

Formalisation of Composition Tables

Spatial reasoning relies on algebraic operators on the relations, as introduced in
Section 3.2.1, the most important of which is the composition operator. If the
compositions of the base relations are computable, they can be stored in a compo-
sition table and reasoning about compositions becomes a matter of table look-ups.
The composition table states for each pair of base relations r and s, which base
relations ri can possibly result from their concatenation:

r ◦ s v r1 t . . . t rn .

Examples for such entries are

pp ◦ pp v pp // pp is transitive
eq ◦ ri v ri // eq is reflexive .

As SHIQ does not provide for role constructors, the entries of the composition
table cannot be axiomatised in this language4. By using trigger rules (cf. Sec. 3.4)

4At least transitivity could be declared for roles inSHIQ. However, qualitative number restrictions
are no longer permitted for such roles (cf. Sec. 3.2.1). Since this type of restriction plays an essential
role in the Computer Vision domain, declaration of transitivity should be omitted in this language.
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Figure 4.1: RCC8 calculus. Names and semantics of base relations.

instead, at least those entries not involving disjunctions5 can be formalised on an
ABox level:

(x1, x3) : pp ⇐ (x1, x2) : pp ∧ (x2, x3) : pp
(x1, x3) : po ⇐ (x1, x2) : eq ∧ (x2, x3) : po
. . . .

The axiomatisation of composition tables makes sense if not all spatial relations
between individuals are provided in the ABox by the user. In this case it makes
explicit the implicitly holding relations. They are also required if spatial relations
need to be checked for consistency. They are not required if the ABox is known to
be correct and complete with respect to the calculus.

Formalisation of JEPD semantics

The base relations of spatial calculi have a jointly exhaustive and pairwise dis-
joint (JEPD) semantics. This means that, for the case of RCC, each pair of
SceneObject individuals is related via exactly one RCC base relation. An ax-
iomatisation of JEPD would require role axioms of the form:

// Role covering axiom
rcc6 ≡ dc t ec t po t pp t ppi t eq

5In principle, disjunction in the rule consequence can be realised by using the joint superrole of all
disjuncts in the rule consequence. However, as role coverage and role disjointness are not expressible
in SHIQ, no further inferences could be drawn from such a rule.
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// Role disjointness axioms
dc v ¬ec u ¬po u ¬pp u ¬ppi u ¬eq
ec v . . .
. . . .

Unfortunately, SHIQ does not support role constructors. While the u - and t -
constructors could nevertheless be expressed by using role inclusion axioms, nei-
ther ≡ (role covering) nor ¬ (role complement) are expressible. Rules cannot be
used for their approximation, as the required negation is not permitted in the rule
consequence.

Example 4.5. The lacking expressiveness for role disjointness leads to incom-
plete reasoning with respect to the intended calculus semantics under some cir-
cumstances. Given the TBox TRCC6 as defined above and the ABox A =
{(road02, lane01) : dc}, the reasoner will not be able to infer that the two indi-
viduals must not be additionally, e. g., pp-related. This will lead to counterintu-
itive behaviour of the reasoner, for example when using named closed concepts
(cf. Sec. 4.1.1) and role complements in a definition:

KB = TRCC6 ∪ {
OneWayRoadNorth ≡ Road u ¬∃pp.OneWayLaneSouth ,
OneWayLaneSouth v ClosedWorldConcept ,
road02 : Road ,
lane01 : OneWayLaneSouth ,
(road02, lane01) : dc }

According to this KB, road02 does not possess a OneWayLaneSouth, as the
only existing lane of that type is disconnected (dc) to it. Therefore one would
expect the reasoner to infer that it is a OneWayRoadNorth: KB |= road02 :
OneWayRoadNorth. However, it cannot be deduced that the lane must not ad-
ditionally be a proper part (pp) of that road: KB 2 (road02, lane01) : ¬pp.
Therefore this relevant conclusion cannot be drawn.

An axiomatisation of role disjointness is therefore clearly required. An approxi-
mation using the procedural extension of the KB will be sketched in the following.

Approximation to Role Disjointness

An ABox A will be denoted R-complete with respect to a spatial calculus R, if,
for each pair of explicitly named SceneObject individuals (indi, indj), exactly
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one role assertion (indi, indj) : r is contained in A, with r being one of R’s base
relations. For m named individuals, this results in m2 role assertions per calcu-
lus in A. In such an ABox, the spatial arrangement of all named individuals is
uniquely specified with respect to R. On the Computer Vision side, this amounts
to assuming that the relative spatial relations of the detected scene objects (not
of all objects) can be computed by image processing, which is straightforward if
the object geometry is approximately known (for many calculi a bounding box
is enough). If the inverse of each non-symmetric and non-reflexive base relation
is provided in the TBox (as was done for RCC6 here), the number of required
explicit assertions can be slightly reduced without loosing completeness. One ex-
plicit assertion per pair of different individual names, permutations excluded, then
suffices, resulting in a total of

(
m
2

)
assertions.

For approximating role disjointness as sketched below, an R-complete
ABox is required with respect to ClosedWorldConcept individuals: Each
ClosedWorldConcept individual must be contained in exactly one R role
assertion for each named SceneObject individual. The following rule design
pattern tests for R-completeness of an ABox:

Pattern ABOX_CHECK:

Effect: Tests the ClosedWorldIndividuals of an ABox for complete-
ness with respect to a spatial calculus. Yields inconsistent
ABox if incomplete.

Parameter: r calculus name (e.g. rcc6)
Template:

x2 : ⊥ ⇐ x1 : ClosedWorldConcept ∧ neg((x1, x2) : r)

The ABox from Example 4.5 is TRCC6-complete6, as with one
ClosedWorldConcept individual (lane01) and one other SceneObject in-
dividual (road02), it requires only one RCC6 role assertion.

For an ABox which is complete with respect to closed world individuals and all
spatial calculi, the semantics of role disjointness can be approximated by simply
closing all spatial relations:

6The inclusion axioms OneWayLaneSouth vSceneObject and Road vSceneObject were
omitted there for brevity.
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Pattern SPATIAL_CLOSURE:

Effect: Approximate disjointness semantics for spatial relations,
by asserting partial closure for all spatial base relations.

Parameters: r1, . . . , rn Complete set of implemented spatial calculi
Requires: Pattern LOCALLY_CLOSED_WORLD
Template:

TSPATIAL_CLOSURE = {
spatialRelation v closedWorldRole ,
r1 v spatialRelation ,
. . . ,
rn v spatialRelation }

Using this simple template, Pattern LOCALLY_CLOSED_WORLD (Sec. 4.1.1)
closes all spatial relations with respect to ClosedWorldIndividuals. This is done
automatically with the procedural extension provided for this pattern. The partial
closure leads to an approximation to disjointness semantics for all spatial base
relations as is illustrated in the following example.

Example 4.6. Let KB now denote the KB from Example 4.5 enhanced by
TRCC6 ∪ TSPATIAL_CLOSURE , the latter instantiated for rcc6. Its procedural
extension contains the following additional assertions:

road02 : ∃≤1dc.ClosedWorldConcept
road02 : ∃≤0ec.ClosedWorldConcept
road02 : ∃≤0po.ClosedWorldConcept
road02 : ∃≤0pp.ClosedWorldConcept
road02 : ∃≤0ppi.ClosedWorldConcept
road02 : ∃≤0eq.ClosedWorldConcept .

This now leads to the desired result: KB |= road02 : OneWayRoadNorth, as
now KB |= (road02, lane01) : ¬pp.

4.2.3 Relational Scene Geometry

Modelling relational scene geometry can be viewed as imposing spatial restrictions
on the hypothesis space of admissible relations between scene objects. An ABox
violating any imposed restriction must be classified inconsistent by the reasoner.
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Subsequently, it will be shown how a scene geometry model for a particular class
of scenes (such as intersections) can be set up. First, several types of spatial re-
strictions are introduced. It is then shown how these restrictions can be specified
in a graphical notation. Finally, this notation is translated into a set of TBox ax-
ioms. This set of axioms is named TSCENE_GEOMETRY . It requires the model of
object geometries, TOBJECT _GEOMETRY (Section 4.2.1), and the spatial calculi
used, for example TRCC6 (Section 4.2.2).

The set of ABoxes that are consistent with respect to TSCENE_GEOMETRY , that
is the set of its logical models, forms the hypothesis space7 of qualitative scene ge-
ometries. As a consequence of the OWA, if TSCENE_GEOMETRY = {}, arbitrary
spatialRelations may hold between any pair of GeometricPrimitive individuals.
The more axioms are added, the smaller gets the size of the hypothesis space.

Types of Restrictions

The proposed geometry model makes use of three types of spatial restrictions.
Given some spatial relation r, these are:

Domain restrictions: Restrict the set of concepts, whose instances are allowed to
have an r-relation, to the subset {Crdom,1, . . . , Crdom,n}.

Filler restrictions: For each concept Crdom,i in the domain of r, restrict
the set of allowed fillers to the subset {Crfill,i,1, . . . , Crfill,i,m}. The tuples
(Crdom,i, Crfill,i,j) are called r-domain/range pairs.

Cardinality restrictions: For each r-domain/range pair (Crdom,i, Crfill,i,j), re-
strict the number of allowed fillers to the interval [minr,i,j ,maxr,i,j ].

A geometry model for a given class of scenes (such as intersections) is specified
by providing each of these restrictions for each spatialRelation subrole.

The modelling level of detail for the domains and ranges may vary: They can be
specified on a purely geometric level using the GPi concepts, or on the semantic
level using concepts such as Road or Lane, or by a combination of both.

Graphical Specification of Geometry Model

Specifying a qualitative geometry model graphically facilitates understanding
and integration with other Scene Understanding KB’s. In the following, a

7Note that the elements of this hypothesis space are not disjoint: Hypotheses may be subsumed by
other, more general ones, contrasting (Schröder 1999)’s requirement of maximally specific and thus
disjoint models.
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graphical notation will be provided through which the restrictions introduced
above can be specified graphically. Its translation into DL axioms to form
TSCENE_GEOMETRY will be given afterwards.

To the best of the author’s knowledge no standardised graphical notation language
exists yet for DL8. Fig. 4.2 proposes a graphical notation based on the Unified
Modelling Languages (UML), a widespread and standardised visual specification
language in object-oriented programming.

r ,idom

r min .. maxr,i,j r,i,j

CC r ,i,jfill

Figure 4.2: Proposed graphical notation for specifying a qualitative scene ge-
ometry model. Arrows represent roles and relate concepts. An r-labelled arrow is
present between two concepts iff the two concepts form an r-domain/range pair as
specified above. The corresponding cardinality constraint is then written beneath
the arrow head. An omitted cardinality constraint is read as 0..∗. For symmetric
and inverse roles the arrow has a head at both ends. An example of its use is given
in Figure 4.3.

A geometry model is specified completely in this notation, if the set of depicted
concepts covers the SceneObject concept, and if all allowed spatialRelation-
domain/range pairs are specified by arrows according to Figure 4.2.

Transitivity and/or symmetry of a role must be made explicit in the graphical
specification. For example, if r is transitive, and the model requires exactly one
r-domain/range pair (C1, C2), and exactly one r-domain/range pair (C2, C3), this
implies the presence of at least one r-domain/range pair (C1, C3). Thus the graph-
ical model requires an arrow with a minimum cardinality equal to one between C1

and C2, between C2 and C3, and between C1 and C3.

Translation of Specification into DL

For any spatial relation r, the graphical specification is unambiguously translated
into DL, with the semantics of the restrictions as defined above, as follows:

8(Calvanese et al. 1998) proposes a representation based on Entity-Relationship models.
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Pattern SCENE_GEOMETRY:

Effect: Translate geometry model for a given role r from the graphical
notation specified in Fig. 4.2 to a set of DL axioms.

Parameters: r Atomic role
Crdom,1, . . . , Crdom,n Set of allowed domains for r
Crfill,1,1, . . . , Crfill,n,m Set of allowed fillers for r
min/maxr,1,1, . . . , Min/Max no restriction for

min/maxr,n,m each r-domain/range pair
Template:

TSCENE_GEOMETRY = {
// Domain constraint
¬(Crdom,1 t . . .t Crdom,n) v ∀r.⊥ ,

// Tailored range constraints
Crdom,1 v ∀r. (Crfill,1,1 t . . . t Crfill,1,m) ,

. . .
Crdom,n v ∀r. (Crfill,n,1 t . . . t Crfill,n,m) ,

// Cardinality constraints
Crdom,1 v ∃≥minr,1,1 r. Crfill,1,1 u

∃≤maxr,1,1 r. Crfill,1,1 ,

. . .
Crdom,1 v ∃≥minr,1,m r. Crfill,1,m u

∃≤maxr,1,m
r. Crfill,1,m ,

· · ·
Crdom,n v ∃≥minr,n,1 r. Crfill,n,1 u

∃≤maxr,n,1 r. Crfill,n,1 ,

. . .
Crdom,n v ∃≥minr,n,m r. Crfill,n,m u

∃≤maxr,n,mr. Crfill,n,m

}

This template must be instantiated for all descendants of the spatialRelation role.

Example 4.7. Fig. 4.3 depicts a geometry model from the traffic domain using
only the RCC6-calculus. It models a Road as having at least 1 Lane and 2
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Figure 4.3: Example of a graphical specification of a geometry model for the
traffic domain using the RCC6 calculus only.

Dividers as proper parts (pp), and Lanes and Dividers as being externally con-
nected (ec) with the given cardinalities. The Lanes and Dividers are furthermore
part of (ppi) exactly one Road. The model also states that besides ”disconnected”
(dc) no further relations must hold. For better readability, a role which may hold
between arbitrary individuals, like dc here, can be left out from the graphical spec-
ification.

With respect to the pp-role, Pattern SCENE_GEOMETRY translates the graphical
specification into DL as follows:

TSCENE_GEOMETRY v {
// Domain constraint
¬Road v ∀pp.⊥ ,

// Tailored range constraints
Road v ∀pp. (Lane t Divider),

// Cardinality constraint
Road v ∃≥1pp. Lane ,

Road v ∃≥2pp. Divider
} .

The remaining five rcc6 roles translate analogously.

A particular drawback of modelling geometry with a DL language such as SHIQ
is that role chains and role-value-maps are not supported, and therefore relations
between three or more individuals cannot be constrained (cf. Sec. 3.4). For the
given example, it is, e. g., not axiomatisable that a Divider and a Lane that are
externally connected (ec) must be a proper part of (ppi) the same Road. A partial
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remedy for this lacking expressiveness, that is used in this contribution, is to close
concepts and roles (cf. Sec.4.2.2): If the correct and complete set of dividers in
ec-relation to a given lane is provided, along with the correct and complete set of
ppi-relations with respect to the containing Road, and if completeness of the set
of ec- and ppi-fillers is asserted, this implies that no further divider must be in
ec-relation with that lane. This explicitly excludes all dividers from other roads.

4.3 Formalisation of Scene Understanding Tasks

4.3.1 Object Detection: KB Realization

Object detection refers to the discovery of a new scene object through object fea-
tures detected by a sensor and/or through logical inference.

Example 4.8. As a simple example for object detection through inference, con-
sider the axiom

ArrowMarking v ∃isPartOf.Lane .

It implies the existence of a lane whenever an arrow marking is detected. Speaking
in Computer Vision terms, an arrow is a sufficient feature or vision cue of lane
objects.

On the DL side, a detected object requires the automatic creation of a new indi-
vidual. Although increasing the number of individuals is possible due to the open
domain paradigm (cf. Sec. 4.1.1), the creation of new individuals is not covered
by classical DL inference services. The usage of non-classical inference services
is outside the scope of this contribution, but promising formalisms for follow-up
work are discussed in the outlook section.

An alternative option, which is readily available with existing DL technology, is
to preintroduce all hypothetically possible individuals. Given that a maximum of
n individuals of class are potentially detectable in the scene, the corresponding
design pattern reads as:
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Pattern OBJECT_DETECTION:

Effect: Introduce n object hypothesis that are to be verified (i.e. detec-
ted) or falsified, and constrain their potential types. Other
parts of the KB can now classify them into verified or falsified.

Parameters: n Maximum number of objects to be detected
C1, . . . , Ck Types of objects to be detected (e.g. Car)

Template:

TOBJECT _DETECTION = {
ObjectHypothesis ≡ Verified t Falsified ,
disjoint(Verified, Falsified) ,
ObjectHypothesis v ClosedWorldConcept ,
Verified ≡ C1 t ... t Ck }

AOBJECT _DETECTION = {
indC1

: ObjectHypothesis ,
. . . ,
indCn

: ObjectHypothesis } .

The first two axioms introduce an object hypothesis as a concept which can either
be verified or falsified, but not both. A falsified hypothesis means that the object
is provably not present in the scene. The third axiom builds on the introduced
closures from Section 4.1.1 and axiomatises the ”promise” that all hypothetical
individuals will be explicitly introduced. The fourth axiom states which object
types Ci are to be verified or falsified by the reasoner. An individual that is as-
signed an objec type Ci is automatically verified. In the ABox, n new individuals
indC1

, . . . , indCn
are introduced as instances of ObjectHypothesis.

With this pattern, the task of object detection reduces to one of object classification
(cf. next Subsection): Each individual indCi

can be classified as either C, thereby
implying Verified, or as Falsified in the course of reasoning. Individuals will
remain unclassified if no sufficient classification information is available.

To prevent the number of individuals from blowing up, this pattern should be ap-
plied with care.

4.3.2 Object Classification: KB Realization

In Scene Interpretation, object classification refers to the task of assigning to a
detected object one of n discrete labels, so called classes. Speaking in DL terms,
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an individual ind of class C is to be specialised into one of C’s subclasses. The
corresponding pattern reads as:

Pattern OBJECT_CLASSIFICATION:

Effect: Introduce a discrete set of subclasses (”labels”) for a class C
(”classification task”). Assign individuals to be classified
to class C. Other parts of the KB can now specialise
(”classify”) into subclasses.

Parameters: C Super class to be specialised (e.g. Vehicle)
Label1 t . . .t Class labels (e.g. Car, Motorcycle,...)
Labeln

ind1, . . . , indm Names of individuals to be classified
with respect to C

Template:

TOBJECT _CLASSIFICATION = {
C ≡ Label1 t . . . t Labeln // coverage of superclass ,
// or
C w Label1 t . . . t Labeln // no coverage of superclass ,
disjoint(Label1, . . . , Labeln) // optional } .

AOBJECT _CLASSIFICATION = {
ind1 : C ,
. . . ,
indm : C } .

If individuals shall be allowed to not belong to any of the Labeli subclasses, the
second axiom must be chosen, otherwise the first. The disjointness axiom must be
added if membership to more than one subclass shall be disallowed. Each Labeli
class can in turn be specialised into a set of subclasses, to define a further, more
specialised classification task. This way, hierarchies of classes are built, so called
taxonomies (see also Section 3.3.1).

Using this pattern, the standard inference task of ABox realization as described in
Section 3.3.2.3 automatically classifies any individual of class C. In contrast to
common non-logic classifiers, as standard DL inference services perform deduc-
tive reasoning, an individual is classified only if membership to a subclass can be
proven (even if the equality axiom in the template is used).

A particular strength of logic-based classification is its support for multiple inher-
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itance, a term borrowed from object-oriented programming which denotes that an
individual is allowed to be an instance of several superclasses: ind : C1u . . .u Ck.
ABox realization therefore solves k · m classification tasks at once, k being the
number of single classification tasks and m being the number of individuals. Be-
cause of the mutual dependencies between the single classification tasks in rela-
tional domains such as Scene Interpretation (e.g. car detection strongly influences
lane detection, and vice versa), a joint classifier can tremendously reduce the hy-
pothesis space of each such task, an essential quality in the high-dimensional
spaces typical for Scene Interpretation (cf. Chapter 1). This is called collective
classification in the relational classification literature (Taskar et al. 2002).

4.3.3 Link Prediction: Entailment

Link prediction refers to the task of predicting (a) the existence and (b) the types
of relationships between individuals in a relational domain (e. g. (Taskar et al.
2004)). Link prediction has mainly been studied in the context of social network
analysis and mining of web pages. However, together with collective classifica-
tion, it is likely to have great impact within the next decade’s Computer Vision
research, representing the transition from single object recognition to relational
Scene Interpretation.

Speaking in DL terms, the types of relationships correspond to the respective child
roles of a given role, and thus (b) equals the specialisation of a holding relation r
between two individuals into some child role. In principle, an analogy to Pattern
OBJECT_CLASSIFICATION adapted to roles could be applied:

T = {
r ≡ childR1 t . . . t childRn

// or
r w childR1 t . . . t childRn ,
disjoint(childR1, . . . , childRn) // optional

} .

Collective role classification could then be performed via ABox entailment
(cf. Sec. 3.3.2.3), i. e. asking whether KB |= (indi, indj) : childRk for all individ-
ual pairs (indi, indj). The corresponding tailored RACERPRO command reads as:
(related-individuals childRk). However, as SHIQ neither knows
role disjointness nor role covering axioms, this template is not axiomatisable. An
alternative – and less elegant – way of coding is via trigger rules. Care has to be
taken here, too, as the law of contraposition does not hold for trigger rules. In
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summary, link prediction exploiting all available information is not axiomatisable
in this DL dialect.

4.3.4 Data Association: Unification

The term data association has been coined in the context of data fusion in a mul-
tisensor and multitarget detection and tracking scenario. Originally, it denotes
the assignment of new sensor measurements to already existing objects or object
tracks (Bar-Shalom 1987). In a broader sense, it also denotes the identification of
a set of object measurements as referring to one and the same scene object.

In formal logic, data association requires the ability of inferring semantic equality
between two differently named individuals: KB |= indi = indj . This reasoning
service is known as entity resolution, unification reasoning, or simply identifica-
tion, and is a classic DL reasoning task. Obviously, unification requires the unique
name assumption to be abandoned.

An implementation of unification reasoning can build on the distributed sensors
scenario introduced in Section 4.1.2. It merely requires the procedural KB exten-
sion as described in Algorithm 2, which provides for local disjointness axioms and
for named role closure. The provided Example 4.3 already exemplifies unification
reasoning. In RACERPRO, unification reasoning is performed using the query:

(individual-synonyms indi) .

All those individuals will be returned for which semantic equality with indi can
be unambiguously inferred, and remain unidentified otherwise. Just as for object
classification, this poses a key difference to non-DL association techniques, which
usually prefer uncertain association over no association.

4.4 Summary

This section has elaborated on the feasibility of mapping important Scene Inter-
pretation characteristics into the DL dialect SHIQ. For the cases in which no
straightforward correspondence existed, KB engineering guidelines in the form of
DL design patterns have been provided.

It has been shown that an unknown number of objects corresponds to DL’s open
domain assumption, and that partiality of sensor data corresponds to DL’s open
world assumption. Local completeness of data, on the other hand, has been shown
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to be not axiomatisable. An approximation has been provided on the assertional
level. It has furthermore been argued that a redundant multi-sensor setting can be
realised when abandoning the unique name assumption, which can be switched on
and off in modern DL implementations. A design pattern has been provided, which
formally characterises the properties of four different classes of sensors, namely
complementary vs. redundant sensors delivering data on a feature- vs. object-level.

A hypothesis space of qualitative scene geometries has been proposed. It is com-
posed of two main components: A discrete set of admissible geometries for each
object, and a discrete set of admissible spatial relations between each pair of ob-
jects. Modelling scene geometry can be viewed as imposing restrictions on the
admissible object geometries and on the admissible spatial relations. For mod-
elling a hypothesis space for a particular class of scenes, a visual notation has been
proposed, along with its translation to a DL axiom set.

The axiomatisation of spatial calculi has turned out unsatisfactory, as it requires
role constructors –namely role disjointness and role covering– which are not avail-
able in this DL dialect. However, if the spatial relations between detected objects
are given by the Computer Vision system, role disjointness can be approximated.
A corresponding design pattern has been provided.

Four crucial Scene Interpretation tasks have been examined with respect to their
solvability by classic DL reasoning. These were namely object detection, object
classification, link prediction, and data association. When confined to classical
DL inference, object detection can only be tackled by preintroducing the maxi-
mum possible number of individuals present in the scene. A corresponding design
pattern has been provided. Collective object classification is readily available in
DL via the reasoning service of ABox realization. The association of data acquired
by multiple, redundant sensors is also readily solvable in DL through identification
reasoning. The task of link prediction, by contrast, cannot be performed in dialects
without role constructors.

The ultimate reasoning service for Scene Interpretation would be the automatic
construction of the set of all scene hypotheses, that is the set of all possible logical
models of the KB. To perform this task, the realm of monotonic, deductive reason-
ing would have to be abandoned. A discussion about promising non-monotonic
KR formalisms can be found in the outlook of this thesis.

The DL knowledge engineering approaches described in this chapter form the ba-
sis of the Scene Interpretation system for Intersection Understanding, which will
be presented in the following two chapters.
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5 RONNY: The Road Network
Ontology

This chapter introduces the Road Network Ontology (RONNY). It is a DL TBox
implemented in the dialect SHIQ, modelling the qualitative geometry and build-
ing regulations of roads and their intersections for the purpose of Scene Under-
standing. Section 5.1 introduces the RONNY vocabulary, that is the set of its con-
cept and relation names. This vocabulary is used for setting up a geometry model
in Section 5.2, and for modelling a set of road building regulations for roads and
their intersections in Section 5.3. The KB modelling techniques introduced in
Chapter 4 will be extensively applied throughout this chapter.

The modelling goal is a hypothesis space of intersection geometries and semantics
that has a large expressiveness (a wide variety of complex intersections can be
represented), while at the same time it maintains a feasible size (through imposing
restrictive high-level constraints).

Creating a RONNY ABox from sensor data, and applying DL reasoning to solve
several Scene Understanding tasks, will be described and evaluated in Chapter 6.

5.1 Symbol Grounding

The most elementary concepts and roles present in a DLKB are called primitives.
Their counterparts are defineables, which are defined (using the≡-constructor) out
of other KB concepts and roles. The semantics of a primitive must be provided by
documentation relating it to some real world entity, while the semantics of a de-
fineable is given by its definition. Providing semantics to a symbolic representation
is called symbol grounding.

The following Sections 5.1.1–5.1.4 axiomatise and ground RONNY’s primitive
concepts and relations. For easy readability, the axiomatisation is provided graph-
ically in the form of taxonomies1. The primitives are grouped into the set of scene
object concepts, the set of qualitative object geometry concepts, the set of spa-
tial relations, and the set of functional concepts and functional relations. Finally,

1A mapping of a taxonomy into DL axioms is provided in Pattern OBJECT_CLASSIFICATION
(Section 4.3.2).
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Section 5.1.5 derives a set of defineables from these primitives, which will prove
useful for compactly formalising the road building regulations later on.

5.1.1 Taxonomy of SceneObjects

The following figure depicts RONNY’s taxonomy of SceneObject primitives2:

RoadTransition

Road

Lane

LaneTransition
SceneObject

Freeway

CountryRoad

UrbanRoad

DividerMarking

PhysicalDivider

InvisibleDivider

Single

AbstractRoad

AbstractLane

Divider

Junction Double

12cm
25cm

Dashed
Solid

MotorVehLane

BicycleLane

EmergencyLane

Figure 5.1: Taxonomy of SceneObject Concept Primitives. Up to the 3rd
hierarchy layer, all concepts are mutually disjoint and jointly cover the superclass.
Disjointness and covering information for 4th layer concepts is given in the text.

The primitives are grounded as follows:

SceneObject A physically existent object that is potentially present in
the considered scenes and that is relevant to the particu-
lar Scene Understanding task. The qualitative geometry
of a SceneObject can be modeled/inferred (cf. Pattern
OBJECT_GEOMETRY (Section 4.2.1)).

Abstract* A term borrowed from object oriented programming: A
concept with this prefix requires its individuals to be ex-
plicitly specialised into one of its children.

AbstractLane A scene object on which driving in longitudinal direction
is permitted according to road traffic regulations. It is lat-
erally aligned with two Dividers.

2Concepts which are covered by their children are still referred to as primitives here, although
formally they are exhaustively defined by their children.
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AbstractRoad An aggregate for a set of laterally aligned and alternating
Lanes and Dividers.

Road An AbstractRoad which is not part of a Junction.
It can be either a Freeway (German: ”Autobahn”),
a CountryRoad (German: ”Landstraße”), or an
UrbanRoad. These types are disjoint and jointly cover
the Road class. It can be longitudinally aligned on one or
both ends to RoadTransitions on a Junction.

Lane An AbstractLane which is not part of a Junction. It can
be designated for bicycles, motor vehicles, or be an emer-
gency lane. The latter is disjoint from the former two,
while the former two are not disjoint from each other (as
many UrbanRoads permit cars and bicycles on a single
lane). The three types cover the Lane class. Bus lanes
have not yet been modelled.

*Transition A set of *Transitions constitutes a Junction. *Transitions
longitudinally connect pairs of Roads and pairs of Lanes.
The existence of a *Transition between two Roads or two
Lanes indicates that driving from one to the other is per-
mitted according to road traffic regulations without per-
forming a lane change, This is subsequently referred to as
a driveable path. Note that, contrary to general usage of
the term, a driveable path must not require a lane change.

RoadTransition An AbstractRoad which is part of a Junction. It is lon-
gitudinally aligned with two Roads.

LaneTransition An AbstractLane which is part of a Junction. It is lon-
gitudinally aligned with two Lanes.

Junction An aggregate for a set of *Transitions, which may geo-
metrically overlap. Allows traffic participants to transit
between two Roads. Already a single RoadTransition
between only two Roads qualifies as a Junction.

Divider Visually separates two Lanes within one Road. It can
either be of type marking, physical (like a road curb or a
guardrail), or be omitted. Divider markings can be either
a single or a double line, be either 12cm or 25cm wide,
and be either dashed or solid. Each pair is disjoint and
covers the DividerMarking class.

The informal expressions used for denoting spatial relations (like ”laterally
aligned”) will be formally introduced and grounded in Section 5.1.3.
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5.1.2 Taxonomy of GeometricPrimitives

According to Pattern OBJECT_GEOMETRY (Section 4.2.1), a qualitative object
geometry model requires introducing a finite set of GeometricPrimitive concepts,
and grounding them in quantitative geometry models.

RONNY introduces the three primitives GP1, GP2 and GP3 depicted in 5.2(a).
Their symbol grounding is provided graphically by Figure 5.2(b). The following

GeometricPrimitive GP2

GP1

GP3

GeometricEntity

(a)

GP1 GP2 GP3

ws

ps

pe pe

we

a pm
x

y

x

y

x

y

wewe

ws

ps ps

(b)

Figure 5.2: Geometric Primitives. Grounding of GeometricPrimitive con-
cepts (a) in geometry models (b). The ps, pe, pm are 2-element vectors given in
earth-fixed cartesian coordinates. Start and end widths ws[m], we[m] are positive
scalars, the arc length α of GP3 is ∈ [ 14π, π] and its radius r = ||ps − pm|| is
∈ [3m, 30m] (empirically chosen). The sketch of GP1 and GP2 is simplified in
that their spine, i.e. the curve connecting ps and pe, is a Hermite spline instead
of a straight line segment. Therefore, they possess the additional parameters ts
and te (not depicted here), denoting the orientation of the tangents at ps and pe,
respectively.

remarks concerning coordinate systems are required in addition: RONNY assumes
a locally flat earth, and all coordinates are given as two-dimensional projections
onto this ground plane. Two types of coordinate systems are applied. The quanti-
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tative parameters of the GPi are given with respect to a geocentric (termed earth-
fixed or absolute in engineering literature) cartesian system using UTM coordi-
nates. UTM is a global cartesian system, its origin being the central meridian,
using units of metres, that is widely used for georeferencing maps. The second
type are egocentric (termed object-centred or local in engineering literature) carte-
sian systems inherent to each individual of class GeometricPrimitive. A ground-
ing of a GPi must therefore include the position of its local coordinate system
(cf. Fig. 5.2). Spatial relations among GeometricPrimitives are always given
with respect to the egocentric system (note that this implies that a relation such
as eastOf is not transitive). For simplicity, it is currently assumed that primitives,
which are not part of a junction, are grounded such that their y-axis points toward
the junction. For ABoxes containing only one junction, this allows to omit axioms
dealing with qualitative coordinate transformation.

This thesis focuses on estimating qualitative intersection geometry (such as: ”Is
lane transition lt of geometric shape GP1, GP2 or GP3?”). Estimating the quan-
titative parameters of the GPi using Computer Vision techniques is beyond its
scope. (Hummel et al. 2007), (Yang 2006), and (Pink and Hummel 2008) (the
latter in the context of vehicle localisation) provide reasonable start estimates for
these parameters using a similar geometry model. The parameters are set based on
the given coordinates and tangents of ps and pe for those GPi of class Road that
are provided by a commercial digital map, and a deterministic set of equations for
derivation of the other parameters.

5.1.3 Taxonomy of spatialRelations

RONNY uses a set of spatial descriptors3 to describe the relative position between
GeometricPrimitives. Three basic descriptors are used, namely the degree of
overlap, the relative position and the relative orientation between two individuals.
The former is based on the RCC6 calculus (cf. Section 4.2.2), the latter two are
formalised below. Based on these descriptors and role forming constructors, three
composed descriptors describing spatial alignedness, neighbourhood and relative
heading4 of primitives will be defined afterwards.

3The term spatial descriptor is used in this chapter instead of the term spatial calculus that was
introduced in Section 4.2.2. A spatial calculus requires the definition of a set of operations on its base
relations (cf. e.g. (Wallgrün et al. 2006)), not all of which are provided for the relations used here.

4Initially both, basic descriptors and composed descriptors, had been implemented in RONNY, and
the latter – due to lack of role forming constructors in SHIQ – were derived using trigger rules. This
approach was abandoned due to reasons of computational complexity and incompleteness of inference
(role disjointness and role coverage cannot be axiomatised this way (cf. Sec. 4.2.2)). Only the com-
posed descriptors became actual part of the implementation. The basic descriptors are used in this
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GP1 GP2 GP3

nn

ss

eeww

x

y

c

nenw

sw se

x

y

nn

ss

ee

ww

ee

x

y

c

sw se

ne

nw

nn

ss

eeww c

nenw

sw se

Figure 5.3: Relative Position. Definition of the cardinal direction ”bins” as
introduced by the relPosition-descriptor for the geometric primitives GP1-GP3.

Relative Position

The relative position between two individuals is modelled using relative cardinal
directions:

TRelPosition = {
relPosition v spatialRelation
nn v relPosition // ”north of” ,
ne v relPosition // ”northeast of” ,
. . .
sw v relPosition // ”southwest of” ,
ww v relPosition // ”west of” ,
c v relPosition // ”centred on” } ,

given relative to the element’s egocentric coordinate system. Consequently,
no base relation is symmetric, transitive or has an inverse. The reflexive role
c (”centred on”) is provided merely to ensure the descriptors’ JEPD property
(cf. Sec. 4.2.2).
In addition, a coarser set of four cardinal directions is defined from the above roles.
Note that these roles are not disjoint any more:

nn t ne t nw v n
ss t se t sw v s
ne t ee t se v e
nw t ww t sw v w .

documentation for grounding the composed descriptors by formal definition.
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Each GeometricPrimitive needs to provide a definition for the cardinal direction
”bins” in the Cartesian Plane. For GP1-GP3 these definitions are given geomet-
rically by Figure 5.3. Given a pair of GeometricPrimitives (indref , indfiller),
the relPosition-descendant is determined by the position of indfiller’s centre of
mass relative to indref . For individuals composed of several GPi (i. e. those
that are a GeometricEntity but not a GeometricPrimitive anymore), the rela-
tive pose is defined by evaluating the above measure for that pair of contained
GeometricPrimitives with the closest distance.

Relative Orientation

The qualitative relative orientation between two individuals is modelled using the
following symmetric base relations:

TRelOrientation = {
relOrientation v spatialRelation
ll v relOrientation // ”parallel” ,
L v relOrientation // ”perpendicular” ,
X v relOrientation // ”oblique” , } .

The base relations are grounded using a measure of orientation difference β be-
tween the primitives’ spines. Each GeometricPrimitive needs to provide a defini-
tion of its spine. Those definitions are provided in Figure 5.4. Note that according
to the text below Figure 5.2(b), the spines of GP1 and GP2 are, in fact, Hermite
splines. A simple measure of orientation difference between two curves is the av-
erage orientation difference between their start tangents ts and their end tangents
te (cf. Fig. 5.2(b)). Special treatment is required, however, for comparing a GP3
with a GP1 or GP2. These primitives should be in a II-relation when either their
start or their end orientations are equal. In this case, the orientation similarity
is given by the orientation difference between the two start tangents, iff the start
points have closer Euclidean distance than the end points, and between the two
end tangents otherwise. All base relations are consequently symmetric, but not
transitive.

Given the orientation difference β the following grounding was used:

(indi, indj) :





ll , β ∈ [0◦, 15◦) ∨ (165◦, 180◦)
L , β ∈ (75◦, 105◦)
X , otherwise .

For individuals that are composed of several GeometricPrimitives, the orienta-
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GP1 GP2 GP3

Figure 5.4: Relative Orientation. Definition of the spines of the geometric
primitives GP1-GP3 as required by the relOrientation-descriptor.

tion difference is defined by evaluating the above measure for that pair of contained
GeometricPrimitives with the closest distance.

Spatial Alignedness

The basic descriptors TRCC6, TRelPosition and TRelOrientation are used to ground
several composed descriptors by formal definition. Since role forming con-
structors are not present in SHIQ, these definitions are not part of the imple-
mentation. The composed descriptors describe several spatial arrangements of
GeometricPrimitives that are particularly relevant to the intersection domain. The
first descriptor is termed TAlignedness and is defined as follows:

TAlignedness = {
alignedRelation v spatialRelation ,

alignedRelation ≡ northAlignedWith t southAlignedWith t
eastAlignedWith t westAlignedWith t
alignedWithPart t alignedPartOf t
notAligned ,

northAlignedWith ≡ alignedRelation u nn u ec u ll ,

southAlignedWith ≡ alignedRelation u ss u ec u ll ,

eastAlignedWith ≡ alignedRelation u ee u ec u ll ,

westAlignedWith ≡ alignedRelation u ww u ec u ll ,

alignedWithPart ≡ alignedRelation u (eq t pp) u ll ,
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alignedPartOf ≡ alignedWithPart− ,

notAligned ≡ alignedRelation u
¬northAlignedWith u
¬southAlignedWith u
¬westAlignedWith u
¬eastAlignedWith u
¬alignedWithPart u
¬alignedPartOf } .

Only notAligned is symmetric, and alignedWithPart is reflexive5. The following
two roles are defined in addition:

lonAligned ≡ northAlignedWith t southAlignedWith
latAligned ≡ eastAlignedWith t westAlignedWith ,

lon and lat being shortcuts for longitudinal and lateral. In contrast to their defin-
ing base relations, these relations are symmetric.

Recall from the symbol grounding for SceneObjects (Sec. 5.1.1), that a

triple of individuals Road
lonAligned−−−−−−→ RoadTransition

lonAligned−−−−−−→Road, as well as

Lane
lonAligned−−−−−−→LaneTransition

lonAligned−−−−−−→ Lane indicates a driveable path from
one Road|Lane to the other.

Spatial Neighbourhood

A particularity of the intersection domain is that the types of aligned
SceneObjects frequently alternates, both in lateral (e.g. lane, divider, lane, di-
vider, . . . ) and longitudinal (road, road transition, road, road transition, . . . ) di-
rection. The second composed descriptor TNeighbourhood describes such pairs of
elements of identical type, which are not spatially connected to each other, but are
next but one elements in a chain of {lon | lat}Aligned primitives. This symmetric
descriptor is defined by the following TBox:

5The notAligned role, which is provided here to ensure the descriptors’ JEPD property, was not
implemented in RONNY for computational reasons.
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TNeighbourhood = {
neighbourRelation v spatialRelation ,

neighbourRelation ≡ lonNeighbour t latNeighbourt
noNeighbour ,

lonNeighbour ≡ neighbourRelation u dc u
lonAligned ◦ lonAligned ,

latNeighbour ≡ neighbourRelation u dc u
latAligned ◦ latAligned ,

noNeighbour ≡ neighbourRelation u
¬latNeighbour u ¬lonNeighbour ,

C1 v ∀neighbourRelation.C1 ,
. . .
Cn v ∀neighbourRelation.Cn

} .

The placeholders Ci refer to set of SceneObjects which are in the domain of
neighbourRelation, namely Lane and Road here. The dc role is needed in the
definitions to ensure that individuals do not become *Neighbours of themselves.
This set of definitions is approximated via rules in the implementation.

Relative Heading

The descriptor TRelHeading describes possible headings of an individual indj that
is northAlignedWith the reference individual indi. It refers to the relative tangent
orientation of indj at the point farthest away from indi.

TRelHeading = {
headingRelation v spatialRelation ,

headingRelation ≡ headingStraightAhead t headingEastwardst
headingWestwards t headingBackwards t
noHeading }

Let γ denote the angle difference between the tangent at end point of the first
operand, pe,1, and the tangent at that point p ∈ {ps,2, pe,2} of the second operand
with the larger distance to pe,1. Then the relHeading base relations are grounded
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as follows:

(indi, indj) :





headingStraightAhead , northAlignedWith ∧
γ ∈ [−45◦, 45◦)

headingEastwards , northAlignedWith ∧
γ ∈ [45◦, 170◦)

headingBackwards , northAlignedWith ∧
γ ∈ [170◦, 190◦)

headingWestwards , northAlignedWith ∧
γ ∈ [190◦, 315◦)

noHeading , otherwise .

Figure 5.5 summarises the taxonomy of spatial relations implemented in RONNY.

spatialRelation
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headingRelation eastwards

straightAhead
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Figure 5.5: Taxonomy of spatialRelations .
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ABox requirements

For complete reasoning with respect to spatial relations, RONNY adopts the ap-
proximation to JEPD semantics for relations proposed in Section 4.2.2. As out-
lined there, the approximation requires an ABox which is complete with re-
spect to the implemented descriptors, i. e. TAlignedness and TNeighbourhood and
TRelHeading , for ClosedWorldConcepts. Checking an ABox for completeness
can be done using Pattern ABOX_CHECK (Section 4.2.2):

x2 : ⊥ ⇐ x1 : ClosedWorldConcept ∧ neg((x1, x2) : alignedRelation)
x2 : ⊥ ⇐ x1 : ClosedWorldConcept ∧ neg((x1, x2) : neighbourRelation)
x2 : ⊥ ⇐ x1 : ClosedWorldConcept ∧ neg((x1, x2) : headingRelation) .

In Computer Vision terms, this requires to compute the correct degreeOfOverlap,
relPosition, and relOrientation relation for each pair of detected objects. There-
from the base relations of the implemented descriptors are then derivable with the
provided role definitions.

As the neighbourRelations are exhaustively defined out of alignedRelations,
completeness of either TAlignedness or TNeighbourhood suffices in theory. How-
ever, as in the implementation these definitions are only approximated by means
of trigger rules, reasoning will not be complete in this case.
When this prerequisite is met, Design Pattern SPATIAL_CLOSURE (Section
4.2.2) can be instantiated as required:

TSPATIAL_CLOSURE = {
spatialRelation v closedWorldRole ,

alignedRelation v spatialRelation ,

neighbourRelation v spatialRelation ,

headingRelation v spatialRelation } .

With this set of axioms, the procedural extension of RONNY will be extended
by the closure assertions required to approximate JEPD semantics for the imple-
mented spatial descriptors.

5.1.4 Taxonomy of Functionality and functionalRelations

In addition to SceneObjects, which were defined as objects potentially physi-
cally present in the considered scene, RONNY also contains a class Functionality,
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Figure 5.6: (a) Taxonomy of Functionality Primitives, (b) Taxonomy of
functionalRelations.

which is disjoint from SceneObject. At present, it comprises only one concept
DrivingDirection.

These primitives are grounded as follows:

Functionality Subsumes concepts that describe functional properties of
SceneObjects. They are no SceneObjects and there-
fore do not possess geometrical properties.

DrivingDirection Describes the allowed directions of travel on Lane and
Road individuals with respect to the egocentric frame.
Since at present, however, all egocentric frames point to-
wards the junction by convention (cf. Sec. 5.1.2), direc-
tions of travel are described directly relative to the junc-
tion, omitting one coordinate transformation. Its sub-
classes Entering and Exiting are not disjoint, as individ-
uals may allow for both.

The role drivingDirection has domain Road t Lane and range DrivingDirection.

5.1.5 Defined Concepts

In the previous sections, a set of primitive concepts and roles was introduced, and
each primitive was grounded by providing a description of its corresponding entity
in the real world. Next a set of further useful concepts will be defined (by using
the ≡-constructor6) out of these primitives. They are called defined concepts and
can be regarded as abbreviations of longer concept descriptions. They will prove
useful for providing compact descriptions of the road building regulations later on.

6Some of the definitions contain role conjuncts, which are not supported in SHIQ. They are
approximated using rules in the implementation.
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TDefineables = {
// one way := either a one way entering or a one way exiting (see below).
OneWay ≡ OneWayEntering t OneWayExiting ,

// one way entering/exiting := a lane or a road, which permits driving
// towards/away from the junction only.
OneWayEntering ≡ (Lane t Road) u ∀drivingDirection.Entering ,

OneWayExiting ≡ (Lane t Road) u ∀drivingDirection.Exiting ,

// turning lane := either a right turn or a straight ahead or a
// left turn lane. It has a driving direction towards the junction.
TurningLane ≡ RightTurnLane t StraightAheadLane t

LeftTurnLane ,

TurningLane v ∃hasDrivingDirection.Entering ,

// right turn lane := a turning lane which is longitudinally aligned
// with some lane transition heading eastwards.
RightTurnLane ≡ TurningLane u ∃headingEastwards.

LaneTransition ,

// straight ahead lane := a turning lane which is longitudinally aligned
// with some lane transition leading straight ahead.
StraightAheadLane ≡ TurningLane u ∃headingStraightAhead.

LaneTransition ,

// left turn lane := a turning lane which is longitudinally aligned
// with some lane transition heading westwards.
LeftTurnLane ≡ TurningLane u ∃headingWestwards.

LaneTransition ,

// outermost lane := a lane, which has at most one lateral neighbour.
OutermostLane ≡ Lane u ∃≤1latNeighbour.>

} .

The set of introduced primitives and defineables constitutes RONNY’s vocabulary
for the intersection domain.
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5.2 Intersection Geometry Model

A qualitative model of intersection geometry consists of a) a set of con-
straints on the geometry of SceneObjects, and b) a set of constraints for the
spatialRelations that are allowed to hold between them (see Section 4.2). Both
sets of constraints are axiomatised below using the introduced vocabulary for the
intersection domain. The set of ABoxes that is consistent with respect to these
constraints spans the hypothesis space of qualitative intersection geometries.

5.2.1 Object Geometry

Each SceneObject for which qualitative geometry shall be modelled or inferred,
must inherit from concept GeometricEntity. In the previous section, Pattern OB-
JECT_GEOMETRY was instantiated with the three classes of GeometricEntity
descendants termed GP1, GP2 and GP3. The admissible geometries of a
SceneObject u GeometricEntity concept are constrained by making it a de-
scendant of only a subset of GPis.

RONNY models the geometry of its SceneObjects as follows: Roads and
lanes outside of junctions are always of shape GP1. Lanes on the junction
(LaneTransitions) can be of any of the introduced shapes. Due to their lateral
alignment, the same must hold for dividers. Road transitions (consisting of several
lane transitions) and junctions (consisting of several road transitions) have com-
plex shapes and therefore are not GeometricPrimitives anymore. These specifi-
cations translate into DL as:

TObjGeo ⊃ {
Road v GP1 ,

Lane v GP1 ,

RoadTransition v GeometricEntity ,

LaneTransition v GP1 t GP2 t GP3 ,

Divider v GP1 t GP2 t GP3 ,

Junction v GeometricEntity } .

5.2.2 Scene Geometry

Relational scene geometry is modelled by providing constraints for the
spatialRelations that are allowed to hold between the GeometricEntity concepts.
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Figure 5.7: Qualitative Geometry Model for Intersections.
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They are specified graphically using the nomenclature defined in Figure 4.2 (Sec-
tion 4.2.3). Its unique mapping into the DL SHIQ is given by the corresponding
Pattern SCENE_GEOMETRY.

RONNY’s model for relational intersection geometry is depicted in Figure 5.7.
The graphical specification contains all allowed base relations with respect to
the TAlignedness, TNeighbourhood and TRelHeading descriptors. The set of de-
picted concepts covers the GeometricEntity concept. The roles notAligned and
noNeighbour were omitted, as well as the transitive hull for alignedWithPart and
its inverse, for better readability. Always, the highest possible concept abstraction
was chosen, i.e. if the spatial relations are identical for all children of a covered
concept, then the superconcept is used.

A rough textual description of the RONNY scene model reads as follows: A road
has one to six lanes and a couple of dividers as aligned parts. Each of its lanes
is aligned laterally with two of its dividers. Pairs of lanes laterally aligned with
the same divider are lateral neighbours. A road can be longitudinally aligned with
road transitions only. Two roads aligned with a common road transition are lon-
gitudinal neighbours. The analogue is true for lanes. A set of road transitions,
the roads of which are pairwise longitudinal neighbours, constitutes a junction.
Consequently, in the case of only two neighbouring roads, already a single road
transition classifies as a junction. For computational reasons, RONNY allows at
most one junction per ABox (which is enforced using a rule). For the same reason,
longitudinal alignedness of Junctions is only modelled where relevant (it has been
omitted between junctions and lanes, and between roads and lanes). Also, the rela-
tive heading between individuals is modelled only among roads and among lanes.
Arbitrary headings are allowed there.

The formalisation of these constraints restricts the hypothesis space of qualitative
intersection geometries. Only those ABoxes which do not violate any constraint
will be classified consistent with respect to the RONNY TBox.

5.3 Road Building Regulations

Up to now, a vocabulary for the intersection domain has been set up, con-
sisting of primitive SceneObject and Functionality concepts, of primitive
spatialRelations and functionalRelations, and of some defined concepts. It has
been used in the previous Section for setting up a hypothesis space of admissi-
ble qualitative scene geometries. In this section, this vocabulary will be used to
formulate high-level road building regulations. Semantic as well as high-level ge-
ometric building regulations will be axiomatised. These regulations will serve as
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yet another set of constraints on the set of admissible intersections.

The road building regulations formulated in the following are tailored to German
road networks7. Other countries may differ in the set of admissible road layouts, in
the semantics of marking types, and so on. To adapt the RONNY TBox to another
country, any Germany-specific regulation can be removed or replaced by other
axioms. This exhibits a very strong benefit of KR languages which are explicit,
declarative, and modular.

Within this geographic limitation, the regulations formulated are intended to be of
general validity. It can, however, not be excluded that a German road exists that
violates one of the assumptions. Their validity will be tested in the next chapter on
a set of complex urban intersections.

5.3.1 Right-handed Traffic

Right- and left-handed traffic differ in the lateral arrangement of driving directions
on a road. Furthermore, they have a reversed arrangement of turning lanes on
the road: For right-handed traffic, right turn lanes are (geometrically) equal to /
east of straight ahead lanes, which are equal to / east of left turn lanes, while the
reverse is true for left-handed traffic (”equal to” denotes that these three turning
lanes are not necessarily disjoint, i. e. a lane might be a straight ahead lane and a
right turn lane). These constraints are axiomatised for right-handed traffic below.
Exchanging them with their left-handed traffic equivalents yields an Intersection
Understanding system for left-handed traffic instead.

TRightHandedTraffic = {
// East neighbours of lanes/roads entering the junction enter the junction.
// West neighbours of lanes/roads exiting the junction exit the junction.
∃drivingDirection.
Entering v ∀eastNeighbour.(∃drivingDirection.Entering) ,

∃drivingDirection.
Exiting v ∀westNeighbour.(∃drivingDirection.Exiting) ,

// East neighbours of right turn lanes always are right turn lanes.
RightTurnLane v ∀eastNeighbour.¬(StraightAheadLane t

LeftTurnLane) ,

7Originally, an attempt had been made to derive the regulations from official road building guide-
lines, such as the ”Recommendations for the design of inner-city roads” (RASt 2007). It turned out,
however, that on one hand many common-sense regulations were not contained in these works, and that
on the other hand many of the regulations contained were not relevant with respect to the vocabulary
introduced here. Consequently the building regulations formulated in the following are not derived
from official guidelines but from common-sense reflections.



5.3. ROAD BUILDING REGULATIONS 91

// East neighbours of straight ahead lanes are never left turn lanes.
// West neighbours of straight ahead lanes are never right turn lanes.
StraightAheadLane v ∀eastNeighbour.¬LeftTurnLane u

∀westNeighbour.¬(StraightAheadLane t
RightTurnLane) ,

// West neighbours of left turn lanes are never straight ahead or
// right turn lanes.
LeftTurnLane v ∀westNeighbour.¬(StraightAheadLane t

RightTurnLane) } .

Note that drivingDirection and {east|west}Neighbour relations, as well as the
three defined TurningLane classes, operate in the egocentric frame of the referred
road which is assumed pointing towards the junction (see Sec. 5.1.2).

5.3.2 Dividers

Dividers visually mark the lateral borders of a lane. Additionally, their type in-
dicates, among other things, which type of traffic participant is permitted on a
lane. Information about permitted traffic participants is modelled in RONNY by
the three lane subclasses MotorVehLane, BicycleLane and EmergencyLane.
The following inclusion axioms constrain these subclasses according to the type
of divider they are laterally aligned with. Confer Section 5.1 for reference to the
respective Divider subclasses and their grounding.

TDividers = {
// A dashed, 12cm wide divider is aligned with two car lanes.
Dashed u 12cm v ∃=2 latAligned.MotorVehLane ,

// A dashed, 25cm divider is aligned with a bicycle-only and a car lane.
Dashed u 25cm v ∃latAligned.(BicycleLane u ¬MotorVehLane) u

∃latAligned.MotorVehLane ,

// A 12cm wide solid or a physical divider is aligned with the road’s
// outermost lane (road borders), or with two lanes with different
// driving directions (road centerline).
(Solid u 12cm)
t Physical v ∃≤1 latAligned.OneWayEntering u

∃≤1 latAligned.OneWayExiting ,
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// A solid, 25cm wide divider is aligned with a car lane and an emergency
// or bicycle-only lane.
Solid u 25cm v ∃latAligned.MotorVehLane u

∃latAligned.((BicycleLane u ¬MotorVehLane)
t EmergencyLane)

} .

Recall from their symbol grounding that MotorVehLane and BicycleLane are not
disjoint. Therefore, lanes which are exclusively for one type of traffic participant
need to be modelled as e. g. BicycleLane u ¬MotorVehLane, for a bicycles-only
lane.

5.3.3 Driving Directions

Driving directions are restricted by the constraints for right-handed traffic and by
the definition for OneWays (Sec. 5.1.5). Only few more axioms are required.

TDrivingDirections = {
// A road allows for a driving direction, iff ≥ 1 of its lanes allows for it.
Road u
∃drivingDirection.Entering ≡ Road u ∃alignedWithPart.

(Lane u ∃drivingDirection.Entering) ,
Road u
∃drivingDirection.Exiting ≡ Road u ∃alignedWithPart.

(Lane u ∃drivingDirection.Exiting) ,

// A road containing more than one lane does not contain two-way lanes.
Road u
∃≥2 alignedWithPart.Lane v ¬∃alignedWithPart.TwoWay ,

// A Freeway is a one way road.
Freeway v OneWay

} .

5.3.4 Bicycle/Car/Emergency Lanes

In addition to the preceding axioms, the presence and the amount of
BicycleLanes, EmergencyLanes, and MotorVehLanes is further constrained
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by the following set of axioms:

TLaneTypes = {
// A road has at least one car lane per driving direction.
Road u
∃drivingDirection.Entering v ∃alignedWithPart.(MotorVehLane u

∃drivingDirection.Entering) ,
Road u
∃drivingDirection.Exiting v ∃alignedWithPart.(MotorVehLane u ,

∃drivingDirection.Exiting) ,

// A road has at most one bicycle lane per driving direction.
Road v ∃≤1 alignedWithPart.(BicycleLane u ,

∃drivingDirection.Entering) ,
Road v ∃≤1 alignedWithPart.(BicycleLane u ,

∃drivingDirection.Exiting) ,

// Bicycles are not allowed on freeways and highways. Emergency
// lanes are only required on freeways and highways.
Freeway v ∀alignedWithPart. ¬BicycleLane ,
Highway v ∀alignedWithPart. ¬BicycleLane ,
UrbanRoad v ∀alignedWithPart. ¬EmergencyLane ,

// An emergency lane is the outermost lane of a road.
EmergencyLane v OutermostLane ,

// Bicycle lanes of a given turning lane type are always the eastmost lane
// of that turning lane type.
BicycleLane u
RightTurnLane v ¬∃eastNeighbour.RightTurnLane ,
BicycleLane u
StraightAheadLane v ¬∃eastNeighbour.StraightAheadLane ,
BicycleLane u
LeftTurnLane v ¬∃eastNeighbour.LeftTurnLane

} .

The first axiom ensures that only networks designated for cars are dealt with.
Bicycle-only roads, for example, are ruled out. Confer Section 5.1 for a precise
grounding of the mentioned Lane subclasses.
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5.3.5 Driveable Paths

The notion of a driveable path between roads has been defined in Sec-

tion 5.1.1 as a triple of Road
lonAligned−−−−−−→ RoadTransition

lonAligned−−−−−−→Road in-
dividuals. Such a driveable path exists iff there is at least one triple of

Lane
lonAligned−−−−−−→LaneTransition

lonAligned−−−−−−→ individuals, which are part of these
road(transition)s. Such a LaneTransition is present between two Lanes, iff one is
reachable from the other without performing a lane change.

The fact that a RoadTransition requires at least one LaneTransition to be part
of it, has already been axiomatised in the geometry model. The following set of
axioms are required in addition:

TPaths = {
// No isolated roads:
// A road that connects to a junction has some driveable path.
Road u
∃lonAligned.Junction v ∃lonAligned.RoadTransition
// No isolated lanes:
// A lane that connects to a junction has some driveable path.
Lane u
∃lonAligned.Junction v ∃lonAligned.LaneTransition
// No opposing flow of traffic:
// A driveable path between lanes requires entering and exiting traffic flow.
LaneTransition v ∃lonAligned.(∃drivingDirection.Entering) u

∃lonAligned.(∃drivingDirection.Exiting) ,

// No lane change:
// A lane has max. 1 driveable path leading {eastwards|westwards}.
// A lane has max. 2 driveable paths leading straight ahead
// (this accounts for widening/narrowing of straight ahead lanes).
Lane v ∃≤1headingEastwards.LaneTransition ,
Lane v ∃≤1headingWestwards.LaneTransition ,
Lane v ∃≤2headingStraightAhead.LaneTransition

} .

Note that, to fully account for the definition of a driveable path, two further con-
straints would be required here: A RoadTransition may be lonAligned only to
those Roads, which are lonAligned to that particular Junction that it belongs
to. Similarly, a RoadTransition may only contain LaneTransitions which are
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lonAligned to Lanes, that are part of those Roads that the RoadTransition is
lonAligned to. These constraints are only axiomatisable using role chains, which
are not available in SHIQ. Therefore, they must be ensured on the ABox side.

5.3.6 Geometry of Paths

The geometry of a driveable path is determined by the geometry of the involved
SceneObjects. Recall from the object geometry modelling in Section 5.2.1 that
Roads and Lanes are always of shape GP1, whereas LaneTransitions can be of
any of the introduced shapes. Therefore, the path geometry is determined by the
type of primitive, GP1, GP2 or GP3, of the LaneTransition. It is constrained as
follows:

TPathGeometry = {
// A lane transition leading east- or westwards is of shape GP3.
// A lane transition leading straight ahead is of shape GP1 or GP2.
Lane v ∀headingEastwards.(GP3 t ¬LaneTransition) ,
Lane v ∀headingWestwards.(GP3 t ¬LaneTransition) ,
Lane v ∀headingStraightAhead.(GP1 t GP2 t ¬LaneTransition) ,

// A lane entering a GP2 transition always enters a GP1 transition, too.
OneWayEntering u
∃lonAligned.GP2 v ∃lonAligned.GP1 ,

// A lane transition of shape GP2 is present only on junctions without
// crossing roads.
Lane u ∃heading
Eastwards) v ¬∃lonAligned.GP2 ,
Lane u ∃(heading
Westwards) v ¬∃lonAligned.GP2 ,

// Only outermost car lanes can lead to a GP2 lane transition.
¬OutermostCarLane v ¬∃lonAligned.GP2 ,

// A freeway contains straight ahead lanes only (due to its small
// curvature, even on slip roads).
Freeway v ¬∃alignedWithPart.(∃lonAligned.GP3)

} .

It is vital to note that RONNY’s axiom set is not required to be complete to produce
correct reasoning results. On the contrary, some road building regulations are
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certainly not covered by the set of provided axioms. As deduction infers only
provable statements, no false statements are ever produced. In classification terms,
an individual may remain unclassified, but no false positives or negatives will ever
be produced given that the sensor data is correct. False positives, false negatives,
and ABox inconsistencies indicate a TBox modelling error.
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6 Application: DL-based
Intersection Understanding

Figure 6.1: MRT Autonomous
Vehicle ”AnnieWay”. For a de-
tailed description of the AnnieWay
project, see e. g. (Kammel et al.
2008).

The MRT lab owns two experimental ve-
hicles, which are equipped with a variety
of external and internal sensors and actu-
ators for autonomous driving. Three of
its sensors, a stereo vision sensor, a dig-
ital map, and a global positioning system
(GPS), were used for conducting the set of
experiments subsequently described.

Section 6.1 describes the characteristics of
each sensor and the mapping of its data into
a RONNY ABox, based on a particular in-
tersection example. This allows for the au-
tomatic creation of ABoxes out of sensor
data, their transmission to the reasoner us-
ing RACERPRO’s TCP interface, and subse-
quent Scene Interpretation reasoning on the basis of the RONNY TBox.

Section 6.2 describes a sample set of real-world intersections, and Section 6.3 pro-
vides a quantitative evaluation of a set of reasoning experiments on this sample set.
The tasks addressed are object detection, object classification, and data association
in the context of intersection interpretation.

For better readability, the following naming scheme for individuals will be used
uniformly throughout this chapter:

ri Road individual
lij Lane individual that is alignedPartOf road ri

tr-ri-rj TransitionRoad individual lonAligned with roads ri and rj

tr-lim-ljn TransitionLane lonAligned with lanes lim and ljn

di Divider individual
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6.1 Sensor Setup

A digital map, a camera and an absolute positioning device are used as sensor
input. As will be described later, all three sensors deliver objects (as opposed to
sets of features, cf. Sec. 4.1.2), like e. g. Lanes or Dividers. Furthermore, the
sensor setup is redundant, as for example a Lane can potentially be detected by
all three sensors. This setup is axiomatised by instantiating the TBox in Design
Pattern SENSOR_SETUP (Section 4.1.2) as follows:

TSENSOR_SETUP = {
SensorInput ≡ MapInput t CameraInput t GPSInput ,

MapInput v SceneObject ,

CameraInput v SceneObject ,

GPSInput v SceneObject ,

// For the set of complementary sensors {i, .., j}, i, j ∈ {1, .., n}, add:
// disjoint(SensorInputi,. . . ,SensorInputj)

}

Furthermore, the map delivers the complete set of Roads, Lanes and Junctions
(this will be described in the next Subsection). To exploit this important feature,
Design Pattern LOCALLY_CLOSED_WORLD (Section 4.1.1) needs to be instan-
tiated:

TLOCALLY _CLOSED_WORLD = {
Road v ClosedWorldConcept ,

Lane v ClosedWorldConcept } .

Junction v ClosedWorldConcept } .

The ABox assertions required by both patterns are added automatically through
the procedural extension given in Algorithm 2.

Note that all spatial relations are required to be closed with respect to
ClosedWorldConcepts (see Sec. 5.1.3). This implies that the aligned- and
headingRelation must be given for each individual with respect to the subset
of Road t Lane t Junction individuals. In Computer Vision terms: New in-
dividuals can only be delivered by an extrinsically calibrated sensor, the position
accuracy of which must be within lane-precision. A way to proceed if this data
is unavailable, as is the case for the vision sensor in this setting, is sketched in
Section 6.1.3.
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This set of axioms completes the RONNY TBox. Next, using a particular intersec-
tion example, a RONNY ABox for an example intersection will be given for each
sensory input.

6.1.1 Digital Map

r
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r
3

r
1

1
12

Figure 6.2: Digital Map Exam-
ple for a junction connecting to 3
roads. The number of lanes and the
permitted driving directions are vi-
sualised (a lacking arrow head indi-
cates a two-way road).

The map is an off-the-shelf product from
TeleAtlas, developed for car navigation
systems. For this reason, it accurately
captures road network topology, i.e. the
connectivity between roads, whereas net-
work geometry is only coarsely digi-
tised. Roads are represented by geo-
graphic (latitude, longitude) start and end
coordinate pairs, junctions by one coordi-
nate pair only. The geographic coordi-
nates are transformed into RONNY’s met-
ric UTM frame (cf. Sec. 5.1.2) using the
UTM projection. The following further
attributes are provided by the map: Each road’s allowed driving direc-
tions ∈ {OneWayNorth,OneWaySouth,TwoWay}, and its road class ∈
{Freeway, . . . ,PedestrianMall}. Lanes are not yet contained in the map.
More recently deployed so-called ADAS (advanced driver assistance systems)
maps also contain the number of lanes per road. This information was provided
manually in addition.

Axiomatisation of Detections

As axiomatised above, all roads and lanes at the considered junction require in-
stantiation in RONNY. For the example from Figure 6.2:

AMap,Detections = {
j1 : MapInput u Junction ,

r1 : MapInput u Road ,

r2 : MapInput u Road ,

r3 : MapInput u Road ,

l11 : MapInput u Lane ,

l12 : MapInput u Lane ,

l21 : MapInput u Lane ,
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l31 : MapInput u Lane } .

MapInput states that the individual has been provided by the map sensor (as
required by Pattern SENSOR_SETUP). Additionally, the set of Dividers could
be instantiated without loss of generality (a missing divider can later be classi-
fied InvisibleDivider). This has been omitted here to keep the example simple.
Dividers are thus ¬ClosedWorldConcepts.

Axiomatisation of Classifications

The map’s driving direction information maps to the defined concepts
OneWayEntering, OneWayExiting, and ¬OneWay (cf. Sec. 5.1.5), all speci-
fied relative to the junction. The road classes are mapped to the three Road de-
scendants Freeway, CountryRoad and UrbanRoad. The example translates to
RONNY as:
AMap,Classifications = {

r1 : ¬OneWay ,

r2 : OneWayEntering ,

r3 : OneWayExiting ,

r1 : UrbanRoad ,

r2 : UrbanRoad ,

r3 : UrbanRoad } .

Axiomatisation of Spatial Relations

As mentioned, all alignedRelations and headingRelations need to be stated for
the ClosedWorldConcept descendants (Sec. 6.1). The following relations hold
for road r1:

AMap,Alignedness = {
(r1, j1) : lonAligned ,
(r1, l11) : alignedWithPart ,
(r1, l12) : alignedWithPart ,

(r1, r2) : headingStraightAhead ,
(r1, r3) : headingWestwards } .

For the definition of these relations see Section 5.1.3. The relations for roads r2

and r3 are formulated analogously. The following rule must be supplemented for
automatic provision of all notAligned relations:

(x1, x2) : notAligned ⇐
x1 : ClosedWorldConcept ∧ neg((x1, x2) : AlignedRelation).
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It asserts notAligned to all individual pairs which do not have a TAlignedness rela-
tion yet. Due to its non-monotonic nature (cf. Sec. 3.4), this rule must be executed
after all other alignedRelations have been stated.

Axiomatising Driveable Path Hypotheses

The map accurately provides road-level connectivity, but lacks a description of
the connectivity on the junction. In particular: Which road has a driveable path
(RONNY’s RoadTransitions) to which other road? Which of its lanes has such a
driveable path (RONNY’s LaneTransitions)? What does the qualitative geometry
(RONNY’s GeometricPrimitives) of the paths look like?

The reasoning service should be able to infer from the previous ABox assertions
and RONNY’s axioms about driveable paths (Sec. 5.3.5), that a Road which is
lonAligned to a Junction must be lonAligned to some of its RoadTransitions,
create the provably existent transitions, and assert the required relations. This kind
of reasoning was introduced as ”object detection reasoning” in Section 4.3.1. In-
stantiating the corresponding Pattern OBJECT_DETECTION for this task yields:

TOBJECT _DETECTION = {
ObjectHypothesis ≡ Verified t Falsified ,
disjoint(Verified, Falsified) ,
ObjectHypothesis v ClosedWorldConcept ,
RoadTransition v Verified

} .

AOBJECT _DETECTION = {
tr-r1-r2 : ObjectHypothesis ,
(tr-r1-r2, j1) : alignedPartOf ,
(tr-r1-r2, r1) : lonAligned ,
(tr-r1-r2, r2) : lonAligned } .

It states that the term RoadTransition refers to a verified object hypothesis,
that all object hypothesis individuals are introduced, and that individual tr-r1-
r2 is an hypothesis. Analogous ABox assertions are required for the other
two hypothetically possible transitions tr-r1-r3 and tr-r2-r3 (one transition per
pair of roads aligned with the junction, order irrelevant). Each can either be
verified or falsified. Only a Verified individual can be a RoadTransition.
Likewise, the template is also instantiated for all potential LaneTransitions.
In the implementation, AOBJECT _DETECTION is supplemented automatically
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for {Road|Lane}Transitions by means of rules. Note that the model of
scene geometry (cf. Sec. 5.2.2) must be modified to additionally allow for an
ObjectHypothesis whenever allowing for a *Transition in its domain constraints.

This axiomatisation enables reasoning about the existence and the geometry of
{Road|Lane}Transitions, as will be demonstrated in the experiments.

6.1.2 Positioning Sensor and Map Matching
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Figure 6.3: Map Matching. The red dots
with arrows denote the vehicle position and
orientation as delivered by GPS (light red),
and the revised estimate yielded by map
matching (saturated red).

A reliable vehicle pose estimate
is required not only for naviga-
tion purposes, but also for relat-
ing global, map-based information
to local, e. g. video-based, data.
The MRT’s experimental vehicles
are equipped with global positioning
devices (GPS) for estimating vehi-
cle pose, i. e. position and head-
ing in geographic coordinates, and
speed. However, multipath effects
in urban areas cause positional stan-
dard deviations of 15m/5m for stan-
dard/differential GPS. Inertial sensors, that is motion sensing devices like ac-
celerometers or gyroscopes, are therefore frequently combined with GPS in a
Kalman Filter for improving accuracy (GPS/INS). In addition, a map-based pose
correction is obtained by applying a map matching algorithm: Assuming that the
vehicle is on the road, its estimated pose is corrected by projection onto the max-
imum likelihood (ML) estimate of the currently occupied road ˆrML in the map
(cf. Fig. 6.3). The map matching presented by (Hummel 2006) and (Pink and
Hummel 2008) therefore exploits vehicle pose history, road network topology, and
driving restrictions in a probabilistic framework. A lane-precise estimate is how-
ever not available.

A correct axiomatisation of the road estimate in RONNY is:

ALocalization = {
egolane : GPSInput u Lane ,
(egolane, ˆrML) : alignedPartOf } .

Because Lane is a ClosedWorldConcept, the individual named egolane cannot
represent an additional lane on road ˆrML. Instead, the ABox now implies that
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egolane must equal one of the introduced lanes of ˆrML. For example, if ˆrML = r1:

KB |= (egolane = l11 ∨ egolane = l12) .

Lane-precise pose estimation is thus turned into the standard reasoning task of data
association (Sec. 4.3.4), and it is even performed collectively with classification.

Correct driver behaviour can additionally be assumed if desired. In case our vehi-
cle is a car, and its estimated heading is towards the junction:

ALocalization,Driver = {
egolane : MotorVehLane ,
egolane : ∃hasDrivingDirection.Entering } .

6.1.3 Stereo Camera

Figure 6.4: Vision-based Lane
Detection. The blue curves
represent the detected dividers of
the ego-lane (Fig. provided by
C. Duchow).

Computer Vision algorithms developed at
the MRT comprise divider marking de-
tection (Duchow 2006), lane detection
(Duchow and Körtner 2007), path planning
(Hummel et al. 2006), vehicle detection and
tracking (Bachmann and Dang 2008), and
initial work on arrow detection (Yang 2006).
A classifier for divider types, however, is
work in progress. For the present exper-
iments, the divider class information was
simulated to a reasonable extent (see next
Subsection). In contrast to the map, no esti-
mate concerning the total amount of objects
is available (indeed, developing such an al-
gorithm would be hard). The set of objects detected by video is therefore assumed
partial, i. e. not of type ClosedWorldConcept.

Axiomatisation of Detections

Figure 6.4 exemplifies a typical detection result by the vision sensor. The detected
individuals are introduced to RONNY as follows:

ACamera,Detections = {
d1 : CameraInput u Divider ,
d2 : CameraInput u Divider } .
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The CameraInput classification states that the individual was provided by the
camera sensor (accounting for Pattern SENSOR_SETUP). Further sensory input
can be plugged in without change of the representation or reasoning architecture.

Axiomatisation of Classifications

Available classification information is formalised as:

ACamera,Classifications = {
d1 : DividerMarking u Dashed u Single u 12cm ,
d2 : DividerMarking u Dashed u Single u 12cm } .

Uncertainty can be axiomatised to a certain degree by using the t -constructor,
e. g. as in Dashed t Solid, or by simply omitting specialisation into subclasses.

Axiomatisation of Spatial Relations

The introduction of new individuals requires knowing their qualitative absolute
pose up to lane-precision (Sec. 6.1). In quantitative terms, this requires transform-
ing 2D image coordinates to the earth-fixed UTM frame used by the map. Trans-
forming from image to vehicle-fixed scene coordinates is done using our calibrated
stereo camera setup, the online calibration of which is described in (Dang 2007)
and (Dang and Hoffmann 2006). Transforming from vehicle-fixed to UTM coor-
dinates is done using the vehicle pose estimator that was described in the previous
Section.

Given the absolute pose, the spatial relations with respect to the introduced indi-
viduals of type ClosedWorldConcept can be computed on the Computer Vision
side, and then be axiomatised as follows:

ACamera,spatialRelations = {
(d1, li,j−1) : eastAlignedWith ,

(d1, lij) : westAlignedWith ,

(d1, ri) : alignedPartOf ,
(d2, lij) : eastAlignedWith ,

(d2, li,j+1) : westAlignedWith ,

(d2, ri) : alignedPartOf
} ,

where lij denotes the lane in between the two dividers in Figure 6.4. All remain-
ing relations are of type notAligned and are again added automatically by a rule.
Stating the relations to ¬ClosedWorldConcept individuals is optional.
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However, in reality a sufficiently accurate individual pose estimate will often be
unavailable. In this case, it is alternatively possible to axiomatise the spatial rela-
tions only with respect to the introduced egolane individual. This is only feasible
when omitting the instantiation of new individuals (recall that otherwise all rela-
tions with respect to ClosedWorldConcept individuals would have to be stated),
and by using anonymous classes instead as follows:

ACamera,spatialRelations = {
egolane : ∃eastAlignedWith.(DividerMarking

u Dashed u Single u 25cm) ,
egolane : ∃westAlignedWith.(DividerMarking

u Dashed u Single u 25cm)
} .

Global pose estimation of the dividers thus becomes a matter of pose estimation
of the egolane, as described in the previous Subsection, with the divider types
providing additional constraints to the task.

6.2 Intersection Sample Set

RONNY’s reasoning performance was evaluated on a sample set of 23 natural in-
tersection scenes, thereof 19 urban intersections, 1 suburban intersection, and 3
freeway entrances/exits. Emphasis was put on choosing a large variety of intersec-
tions, especially including the most complex ones to find. For the urban intersec-
tions, a central traffic hub in the inner-city of Karlsruhe, Germany, the ”Durlacher
Tor”, was picked. All intersections from a rectangular area around that hub, that
were retrieved from the commercial digital map, were put into the sample set1.
Figure 6.5 shows a map of the area from the local land surveying office. A high-
resolution satellite image can be viewed with the Google Maps software at coordi-
nates (49.009093◦, 8.417485◦)2. The suburban and the freeway intersections were
included in the sample set to make sure that the model has not been too specially
tailored to complex urban intersections.

For each intersection, the following steps were performed.

1. The GPS-based map matching algorithm was used for localisation of the
vehicle on the road network. For the next intersection in driving direction,

1One exception was made here: At a few coordinates marked as intersections in the map, no change
in road or lane structure occurs. These coordinates only serve to refine the geometrical slope of a road.
They were not used as sample intersections, because this is not of interest here.

2URL: http://tinyurl.com/dx6dao

http://tinyurl.com/dx6dao
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Figure 6.5: Map for ”Durlacher Tor” area in Karlsruhe, Germany, from land-
surveying office. Intersections retrieved from the digital map are highlighted in
red. They constitute the experiments’ sample set.
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Figure 6.5: ”Durlacher Tor” map continued.
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the data retrieved from the digital map was mapped into a set of RONNY
ABox assertions as described in Section 6.1.1.

The following steps were carried out at three different instants in time:

t1 : entering the intersection (i. e. being on a Lane),
t2 : on the actual junction (i. e. being on a LaneTransition),
t3 : and leaving the intersection (i. e. being on a Lane again).

Data was added incrementally to the RONNY ABox at each time step.

2. The estimated vehicle pose was mapped into a set of RONNY ABox egolane
assertions as described in Section 6.1.2. Recall that this estimate contains
the vehicle’s ego-road, but not its ego-lane. Furthermore, at time t2, no
pose information is available besides the fact ”on junction”. Correct driver
behaviour was assumed in addition. Its axiomatisation is also described in
Section 6.1.2.

3. With respect to vision, emphasis was put on simulating data realistically
obtainable by a sensor. Two types of classifiers were assumed, and their data
was mapped into a set of RONNY ABox assertions as described in Section
6.1.3:

(a) Ego-lane divider type classifier: Provides the divider type for the left
and right divider of the egolane, if the divider is clearly visible on the
road (i. e. is not occluded by parking cars, for example), and if the
vehicle is presently not on the junction (i. e. at t1 and t3), because
the variety of markings present there is often misleading the vision
algorithm.

(b) Ego-lane divider geometry classifier: Provides the geometry of the
egolane ∈ {GP1,GP2,GP3} on the junction (i. e. at t2). This data
could alternatively be obtained from vehicle trajectory classification.

The created ABox is referred to as Ai, where i is the intersection number given in
Figure 6.5. As an example, Figure 6.7 provides a pictorial representation of A8. It
thus visualises the amount of available information when no background knowl-
edge used. In DL terms, this is the information entailed by the KB under the empty
TBox. Note that, without further assumptions, global map information cannot be
associated with local positioning device and video information. The different sen-
sors must therefore be displayed in separate subfigures. Note, too, that none of the
tasks posed is solvable using the sensor data alone. Only few classifications be-
come available when correct driver behaviour is assumed in addition (Fig. 6.7(f)).
All visualisations in this chapter are based on the legend provided in Fig. 6.6.
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Figure 6.6: Figure Legend. (a) Each icon represents a concept or role asser-
tion Ai, i ∈ 1, .., 8, involving some Lane individual lane. The icon state visu-
alises whether Ai, ¬Ai, or neither is entailed by the KB. (b) The three connectors
visualise whether assertion A9, ¬A9, or neither is entailed by the KB for some
ObjectHypothesis individual hypind. The three geometries visualise if one of
A10GP i

, i ∈ {1, 2, 3}, is entailed. If neither A10GP i
nor ¬A10GP i

is entailed for
any i, only the line connector (cf. A9) is displayed. ¬A10GP i

is not visualised.

In addition, a second, ”ground truth” RONNY ABoxAi,groundtruth was created by
hand for each intersection. It contained the correct assertions with respect to each
of the tasks mentioned below. It was used as the reference against which the rea-
soning results for the ABoxes described above were compared, and for validating
the intersection model through Experiment 1 (in Sec. 6.3.2).
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Figure 6.7: Sensory Input during traversal of intersection 8. Pic-
torial representation of the amount of available information before reason-
ing, i. e when no background knowledge is applied. (a) digital map
data, (b)-(d) positioning device data at times t1-t3. The map provides
the number of roads aligned to the junction (three), their spatial ar-
rangement (headingStraightAhead|Eastwards|Westwards), driving directions
(OneWayEntering|OneWayExiting|¬OneWay) (not depictable in this represen-
tation), and number of lanes. No information about lane types or connectivity is
contained. The position device provides the ego-road at t1 and t3, but not the
ego-lane. (Continued on next page...)
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Figure 6.7: Continued from previous page. (e) positioning device and video
data at t3. The video sensor detected the eastern divider (Dashed u 12cm) of the
ego-lane (with respect to the egocentric frame) at t1 and t3, respectively, and the
geometric primitive (GP3) at t2. However, it is unknown whether the depicted tra-
jectory is actually a driveable path, as correct driver behaviour is not assumed. (f)
positioning device and video data at t3, when correct driver behaviour is assumed
in addition: The egolane at t1 lane allows for motorised vehicles, for entering the
junction, and for doing a left turn. The egolane at t3 allows for motorised vehicles
and for exiting the junction (this has been visualised here although defining the
meaning of these terms and deriving the corresponding deductions from the data
would already require the RONNY TBox).
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6.3 Experimental Results

The following experiments were carried out:

1. Model Validation: Is any of the assumptions in the RONNY TBox violated
by the presented intersections? I. e., does the knowledge base become in-
consistent for any ground truth ABox?

2. Object Classification: The following classification tasks were carried out
at time instant t3

3:

Classification of each Lane individual . . .

(a) into its allowed driving directions. The set of non-disjoint class labels
is {∃drivingDirection.Entering, ∃drivingDirection.Exiting}. They
are represented by assertions A1 and A2 in Figure 6.6.

(b) into its types of turning lanes. The set of non-disjoint class labels is
{RightTurnLane, StraightAheadLane, LeftTurnLane }, represented
by assertions A3 and A5.

(c) into its permitted types of traffic participants. The set of non-disjoint
class labels is {MotorVehLane, BicycleLane }, represented by A6

and A7. The third relevant subclass, EmergencyLane, was left out
from the classification task, because these lanes were not represented
in the example intersections.

Classification of each LaneTransition individual . . .

(d) into the disjoint subclasses representing qualitative geometry. The set
of class labels is {GP1,GP2,GP3}, represented by assertion A10 in
Figure 6.6.

3. Object Detection: Detection of driveable paths, i. e. LaneTransition indi-
viduals, between Lane pairs. This task is represented by assertion A9 in
Figure 6.6.

4. Data Association: Association of the egolaneti with exactly one other Lane
individual on the intersection. This task is represented by assertion A8 in
Figure 6.6.

3Initially experimental evaluation had been planned for time instants t1, t2 and t3. This setup had
to be abandoned because it turned out to be computationally not feasible. Evaluation at t3 only has
been chosen instead, since more information is then available compared to previous time instants.
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Note that the class labels for each mentioned Lane classification task are not dis-
joint: A Lane can be driveable in both driving directions, it can allow for turning
right and left at the same time, and it can allow for both cars and bicycles. There-
fore each label can itself be seen as one binary classification task4.

Experiments (2.)–(4.) are performed collectively by the reasoner for all individu-
als. Reasoning here initially terminated within acceptable time and without mem-
ory overflow for only 4 intersections. To reduce the complexity of the tasks, the
assertions concerning vehicle position and correct driver behaviour were rewritten
using anonymous classes:

Original formulation, exemplified for time t1 (cf. Sec. 6.1.2):

ALocalization = {
egolanet1

: GPSInput u Lane ,
(egolanet1

, ˆrML) : alignedPartOf ,
egolanet1

: MotorVehLane ,
egolanet1

: ∃hasDrivingDirection.Entering } .

Updated formulation:

ALocalization = {
ˆrML : ∃alignedWithPart.

(MotorVehLane u ∃hasDrivingDirection.Entering) } .

Both formulations express identical information, and in particular the vehicle’s ego
lane in the road remains unspecified in both cases. The latter assertions, however,
prevent the introduction of three individuals, egolanet1

, egolanet2
and egolanet3

,
and data association reasoning for them. The benefit is reduced complexity of
reasoning, the cost is that Experiment 4 cannot be performed without these indi-
viduals. With this modification, reasoning terminated for 10 out of 23 intersection
ABoxes.

The next section qualitatively analyses the collective reasoning result for one in-
tersection example. The four subsequent sections describe the quantitative results
with respect to the sample set of 23 (Experiment (1.)) / 10 (Experiment (2.)–(4.))
intersections.

4The traffic signs in the first and third row of Fig. 6.6(a) visualise the ’false’ label of these classifi-
cation tasks.
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6.3.1 Example

Figure 6.8 exemplarily shows the result of reasoning for intersection 8, on the basis
of the sensor input depicted in Figures 6.7, and visualised on the basis of Figure
legend 6.6. In DL terms, it visualises the knowledge deductively entailed by a KB
that consists of the ABox A8 and the RONNY TBox.

Providing formal proofs for these entailments would be non-explanatory, since
each typically results from a long chain of deductions using many assertions and
axioms. Instead shortened prosaic explanations are given, together with references
to some of the axioms involved. Note, however, that considerably more axioms and
assertions than the ones mentioned are required for these deductions.

Classification into Driving Directions (A1 and A2)

The map tells that road durlacher_allee_west is OneWayEntering, and roads
durlacher_allee_ost and bertholdstraße are OneWayExiting. Each of the six
Lanes is trivially classifiable therefrom by simply propagating the road’s label.
(axioms 1-2 in TDrivingDirection (Sec. 5.3.3), and axioms 1-3 in TDefineables

(Sec. 5.1.5).

Positive Classification into Turning Lane Types (A3 to A5)

Each lane must be reachable by at least one driveable path (axiom 2 in TPaths

(Sec. 5.3.5)). The OneWayExiting lane of durlacher_allee_ost can only be
reached by a lane which allows for ∃drivingDirection.Entering (same axiom),
which rules out bertholdstraße. From the three lanes of durlacher_allee_west,
at least the eastmost lane (with respect to the egocentric road frame) must be a
StraightAheadLane. This is because in right-handed traffic, RightTurnLanes
are east of StraightAheadLanes which are east of LeftTurnLanes (all axioms
in TRightHandedTraffic (Sec. 5.3.1)), and because there is no RightTurnLane on
this road since there is no other road in headingEastwards from it (map data).

The notion of a driveable path implies that no lane-change is required (axioms 4 to
6 in TPaths (Sec. 5.3.5)) and therefore a LeftTurnLane has exactly one driveable
path westwards. For this reason, and to satisfy the reachability axiom mentioned
above for the remaining lanes, the other two lanes of durlacher_allee_west and the
two lanes of bertholdstraße must connect pairwise.
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Figure 6.8: Experiment Results for Intersection 8. (a) Pictorial representation
of the knowledge available after reasoning (compare to Figure 6.7). All three
sensors and correct driver behaviour have been used as input (see Figs. 6.7(a) and
6.7(f)). (b) Knowledge available if at t1 additionally the left divider of the ego-
lane (Dashed u 12cm) were detected by the vision sensor (Fig. 6.7(e)). The
intersection is almost fully reconstructed with respect to the tasks, even though
only a fraction of the information was contained explicitly in the sensors. (c)
Satellite image of the intersection, together with the names of the Road instances.
(Source: City of Karlsruhe, VLW geo data)
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Negative Classification into Turning Lane Types (A3 to A5)

Only lanes which permit to enter the junction can be TurningLanes (defining ax-
iom in TDefineables (Sec. 5.1.5)). This rules out all lanes of durlacher_allee_ost
and bertholdstraße (from A1 and A2).

No lane of durlacher_allee_west can be a RightTurnLane because their is no road
heading eastwards on that junction (map data).

Its leftmost lane cannot be a StraightAheadLane any more, because it has a
LeftTurnLane as its east neighbour (axiom for right-handed traffic, see above). Its
rightmost lane cannot be a LeftTurnLane any more, because all driveable paths to
the eastwards road are ”taken” already by its other two lanes (from positive A3).

The only uncertainty left concerns the StraightAheadLane label for its middle
lane: It could allow for turning left, as well as for driving straight ahead, because
StraightAheadLanes may merge into one lane (axiom 6 in TPaths (Sec. 5.3.5)).

Classification into Admissible Traffic Participants (A6 and A7)

Each road must have at least one MotorVehLane (axioms 1-2 in TLaneTypes

(Sec. 5.3.4)). If there is a BicycleLane present, it must be the eastmost lane of
its TurningLane type (axioms 9-11 in TLaneTypes (Sec. 5.3.4)). This yields the
depicted classifications for lanes on durlacher_allee_west and bertholdstraße.

The vehicle is on bertholdstraße at t3 (positioning device data). Because of the
detected Dashed u 12cm eastern divider of the ego-lane at t3 (video data), there
must be another lane to the east of it (axiom 1 in TDividers (Sec. 5.3.2)). As there
are only two lanes on that road (map data, closure of Lane concept (sec. 6.1)),
the vehicle is on the western one. That lane is a MotorVehLane (assumption of
correct driver behaviour).

Data Association of Ego-Lane (A8)

The ego-lane at t3 is the westmost lane of bertholdstraße (from A6 and A7). The
ego-lane at t1 must be one of the two LeftTurnLanes (positioning device data,
assumption of correct driver behaviour). This fact can also be derived from the
divider at t1 (vision sensor), from which it follows that there is some neighbour-
ing lane east of the ego-lane (axiom 1 in TDividers (Sec. 5.3.2)). However, it is
unknown which of the two lanes the vehicle is on.
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Detection of Lane Transitions ( A9) and Classification into Geometric Primi-
tives (A10)

The StraightAheadLane of durlacher_allee_west (A4) has a driveable path to
durlacher_allee_ost lane, because it is the only lane straightAhead of it (map
data, closure of Lane concept (sec. 6.1)). That path must be of geometric
shape GP1. GP3 is ruled out because it is a StraightAheadLane (axiom 3
in TPathGeometry (Sec. 5.3.6)), and a GP2 shaped lane-merging may only oc-
cur on junctions with less than three aligned roads (axioms 5-6 in TPathGeometry

(Sec. 5.3.6)).

Although the other two lanes of durlacher_allee_west have a left turning path
(from A3, and definition of LeftTurnLane in TDefineables (Sec. 5.1.5)), for neither
it is known to which bertholdstraße lane it leads. This is because the fact that lane
transitions of the same TurningLane type may not cross cannot be axiomatised
(cf. Sec. 5.3.5).

Conclusions

Several conclusions can be drawn from this brief analysis of the experimental out-
come for ABox A8: First, the representation in a joint formal framework makes it
possible to fuse information from different sensors, such as the vision sensor and
the map, even though the vehicle’s ego-lane is not known and therefore precise data
registration is not possible. Second, this fusion is possible despite the very diverse
nature of the sensor data involved, ranging from high-level concepts describing
functionality, like OneWayRoad, to mid-level concepts describing geometry, like
12cm or GP1. Third, joint reasoning yields a synergy effect: Considerably more
conclusions can be drawn in total through joint reasoning, than if just adding up the
information given by each sensor in isolation (compare Figures 6.7(a) and 6.7(f)
with Figure 6.8(a)).

It is hard to demonstrate the benefits of a formal knowledge representation on an
isolated example, because this provokes a response like ”I could have coded that
much simpler with if-then rules in my source code”. Its benefits can instead only
be demonstrated by showing their validity on a large and diverse sample set (for
which the number of required if-then rules would combinatorially explode, and
would most likely yield erroneous results), and by proving easy adaptability to
different setups (such as other countries, other application areas, etc.). The next
four sections provide quantitative results on the sample set of 23 intersections.
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6.3.2 Model Validation

The first experiment is performed to test the validity of the model assump-
tions. This is done by checking consistency of each ground truth ABox
Ai,groundtruth, i ∈ 1, ..23 with respect to the RONNY TBox. If an intersection
ABox violates only one of the assumptions made in the TBox, it becomes in-
consistent. This indicates that one or several assumptions in RONNY are too re-
strictive. In this case, the responsible axioms can be removed or modified. If no
intersections are inconsistent, as a very diverse intersection sample set was cho-
sen, it substantiates the claim that the hypothesis space spanned by the qualitative
model RONNY comprises – at least – a very large subset out of the set of actually
existent intersections in Germany.

Out of the 23 sampled intersections, 21 were classified consistent. The intersec-
tions with number 2 and 9 were inconsistent. In both cases, the inconsistency
was due to the same cause: A lane designated for bicycles led to a separate bike
path outside of the road network. These lanes are highlighted in Figure 6.9. They
violated axiom 2 in TPaths (Sec. 5.3.5), which states

// No isolated lanes: A lane that connects to a junction
// has some driveable path.
Lane u ∃lonAligned.Junction v ∃lonAligned.LaneTransition .

According to the scene geometry model (Sec. 5.2), LaneTransitions connect to
exactly 2 Lanes, one on each end. As the complete set of Lanes is provided by
the map, the Lane concept has been axiomatised as a closed concept (Sec. 6.1),
which implies that no further lane must exist for that junction. However, the map
only contains lanes that are part of the road network, but not separate bike paths.
This causes the inconsistency.

RONNY must therefore be modified to account for the fact, that only lanes desig-
nated for cars require a driveable path to another lane on the road network. This
is achieved by a small modification of the axiom:

// No isolated lanes: A motor vehicle lane that connects to a junction
// has some driveable path.
MotorVehLaneu ∃lonAligned.Junction v ∃lonAligned.LaneTransition

With the modification, all 23 intersections classified consistent.
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(a) (b)

Figure 6.9: Intersections 9 (left) and 2 (right) classified inconsistent. The
BicyclesOnlyLane which left the road network and therefore caused the incon-
sistency, is marked by a black arrow. (Source: City of Karlsruhe, VLW geo data)

6.3.3 Object Classification

The second Experiment assesses classification reasoning. Seven binary clas-
sification tasks were performed for all Lane individuals on each intersection.
They are depicted in Fig. 6.6 as assertions A1 − A7. One ternary classification,
AGPi , i ∈ 1, 2, 3, was performed for LaneTransitions.

Classification result ?

G
ro

un
d

tr
ut

h #TP #FP #?P
#FN #TN #?N

Table 6.1 quantifies the results of
each classification task for the 10
ABoxes for which reasoning termi-
nated. All results are given in the
form of a confusion table (see right
Figure). Diagonal entries denote the number of correct classifications of the pre-
sented positive (#TP, ”true positive”) and negative (#TN, ”true negative”) samples.
Any number greater than zero on these entries represents a gain of information
compared to a system that does not use RONNY. Anti-diagonal entries (#FP and
#FN) denote misclassifications. As only deductive reasoning is performed, the
system will only deduce an individual’s class if its membership can be proven.
A misclassification, just like an ABox inconsistency, therefore indicates either a
TBox modelling error, or erroneous sensor data. #?P and #?N denote the num-
ber of unclassifiable samples. Obviously, each row sums to the total number of
presented positive/negative samples.

The driving direction was classified correctly for all lanes. As this task is trivially
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Table 6.1: Results for Object Classification. Refer to the legend in Fig. 6.6 and
the text for explanation.

A1 : lane : ¬∃drivingDirection.Entering

?

3 (21) 0 0
0 5 (21) 0

A2 : lane : ¬∃drivingDirection.Exiting

?

3 (19) 0 0
0 5 (23) 0

A3 : lane : LeftTurnLane

?

3 0 0
0 36 3

A4 : lane : StraightAheadLane

?

12 0 2
0 25 3

A5 : lane : RightTurnLane

?

5 0 1
0 34 2

A6 : lane : ¬MotorVehLane

?

0 0 0
0 35 7
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(Table 6.1 continued)

A7 : lane : ¬BicycleLane

?

9 0 22
0 0 11

A10GP i : hypind : GPi
?

GP1 GP2 GP3

GP1 4 0 0 13
GP2 0 0 0 2
GP3 0 0 7 1

solvable by two if-then-rules for those cases, in which only OneWay roads are
involved (the road class label just has to be propagated to the lanes’ level), only
the non-trivial cases have been used, that is those, where ¬OneWay roads are in-
volved. The complete number is given in brackets behind. The task exhibited zero
unclassifiable samples. Likewise, for almost all lanes the correct TurningLane
type could be derived. This means that the permitted driving directions and turn-
ing lane types of almost all lanes of an intersection can be deduced without actual
sensor data about most of them.

35 out of the 42 lanes were correctly classified as MotorVehLane. The sample
set did not contain any ¬MotorVehLanes. It turned out to be hard to distinguish
whether a MotorVehLane additionally allows for bicycles or not: Only 9 out of
42 lanes were classifiable into BicycleLane/¬BicycleLane. Closer observation
yielded that RONNY does not make any restricting assumptions about bicycle lanes
in urban areas. Most likely, hardly any hard constraints do actually apply there.
Finally, the geometry of 11 out of 26 lane transitions could be deduced.

Zero misclassifications were observed for all classification tasks, providing addi-
tional indication that RONNY’s domain model is able to represent a large variety
of intersections.
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6.3.4 Object Detection

Experiment 3 evaluates the detection rate on the task of detecting driveable paths,
i. e. LaneTransition individuals, between each pair of Lanes on a junction. The
existence of such a lane transition can either be Verified, making the hypothesised
individual hypind an actual instance of a LaneTransition, or Falsified. If there is
not enough information to perform the detection task, the individual will remain
unclassified in that respect. The following Table quantifies the detection result.

Table 6.2: Results for Object Detection. Refer to the legend in Fig. 6.6 and the
text for explanation.

A9 : hypind : LaneTransition

?

12 0 15
0 9 17

Using the RONNY TBox, the existence of almost half of the actually present drive-
able paths, and of more than one third of the non-driveable paths could be proven.
This is already a considerable gain in information. A limiting factor here, however,
is the fact, that the SHIQ DL does not support role chains. It can therefore not
be axiomatised that transitions from lanes of identical turning lane type must not
cross (cf. Sec. 5.3.5), and rules provide only weak remedy here.

6.3.5 Data Association

Experiment 4 assesses the performance of data association. The object to be asso-
ciated is the vehicle’s ego-lane, and it can be associated with any of the lanes on
the junction. In engineering terms, this task amounts to estimating the egopose of
the experimental vehicle with lane precision. The task is posed for time instants
t1 (entering the junction) and t3 (leaving the junction). In DL terms, association
corresponds to unifying two individuals, i. e. egolanetk

= lanei or to deducing
their semantic inequality, i. e. egolanetk

6= lanei, under the constraint the exactly
one equality holds.

As explained at the beginning of this Section (Sec. 6.3), including this task in the
collective reasoning leads to algorithm termination without a memory overflow for
only 4 ABoxes. This results in the large number of results labelled with ”?”. For
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Table 6.3: Results for Data Association. Refer to the legend in Fig. 6.6 and the
text for explanation.

A8 : lane = egolane

?

8 0 12

0 5 59

the 4 terminating ABoxes, however, the vehicle’s ego lane was correctly deduced
at both time steps.

Given the amount of available sensor data, this task is not solvable without domain
knowledge and a joint reasoning framework. The non-zero entries on the main di-
agonal of Table 6.3(a) therefore quantitatively demonstrate that DL-reasoning of-
fers problem solving capacities that go beyond the possibilities of purely geometric
Computer Vision algorithms.

6.4 Summary

It was demonstrated that deductive DL reasoning services are capable of perform-
ing the classic Computer Vision tasks of object detection, classification, and data
association. It was shown that it serves as a beneficial supplement on top of an ex-
isting mid-level Computer Vision system, producing a significant set of additional
results, but zero false positive and false negative results. The additional results
were obtained from the constraints applied from background knowledge, and from
the synergy effect achieved by joint evaluation of sensor data. Joint evaluation
was possible even although a precise data registration between the vision sensor
and the map was not available, and even though the description of the input data
differed widely with respect to types and abstraction layers used.

Computational limits, however, allowed evaluation of only 10 out of 23 sample
ABoxes, and when data association was included, only 4 out of 23 ABoxes could
be evaluated.

The explicit and modular representation allowed to pinpoint modelling flaws, such
as the one leading to the initial two ABox inconsistencies (Section 6.3.2), and to
correct them at minimal expense, that is without requiring to update any other part
of the representation.
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The RONNY KB proved sufficiently general to represent a large subset of the inter-
sections present in Germany. It is as well restrictive enough to produce a substan-
tial amount of conclusions under realistic sensor data. RONNY was able to cope
with incomplete as well as with locally complete sensor data, and with a redundant
sensor setting.
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7 Conclusion

7.1 Summary

The task of Scene Understanding requires a suitable representation and reason-
ing framework. No classical framework has so far proven the silver bullet for
flexible understanding of natural scenes, and the required properties of such a
formalism are not yet clear. Fortunately, the last decade witnessed the develop-
ment of some promising formal languages, one of which is the Description Logic
fragment of First Order Logic. The present thesis investigated the suitability of
Description Logic as a representation and reasoning formalism for Scene Under-
standing. Complex road intersections were selected as the application domain, the
expressive Description Logic SHIQ and the optimised RACERPRO reasoner as
the reference framework.

An extensive literature survey concluded that logic-enhanced systems have not yet
proven superior over state-of-the-art quantitative Computer Vision algorithms. It
was argued, that some of the hoped-for advantages of logic –modularity, read-
ability, semantic unambiguity, and thus reusability– can only become quantifiable
when reasoning with a realistically large body of scene knowledge (otherwise a
propositional language or even if-then rules in the source code would suffice). In
analogy to object-oriented software engineering, engineering of such a knowledge
base requires reusable KB modules, coding design patterns, and literature on KB
engineering, for the Scene Understanding domain.

As a step in that direction, the present contribution elaborated on a principled
translation of Computer Vision characteristics into the DL framework. Design
patterns, intended for reuse, were proposed for some of these translations. It was
argued that some crucial Computer Vision characteristics, such as incompleteness
of sensor data, particularly of the number of detected objects, already map to DL’s
inherent representational paradigms. It was however also stated, that Computer Vi-
sion additionally requires the ability to express local completeness of information,
which is not axiomatisable in DL. Therefore a pattern was provided which approx-
imates the required closure axioms. In a next step, several typical sensor setups
–partial/locally complete data in a redundant/complementary setup– were mapped
into DL axioms. Addressing representation of geometry, a hypothesis space for
qualitative scene geometries was proposed, along with a graphical UML-like spec-
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ification language and a design pattern for its translation into DL. It was shown that
several classic Computer Vision problems –object detection, object classification,
and data association– can be solved by classic DL reasoning services, and corre-
sponding design patterns were provided for each.

An extensive case study in the domain of road networks has been conducted. The
road network ontology RONNY was introduced, a SHIQ TBox which models the
qualitative geometry and building regulations of road intersections for the purpose
of Scene Understanding. It makes extensive use of the design patterns proposed
before. The set of ABoxes that is consistent with the RONNY TBox corresponds
to the hypothesis space of admissible intersections that is set up by the RONNY
model. An ABox consists of arbitrary intersection sensor data that is formulated
in the RONNY vocabulary.

A quantitative evaluation of DL reasoning capabilities with respect to Intersection
Understanding and of the applicability of RONNY’s domain model was performed.
It was based on a sample set of 23 diverse and complex intersections from urban
and non-urban roads in Germany. Three sensors, a digital map, a global position-
ing device and a realistic simulation of vision-based object detectors, were used
as data input. For each intersection, DL reasoning was applied to a couple of
Scene Understanding tasks, namely: Which driving directions does each lane per-
mit (classification task) ? Which traffic participants (bicycles, cars) are allowed
on each lane (classification task)? Between which lane pairs do driveable paths
exist (detection task)? Which of the map’s lanes is equivalent to the ego-lane (data
association task)?

RONNY’s intersection model has been shown to be expressive, as all intersections
in the sample set are contained in its hypothesis space. Yet it has been shown to be
restrictive enough to yield a substantial amount of additional correct conclusions
about the intersection scene, particularly in areas where no sensor data is available.

7.2 Evaluation: Description Logic for Scene Under-
standing

Based on the experiences gathered during the case study, the following paragraph
evaluates the overall suitability of the Description Logic formalism to Scene Un-
derstanding.
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Reasoning Services

+ Collective Reasoning DL reasoning is performed jointly for all tasks posed
and for all individuals. This provides for a considerable synergy effect during
reasoning: More conclusions can be drawn through joint reasoning than by adding
up the conclusions drawn from each sensor in isolation.

+ Deductive Reasoning Several classic Computer Vision reasoning tasks have
been shown to be readily solvable by classic deductive DL reasoning. In addi-
tion, deduction will not force any result under insufficient information (zero false
positives or true negatives provided that the domain model is correct).

– Non-monotonic Reasoning Non-monotonic inferences are not supported by
classic deductive DL reasoning. This means that a once drawn conclusion can
never be invalidated in the future. According to a modern understanding of vision,
however, hypotheses are generated under highly incomplete evidence (e. g. (Gre-
gory 1997)), which implies that the arrival of new information will oftentimes
trigger the revision of previous beliefs. Promising extensions of DL to support this
type of reasoning are discussed in the Outlook.

Knowledge Representation

+ First-order Language The first-order representation proved very beneficial in
representing ”generic hypothesis spaces”, that is those, whose number and type of
free parameters depends on the particular problem instance. As an example, the
number of classification tasks to be solved varied between 21 (for intersectionA1),
and 105 (for intersection A9). The problem representation thereby also changed
structure considerably. A propositional language would require tailoring the rep-
resentation to each such instance. A sample set as diverse as the one considered
here would not be feasible in a propositional language.

+ KR Paradigms The Open World Assumption and the Open Domain Assump-
tion, two representational paradigms underlying DL, are required for a representa-
tion language for Scene Understanding (see Section 4.3).

+ Sensor Data Integration The formal framework makes it possible to fuse qual-
itative data from different sensing devices. This is possible even though this data
internally differs widely with respect to type and abstraction layer of the descrip-
tions of instances (e. g. an UrbanRoad vs. a 12cm divider width, ...), and of the
relations that hold among them (e. g. geometric vs. functional, ...). Data fusion is
possible even if precise data registration is not available (e. g. between a map and
a vision sensor).
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– Spatial Calculi SHIQ does not offer role-forming constructors. For the ax-
iomatisation of spatial calculi, the lacking expressiveness of role disjointness, and
of role coverage by other roles, is particularly problematic, as the JEPD property
is not axiomatisable then. Although the present thesis proposed a workable ap-
proximation through closures, this property makes SHIQ not an ideal candidate
for spatial reasoning, a crucial component of a Scene Understanding system.

– No feature/role chains As DL is a two-variable fragment of FOL, and as SHIQ
does not offer feature/role chains, relations between three or more individuals can-
not be expressed in that formalism. Trigger rules cannot be used as a remedy in
every case. This can considerably limit the number of drawable inferences for
complex relational domains.

Knowledge Engineering

+ Modularity The representation proved explicit and modular enough to pinpoint
modelling flaws, such as the one leading to the initial two ABox inconsistencies
(Section 6.3.2), and to correct them at minimal expense, that is without requiring
to update any other part of the representation.

+ Developer and User Community The Semantic Web initiative has fostered a
lively mutual exchange between developer and user community, making it possible
that perceived shortcomings of the language and the implementations are rapidly
tackled by the developers. Such an interaction is crucial since a KR formalism will
require continuous adjustment to meet current and future requirements of Scene
Understanding.

+/– Readability The representation is modular, explicit, and follows an object-
oriented paradigm. This makes the KB well readable. However, the lacking lan-
guage expressiveness mentioned above has a negative impact here. As for some
roles, role semantics is not properly axiomatisable (such as roles that are defined
on the basis of other roles (like the Neighbourhood relations, which are based
on the Alignedness relations (Sec. 5)), counterintuitive reasoning behaviour is
sometimes observed, which in turn requires more extensive KB documentation.
It furthermore forces the knowledge engineer to resort to trigger rules and to pro-
gramming language workarounds, which also decrease readability and modularity.

– Computational Performance and Maturity of Implementations A RONNY
KB, that is a SHIQ KB containing about 50 concepts, 30 roles, and about 600
ABox assertions for a medium complex intersection, is at the computational
limit of what is achievable with current DL reasoning technology. Reasoning
about such an intersection takes about one hour. During TBox development, it
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can take several hours to find out (via memory overflow) that a coded axiom
increases KB complexity too far. Given that RACERPRO is likely to be the most
highly optimised ABox reasoner on the market, the integration with other KBs
concerning vehicles or legal traffic rules –which might yield an impressive Scene
Understanding system– is outside the scope of current reasoners. In addition, the
technology is still evolving. In the course of the above case study, a considerable
number of bugs were reported (and corrected by the developers!). These factors
slow down KB development by a large amount.

In summary, the SHIQ DL and the RACERPRO implementation have proven a
suitable representation and reasoning framework for Scene Understanding, natu-
rally meeting many characteristics of Scene Understanding per se, and allowing for
sound knowledge engineering. However, each of the mentioned downsides must
be addressed before full-fledged DL-based Scene Understanding systems can be
envisaged.

7.3 Outlook

7.3.1 Hypothesis Formation: Model Construction

A combination of deductive and hypothetical reasoning seems adequate for gen-
eral Scene Interpretation. This view is also taken by (Schröder 1999), (Poole 1989)
and (Neumann and Möller 2006). This requires extending classic DL reasoning
services to support non-monotonic reasoning. Such hypothetico-deductive reason-
ing can enable a very desirable reasoning task for Scene Understanding, so-called
model construction. It denotes the automatic construction of the set of all scene
hypotheses given the sensor data and the background knowledge. In logical terms,
this amounts to computing the set of all logical models of the KB. The following
paragraphs sketch three extensions of deductive DL reasoning, that would enable
model construction.

Modification of a Tableau Calculus

In principle, the development of a model construction algorithm can build on the
research on Tableau Calculi which are used for satisfiability testing of TBoxes and
consistency testing of ABoxes (cf. e. g. (Baader et al. 2003)). They apply a set
of so-called consistency-preserving completion rules to the original ABox. The
presence of ∃ and t symbols in the TBox triggers so-called non-deterministic
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rules which split the ABox in a depth-first-search way. The process stops when
no more rules can be applied or when an obvious contradiction occurs. In the first
case the generated model satisfies all TBox and all ABox axioms. The latter proves
that the knowledge base is inconsistent. Tableau calculi thus create a model of the
KB as a proof for its satisfiability.

However, tableau calculi are not straightforwardly applicable to Scene Interpreta-
tion, as they do not output the model but a mere yes/no answer, as they are highly
optimised and therefore produce rather ”canonical models”, and as they stop af-
ter having found one model, preferring simpler ones. The implementation of a
special-tailored calculus would be required instead. The following two alterna-
tives are therefore more promising.

Abduction

In a DL context, abduction refers to the task of explaining a set of ABox assertions
Γ by a given DL knowledge baseKB and a further set of assertions, the hypothesis
or theory ∆. After adding the hypothesis to the set of axioms, the observations
follow as a logical consequence:

KB t ∆ |= Γ

Using abduction and deduction in concert, a Scene Interpretation system can be
realised: First, the most promising hypotheses are formed that might explain the
sensor data using abduction. Second, the most promising hypothesis according
to some preference measure is added to KB. Third, the consequences of the hy-
pothesis are computed using deduction. Finally, based on the new knowledge a
new selective active sensory measurement is carried out, leading back to step one
(Shanahan 2005). (Möller and Neumann 2008) have recently presented the first
account of abductive-deductive reasoning in DL. Preparing the developed knowl-
edge base to allow for abduction, and then using the recently published proto-
typical RACERPRO implementation of abduction, is a promising step towards a
full-fledged DL-based Scene Understanding architecture.

Answer Set Programming

Answer Set Programming (ASP) emerged in the late 1990s as a powerful non-
monotonic logic-programming paradigm (cf. Chapter 1). Recently, research ef-
forts are made to combine ASP with DL, see e. g. the DL programs introduced by
(Schindlauer 2006). With comparatively little effort, it might be possible to port
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the DLKB developed in this contribution to an ASP solver, which then computes
the set of Scene Interpretation hypotheses as its answer sets. To the best of the
author’s knowledge, ASP has not been used for Scene Interpretation yet.

7.3.2 Probabilistic Logic Learning

Uncertain knowledge cannot be represented within the classic logic formalism.
Although research efforts are under way to combine DL with probability theory,
no robust implementation seems in sight for the near future. However, by the
time of finishing this thesis, a new field called Probabilistic Logic Learning had
just formed ((Getoor and Taskar 2007), and cf. also Chapter 1). This field unifies
research on logic, probability theory, and machine learning under a common algo-
rithmic roof. Implementations are right now in an early beta stadium. (Bachmann
and Lulcheva 2009) have demonstrated the applicability of these formalisms in a
Computer Vision context. It would be insightful to conduct the following exper-
iment: First, port RONNY and the sample intersection ABoxes to FOL. Such a
logically equivalent FOL formulation is easily constructible, as DL is a fragment
of FOL and as e. g. (Baader et al. 2003) provides a unique mapping. Second, add
more, soft formulas about typical intersection structures. Third, use an available
implementation like ALCHEMY to learn weights for these formulas from the sam-
ple intersections, the weights corresponding to the truthfulness of these formulas.
And finally, use that implementation to compute the marginal probabilities of any
of the query assertions described in Chapter 6, given some example intersection
as the evidence. Ideally, this will yield the conditional probability of the query
assertion given the evidence, the hard RONNY formulas, and the soft formulas,
for each individual. This approach might be able to combine sound knowledge
engineering, as enabled by the mature and tool-supported DL framework, with a
probabilistic learning framework.
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