20 research outputs found

    Computer-based studies on bioprocess engineering : II - Tools for process operation

    Get PDF
    In this paper we review recent advances on the practice and theory of process control with particular emphasis to the operation of bioreactors. We present in detail a case-study on the modelling, model-based identification and adaptive control of fed-batch baker's yeast fermentation.Junta Nacional de Investigação Científica e Tecnológica (JNICT) - contract numbers BD/224/90-IF, BD/1476/91-RM.Instituto Nacional de Investigação Científica (INIC)

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Proton beam steering control system for high precision radiotherapy at iThemba LABS : an investigation on actuator saturation constraints

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 101-106).This thesis aims at studying some of the techniques used to deal with constraints with special application to the Proton beam steering control at iThemba LABS. The steering of charged particles occurring in research plants is one of the interests of control systems. In this work an investigation of the algorithm for the control of the proton beam steering system in the radiotherapy treatment facility at iThemba LABS is conducted. This algorithm is intended to autonomously maintain the beam centered with reference to the axis of the beamline, and keep the beam front parallel to the central axis of the beamline as stated by van Tubbergh and De Kock, 2006. Furthermore, the algorithm is responsible for monitoring the distribution of the proton beam, in a plane normal to the beam travel direction

    Dynamic modelling and control of a flexible manoeuvring system.

    Get PDF
    In this research a twin rotor multi-input multi-output system (TRMS), which is a laboratory platform with 2 degrees of freedom (DOF) is considered. Although, the TRMS does not fly, it has a striking similarity with a helicopter, such as system nonlinearities and cross-coupled modes. Therefore, the TRMS can be perceived as an unconventional and complex "air vehicle" that poses formidable challenges in modelling, control design and analysis, and implementation. These issues constitute the scope of this research. Linear and nonlinear models for the vertical movement of the TRMS are obtained via system identification techniques using black-box modelling. The approach yields input-output models without a priori defined model structure or specific parameter settings reflecting any physical attributes of the system. Firstly, linear parametric models, characterising the TRMS in its hovering operation mode, are obtained using the potential of recursive least squares (RLS) estimation and genetic algorithms (GAs). Further, a nonlinear model using multi-layer perceptron (MLP) neural networks (NNs) is obtained. Such a high fidelity nonlinear model is often required for nonlinear system simulation studies and is commonly employed in the aerospace industry. Both time and frequency domain analyses are utilised to investigate and develop confidence in the models obtained. The frequency domain verification method is a useful tool in the validation of extracted parametric models. It allows high-fidelity verification of dynamic characteristics over a frequency range of interest. The resulting models are utilized in designing controllers for low frequency vibration suppression, development of suitable feedback control laws for set-point tracking, and design of augmented feedforward and feedback control schemes for both vibration suppression and set-point tracking performance. The modelling approaches presented here are shown to be suitable for modelling complex new generation air vehicles, whose flight mechanics are not well understood. Modelling of the TRMS revealed the presence of resonance modes, which are responsible for inducing unwanted vibrations in the system. Command shaping 11 control strategies are developed to reduce motion and uneven mass induced vibrations, produced by the main rotor during the vertical movement around the lateral axis of the TRMS rig. 2-impulse, 3-impulse and 4-impulse sequence input shapers and Iow-pass and band-stop digital filters are developed to shape the command signals such that the resonance modes are not overly excited. The effectiveness of this concept is then demonstrated in both simulation and real-time experimental environments in terms of level of vibration reduction using power spectral density profiles of the system response. Combinations of intelligent and conventional techniques are commonly used the control of complex dynamic systems. Such hybrid schemes have proved to be efficient and can overcome the deficiencies of conventional and intelligent controllers alone. The current study is confined to the development of two forms of hybrid control schemes that combine fuzzy control and conventional PID compensator for input tracking performance. The two hybrid control strategies comprising conventional PO control plus PlO compensator and PO-type fuzzy control plus PlO compensator are developed and implemented for set-point tracking control of the vertical movement of the TRMS rig. It is observed that the hybrid control schemes are superior to other feedback control strategies namely, PlO compensator, pure PO-type and PI-type fuzzy controllers in terms of time domain system behaviour. This research also witnesses investigations into the development of an augmented feedforward and feedback control scheme (AFFCS) for the control of rigid body motion and vibration suppression of the TRMS. The main goal of this framework is to satisfy performance objectives in terms of robust command tracking, fast system response and minimum residual vibration. The developed control strategies have been designed and implemented within both simulation and real-time environments of the TRMS rig. The employed control strategies are shown to demonstrate acceptable performances. The obtained results show that much improved tracking is achieved on positive and negative cycles of the reference signal, as compared to that without any control action. The system performance with the feedback controller is significantly improved when the feedforward control component is added. This leads to the conclusion that augmenting feedback control with feedforward method can lead to more practical and accurate control of flexible systems such as the TRMS

    Diseño de un controlador predictivo generalizado multivariable para el control de una celda de flotación tipo columna utilizada en el proceso de recuperación de cobre

    Get PDF
    La industria extractiva de minerales, en el Perú, es un actor muy importante de desarrollo económico y tecnológico. Destacando el cobre como principal mineral. Es importante, como país minero, desarrollar investigaciones y tecnologías que ayuden a mejorar el proceso de extracción y concentración de minerales. En la industria minera actual, donde se ha conseguido un gran avance en la automatización, aún existen grandes retos y oportunidades de mejorar los procesos en búsqueda de una mejor eficiencia. Una de las etapas más importantes y críticas es la concentración de minerales mediante el uso de celdas de flotación. El control efectivo de este proceso permite obtener niveles adecuados e importantes de grado y recuperación en el concentrado de mineral. En el caso de las celdas de flotación tipo columna, el comportamiento es multivariable y muy dinámico por ser dependiente de los cambios de las características del mineral que se procesa y de las perturbaciones de la planta. Es ampliamente conocido que el control predictivo basado en modelos constituye una poderosa herramienta de control de plantas multivariable que presentan un comportamiento dinámico complejo como en el caso de la celda de flotación tipo columna. Es por esto, que el objetivo en la tesis es diseñar un controlador predictivo generalizado (GPC) multivariable para el control efectivo de una celda de flotación tipo columna utilizada en el proceso de recuperación de cobre. El modelo matemático obtenido tiene un grado de aceptación FIT superior a 80%. Se realizaron evaluaciones comparativas del sistema de control de la celda de flotación tipo columna, con los controladores GPC multivariable y PI diseñados considerando diferentes escenarios de operación e índices de desempeño. Se determinó que, el mejor desempeño del sistema de control se obtiene cuando se aplica el controlador GPC multivariable diseñado.Tesi

    Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs

    Get PDF
    Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural networks (ANN) augmentation, and NLDI with L1 adaptive control augmentation. A simulation environment is applied to evaluate the performance of these control algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight test results are presented for the implementation of the baseline NLDI, NLDI augmented with adaptive ANN and NLDI augmented with L1 adaptive control algorithms in a DJI F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and evaluate the overall performance of the developed control algorithms under external wind disturbances. The obtained results show that the extended NLDI exhibits undesired characteristics while the augmentation of the baseline NLDI control law with adaptive ANN and L1 output-feedback adaptive control improve the robustness of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances

    Implementation of self-tuning control for turbine generators

    Get PDF
    PhD ThesisThis thesis documents the work that has been done towards the development of a 'practical' self-tuning controller for turbine generator plant. It has been shown by simulation studies and practical investigations using a micro-alternator system that a significant enhancement in the overall performance in terms of control and stability can be achieved by improving the primary controls of a turbine generator using self-tuning control. The self-tuning AVR is based on the Generalised Predictive Control strategy. The design of the controller has been done using standard off-the-shelf microprocessor hardware and structured software design techniques. The proposed design is thus flexible, cost-effective, and readily applicable to 'real' generating plant. Several practical issues have been tackled during the design of the self-tuning controller and techniques to improve the robustness of the measurement system, controller, and parameter estimator have been proposed and evaluated. A simple and robust measurement system for plant variables based on software techniques has been developed and its suitability for use in the self-tuning controller has been practically verified. The convergence, adaptability, and robustness aspects of the parameter estimator have been evaluated and shown to be suitable for long-term operation in 'real' self-tuning controllers. The self-tuning AVR has been extensively evaluated under normal and fault conditions of the turbine generator. It has been shown that this new controller is superior in performance when compared with a conventional lag-lead type of fixed-parameter digital AVR. The use of electrical power as a supplementary feedback signal in the new AVR is shown to further improve the dynamic stability of the system. The self-tuning AVR has been extended to a multivariable integrated self-tuning controller which combines the AVR and EHG functions. The flexibility of the new AVR to enable its expansion for more complex control applications has thus been demonstrated. Simple techniques to incorporate constraints on control inputs without upsetting the loop decoupling property of the multivariable controller have been proposed and evaluated. It is shown that a further improvement in control performance and stability can be achieved by the integrated controller.Parsons Turbine Generators Ltd

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines
    corecore