773 research outputs found

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    Operations Research Modeling of Cyclic Train Timetabling, Cyclic Train Platforming, and Bus Routing Problems

    Get PDF
    Public transportation or mass transit involves the movement of large numbers of people between a given numbers of locations. The services provided by this system can be classified into three groups: (i) short haul: a low-speed service within small areas with high population; (ii) city transit: transporting people within a city; and (iii) long haul: a service with long trips, few stops, and high speed (Khisty and Lall, 2003). It can be also classified based on local and express services. The public transportation planning includes five consecutive steps: (i) the network design and route design; (ii) the setting frequencies or line plan; (iii) the timetabling; (iv) the vehicle scheduling; and (v) the crew scheduling and rostering (Guihaire and Hao, 2008; Schöbel, 2012). The first part of this dissertation considers three problems in passenger railway transportation. It has been observed that the demand for rail travel has grown rapidly over the last decades and it is expected that the growth continues in the future. High quality railway services are needed to accommodate increasing numbers of passengers and goods. This is one of the key factors for economic growth. The high costs of railway infrastructure ask for an increased utilization of the existing infrastructure. Attractive railway services can only be offered with more reliable rolling stock and a more reliable infrastructure. However, to keep a high quality standard of operations, smarter methods of timetable construction are indispensable, since existing methods have major shortcomings. The first part of this dissertation, comprising Chapters 1-6, aims at developing a cyclic (or periodic) timetable for a passenger railway system. Three different scenarios are considered and three mixed integer linear programs, combined with heuristics for calculating upper and lower bounds on the optimal value for each scenario, will be developed. The reason of considering a periodic timetable is that it is easy to remember for passengers. The main inputs are the line plan and travel time between and minimum dwell time at each station. The output of each model is an optimal periodic timetable. We try to optimize the quality of service for the railway system by minimizing the length of cycle by which trains are dispatched from their origin. Hence, we consider the cycle length as the primary objective function. Since minimizing travel time is a key factor in measuring service quality, another criterion--total dwell time of the trains--is considered and added to the objective function. The first problem, presented in Chapter 3, has already been published in a scholarly journal (Heydar et al., 2013). This chapter is an extension of the work of Bergmann (1975) and is the simplest part of this research. In this problem, we consider a single-track unidirectional railway line between two major stations with a number of stations in between. Two train types--express and local--are dispatched from the first station in an alternate fashion. The express train stops at no intermediate station, while the local train should make a stop at every intermediate station for a minimum amount of dwell time. A mixed integer linear program is developed in order to minimize the length of the dispatching cycle and minimize the total dwell time of the local train at all stations combined. Constraints include a minimum dwell time for the local train at each station, a maximum total dwell time for the local train, and headway considerations on the main line an in stations. Hundreds of randomly generated problem instances with up to 70 stations are considered and solved to optimality in a reasonable amount of time. Instances of this problem typically have multiple optimal solutions, so we develop a procedure for finding all optimal solutions of this problem. In the second problem, presented in Chapter 4, we present the literature\u27s first mixed integer linear programming model of a cyclic, combined train timetabling and platforming problem which is an extension of the model presented in Chapter 3 and Heydar et al. (2013). The work on this problem has been submitted to a leading transportation journal (Petering et al., 2012). From another perspective, this work can be seen as investigating the capacity of a single track, unidirectional rail line that adheres to a cyclic timetable. In this problem, a set of intermediate stations lies between an origin and destination with one or more parallel sidings at each station. A total of T train types--each with a given starting and finishing point and a set of known intermediate station stops--are dispatched from their respective starting points in cyclic fashion, with one train of each type dispatched per cycle. A mixed integer linear program is developed in order to schedule the train arrivals and departures at the stations and assign trains to tracks (platforms) in the stations so as to minimize the length of the dispatching cycle and/or minimize the total stopping (dwell) time of all train types at all stations combined. Constraints include a minimum dwell time for each train type in each of the stations in which it stops, a maximum total dwell time for each train type, and headway considerations on the main line and on the tracks in the stations. This problem belongs to the class of NP-hard problems. Hundreds of randomly generated and real-world problem instances with 4-35 intermediate stations and 2-11 train types are considered and solved to optimality in a reasonable amount of time using IBM ILOG CPLEX. Chapter 5 expands upon the work in Chapter 4. Here, we present a mixed integer linear program for cyclic train timetabling and routing on a single track, bi-directional rail line. There are T train types and one train of each type is dispatched per cycle. The decisions include the sequencing of the train types on the main line and the assignment of train types to station platforms. Two conflicting objectives--(1) minimizing cycle length (primary objective) and (2) minimizing total train journey time (secondary objective)--are combined into a single weighted sum objective to generate Pareto optimal solutions. Constraints include a minimum stopping time for each train type in each station, a maximum allowed journey time for each train type, and a minimum headway on the main line and on platforms in stations. The MILP considers five aspects of the railway system: (1) bi-directional train travel between stations, (2) trains moving at different speeds on the main line, (3) trains having the option to stop at stations even if they are not required to, (4) more than one siding or platform at a station, and (5) any number of train types. In order to solve large scale instances, various heuristics and exact methods are employed for computing secondary parameters and for finding lower and upper bounds on the primary objective. These heuristics and exact methods are combined with the math model to allow CPLEX 12.4 to find optimal solutions to large problem instances in a reasonable amount of time. The results show that it is sometimes necessary for (1) a train type to stop at a station where stopping is not required or (2) a train type to travel slower than its normal speed in order to minimize timetable cycle time. In the second part of this dissertation, comprising Chapters 7-9, we study a transit-based evacuation problem which is an extension of bus routing problem. This work has been already submitted to a leading transportation journal (Heydar et al., 2014). This paper presents a mathematical model to plan emergencies in a highly populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features a two-level operational framework. The first level operation guides evacuees through urban streets and crosswalks (referred to as the pedestrian network ) to designated pick-up points (e.g., bus stops), and the second level operation properly dispatches and routes a fleet of buses at different depots to those pick-up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so-called vehicular network. An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in the two networks. Since the large instances of the proposed model are mathematically difficult to solve to optimality, a two-stage heuristic is developed to solve larger instances of the model. Over one hundred numerical examples and runs solved by the heuristic illustrate the effectiveness of the proposed solution method in handling large-scale real-world instances

    Human factors of future rail intelligent infrastructure

    Get PDF
    The introduction of highly reliable sensors and remote condition monitoring equipment will change the form and functionality of maintenance and engineering systems within many infrastructure sectors. Process, transport and infrastructure companies are increasingly looking to intelligent infrastructure to increase reliability and decrease costs in the future, but such systems will present many new (and some old) human factor challenges. As the first substantial piece of human factors work examining future railway intelligent infrastructure, this thesis has an overall goal to establish a human factors knowledge base regarding intelligent infrastructure systems, as used in tomorrow’s railway but also in many other sectors and industries. An in-depth interview study with senior railway specialists involved with intelligent infrastructure allowed the development and verification of a framework which explains the functions, activities and data processing stages involved. The framework includes a consideration of future roles and activities involved with intelligent infrastructure, their sequence and the most relevant human factor issues associated with them, especially the provision of the right information in the right quantity and form to the right people. In a substantial fieldwork study, a combination of qualitative and quantitative methods was employed to facilitate an understanding of alarm handling and fault finding in railway electrical control and maintenance control domains. These functions had been previously determined to be of immediate relevance to work systems in the future intelligent infrastructure. Participants in these studies were real railway operators as it was important to capture users’ cognition in their work settings. Methods used included direct observation, debriefs and retrospective protocols and knowledge elicitation. Analyses of alarm handling and fault finding within real-life work settings facilitated a comprehensive understanding of the use of artefacts, alarm and fault initiated activities, along with sources of difficulty and coping strategies in these complex work settings. The main source of difficulty was found to be information deficiency (excessive or insufficient information). Each role requires different levels and amounts of information, a key to good design of future intelligent infrastructure. The findings from the field studies led to hypotheses about the impact of presenting various levels of information on the performance of operators for different stages of alarm handling. A laboratory study subsequently confirmed these hypotheses. The research findings have led to the development of guidance for developers and the rail industry to create a more effective railway intelligent infrastructure system and have also enhanced human factors understanding of alarm handling activities in electrical control

    Full Issue 19(4)

    Get PDF

    Human factors of future rail intelligent infrastructure

    Get PDF
    The introduction of highly reliable sensors and remote condition monitoring equipment will change the form and functionality of maintenance and engineering systems within many infrastructure sectors. Process, transport and infrastructure companies are increasingly looking to intelligent infrastructure to increase reliability and decrease costs in the future, but such systems will present many new (and some old) human factor challenges. As the first substantial piece of human factors work examining future railway intelligent infrastructure, this thesis has an overall goal to establish a human factors knowledge base regarding intelligent infrastructure systems, as used in tomorrow’s railway but also in many other sectors and industries. An in-depth interview study with senior railway specialists involved with intelligent infrastructure allowed the development and verification of a framework which explains the functions, activities and data processing stages involved. The framework includes a consideration of future roles and activities involved with intelligent infrastructure, their sequence and the most relevant human factor issues associated with them, especially the provision of the right information in the right quantity and form to the right people. In a substantial fieldwork study, a combination of qualitative and quantitative methods was employed to facilitate an understanding of alarm handling and fault finding in railway electrical control and maintenance control domains. These functions had been previously determined to be of immediate relevance to work systems in the future intelligent infrastructure. Participants in these studies were real railway operators as it was important to capture users’ cognition in their work settings. Methods used included direct observation, debriefs and retrospective protocols and knowledge elicitation. Analyses of alarm handling and fault finding within real-life work settings facilitated a comprehensive understanding of the use of artefacts, alarm and fault initiated activities, along with sources of difficulty and coping strategies in these complex work settings. The main source of difficulty was found to be information deficiency (excessive or insufficient information). Each role requires different levels and amounts of information, a key to good design of future intelligent infrastructure. The findings from the field studies led to hypotheses about the impact of presenting various levels of information on the performance of operators for different stages of alarm handling. A laboratory study subsequently confirmed these hypotheses. The research findings have led to the development of guidance for developers and the rail industry to create a more effective railway intelligent infrastructure system and have also enhanced human factors understanding of alarm handling activities in electrical control

    Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications

    Full text link
    [EN] The need for effective freight and human transportation systems has consistently increased during the last decades, mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally, transportation systems have been designed with the main goal of reducing their monetary cost while offering a specified quality of service. During the last decade, however, sustainability concepts are also being considered as a critical component of transportation systems, i.e., the environmental and social impact of transportation activities have to be taken into account when managers and policy makers design and operate modern transportation systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a classification of common challenges, best practices, future trends, and open research lines that might be useful for both researchers and practitioners.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T) and the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Torre-Martínez, MRDL.; Corlu, CG.; Faulin, J.; Onggo, BS.; Juan-Pérez, ÁA. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability. 13(3):1-21. https://doi.org/10.3390/su1303155112113

    Machine Learning based Wind Power Forecasting for Operational Decision Support

    Get PDF
    To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes an extremely hot topic since global warming is the most serious global environmental problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for generating electricity leads to environment pollution and exacerbates global warning. However, large-scale development of hydropower increases greenhouse gas emissions and greenhouse effects. This research is related to knowledge of wind power forecasting (WPF) and machine learning (ML). This research is built around one central research question: How to improve the accuracy of WPF by using AI methods? A pilot conceptual system combining meteorological information and operations management has been formulated. The main contribution is visualized in a proposed new framework, named Meteorological Information Service Decision Support System, consisting of a meteorological information module, wind power prediction module and operations management module. This conceptual framework has been verified by quantitative analysis in empirical cases. This system utilizes meteorological information for decision-making based on condition-based maintenance in operations and management for the purpose of optimizing energy management. It aims to analyze and predict the variation of wind power for the next day or the following week to develop scheduling planning services for WPEs based on predicting wind speed for every six hours, which is short-term wind speed prediction, through training, validating, and testing dataset. Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study presents a carefully designed wind speed prediction model which combines fully-connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each model is tested by using reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a significant advantage on training time while comparing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates great potential of the optimized deep learning (DL) method, which is a subset of machine learning (ML), in improving local weather forecast on the coding platform of Python. The results indicate that, by using Meteorological Information Service Decision Support System, it is possible to support effective decision-making and create timely actions within the WPEs. Findings from this research contribute to WPF in WPEs. The main contribution of this research is achieving decision optimization on a decision support system by using ML. It was concluded that the proposed system is very promising for potential applications in wind (power) energy management

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster
    corecore