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EXECUTIVE SUMMARY

Transit agencies, like other transportation agencies, are interested in assessing the short-, 
mid-, and long-term performances of their infrastructure with the objectives of making better 
decisions that will enhance their resiliency and efficiency. This report addresses three 
distinct aspects related to the resiliency and efficiency of New Jersey’s Transit System: 
1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency 
of transit systems with an emphasis on their disability paratransit service. While the three 
sections of the report are researched and compiled independently, they are considered 
important aspects of the resiliency and efficiency of transit systems.

For bridge structures in a transit network, this project proposed a conceptual framework to 
assess their performance and resiliency before and after disasters. The proposed approach 
uses structural health monitoring (SHM), finite element (FE) modeling and remote sensing 
using Interferometric Synthetic Aperture Radar (InSAR). SHM data on various types of 
bridges would be collected from on-site sensors to validate FE models, which in turn would be 
applied to assess damage and degree of resiliency post-disasters. On the other hand, using 
two case studies, it is also shown that InSAR technology is capable of acquiring damage 
information quantitatively to assess the impact of earthquakes on the bridge performance.

Additionally, this project also analyzed the public transit systems in New Jersey based on 
their vulnerability, resiliency, and efficiency in recovery following a major natural disaster 
event such as Hurricane Sandy. Various data-driven models were used to quantify a 
series of performance measures for the transit network. Analyzing the resiliency and 
vulnerability of public transit networks is extremely important in the context of natural 
disasters as these networks serve as important evacuation means. For this purpose, 
diverse traffic, infrastructure, events and web-based sources of Big Data were analyzed. 
Due to the sparsity of public transit measures for vulnerability, recovery and resiliency, 
many measures from existing literature were adapted to public transit. An estimate of 
the reliability of specific bus routes on the NJ Transit bus network was made. Following 
Hurricane Sandy, the NJ Transit bus transit network recovered much faster than the rail 
network, as the most critical link for NJ Transit buses remained intact despite loss of power 
for driving and signaling rail and subway systems.

Lastly, the third part of the report also presented the discussion about efficiency of the 
transit system with a specific emphasis on the disability paratransit service. Americans 
with Disabilities Act (ADA) complementary paratransit is an important service provided 
by transit agencies nationwide to their registered clients at a fairly high cost and the US 
Government Accountability Office has already emphasized the importance of improving the 
efficiency of paratransit service. In order to improve the efficiency of disability paratransit 
service and optimize the costs of paratransit service, the researchers fully investigated the 
current and future demand for trips based on available NJ Transit data by the identification 
of the trip generators, which could assist agencies in allocating resources to service 
contractors, realigning service regions, and determining location of facilities. The study 
first identifies the generators of Access Link trips at a macro level by analyzing data at the 
census block group level. Subsequently, it focuses on the establishments located in the 
immediate vicinity of drop-off sites to identify the generators of Access Link trips at a micro 
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level. Generalized linear mixed models (GLMM), ordinary least squares (OLS) regression 
models, and analysis of variance (ANOVA) were used in three components of this study. 
In addition, factors associated with the efficiency of paratransit were discussed, such as 
travel time and trip delay, which were recognized as the significant factors affecting the 
overall efficiency of paratransit systems. The performance measures related to travel time 
and congestion were also discussed.

This report provides the guidance to bridge engineers and traffic planning engineers 
from local transit agencies for the improvement of resiliency and reliability of transit 
infrastructure and the public transit network by the enhancement of proposed performance 
measures. Local transit agencies would employ remote sensing in assessing post-disaster 
performance of infrastructure as well as the resiliency of the local public transit network 
by evaluating the proposed performance measures in this report. This report also will help 
local transit agencies in optimizing the costs of paratransit service and in improving the 
efficiency of paratransit service based on the data-driven models.
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I. INTRODUCTION

BACKGROUND

The United Nations International Strategy for Disaster Reduction (UN/ISDR) and the 
Centre for Research on the Epidemiology of Disasters (CRED) annually present official 
figures of the number of natural disasters and their impacts. Statistics from recent years 
show that the number of disasters has been increasing significantly. These events (and 
their devastating consequences) have highlighted the need for an efficient and responsive 
recovery after disasters. Hurricanes are one of the most dangerous and costly weather-
related natural hazards in the United States (US). Considering the fatalities per natural 
hazard from 1981-2010, hurricanes were responsible on average for about 47 fatalities 
per year. This is one of the highest fatality rates, as compared to floods, lightning related 
events, and tornados. Between 2004 and 2013, however, average fatalities per year 
related to hurricanes increased to 108, which ranks the hurricane and heat as the two 
most deadly natural hazards.1 

Public transit plays an important role for evacuating people during extreme events such as 
Hurricane Sandy. Hurricane Sandy was the second-most devastating storm in the history 
of United States. In particular, for the state of New Jersey (NJ), at the peak of the storm, 
more than 2,600,000 customers were without power.2 There were 43 Hurricane Sandy-
related deaths in NJ.3 Damage in the state was estimated at $36.8 billion.4 

Public transit in New Jersey (NJ) serves an extremely large urban population. NJ Transit 
has a service area of 5,325 square miles. With approximately 250,000 average weekday 
riders, bus customers form 60% of the customer base. Ridership on NJ Transit’s rail system 
averaging about 135,000 customers on a weekday makes up 32% of the customer base. 
Light rail makes up 8% of the customer base with 35,000 weekday riders.5

According to a special report on emergency evacuation, the New York-Newark area has 
2,102,874 housing units without cars, 425 cars per 1,000 persons and 18.54 transit vehicles 
per 1,000 persons.6 The region also has a travel time ratio, a measure of congestion that 
is defined as the ratio of peak-period travel time to free-flow travel time, of 1.39. 

On the other hand, as an important part of local transit agencies, the disability paratransit 
service is provided nationwide to their registered clients at a fairly high cost. The United 
States Government Accountability Office (GAO) emphasized the importance of improving 
the efficiency of paratransit service by making decisions based on quality data and 
analysis.7 All agencies are under pressure to optimize the costs of paratransit service due 
to its increasing demand. One way to optimize the costs of paratransit service is to fully 
comprehend the current and future demand for trips. Appropriately forecasting demand 
for service can assist agencies in allocating resources to service contractors, realigning 
service regions, and determining location of facilities. An integral part of demand analysis 
for paratransit service is the identification of trip generators, whether they are defined as 
space (e.g., census tracts) or establishments (e.g., medical facilities). An extensive part of 
this report focuses on the identification of trip generators for paratransit service.



Mineta Nat ional  Transi t  Research Consort ium

4
Introduction

This report covers three different areas as the principal investigators (PIs) have different 
expertise in various areas, such as structural, transportation and paratransit. The PI and 
his research group performed the research in each area independently to cover the broad 
view of the efficiency and resiliency of transit systems. The first topic covers infrastructure, 
the second topic covers mass transit, and the last topic covers paratransit. Links between 
the three areas are not considered in this report.

OBJECTIVES 

The main objective of this project is to assess the efficiency and resiliency of transit 
systems through the use of data-driven models that take advantage of various transit, 
traffic and infrastructure data. In order to assess this issue, this report develops different 
sets of performance measures for infrastructure and transit operations during extreme 
events such as Hurricane Sandy as well as for one of the important parts of local transit: 
paratransit service. The research team uses various data-driven models to quantify a 
series of performance measures. Using the extensive data available to the research team 
from various sources in NJ, they perform a comprehensive analysis throughout this study.

Other objectives of this report are to characterize the performance, sustainability, 
resiliency and reliability of transit infrastructure during natural disasters and to make long-
term predictions about transit infrastructure. Specifically, this study aims to measure the 
resiliency of bridge structures, reliability of travel time, and reliability of access during 
extreme events by evaluating the conditions of pavements and bridges along various 
routes and also to evaluate transit service reliability during extreme events. 

LITERATURE REVIEW 

This literature review covers three areas as noted above. The first part covers the 
resiliency of infrastructure with emphasis on bridge structure to provide a review of state-
of-art methodologies for estimating the resiliency of bridges after catastrophic disaster. 
The second part, about the vulnerability and resiliency of transit systems, assesses the 
performance of transit systems in the context of their ability to face disruptions. The third 
part covers the efficiency and reliability of paratransit.

Bridge Resiliency

In a civil infrastructure system, three major components regarding resiliency are used 
to quantify disaster resiliency. These include 1) system performance during a disaster 
(system vulnerability), 2) resulting losses, and 3) post-disaster system recovery. Typically, 
a dimensionless quantity that represents the rapidity of the system to revive from the post-
event condition to the pre-event functionality level is used to quantify the bridge resiliency 
from previous studies. The consequence of extreme natural hazards including earthquake, 
flood, hurricane, tornado, and landslide leads to economic, human and environmental 
losses to a society. The Academies defined resiliency of infrastructure system as “the ability 
to prepare and plan for, absorb, recover from, and more successfully adapt to adverse 
events,” writing that “enhanced resiliency allows better anticipation of disasters and better 
planning to reduce disaster losses — rather than waiting for an event to occur and paying 
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for it afterward.”8 To achieve such enhanced resiliency, civil infrastructure systems must 
not only survive natural disasters, but also recover to functional levels within acceptable 
time and cost limits.

Drawing from the literature search, various types of structure resiliency assessment 
models were proposed. The available methods previously proposed regarding the 
resiliency of structure are listed as following. Eguchi et al. documented the methodological 
development of preliminary damage detection algorithms for highway bridges.9 Remote 
sensing technologies offer near-real post-disaster damage assessment. Deco et al. 
proposed a probabilistic approach for the pre-event assessment of seismic resiliency of 
bridges, including uncertainties associated with expected damage, restoration process, 
and rebuilding/rehabilitation costs.10 HAZUS presented the restoration curves for highway 
bridges, based on their observed data from California.11 Banerjee et al. presented a study 
on the enhancement of seismic resiliency of bridges through retrofit.12 A reinforced concrete 
bridge which was severely damaged during the Northridge earthquake in the Los Angeles 
region was analyzed. Dojutrek et al. presented a multi-criteria methodology to quantify 
the resiliency or vulnerability of an infrastructure including bridges to damage, and the 
consequences of the infrastructure damage.13

In particular, the following discussion focuses on the remote sensing and detailed review 
on SAR (Synthetic Aperture Radar) and InSAR applications that are adopted in this report. 
Based on previous efforts presented below on the application of remote sensing, the 
authors present two case studies about InSAR technology in Chapter II.

Review of Previous Research on Infrastructure Applications of Remote Sensing 
(SAR and InSAR)

The satellite and airborne remote sensing systems currently available for disaster response 
utilize optical and SAR imaging technologies. Optical systems image the Earth’s surface 
by collecting sunlight that reflects off the surface. On the other hand, SAR systems image 
the earth’s surface by collecting electromagnetic signals which they emit and which are 
backscattered from the surface. 

The main advantages of SAR systems can be summarized as follows:

• They can provide very high-resolution imagery of roads and bridges using the new 
SAR satellites TerraSAR-X and Radarsat-2 (with 1 and 3 meter spatial resolutions), 
or airborne SAR systems (with sub-meter resolution). Older SAR satellites (e.g. 
Envisat) provide only medium resolution imagery (with 20- to 30-meter resolution).

• They can operate day or night and in any weather conditions, making them ideal for 
disaster response at any time. 

In this report the investigators will focus on the use of SAR systems and the advanced InSAR 
technique due to their significant advantages, especially their ability to be used at any time. 
The following is a summary of the most relevant studies that have been conducted on the 
application of SAR and InSAR for post-disaster assessment of transportation infrastructure. 
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A study by Arciniegas et al., although conducted mainly for the assessment of urban 
structures after an earthquake, offers useful InSAR methods that may be applicable to 
the assessment of bridges in the aftermath of an earthquake, provided high resolution 
SAR data are available.14 The study involved the use of Envisat satellite SAR images 
(20 meters ground resolution) to assess the capacity of InSAR data for detecting urban 
damage caused by the 6.6 magnitude earthquake in Bam, Iran, on December 26, 2003. 
The researchers analyzed InSAR properties, such as complex coherence and signal 
amplitude and their sensitivity to changes in ground surface and urban damage, both 
induced by the earthquake event. These changes lead to quantifiable decorrelation in the 
InSAR image pixels corresponding to impacted areas on the ground.

The authors analyzed the methods of pre/post-event pixel-by-pixel comparison of SAR 
amplitude images and change detection of InSAR properties to compare and evaluate 
both methods for their actual potentials and limitations through validation. They found 
that coherence works relatively better than amplitude in extracting damaged areas, as it 
discriminates total destruction better. SAR data have an important sensitivity for measuring 
surface changes at the range of microwaves. Based on earlier studies, it was assumed 
that collapsed buildings or heavily damaged areas have different backscattering properties 
from undamaged areas. Empty spaces, vegetated areas or rubble/debris, however, can 
also have different backscattering properties that may be similar to those of collapsed 
buildings. SAR data sets have been previously used to classify urban damage into several 
levels. In the authors’ study, such classification was not achieved. Earthquake destruction 
lead to high decorrelation on SAR data, but several other factors might also have posed 
influences that could be wrongly attributed to the event, such as changes in vegetation, 
atmospheric and seasonal changes, and long temporal baseline. 

The authors concluded that it appeared to be a very difficult task to separate earthquake-
induced changes from those related to other causes. Moreover, it seemed to be even 
more difficult to separate damage classes with SAR data. They recommended that further 
studies be conducted on how to differentiate earthquake-related decorrelation of SAR 
data quantitatively and qualitatively from other sources of decorrelation of these types of 
data in urban areas. In addition, they recommended studying how the use of SAR data 
can complement current methods that use optical images, stressing features that stand 
out above those of optical images. The SAR backscattering behavior of urban areas with 
heterogeneous building stock or uniformity in building height should be studied as well. 
They also noted that it is important to choose pairs of SAR data which are suitable in terms 
of baseline and time gap, although there is not a definite rule about the optimal values of 
spatial baselines for the urban domain. Spatial baseline values can be studied with the 
purpose of defining optimal values for studies related to urban-domain applications for 
different SAR sensors.

A study by Loh and Shinozuka researched the capabilities of bridge damage and change 
detection schemes based on simulated complex SAR images of pre- and post-events.15 
They noted that a SAR image, obtained from a coherent and complex imagery system, can 
be described in three dimensions, whereby two dimensions represent the image and the 
third dimension represents the phase information which is relevant to the detection of the 
finer details in the image. The authors’ main goal was to compile a library of SAR images 
related to damage states experienced by common structures such as buildings or bridges. 
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In this study, simulated SAR images were obtained for two different sets of model bridges. 
The model bridges were created such that the deck width and length were equal. However, 
the height and support conditions were varied, and a parapet was added on one of the 
model bridges. Without any material property differences or other changes to geometry, the 
SAR simulations captured differences in signal response from these geometrical changes 
on the bridge models. One of the most obvious observations from the SAR images was 
seen from the difference between the pre- and post-damage effects. In the damaged 
bridge models, SAR signal responses were complicated, and the EM (electromagnetic) 
signature did not represent what a damaged bridge would look like. Since the SAR system 
measures the reflected EM waves, the planes of material they come in contact with affect 
these EM waves. When these surfaces are shaped and directed at odd directions, such 
as in a damaged bridge, reflected waves are measured far beyond the bridge model itself. 

A study by Eguchi et al. investigated the use of SAR and optical imagery for structural 
damage detection following the 1999 Marmara earthquake in Turkey.16 Their visual 
comparison of SAR and optical images obtained ‘before’ and ‘after’ the earthquake 
revealed distinct changes in signal return. They noted that following the earthquake event, 
surface reflectance on the SPOT satellite optical image increased within the urban center, 
where numerous buildings collapsed. This suggested that debris piles associated with 
collapsed structures exhibited a higher signal return than the original standing structure. 
Trends were more difficult to discern from simple inspection of the ERS (European Remote 
Sensing) satellite SAR image, with temporal changes dominated by scene-wide variations 
in signal return. However, from examining derived SAR correlation images, low correlation, 
indicative of change due to building collapse, was evident throughout central areas of 
Golcuk city. The preliminary SAR and optical change detection algorithms successfully 
distinguished between spatial variations in the extent of catastrophic building damage 
observed in Golcuk. For the optical data, simple subtraction and correlation profiles varied 
with observed damage. While SAR correlation indices also distinguished trends in the 
density of collapsed buildings, the subtraction profile was instead dominated by a large 
radiometric offset between the ‘before’ and ‘after’ scenes. The change detection techniques 
presented in this paper successfully employed remote sensing technologies to detect and 
determine the extent of urban building damage. 

In summary, several studies have focused on the use of SAR technology in post-disaster 
urban damage assessment. The main method employed was the generation of change 
detection maps based on changes in the SAR signal amplitude in corresponding pixels 
between pre- and post-disaster images. This technique, although useful for providing rough 
estimates of damaged areas, cannot measure surface deformation and is not as accurate 
as the more advanced InSAR technique. On the other hand, in most studies involving 
the use of satellite InSAR for post-disaster urban damage assessment, the method most 
employed was the use of the coherence image to detect and estimate extent of urban 
structural damage. Gamba et al. Trianni and Gamba (2008) employed variations of this 
method in their study on the 2007 Peru earthquake, and Gustavo Arciniegas Lopez in his 
study on the 2003 Bam earthquake.17
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It is important to note that the focus of most of those studies has been on trying to detect, 
estimate and map the extent of damage in built urban areas in general, with no special 
emphasis on damage assessment in the transportation infrastructure. Moreover, because 
the SAR imagery utilized in those studies were acquired by SAR satellites that offer medium 
spatial resolution (around 20-30 meters), the resulting damage assessments were at the 
city bloc level, which included groups of structures rather than individual structures. 

However, in a very recent study by Balz and Haala, the authors showed a number of high-
resolution satellite SAR images of damaged bridges in Sichuan province, China, following 
the 12 May 2008 earthquake. The study shows only post-earthquake SAR amplitude 
images of the bridges because the high-resolution satellites did not acquire pre-earthquake 
SAR images. This prevented the authors from performing a change detection analysis on 
the damaged bridges to estimate the damage or deformation.18

So far, most studies on SAR applications in post-disaster damage assessment make use 
of the amplitude of the return signal (reflected from the ground back to the satellite) and 
ignore the signal phase data. In this project, the researchers study the feasibility of using 
the SAR phase information by applying the InSAR technique to detect and assess the 
conditions of post-disaster transportation infrastructures.

For the purposes of their research work, the investigators have acquired the remote sensing 
software package ERDAS (Earth Resources Data Analysis System) IMAGINE V.9.3, with 
an InSAR Module, from Leica Geosystems Company, to allow for the processing of satellite 
optical and SAR data and generate InSAR data products. The software package was installed 
on a new high-speed computer that was networked with another UNIX computer (SUN 
Station) to allow for data processing using different software tools on different platforms. 
Moreover, the open-source DORIS (Delft Object-oriented Radar Interferometric Software) 
InSAR software, developed by DEOS (Delft Institute for Earth-Oriented Space Research) 
Institute of Delft University in the Netherlands, was also installed on the UNIX computer, and 
used to process the same SAR image data sets to generate InSAR data products.

Assessment of Efficiency and Resiliency of Transit Systems

Transportation infrastructure resiliency has received a lot of attention over the past decade. 
There are many studies analyzing the reliability of transportation infrastructure. There are 
myriad performance measures proposed in these studies. For the purpose of assessing 
the performance of transit systems in the context of their ability to face disruptions, we 
focus on measures that can be classified into two categories, namely, (a) Vulnerability and 
(b) Resiliency.

The reason for focusing on the above two measures is that vulnerability considers the 
potential consequences of a disruption on system performance. It captures a system’s 
weaknesses or susceptibility to disruptions related to operational performance.19 
Vulnerability does not, however, account for the probability of the disaster event.20 That is, 
vulnerability studies recognize that it may be difficult to predict the likelihood of very rare 
events for many systems, and expectations that incorporate such low probability events 
may not be very illuminating.21 
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On the other hand, resiliency is generally defined as a system’s ability to resist and absorb 
the impact of disruptions.22 Resiliency was initially conceptualized and applied in the 
context of ecological systems.23 Resiliency measures account for possible interventions 
that can aid in restoring system performance to near pre-disaster levels. These measures 
quantify the potential benefits of pre-disruption mitigation actions aimed at increasing the 
system’s ability to cope with the impact of a disruption and post-disruption adaptive actions 
that aim to restore functionality. 

Vulnerability Measures

First the investigators present a few studies that characterize the vulnerability of the 
transportation network. The objective of this study is to analyze the effect of disruptions 
on the public transit system. So, the researchers study the applicability of performance 
measures of vulnerability to public transit networks.

Tampère et al. and Knoop et al. defined three link vulnerability indices (VA1, VA2, VA3) that 
are dependent on link capacity, flow, length, free flow and traffic congestion density.

𝑉𝑉𝑉𝑉1 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖 /(1 − 𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖
𝐶𝐶𝑎𝑎𝑎𝑎

)
 

Where, f i
am is the flow on link a during period time i for a travel mode m, Cam is the capacity 

of link a for a travel mode m.24

VA2 identifies the direct impact of link flow with respect to link capacity as defined by:

𝑉𝑉𝑉𝑉2 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖 /𝐶𝐶𝑎𝑎𝑎𝑎 

VA3 represents the inverse of the time needed for the tail of the queue to reach the upstream 
junction and is estimated by:

𝑉𝑉𝑉𝑉3 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖 (𝑛𝑛𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎 − 𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖
𝑉𝑉𝑎𝑎𝑎𝑎

)/𝑙𝑙𝑎𝑎 

Where, na is the number of lanes of link a that have been used by travel mode m, kjam 
reflects congestion density for link a, Vam is the free flow speed of link a for a travel mode 
m, and la is the length of link a.

El-Rashidy and Grant-Muller extended the above link vulnerability indices by adding 
network characteristics.25 VA4 is calculated from the capacity of link a relative to the 
maximum capacity of all network links in order to reflect relative link importance and the 
maximum capacity of all network links Cmax.

𝑉𝑉𝑉𝑉4 =
𝐶𝐶𝑎𝑎𝑎𝑎
𝐶𝐶𝑎𝑎𝑎𝑎𝑚𝑚
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VA5 simply uses the link length as a physical property representing the level of importance 
of the link,

𝑉𝑉𝑉𝑉5 = 𝑙𝑙𝑎𝑎 

VA6 reflects the number of times the link is a component of the shortest path between 
different OD pairs.

𝑉𝑉𝑉𝑉6 =∑𝑆𝑆𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

 

Where, sij is given a value of 1.0 if link a is a component of the shortest path between origin 
i and destination j and a value of 0.0 otherwise.

Ukkusuri and Yushimito developed a methodology for identifying critical links in a 
transportation network. The authors used a vulnerability measure estimated using the 
system travel time as the performance measure before and after a disruptive event, by 
(MoPB – MoPA) /MoPB, where MoP is defined as the system travel time.26 

The vulnerability measures presented above are more applicable to road transportation 
networks. They cannot, however, directly be applied to study the vulnerability of specific 
routes in, say, a bus transit network.

Resiliency Measures

Many resiliency measures studied in the literature are also presented below.

Zhang et al. developed a framework for calculating the Measure of Resiliency (MOR) 
to disaster for intermodal transportation systems.27 TransCAD was used to model the 
intermodal network and generate transportation data for the MORs calculation procedure. 
Intermodal OD (OD) traffic before and after disaster struck was estimated based on 
the study area’s population and employment data. The pre-disaster and post-disaster 
population and employment data were collected at county level and disaggregated to 
each traffic analysis zone (TAZ) by using linear equations. A series of indicators in terms 
of mobility, accessibility, and reliability were selected to evaluate the intermodal system 
performance based on the TransCAD outputs. 

Zhang et al. further introduced a Performance Index (PI) combining some selected 
indicators to measure the system performance with respect to mobility. The Level of 
Service (LOS) of highway network and intermodal terminals before and after disaster was 
also determined according to the Highway Capacity Manual standards.28 

MOR was defined as the percentage of system performance degradation due to a disaster.

The intermodal network resiliency was defined as the ratio of the reduction of the intermodal 
system performance after a disaster to the system performance before a disaster.
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The proposed methodology for MOR was based on the calculation of the performance 
indicators.

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑃𝑃𝑃𝑃𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏)(1 + 𝑡𝑡𝛼𝛼)
𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

% 

Where:

t = total time required to restore the capacity (year), and

α = system parameter, used α = 0.5 in a case study

The parameter α is related with network size, socioeconomic status, government policy, 
etc. In this study, α was designated as an average value of 0.5. Specific calibration is 
needed to obtain a more accurate value of α. It is important to note that resiliency comes 
with a specific system disruption. The lower value of MOR means the system is more 
resilient to the disruption.

In Murray-Tuite’s paper, mobility in the event of a disruption is measured in six different 
ways. First is the amount of time, E, required to evacuate a town’s residents. Second is 
the ability of response vehicles, such as ambulances, to travel from one zone to another. 
This ability is measured by the average travel time, RS, between zones R and S and the 
standard deviation of RS. Third is the queue length La on directed arc a, which can be 
evaluated at various length thresholds di. Fourth is the average queuing time q per vehicle. 
Fifth is the amount of time (Ua) link a has an average speed lower than a threshold b of its 
posted speed limit (ua). The final measure is the volume to capacity (v/c)a for each link a.29

Jenelius et al. analyzed the vulnerability and reliability of transportation networks from an 
economics perspective based on the increase in the generalized travel cost when links are 
closed due to a disruptive event.30

Ip and Wang defined resiliency of a transportation network as the number of reliable 
passageways between any pair of nodes. They argued that this definition represents the 
ability to recover transportation function once transportation links are partially shut down 
due to unforeseen events. They introduced a new concept termed “friability,” which they 
define as the reduction in network resiliency caused by the removal of nodes or edges. 
They see friability as the quantifiable measure of a disaster impact on a network.31

Omer et al. proposed a Networked Infrastructure Resiliency Framework (NIRA) based on 
the road network connecting Manhattan. The resiliency is measured as the ratio of the 
travel time preceding a disruption to that following a disruption to the network.32

Scott et al. (2005) argued that the traditional performance indicator V/C ratio is a localized 
performance metric, whereas the Gamma Index, which is a network connectivity index 
relating the actual number of links to the maximum number of possible links, accounts only 
for the network topology, and neither measure is sufficient when used independently. He 
therefore proposed a Network Robustness Index (NRI), which is based on the individual 
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capacity of each highway segment, the routing options for the OD pairs using a particular 
segment, and the topology of the entire network. The NRI is the extra travel time that is 
imposed on the network because of the removal of a particular link. This is a very valuable 
measure, because it can be used to identify the most critical links in the network, which 
may therefore be the best candidates for implementing mitigation strategies. The NRI also 
tells something about redundancy, because a high NRI means that there is little redundant 
capacity for the link in question.33

The NRI indicates the extent of redundancy, because a high NRI means that there is little 
redundant capacity for the link in question. It does not, however, tell us which links in the 
network serve the purpose of providing redundancy. Anderson et al. proposed a network 
redundancy value (RV) as a useful complement to the NRI.34 The performance of the road 
network with both links a and b removed with travel time ta and flow xa is:

𝑐𝑐𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑎𝑎𝑥𝑥𝑎𝑎𝛿𝛿𝑎𝑎𝛿𝛿𝑎𝑎 

Redundancy support that link b provides to link a is measured as (ca is the performance 
with only link a is removed):

𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑎𝑎𝑎𝑎 − 𝑐𝑐𝑎𝑎 

The redundancy value of link b to the entire network is then defined as:

𝑟𝑟𝑏𝑏 =∑𝑟𝑟𝑎𝑎𝑏𝑏
𝑎𝑎

 

Chang and Nojima focused on a system-wide highway performance assessment for 
evaluating post-disaster transportation network health. They claimed that traditionally 
used measures of overall system-wide performance like total travel time on the network in 
vehicle hours are not practical, because in a post-disaster situation, the availability of travel 
time or traffic flow data is very limited. They thus emphasized the need for macroscopic 
system performance measures, and proposed three such measures: Total Length of 
Highway Open, Total Distance Based Accessibility and Arial Distance Based Accessibility. 
They applied these measures to assess the performance of urban rail and the highway 
transport system after the 1995 Kobe earthquake.35

Qiang and Nagurney measured the importance of a network component g, I(g), by the 
relative network efficiency drop after g is removed from the network represented by G:

𝐼𝐼(𝑔𝑔) = 𝛥𝛥𝛥𝛥
𝛥𝛥 = 𝛥𝛥(𝐺𝐺, 𝑑𝑑) − 𝛥𝛥(𝐺𝐺 − 𝑔𝑔, 𝑑𝑑)

𝛥𝛥(𝐺𝐺, 𝑑𝑑)  

where (G-g) is the resulting network after component g is removed from network G. The 
network performance/efficiency measure ε(G, d) for a given network topology G and the 
equilibrium (or fixed) demand vector d is:
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𝜀𝜀 = 𝜀𝜀(𝐺𝐺, 𝑑𝑑) =
∑ 𝑑𝑑𝑤𝑤

𝜆𝜆𝑤𝑤𝑤𝑤∊𝑊𝑊

𝑛𝑛𝑤𝑤
 

where nw is the number of OD pairs in the network, and dw and λw denote, for simplicity, 
the equilibrium (or fixed) demand and the equilibrium disutility for OD pair w, respectively. 
Equilibrium disutility is the inverse demand function or disutility of using the OD pair, and 
the authors assumed it to be known.36

In another study by Nagurney, the robustness measure Rɤ for a network is defined as the 
relative performance retained under a given uniform capacity retention ratio ɤ with 0< ɤ <1, 
so that the new capacities are given by u.37 It is a function of the vector of user link cost 
functions c, the vector of link capacities u, and the vector of demands d (fixed or elastic). 
Its mathematical definition is: 

𝑅𝑅𝛾𝛾 = 𝑅𝑅(𝐺𝐺, 𝑐𝑐, 𝛾𝛾, 𝑢𝑢) = 𝜀𝜀𝛾𝛾
𝜀𝜀 ×100% 

where ε and εɤ are the network performance measures with the original capacities and the 
remaining capacities, respectively.

According to this definition, a network under a given level of capacity retention or 
deterioration is considered to be robust if the network performance stays close to the 
original level.

Another ratio is the relative total cost index, defined under the user-optimizing (U-O) flow 
pattern, denoted by 𝐼𝐼𝑈𝑈−𝑂𝑂

𝛾𝛾  .

𝐼𝐼𝑈𝑈−𝑂𝑂
𝛾𝛾 = 𝐼𝐼𝑈𝑈−𝑂𝑂

𝛾𝛾 (𝐺𝐺, 𝑐𝑐, 𝑑𝑑, 𝛾𝛾, 𝑢𝑢) = 𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂
𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂
𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂

×100% 

where 𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂  and 𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂
𝛾𝛾   are the total network costs evaluated under the U-O flow pattern 

with original capacities and the remaining capacities, respectively.38

The definition of the index under the system-optimizing (S-O) flow pattern is:

𝐼𝐼𝑆𝑆−𝑂𝑂
𝛾𝛾 = 𝐼𝐼𝑆𝑆−𝑂𝑂(𝐺𝐺, 𝑐𝑐, 𝑑𝑑, 𝛾𝛾, 𝑢𝑢) =

𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂
𝛾𝛾 − 𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂
𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂

×100% 

where 𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂  and 𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂
𝛾𝛾   are the total network costs evaluated under the S-O flow pattern 

with original capacities and the remaining capacities, respectively.39

This means that the relative total cost does not change much; hence the network may be 
viewed as being more robust than if the relative total cost were large. 
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In times of crisis, a system-optimization approach is mandated, because the demands for 
critical supplies should be met (as nearly as possible) at minimal total cost. However, the 
ratio of the two indices (“I”s) above gives an insight into the resiliency of the network under 
U-O vs S-O conditions for different values of the retention ratio.

Adams et al. (2012) studied the measurement of resiliency of transportation links for freight 
transport.40 The authors used the resiliency triangle approach proposed in the context of 
earthquake disaster research (as shown in Figure 1). The recovery and resiliency were 
measured as the ratio of reduction in performance over time elapsed (i.e. the slopes α and β). 
In the context of freight resiliency, the slopes boil down to reduction in speed measured 
from traffic detectors over time elapsed to recover to normal observed speed.

 

Figure 1. Recovery/Resiliency Triangle
Source: Adams et al. (2012).41

The size of community resiliency loss is quantified as the area of the triangle, shown 
mathematically as:

𝑅𝑅 = ∫ [100 − 𝑄𝑄(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑡𝑡1

𝑡𝑡0
 

where R is the loss of resiliency and Q(t) is the quality of infrastructure.42 It can be seen 
that the depth of the breakdown and the slope of the recovery curve determine the size of 
the triangle.

Turnquist and Vugrin studied the design of distribution networks such as transportation, 
essential supplies, during the recovery from disruptive events. They formulated the design 
problem as a stochastic optimization problem to minimize the system cost of recovering 
from a disruption. They characterized the resiliency and recovery by using the recovery 
triangle approach similar to one used by Adams et al.43
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D’Lima and Meddar modeled the system resiliency by characterizing the system 
performance as an Ornstein and Uhlenbeck (O-U) process with the assumptions that the 
disruption caused by the shock in the next time interval has a Gaussian distribution with 
variance equal to the square root of the length of the interval.44 They essentially used the 
resiliency triangle as an inspiration in such a way that the O-U process is a mean reverting 
process. Similarly, the system tried to restore its normal functions following a disruption.

Murray-Tuite used queue length, speed, V/C ratio in her study of resiliency of network 
links, and investigated whether user-equilibrium or system-optimal assignment works 
better under disruption.45

Chen and Miller-Hooks studied an intermodal freight network design problem to identify 
the optimal course of action following a disruptive event. The resiliency was measured as 
a ratio of maximum demand served by the network before and after the disruption, DB/DA 
(before-after max demand satisfied).46

Recently there have been few studies focusing on resiliency of the road network utilizing 
Global Positioning System (GPS) probe data. Donovan and Work utilized taxi data 
set to measure roadway resiliency of NYC during Hurricane Sandy by measuring the 
deviation of normalized travel times between four different regions of the city, including 
three Manhattan regions and one Queens region. Their result shows minor delays for the 
evacuation period before hurricane landfall, though significant network deterioration after 
the hurricane impact, and the disruption took more than five days to recover.47

Evacuation response and system recovery are two areas on which resiliency studies have 
focused. In general, evacuation and recovery processes follow similar patterns. That is, 
the rates of evacuation or restoration follow an S-shape.48 (Li et al. (2003)) Such behavior 
can be modeled using a logistic function. The curve describing the logistic function is 
called a Sigmoid Curve (S-Curve). In 1985, Lewis introduced the concept of S-Curve to 
represent evacuation rate.49 Fu et al. improved this curve so that it can reflect intensity of a 
hurricane, time-of-day, and evacuation order time.50 Besides Sigmoid curves, researchers 
also attempted to use other types of curves to represent evacuation demand, including 
the Rayleigh curve by Tweedie et al. and the Poisson distribution by Cova and Johnson.51 
Li et al. (2003) built an empirical response curve based on traffic data of Cape May County, 
New Jersey based during Hurricane Irene, and compared it with different types of S-shape 
curves.52 Their result shows a better fit to logistic and Rayleigh functions compared to 
Poisson distribution. 

Summary

Similarly, to the vulnerability measures, the resiliency measures need to be adapted in 
such a way that they can be applied to specific routes. The purpose of this adaptation is 
for the transit agency to be able to invest resources accordingly to these routes, so that 
the population targeted by these routes can be served satisfactorily, especially during or 
following a disruption.

Table 1 provides a summary of the measures of vulnerability and resiliency, their 
characteristics and data requirements.
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Table 1. Summary of Resiliency and Vulnerability Measures
Measure Characteristic/Application Requirements
ΔSpeed/Δtime (Adams et al. (2012)) Link/route Resiliency; assessment Detector speed data

ΔVolume/Δtime 
(Adams et al. (2012))

Link/route Resiliency; assessment Detector count data

Queue length 
(Murray-Tuite (2006))

Link Resiliency; assessment Simulation output or observed queue 
data

V/C (Murray-Tuite (2006)) Link Resiliency; assessment Simulation or Detector count data

DB/DA (Chen and Miller-Hooks (2011)) Network Resiliency; Network design Simulation/Traffic assignment output 

TTB/TTA (Omer et al. (2011)) Network resiliency measure; 
assessment

Observed travel time or Simulation/
Traffic assignment output

ΔCost before-after event 
(Jenelius (2005))

Link/route/network Resiliency; 
assessment

Observed travel time or Simulation/
Traffic assignment output

rb, redundancy measure 
(Anderson et al. (2011))

Network Resiliency; Network design

Friability, the number of reliable 
routes between OD pairs 
(Ip and Wang (2011))

Network Resiliency; Network design/
assessment

Extensive observed travel time or 
Simulation/Traffic assignment output

(MoPB – MoPA)*(1+tα)/MoPB 
(Zhang et al. (2009))

Link/route/network Vulnerability

VA1, VA2, VA4, VA5 (Tampère et al. 
(2007), Knoop et al. (2012), El-
Rashidy and Grant-Muller (2014))

Link Vulnerability Observed counts

VA3 (Tampère et al. (2007) and 
Knoop et al. (2012))

Link Vulnerability Observed counts at signalized 
intersections

VA6 
(El-Rashidy and Grant-Muller (2014))

Link/route/network Vulnerability Simulation/Traffic assignment output

Access Link Trips

Transit agencies provide ADA complementary paratransit at a fairly high cost. Because of 
the high cost of service with growing demand, all transit agencies nationwide are under 
pressure to optimize costs of paratransit service. One way to do this is to forecast current 
and future demand for trips, which can be accomplished by demand analysis for paratransit 
service. In order to identify the generators of paratransit trips, an analysis of data for the 
service area of Access Link, the ADA complementary paratransit service provided by NJ 
TRANSIT, is needed. While most past studies focused on the home end of paratransit 
trips, this study attempts to identify characteristics of areas where paratransit clients live 
as well as characteristics of areas and specific locations they visit. 

One of the earliest studies to explore methods to estimate demand for ADA complementary 
paratransit service was by Koffman and Lewis.53 The article makes reference to two studies 
– one for King County Metro, Washington State, and the other for New York City Transit 
Authority – where surveys were conducted to gauge demand for paratransit service. 
From the description of the studies, it appears that the New York survey was geared 
towards predicting ridership as a function of service area, fares, eligibility policy, advance 
reservation policy, fare, etc., whereas the King County survey aimed at estimating the 
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number of potential users and their willingness to travel at different fare levels. Neither of 
the surveys appeared to have placed emphasis on identifying trip generation for potential 
origins and destinations.

In recent years, two Transit Cooperative Research Program (TCRP) reports have specifically 
focused on estimation of ADA paratransit demand.54 In the first of these studies, Koffman et al. 
used a statistical model with data from 28 agencies in 15 states to predict ADA paratransit 
ridership. The study concluded that six variables are associated with paratransit ridership. 
According to the study, demand for paratransit is positively associated with the size of 
the service area population, but negatively associated with fare, proportion of population 
below poverty level, the width of the pickup window, the proportion of applicants that are 
conditionally eligible to use paratransit, and the practice of determining eligibility on a trip-
by-trip basis (instead of determining eligibility for all trips). The statistical analysis in the 
study did not find any association between paratransit demand and the proportion of elderly 
persons, incidence of disability in the population at large according to census, availability 
and quality of fixed-route transit, or ethnicity of population. 

The second TCRP report, by Bradley and Koffman, applies sketch planning and regional 
planning approaches with survey data from 800 ADA paratransit users from the Dallas-
Fort Worth area of Texas. The study includes both aggregate and disaggregated models. 
The aggregate model showed that the proportion of elderly persons in census tracts is 
positively associated with paratransit registration, but the disaggregate model showed that 
elderly clients are likely to make fewer trips than younger clients. On the whole, it can be 
expected from the study that an increase in number of elderly persons will increase the 
demand for paratransit, although the elderly registrants might use the service less often 
than younger persons with disabilities. Other relevant results of the study are that higher 
income and lower poverty in census tracts together with lower poverty among registrants 
would decrease the number of trips, larger household size in census tracts would decrease 
the number of trips, increase in travel time would decrease the number of trips, and greater 
pedestrian access to activities would decrease the number of trips. 

The study by Bradley and Koffman also included a trip distribution model, where several 
zonal variables were considered as trip attractors, namely, number of resident households, 
number of resident persons, number of retail jobs, number of service jobs, number of other 
jobs (i.e., non-retail, non-service jobs such as industry and production), number of jobs in 
shopping malls, and number of jobs in hospitals. Some of these variables were used to 
measure zonal accessibility. 

A study by LaMondia and Bhat (2009) used a linear regression model by combining trip 
data from a paratransit system in Brownsville, Texas, and census data to identify variables 
associated with paratransit trips.55 Based on the model results, the authors came to the 
conclusion that census block groups with larger population, older populations, larger 
households, and close proximity to fixed-route transit generate more paratransit trips 
than other block groups. It may be noted that LaMondia’s and Bhat’s study’s observed 
relationship between household size and trips is contradictory to the finding in Bradley 
and Koffman. The study concluded that home ownership, marital status, presence of 
children in household, etc., could also be associated with trip volume, but the effect of 
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these variables differ when they are used at a regional scale instead of a local scale. The 
study also included a destination zone assignment model to examine characteristics of 
places visited by paratransit users. Data from the paratransit travel log that included trip 
purposes of clients was used for this specific model.

In another study, Kuo et al. used a geographical weight regression model by combining 
census data with trip data from METROlift, the ADA paratransit service for Houston, Texas, 
to estimate demand for ADA paratransit trips originating at home.56 From the modeling 
effort, the authors concluded that the size of population, the proportion of elderly persons, 
the proportion of African American persons, and the proportion of persons below the 
poverty level in census tract were positively associated with outgoing home-based trips. 
It may be noted that the study’s findings on the relationship of persons below poverty and 
elderly persons with ADA paratransit trips are inconsistent with the study by Koffman et 
al. An aspect of the study by Kuo et al. that makes it more advanced than some other 
studies is its recognition that ordinary least squares models may be inappropriate to model 
paratransit trips when they are geographically clustered. Another study that focused on 
clustering of ADA paratransit trips was by Bearse et al., which emphasized the importance 
of accounting for spatial autocorrelation when modeling trip demand.57

Other studies have taken different approaches to comprehend and forecast demand for 
ADA paratransit trips. For example, Orange County, California adopted a time-series 
model to forecast ridership over a five-year period by using 15 predictor variables. The 
model, as described in Menninger-Mayeda et al., included census data for the county’s 37 
census-designated places and included data on age, number of persons with disability, 
seniors in poverty, and the proportion of ADA certified clients. The study does not indicate 
whether the model included any information about the trip attractors.58 Another study that 
focused on temporal variations in demand for ADA paratransit trips was by Desharnais 
and Chapleau. The study used space-time budgets with a focus on types of disability.59 

In addition to finding certain inconsistencies and contradictions in the results of past 
studies, this literature review found that most past studies involving models of paratransit 
trip generation focused on trips from home. LaMondia and Bhat and Bradley and Koffman 
are two rare studies that modeled trip generation for both home and destination ends.60 
The literature review also demonstrated that large-scale surveys of paratransit users to 
understand their trip patterns have been rare.

Paratransit Service Efficiency

Three streams of literature are pertinent to this research. The first stream pertains to the 
efficiency of paratransit systems, the second pertains to environmental factors and network 
characteristics that are associated with congestion and delay, and the third pertains to 
performance measures related to travel time and delay. The relevant literature in each 
stream is discussed below. 

Because of ADA paratransit’s high costs, a number of studies have focused on its service 
efficiency. Many of these studies were conducted to evaluate the impact of different types 
of technologies on paratransit service.61 The technologies considered by these studies 
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varied, but often included computer-aided dispatch, vehicle location, and communication 
technologies. Other studies on efficiency of paratransit service focused on a hybrid 
approach to combine fixed-route and demand-response service,62 optimization of vehicle 
runs,63 route choice,64 service zoning strategies,65 and optimization of operating conditions.66 
Although examining trip delay is not their explicit objective, reduction of delay is an implicit 
objective in many of the studies.

Service efficiency of paratransit is usually measured by comparing outputs such as number 
of passengers and number of passenger miles served with inputs such as total operating 
cost, number of vehicle hours, or number of employees.67 Trip duration as well as pickup 
and drop-off duration can be important factors influencing paratransit service efficiency. 
As Ben-Akiva et al. noted, when trips can be completed in a short duration, more trips can 
be completed in a given time period.68 That, in turn, can reduce the need for additional 
vehicles, operators, and vehicle storage capacity. Furthermore, reduction of trip delay can 
save time for clients and enhance their satisfaction. From the environmental perspective, 
reduction of delay can reduce greenhouse gas emissions.

While most studies on paratransit efficiency considered only system-wide information and 
avoided the environment of the areas served, only a few studies considered environmental 
factors. Fu et al. and Min and Lambert studied the association between density of the 
areas served and efficiency.69 While the first study compared the service efficiency of 
32 paratransit systems in Canada, the second compared the efficiency of 75 paratransit 
systems in the US. The study by Fu et al. showed that efficiency was significantly and 
positively associated with density of users in the service areas.70 

In contrast to the variable on user density used by Fu et al., Min and Lambert developed 
a density index by combining overall housing density, population density, and commuting 
time to hypothesize that the index could be negatively associated with efficiency due to the 
measure’s congestion effect but could also be positively associated with efficiency because 
of its proximity effect.71 The study could not use paratransit travel time as a measure 
because of a lack of data. Their statistical model showed that the index was positively 
associated with efficiency, meaning that areas with high population/housing density are 
likely to have more efficient paratransit service than low-density areas. Min and Lambert 
mentioned that their findings are consistent with studies in the context of emergency 
medical service.72 For example, Lambert and Meyer found in two studies that emergency 
medical service (EMS) response time is lower in high-density areas compared to low-
density areas.73 Studies from other countries have also shown similar results regarding 
EMS response time.74 However, EMS response time and ADA paratransit response time 
are not exactly the same, because paratransit trips are typically booked ahead of time, 
while EMS response is typically instantaneous. 

The positive association between density and efficiency in Fu et al. is not surprising, as 
this study considered user density.75 Higher user density may reduce average trip time 
and allow more flexible scheduling opportunities. Min and Lambert most likely found a 
positive association between a density index based on housing and population density 
and service efficiency because they compared regions rather than locations. As Min and 
Lambert noted, the effect of density on service efficiency, especially the speed of service 
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delivery, could be either positive or negative.76 This is because overall population and 
housing density, on the one hand, can mean close proximity between clients (and their 
drop-off and/or pickup locations), but on the other hand, it can also mean greater trip 
generation and congestion. 

To summarize, the review of studies on service efficiency indicated that the environment 
in which paratransit systems operate has received far less attention than the technologies 
used by the systems. Most studies on service efficiency have used system-wide or 
aggregate data on inputs and outputs without specifically focusing on factors such as trip 
duration, speed, or delay, even though some authors have acknowledged that they affect 
service efficiency. Although a few studies examined the association between environmental 
variables such as density and service efficiency, little can be generalized about the effect 
of environmental characteristics of service areas on efficiency. Finally, little information 
was found in the literature on the potential association between passenger characteristics 
and efficiency.

Association between Environmental Factors and Congestion

In the general context of transportation, a number of studies have addressed the 
association between density, mode-specific trip generation, traffic volume, congestion, 
and delay. Ewing and Cervero presented evidence from a number of studies that found a 
negative association between automobile use and population, household, and employment 
density.77 Yet lower automobile use in high-density areas does not translate to a lower level 
of congestion or delay, because a greater number of total trips are generated in such areas 
than in low-density areas.78 While Cervero noted that vehicle-operating speed decreases in 
high-density areas, Levinson and Kumar noted that the direct association between density 
and congestion makes automobile use unattractive above a certain threshold of density.79 
In view of higher trip generation in high-density areas, reduced automobile use in those 
areas could be construed as an outcome of traffic congestion, although the availability of 
transit and shorter distance between activities could be additional reasons. 

Literature suggests that intersection density has a greater effect on traffic speed and delay 
than population and household density. Ewing and Cervero found that intersection density 
is negatively associated with vehicle miles traveled (VMT) and positively associated with 
walking. More importantly, they found that intersection density has a greater effect on 
VMT and walking than population and household density.80 Since lower VMT is the likely 
outcome of lower speed and greater delay, their findings possibly indicate that intersection 
density has a greater effect on delay than population and household density. 

Ban et al. noted that intersection delay is the primary contributor to arterial delay.81 Intersections 
cause delay not only because of stopped time (idling) at the intersection, but also due to 
deceleration during approach and lower speed during departure.82 When intersection density 
is high, additional delays can be caused by traffic spill-back from one intersection to another 
and spillover between lanes.83 Furthermore, variability of traffic at intersections can reduce 
reliability of a road network in areas with high intersection density.84
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Intersection density can also contribute to congestion and delay through pedestrian 
volume. Because of the negative impact of intersections on driving, more individuals 
are likely to walk between origins and destinations or walk to or from transit stations/
stops in areas with high intersection density. A large number of studies found a high 
positive correlation between density of intersections and walking for children and adults.85 
However, the positive association between intersection density and walking also creates 
a conflict between vehicles and pedestrians at intersections, thereby causing delay for 
vehicular traffic.86 While Schlossberg noted that higher intersection density is attractive 
to pedestrians because it gives more route options, Guo found in an empirical study that 
higher intersection density on a route or path attracts more pedestrians to the route.87 

In areas with high intersection density, the likelihood of crashes involving pedestrians is 
high because of frequent turns by vehicles.88 Since drivers typically slow down in such 
locations to avoid conflicts with pedestrians, intersections can add substantially to vehicular 
trip duration or travel time in areas with high intersection density. 

Delay at intersections is a major issue not only for motorists but also for transit vehicles. 
While high intersection density allows transit buses a greater choice for route selection, 
due to the delay at intersections, significant attention has been paid to bus priority by 
researchers over the years.89 Although paratransit vehicles are as likely to be affected 
by intersection delay as transit buses, the effect of intersections on paratransit trips has 
received little attention in the literature.

In sum, population density, household density, and employment density can all reduce 
vehicular speed and increase delay because of high trip generation from activities. To the 
extent that trip duration and delay are inversely related to the efficiency of paratransit, high 
activity density in a confined space could decrease service efficiency due to congestion. 
However, if high population and household density is highly correlated with paratransit 
client density, service delivery could be more efficient because of scheduling ease as well 
as fewer and shorter deadhead trips. Similarly, if employment density is highly correlated 
with paratransit trip destination density, service delivery could be efficient. 

While the effect of population, household, and employment density on paratransit trip 
duration and delay could be positive or negative depending on the extent to which they 
coincide with the density of homes and trip destinations of paratransit users, the effect 
of intersection density on speed and delay is relatively straightforward. Based on the 
literature on the effect of intersections on trip duration and delay, traffic spill-back and 
spillover at intersections, pedestrian trip generation, and pedestrian safety concerns, it 
can be hypothesized that all vehicles, including paratransit vehicles, are subjected to 
congestion and delay in areas with high intersection density. 

Performance Measures Related to Travel Time and Congestion

The Highway Capacity Manual by the Transportation Research Board describes a number 
of roadway-oriented performance measures pertaining to road intersections and links, 
often categorizing roads by type of area.90 On the other hand, the Transit Capacity and 
Quality of Service Manual by the Transportation Research Board describes a number 
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of transit-related performance measures pertaining to various transit modes, including 
heavy rail, commuter rail, light rail, buses, and ferry services.91 In both manuals, a large 
number of performance measures directly or indirectly relate to congestion, trip duration, 
and delay.

While there is no dearth of performance measures relating to trips by automobile and 
public transit, the measures are pertinent only in specific contexts. Furthermore, not all 
measures are equally cost effective, and many cannot be used in real life because of a 
lack of required data. A host of cost-effective performance measures related to congestion 
and reliability are described in a report by the National Cooperative Highway Research 
Program (NCHRP), including individual measures such as travel time, delay per traveler, 
travel time index, buffer index, planning time index, and area measures such as total 
delay, congested travel, percent congested travel, congested roadway, and accessibility.92 
Another NCHRP report, by Lomax et al., also provides an inventory of performance 
measures related to congestion. Reporting from a survey of state departments of 
transportation and metropolitan planning organizations, the study indicates that delay and 
speed – the performance measures used in this study – are two of the most commonly 
used performance measures by the agencies. Specifically, delay ranks second and speed 
ranks fourth among 17 performance measures considered by the study.93

Travel Time Reliability of Access Link Trips 

Mobility and reliability are two most commonly used performance measures of 
transportation systems and networks. While mobility depends on overall travel time or 
delay, reliability depends on variability of travel time or delay.94 Thus mobility is primarily 
associated with typical, usual or recurring congestion, whereas reliability is a function of 
unforeseen congestion that may occur for a variety of reasons.95 As mentioned by Carrion 
and Levinson, a degree of unpredictability of travel time is associated with reliability.96 In 
the case of predictable variations of travel time, as experienced in morning and afternoon 
peak periods compared to off-peak periods, travelers can adjust their departure time to 
be able to arrive at the destination at the expected time, but when travel time or delay is 
unpredictable, a traveler cannot make such adjustments. For that reason, public opinion 
surveys show that travel time variability measures are more meaningful and important 
to travelers than congestion measures such as average speed and traffic volume.97 It is 
therefore not surprising that suggestions have been made to place a greater emphasis on 
reliability measures than measures of recurring congestion for transportation agencies to 
become increasingly more focused on the needs of their customers.98

Traffic congestion and delay can occur because of a variety of reasons, including physical 
bottlenecks, roadway crashes, non-crash traffic incidents, work zones, weather, traffic 
control devices, special events, and day-to-day variability in demand.99 Many of these 
factors, especially crashes, traffic incidents, work zones, special events, and day-to-day-
variability, can also be causes of unreliability. 

In the general context of transportation, the value of reliability for travelers has been 
the subject matter of a number of studies.100 Some of these studies compare the value 
of unreliability with the value of recurring delay. According to a study by Kittleson and 
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Associates, the value of reliability is high for trips to medical and personal service 
appointments, for pickups and drop-offs of children, and trips to work; whereas the value 
is low to moderate for trips to homes and leisure activities, and low for trips to shopping 
and social activities.101 

A number of past studies provide insights about the importance of travel time reliability to 
public transit users.102 While Wachs noted in the US context that public transit agencies 
do not pay enough attention to travel time reliability, a study by Börjesson et al. mentioned 
that travel time reliability is an important consideration for transit agencies in Europe.103 
Noland and Polak also hold the view that transit reliability receives greater importance in 
Europe than in the US.104

Far fewer studies have focused specifically on the reliability of paratransit service than 
on conventional fixed-route buses and bus rapid transit. In a study on paratransit service 
for elderly persons and persons with disabilities, Franklin and Niemeier touch upon the 
importance of reliability, but reliability is not the study’s primary focus.105 Other studies on 
paratransit, such as those by Lewis et al. (1998), Fu (2002b), and Metaxatos and Pagano 
(2004), placed a greater emphasis on paratransit reliability, but these studies were primarily 
concerned with service reliability related to scheduling technology and service denial rate 
rather than travel time reliability involving actual trips.106 Other studies, such as those by 
Wilds and Tally (1984) and Khattak and Yim (2004), concluded that perceived reliability 
of service is a key factor in people’s decision to use paratransit, but since these studies 
defined reliability rather loosely or generally, it is difficult to determine to what extent the 
authors were concerned about travel time reliability.107 Moreover, neither of these studies 
was specifically focusing on paratransit service for persons with disabilities. In contrast 
to these studies, a study involving mostly elderly persons and persons with disabilities in 
Michigan found that reliability associated with on-time pickup and drop-off is highly valued 
by paratransit users.108

Although travel-time reliability of paratransit service has not been widely studied, it can be 
convincingly argued that reliability of paratransit travel time for persons with disabilities is 
important because of their distinctive trip purposes. As previously discussed, the value of 
travel-time reliability is higher for trips to medical-/personal-care destinations compared 
to trips to many other types of destinations.109 An analysis of nationwide data from the 
2009 National Household Travel Survey by this author showed that 48% of the trips by 
persons with disabilities using special disability transit service are made for medical/
dental appointments.110 Since conventional fixed-route transit services are not included in 
special transit service for persons with disabilities, all of these trips are most likely made 
by paratransit. A study of paratransit service predominantly used by elderly persons and 
persons with disabilities in four Michigan counties similarly showed that trips for medical 
visits far outnumber trips for other purposes.111 
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II. BRIDGE RESILIENCY

PROPOSED CONCEPTUAL FRAMEWORK FOR ACCESSING THE 
RESILIENCY OF BRIDGES

This study proposed a conceptual framework to access the resiliency of bridges before 
and after disaster. Bridge performance and condition of bridge structure following a terrorist 
attack or natural disaster can be obtained through comprehensive structural analysis (such 
as a finite element modeling) or Structural Health Monitoring as well as remote sensing. 
Figure 2 shows the proposed conceptual framework for accessing the resiliency of bridges. 
Before disasters happen, Structural Health Monitoring can be employed to update the finite 
element (FE) model in order to reflect the real condition of the bridges. This will be a starting 
point for accessing the performance of bridges under major disaster. Once the disaster 
happens, certain information could be obtained, such as support movement, to update the 
established FE model. Then the FE model could be used to simulate the bridge performance 
(response under regular maximum loading) after the disaster to check whether the bridge 
is functional. Meanwhile, Structural Health Monitoring data, if available post-disaster, could 
be utilized to check bridge response after the disaster. The proposed damage detection 
procedure would enable a rapid damage assessment of numerous bridges across a wide 
geographic area so an optimized management can be scheduled effectively.
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Figure 2. Proposed Framework for Accessing Resiliency of Bridges
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Bridge Resiliency

BRIDGE PERFORMANCE AND BRIDGE REDUNDANCY 
(BEFORE DISASTER)

This section describes the evaluation of current bridge-load-carry capacity through field 
testing and FE modeling. The bridge redundancy was calculated by dividing the bridge 
capacity by the bridge carrying capacity demanded under current regular loading.

Sensor Instrumentation and Field Testing

The objectives of sensor instrumentation and field-testing are to evaluate the bridge 
condition before major disaster and calibrate the available analytical model (FE model). 
Field-testing was performed for two selected bridges in this study. The target bridges were 
tested to obtain various structural responses such as strain, deflection, and velocity. The 
testing results will be used to evaluate the performance of the bridge and improve the 
accuracy of the analytical model. 

Testing Equipment

The Structural Testing System (STS) is a modular data acquisition system manufactured 
by Bridge Diagnostics, Inc. (BDI), of Boulder, Colorado. The system consists of a main 
processing unit that samples data, junction boxes, and strain transducers. The strain 
transducers are mounted to structural elements with C-clamps or bolted to epoxied tabs. 
Each transducer has a unique identification number and a microchip to help identify it 
easily in the system. The transducer calibration factors are stored in the configuration files 
and are applied automatically. 

The STS consists of strain transducers, junction node, and the main STS unit as shown in 
Figure 3. Each test is assigned to an automatic file number, and the test is initiated using 
a trigger button called the clicker. Once the test is completed, the data can be downloaded 
from the STS unit to a laptop computer. 

 
(a) (b) (c)

Figure 3. (a) STS Strain Transducer; (b) Junction Node, and (c) Main Unit

The Laser Doppler Vibrometer (LDV), shown in Figure 4, is a non-contact measuring 
device that measures displacement and the velocity of a remote point. A change in the 
distance between the laser head and the reflective target will produce a Doppler shift in the 
light frequency that is decoded into displacement and velocity. The system is composed of 
three parts: 1) the helium neon Class II laser head, 2) the decoder unit, and 3) the reflective 
target attached to the structure. The laser head is mounted to a tripod that is positioned 
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underneath the target. The reflective target, typically retro-reflective tape, provides the 
strongest signal. The signal strength is read on a scale on the laser head. The tripod is 
adjusted to maximize the signal prior to a test run.

 

Junction Node
Decoder Unit

(a) (b)
Figure 4. (a) Laser Doppler Vibrometer and (b) Locations of 

Reflective Targets for Measuring Deflections

Example of Field Testing (NJ Transit Bridge A)

The sensor instrumentation on this selected structure is focused on the center girder on 
Span No. 2, since this member has the lowest rating based on the Inspection Report. 
The behavior of the center girder will be evaluated at the cutoff locations and at mid-
span. For the exterior girders, strain gage installation was not possible, since the girders 
were encased in concrete and the girder flanges were not accessible. Figure 5 shows the 
testing setup and preparation during the installation of the sensors.

Figure 6 shows the location of the 12 strain transducers and five reflective tapes that were 
instrumented on Bridge A. After the installation of sensors, the tests were conducted with 
the scheduled passenger trains.

 
Figure 5. Sensor Instrumentation and Test Equipment at Bridge A
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Figure 6. Sensor Locations on the Plan View for Bridge A

Finite Element Bridge Analysis

The selected bridges were modeled and analyzed using the FE program ABAQUS 
(Version 6.9.1) to simulate the structural behavior of critical members. The ultimate 
objective of the detailed analysis is to evaluate more accurately the condition of the 
bridge under current load demand and as a starting point for post-disaster analysis. This 
section illustrates the FE model in ABAQUS of the selected bridges. Figure 7 illustrates 
an isometric view of the various FE models for selected bridges. To improve the analysis 
results, various modeling features were considered in the three-dimensional FE model, 
such as 1) element types, 2) material behavior, 3) boundary conditions, and 4) interaction 
between the floor beams and steel girders.

 

(a) (b)
Figure 7. FE Model for Four Selected Bridges: (a) Bridge A, (b) Bridge B

Material Properties

The modulus of elasticity of the steel girder, steel beams and rails, E, and Poisson’s Ratio, 
ns, were considered as 29,000 KSI and 0.3, respectively. It is noted that the steel girders, 
beams, and rails were expected to undergo deformation within the elastic range only and 
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that therefore the inelastic behavior of the steel material was not considered for a functional 
bridge. Material properties for wooden-tie members such as modulus of elasticity, E, and 
Poisson’s Ratio were considered as 1,600 KSI and 0.3, respectively.

Element Selection and Analysis Procedure

The steel girders were modeled by using a four-node shell element (S4). Element type 
S4 in ABAQUS is a fully integrated, finite-membrane-strain shell element. Simpson’s Rule 
was used to calculate the cross-sectional behavior of the shell elements. A two-node linear 
beam element (B31) was selected in the model to simulate the steel floor beams, rails, and 
wood ties. The element type B31 is a first-order, shear-deformable beam element, which 
accounts for shear as well as flexural deformations in the analysis. One type of connector 
element was also used in the FE analysis model to join two nodes. Connection type JOIN, 
which forces the position of one node to be the same as the second node, was used to 
idealize the pin connections. The JOIN type of connector was used to idealize the bold 
connections between steel girders and floor beams.

In the FE model, a set of point loads simulating a railcar was applied on the rail elements. 
A multiple load case analysis was adopted to apply the railcar loading at various nodes on 
both tracks of the selected bridge. The accuracy of the model was verified by comparing 
the strain and deflection results obtained from the FE analysis and field test data, as 
explained in the next section.

Model Verification

In this section, the verification and calibration were performed for the bridges, and some 
adjustments to the model were made if needed to improve the accuracy of the model. 
Since the verified models will be used during the assessing of condition, the maximum 
structural response under traffic load is the most important issue. Therefore, in this part, 
the difference in the form of percentage between the FE model and field-testing data 
was computed at the peak value to verify the models as well as the average value and 
coefficient of variation (COV). The difference between the FE model analysis results and 
the field test data can be attributed to various reasons, but is mainly the result of the 
dynamic impact, the damping effect, and the unexpected restraints at member connections 
and end supports. Additionally, possible small-dimension differences between the actual 
bridge sections and the FE model can also help account for the variation between the 
analysis results and the field test results.

In general, for bridges with ballast deck, another reason for having a variation between FE 
model results and field-testing data for model simulation may be the idealization of load 
distribution through the ballast deck. The connectors between wood-tie members and 
floor beams were modeled in such a way as to help distribute the load applied on the rail 
element. In reality, however, the load is distributed more evenly to the floor beams and 
girders through the ballast deck.
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Example of FE Model Verification (Bridge A)

Deflections and strains of the structural elements were recorded from the strain transducers 
and LDV unit as the tested railcars passed over the bridge span. The obtained deflection 
and strain results of the structural members under the railcar loading were compared with 
the analysis results.

Figure 8 shows comparison of strain records. The horizontal axis shows the location of the 
railcar front axle moving from one support of the span. Figure 9 shows a comparison of 
deflection results between the FE model and field data at mid-span for two testing cases. 
The horizontal axis shows the front-axle distance from the support in the traveling direction. 
Overall, it can be seen that the FE model results exhibited good agreement with the testing 
results under the same railcar loading. After the model was validated and calibrated, accurate 
condition and response of bridge could be simulated under various scenarios.

 

Figure 8. Comparison of Strain Results between FE Analysis and Field-Test Data 
in Test Run #2 at (a) Sensor 2049 and (b) Sensor 2046, for Bridge A

 

Figure 9. Comparison of Deflection Results between FE Analysis and Field Test 
Data, for (a) Test Run #1 and (b) Test Run #2, for Bridge A
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Safety Margin Based on Field Testing and FE Model

In this section, the safety margin of the bridge was obtained under current maximum 
loading, 286 kips railcar loading. The safety margin is calculated by dividing the load-
carrying capacity by regular demand (response from maximum operating load) expressed 
as a percentage based on the American Railway Engineering and Maintenance-of-Way 
Association (AREMA) Manual for Railway Engineering.112 If the safety margin is greater 
than 100%, the bridge is safe under operation. The following tables show the assessment 
of bridge condition under regular maximum loading demand. The results show there is 
a consistent difference between simple beam analysis and FE analysis. Since the FE 
models were verified and calibrated with Structural Health Monitoring data, the results 
from models reflected the actual condition of bridges.

Table 2 shows the results for Bridge A. Two approaches were used to obtain the safety 
margin: simple beam analysis based on the AREMA design manual and FE analysis. 
The column “Equivalent Cooper E Load for 286-kip Railcar” represents the current load 
demanding while the column “Cooper E Rating” can be regarded as the capacity of the 
selected bridge. Both columns give the results from two approaches mentioned above. 
Based on the simple beam analysis, the maximum capacity over demand (C/D) ratio is 
90%, which means certain repairs are needed to improve the performance of the bridge to 
accommodate current maximum loading. The FE model, however, shows an unexpectedly 
high safety margin, 588%, compared to the simple beam analysis, due to the actual 
boundary condition of the bridge. Data from field tests were used to calibrate the FE 
model to help provide more accurate results. This model calibration was implemented 
in changes of the boundary conditions to be fix-pin rather than simply supported as was 
assumed in the simple beam analysis. The differences between the FE model and simple-
beam analysis may come from the boundary condition, member connectivity and load 
distribution. Table 2 shows all critical locations on this bridge based on inspection reports. 
Table 3 shows the results for Bridge B.
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Table 2. Load Rating Results for the Bridge A

As Inspected

Equivalent Cooper 
E Load for 286-kip 

Railcar
Cooper E 

Rating Safety Margin

Rating 
Type Location

FE Model 
(1)

Simple 
Beam 

Analysis
(2)

FE 
Model

(3)

Simple 
Beam 

Analysis 
(4)

Capacity over 
Regular  
Demand  

Ratio (3)/(1)

Capacity over 
Regular 
Demand  

Ratio (4)/(2)
Normal 
Load 
Rating

8.65’ from 
support*

E65 E59 375 53 588% 90%

11’ from 
support

E64 E59 247 58 385% 98%

14.4’ from 
support

E62 E60 211 62 345% 103%

Mid-span E62 E60 199 65 323% 109%
Maximum 
Load 
Rating

8.65’ from 
support*

E65 E59 552 85 833% 145%

11’ from 
support

E64 E59 367 93 588% 159%

14.4’ from 
support

E62 E60 316 99 500% 164%

Mid-span E62 E60 297 103 476% 172%

Note: * Critical location based on simple beam analysis.
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Table 3. Rating Results for Bridge B Using As-Inspected Section Properties

As Inspected
Equivalent Cooper E Load 

for 286-kip Railcar Cooper E Rating Safety Margin

Rating Type Location
FE Model 

(1)
Simple Beam 
Analysis (2)

FE Model 
(3)

Simple Beam 
Analysis (4)

Capacity over Regular 
Demand Ratio (3)/(1)

Capacity over Regular 
Demand Ratio (4)/(2)

Normal Load Rating G37 10.6’ from support E44 E58 139 62 313% 106%

G37 14.5’ from support E43 E59 108 52 250% 88%

G37 19.6’ from support E42 E57 99 53 238% 93%

G37 Mid-span E40 E54 77 57 192% 105%

G28 section 2 E62 E52 175 54 286% 104%

G28 section 5 E62 E52 188 56 303% 108%

G28 section 7 E53 E49 124 61 233% 125%

G28 Mid-span E47 E47 143 64 303% 137%

G29 Mid-span E47 E56 229 78 476% 139%

Maximum Load Rating G37 10.6’ from support E44 E58 179 104 400% 179%

G37 14.5’ from support E43 E59 183 92 435% 156%

G37 19.6’ from support E42 E57 168 94 400% 164%

G37 Mid-span E40 E54 129 97 323% 179%

G28 section 2 E62 E52 282 87 455% 167%

G28 section 5 E62 E52 303 91 500% 175%

G28 section 7 E53 E49 199 97 370% 196%

G28 Mid-span E47 E47 229 102 476% 217%

G29 Mid-span E47 E56 348 119 714% 213%
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POST-DISASTER MANAGMENT USING REMOTE SENSING — 
INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) 

As the investigators had a strong interest in studying the impact of major earthquakes on 
urban transportation infrastructure, the impacts of two recent earthquakes using available 
remote-sensing technology and data were investigated. The first case study was on the 
6.6 magnitude earthquake that severely damaged the city of Bam in Iran on December 
26, 2003. For this study, the researchers selected two Envisat satellite SAR images of 
the impacted area that were highly suitable for InSAR deformation analysis, with dates of 
acquisition December 3, 2003 (pre-earthquake) and February 18, 2004 (post-earthquake), 
respectively. The images were freely available from the European Space Agency (ESA). 
The second case study was on the 7.9 magnitude earthquake that severely impacted parts 
of Sichuan province in China on May 12, 2008, including several urban centers. For this 
study, the researchers selected two Envisat satellite SAR images of the impacted area, 
which were among only a very few pre/post-earthquake SAR image pairs available and 
potentially suitable for InSAR deformation analysis. The images’ dates of acquisition were 
February 6, 2006 (pre-earthquake) and May 28, 2008 (post-earthquake), respectively. 
They were purchased from Eurimage Company, a data distributor for the ESA.

Bam, Iran 2003 Earthquake Case Study

In this study, InSAR processing on two Envisat satellite SAR images of the city of Bam, 
Iran was performed. This area was severely damaged by a 6.6 magnitude earthquake on 
December 26, 2003. One image was acquired before the earthquake (December 3, 2003), 
and the other image was acquired after the earthquake (February 18, 2004). The open-
source and advanced software DORIS, developed by Delft University in the Netherlands, 
was used to perform the InSAR processing. The image products generated were generally 
of high quality due to the fact that the selected image acquisitions had a relatively short 
spatial baseline of 2 meters and temporal baseline of around 10 weeks, to maximize the 
capability for detection of ground deformation patterns. 

Arciniegas et al. applied the InSAR technique on similar 20-meter resolution Envisat SAR 
imagery and tried to assess the building damage distribution at the city block level. The 
investigators in the present study, on the other hand, focused on trying to detect and assess 
the conditions of the city’s transportation infrastructure. The 20-meter ground resolution 
limitation, however, made most roads and bridges narrower than 20-30 meters wide 
undetectable. However, the researchers were able to detect damage to part of the city’s 
airport runway, located a few kilometers east of the city and the earthquake’s epicenter, by 
visually inspecting the InSAR coherence image (Figure 10). This was confirmed by a World 
Bank report, which stated that the airport runway, with its relatively thin asphalt surface, 
suffered moderate damage due to the earthquake and the numerous flight landings and 
takeoffs in the weeks following the earthquake. Due to the spatial resolution limitation, it 
was not possible to quantify the damage from the generated InSAR images. The following 
optical and InSAR images show various types of information about the city of Bam’s airport 
runway and the surrounding area.

N
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Figure 10. Satellite Optical Image of Bam, Iran, Showing the City’s 
Airport Runway as Oriented from Northwest to Southeast

Source: Google Inc., 2008.

A number of features in the optical image above, including the airport runway, can be seen 
in the following InSAR images that the research team generated for this study area. 

Figure 11 is the result of pixel-to-pixel multiplication of pre- and post-earthquake SAR 
amplitude images of the study area, with bright pixels representing strong SAR signal 
backscatter to the imaging satellite and dark pixels representing weak signal backscatter.
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Figure 11. InSAR Magnitude Image Generated with DORIS Software

The InSAR magnitude image above clearly shows the Bam airport runway as a linear 
feature that is much darker than its surrounding area, an indication that the imaging satellite 
received very little signal backscatter from the runway. This is due to the fact that the SAR 
signals from Envisat satellite hit the flat and horizontal runway and reflected away from 
the satellite as it imaged the area from east to west while on its north to south flight orbit.

Figure 12 is the result of pixel-to pixel phase correlation between pre- and post-
earthquake SAR images, where bright pixels indicate high correlation and dark pixels 
indicate low correlation.



Mineta Nat ional  Transi t  Research Consort ium

36
Bridge Resiliency

 
 

 

N 

Airport 
Runway 

Damage in 
Runway 

Figure 12. InSAR Coherence Image Generated with DORIS Software

The InSAR coherence image above clearly shows the western part of the Bam airport 
runway as significantly darker than its surrounding area. This means that those pixels on 
the runway suffered significant amount of deformation (or damage) due to the earthquake 
or other effects, which caused significant changes in their backscattered SAR signal phase 
values as compared to pre-earthquake signal phase values. These significant differences in 
the runway pixel phase values, between pre- and post-earthquake SAR images, led to low 
correlation values for those pixels, which therefore made them appear as dark in the InSAR 
coherence image. Even though the detected deformation on the airport runway appears to 
be significant, it is difficult to give a more detailed assessment of the runway’s operational 
conditions based on this image alone, due to the 20-meter spatial resolution limitation.



Mineta Nat ional  Transi t  Research Consort ium

37
Bridge Resiliency

 

 

 
 

N 

Airport 
Runway 

Figure 13. Composite InSAR Image Generated with DORIS Software, Consisting of 
an InSAR Phase-Difference Image Superimposed on an InSAR Magnitude Image

Figure 13 shows the InSAR phase-difference image superimposed on an InSAR magnitude 
image showing the Bam airport runway as dark in color. The phase-difference image 
shows the earthquake-induced ground deformation pattern as color fringes. Note that 
the deformation pattern (color fringes) caused by the traveling earthquake shock wave 
traverse the length of the airport runway from west to east. The researchers also note from 
Figure 11 that the western part of the runway, which is closer to the earthquake epicenter, 
shows the most noticeable damage. 

Sichuan, China 2008 Earthquake Case Study

In this study, the investigators performed InSAR processing on two Envisat satellite SAR 
images of a selected area of Sichuan province in China that was impacted by a strong 
earthquake on May 12, 2008. One image was acquired before the earthquake (February 
6, 2006), and the other was acquired after the earthquake (May 28, 2008). The open-
source and advanced software DORIS, developed by Delft University in the Netherlands, 
was used to perform the InSAR processing. The generated InSAR image products varied 
in their quality from high quality for the magnitude image to low quality for the phase and 
coherence images. This low quality was mainly because the selected image acquisitions 
had a relatively long spatial baseline of 600 meters and temporal baseline of around 2.25 
years, which significantly increased the level of decorrelation between the images and 
thus severely reduced the capability for detection of ground deformation patterns. The 
investigators used this image data set, however, because it was among very few data 
sets that were available for the impacted area that at the same time were suitable for 
InSAR processing. The generated InSAR magnitude image was the only image that the 
researchers were able to utilize in their attempt to detect and assess conditions of the 
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transportation infrastructure in the earthquake-impacted area. The following images are 
first results showing information about the study area.

Figure 14 shows a road-dam structure spanning a river channel from Google Earth. A 
number of features in the optical image above, including the road-dam structure, can be 
seen in the following InSAR image that the investigators generated for this study area. 

 

Figure 14. Satellite Optical Image of the City of Mianyang in Sichuan Province, 
China, which was Impacted by the 2008 Earthquake

Figure 15 is the result of pixel-to-pixel multiplication of pre- and post-earthquake SAR 
amplitude images of the study area, with bright pixels representing strong SAR signal 
backscatter to the imaging satellite and dark pixels representing weak signal backscatter.
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Figure 15. InSAR Magnitude Image Generated with DORIS Software

Note in the image above that the road-dam structure spanning the river channel shows 
as bright pixels. This means that the SAR signals backscattered from the road-dam 
structure with high amplitudes due to the fact that the structure is oriented at an almost 
450 degree angle with the north-south flight path of the imaging satellite. The other reason 
for the structure’s bright signals is that the width of the structure was estimated at around 
50 meters (using a Google Earth tool). That is more than 2 SAR pixels wide, and thus 
makes it detectable by the SAR system. Based on the brightness of the return signals from 
the road-dam structure, therefore, the researchers can say that the structure appears to 
be intact following the earthquake. The investigators cannot determine from this image 
alone, however, whether the structure has suffered moderate or minor damage, due to the 
image’s 20-meter spatial resolution limitation.

Figure 16 shows a number of bridges spanning a river channel from Google Earth. A 
number of features in the optical image above, including the bridges, can be seen in the 
following InSAR image that the investigators generated for this study area.
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Figure 16. Satellite Optical Image of the City of Deyang in Sichuan Province, 
China, which was Impacted by the 2008 Earthquake

Figure 17 is the result of pixel-to-pixel multiplication of pre- and post-earthquake SAR 
amplitude images of the study area, with bright pixels representing strong SAR signal 
backscatter to the imaging satellite and dark pixels representing weak signal backscatter. 
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Figure 17. InSAR Magnitude Image Generated with DORIS Software

Note that the bridges showing in the optical image are barely detected in the InSAR image 
above. One reason for that could be the 20-meter spatial resolution limitation of the SAR 
system, which means that only structures of width significantly larger than 20 meters can 
be detected. In this case, the estimated width of those bridges was around 35 meters 
(estimated using a Google Earth tool), which is less than two SAR pixels wide. The other 
and most likely reason could be that the bridges are oriented east-west, which is almost 
perpendicular to the north-south flight path of the imaging satellite. In this case, most of the 
satellite SAR signals would have hit the flat and horizontal bridge decks and reflected away 
from the satellite. Therefore only a few low amplitude signals would have backscattered to 
the satellite, which made the bridges appear much darker on the InSAR magnitude image 
and therefore barely detectable over the dark water channel. 

Hence, in this case, it can be inferred that the following combination of factors prevented 
us from clearly detecting the bridges and determining if the bridges remained intact 
following the earthquake: the image spatial resolution limitation, the bridges’ perpendicular 
orientation to the imaging satellite, and the bridges being over a water channel.
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SUMMARY

During normal operation of the bridge, the FE model can be developed to assess its 
performance and current condition throughout the comprehensive structural analysis. 
The model can be validated and calibrated using data from field tests and sensors using 
the SHM system. Thereafter, when a disaster happens, a quick evaluation of the bridge 
condition in a post-disaster mode can be re-evaluated using InSAR technology for the 
bridge network looking at factors such as support movement, member failure, etc. Two 
case studies were presented to test the feasibility of this proposed approach. Additionally, 
the bridge SHM system, if still operational post-disaster, would be utilized for further 
confirmation of the bridge response after the disaster. This proposed damage-detection 
procedure would enable a rapid damage assessment for numerous bridges on the bridge 
network basis, and thus provide rapid, optimized, and cost-effective management of road 
and bridge network post-disasters. With the proposed approach, transit agencies could 
assess the load-carrying capacity of their bridge structures promptly and efficiently. Major 
decisions could be made based on the results of proposed approach.
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III. ASSESSMENT OF EFFICIENCY AND RESILIENCY OF 
TRANSIT SYSTEMS

The objective of the study is to characterize the sustainability/resiliency/reliability of transit 
infrastructure after natural disasters and make long-term predictions. Specifically, the 
researchers aim to measure public transit infrastructure when subject to disruptions, in 
terms of travel time, speed, speed of recovery, and reliability of access during extreme 
events, by evaluating the conditions of pavements and bridges along various routes and 
also by evaluating transit service reliability during extreme events.

DATA SOURCES

Public transit infrastructure consists of numerous components such as bus stations, road 
network, road bridges, train stations, train tracks, train signal control systems, tunnels, 
paratransit facilities, etc. In order to measure the performance of all these components, 
varied kinds of data are necessary. 

With the advent of new technologies, there is a massive amount of available data sources 
in various facets of transportation and infrastructure. Most of these observed and model 
data were obtained in the context of other evacuation and emergency management 
projects as well as New Jersey Department of Transportation (NJDOT) research projects 
conducted by the Rutgers research team in the past. The following are the lists of data 
sources available in NJ for infrastructure, traffic and various events with references to the 
studies that used these data sets.

Infrastructure data sources used in this study include the following:

1. NJ Straight line diagrams are used in Ozbay et al. (2012a) and in Nassif et al. 
(2015).113

2. The New Jersey State-Wide Planning Model (NJSWM) and the North Jersey 
Regional Transportation Model - Enhanced (NJRTM-E) are used in Ozbay et al. 
(2012b), Demiroluk et al. (2016), Yang et al. (2016).114

3. Google transit data archived by the research team is used in several research 
projects conducted by Rutgers team researchers.

Traffic data sources used in this study include the following:

1. Anonymized Electronic Toll Collection (ETC) data is in Ozbay et al. (2012b), 
Demiroluk et al. (2016), Yang et al. (2016).115

2. INRIX travel time data is used in Ozbay et al. (2012b) and Rutgers Intelligent 
Transportation Systems Laboratory (RITS) (2011).116

3. NJDOT Weigh-in-motion (WIM) data is used in Ozbay et al. (2012a), Nassif et al. 
(2015).117
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4. Traffic Monitoring System (TMS) continuous traffic count data integrated with NJ 
straight line diagrams are used in Ozbay et al. (2016a).118 

5. New York City (NYC) subway turnstile data is used in Zhu et al. (2016).119

Events data sources used in this study are as follows:

1. Transportation Operating Coordinating Committee (TRANSCOM) event data is 
used in Ozbay et al. (2012b), Demiroluk et al. (2016), Yang et al. (2016), and Ozbay 
et al. (2016b).120

a. Hurricane Irene events

b. Hurricane Sandy events 

2. NJ Transit recovery information is obtained from online sources such as Twitter, 
advisory notices, etc.

Brief Description of Data Sources

NJ Straight Line Diagrams  

The straight line diagrams provide many details about the road infrastructure in NJ.121 
They are maintained by the NJ Department of Transportation (NJDOT). The straight-
line diagrams include detailed GIS-based data up to local roads. Other data in the 
straight-line diagrams include, milepost, AADT, number of lanes, road type, surface 
condition, etc.

NJSWM and NJRTM-E

These data sources are used for long-term predictions of various transportation 
related investments. The level-of-detail is up to county-level road geometry. These 
data sets include, milepost, average peak and off-peak volume, speed and travel time 
by vehicle class. Aside from highway data they also include transit network data and 
planning-level ridership data.122

Google Transit Data 

NJ Transit provides some transit data for public access for various transit application 
developers. This data set includes coverage of the transit routes, station locations and 
service timings. This data source is useful in geo-locating various transit lines with 
respect to highway and other infrastructure data.

ETC Data 

The ETC data are collected for all toll-ways in NJ: New Jersey Turnpike (NJTPK), 
Garden State Parkway (GSP) and Atlantic City Expressway.123 The NJTPK is spread 



Mineta Nat ional  Transi t  Research Consort ium

45
Assessment of Efficiency and Resiliency of Transit Systems

over 150 miles with 28 interchanges and 366 toll lanes. The GSP is about 170 miles 
long with 50 toll plazas and 236 toll lanes. Each freeway carries up to 400,000 
vehicles per day.124 The ETC data set is collected at toll plazas on these freeways.125 
The ETC data set consists of the individual vehicle-by-vehicle entry and exit time data. 
It also consists of the information regarding the lane through which each vehicle was 
processed (both E-ZPass and Cash users), vehicle types, number of axles, etc. Since 
this data set is extremely detailed, it can be used to analyze changes in volumes, 
travel time and vehicular composition not only on a daily basis, but also as a response 
to extreme events.

INRIX GPS Travel Time Data 

INRIX Inc. collects and compiles GPS traces collected from GPS devices in cars and 
mobile phones.126 INRIXTM monitors traffic flows across more than 260,000 miles of 
US and Canadian highways and provides real-time traffic information for 32 countries 
across North America and Europe that comes from 800,000 vehicles equipped 
with GPS devices (INRIX (2013)).127 In addition, INRIX receives information from 
road sensors located in about 9,000 miles of highways. It is a crowd-sourced traffic 
network, and it receives information from commercial fleets – taxicabs, delivery vans 
and long-haul trucks – and mobile devices. INRIX also reports incidents and unique 
local variables (INRIX (2013)).128 INRIX offers developers real-time traffic and routing 
information using application programming interface (API) access. Using GPS traces, 
the company provides historical and recent travel-time information and also traffic 
forecasts in the near future. Although the level of detail is not as much as the ETC data 
set’s, the INRIX GPS data is richer in its geographical expanse. It is collected over 
county-level highways, state highways, interstates and freeways.

NJDOT WIM Data  

Weigh-in Motion (WIM) sites are used for monitoring the heavy vehicles operations 
on roadways. The types of data available through WIM are: traffic volume, speed, 
directional distribution, lane distribution, date and time of passage, axle spacing, and 
vehicle classification.129

TRANSCOM Event Data  

Several agencies collect event data related to all the accidents, incidents, crashes 
and other road-related events.130 For example, TRANSCOM, an agency that 
coordinates the activities of all of the transportation agencies in the New York – NJ 
region, collects volume, speed, and travel time data through electronic readers, known 
as TRANSMIT data (TRANSCOM (2013)).131 TRANSCOM also provides data specific 
to distinct events in the transportation network. Events such as major constructions 
activity, major accidents, hurricanes, sporting events, conventions, etc. may cause 
disruptions in the transportation network. Information on disruptions on roadway 
network is collected by, traffic incidents, type of incident, flooding, other traffic blockage 
events such as tree falls, down poles, etc. The event data can be generated from an 
XML feed from the TRANSCOM database. Around 5,000 event records are obtained 
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on an average in a month. For this study the event data during hurricane Sandy 
(October through December 2012) are used.

NJ Transit Online Data

Recovery effort of various bus and rail lines is constantly updated by NJ Transit on 
their web site and using their twitter account. This data set is compiled and used to 
estimate the recovery effort.

These extensive data sets are very useful in estimating various data-driven performance 
measures for the transit infrastructure. Some of these performance measures, as studied 
in the relevant literature, are discussed in the next section.

METHODOLOGY FOR RESILIENCY, VULNERABILITY AND RECOVERY 
MEASUREMENT

The transportation vulnerability, recovery and resiliency measures in the literature 
described in the previous section are mostly network-level measures. However, for 
assessing the resiliency of public transit network, it may also be needed to evaluate 
these measures at route- and link-levels. Route-level measures may be used to 
determine the resiliency of specific bus routes. Link-level measures may be useful in 
identifying particularly vulnerable links in the public transit network. Hence, in this study 
the resiliency measures mentioned in the literature above are customized so that they 
can specifically be quantified for transit routes.

Table 4 lists the adapted performance measures classified into different categories, a brief 
definition and data to be used to quantify these measures with New Jersey-specific data.

Table 4. Adapted Performance Measures Estimated in this Study
Vulnerability Measures Data Used
Vulnerability index VA6: number of times a link is a part of the route on route map132 Google Transit
Change in bus route travel time133 INRIX
Number of critical links (links with high VA or links with events) on specific bus routes Google Transit/TRANSCOM
NRI – extra travel time / distance imposed on the route by removing a 
particular link on a route134 

NJRTM-E 

Recovery Measures Data used
Bus transit recovery in number of days ETC data
Rail transit recovery in number of days Advisory information from 

internet
Change in speed135 INRIX
Resiliency Measures Data to be used
Change in travel times or generalized transportation cost between ODs136 NJRTM-E 
Δtravel time/Δtime137 ETC data
Δvolume/Δtime138 ETC data
Friability (number of reliable routes) for select bus routes139 Google Transit/TRANSCOM

NJRTM-E



Mineta Nat ional  Transi t  Research Consort ium

47
Assessment of Efficiency and Resiliency of Transit Systems

Since most of the available New Jersey-specific traffic data are for the highway network, 
the measures are generated for the bus transit network in this study. In order to evaluate 
these measures for transit, the Google transit data is used as the basis for geo-location. 
The traffic and event data are superimposed and mapped onto the bus transit network. 
The bus transit network is made discrete based on bus routes, whereas the traffic data 
are available on the basis on links. Thus each bus route has to be mapped onto the 
corresponding highway links in order to obtain the appropriate traffic data. An example of 
this process is shown in Figure 18. 

 
Figure 18. Google Transit Network + NJRTM-E Loaded Network for Bus Route 139

It may not be possible to estimate the measures for all the links in the bus transit network. 
Therefore, a set of links with high vulnerability index, VA6, is used. In this study, however, 
for the case of transit, VA6 is modified as the number of times a link is a part of different bus 
routes. Additionally, the event data is also mapped onto the highway network. The links 
associated with disruption events are also added to the set of links chosen above. All other 
link-level measures are estimated for these links.

For estimating network-level measures such as NRI and NIRA, the links chosen above are 
used in cases of disruption. These measures require estimating the travel times without 
specific links as a part of the network. For this purpose, the NJRTM-E loaded network is 
used. In specific cases, the travel time information for the ETC data of NJTPK or INRIX, if 
available during the event, is used.
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For the analysis of travel times, the investigators use a software application developed 
by the Rutgers team specifically to analyze four-step planning process’ output data from 
Northern NJ’s demand forecasting model, namely, NJRTM-E. This application software 
application titled ASSIST-ME (Advanced Software for State-wide Integrated Sustainable 
Transportation System Monitoring and Evaluation) is developed on a customized version 
of the ArcGIS 9.2 Developer Engine in Microsoft.NET Framework, as a tool to visualize 
and analyze the output of transportation planning models in a GIS environment. Various 
functionalities of ASSIST-ME are described below briefly. For a detailed presentation of 
the tool please refer to Ozbay et al. (2014).140 

The major functionalities of ASSIST-ME are:

1. Visualization of data such as link speed and volume-to-capacity (V/C) ratio, including 
side-by-side visual comparison of two network model runs.

2. Calculation of macroscopic statistics such as VMT, vehicle hours traveled (VHT), or 
average network speed, travel time, and delay.

3. Analysis and comparison of OD demand between various zones in the network.

4. Calculation of shortest paths between origins and destinations on a loaded network.

5. Estimation of travel costs for user-defined/all network links, or for trip paths based on:

• Vehicle Operating Cost

• Congestion Cost

• Accident Cost

• Roadway Maintenance Cost

• Air Pollution Cost

• Noise Cost

6. Benefit/Cost analysis of various policies and planning decisions.

7. Creating and selectively exporting analyses into a report.

The workflow of ASSIST-ME is shown in Figure 19. Users select the analysis method and 
feature-selection method using the graphical user interface of ASSIST-ME. Corresponding 
database(s) are accessed depending on the method of analysis chosen using appropriate 
queries and programs. This information can be presented in the form of color schemes 
and tables that can also be saved for future reference and reporting.
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Figure 19. ASSIST-ME Workflow141 



Mineta Nat ional  Transi t  Research Consort ium

50
Assessment of Efficiency and Resiliency of Transit Systems

For this study, path analysis and trip-cost estimation are the applicable functionalities. 
ASSIST-ME can track changes in travel times and paths and function as a quick analysis 
tool to visualize the shortest path between an OD pair and calculate its model-estimated 
travel time. This module of ASSIST-ME does not perform the traffic assignment process, 
but estimates shortest path(s) and corresponding travel times between selected OD pairs 
based on the output of the traffic assignment process. The methodology used to find the 
multiple trips between OD pairs is based on the k-th shortest path algorithm developed by 
Ozbay et al.142 Beyond changes to travel times and travel paths, network changes result in 
wide-ranging effects on the complete system. These effects can be represented as “costs” 
incurred by various entities of the system.

In addition, due to the availability of detailed turnstile ridership data from the NYC subway, 
the spatio-temporal resiliency characteristics of the NYC subway system are also included 
as a part of this study.143 Recover curves are also built for the subway system in New York 
City in the aftermath of Hurricanes Irene and Sandy.

Subway ridership data was obtained from the turnstile data set from the Metropolitan 
Transportation Authority (MTA). This data set includes subway turnstile information since 
May, 2010 and is updated every week. The data is stored in txt format and is available 
through an official data feed.144 The data is organized by weeks, remote units (stations) 
and control areas (turnstiles). Each station can have multiple control areas, and for each 
turnstile, there are two increment counters used to record numbers of entries and exits. 
In each weekly file, a row contains one read of entry and exit counters, time of the read, 
station and turnstile IDs. Typically, counter readings of each turnstile are recorded every 
four hours, but each station may have a different time of reading. In order to obtain daily 
ridership of each station, first it is necessary to convert values of counters to turnstile 
ridership by subtracting last reading and first reading of the day, and then calculate the 
sum of all turnstiles.

The processed data sets were then incorporated into Neighborhood Tabulation Areas 
(NTA). The NTA is a set of polygons created by the New York City Department of City 
Planning, used for presenting data from Census and American Community Survey.145 
There are overall 195 NTAs in NYC, and each NTA corresponds to one Neighborhood with 
a unique ID and name. There are two reasons for selecting NTAs. First, the sizes of NTAs 
are appropriate for analysis, especially for subway data. These areas are neither so big as 
to cover more than one category of evacuation zones, nor so small as to not include even 
one subway station. Second, as mentioned above, unlike TAZs or Census Tracts, each 
NTA also has a familiar name, so it is much easier to follow travel patterns based on these 
names. Data for the present study periods were extracted from taxi and subway data sets, 
and NTA attributes are associated with each trip’s origin and destination.

Subway ridership data during the study period is compared with data for the same period 
of the previous year. Daily ridership for each NTA is obtained as the sum of ridership for all 
stations located in the NTA. For both hurricanes, the researchers choose the days before 
evacuation orders as the start days of study, and durations are 15 days. Study periods of 
hurricanes and normal conditions are shown in Table 5.
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Table 5. Study Period of the Empirical NYC Subway Data
Cases Start Date (Day 1) Evacuation Order Hurricane Landfall End Date (Day 15)
Hurricane Irene Aug. 25, 2011 (Thurs.) Aug. 26, 2011 (Fri.) Aug. 28, 2011 (Sun.) Sept. 8, 2011 (Thurs.)
Reference Irene Aug. 26, 2010 (Thurs.) - - Sept. 7, 2010 (Tue.)
Hurricane Sandy Oct. 27, 2012 (Sat.) Oct. 28, 2012 (Sun.) Oct. 29, 2012 (Mon.) Nov. 10, 2012 (Sat.)
Reference Sandy Oct. 29, 2011 (Sat.) - - Nov. 8, 2011 (Tue.)

There are several important issues in processing taxi and subway turnstile data. The first 
is the filtering of noisy or erroneous data. For subway trips, errors including extremely low 
or high ridership values (caused by counter reset due to maintenance) need to be filtered 
out. Besides, for normal days, daily subway entrance and exit counts are close. However, 
in the first two days of November 2012, entrance counts were significantly lower than exit 
counts. That is because fare was not collected in the initial recovery period of the system, 
and entry data was not recorded at all.146 For comparison purposes, therefore, ridership in 
terms of exit data only is used.

ESTIMATION OF PERFORMANCE MEASURES AND ANALYSIS

Various performance measures listed in Table 4 are estimated and presented in this section 
in three categories, namely, vulnerability, recovery and resiliency.

Vulnerability Measures

VA6, the number of times a link is a part of the route, is an important characteristic of the 
network. In the context of this study, it indicates the number of times a link occurs in a bus 
route in the bus network.147 In other words, VA6 indicates which links are more important 
for the operating agency. Table 6 lists VA6 for the NJ Transit bus network. Note that VA6 is 
a property of the network, and independent of any critical event it may be subject to.

Table 6. VA6 Number of Times a Link is a Part of a Bus Route on NJ Transit 
Link VA6 Link VA6

Lincoln Tunnel 63 I-80 before NJ 17 12
NJTPK exit 16E 21 NJ 3 between 16W & NJ-495 11
NJ 3 before NJ-495 21 George Washington Bridge 8
NJTPK exit 17 21 US9 before GSP 7
NJTPK exit 14-15E 18 I-280 6
NJTPK exit 13A-14 17 NBHCE exit 14A-14C 5
NJTPK exit 13-13A 16 US 1 south of Princeton 3
Ben Franklin Bridge 15 NJTPK exit 9-10 2
NJTPK exit 11-12 14 Holland Tunnel 2
GSP before NJTPK 11 12
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Figure 20. Interchanges of NJTPK on Google Maps

Table 7. Comparison of Changes in Travel Time
Interchange 11-16E Interchange 14-16E

Travel time 
(min.)

Percent 
change

Travel time 
(min.)

Percent 
change

Average Regular Days 20.47 8.42
Average during Hurricane Evacuation 28.90 41% 13.73 63%
Maximum during Evacuation 39.72 94% 35.73 325%

Change in Travel Time on Routes with Critical Links

Change in travel time is another link-level vulnerability measure.148 In this study, change 
in travel time is estimated using the ETC data on NJTPK and travel time data from INRIX 
for the few critical links that carry most of the buses. In other words, the change in travel 
time is estimated for critical links with a high VA6 from Table 6. Travel time between major 
interchanges is a good indication of how critical events, in this study hurricane Sandy, 
have affected the network and the bus routes.
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Travel time is estimated from ETC data between Interchange 11 and 16E and Interchange 14 
and 16E (see Figure 20 for the location of the interchanges) for three days before and five 
days after evacuation for Hurricane Sandy began. 

Two levels of comparison of travel times are performed. The first level includes the difference 
between average travel times before the hurricane and the maximum travel time during 
the evacuation and hurricane period. The second level includes the difference between the 
average travel times before the hurricane and the average travel times during the evacuation 
and hurricane period. Table 7 shows the comparison of the travel time measures.

Number of Events on Routes (October 29-30, 2012)

The number of events is a critical input in determining which routes were affected by 
Hurricane Sandy. The event data during Hurricane Sandy are provided by TRANSCOM. 
A general classification of events before, during and after Hurricane Sandy is shown in 
Figure 21.

 

Figure 21. Event Classification Before, During and After Hurricane Sandy

For the purpose of evaluating bus routes affected by Sandy-related events, the event data 
from TRANSCOM is mapped onto Google Transit’s bus network. The intersection data 
set is used to obtain the frequency of number of routes versus number of critical Sandy-
related events beginning October 29-30, 2012.

The intersection data set is used to obtain the frequency of number of routes versus 
number of critical Sandy-related events beginning October 29-30, 2012. Figure 22 shows 
the number of routes with {0, [1-4], [5-8], [9-12], [13-16], [17-20], [21-24], 24-more} events.
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Figure 22. Frequency of Routes with Critical Sandy-Related Events

Note: Beginning Oct. 29-30.

Figure 23 shows a map of the ten routes with the most Sandy-related critical events beginning 
October 29-30, 2012. From Figure 23, it can be inferred that Sandy generally affected most 
of the routes that pass along the coast in the southern and eastern parts of NJ.

 

Figure 23. Routes with the Most Sandy-Related Critical Events
Notes: More than 20. Beginning Oct. 29-30.
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Network Robustness Index (NRI)

The NRI is a measure of vulnerability of a particular link and its impact on the network. 
Note that VA6 is a property of the network and independent of any critical event it may be 
subject to. In other words, it is dependent on the design on the transportation network. 
In this study, as an illustration, the investigators demonstrate the effect of removing the 
most critical link (in terms of VA6: number of times a link is a part of the bus route on bus 
network), namely, the Lincoln Tunnel. For estimating this measure, the researchers use 
ASSIST-ME to estimate the extra travel time imposed on operating the route by removing 
the link representing the Lincoln Tunnel.149 The researchers study the extra travel time 
imposed on operating the route by removing the link representing the Lincoln Tunnel that 
runs from or upstream of (a) Middletown, NJ – PABT, Manhattan, (b) Newark Airport – 
PABT, Manhattan. Note that in this case, since only three bus routes are analyzed, the 
traffic assignment is not performed without the critical link. Instead, only the shortest path 
is re-estimated between the few important origins and destinations that form a part of the 
majority of the bus routes. For a similar analysis for all bus routes in the NJ TRANSIT bus 
network, a full cycle of the four-step planning process will be performed with the critical 
link removed.

Table 8. Change in Travel Time When the Lincoln Tunnel is Removed

Origin-Destination

Travel Time 
under Normal 

Conditions (hr)

Travel Time when 
Lincoln Tunnel is 

Removed (hr)
Percent Increase 

in Travel Time
Middletown, NJ – PABT, Manhattan 2.06 2.09 1.4%
Newark Airport – PABT, Manhattan 1.07 1.04 -2.3%
Clifton, NJ – PABT, Manhattan 0.95 1.15 21.1%

The result in Table 8 shows that the network is fairly reliably able to compensate for the loss 
of a critical link. Note that the current route followed by buses traveling from Newark Airport 
– PABT, Manhattan is via Lincoln Tunnel. Since only three bus routes are analyzed, the 
traffic assignment is not performed. When the full four-step planning process is performed 
with the Lincoln Tunnel removed, the possible options would involve:

• traffic (including buses) shifting to other routes which could be of a shorter travel 
time as seen in Table 8,

• a modal shift of passengers traveling to New York City such as a shift from bus to 
PATH from Newark Penn station or a shift from bus to PATH to Jersey City and ferry 
to Manhattan, etc.

Recovery and Resiliency

Hurricane Sandy caused extensive damage to the rail transportation infrastructure in 
particular and to the road infrastructure in general. The following are a few examples of 
the damage.150 
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1. NJ Transit’s rail operations center was submerged, damaging the backup power 
supply systems, emergency generator, and the computer system that controlled 
train movement and power supply.

2. Numerous downed trees damaged overhead and signal wires.

3. The North Jersey Coast line experienced washouts and damage to the 
Morgan drawbridge.

4. Downed tree limbs and power lines made roads impassable.

5. Nine of NJ Transit’s bus garages operated on backup generator power.

6. The Hudson-Bergen Light Rail experienced track washouts at Port Imperial 
and West Side Avenue Stations, as well as trees in the overhead wire in Weehawken 
and flooding in Hoboken.

7. The River Line sustained no significant damage to equipment or infrastructure; due to 
a loss of commercial power in downtown Camden, however, there was no power to 
operate the signals and switches.

The impact of Sandy on the Port Authority Trans-Hudson (PATH) was also significant. 
The PATH suspended all services at midnight on 10/28. Storm surge from the hurricane 
caused significant flooding to PATH train stations in Hoboken and Jersey City, as well as 
at the World Trade Center on 10/29. The subway tunnel between Manhattan and NJ was 
also flooded.151 

In the next subsection, the researchers analyze the recovery of transit in NJ and estimate 
a few resiliency measures.

RECOVERY

The recovery of public transit systems such as rail, light rail and bus is determined by the 
time each mode is brought back into service in the aftermath of extreme events. Figure 24 
shows a map of various rail, light rail and subway lines operated by NJ Transit and Port 
Authority colored according to their recovery (full or part) time.

Table 9 shows the recovery time of various rail, light rail and subway lines operated by 
NJ Transit and Port Authority in number of days. It shows that light rail infrastructure can 
recover more quickly than regular rail lines. The possible reason for this could be that 
since regular rail infrastructure carries much higher load at higher speeds, the structural 
strengthening of the damaged tracks and bridges could require a greater amount of time. 
The guideway for light rail is usually on or close to existing roads, so the recovery is closely 
correlated to the recovery of road infrastructure. Light rail recovery, however, additionally 
depends on the recovery of systems such as signal control, power supply, etc.
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Recovery of underground subway systems such as the PATH system operated by Port 
Authority are very dependent on the extent of flooding of the underground tunnels. 

On October 27, 2012 the Governor of New Jersey announced preparations for potential 
shut down of NJ Transit bus, rail, light rail and Access Link Service effective October 29 and 
system-wide cross-honoring from Monday through Wednesday. The Holland Tunnel and 
the Battery Tunnel were preemptively closed at 2 p.m. on October 29 due to vulnerability 
to flooding. The George Washington Bridge was closed to traffic at 7 p.m. The Holland 
Tunnel experienced significant flooding. By the end of October 29, the Lincoln Tunnel was 
the only Manhattan entry point that remained open. The Lincoln Tunnel and Port Authority 
Bus Terminal (PABT) remained open since there was no flooding there.152

 
Figure 24. NJ Transit Rail, Light Rail and PATH Recovery Map

Source: NJTRANSIT (2015).
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Table 9. Recovery Time of Various NJ Transit Rail, Light Rail and PATH
Rail Line Recovery Time
River Valley Line 2 days
Northeast Corridor 4 days
Atlantic City Line, Main Line, Raritan Valley Line, Hudson Bergen Light Rail 7 days
PATH Journal sq.-33rd St. 8 days
Morristown Line, Pascack Valley Line, PATH Newark-33rd St. 13 days
Montclair Boonton Line 15 days
Bergen County Line 18 days
North Jersey Coast Line 21 days
PATH Newark-WTC 28 days
Gladstone Extension 32 days

 

Figure 25. Recovery of Bus Routes as of November 1, 2012
Source: NJTRANSIT (2015).

Once Hurricane Sandy was over on October 31st, dozens of buses started to operate again, 
and specific routes were restored. As of November 1st, less than 40% of the gas stations in 
NYC metropolitan region were functioning due to loss of power supply. Access Link - ADA 
Paratransit service resumed in some regions. Starting November 9th, free shuttle buses 
were in service for the Morris & Essex Lines, Montclair-Boonton, North NJ Coast, and 
Northeast Corridor Lines.
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Recovery of the bus transit system depends directly on the recovery of the highway system. 
Figure 25 shows the routes fully and partly recovered as of November 1st. One primary 
reason why the bus system recovered faster than the rest of the NJ Transit services is that 
the Lincoln Tunnel was not affected by the storm. Additionally, PABT was also unaffected. 
Since the Lincoln Tunnel is the most critical of the links in the bus route network as shown 
in Table 6, the bus transit system was able to recover quickly. Additionally, other critical 
links (Table 6) were also unaffected by the storm, as of November 1st:

• 167 routes recovered fully 

• 83 routes partly recovered 

Analysis of Sandy-related events on the routes provides a better idea on recovery time. 
The event data from TRANSCOM is used for this analysis. Considering the events with 
start time on October 29-30,

• partly recovered routes as of November 1st had 138 events, and

• fully recovered routes as of November 1st had 236 events.

However, the average duration for the events on fully recovered routes was 17.7 hours, 
whereas it was 20.7 hours for partly recovered routes. This observation confirms the fact 
the routes with shorter duration events, on average, recover faster than routes with longer 
duration events.

CHANGE IN SPEED 

NIRA is defined as ratio of travel time before and after a disruption. Instead of travel time if 
speed is used in NIRA, the measures is similar to 1/NIRA. Thus the investigators calculate 
the NIRA measure using speed as:

NIRAspeed = speedafter/speedbefore

The closer NIRAspeed is to 1 the more recovered is the route.153

The researchers use anonymous location and speed data collect from many GPS-
equipped vehicles and smart phones by INRIX to estimate NIRAspeed. The speed data are 
averaged for each hour for five days before and after hurricane Sandy made landfall on 
October 29, 2012. The investigators estimate the measure NIRAspeed for three routes. The 
three bus routes are chosen such that they originate from (a) southern NJ, (b) central NJ 
and (c) northern NJ.
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Table 10. Route Speed Information

Route
Average Speed 
before (mph)

Average Speed 
Immediately after NIRAspeed

Average Speed 
Few Days after 

(from Nov. 1, 5 PM) NIRAspeed

Southern NJ 59.54 53.23 0.89 59.19 0.99
Central NJ 50.69 42.63 0.84 49.29 0.97
Northern NJ 49.51 48.60 0.98 48.1 0.97

NIRAspeed for route (c) recovers to normal levels immediately after hurricane Sandy, while 
NIRAspeed for routes (a) and (b) does not recover as much. The reason is that route (c) 
travels in northeastern NJ, where roads and highways are not affected by Sandy as much 
as in southern and central NJ where routes (a) and (b) pass. This also supports the result 
from Figure 23, which shows that most of the events are in the southern part of NJ, and 
routes in the northern parts do not pass through highways with as many events as the 
southern parts.

RESILIENCY MEASUREMENT

Resiliency indicates a system’s ability to resist and absorb the impact of disruptions.154 
Resiliency measures account for possible interventions that can aid in returning system 
performance to nearly pre-disaster levels. They quantify the potential benefits of pre-
disaster mitigation actions aimed at increasing the system’s ability to cope with disaster 
impact and of post-disaster adaptive actions that aim to restore functionality.

In this study the researchers use two important resiliency measures to study the impact of 
Hurricane Sandy on the bus transit system in NJ. The measures are (Adams et al. (2012)):

(a) Travel time over time, and,

(b) Traffic volume over time.155

Unfortunately, due to the lack of ridership or real-world travel time data for rail, light rail 
and subway services in NJ, the above-mentioned measures could not be estimated for 
the system.

Recovery of travel time to pre-disaster levels indicates the speed of recovery of the highway 
infrastructure, whereas recovery of volume over time indicates the speed at which the 
agency can provide the same level of service as the pre-disaster level.
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Figure 26. Sandy-Related Resiliency Triangles for Travel Times on NJTPK

In this study, the investigators use the ETC data from NJTPK for three days before and 
five days after hurricane Sandy made landfall on the coast of NJ to study travel time and 
volume resiliency measures. As noted in Table 6, the link ending at Interchange 16E is the 
second most critical link to the bus route network. Additionally, since the NJTPK is a closed 
system, travel times to and traffic volumes exiting Interchange 16E can be accurately 
estimated. Hence, the travel time to Interchange 16E is used as a benchmark for highway 
recovery. Figure 26 shows the average travel time between Interchange 11 and 16E, 
and between Interchange 14 and 16E (see Figure 20 for the location of interchanges on 
NJTPK). Figure 26 also indicates resiliency triangles for travel time. The line segments 
joining the top vertex of these triangles (Figure 26) are dashed, since there was no data 
on vehicles exiting interchange 16E during and immediately after hurricane Sandy. The 
reason could be that there were not enough vehicles or the tolls were suspended during 
this period.

Figure 27 shows the average hourly bus volume at interchange 16E. Figure 27 also depicts 
a resiliency triangle for volume.
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Figure 27. Sandy-Related Resiliency Triangle for Bus Volumes

From the resiliency triangle in Figure 26, it can be inferred that infrastructure required 27 
hours to recover to pre-Sandy levels. Figure 27 indicates that NJ Transit could operate 
buses at pre-Sandy levels within 70 hours.

Friability

Friability, defined as number of reliable routes between OD pairs, provides another 
measure of resiliency of the bus network. The notion of “friability” expressed in this section 
is based on (a) incidents due to an extreme event, and (b) travel time in a normal network 
without an extreme event.156 Friability based on an extreme event can be presented as a 
comparison of durations of incidents caused by the extreme event along alternate routes 
for a given bus route. In this study, the extreme event is Hurricane Sandy. Friability can 
also be studied based on travel-time reliability on alternative routes for a given bus route. 
However, obtaining real-world data for such analysis is very difficult. The researchers thus 
present friability based on travel time as a comparison of travel times on alternative routes 
using the NJRTM-E demand forecasting model output. 

In this study, the investigators present two or three alternate routes to three bus routes 
passing through the top-three critical links (from Table 6) of the bus transit network. The 
three bus routes are chosen such that they originate from (a) southern NJ, (b) central NJ and 
(c) northern NJ. Table 11 lists the alternate routes for the routes for which friability is studied.
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Table 11. Routes Considered for Friability
Bus Route Critical Link Original Route Alternate Routes
Middletown, NJ – PABT Lincoln Tunnel and 

NJTPK exit 16E
1. GSP – NJTPK – 
Lincoln Tunnel

2. GSP – NJTPK – I-78 – Holland Tunnel
3. GSP – NJTPK – Goethals Bridge I-278

Newark Airport –  PABT Lincoln Tunnel and 
NJTPK exit 16E

1. I-78 – NJTPK – 
Lincoln Tunnel

2. I-78 – Holland Tunnel
3. I-78 – NJTPK – George Washington Bridge 
– Henry Hudson Parkway

Clifton, NJ – PABT NJ 3 before NJ-
495

1. NJ 3 – Lincoln 
Tunnel

2. NJ-3 – NJTPK Holland Tunnel
3. NJ-3 – NJTPK – George Washington 
Bridge – Henry Hudson Parkway

Figure 28, Figure 29 and Figure 30 illustrate the origin, destination, original route, alternate 
routes and few important crossings from NJ to NYC.

 

Figure 28. Original and Alternative Path Visualization for Middletown, NJ to PABT
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Figure 29. Original and Alternative Path Visualization for Newark Airport to PABT
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Figure 30. Original and Alternative Path Visualization for Clifton, NJ to PABT

For friability based on events, the researchers use event data from TRANSCOM to estimate 
the number of Sandy-related incidents on alternative routes between two major origins 
and PABT as the destination. From these definitions of friability, the greater the friability the 
more resilient are the routes. Table 12 shows the maximum duration of an incident on the 
critical link on the route and total number of incidents on each of the alternate routes for 
the three bus routes listed in Table 11. From the perspective of the total number of events: 

1. Middletown, NJ – PABT has three reliable routes, i.e., friability of 3.

2. Newark Airport, NJ – PABT has two reliable routes, i.e., friability of 2.

3. Clifton, NJ – PABT has one reliable route, i.e., friability of 1.
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However, in terms of maximum duration of a Sandy-related incident, there is only one 
reliable route for all three-bus routes. However, the basis of reliability based on maximum 
duration of a Sandy-related incident may not be rational. Hurricane Sandy is a once in a 
100-year storm, and designing a transportation network for such a rare event is not an 
economically viable approach.

Table 12. Friability Based on Incidents Caused by an Extreme Event

Bus Route Routes

Max. Duration 
of Incident on 
Critical Link

Total 
Incidents

Middletown, 
NJ – PABT

GSP – NJTPK – Lincoln Tunnel 0 24
GSP – NJTPK – I-78 – Holland Tunnel 3.5 days 22
GSP – NJTPK – Goethals Bridge – I-278 1.3 days 28

Newark 
Airport – 
PABT

I-78 – NJTPK – Lincoln Tunnel 0 9
I-78 – Holland Tunnel – Henry Hudson Parkway 3.5 days 8
I-78 – NJTPK – George Washington Bridge – Henry Hudson Parkway 1.3 days 13

Clifton, 
NJ – PABT

NJ 3 – Lincoln Tunnel 0 6
NJ-3 – NJTPK Holland Tunnel 3.5 days 13
NJ-3 – NJTPK – George Washington Bridge – Henry Hudson Parkway 1.3 days 11

Table 13 shows friability based on travel time. Similarly to the above definition of friability, 
the greater the friability the more resilient the routes are. Friability is estimated based on 
percent increase in travel time of alternative routes (considering routes within 5% of travel 
time of the original route to be good enough):

1. Middletown, NJ – PABT has three reliable routes, i.e., friability of 3.

2. Newark Airport, NJ – PABT has one reliable route, i.e., friability of 1.

3. Clifton, NJ – PABT has one reliable route, i.e., friability of 1.

Table 13. Friability Based on Travel Time

Bus Route Routes
Travel Time 

(hr)
Percent 
Change

Middletown, 
NJ – PABT

GSP – NJTPK – Lincoln Tunnel 2.06
GSP – NJTPK – I-78 – Holland Tunnel 2.09 1.4%
GSP – NJTPK – Goethals Bridge – I-278 2.18 5.8%

Newark 
Airport – 
PABT

I-78 – NJTPK – Lincoln Tunnel 1.07
I-78 – Holland Tunnel – Henry Hudson Parkway 1.04 -2.8%
I-78 – NJTPK – George Washington Bridge – Henry Hudson Parkway 1.25 16.8%

Clifton, 
NJ – PABT

NJ 3 – Lincoln Tunnel 0.96
NJ-3 – NJTPK Holland Tunnel 1.31 36.4%
NJ-3 – NJTPK – George Washington Bridge – Henry Hudson Parkway 1.16 20.8%
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Based on both measures of friability, among the three bus routes studied, the bus route 
from Middletown, NJ to PABT is seen as a very resilient route. Newark Airport, NJ to PABT 
is the next resilient route followed by Clifton to PABT.

Because of the fixed infrastructure of rail systems, finding alternate routes for rail routes is 
not possible. However, users of the rail system can find alternative paths by using different 
routes in the rail system. Users of, for instance, Northeast Corridor (NEC), NJ Coast Line 
(NJCL), and the Morris & Essex Line can find an alternative route from Newark Penn 
station by using PATH to Manhattan. Similarly, users of PATH from Newark Penn station 
can switch to NEC or NJCL.

Following Hurricane Sandy, NEC recovered in four days. This was the fastest recovery 
time among all the rail routes to Manhattan. However, PATH service from Newark Penn 
station took 28 days to recover. Thus, users starting their trips from Newark Penn station 
had a reliable route in NEC. Note that the notion of “reliability” expressed in this section is 
Hurricane Sandy-specific and cannot be generalized for future cases. Additional service 
reliability data during regular times and extreme events would provide a much better 
indication of reliability in general. 

RESILIENCY AND RECOVERY OF THE NYC SUBWAY

Given the availability of detailed ridership data for the NYC subway, unlike NJ Transit, 
the spatio-temporal analysis of recovery of demand for the NYC subway is possible for 
Hurricanes Irene and Sandy. Figure 31 shows a summary of citywide transit counts and 
comparison with the previous year’s data157 (Zhu et al. (2016)).
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Figure 31. Comparison of Trips During Hurricane Periods with 

Those During Normal Conditions158 

For both hurricanes, there are significant decreases from the day of evacuation, but 
the recovery speeds of two storms are quite different from each other. After t Hurricane 
Irene, the subway trips were restored to normal levels in two days, while recovery took 
much longer after Hurricane Sandy. There are multiple reasons for these differences. 
First, Hurricane Sandy caused more damage to the transit infrastructure, resulting in a 
suspension of the entire subway network for three days. It took nearly ten additional days 
for the ridership to return to normal.
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Besides in volume, comparison is also made in terms of recovery rates. The rate of recovery 
is defined as the quotient of trips during a certain hurricane period divided by trips during a 
corresponding normal (control) period. In this study, the recovery rate for each NTA in NYC 
is calculated. Results of recovery rates in 50 NTAs of highest volumes are selected out of 
195 NTAs for the purposes of visualization. The reason for selection based on volumes is 
that characteristics of most critical zones, and criticalities for different NTAs, are directly 
related to the volumes of the area. If the recovery rate reached 100%, the investigators 
assume the area is fully recovered and keep the rate at 100%. For modeling purposes, this 
assumption is also applied to the researchers’ methodology of recovery-curve modeling, 
which will be discussed later.

Figure 32 and Figure 33 illustrate the recovery rates for Hurricanes Irene and Sandy 
respectively, for 50 neighborhoods, ordered by the number of daily subway trips for normal 
conditions.159 These heat maps mainly focus on general patterns of the city, and also on 
characteristics of most critical zones. The subway ridership’s resiliency heavily depends on 
service status of transit infrastructure. It can be seen from Figure 32 that during Hurricane 
Irene, ridership of the subway system in most NTAs started to drop on Day 3, since the 
system shut down at noon. On Day 4, Irene made landfall in the morning, and the subway 
system remained closed for another day. Then the subway ridership quickly returned to 
the levels of before the hurricane for most areas. Moreover, on Days 10 to 12, recovery 
rates for Washington Height North dropped to 30%. That is because all subway stations in 
Washington Height North are Line 1 stations, and during the Labor Day holiday, ridership 
reduced due to the service change caused by the construction work on Subway Line 1.160 

It is evident from Figure 33 that Hurricane Sandy caused far more serious disruption to the 
subway operations than Hurricane Irene. The ridership decreased on Day 2, and subway 
stations remained closed until Day 6 of the study period, when initial recovery began 
for upper sections of Manhattan. The recovery rate, however, is relatively small. This is 
because the number of lines that were in service was quite limited. Moreover, the subway 
connections between Queens, Manhattan and Brooklyn were still not operational. On Day 8, 
inter-borough subway connection was partially restored, and recovery rates for more than 
half of NTAs came back to at least 50% of the original, while other areas include Lower 
Manhattan, Southern Brooklyn and Williamsburg. On Day 10, there was a major increase 
in ridership for most areas, since it was the first Monday after Sandy, and multiple lines 
were back into service161 Due to extensive damage to the system infrastructure, post-
Sandy rehabilitation for stations in specific NTAs took longer than the time covered by the 
study period, especially Whitehall Street and South Ferry Station for Lower Manhattan and 
Far Rockaway Stations.162
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Figure 32. Subway Recovery Rates for NYC Neighborhoods for Hurricane Irene163 
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Figure 33. Subway Recovery Rates for NYC Neighborhoods for Hurricane Sandy164

SUMMARY AND CONCLUSIONS

In this study, the researchers analyzed the public transit systems in NJ based on their 
vulnerability, resiliency and efficiency in recovery following a major natural disaster event. 
Specifically, the investigators conducted their analyses based on Hurricane Sandy, which 
took place in October 2012. They used a diverse set of data sources to estimate many 
data-driven performance measures for the transit network.

After performing a thorough review of the relevant literature on performance measures 
for transportation-network efficiency, resiliency, vulnerability and recovery, we categorized 
various measures to be estimated for the transit network in NJ into vulnerability, recovery 
and resiliency. The research team adapted some of the general road transportation 
vulnerability and resiliency measures proposed in the literature to public transit infrastructure. 
Since most of the available infrastructure data are that of the highway network, most 
measures estimated in this study were those corresponding to the bus-transit network. 
The performance measures were adapted as route-based measures so that they could 
be applied to specific bus routes. Such estimates will be useful for agencies to plan their 
resources accordingly to cater to the needs of the population served by said routes.
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For the bus transit network in NJ, the investigators determined that the top three most 
critical links were Lincoln tunnel, NJTPK link to Interchange 16E, and NJ-3 before merging 
to I-495, based on the vulnerability measure VA6.

165 This implies that the three most critical 
links need to be reinforced so that bus service can be maintained even during a disruption 
without the need for re-routing. For transit buses using the NJTPK, average and maximum 
travel time increased by 41-63% and 95%-300% (Table 4), respectively. This increase 
in travel time could be due to (a) increased congestion due to evacuation orders or (b) 
Sandy-related events on the NJTPK. The distribution and duration of Sandy-related events 
were analyzed with respect to the bus transit network. The bus routes had an average of 
five events with an average duration of 19 hours. The ten routes with most Sandy-related 
critical events showed that the routes along the coast in the southern and eastern parts 
of NJ were most affected by Hurricane Sandy. Hence, it is important to plan for providing 
alternative means of transportation for the population dependent on transit along the coast 
during a disruption such as a hurricane.

Another measure of vulnerability in this study is NRI, the measure of criticality of a link: 
i.e., the effect of removing the link from the network. In order to investigate NRI, the 
investigators used the most critical link (based on adapted VA6 vulnerability measure) 
for the bus network, the Lincoln tunnel, and analyzed the effect of removing it from the 
network.166 The analysis entailed the comparison of travel times of the original route with 
those of possible alternate routes of three selected bus routes originating from southern, 
central and northern NJ. The alternate routes were estimated using a customized software 
application namely, ASSIST-ME, previously developed by the authors to analyze the output 
of various regional planning models.167 The increase in travel times ranged from 2.8% to 
21% among alternate routes. This methodology of using NRI can be used by the transit 
agency for other vulnerable links so that the possibility of rerouting can be explored if the 
vulnerable links are disrupted.

The researchers analyzed the recovery of the transit system in NJ following Hurricane 
Sandy. Recovery of the rail network took two to 32 days, whereas more than 65% of bus 
network was restored to full service in two days, and the rest of the bus network was partly 
operational. Recovery of the bus transit system directly depends on the recovery of the 
highway network. One primary reason that the bus system recovered faster than other NJ 
Transit rail services is that the Lincoln Tunnel was not affected by the storm. Additionally, the 
Port Authority bus terminal was also unaffected. Since the Lincoln Tunnel is the most critical 
of the links in the bus route network, the bus transit system was able to recover quickly. 

Resiliency triangles for travel time (Figure 26) and bus volumes (Figure 27) were created 
to estimate the rate of recovery of the bus-transit network. Recovery of travel time to pre-
disaster levels indicates the speed of recovery of the highway infrastructure, whereas 
recovery of volume over time indicates the speed at which the agency can provide the 
same level of service as the pre-disaster level. From the resiliency triangles, infrastructure 
recovery to pre-Sandy levels required 27 hours, and NJ Transit was able to operate buses 
at pre-Sandy levels within 70 hours. Unfortunately, due to the lack of ridership or real-
world travel time data for rail, light rail and subway services in NJ, the above-mentioned 
measures could not be estimated for the rail system.
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Given the availability of detailed ridership data for NYC subway, unlike NJ Transit or the 
PATH subway system, the spatio-temporal analysis of recovery of demand for NYC subway 
is possible for Hurricanes Irene and Sandy. The demand recovery for the NYC subway 
post-Hurricane Sandy took 11 days, as can be seen from Figure 31. The inter-borough 
subway connection was partially restored, and recovery rates for more than half of the NYC 
subway system came back to at least 50% of the original after eight days. There was a 
major increase in ridership for most areas in ten days after Hurricane Sandy made landfall. 
However, due to extensive damage to the system infrastructure, post-Sandy rehabilitation 
for a few stations, especially Whitehall Street and South Ferry Station for Lower Manhattan 
and Far Rockaway, is still underway at the date of this study. As a comparable service to 
the NYC subway, the PATH subway system had most lines recovered in 13 days, though 
one particular line, namely the PATH line from Newark to World Trade Center (WTC), 
took 28 days to recover (Table 9). Rail services on the NJ Transit system, however, took 
32 days to recover. Among these, the rail lines closer to the NJ coast (Bergen, NJ Coast 
line) and those lying close to the path of Hurricane Sandy (Morristown, Pascack valley, 
Montclair-Boonton and Gladstone extension) took more than 13 days to recover. 

Bus and light rail infrastructure recovered within a week of Hurricane Sandy’s landfall. Bus 
and light rail infrastructure can recover more quickly than regular rail and subway lines. A 
possible reason could be that since regular rail infrastructure carries much higher load at 
higher speeds, the structural strengthening of the damaged tracks and bridges could require 
a greater amount of time. The guideway for light rail is usually on or close to existing roads, 
so the recovery is closely correlated to the recovery of road infrastructure. However, light 
rail recovery additionally depends on the recovery of systems such as signal control, power 
supply, etc. Recovery of underground subway systems such as the PATH system and the 
NYC subway are very dependent on the extent of flooding of the underground tunnels.

Friability, defined as the number of reliable routes between OD pairs, was estimated 
for three selected bus routes in the bus transit network, viz., Middletown, NJ to PABT; 
Newark Airport, NJ to PABT; and Clifton to PABT. Two alternate routes were estimated for 
each selected bus route. Friability was estimated in two ways for the bus transit network: 
(a) by comparing the number of incidents and maximum duration of an incident caused 
by Hurricane Sandy for a given bus route, and (b) by comparing the travel times on the 
two alternate routes to the original route’s travel time for a given bus route. From these 
definitions of friability, the greater the friability the more resilient are the routes. Based on 
the total number of events, the friability of the three bus routes was three, two and one, 
whereas using maximum duration, the friability was calculated as one for all three routes. 
Based on an assumption that routes within 5% of travel time of original route can be 
considered acceptable, friability of three, one and one is estimated for the three selected 
bus routes. Based on both measures of friability, among the three bus routes studied, the 
bus route from Middletown, NJ to PABT is seen as a very resilient route. Newark Airport, 
NJ to PABT is the next resilient route followed by Clifton to PABT.

Friability based on event characteristics can also provide an estimate on the possible 
routes onto which buses can be rerouted if the original route is disrupted. Additionally, 
friability based on travel time is similar to NRI in its ability to understand the alternative 
routes available for a given route. These two measures can help the agency plan possible 
rerouting plans for affected bus routes.
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IV. IDENTIFICATION OF TRIP GENERATORS AND FACTORS  
ASSOCIATED WITH TRIP DELAY AND RELIABILITY OF 

DISABILITY PARATRANSIT

GENERATORS OF ACCESS LINK TRIPS

ADA-complementary paratransit is provided by transit agencies nationwide to their 
registered clients at a fairly high cost. Citing the cost differential between paratransit trips 
and fixed-route trips, a recent report by the United States Government Accountability 
Office emphasized the importance of improving the efficiency of paratransit service by 
making decisions based on quality data and analysis.168 The high cost of ADA paratransit 
service has been the subject matter of other studies as well.169 Despite the high cost of 
service, however, some researchers have concluded that the benefits of ADA paratransit 
service exceed the associated costs.170 

Yet all transit agencies nationwide are under pressure to optimize costs of paratransit 
service because of its growing demand. One way to optimize costs of paratransit service 
is to fully comprehend the current and future demand for trips. Appropriately forecasting 
demand for service can assist agencies in allocating resources to service contractors, 
realigning service regions, and determining location of facilities. An integral part of demand 
analysis for paratransit service is the identification of the trip generators, whether they are 
defined as space (e.g., census tracts) or establishments (e.g., medical facilities). 

In order to identify the generators of paratransit trips, this research examines the 
characteristics of census block groups and finer geographic locations that generate 
paratransit trips by analyzing data for the service area of Access Link, the ADA-
complementary paratransit service provided by NJ Transit. While most past studies focused 
on the home end of paratransit trips, this study attempts to identify the characteristics of 
the areas where the paratransit clients live as well as the characteristics of the areas and 
specific locations they visit. The study first identifies generators of Access Link trips at a 
macro level by analyzing data at the census-block-group level. Subsequently, it focuses on 
the establishments located in the immediate vicinity of drop-off sites to identify generators 
of Access Link trips at a micro level.

Selection of Methods

Homes of clients are indeed the most easily identifiable trip generators of Access Link trips. 
It is more challenging and important, however, to identify trip generators away from home 
for demand analysis. To be able to identify trip generators away from home, pickups and 
drop-offs of Access Link trips in the data set were distinguished into two classes, at-home 
and non-home. For this classification, all pickups and drop-offs within a 300-foot radius of 
clients’ homes were considered as at-home, and all others were considered non-home. 
Since many Access Link clients live in multi-family homes and apartment complexes, 
matching exact locations of homes with curbside pickups and drop-offs was considered 
inappropriate. Therefore, the number of pickups and drop-offs were examined for 
100-foot, 200-foot, 300-foot, 400-foot, and 500-foot circles. Areas beyond 500 feet were 
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not considered because all Access Link clients have disability. The 300-foot circle was 
chosen for the delineation because of a steep decrease in the number of at-home pickups 
and drop-offs beyond that point. 

Access Link trip data were supplemented by demographic and socioeconomic data at the 
census-block-group level from the 2006-2010 American Community Survey (ACS) and 
employment (jobs) data from the 2010 Longitudinal Employer-Household Dynamics (LEHD). 
While the ACS provided data on total population, household income, household size, race, 
ethnicity, etc., the LEHD provided number of jobs in block groups for 20 different industry 
types. The GIS shape files of the Access Link service area and transit routes in the region 
were obtained from NJ Transit and combined with other data. Network distances between 
each OD pair in the data set were estimated by using the network analyst of ArcGIS.

Two broad sets of data analysis were undertaken. The first set consisted of an OLS model and 
five spatial GLMM to identify the characteristics of census block groups that are associated 
with the volume of resident clients as well as pickups and drop-offs. Pickups and drop-offs 
were modeled separately for at-home and non-home trip ends. GLMM was used in several 
models instead of OLS because of the presence of spatial autocorrelation in the data. As 
noted in two studies in the literature review, because of the clustering of trip origins and 
destinations over space, models need to take into account spatial autocorrelation.171 

Spatial autocorrelation has been defined as the property of random variables that are 
positively or negatively correlated compared to randomly associated pairs of observations 
when they are located at certain distances from each other.172 For example, variables may 
have similar characteristics when observations pertain to adjacent or nearby locations but 
dissimilar characteristics when they are far apart. In the presence of spatial autocorrelation, 
standard statistical tests of hypothesis are impaired, and the usual least squares estimators 
are unsatisfactory.173 Studies have often suggested variations of mixed models instead of 
ordinary least squares models in the presence of spatial autocorrelation.174 GLMM is one of 
several types of mixed models recommended for situations involving spatial autocorrelation.175 

It makes intuitive sense to hypothesize that variables such as number of paratransit pickups 
and drop-offs would be spatially correlated because service levels and characteristics of 
areas would be more similar in nearby areas than areas far apart. Prior to the estimation of 
the GLMM, however, efforts were made to check for the presence of autocorrelation in the 
data. These efforts included inspection of the data through maps and the use of Moran’s 
I statistical tests.176 Following a common practice in empirical studies, OLS models were 
run, the residuals were obtained, and Moran’s I tests were run on the residuals to check 
for the presence of spatial autocorrelation.177

The second set of analysis in the paper focuses on the types of establishments located in 
the immediate vicinity of non-home drop-offs. The objective of this analysis was to identify 
activities potentially visited by the Access Link clients and to assess the relationship 
between the characteristics of drop-off locations and the characteristics of clients who 
were dropped off. Geocoded Dun & Bradstreet data on establishments with one or more 
employees were used for this analysis. 
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Models on Number of Clients and At-Home Pickups and Drop-offs 

Due to the nature of the data, it was important to examine whether spatial autocorrelation 
was present. When spatial autocorrelation is present, OLS regression models are 
considered to be inappropriate. Analysis began with an inspection of maps showing the 
spatial clustering of Access Link registered clients’ and active clients’ residences as well 
as pickup and drop-off locations. Clustering was particularly obvious for certain areas, 
especially in Camden, Mercer, and Essex Counties. Subsequent analysis consisted of 
Moran’s I tests. In order to check for this possibility, OLS models were run on the variables 
by using the independent variables shown in Table 14 and Table 15, the residuals were 
saved, and Moran’s I tests were run on the residuals. The tests clearly indicated the 
presence of spatial autocorrelation. Based on the results, it was determined that GLMM 
would be more appropriate than OLS models. 

The results of the GLMM with dependent variables pertaining to the block groups where 
the Access Link clients live, namely, the number of registered clients, the number of 
active clients, the number of at-home pickups, and the number of at-home drop-offs, are 
presented in Table 14 and Table 15. Table 14 shows the model results on total number 
of registered clients and active clients, whereas Table 15 shows the model results on 
at-home pickups and at-home drop-offs. 

Understanding the characteristics of the areas where paratransit clients live is important, 
because a large proportion of trips originate at home. For this reason, most empirical studies 
considering the association between trip demand and spatial characteristics focused on 
areas where the clients live. Some of the independent variables for the models described in 
Table 14 and Table 15 were selected on the basis of previous empirical studies on demand 
estimation. It was important to include these variables not only because they make intuitive 
sense, but also because of apparent inconsistencies in the findings of past studies. Models 
in one or more past studies included total population of the area, proportion of elderly 
persons, proportion of African American population, proportion of ethnic minorities, and 
average household size. While certain past studies considered persons in poverty, the 
models in Table 14 and Table 15 include a dummy variable on annual per capita income 
less than $15,000 to represent low-income persons. Poverty rate could not be included 
because at the time of the analysis, data were available only for census tracts but not for 
block groups. Median household income was not included in the model because it is highly 
correlated with two other variables included in the models, namely median home price and 
median contract rent. It was expected that places with high home value and rent would be 
negatively associated with Access Link trips.
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Table 14. Generalized Linear Mixed Model (GLMM) Results on Resident Registered Clients and Resident Active Clients

Independent Variables

Total Registered Clients Living in 
Block Group

Total Active Clients Living in Block 
Group

Coefficient t Value Coefficient t Value
Intercept 7.90a 6.74 4.13a 7.11
Total population (in 1,000) 2.49a 14.78 0.90a 10.67
Proportion of persons 65 and over 11.81a 9.41 3.86a 6.23
Proportion of African American persons 7.84a 14.97 2.10a 8.26
Proportion of Hispanic persons -0.91 -1.30 -0.30 -0.83
Average household size -0.66a -2.41 -0.21 -1.54
Median home value (in $100,000) -0.22a -2.59 -0.11a -2.36
Median monthly contract rent (in $1,000) -1.22a -3.73 -0.49a -2.92
Per capita income less than $15,000 (1=yes, 0=no) -0.93a -2.19 -0.37b -1.73
Percent owned dwelling units -1.00 -1.17 -1.03a -2.37
Percent single detached dwelling units 1.85a 2.57 0.80a 2.24
Percent dwellings with 2-9 units in structure 0.56 0.70 -0.53 -1.33
Percent dwelling with 10-19 units in structure (referent)  
Percent dwellings with 20 or more units in structure 8.90a 9.15 1.92a 4.01
Percent households with zero vehicles 2.74a 2.49 0.46 0.82
Percent resident workers who took rail to work 8.55a 3.51 2.35b 1.83
Percent resident workers who took bus to work -1.39 -1.03 -0.83 -1.22
Percent resident workers who walked or biked to work -3.51a -1.99 -0.44 -0.49
Estimated average commute time of residents in minutes -0.10a -5.15 -0.04a -3.94
Impedance score of block group vis-à-vis jobs in selected sectors -0.59a -4.81 -0.10b -1.65

Number of block groups (N) 3,526 2,520
-2 Res Log Likelihood 22,661 11,934
Akaike information criterion (AIC) 22,667 11,940

a Significant at the 5% level;
b Significant at the 10% level.
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Table 15. Generalized Linear Mixed Model (GLMM) Results on At-Home Pickups and Drop-Offs

Independent Variables

Total Registered Clients Living in 
Block Group

Total Active Clients Living in 
Block Group

Coefficient t Value Coefficient t Value
Intercept 418.63a 5.47 396.11a 5.59
Total population (in 1,000) 82.18a 7.32 75.89a 7.31
Proportion of persons 65 and over 288.47a 3.06 271.02a 3.11
Proportion of African American persons 312.03a 9.37 270.14a 8.77
Proportion of Hispanic persons -8.01 -0.17 -9.46 -0.22
Average household size -51.40a -2.75 -41.10a -2.38
Median home value (in $100,000) -8.61 -1.36 -9.14 -1.56
Median monthly contract rent (in $1,000) -18.36 -0.80 -15.09 -0.71
Per capita income less than $15,000 (1=yes, 0=no) -30.60 -1.09 -24.54 -0.95
Percent owned dwelling units -95.84b -1.66 -94.42b -1.77
Percent single detached dwelling units 68.38 1.38 68.17 1.49
Percent dwellings with 2-9 units in structure 13.30 0.25 2.15 0.04
Percent dwelling with 10-19 units in structure (referent)
Percent dwellings with 20 or more units in structure 230.21a 3.63 187.95a 3.20
Percent households with zero vehicles -27.32 -0.38 -30.42 -0.45
Percent resident workers who took rail to work 534.36a 3.18 538.28a 3.46
Percent resident workers who took bus to work -88.99 -1.01 -76.95 -0.95
Percent resident workers who walked or biked to work -225.92b -1.91 -226.54a -2.07
Estimated average commute time of residents in minutes -3.76a -2.86 -4.10a -3.38
Impedance score of block group vis-à-vis jobs in selected sectors -35.34a -4.60 -32.09a -4.51
 
Number of block groups (N) 2,282 2,282
-2 Res Log Likelihood 32,711 32,358
Akaike information criterion (AIC) 32,717 32,364

a Significant at the 5% level;
b Significant at the 10% level.
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In addition to the variables mentioned above, several variables were included in the models 
that represent home ownership, vehicle ownership, type of dwelling, and commuting 
pattern of workers in each block group. It was expected that high home ownership would be 
negatively associated with trips whereas the proportion of zero-vehicle households would 
be positively associated. The variables on dwelling type were included with the expectation 
that the proportion of single detached homes would be negatively associated and the 
proportion of apartments with a large number of units would be positively associated. 
The proportion of commuting trips by train, bus, and walk/bike were included with the 
hypothesis that they might be negatively associated with Access Link trips, because in 
some instances they could be perceived as alternatives to paratransit. Finally, a variable 
representing the impedance of the block groups vis-à-vis the activities they might travel to 
was included with the hypothesis that, all else being equal, Access Link clients would be 
less likely to live in areas that are far from the activities they usually travel to compared to 
areas that are closer to the activities. The impedance score was obtained at the municipal 
level and assigned to block groups within the respective municipalities. 

According to the model results in Table 14 and Table 15, the independent variables that are 
consistently and significantly associated with the dependent variables of the four models 
are total population, proportion of persons age 65 and over, proportion of African American 
persons, proportion of dwellings with 20 or more units, proportion of workers who took rail 
to work, average commute time of residents, and the impedance score vis-à-vis jobs. The 
positive sign of total population is consistent with all past studies. The proportion of elderly 
persons was found to be positive in all four models. Although some past studies did not find 
a positive association between the proportion of elderly persons and paratransit trips,178 
the model results are consistent with two studies.179 The observed positive relationship 
between proportion of African American population and paratransit trips in the current 
study is consistent with one of those two studies.180 

The four models in Table 14 and Table 15 also consistently show a positive association 
of the proportion of dwellings with 20 or more units and the proportion of workers who 
commute to work by train with the dependent variables, indicating that Access Link clients 
are more likely to live and make trips from areas with very high dwelling density and areas 
with a high level of rail service. The significant positive sign of the variable on proportion 
of rail commuters in all four models could be due to the fact that Access Link service is 
mandatory within 0.75 miles of all rail stations, and the proportion of rail commuters is likely 
to be high in areas around stations. 

The dependent variables in all four models have a negative association with average 
commuting time of workers living in a block group and with the impedance score. Since 
average commute time is often very high in fringe areas because of long trip distances, the 
negative sign of the variable in all four models could indicate that Access Link clients are 
not very likely to live or make trips from fringe areas. The results on the impedance score 
indicate that, all else being equal, Access Link clients are more likely to live in areas that 
are closer to places with activities associated with jobs in the health, retail, administrative, 
and food and accommodation sectors. 
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A few other independent variables in Table 14 and Table 15 are statistically significant in 
more than one model with identical signs. These variables are average household size, 
median home value, median monthly contract rent, per capita income, percent owned 
homes, and percent resident workers who walked or bicycled to work. The variable on 
average household size shows a negative sign in the model on registered clients as well 
as the models on at-home pickups and drop-offs, indicating that Access Link demand could 
be higher in areas with small household size. The negative association of household size 
found in the models is consistent with one study181 but inconsistent with another study.182 
Since a person with disability in a larger household is more likely to be transported by 
other persons in the household compared to a similar person in a smaller household, it 
makes intuitive sense to hypothesize that places with larger average household size would 
generate fewer paratransit trips. 

The negative association between walking/bicycling commuting trips and paratransit 
pickups and drop-offs is consistent with the study by Bradley and Koffman.183 The variables 
on home value and rent indicate that Access Link clients are less likely to live in affluent 
areas. The negative sign of the variable on percent owned homes is consistent with these 
results. The variable on per capita income, however, indicates that Access Link clients 
are also not likely to live in the poorest parts of the study area. One might be tempted 
to conclude from these results that there would be more Access Link demand in middle-
income areas than in areas with the highest and lowest incomes. As the variables on home 
value and income are not statistically significant in the models for at-home pickups and 
drop-offs, however, the relationship between income and actual trips remain unclear from 
the models.

Models on Non-Home Drop-Offs 

To comprehend the overall demand patterns of paratransit trips, it is as important to identify 
the characteristics of the places visited by clients as it is to identify the characteristics of 
the places where they live. Identifying characteristics of the places visited by clients is 
more challenging, however, because past studies have examined non-home trip ends less 
often than at-home trip ends. 

Two models were tested to examine characteristics of the places visited by the Access 
Link clients, one with non-home pickups and the other with non-home drop-offs as the 
dependent variable. Since the results of the two models were virtually identical, only the 
results from the drop-off model are presented in Table 16. Two versions of the model, one 
OLS and the other GLMM, are presented in Table 16. According to the Moran’s I test on 
residuals, the OLS model in Table 16 is not significantly affected by spatial autocorrelation. 
Therefore, a GLMM model is not necessary. However, for the sake of consistency with the 
models in Table 14 and Table 15, a GLMM version of the model is also presented in Table 16. 
Since all 15 variables included in the two models have identical signs, and only one variable 
(the dummy variable on Camden County) that is significant in one model is not significant 
in the other, the discussion below practically describes both models in Table 16. 
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For the selection of independent variables of the model in Table 16, it was hypothesized 
that Access Link clients would primarily visit places to attend work, receive services, 
purchase food and retail goods, and visit friends and family. Since little is known about 
the occupations of working Access Link clients or the types of industries where they work, 
total block group jobs for all 20 industry categories in LEHD were tested with various 
combinations of other variables. This assessment indicated that jobs in only four industry 
categories are significantly associated with Access Link drop-offs.
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Table 16. Ordinary Least Squares (OLS) and Generalized Linear Mixed Model (GLMM) Results on Non-Home Drop-Offs 
of Access Link Trips

Block Group Characteristics
OLS Model GLMM Model

Coefficient t Value Coefficient t Value
Intercept 152.27 1.47 220.24a 2.06
Total population of block group (in 1,000) 55.88a 2.48 61.57a 2.72
Health Care and Social Assistance jobs in block group 0.25a 6.81 0.25a 6.82
Retail Trade jobs in block group 0.37a 5.84 0.37a 5.85
Administrative and Support, Waste Management & Remedial jobs in block group 0.73a 8.79 0.73a 8.83
Accommodation and Food Services jobs in block group 0.42a 5.30 0.41a 5.29
Average household size -58.09a -2.05 -52.99b -1.87
Percent of African American population in block group 79.18 1.22 75.00 1.16
Percent persons age 65 and over in block group 109.03 0.63 113.06 0.66
Median home value of block group in $100,000 -11.96 -1.22 -12.49 -1.27
Impedance score of block group vis-à-vis number of resident registered clients -0.82b -1.67 -1.22a -2.36
Number of blocks in block group bisected by bus line 11.22a 4.80 11.13a 4.76
Block group in Essex County 172.89a 3.84 155.11a 3.40
Block group in Union County 169.43a 3.43 237.23a 4.24
Block group in Mercer County 206.73a 3.08 211.08a 3.15
Block group in Camden County 144.48a 2.08 108.77 1.53
Block group in Hudson County 49.21 1.01 48.84 1.01
Number of block groups (N) 4,192 4,192
F 28.65 NA
Adjusted R-square 0.096 NA
-2 Res log likelihood NA 68,554
Akaike information criterion (AIC) NA 68,560

a Significant at the 5% level;
b Significant at the 10% level;
NA = Not applicable.
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The association between block group jobs in these four categories with Access Link drop-
offs is shown in Table 16. It is not surprising that jobs in healthcare and social assistance, 
retail trade, food and accommodation, and administrative support are positively associated 
with number of drop-offs, whereas jobs in other sectors such as manufacturing and 
construction are not. The statistical significance of jobs in the four industry categories does 
not necessarily mean, however, that the clients visit the areas with high concentration of 
these jobs for work purposes. It may instead mean that many visit those areas to receive 
healthcare service or social assistance, purchase retail goods, purchase food products, 
or to eat out. For social trips, or trips to visit friends and family, it was hypothesized that 
the persons visited by the Access Link clients would have similar characteristics to the 
clients themselves, because people often socialize within their own reference group. 
With this hypothesis, a few variables found to be significant in the models on number of 
registered and active clients in Table 14 and Table 15 were also included as independent 
variable in the model in Table 16. Among these variables, average household size was 
found to be significant with the expected sign, but the other variables were not significant. 
Most of the socioeconomic variables included in the model were highly sensitive to model 
specification, however, indicating that some of them may be marginally associated with 
non-home drop-offs even though they are not significant in the model presented in Table 16. 
On the whole, the effect of jobs on non-home drop-offs appears to be stronger than the 
effect of socioeconomic variables. 

It may be noted that the independent variable on impedance score in the models in 
Table 16 was computed by weighting the distances to other municipalities by registered 
clients of the other municipalities instead of number of jobs, because the concern here 
is the impedance of drop-off sites from the homes of Access Link clients. Similarly to the 
variable on impedance vis-à-vis jobs in the models in Table 14 and Table 15, the variable 
on impedance vis-à-vis registered clients in the models in Table 4 shows that Access Link 
clients are more likely to travel to places that are closer to their homes than farther. The 
two distance variables in the models in Table 14, Table 15 and Table 16 together indicate 
that a distance-decay function is also relevant in the case of paratransit trips. 

A variable representing number of census blocks bisected by local buses within a block 
group was included in the model with the hypothesis that block groups with a larger number 
of bisected blocks would have a larger geographic area served by Access Link, and that 
more drop-offs would occur in block groups that have more extensive service area. As 
expected, the variable has a significant positive sign, providing some evidence in support 
of the hypothesis. Finally, to account for urban activities not represented by jobs in the four 
industry categories, separate dummy variables were included representing each of the 
heavily urban counties of the region. Four of these five variables in the OLS model (three 
in the GLMM) showed significant positive signs, indicating that non-home drop-offs might 
be more likely in urban environments than suburban environments, even after controlling 
for other variables.
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Establishments in the Immediate Vicinity of Drop-Offs 

This analysis consists of an effort to identify the types of non-residential activities that 
are present in the immediate vicinity of Access Link drop-off sites. In addition to providing 
insights about the type of activities visited by Access Link clients, this effort was considered 
important to test the validity of the results of the non-home drop-off model in Table 16. As a 
part of the effort, each non-home drop-off was matched with establishments by using 2010 
Dun & Bradstreet establishment data. This data set contains all establishments with one or 
more employees in the entire Access Link service area. All addresses in the establishment 
data set were geocoded with high precision, and subsequently the establishments within 
75 feet of each drop-off location were recorded together with their Standard Industry 
Classification (SIC) codes. The 75-feet buffer was selected based on the precision of the 
geocoded X-Y coordinates of the two data sets. In a small proportion of cases, when multiple 
establishments were present around a single drop-off location, only the establishment with 
the highest employment was included in the data set to reduce arduous GIS work.

The frequency of Access Link drop-offs by clients’ gender and the classification of 
establishments near drop-offs are shown in Table 17. The frequencies are shown, in 
descending order, for only the top 25 establishment types together with their two-digit 
SIC codes. 

It is evident from Table 17 that health services and social assistance services rank first 
and second, respectively, in terms of frequency of Access Link drop-offs in their vicinity. 
Together, they account for almost 25% of the drop-offs, potentially indicating that a 
large proportion of Access Link clients make their trips to receive healthcare and social 
assistance services. These results are consistent with the block group level results in 
Table 16. When classified by age, almost 27% of the drop-offs for clients age 65 and over 
have health services establishments in vicinity, whereas only 12% of clients below age 65 
have such establishments. The number of drop-offs near other types of establishments 
provides insights about the types of activities clients might frequently visit.
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Table 17. Number of Access Link Drop-Offs by Type of Establishment within 75 Feet of Drop-Off Site

Industry Category (Two-digit SIC Code)
Female Male Total

Drop-offs Percent Drop-offs Percent Drop-offs Percent
Health Services (80) 49,150 16.89% 30,740 14.37% 79,890 15.8%
Social Assistance Services (83) 27,071 9.30% 18,659 8.72% 45,730 9.1%
Business Services (73) 16,871 5.80% 10,603 4.96% 27,474 5.4%
Membership Organizations (86) 18,433 6.34% 8,508 3.98% 26,941 5.3%
Educational Services (82) 17,174 5.90% 9,482 4.43% 26,656 5.3%
Wholesale Trade - Durable Goods (50) 13,833 4.75% 11,773 5.50% 25,606 5.1%
Food Stores (54) 14,131 4.86% 10,362 4.84% 24,493 4.9%
Miscellaneous Retail (59) 11,138 3.83% 6,844 3.20% 17,982 3.6%
Construction - Special Trade Contractors (17) 7,758 2.67% 9,339 4.37% 17,097 3.4%
Building Construction - General Contractors & Operative Builders (15) 8,723 3.00% 6,790 3.17% 15,513 3.1%
Engineering, Accounting, Research, Management & Related Services (87) 6,065 2.08% 9,352 4.37% 15,417 3.1%
Printing, Publishing and Allied Industries (27) 7,309 2.51% 8,094 3.78% 15,403 3.1%
Eating and Drinking Places (58) 7,545 2.59% 6,411 3.00% 13,956 2.8%
Real Estate (65) 7,362 2.53% 4,614 2.16% 11,976 2.4%
Personal Services (72) 6,701 2.30% 3,626 1.69% 10,327 2.0%
Wholesale Trade - Nondurable Goods (51) 5,205 1.79% 4,879 2.28% 10,084 2.0%
Amusement and Recreation Services (79) 5,838 2.01% 3,831 1.79% 9,669 1.9%
Apparel and Accessory Stores (56) 5,137 1.77% 4,156 1.94% 9,293 1.8%
Automotive Dealers and Gasoline Service Stations (55) 4,784 1.64% 3,852 1.80% 8,636 1.7%
Legal Services (81) 4,766 1.64% 2,280 1.07% 7,046 1.4%
General Merchandise Stores (53) 4,148 1.43% 2,577 1.20% 6,725 1.3%
Depository Institutions (60) 2,961 1.02% 2,709 1.27% 5,670 1.1%
Transportation Services (47) 2,843 0.98% 2,513 1.17% 5,356 1.1%
Automotive Repair, Services and Parking (75) 2,581 0.89% 2,234 1.04% 4,815 1.0%
Chemicals and Allied Products (28) 2,347 0.81% 2,112 0.99% 4,459 0.9%
Drop-offs with Establishments within 75 Feet in Top 25 Categories 259,874 89.32% 186,340 87.10% 446,214 88.38%
Total Drop-offs with Establishments within 75 Feet 290,962 100.00% 213,932 100.00% 504,894 100.00%
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Summary

By using trip data for NJ Transit’s ADA-complementary Access Link service and data from 
ACS, LEHD, and Dun and Bradstreet, this part of the research examined the characteristics 
of areas where the Access Link clients live and the locations they visit. While most past 
empirical studies focused on the home end of paratransit trips, this research also made an 
effort to identify the characteristics of the block groups visited by the paratransit clients and 
the activities in the immediate vicinity of the drop-off locations. 

The models on resident clients in block group and at-home pickups and drop-offs indicated 
that total population and the proportions of elderly and African American population are 
positively associated with number of clients and trips, whereas average household size, 
median home value, and median rent are negatively associated. Furthermore, evidence 
was found that places with large apartment complexes are likely to generate more trips 
while places with long average commuting time are likely to generate fewer trips. Evidence 
was also found that at-home trip generation is higher in areas that are closer to typical trip 
destinations compared to places that are far from the destinations. 

One of the most significant contributions of this study is the identification of potential trip 
generators away from home. A modeling effort with block group data showed some of the 
characteristics of places associated with Access Link trip generation. The frequency of non-
home drop-offs showed the types of establishments that are most commonly located in the 
vicinity of drop-offs. The analysis of data on establishments in close proximity of Access 
Link drop-offs showed that certain types of establishments, such as health services, social 
services, and educational establishments are more common around drop-off sites than 
other types of establishments. 

Some of the key findings of this component of the research provide useful insights about 
potential future demand for Access Link. For example, the results suggest that the growth 
of elderly persons will be a key factor influencing the future demand for the service. While 
persons age 65 and over constitute 14% of the population in the 18 counties where 
Access Link service is available, 52% of the Access Link’s active clients are of age 65 
or over, and their trips constitute 21% of total trips. According to projections by the New 
Jersey Department of Labor, persons age 65 and over will grow from 1.14 million in 2010 
to 1.82 million in 2030 in the counties served by Access Link.184 On the one hand, this 
growth will potentially increase the total number of persons with disability, and on the other 
hand, it will potentially increase the number and/or size of health facilities providing them 
service. The growth and spatial distribution of the elderly and health facilities could greatly 
influence the number and OD patterns of Access Link trips in the future. Although the 
New Jersey Department of Labor projections do not indicate a significant growth of minority 
populations, changes in their residential location patterns could also influence future trip 
patterns. Finally, if the trend of diminishing household size continues, there could be more 
demand for Access Link trips in the future. 

This research showed that by combining trip data with data from other secondary sources, 
useful insights could be obtained about the generators of ADA paratransit trips. Although 
this method is relatively inexpensive compared to client surveys, considering the large 
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sums of money expended to provide paratransit service, this type of analysis should be 
accompanied by a survey of clients for a better understanding of trip generators and their 
relative importance to clients. Such surveys will be particularly useful to understanding the 
specific reasons for which clients visit trip generators. This understanding, in turn, will help 
to make better forecasts of trip patterns.

FACTORS ASSOCIATED WITH PARATRANSIT TRIP DELAY 

The primary objective of this component of the research is to examine how local 
environmental characteristics and personal characteristics of passengers are associated 
with travel time and delay of paratransit trips by persons with disabilities. Although it has 
been recognized by past studies that trip delay significantly affects overall efficiency of 
paratransit systems, efforts have been made only rarely to study the effect of environmental 
characteristics such as population, employment, and intersection density on service 
efficiency. A limited number of past studies examined the association between regional 
density and aggregate service efficiency to compare the efficiency of systems located in 
different parts of a country, but efforts to examine how local environmental characteristics 
affect service efficiency have been rare. Furthermore, since past studies generally focused 
on economic efficiency, little is known about performance measures such as travel time 
and delay, even though these performance measures ultimately affect overall efficiency 
of service. Considering that persons with different types of disabilities and demographic 
characteristics may have different travel patterns and needs in terms of mobility equipment, 
operator’s attention, etc., this study also examines how these characteristics influence trip 
delay and pickup/drop-off duration. 

It is not difficult to hypothesize that local conditions such as congested roads affect 
vehicle speed and delay of paratransit trips. Because of variations in population density, 
employment density, and network characteristics, there is often a wide variation in traffic 
congestion between different parts of the same region. The variations in the level of 
congestion can conceivably lead to variations in travel time and delay of paratransit trips. 
Similarly, because of variations in the local built environment, such as distance between 
homes and curbside pickup and drop-off locations, pickup and drop-off durations may be 
different in different parts of a region. 

One of the reasons for the limited emphasis of past studies on the association between 
local environmental conditions and paratransit service efficiency is the difficulty quantifying 
delay at a local level. Although overall traffic congestion and delay are often reported for 
metropolitan regions, obtaining such data for numerous locations within a large region is 
difficult. In the case of paratransit for persons with disabilities, duration of trips can be easily 
measured from data recorded by operators at the pickup and drop-off sites. However, 
estimating speed and delay is usually difficult because actual trip distance cannot be 
estimated in the absence of route-specific movement of vehicles. This study overcomes 
this obstacle by obtaining and using a proxy distance variable. This proxy variable was 
obtained by estimating network distances of approximately 1.91 million paratransit trips 
with the ArcGIS Network Analyst extension.
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The trip data used by this research pertain to Access Link, a complementary paratransit 
service provided by NJ Transit pursuant to the Americans with Disabilities Act (ADA) 
of 1990. These trips were made by the system’s registered clients between October 1, 
2010 and September 30, 2012. Access Link service is provided in 18 of 21 counties of 
New Jersey, but not in three counties in the northwestern part of the state. 

The statistical analysis of this component of the research consists of ANOVA and regression 
models. The analyses pertain to trip performance measures such as minutes per mile 
(MPM) of travel and delay per mile (DPM) of travel. The analysis begins with ANOVA to 
examine how the characteristics of pickup and drop-off locations relate to MPM and DPM. 
This simple analysis with grouped data is followed by regression models with disaggregate 
data that examine the association of pickup and drop-off location characteristics, vehicle 
characteristics, mobility equipment characteristics, companion characteristics, and client 
characteristics with trip delay. The models are tested with the full data set for the entire 
study area, 10% and 1% random samples of the study area data, and data for three 
specific regions.

Data and Methods

Data

This research uses data for approximately 1.91 million trips made by Access Link clients 
in a 24-month period. The data set, acquired from NJ Transit, includes each trip’s pickup 
and drop-off coordinates determined by GPS equipment located in the vehicles, as well as 
the time at which a vehicle arrives at and departs from a location. It includes information on 
the type of vehicle used for the trip and the type of mobility equipment used by the clients 
during the trip. It further indicates whether someone accompanied the client during a trip. 
The trip data can be used to determine whether a trip segment involved a shared ride 
by two or more clients who booked trips independently. A complementary data set, also 
obtained from NJ TRANSIT, includes clients’ age, gender, and disability type, as well as 
the coordinates of their home locations. Socioeconomic data such as household income 
and race are not included in the client data set. The two data sets were merged by using 
the clients’ coded identification numbers.

The census block group for each pickup and drop-off location was identified by GIS. 
Socioeconomic data from the 2006-10 ACS and employment data from the 2010 LEHD 
were downloaded from the Census Bureau’s web site and combined at the block group 
level with the Access Link trip data. The duration of each trip was computed by subtracting 
the vehicle departure time at the pickup location from the arrival time at the drop-off 
location. The pickup duration for each trip was obtained by subtracting the vehicle arrival 
time at the pickup location from the departure time at the same location. Similarly, drop-off 
time was obtained by subtracting the arrival time at a drop-off location from the departure 
time from the same location. 

A street network map for the state was obtained in GIS format from the New Jersey 
Department of Transportation (2013) to estimate intersection density.185 After eliminating 
the ramps of all limited-access highways, the number of intersections in each block group 
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was divided by the area of the block group to obtain the intersection density for all block 
groups within the Access Link service area. Finally, by using the ArcGIS Network Analyst 
extension, network distances between the origins and destinations of each of the 1.91 million 
trips were obtained. Since the network analyst uses a shortest-path algorithm to estimate 
network distance between a pair of points on map, the estimated network distances may 
not be exact for some trips (e.g., a vehicle might take a longer route because of congestion 
on the shortest path). However, in the absence of actual trip distance between origin and 
destination pairs, this variable can be considered the closest proxy. 

Measures and Methods

The first part of the analysis is aimed at identifying the variables that are associated with 
trip delay. It focuses on two performance measures, namely, MPM and DPM. As described 
in the literature review, speed and delay are two of the most commonly used performance 
measures in congestion analysis. While MPM is the inverse of speed, DPM represents the 
difference between the time it took to travel a mile and the time it should have taken to travel 
a mile under ideal conditions. Mathematically, MPM and DPM are expressed as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 =
𝑅𝑅𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 =
𝑅𝑅𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖

− 𝑁𝑁𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖
= 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑁𝑁𝑖𝑖𝑖𝑖

𝐷𝐷𝑖𝑖𝑖𝑖
 

where, Rij is the recorded or actual trip duration (minutes) between origin i and destination 
j, Dij is the network distance (miles) between i and j by the shortest-path algorithm without 
intersection delay, and Nij is the estimated trip duration (minutes) based on trip distance 
and posted speed on roads between i and j. For this study, the values of Rij were obtained 
from time recorded from Access Link vehicles at trip origin and destination, whereas the 
values of Dij and Nij were obtained by the ArcGIS Network Analyst extension.

To identify the variables associated with MPM and DPM, two types of statistical methods 
were used: ANOVA and OLS regression models. One-way ANOVA was used to examine 
how the characteristics of pickup and drop-off locations relate to MPM and DPM. One-way 
ANOVA is a simple but useful statistical technique that shows how a variable is associated 
with another variable based on grouped data of one variable. This analysis was followed 
by a series of OLS regression models with disaggregate trip data to identify variables that 
are associated with MPM and DPM. Since the results were similar, only the results from 
the models on DPM are presented in this paper. The DPM models were tested with the 
full data set for the entire study area, a 10% sample of the data, a 1% sample of the data, 
and separate data sets for three Access Link regions that are different in terms of location 
characteristics. For the analysis of MPM and DPM, shared-ride trips, constituting less than 
5% of all Access Link trips in the data set, were excluded because of the complexity in 
estimating their duration. 

It may be noted that Seemingly Unrelated Regression (SUR) was tested as an alternative 
to the OLS regression models because of the method’s ability to account for correlation 



Mineta Nat ional  Transi t  Research Consort ium

90
Identification of Trip Generators and Factors

between model residuals. However, SUR was not used because the correlation between 
the residuals of the region-specific OLS models was found to be extremely low.

The second part of the analysis consists of OLS regression models to identify variables 
associated with pickup and drop-off duration. These models were also tested for the entire 
study area, for 10% and 1% random samples, and for specific regions. Since the results of 
the models on drop-off duration were virtually identical to the models on pickup duration, 
only the results from the models on pickup duration are presented. 

Heteroscedasticity and multicollinearity, two major concerns with OLS models, were 
properly addressed for all models presented in this paper. To account for potential 
heteroscedasticity, only the robust t-values, estimated on the basis of heteroscedasticity-
consistent standard errors, are presented in all tables with model results. Because of 
the seemingly collinear nature of some independent variables included in the models, 
such as density of population, jobs, and intersections, variance inflation factors (VIFs) 
were estimated for all variables. Although VIF is not a statistical test, standard textbooks 
suggest that VIF>5 is a sign of unacceptable multicollinearity.186 The analysis showed that 
all variables in the models presented in this paper had a VIF far below 5.

Analysis and Results

Identification of Variables Associated with Speed and Delay

As mentioned in the previous section, one-way ANOVA and OLS regression models were 
used to identify the variables associated with MPM and DPM. For both sets of analysis, it 
was hypothesized that variables pertaining to the characteristics of the pickup and drop-
off locations, the vehicles used, the trip makers, the companions of the trip makers, and 
the mobility equipment used by the trip makers could be associated with MPM and DPM. 
Although ANOVA was undertaken to examine the association of all of these variables with 
MPM and DPM, only the results of the variables pertaining to pickup and drop-off locations 
are presented in this paper because of space limitations and a special emphasis of the 
paper on location characteristics.

ANOVA Results on MPM and DPM

Table 18 shows the ANOVA results for the association between MPM and the characteristics 
of the pickup and drop-off locations. Table 19 shows the ANOVA results for the association 
between DPM and the same location characteristics. In both tables, the left panel pertains 
to the pickup location and the right panel pertains to the drop-off location. The variables 
included in the two tables are population density, job density, intersection density, and per 
capita income, as well as one variable indicating whether the pickup or drop-off occurred 
within a ¾-mile buffer along the bus route, and another variable indicating whether the 
pickup or drop-off occurred near a client’s home. The mean MPM and DPM of each 
category of the variables, their standard errors, and the F statistics from the ANOVA are 
presented in both tables. The F statistics, computed on the basic of inter-group and within-
group comparison, show that the association of all the variables in the table with MPM and 
DPM are statistically significant. 
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Table 18. ANOVA Results on Minutes per Mile (MPM) for Characteristics of Pickup 
and Drop-off Locations

Characteristics of location

Pickup Location Drop-Off Location
Mean 
MPM

Standard 
error

Mean 
MPM

Standard 
error

Block group population density (persons/acre)
Less than 2 3.93 0.006 3.99 0.006
2 to 5 5.10 0.006 5.00 0.006
5 to 10 5.58 0.006 5.60 0.006
10 to 20 6.30 0.008 6.29 0.008
20 to 30 7.26 0.013 7.32 0.014
30 to 50 7.28 0.013 7.21 0.014
50 or more 8.47 0.022 8.50 0.022
F* 21,127 21,465
Block group job density (jobs/acre)
Less than 0.5 4.89 0.006 5.06 0.007
0.5 to 0.99 5.32 0.010 5.32 0.010
1 to 1.99 5.56 0.008 5.57 0.008
2 to 3.99 5.77 0.008 5.99 0.012
4 to 6.99 5.74 0.010 5.64 0.010
7 to 9.99 6.59 0.011 6.34 0.010
10 or more 6.77 0.010 6.73 0.010
F* 5,972 4,611
Block group interaction density (intersections/acre)
Less than 0.05 4.41 0.007 4.38 0.007
0.05 to 0.10 5.02 0.006 5.04 0.006
0.10 to 0.15 5.24 0.008 5.23 0.007
0.15 to 0.20 5.98 0.009 6.00 0.009
0.20 to 0.30 6.81 0.008 6.76 0.008
0.30 or higher 6.93 0.009 6.90 0.009
F* 17,870 17,604
Block group per capita income
Less than $15,000 7.04 0.014 6.93 0.013
$15,000-20,000 6.82 0.010 6.63 0.010
$20,000-30,000 5.85 0.006 5.83 0.006
$30,000-40,000 5.20 0.006 5.22 0.006
$40,000-50,000 5.08 0.009 5.22 0.009
$50,000 or higher 4.95 0.008 4.95 0.008
F* 8,981 7,216
Whether location within 3/4 mile buffer
Not in ¾-mile buffer 6.07 0.004 6.09 0.004
In ¾-mile buffer 3.88 0.006 3.81 0.006
F* 66,124 72,144
Whether at home location 
Away from home 5.66 0.005 5.48 0.005
At home 5.73 0.005 6.00 0.004
F* 122 5,938

* All F statistics are significant at 1% level.
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Table 19. ANOVA Results on Delay per Mile (DPM) for Characteristics of Pickup 
and Drop-off Locations

Characteristics of location

Pickup Location Drop-Off Location
Mean 
DPM

Standard 
error

Mean 
DPM

Standard 
error

Block group population density (persons/acre)
Less than 2 2.40 .006 2.47 .006
2 to 5 3.53 .006 3.43 .006
5 to 10 3.96 .006 3.99 .006
10 to 20 4.68 .008 4.67 .008
20 to 30 5.62 .013 5.70 .013
30 to 50 5.65 .013 5.57 .013
50 or more 6.83 .022 6.87 .022
F* 20,818 21,109
Block group job density (jobs/acre)
Less than 0.5 3.31 .006 3.47 .006
0.5 to 0.99 3.77 .009 3.77 .009
1 to 1.99 3.95 .008 3.95 .008
2 to 3.99 4.18 .008 4.40 .012
4 to 6.99 4.12 .010 4.05 .010
7 to 9.99 4.97 .011 4.71 .010
10 or more 5.17 .010 5.13 .010
F* 6,014 4,637
Block group interaction density (intersections/acre)
Less than 0.05 2.88 .007 2.86 .007
0.05 to 0.10 3.44 .006 3.47 .006
0.10 to 0.15 3.64 .008 3.63 .007
0.15 to 0.20 4.35 .009 4.36 .009
0.20 to 0.30 5.18 .008 5.14 .008
0.30 or higher 5.31 .009 5.28 .009
F* 17,344 17,054
Block group per capita income
Less than $15,000 5.43 .013 5.32 .013
$15,000-20,000 5.22 .010 5.04 .010
$20,000-30,000 4.26 .006 4.24 .006
$30,000-40,000 3.60 .006 3.62 .005
$40,000-50,000 3.49 .008 3.63 .009
$50,000 or higher 3.36 .008 3.37 .008
F* 9,215 7,440
Whether location within 3/4 mile buffer
Not in ¾-mile buffer 4.46 .004 4.48 .004
In ¾-mile buffer 2.38 .005 2.32 .006
F* 62,170 67,914
Whether at home location 
Away from home 4.08 .004 3.90 .004
At home 4.13 .005 4.38 .005
F* 63 5,335

* All F statistics are significant at 1% level.
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It is evident from Table 18 and Table 19 that mean MPM and DPM values are higher for 
pickup and drop-off locations with higher population, employment, and intersection density, 
suggesting that these variables are positively associated with both MPM and DPM. The 
results in the two tables also show that MPM and DPM are higher in areas with lower 
per capita income and lower in areas with high per capita income, indicating a negative 
association between income and the two performance measures. The results in the two 
tables also indicate that a lower level of trip delay is involved when pickups and drop-offs 
occur in ¾-mile buffers than when pickups and drop-offs occur in urban core areas. Finally, 
a comparison between trips with pickups and drop-offs near home and trips with pickups 
and drop-offs away from home indicates that trips beginning or ending near clients’ homes 
may involve a little more delay than trips beginning or ending away from home.

Although the ANOVA results in Table 18 and Table 19 provide useful insights about the 
association of individual characteristics of pickup and drop-off locations with MPM and DPM, 
the analysis does not control for potential effects of other variables. For example, the ANOVA 
results show that both population density and intersection density are positively associated 
with MPM and DPM, but they do not show how MPM and DPM vary with intersection density 
after controlling for the effects of population density and the other variables. 

Regression Results on DPM

In order to examine the effects of all variables that can be conceivably associated with 
the two performance measures, OLS regression models were run with MPM and DPM 
as the dependent variables. An advantage of a regression model over ANOVA is that its 
shows the association of each independent variable with MPM and DPM after controlling 
for the effects of the other independent variables. The variables used in the regression 
models on MPM and DPM are shown in Table 20. The means and standard deviations of 
the variables estimated from the full data set, as well as a 10% sample and a 1% sample, 
are also shown in the table. 

Although the regression models were run for both MPM and DPM, only the DPM model 
results are presented because (a) the direction of association and significance level of 
the variables in the MPM and DPM models were very similar, and (b) delay is a more 
commonly used measure of congestion than speed. The results of six regression models 
on DPM are presented in Table 21 and Table 22.
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Table 20. Mean and Standard Deviation of Variables Used in Regression Models

Variable

Full Data Set 10% Sample 1% Sample

Mean
Std. 
Dev. Mean

Std. 
Dev. Mean

Std. 
Dev.

Log of delay per mile (dependent variable) 1.09 0.909 1.09 0.90 1.09 0.90
Log of pickup duration (dependent variable) 1.04 0.80 0.99 0.77 0.95 0.78
Jobs per acre in pickup block group 7.20 20.49 7.27 20.78 7.23 20.68
Jobs per acre in drop-off block group 7.48 21.26 7.51 21.22 7.70 22.17
Population per acre in pickup block group 12.89 15.68 12.89 15.64 12.84 15.78
Population per acre in drop-off block group 12.77 15.58 12.79 15.54 12.89 15.74
Intersections per acre in pickup block group 0.18 0.13 0.18 0.13 0.18 0.13
Intersections per acre in drop-off block group 0.18 0.13 0.18 0.13 0.18 0.13
Pickup location in 3/4-mile buffer 0.17 0.37 0.17 0.37 0.17 0.37
Drop-off location in 3/4-mile buffer 0.17 0.37 0.17 0.37 0.17 0.37
Pickup at home 0.46 0.50 0.46 0.50 0.46 0.50
Drop-off away from home 0.58 0.49 0.58 0.49 0.58 0.49
Per capita income in pickup block group (in $10,000) 3.08 1.40 3.07 1.39 3.07 1.39
Per capita income in drop-off block group (in $10,000) 3.08 1.41 3.07 1.40 3.08 1.41
Pickup between 7 and 9 AM 0.20 0.40 0.20 0.40 0.20 0.40
Pickup between 2 and 4 PM 0.22 0.41 0.22 0.41 0.22 0.41
Pickup between 4 and 6 PM 0.10 0.30 0.10 0.30 0.09 0.29
Used subscription booking 0.46 0.50 0.46 0.50 0.45 0.50
Weekend trip 0.13 0.34 0.13 0.34 0.13 0.34
Vehicle is sedan 0.00 0.04 0.00 0.03 0.00 0.03
Used oversized chair 0.00 0.05 0.00 0.05 0.00 0.05
Used wheelchair 0.16 0.37 0.16 0.37 0.17 0.37
Accompanied by personal care attendant 0.08 0.27 0.08 0.27 0.08 0.28
Accompanied by child 0.00 0.04 0.00 0.04 0.00 0.03
Age 65 or over 0.21 0.40 0.21 0.41 0.21 0.41
Female 0.54 0.50 0.54 0.50 0.54 0.50
Has physical disability 0.23 0.42 0.23 0.42 0.24 0.42
Has medical disability 0.29 0.46 0.30 0.46 0.29 0.46
Has mental illness 0.09 0.29 0.09 0.29 0.09 0.28
Has cognitive or learning disability 0.26 0.44 0.26 0.44 0.26 0.44
Has visual disability 0.23 0.42 0.23 0.42 0.22 0.42
Region 2 0.07 0.25 0.07 0.25 0.07 0.25
Region 3 0.26 0.44 0.26 0.44 0.26 0.44
Region 4 West 0.06 0.25 0.07 0.25 0.07 0.25
Region 4 East 0.07 0.26 0.07 0.26 0.08 0.26
Region 6 0.18 0.38 0.18 0.38 0.18 0.39
Sample size (N) 1,754,997 175,485 17,342
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Table 21. Regression Models on Delay per Mile (DPM) for the Entire Access
Full Data Set 10% Sample 1% Sample

Coefficient
Robust 
t Value Coefficient

Robust 
t Value Coefficient

Robust 
t Value

Intercept 1.0366 282.02 1.0357 88.90 0.9772 26.40
Jobs per acre in pickup block group 0.0007 24.71 0.0006 7.44 0.0007 2.63
Jobs per acre in drop-off block group 0.0006 21.73 0.0006 7.64 0.0008 3.32
Population per acre in pickup block group 0.0040 80.22 0.0038 24.27 0.0045 9.21
Population per acre in drop-off block group 0.0047 95.46 0.0049 31.41 0.0050 10.03
Intersections per acre in pickup block group 0.4992 92.42 0.4980 29.35 0.4575 8.51
Intersections per acre in drop-off block group 0.4687 86.68 0.4539 26.71 0.4367 8.02
Pickup location in ¾-mile buffer -0.2392 -98.96 -0.2374 -30.91 -0.2698 -11.06
Drop-off location in ¾-mile buffer -0.2244 -92.23 -0.2278 -29.57 -0.2371 -9.68
Pickup at home 0.0350 16.36 0.0329 4.89 0.0160* 0.74
Drop-off away from home -0.0619 -29.17 -0.0585 -8.77 -0.0562 -2.62
Per capita income in pickup block group (in $10,000) -0.0475 -99.76 -0.0469 -31.29 -0.0416 -8.52
Per capita income in drop-off block group (in $10,000) -0.0314 -66.33 -0.0313 -20.91 -0.0219 -4.61
Pickup between 7 and 9 AM 0.2804 153.80 0.2894 50.25 0.3052 16.64
Pickup between 2 and 4 PM 0.3051 172.33 0.3097 55.32 0.3165 17.51
Pickup between 4 and 6 PM 0.1771 82.14 0.1772 25.95 0.1733 7.96
Used subscription booking 0.0584 42.31 0.0573 13.14 0.0681 4.84
Weekend trip -0.1219 -62.24 -0.1199 -19.27 -0.0959 -4.90
Vehicle is sedan -0.1836 -13.07 -0.1572 -3.32 -0.2727* -1.62
Used oversized chair 0.3773 32.48 0.3766 10.04 0.4651 2.93
Used wheelchair 0.2673 148.81 0.2703 47.51 0.2599 14.18
Accompanied by personal care attendant 0.0501 21.91 0.0463 6.45 0.0487* 2.07
Accompanied by child 0.0816 5.24 0.1621 3.25 -0.0225 -0.14
Age 65 or over 0.1202 73.21 0.1149 22.13 0.1458 8.71
Female 0.0597 48.38 0.0604 15.47 0.0581 4.66
Has physical disabilitya 0.0272 18.30 0.0300 6.34 0.0148* 0.97
Has medical disabilitya 0.0358 24.81 0.0310 6.77 0.0332* 2.24
Has mental illnessa 0.0731 34.49 0.0722 10.77 0.0523 2.48
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Full Data Set 10% Sample 1% Sample

Coefficient
Robust 
t Value Coefficient

Robust 
t Value Coefficient

Robust 
t Value

Has cognitive or learning disabilitya 0.0139 9.39 0.0120 2.56 0.0126* 0.85
Has visual disabilitya -0.0946 -60.98 -0.0905 -18.36 -0.0919 -5.79
Region 2b -0.1850 -75.51 -0.1791 -23.26 -0.1779 -7.14
Region 3b -0.2369 -137.34 -0.2402 -44.03 -0.1932 -11.18
Region 4 Westb -0.3817 -89.25 -0.3897 -28.94 -0.2998 -6.86
Region 4 Eastb -0.3040 -109.13 -0.3141 -35.77 -0.2922 -10.21
Region 6b -0.1979 -116.61 -0.1964 -36.42 -0.2190 -12.84
N 1,754,997 175,485 17,342
F 16,008 1,615 154
Adjusted R-square 0.237 0.238 0.231

All coefficients without * are significant at the 1% level; 
a Referent category is “Other types of disability”;
b Referent category is “Region 5.”
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Table 22. Regression Models on Delay per Mile (DPM) for Specific Access Link Regions

Region 3 Region 4
Region 5 

(10% Sample)

Coefficient
Robust 
t Value Coefficient

Robust 
t Value Coefficient

Robust 
t Value

Intercept -0.3881 -5.48 0.5367 35.85 1.2046 64.46

Jobs per acre in pickup block group 0.0008 2.69 0.0060 16.37 0.0008 7.96

Jobs per acre in drop-off block group 0.0004* 1.41 0.0036 12.77 0.0006 5.89

Population per acre in pickup block group 0.0135 10.40 0.0026 6.76 0.0021 8.48

Population per acre in drop-off block group 0.0051 4.32 0.0007* 2.04 0.0041 16.19

Intersections per acre in pickup block group 0.5361 13.24 0.0726 2.71 0.5641 21.84

Intersections per acre in drop-off block group 0.5966 15.12 0.2789 11.28 0.4524 17.16

Pickup location in ¾-mile buffer 0.1139 3.62 -0.1284 -16.63 -0.3509 -18.49

Drop-off location in ¾-mile buffer 0.1318* 2.15 -0.1140 -14.71 -0.2531 -13.65

Pickup at home -0.0837 -8.61 0.3545 40.11 0.0194* 1.83

Drop-off away from home 0.0199* 2.07 -0.3596 -41.74 -0.0029* -0.27

Per capita income in pickup block group (in $10,000) 0.0137 5.08 -0.0025* -1.16 -0.0747 -35.17

Per capita income in drop-off block group (in $10,000) 0.0332 12.47 -0.0122 -5.89 -0.0605 -28.13

Pickup between 7 and 9 AM 0.2410 26.90 0.0402 5.68 0.2796 31.44

Pickup between 2 and 4 PM 0.2345 27.78 0.1635 26.42 0.2897 32.23

Pickup between 4 and 6 PM 0.1623 16.74 0.1498 19.78 0.1514 13.88

Used subscription booking 0.0515 8.10 -0.1417 -28.46 0.0790 11.41

Weekend trip -0.0977 -12.19 -0.0597 -9.37 -0.1319 -13.62

Vehicle is sedan -0.2320* -0.43 0.5070 3.24 0.3265* 0.77

Used oversized chair 0.5897 15.43 1.2221 23.73 0.2679 4.88

Used wheelchair 0.2669 38.32 0.5684 86.02 0.2214 23.50

Accompanied by personal care attendant 0.0592 3.94 0.0541 6.20 -0.0476 -4.26

Accompanied by child 0.6120 11.49 -0.1231* -1.67 0.1895 2.56

Age 65 or over 0.1138 14.38 0.0301 5.05 0.1244 16.82
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Region 3 Region 4
Region 5 

(10% Sample)

Coefficient
Robust 
t Value Coefficient

Robust 
t Value Coefficient

Robust 
t Value

Female 0.0293 4.76 0.1437 30.33 0.0791 13.18

Has physical disabilitya 0.2145 31.34 -0.0160 -2.76 -0.0180* -2.46

Has medical disabilitya 0.0929 12.14 0.0582 10.87 0.0110* 1.66

Has mental illnessa -0.0355 -3.60 0.1399 11.98 0.1520 15.64

Has cognitive or learning disabilitya -0.3211 -36.95 -0.0409 -6.32 0.0740 10.78

Has visual disabilitya -0.0982 -11.69 0.0013* 0.24 -0.0533 -7.06

N 113,866 130,891 61,594
F 414 936 577
Adjusted R-square 0.095 0.172 0.213

All coefficients without * are significant at the 1% level;
a Referent category is “Other types of disability.”
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The three models in Table 21 were estimated from the full data set for the entire study 
area, a 10% random sample of the data set for the whole study area, and a 1% random 
sample of the data set. The models with the 10% and 1% samples were necessary, as 
the full data set contains an extremely large number of observations. When the number of 
observations is very large, regression model coefficients are highly likely to be significant 
merely because t-values increase with an increase in number of observations.187 The 
models with the 10% and 1% data were run with the anticipation that some variables that 
are statistically significant in the model with the full data set would not be significant when 
the data set size is substantially reduced. That, in turn, would provide a greater degree of 
confidence about the variables significantly associated with the dependent variable in all 
three models.

In addition to the three models on DPM for the entire study area, three separate models 
were tested with data for three specific regions to examine if the variables found to be 
significant in the models for the entire study area continue to be significant in different 
environments. Region 3, Region 4, and Region 5 were chosen for the models because 
of the differences in their characteristics. Region 5 has extremely high population density, 
Region 4 has moderate density, and Region 3 has low density. Similar differences exist 
between the three regions in terms of job density and intersection density as well. The 
results of the models on DPM with data from the three regions are shown in Table 22. It 
may be noted that, because of the large number of trips in Region 5 (over 650,000), data 
from a random sample of 10% trips were used for the model pertaining to this region. 

On the basis of the reviewed studies, it was hypothesized that Access Link trip delay 
would be higher when pickup or drop-off locations have a higher density of population, 
employment, and intersections. A positive association between delay and population/
employment density is expected because of higher pedestrian volumes, whereas a positive 
association between delay and intersection density is expected because of control delay 
at intersections, blockage, spill-back, and conflicts with pedestrians. Based on the ANOVA 
results, two variables representing median per-capita income of the pickup and drop-off 
block groups were included with the expectation that they would be negatively associated 
with delay.

Since a large proportion of Access Link clients live in high-density and low-income areas, 
it was hypothesized that trips with pickup and drop-off locations near home would be 
associated with greater delay than were trips with pickups and drop-offs in areas away 
from home. Similarly, since most of the ¾-mile buffers along bus routes are in low-density 
suburban highway corridors, it was hypothesized that trips with pickups or drop-offs in the 
buffers would involve a lower level of delay than other areas.

Three dummy variables were included in the models that pertain to trip time, namely, 
7-9 AM, 2-4 PM, and 4-6 PM, with the expectation that trip delay would be higher at these 
time periods compared to other time periods. The afternoon peak period was divided into 
two parts, because Access Link trips peak between 2 and 4 PM while regular traffic in 
the region peaks between 4 and 6 PM. A variable on trip-booking type was included with 
the expectation that subscription-booking trips would be positively associated with delay 
compared to demand-booking trips because a large proportion of the subscription trips 
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are expected to be made by individuals commuting to or from work. A dummy variable on 
weekend trip was included with the anticipation that weekend trips would involve a lower 
level of delay because of lower traffic volume on roads. 

A few dummy variables were included in the models that represent other characteristics 
of the trips. They include a dummy variable on the use of sedans (versus ambulatory 
vehicles or vans), two variables on equipment used by the trip maker (wheelchair and 
oversized chair) and two variables on companion (personal care attendant and child). 
The expectation was that delay would be lower when a sedan was used and higher when 
the two types of equipment were used or when a trip maker was accompanied by others. 
It was hypothesized that when equipment or multiple passengers were onboard, vehicle 
operators would be more careful, especially when accelerating, decelerating, and turning 
a vehicle. 

A few independent variables were included in the models for mostly exploratory purposes 
to examine if personal characteristics of the passengers had any association with trip delay. 
These variables pertained to age, gender, and disability type. Delay could be associated 
with these variables because of differences in trip patterns (e.g., different destinations), 
passenger behavior (e.g., variations in time taken to occupy a seat once inside a vehicle), 
as well as driver behavior (e.g., driving more slowly or turning more carefully when an 
elderly person is onboard). Since past studies provide little insight about the association 
of these variables with paratransit trip delay, there was no clear expectation about the 
relationship of these variables with delay. However, it was anticipated that trips involving 
elderly persons and persons with physical disability might be positively associated with 
delay because of a potentially longer time taken by these trip makers to occupy seats and 
more careful driving by the operators when such persons were onboard. 

The results of the regression models on DPM with the full data set for the entire study 
region, the 10% sample, and the 1% sample are presented in Table 21. The dependent 
variable of these models is the natural log of DPM. The variable was transformed because 
of extreme dispersion. In addition to the independent variables mentioned above, dummy 
variables on five regions were included to control for differences between the regions. 
Region 5 was used as the referent category, because it is the largest and most distinct 
from the other regions. Since this region is located close to New York City and has a 
substantial volume of interstate through traffic on its roadways, it was expected that the 
other five regions would have a lower delay than this region. 

The models in Table 21 show generally expected results. Considering that the models use 
disaggregate data on trips, the adjusted R-square values are acceptable. In the first model, 
the model with the full data set, all variables are statistically significant, and the variables 
included with a clear expectation of relationship with DPM had coefficients with expected 
signs. However, the significance of some of the variables in the model is potentially due to 
the extremely large number of observations used. 

In the model with 10% sample data, all variables are also statistically significant, but in the 
third model, where only 1% of data was used, six variables cease to be statistically significant 
(at the 1% level). These variables are at-home pickup, vehicle type, presence of personal 
care attendant, physical disability, medical disability, and cognitive or learning disability. 
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Although a large number of variables continue to be significant even in the model with 1% 
data, to examine how generalizable the model results are, the regression model on DPM 
is repeated for three Access Link regions with vastly different characteristics. The results 
of the models with the full data set for Regions 3 and 4, as well as a 10% sample data set 
for Region 5, are presented in Table 22. A few important observations can be made from 
the model results. First, the adjusted R-squares of the models for Region 3 and Region 4 
are substantially lower than the model with 10% data from Region 5, even though a 
larger number of observations are used in the first two models than in the last model. This 
indicates that the model results for the entire region in Table 17 are significantly affected 
by Region 5, where almost one-third of all trips take place. Conversely, it indicates that 
the model results for the entire region are more replicable in Region 5 than in the other 
regions because of the differences in their characteristics. Second, despite the differences 
in the outcomes for several variables in the models for Region 3 and Region 4, a number 
of variables in these two models show results similar to model results for Region 5. 

The variables that are statistically significant with identical signs in all six models in Table 21 
and Table 22 are (a) Job density in pickup location, (b) population density in pickup 
location, (c) intersection density in pickup and drop-off locations, (d) pickup location within 
the ¾-mile buffer along bus routes, (e) pickup and drop-off in morning and afternoon peak 
periods, (f) weekend trip, (g) use of oversized chair and wheelchair by trip maker, (h) elderly 
trip maker, and (i) female trip maker. In addition, the models in Table 21 consistently show 
that, compared to Region 5, delay is lower in the other five regions. In sum, the model 
results indicate that the characteristics of the pickup locations, time of day, day of week, 
mobility equipment used by trip makers, age of trip maker, and gender of trip maker are 
consistently associated with delay. In contrast, the variables on companion characteristics, 
type of vehicle, and type of disability show inconsistent results.

Summary

This part of the research helped to identify some of the variables pertaining to local 
environmental characteristics and personal characteristics of trip makers that are 
associated with speed, delay, and pickup duration of Access Link trips. Most notably, it 
showed that a certain degree of delay is involved when trips are made to and from areas 
with a high density of population, employment, and intersections. Although the reviewed 
literature shows that having a high population density regionally can make paratransit 
service more efficient, this research showed that service provision may be inefficient locally 
in areas with high population density because of trip delay. The model results also show 
that the association between employment density and delay is significant and positive. 
The empirical findings strongly indicate that Access Link vehicles experience greater delay 
in areas with a high intersection density even after population and employment density are 
accounted for.

The observed relationship between density and paratransit trip delay has implications for 
transportation and land-use planners. While general transportation studies often mention 
lower VMT and higher share of transit and pedestrian trips as benefits of high density, 
paratransit trips experience more delay in such environments. Since a large proportion 
of ADA-paratransit clients live in urban centers where population, employment, and 
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intersection density are high, a large proportion of trips are affected by high density. In 
contrast to urban core areas, trips beginning in ¾-mile buffers along bus routes, mostly 
located in suburban areas, experience a significantly lower level of delay. However, far 
fewer clients live in those areas.

Density and ADA-paratransit service both have societal benefits. Density benefits are 
seemingly enjoyed by society in general, whereas the benefits from paratransit are directly 
enjoyed by persons with disabilities but are also indirectly enjoyed by society at large. 
Given that both density and paratransit are beneficial to society, transportation planners 
and traffic engineers should consider strategies that can reduce delay of paratransit 
vehicles in high-density areas. Regular adjustment of signal timing at critical intersections, 
based on up-to-date traffic data, could be one such strategy. A second strategy could 
be network-based optimization of signal timing in high-density areas. A third strategy 
would be to implement bus priority at intersections in high-density areas and to afford 
paratransit vehicles the same privileges as buses. Urban planners perhaps can do little 
about where paratransit clients live and where they travel. When opportunities arise to 
develop activities that generate a substantial amount of trips, however, or to increase 
population or employment density through new construction, planners should also bear in 
mind the potential negative effects of density and congestion on bus and paratransit. 

This research also showed the association between certain passenger characteristics and 
paratransit speed and delay. Although one might not suspect that speed decreases and 
delay increases when particular types of passengers are on board, this research showed 
that vehicle speed, on average, is lower when a passenger with a wheelchair is on board 
or when an elderly person is on board. While operators are not instructed to drive slower 
or faster on the basis of passenger characteristics, it appears that operator behavior may 
have an influence on trip duration and speed. It is possible that, because of the need for 
an operator to activate a mechanism to indicate arrival and departure from a location, a 
portion of the pickup and drop-off duration is attributed to the duration of the trip.

Finally, this research afforded an opportunity to compare service efficiency in the six 
Access Link regions. In terms of trip delay, Region 5 appears to be worse off than the 
other five regions. After other variables are controlled for, trip delay is greater in Region 5 
compared to the other regions. While it is not possible to conclude from this research 
whether the region suffers from any kind of provider-related inefficiency, the location and 
other attributes of the region could also be contributory factors. On the one hand, the 
region contains a number of municipalities with high population and employment density; 
on the other hand, its highways and major roads are perpetually congested because of a 
high volume of intra- and inter-regional traffic. The region’s relatively large size may also 
lead to complexities in providing efficient service. If NJ TRANSIT considers a re-alignment 
of service regions, this research suggests that Region 5 should be the top candidate.

TRAVEL TIME RELIABILITY OF ACCESS LINK TRIPS

Reliability is the inverse of variability; when travel time for a given roadway segment or 
trip time between an origin and a destination fluctuates widely, travel time reliability is 
low. With the growing recognition that travel time variability is a more serious concern 
for travelers than delay caused by everyday congestion, recent studies in the general 
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sphere of transportation have suggested a greater emphasis on reliability than recurring 
delay. Compared to the general public, travel-time reliability is seemingly more important 
for travelers with disabilities who use paratransit service provided in accordance with the 
Americans with Disabilities Act (ADA). The reason is that a large proportion of those trips 
are made for medical and other essential appointments. Moreover, since many users of 
such services belong to low-income households, they often do not have any other means 
to travel.

The primary objective of this component of the research is to provide insights about the 
factors associated with ADA-paratransit’s travel-time variability. It places a special emphasis 
on the potential effect of roadway crashes on travel-time variability. It hypothesizes that the 
characteristics of the locations where pickups and drop-offs occur, including the occurrence 
of crashes, influence paratransit’s travel-time variability. It seeks to examine if locations with 
high crash incidents can be empirically linked to the variability of paratransit’s travel time 
or trip speed. The underlying principle of the research is that, if locations with high crash 
incidents could be statistically linked to paratransit’s travel time variability, trip scheduling 
could be improved by adding additional travel time to (i.e., imposing time penalties on) trips 
beginning or ending in such locations. Since it is impossible to predict if a particular paratransit 
trip’s travel time will be affected by a motor vehicle crash in the origin or destination location, 
can a travel time penalty be measured and imposed on the trips to and from locations with 
a history of high crash volumes so that the unpredictability of travel time can be minimized? 
This is the primary question around which this research resolves.

Addressing travel-time variability issues can benefit paratransit riders and providers alike. 
While riders would have more realistic expectation about arrival time at destinations, 
service providers would have better control over vehicle availability at different moments 
of time. Unfortunately, paratransit reliability has received little attention in past studies. 
Although a limited number of studies dealt with issues related to paratransit reliability, 
they were conducted from the perspective of service providers, often with an emphasis on 
scheduling technology. In contrast, this study addresses reliability in terms of travel time 
variability experienced by paratransit users in real life.

The study area for this research is an 18-county region of the State of New Jersey where 
NJ Transit provides ADA-compliant Access Link paratransit service. Two large data sets, 
one on Access Link trips and the other on motor vehicle crashes, were used in conjunction 
with data from the ACS and the LEHD of the US Census Bureau. Data analysis was 
conducted for the entire study area as well as for six Access Link regions. Pursuant to 
recent literature, the study focuses on four measures of travel-time variability: Standard 
Deviation, Percent Variation, Buffer Index, and Misery Index. The analysis includes basic 
statistical tests and regression models. The first major analytical component of the paper 
includes regression models on the four measures of travel time variability with crash 
density in the pickup and drop-off locations as the key variables and other variables as 
controls. To validate the findings of the four models on travel-time variability, a second set 
of regression models was used to examine if Access Link trips ending in locations that 
experienced crashes before a drop-off required significantly longer time than trips that 
ended in locations that did not experience crashes prior to a drop-off. The models provided 
strong evidence of a significant effect of crash density and crash incidents on paratransit’s 
travel time variability. 
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Measures of Reliability

In the general context of highway performance, a number of reliability measures have been 
discussed in past studies.188 The measures that are of most relevance for this study are:

Standard Deviation: 𝑠𝑠 = √∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋)2
𝑁𝑁  

Travel Time Window: 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑋𝑋 ± 𝑠𝑠 

Percent Variation: 𝑃𝑃𝑃𝑃 = 𝑆𝑆
𝑋𝑋
∗ 100 

Misery Index: 𝑀𝑀𝑀𝑀 = 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇20%
𝑋𝑋

− 1 

Buffer Index: 𝐵𝐵𝐵𝐵 = (𝑋𝑋95 − 𝑋𝑋
𝑋𝑋

) = 𝑋𝑋95
𝑋𝑋

− 1 

All of these measures can be used to estimate paratransit’s travel-time reliability. These 
measures are often described in the literature in terms of travel time (minutes) for a 
highway segment of a given length (miles). Standard Deviation is a measure defined in 
minutes. When travel time on a highway segment varies widely, Standard Deviation will be 
high and reliability will be low. On the other hand, when all trips on the highway segment 
take more or less the same time, Standard Deviation will be low and reliability will be high. 
By adding and subtracting the Standard Deviation to the mean trip time, one can obtain 
the Travel Time Window, which is defined as a range of minutes. Percent Variation is a 
measure of variability obtained by multiplying the coefficient of variation by 100. This unit-
less measure is high when the Standard Deviation is high and low when the mean is high. 
Standard Deviation and Travel Time Window are likely to be more meaningful to travelers 
than Percent Variation, because travelers are concerned about minutes delayed instead 
of unit-less measures. On the other hand, Percent Variation may be more meaningful to 
transportation agencies, because its unit-less-ness allows comparison across different 
components of a transportation network or system. 

Standard Deviation, Travel Time Window, and Percent Variation place equal emphasis 
on trips involving different amounts of travel time. In contrast, Buffer Index and Misery 
Index place a greater emphasis on trips involving extreme travel time. The premise in 
using these two measures instead of the other measures is that it is the trips that take an 
inordinately long time compared to the mean time that are important to travelers, whereas 
trips that take slightly longer than the mean trip time are of no significance. In the case 
of Buffer Index, the concern is the difference between the mean travel time for all trips 
and the 95th percentile trip time, whereas in the case of Misery Index, the concern is the 
difference between the mean travel time for all trips and the mean travel time for the 20% 
trips that take the longest time. In both cases, the greater the difference between the mean 
travel time and the trips involving extreme travel time, the lower is the travel time reliability.
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Data, Analysis, and Results

Data Used

The empirical analysis in this paper is based on several data sources. First, 24-month 
Access Link trip data described previously is the core data for the analyses. This data set 
contains the actual location coordinates and arrival and departure time at each pickup 
and drop-off location, as well as information on vehicle type, mobility equipment used 
by riders, etc., for a total of approximately 1.9 million trips. A complementary data set 
containing information on demographic characteristics of the riders was combined with 
the trip data. The second major data source for this research is the Plan4Safety (P4S) 
crash data set compiled by the Center for Advanced Infrastructure and Transportation of 
Rutgers University on behalf of the New Jersey Department of Transportation.189 This data 
set contains all recorded vehicle crashes in the State of New Jersey as well as the time 
and location coordinates of each occurrence. When restricted to the 18-county Access 
Link service area and the 24-month period for which Access Link trip data are available, 
the data set contains information on 93,479 motor vehicle crashes. Figure 2, where the 
density of crashes is shown at the census-tract level, provides an indication about the 
location of the areas where crashes are most concentrated. 

Third, in order to estimate intersection density of geographic areas, a street network 
map for the study area was obtained in GIS format from the New Jersey Department of 
Transportation (2013). Fourth, data on socioeconomic and demographic characteristics of 
population at the census block group level were downloaded from the 2006-2010 American 
Community Survey by using the US Census Bureau’s web site.190 Finally, employment 
data at the census block group level were compiled from the 2010 LEHD web site of the 
US Census Bureau.191

Travel Time Reliability of Access Link Regions 

Although travel-time reliability is often defined in terms of travel time for a given segment of 
a roadway, such a measure does not have much relevance when comparing Access Link 
trips, because vehicles travel between multiple origins and destinations using multiple road 
segments. It was therefore necessary to use a standardized measure of travel time that 
could be compared across regions. This measure is MPM, derived by dividing the actual 
travel time of Access Link trips by the corresponding network distance (in miles) between 
the origins and destinations. The travel time for each trip was obtained by subtracting the 
vehicle departure time at the trip origin from the arrival time at the destination. At both 
ends, time was recorded by an in-vehicle technology. Since actual route-specific travel 
information for vehicles is not available, the distance between each OD pair was obtained 
by using the ArcGIS network analyst. Although distance measurements by this method 
are not exact because it uses the shortest-path algorithm, it is the closest proxy of actual 
distance between the origins and destinations. 

The MPM estimates were obtained for almost all 1.9 million Access Link trips. The MPM 
estimates were used to compute and compare four reliability measures across the six 
regions. The estimates of these measures, namely, Standard Deviation, Percent Variation, 
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Misery Index, and Buffer Index of MPM for the six regions, are presented in Table 23. A 
fifth measure, the MPM Window, can be obtained by adding and subtracting the Standard 
Deviation from the mean MPM for each region. 

Table 23. Variability of Travel time (MPM) for Access Link Regions According to 
Four Measures

Regions
Number of 

Trips

Mean
MPM

(Rank)

Standard 
Deviation of MPM

(Rank)

Percent
Variation
(Rank)

Misery
Index 
(Rank)

Buffer
Index 
(Rank)

Region 2 496,506 5.12(3) 4.22(3) 82.31(2) 0.74(6) 1.17(6)

Region 3 123,941 3.62(6) 2.71(6) 74.90(4) 0.75(5) 1.18(5)

Region 4-West 139,623 4.98(4) 3.82(5) 76.75(3) 0.83(1) 1.32(1)

Region 4-East 151,147 4.18(5) 3.68(4) 87.97(1) 0.76(4) 1.24(4)

Region 5 654,133 6.79(1) 5.03(1) 74.14(5) 0.81(2) 1.26(3)

Region 6 336,262 6.12(2) 4.46(2) 72.87(6) 0.78(3) 1.27(2)

Note: Since Rank 1 is given to the highest value and 6 to the lowest, Rank 1 has the highest variability and lowest 
reliability.

As evident from Figure 34, mean MPM is lowest in Region 3 and highest in Region 5. 
In region 3, mean MPM is 3.62, which translates to approximately 17 miles per hour 
(mph) average speed. In contrast, mean MPM in Region 5 is 6.79, which translates to an 
average of only 9 miles per hour. If actual trip distance could be used in place of network 
distance estimated by the ArcGIS network analyst, the mean MPM for the regions could 
be somewhat lower (and mean mph could be somewhat higher) because the network 
analyst uses the shortest-path algorithm, whereas some trips presumably take a longer 
route because of congestion on the shortest path. Yet the differences in MPM between the 
six regions make sense because the regions known to have highly congested roads and 
high volumes of through traffic have higher MPM than the other regions.
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Figure 34. Crash Density in the Access Link Service Area



Mineta Nat ional  Transi t  Research Consort ium

108
Identification of Trip Generators and Factors

The regions with high mean MPM also have larger MPM Windows, but that is because (all 
else being equal) a high value of Standard Deviation can be expected when a distribution 
has higher values compared to a distribution with lower values. When one considers 
Percent Variation of MPM, Region 5 moves to the bottom and Region 4-East, a relatively 
low-density region with a small part designated as urban core, moves to the top. Despite 
the high value of Percent Variation, however, trip makers in the region experience higher 
reliability in terms of absolute minutes compared to four other regions because the region’s 
MPM Standard Deviation is low. Yet another picture emerges when one considers Buffer 
Index or Misery Index, the measures that compare extreme MPM values to the mean. By 
both these measures, travel time reliability is the lowest for Region 4-West, a small region 
having areas with fairly high density. By both these measures, reliability is low in Region 5 
and Region 6 also, where MPM Windows are the largest.

The analysis of trips at the regional level shows that travel time reliability varies according to 
measures used. When MPM Standard Deviation or MPM Window is considered, Regions 5 
has the lowest reliability followed by Region 6; when Percent Variation is considered, 
Region 4-East has the lowest reliability followed by Region 2; and when Misery Index and 
Buffer Index are considered, Region 4-West has the lowest reliability followed by Region 5 
and Region 6, respectively. Thus, whether a region is better off than the other regions is 
dependent on which measure of travel time reliability is used to compare the regions. 

Regression Models on the Measures of MPM Variability

Although the basic comparison of regional MPM variability in the previous section is 
insightful, it has certain limitations. One limitation is that the trips included in the analysis 
were made between different origins and destinations, with different types of vehicles, at 
different times of day, and in different seasons. Furthermore, the analysis does not provide 
any insights about the variables that may be associated with travel-time variability of trips. 
To address these limitations, OLS regression analysis is carried out in this section by 
considering MPM variations of trips for OD pairs with sufficiently large number of trips and 
examining the association of trip- and location-related variables with the MPM variations 
for the OD pairs. The premise of the analysis is that trip MPM fluctuates differently for 
different OD pairs, and the degree of fluctuation is associated with the characteristics of 
the pickup and drop-off locations and the characteristics of the trips. For example, if MPM 
varies widely for trips between origin i and destination j, but varies little between origin k 
and destination l, by comparing the characteristics of i and k, and j and l, after controlling 
for other characteristics of trips tij and tkl, one should be able to tell why greater MPM 
variability occurs between i and j than between k and l. 

In order to estimate variability of trip MPM through regression models, only those OD pairs 
were selected between which 30 or more trips were made in the 24-month study period. 
It was decided to estimate MPM variability for OD pairs with 30 or more trips because 
(a) the 5% level of significance is achieved on a t-distribution at 30 degrees of freedom, 
and (b) setting a margin greater than 30 would limit the number of OD pairs substantially 
for regions with relatively smaller number of trips (e.g., Region 3 and Region 4-West) 
and thus reduce the geographic representation of the analysis. A total of 9,799 OD pairs 
were found to have 30 or more trips in the entire 18-county study area. Despite defining 
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origins and destinations as exact locations or addresses, it was possible to obtain such a 
large number of OD pairs because (a) the data set includes a total of 1.9 million trips, and 
(b) riders often make trips between the same origins and destinations because the home 
end of trips remains the same unless households move and a large number of travelers 
evidently repeat trips to identical destinations.

Regression models were used to estimate all four measures of travel-time variability 
described previously. The results of the regression models on Standard Deviation and 
Percent Variation are presented in Table 24, and the results of the models on Misery 
Index and Buffer Index are presented in Table 25. As can be seen in the two tables, the 
independent variables of the models pertain to the origin and destination locations as 
well as to characteristics of the trips between the OD pairs. Since the observations for 
the models are OD pairs, several trip-related variables are expressed as proportions. For 
example, seasonal variability of trips between OD pairs is accounted for by including a 
variable on proportion of trips in winter months. The variables that pertain to origin and 
destination locations have been treated differently, however, since they remain constant 
for each OD pair. 

The first independent variable of the models shown in Table 24 and Table 25, the network 
distance between the origins and destinations, was included with the hypothesis that it 
would be negatively associated with travel-time variability because vehicle operators have 
a greater opportunity to make up lost time for those trips than for shorter trips. The second 
variable, the number of trips between OD pairs, was included with the hypothesis that 
a greater number of trips would involve smaller variability because of the familiarity of 
operators with the routes and the pickup and drop-off locations. A variable on proportion 
of subscription-booking trips was included with the hypothesis that subscription trips 
would involve a lower variability than demand-response trips because of the familiarity 
of both operators and riders with routes and the pickup and drop-off locations. A variable 
on proportion of trips during the winter months (December-February) was included with 
the hypothesis that a greater proportion of winter trips would increase variability because 
of variations in winter weather conditions. A variable on proportion of trips in summer 
months (June-August) was included with the opposite hypothesis. A variable on proportion 
of weekend trips was included with the hypothesis that it would be negatively associated 
with overall variability (as expressed by the Standard Deviation) because of lower overall 
traffic volume on weekends, but could be positively associated with Misery Index and 
Buffer Index because of sporadically high traffic volumes generated by special events 
(e.g., football games) and activities in the Jersey-shore areas and other recreational areas. 
Three variables on morning and afternoon/evening peak periods were included with the 
opposite expectation.

Two location-specific variables that are of utmost interest for this research are density of 
crashes in the pickup and drop-off census tracts. Although day-to-day driving experiences 
tell us that crashes cause unpredictable delays and travel-time variability, the objective 
of the modeling effort here is to examine if a high variability of travel time is observed for 
places that experience large volumes of crashes. The expectation obviously is that the two 
variables would be positively associated with MPM variability. 
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Intersection density, population density, and job density of pickup and drop-off block 
groups were included in the models with the hypothesis that they would be positively 
associated with overall variability, as expressed by the Standard Deviation, because these 
variables can potentially increase MPM. When MPM is high, its variability in absolute 
terms is also likely to be high. The variables were included in the other models for the 
sake of consistency across the models rather than any definite expectation. Similarly, 
two variables indicating whether pickups and drop-offs take place in ¾-mile buffers along 
bus routes (against urban core areas) were included with the hypothesis that absolute 
variability would be low in the buffers because of low MPM resulting in those areas due 
to proximity to high-speed roads. Two variables on per-capita income were also included 
with the expectation that they would be negatively associated with MPM, and hence also 
with absolute fluctuations of MPM, because high-income neighborhoods are out in the 
suburbs with good freeway access. Because of its potential to increase absolute MPM 
and variability, a variable on proportion of trips using wheelchair was included. Although a 
very small proportion of trips are made by sedans, a variable on the proportion of trips by 
this type of vehicle was included with the opposite expectation, namely, that it would be 
negatively associated with absolute MPM and its variability. 

Table 24. Regression Models on Standard Deviation and Percent Variation of MPM

Variables

Y=Standard 
Deviation

Y=Percent 
Variation

Coeff. t Value Coeff. t Value
Intercept 2.5206a 25.22 42.9239b 53.13
Network distance between origin and destination (mile) -0.0611a -39.23 -0.3141b -24.94
Number of trips between OD pair 0.0002 1.63 0.0020c 1.80
Proportion of trips using subscription booking -0.1780a -4.47 -4.1140b -12.79
Proportion of trips made during winter months 0.6388a 3.39 5.6304b 3.69
Proportion of trips made during summer months 0.1226 1.11 0.0449 0.05
Proportion of trips made on weekend -0.0391 -0.72 0.9937b 2.27
Proportion of trips between 7 and 9 AM 0.2166a 4.32 -3.2229b -7.96
Proportion of trips between 2 and 4 PM 0.4382a 9.32 -0.6653c -1.75
Proportion of trips between 4 and 6 PM 0.2911a 4.76 0.6920 1.40
Crashes per acre in pickup census tract 0.9515a 8.82 3.5764b 4.10
Crashes per acre in drop-off census tract 0.8691a 8.07 4.7654b 5.48
Intersections per acre in pickup block group 0.0406 0.30 -0.4555 -0.42
Intersections per acre in drop-off block group 0.3723a 2.82 -0.3171 -0.30
Population per acre in pickup block group 0.0054a 4.23 -0.0062 -0.61
Population per acre in drop-off block group 0.0049a 3.85 -0.0193c -1.90
Jobs per acre in pickup block group 0.0001 0.17 -0.0016 -0.26
Jobs per acre in drop-off block group 0.0000 -0.06 0.0033 0.55
Pickup location within 3/4 mile of bus route -0.1451a -2.83 -2.0676b -4.99
Drop-off location within 3/4 mile of bus route -0.1543a -3.01 -0.5066 -1.22
Per capita income in pickup block group (in $10,000) -0.0699a -6.07 -0.0244 -0.26
Per capita income in drop-off block group (in $10,000) -0.0472a -4.13 0.0040 0.04
Proportion of trips using wheelchair 0.2672a 6.91 -2.8247b -9.04
Proportion of trips using sedan -0.4852 -1.12 -1.2932 -0.37
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Variables

Y=Standard 
Deviation

Y=Percent 
Variation

Coeff. t Value Coeff. t Value
Proportion of trips by persons age 65+ 0.1968a 5.49 0.3644 1.26
Proportion of trips by female trip maker 0.1138a 3.95 -0.0433 -0.19
Region 2 - Dummy -0.1560b -2.52 3.6152b 7.23
Region 3 - Dummy -0.1378a -3.23 1.9503b 5.66
Region 4-West - Dummy -0.3542a -4.18 2.9178b 4.26
Region 4-East - Dummy -0.4054a -6.69 0.0789 0.16
Region 5 – Dummy (Referent)
Region 6 – Dummy -0.3557a -8.60 -0.8699b -2.60

N (number of OD pairs) 9,421 9,421
F 140.0 48.3
Adjusted R-square 0.307 0.131

a Significant at the 1% level;
b Significant at the 5% level;
c Significant at the 10% level.

Table 25. Regression Models on Misery Index and Buffer Index of MPM

Variables
Y=Misery Index Y=Buffer Index

Coeff. t Value Coeff. t Value
Intercept 0.5786a 44.00 0.8746a 45.69
Network distance between origin and destination (miles) -0.0030a -14.45 -0.0075a -25.25
Number of trips between OD pair 0.0000b -2.32 0.0000c -1.78
Proportion of trips using subscription booking -0.0648 -12.38 -0.1017a -13.34
Proportion of trips made during winter months 0.0505b 2.04 0.1559a 4.32
Proportion of trips made during summer months -0.0179 -1.23 0.0334 1.58
Proportion of trips made on weekend -0.0030 -0.41 0.0354a 3.41
Proportion of trips between 7 and 9 AM -0.0297a -4.50 -0.0991a -10.33
Proportion of trips between 2 and 4 PM -0.0117c -1.88 -0.0391a -4.34
Proportion of trips between 4 and 6 PM 0.0126 1.57 -0.0157 -1.34
Crashes per acre in pickup census tract 0.0609a 4.29 0.0702a 3.40
Crashes per acre in drop-off census tract 0.0623a 4.40 0.0856a 4.15
Intersections per acre in pickup block group -0.0034 -0.20 -0.0039 -0.15
Intersections per acre in drop-off block group -0.0265 -1.53 -0.0104 -0.41
Population per acre in pickup block group 0.0002 0.97 -0.0001 -0.42
Population per acre in drop-off block group -0.0002 -1.33 -0.0003 -1.22
Jobs per acre in pickup block group 0.0000 0.13 0.0000 0.09
Jobs per acre in drop-off block group 0.0001 0.89 0.0001 0.39
Pickup location within 3/4 mile of bus route -0.0370a -5.48 -0.0420a -4.27
Drop-off location within 3/4 mile of bus route -0.0143 -2.12 0.0032 0.32
Per capita income in pickup block group (in $10,000) 0.0002 0.12 -0.0001 -0.04
Per capita income in drop-off block group (in $10,000) -0.0011 -0.70 -0.0020 -0.91
Proportion of trips using wheelchair -0.0450a -8.83 -0.0647a -8.74
Proportion of trips using sedan -0.0690 -1.22 0.0313 0.38
Proportion of trips by persons age 65+ 0.0059 1.25 0.0111 1.61
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Variables
Y=Misery Index Y=Buffer Index

Coeff. t Value Coeff. t Value
Proportion of trips by female trip maker -0.0027 -0.71 0.0049 0.89
Region 2 - Dummy 0.0441a 5.41 0.0560a 4.72
Region 3 - Dummy 0.0208a 3.71 0.0371a 4.54
Region 4-West - Dummy 0.0528a 4.74 0.0804a 4.95
Region 4-East - Dummy -0.0147 -1.84 0.0088 0.75
Region 5 – Dummy (Referent)
Region 6 – Dummy -0.0086 -1.58 -0.0190b -2.40

N (number of OD pairs) 9,421 9,421
F 31.3 53.1
Adjusted R-square 0.088 0.142

a Significant at the 1% level;
b Significant at the 5% level;
c Significant at the 10% level.

Since no information is available on the actual trip purpose of the trip makers, two 
variables representing demographic characteristics, namely, proportion of trips made by 
persons aged 65 and over and female persons, were included with the expectation that 
they could be associated with variability due to latent trip purposes. It was hypothesized 
that these variables would serve as proxies for trip purposes if elderly or female persons 
visit particular types of activities that are latently associated with MPM variability. 

Finally, a set of five dummy variables on Access Link regions were included in the four 
models in Table 24 and Table 25 by using Region 5 as the referent region. These variables 
were included to capture the effect of geographic diversity of variability that is not captured 
by the other variables. Their inclusion in the models would also help to examine if the 
rankings of the regions by the four performance measures shown in Table 23 are consistent.

Several important observations can be made from the results of the four models in Table 
24 and Table 25. First, the larger size of the adjusted R-square of the model on MPM 
Standard Deviation compared to the other three models indicates that predicting absolute 
variability of MPM may be easier than predicting variability normalized by the mean (i.e., 
Percent Variation) or predicting travel-time reliability defined by the difference between 
the mean and extreme values, as in the case of the Buffer Index and Misery Index. It is 
not surprising that extreme travel-time variability is more difficult to predict than overall 
variability because extreme travel times are mostly experienced because of specific events 
or incidents. 

Second, only six variables included in the models are consistently significant with expected 
signs in all four models. These variables are crash density in the pickup census tract, 
crash density in the drop-off census tract, distance between pickup and drop-off locations, 
proportion of trips by subscription booking, proportion of trips in winter months, and pickup 
in ¾-mile buffers along bus routes. The consistency of the relationship of these variables 
with all four measures reveals their importance in predicting travel time reliability. 
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The positive relationship between crash density of census tracts and MPM variability should 
be noteworthy for both researchers and practitioners. The results are convincing because 
the association between crashes and MPM variability remains significant with expected 
signs in all four models even when crash density is measured at the level of municipalities 
instead of census tracts. Although it is common-sense knowledge that roadway crashes 
cause unpredictable delays and thus increase travel-time variability, considering that this 
analysis is place-based instead of being event-based, it is an important finding of this 
research. It shows that even place-based aggregated crash data can provide insights 
about the potential effect of crashes on travel-time variability. 

The model results can be used to estimate how much each measure of variability will 
change with changes in number of crashes in a census tract in a 24-month period. For 
example, using the coefficient for crash density in drop-off location in Table 24, it can be 
estimated that an increase in number of crashes from 40 to 60 in a 500-acre tract would 
increase MPM Standard Deviation from 0.07 to 0.10.

The negative association between trip distance and travel-time variability in all four models 
provides credence to the hypothesis that vehicle operators have a greater opportunity to 
make up lost time in long trips than short trips. The results of the variable on winter travel 
also shows what is usually believed, that travel time fluctuations are more common in 
winter conditions because of occasional ice and snow. Similarly, the result of the variable 
on subscription booking shows that familiarity of riders and operators with the trip and 
the origin and destination locations can reduce MPM variability. The negative association 
between pickups in ¾-mile buffers and MPM variability in all four models is also consistent 
with expectation.

Third, many more variables are significant with expected signs in the model on MPM 
Standard Deviation than in the other three models. For example, the model shows that 
MPM Standard Deviation is high when trips are made in the morning and afternoon 
peak periods, when trips are generated in locations with high population density and low 
income, when the proportion of trips with wheelchairs onboard is high, and when a greater 
proportion of trips are made by older persons and women. However, these variables fail 
to remain significant or become significant with the opposite sign in the other models. 
In some cases, as in the case of peak period trip share, the change in the direction of 
relationship makes intuitive sense. The MPM Standard Deviation is potentially high for 
peak period trips because absolute MPM is high in peak periods, but when the variation is 
normalized by the mean to estimate Percent Variation, variability would be low because of 
a high mean MPM in peak periods. Peak period variability measured by Misery Index and 
Buffer Index may be low because the high lower bound of peak period trip MPM due to 
high traffic volume can reduce the gap between extreme values and the mean. Similarly, 
trips with wheelchairs onboard may have high MPM Standard Deviation because of high 
MPM of those trips, but when the focus is on a normalized MPM or extreme values of MPM, 
they may have low variability. It would not be surprising if travelers requiring wheelchairs 
deliberately avoided trips that could potentially experience extreme delays, such as trips in 
the Jersey-shore areas during summer weekends or trips on special-event days. 
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Finally, the dummy variables on the Access Link regions show more or less expected 
results, as the regions that topped three measures of variability in Table 23 (Region 5 for 
Standard Deviation and Region 4-West for both Buffer Index and Misery Index) continue 
to be at the top according to the model coefficients. However, the ranks of the regions 
changed for Percent Variation. Overall, despite continuing to have the highest MPM 
Standard Deviation, Region 5 appears to be better off according to the model results than 
it appeared from the direct comparison in Table 23. On the other hand, Region 2 appears 
worse off according to the model results than it appeared from the direct comparison.

The Effect of Crash Incidents on Trip MPM

The regression models with aggregated data for trip origins and destinations provided 
evidence that a higher volume of crashes in places is positively associated with MPM 
variability of Access Link trips. However, the analysis did not show a causal connection, 
as crashes were not directly linked to MPM of specific trips. Analysis is carried out in 
this section to examine if specific crash incidents in drop-off locations can be directly 
linked to individual Access Link trips. It is possible to test the direct link between specific 
crashes and MPM for specific trips by combining Access Link trip data and P4S crash 
data, because the first data set provides time and location coordinates of each drop-off 
and the second data set provides time and location of each crash. 

The primary hypothesis for this analysis is that a trip ending at a location that had a crash a 
short while before the drop-off experiences greater MPM compared to a similar trip ending 
at a location that did not experience a crash prior to the drop-off. Two types of geographic 
areas and three time periods were considered at the outset: census tracts and municipalities 
for geographic areas and 30-minute, 60-minute, and 90-minute windows prior to a drop-off 
as the effective period. Since the results based on census tracts and municipalities were 
virtually identical, only the results from the models based on census tracts are presented. 
Among the three time periods considered, a 60-minute window prior to a drop-off was 
considered to be the most effective. Thirty minutes was considered inappropriate because 
of the possibility of approximation of time entered by law-enforcement personnel at crash 
sites and insufficient traffic spillover and blockage within that time frame. Ninety minutes 
was considered too long because traffic spillover and blockage may dissipate towards the 
end of the time period.

Of the 1.9 million Access Link drop-offs in the full data set, 176,948 (9.3%) occurred in a 
census tract that experienced a crash on the day of the drop-off, but only 10,468 (0.55%) 
occurred in a tract that experienced a crash within a 60-minute window prior to the drop-
off. When the census tracts were restricted to those that experienced a crash at any time 
during the day of a drop-off, the mean MPM for trips with a drop-off within 60 minutes of 
a crash was 5.82, whereas the mean MPM for the rest of the trips was 5.53, a difference 
that is statistically significant at the 1% level. This difference translates to 5.3% greater 
MPM for trips with drop-offs preceded by a crash in a 60-minute window compared to the 
rest of the trips. Although the crashes might have affected some Access Link trips by a 
significantly greater margin, considering that some trips might not have been affected at 
all because the vehicles entered the tracts from a direction not affected by the crashes, the 
mean difference has to be considered substantial.
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Since the 5.3% greater MPM for trips with drop-offs in a tract that experienced a crash 
within a 60-minute period prior to the drop-off could be because of a number of factors 
other than the crash, an OLS regression model was used to compare the MPM of such trips 
with the MPM of other trips after controlling for the potential effects of the other factors. To 
maintain consistency with the models on MPM variability in the previous section, only those 
trips were included in the model that constituted the OD pairs in Table 24 and Table 25. 
In order to exclude census tracts where crashes are extremely rare, only those trips were 
included that had a crash on the day of the drop-off. Thus, a trip involving a drop-off within 
60 minutes of a crash in the drop-off tract was coded 1, and a trip involving a crash in the 
drop-off tract at some other time of the day was coded 0. For example, if a crash occurred 
at 2 PM in a tract and the drop-off occurred between 2 PM and 3 PM, the trip was coded 
1, but if a crash occurred in another tract at 2 PM and a drop-off occurred there before 
2 PM or after 3 PM, the trip was coded 0. Although several other independent variables 
were included in the model, this variable is of utmost interest because it can demonstrate 
whether, or to what extent, crashes affect paratransit-trip MPM.

The results of the MPM model are presented in Table 26. The dependent variable, MPM, 
was included in its natural-log form to compress extreme variations. Most of the variables 
included in the models in Table 26 represent the same trip characteristics as the variables 
in Table 24 and Table 25. However, they are used as dummy variables in the trip MPM 
model because the observations are trips, whereas they were used as proportion of trips 
in MPM variability models because the observations were OD pairs. Two variables in the 
MPM variability models were not included in the MPM Model. The variable on number of 
trips between OD pairs was dropped because it is irrelevant for the MPM model in Table 26. 
The variable on trip distance was dropped because the dependent variable of the model 
in Table 26, MPM, is directly estimated from this variable.

Although many of the variables included in the MPM model represent the same trip 
characteristics as the variables in the models in Table 24 and Table 25, they were not 
necessarily included with the same hypothesis or expectation. For example, the variable 
on subscription booking was included in the MPM variability models with the expectation 
that such trips would have lower variability because both riders and operators are likely 
to be more familiar with the trips, but in the case of the model in Table 26, subscription 
booking trips were expected to have a positive association with MPM because such trips 
are more likely to be made to travel to work and school compared to demand-response 
trips. In contrast, weather conditions were expected to affect MPM and MPM variability in 
the same way. MPM of winter trips was expected to be higher because of adverse driving 
conditions, whereas the MPM of summer trips was expected to be lower because of 
favorable conditions. Similarly, MPM of weekend trips was expected to be lower because 
of lower traffic volumes, whereas MPM of morning and afternoon/evening peak period 
trips was expected to be higher because of high traffic volumes. 

Density of intersections, jobs, and population were expected to be positively associated 
with MPM. Frequent stops and turns in areas with high intersection density can reduce 
speed. Similarly, high pedestrian volumes in areas with high population and employment 
density can lower trip speed. Trips with pickups and drop-offs in ¾-mile buffers along bus 
routes were expected to have lower MPM, because these buffers are typically in suburban 
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corridors with good access to freeways. Similarly, pickups and drop-offs in high-income 
areas were expected to have lower MPM, because these areas are also typically in suburbs 
with good freeway access. Trips with sedans were expected to have lower MPM, because 
they can weave through traffic more easily than ambulatory vehicles. In contrast, trips with 
wheelchairs onboard were expected to have higher MPM, because of extra care taken by 
vehicle operators. For the same reason, trips with elderly riders onboard were expected to 
have higher MPM. The variable on female riders was included for the sake of consistency 
with the MPM variability models. The variation of MPM among the regions was expected 
to be consistent with the mean MPM shown in Table 23, i.e., Region 5 would have the 
highest MPM, Region 3 would have the lowest MPM, and the other regions would follow 
the same ranking as in Table 23.

The first trip MPM model in Table 26 was estimated from the data set for the entire study 
area with trips that matched the selection criteria. For the second and third models in the 
table, the data set was further restricted to Regions 2 and 6 to show results at the regional 
level. Similar models were run for all six regions, but the results of the other regions are 
not shown because of space limitation.

Table 26. Regression Models on Trip MPM for the Entire Study Area and Two 
Specific Regions

Entire Study Area Region 2 Region 6
Y=loge(MPM) Y=loge(MPM) Y=loge(MPM)

Coeff. t Value Coeff. t Value Coeff. t Value
Intercept 1.5663a 176.74 1.4391a 83.74 1.2926a 70.00
Crash in tract within 60 minutes before drop-off 0.0423a 7.00 0.0372a 3.26 0.0565a 3.73
Subscription booking trip 0.0383a 12.07 0.0695a 11.33 -0.0250a -3.36
Trip made in winter (Dec., Jan., Feb.) -0.0060 -1.40 -0.0283a -3.39 -0.0045 -0.44
Trip made in summer (June, July, Aug.) -0.0234a -6.75 -0.0291a -4.47 -0.0330a -3.86
Weekend trip -0.0755a -14.14 -0.0845a -7.45 -0.0689a -5.51
Pickup between 7 and 9 AM 0.1840a 49.36 0.1896a 26.81 0.1503a 15.81
Pickup between 2 and 4 PM 0.2133a 52.51 0.2729a 34.87 0.1109a 10.87
Pickup between 4 and 6 PM 0.1089a 19.48 0.0526a 4.54 0.1173a 9.53
Intersections per acre in pickup block group 0.3661a 27.61 0.2797a 8.75 0.0952a 3.19
Intersections per acre in drop-off block group 0.4324a 30.79 0.5225a 14.48 0.3548a 11.72
Population density per acre in pickup block group 0.0009a 6.98 -0.0005 -0.82 0.0023a 12.35
Population density per acre drop-off block group 0.0039a 26.52 -0.0040a -5.60 0.0061a 28.36
Jobs per acre in pickup block group 0.0001 0.87 0.0026a 5.68 -0.0009a -4.67
Jobs per acre in drop-off block group 0.0000 -0.66 -0.0009c -1.81 -0.0009a -4.79
Pickup location within ¾-mile buffer of bus route -0.1699a -31.70 -0.2887a -32.55 -0.0581a -4.34
Drop-off location within ¾-mile buffer of bus route -0.1122a -19.14 -0.2229a -22.84 -0.0598a -3.69
Per capita income in pickup block group 
(in $10,000)

-0.0364a -29.02 -0.0354a -11.56 -0.0159a -5.37

Per capita income in drop-off block group 
(in $10,000)

-0.0251a -20.35 -0.0102a -3.28 0.0061c 1.90

Wheelchair onboard during trip 0.1906a 44.21 0.1074a 13.33 0.1419a 12.58
Sedan used for trip -0.1415a -4.09 -0.2318b -2.49 -0.0791b -2.12



Mineta Nat ional  Transi t  Research Consort ium

117
Identification of Trip Generators and Factors

Entire Study Area Region 2 Region 6
Y=loge(MPM) Y=loge(MPM) Y=loge(MPM)

Coeff. t Value Coeff. t Value Coeff. t Value
Trip maker age 65+ 0.0697a 17.25 0.0680a 7.23 0.1070a 12.06
Female trip maker 0.0336a 11.57 0.0215a 3.90 0.0164b 2.36
Region 2 -0.1359a -32.19 NA NA NA NA
Region 3 -0.2347a -26.38 NA NA NA NA
Region 4-West -0.1522a -25.08 NA NA NA NA
Region 4-East -0.1690a -25.59 NA NA NA NA
Region 5 (Referent)
Region 6 -0.1946a -44.32 NA NA NA NA

N 123,074 32,202 21,041
F 1363.8 280.12 146.55
Adjusted R-square 0.230 0.1602 0.1321

a Significant at the 1% level;
b Significant at the 5% level;
c Significant at the 10% level;
NA Not applicable as variable not included in model.

With a few exceptions, the variables in the models showed expected signs. Since the 
reasons for their inclusion are already described, the results of the statistically significant 
variables other than the variable on crash are not elaborated further. The variable on crash 
occurrence within 60 minutes before a drop-off had a positive sign in all three models 
shown. When the model was repeated for the other regions, the variable was statistically 
significant at the 1% level for Region 5 and at the 10% level for Region 4-East. However, 
it was not statistically significant for Region 3 and Region 4-West. Although the variable 
had the expected positive sign in both models, it was significant only at the 12% level 
for Region 4-West and at the 29% level for Region 2. A reason for the variable not being 
significant in the two regions could be that they have the smallest number of trips among 
the regions.

According to the results of the model for the entire study region, trips ending in a tract 
that experienced a crash in a 60-minute window prior to the drop-off had 4.3% greater 
MPM than the other trips. Although this is lower than what was observed from a direct 
comparison, it is still significant. The other models indicated that MPM for trips involving 
a crash within the 60-minute window was 3.7% greater in Region 2 and 5.7% greater in 
Region 6. Similarly, the models for Region 4-East and Region 5 showed that MPM for trips 
involving a crash within the 60-minute window was 3.6% and 3.5% greater, respectively, 
than the other trips. 

The three variables that did not show expected results are job density in pickup location, 
job-density in drop-off location, and winter trip. When these variables were dropped in 
additional runs, the models continued to show results similar to those shown in Table 26. 
It may also be noted that the variables that are significant in the models in Table 26 
continued to be significant when the models were run without log-transforming the 
dependent variable, although the adjusted R-square of the models decreased modestly.
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Summary

The paper focused on travel-time variability, or reliability, of paratransit trips with a special 
emphasis on the potential effect of motor vehicle crashes on reliability. It showed through 
basic comparisons the differences among the six Access Link regions according to four 
variability measures and identified variables associated with paratransit reliability through 
regression models. It showed that a number of characteristics of the trips and the pickup 
and drop-off locations are associated with travel-time variability. Although reliability can 
vary according to the measures used, the models showed that six variables are consistently 
associated with expected signs with reliability irrespective of the measures used. The 
most important among the variables is crash density, which seems to affect reliability at 
both ends of paratransit trips. 

From the regression models on the four measures of travel-time variability, it became 
evident that Standard Deviation can be predicted more effectively by trip and place 
characteristics than the measures that are focused on extreme travel time, such as 
Misery Index and Buffer Index. Yet it was found that crash density of pickup and drop-off 
locations is associated even with the reliability measures that focus on extreme variation 
of travel time. 

The subsequent regression models showed that the occurrence of a crash in a location 
prior to a drop-off is positively associated with trip MPM, providing evidence of a potentially 
causal link between individual crashes and individual trip MPM. The model showed that 
MPM is about 4-5% higher when a crash occurs in a location prior to a drop-off. Considering 
that a paratransit vehicle can enter a census tract or a municipality from any direction and 
therefore does not have to be affected by each crash that occurs prior to a drop-off, 4-5% 
greater MPM for an average trip is substantial. When thousands of paratransit trips are 
made per month in areas with high crash incidents, as in the Access Link service area, even 
4-5% higher MPM can lead to a substantial amount of unexpected delay. Consequently, 
such delays can also lead to scheduling difficulties. 

The findings of this study should be of interest to both paratransit service providers and 
agencies funding such services. It showed that crashes and a number of other location-
related, trip-related, and seasonal factors can influence paratransit’s travel-time variability. 
By conducting similar analysis for their own areas, service providers can determine what 
level of travel-time penalties should be imposed on trips to and from specific locations 
based on crash density and other location characteristics so that vehicle runs can be 
scheduled optimally. That, in turn, will increase reliability, reduce frustration of riders 
because of unexpected delays, and make paratransit service more efficient. As geocoded 
crash data have become increasingly available for states and metropolitan areas, utilization 
of such data for trip-scheduling purposes can enhance paratransit’s travel-time reliability, 
customer satisfaction, and efficiency.
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V. CONCLUSIONS AND FUTURE WORKS

This report could provide guidance and help for bridge engineers and traffic and planning 
engineers from local transit agencies regarding the improvement of resiliency and reliability 
of transit infrastructure, and of the public transit network based on the enhancement of 
proposed performance measures. Local transit agencies would employ the potential 
application remote sensing in assessing post-disaster performance of infrastructure. They 
would also be able to assess and improve the resiliency of the local public transit network by 
evaluating the proposed performance measures in this report. This report also would help 
local transit agencies optimize the costs of paratransit service and improve the efficiency 
of paratransit service based on the data-driven models. The following conclusions can be 
drawn from the previous analysis:

POST-DISASTER MANAGEMENT USING REMOTE SENSING - INSAR

• Based on field-testing and finite element modeling of bridge structure, performance 
of bridges before the disaster could be simulated and verified. Quick evaluation 
of bridge condition in a post-disaster mode can be re-evaluated using InSAR 
technology for the bridge network due to various effects such as support movement, 
member failure, etc. Additionally, the bridge SHM system, if still operational post-
disaster, would be utilized for further confirmation to check bridge response after the 
disaster. This proposed damage-detection procedure would enable a quick damage 
assessment for numerous bridges on a bridge network basis, thus providing rapid, 
optimized, and cost-effective management of road and bridge network post- 
disasters. With the proposed approach, transit agencies could assess the load-
carrying capacity of their bridge structures promptly and efficiently. Major decisions 
could be made based on the results of proposed approach.

• Based on visual inspection of generated InSAR images in the case studies discussed 
earlier, the Envisat satellite’s 20-meter spatial resolution only allows for detection of 
bridge structures, roads, and airport runways that are at least 20 to 30 meters wide, by 
using the InSAR magnitude image. Bridge structures over water channels, however, 
can only be detected if they are oriented in a non-perpendicular direction with respect 
to the imaging satellite. Moreover, only significant level of deformation or damage in 
these structures can be detected by using the InSAR coherence image. Therefore, 
the extraction of detailed and quantifiable post-disaster damage information about 
the transportation infrastructure is not feasible while using 20-meter spatial resolution 
SAR imagery. Hence, the need for much higher spatial resolution SAR data that 
allows for detailed post-disaster damage assessment becomes very obvious.

IDENTIFICATION OF TRIP GENERATORS AND FACTORS ASSOCIATED 
WITH TRIP DELAY AND RELIABILITY OF DISABILITY PARATRANSIT

• Demand for paratransit for persons with disabilities has been steadily increasing over 
time. Because of the high cost of the service, transit agencies nationwide are under 
pressure to make their services as efficient as possible without compromising 
service quality or customer satisfaction. This research considered ways to increase 
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paratransit’s service efficiency by identifying its potential trip generators and the 
factors associated with trip delay and travel time reliability.

• This research used a large data set containing more than 1.9 million trips made 
by Access Link disability paratransit service provided by NJ TRANSIT in 18 New 
Jersey counties. The first component of this study focused on identifying potential 
trip generators of Access Link trips. Identifying trip generators is important for 
appropriately estimating and forecasting demand for trips. Travel surveys can provide 
useful information about the generators of paratransit trips. However, the literature 
review showed that travel surveys involving disability paratransit trip riders have been 
rare. This research showed that, in the absence of travel surveys, using statistical 
models with trip data could provide some insights about the places that are likely to 
generate more trips than others. In the case of Access Link, it was found that places 
with a high proportion of elderly persons, minority populations, and multi-family 
residences are more likely to produce home-end trips than other places, whereas 
places with large amounts of jobs in health care services, retail services, food and 
accommodation services, and administrative support services are likely to generate 
more non-home trips. The analysis with establishment-level data showed that 
non-home drop-offs occur more frequently near health services, social services, 
educational services, and membership services (i.e., religious service) establishments 
than other types of establishments. The analyses carried out at the Census Block 
Group level and establishment level together indicate that the number and distribution 
of elderly persons and minority persons as well as jobs in the health care services, 
social services, and educational services will have a substantial impact on where the 
demand for Access Link will increase in the future. Forecasting future demand on the 
basis of these variables could increase the service’s efficiency. 

• While analysis of trip generators showed that places with low-to-moderate median 
home value, a high proportion of minority population, a high proportion of multi-
family homes, and a large number of jobs in the health care sector, the retail sector, 
the food and accommodation sector, and administrative support sector are likely 
to generate more Access Link trips than other places, the analysis of delay 
showed that places that have a high density of population, jobs, and intersections 
experience greater delay than other places. Since places that have a greater 
propensity to generate Access Link trips also happen to have the characteristics 
that are typically associated with trip delay, such as high density of population and 
jobs, keeping Access Link service efficient is an inherent challenge. If the places 
that generate more trips had different characteristics, such as lower density of 
population, jobs, and intersections, it would be far less challenging and more 
efficient to provide the service. 

• The relationship between density and paratransit trip delay has implications for 
transportation and land-use planners. While mainstream transportation studies 
perceive lower VMT and higher share of transit and pedestrian trips associated 
with high density as desirable, paratransit trips experience more delay in dense 
environments. Since a large proportion of paratransit clients live in urban centers 
where population, employment, and intersection density are high, a large proportion 
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of trips experience delay due to high density. In contrast to urban core areas, trips 
beginning in ¾-mile buffers along bus routes, mostly located in suburban areas, 
experience a significantly lower level of delay. However, far fewer clients live in 
those areas.

• Since both density and paratransit are beneficial to society, transportation planners 
and traffic engineers should consider strategies that can reduce delay of paratransit 
trips in high-density areas. Regular adjustment of signal timing at critical intersections 
based on up-to-date traffic data could be one such strategy. Another strategy could 
be network-based optimization of signal timing in high-density areas. Yet another 
strategy would be to implement bus priority at intersections in high-density areas 
and to afford paratransit vehicles the same privileges as buses. When opportunities 
arise to develop activities that generate a substantial amount of trips, or to increase 
population or employment density through new construction, urban planners should 
also bear in mind the potential negative effects of density and congestion on bus 
and paratransit. 

• The third and final component of this research focused on travel-time reliability of 
paratransit trips with an emphasis on the effect of motor vehicle crashes. It considered 
travel-time reliability according to four commonly used measures: Standard 
Deviation, Percent Variation, Misery Index, and Buffer Index. It helped identify a 
number of characteristics of the trips and the pickup and drop-off locations that 
are associated with travel-time variability. Although reliability varies according to 
the measures used, statistical models showed that six variables are consistently 
associated with reliability irrespective of which measure is used. The most important 
among the variables is crash density, which affects reliability at both ends of para-
transit trips. 

• The regression models showed that Standard Deviation could be predicted more 
easily and effectively by trip and place characteristics than the measures that are 
focused on extreme travel time, such as Misery Index and Buffer Index. Yet it was 
found that crash density of pickup and drop-off locations is associated even with the 
reliability measures that focus on extreme variation of travel time. 

• Additional regression models showed that a motor vehicle crash in a location prior 
to a drop-off is positively associated with trip duration (MPM), providing evidence 
of a potentially causal link between individual crashes and individual trip MPM. The 
analysis showed that MPM could be 4-5% higher when a crash occurs in a location 
prior to a drop-off. Since a paratransit vehicle can enter a census tract or a 
municipality from any direction and therefore does not have to be affected by 
each crash that occurs prior to a drop-off, 4-5% greater MPM for an average trip is 
substantial. Since thousands of trips are made per month by Access Link vehicles 
in areas with high crash incidents, even a 4-5% higher MPM leads to a substantial 
amount of unexpected delay.
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• In many ways, this research helped to bridge gaps in existing literature. Although 
several studies have already been published on the factors affecting paratransit trip 
demand, their findings had often been contradictory. This study provides another 
set of results on factors associated with trip demand from an area where research 
on disability paratransit had been limited. Other researchers can compare the 
results of this research with previously conducted studies and make better 
judgments about the factors associated with trip generation and demand for service.

• Compared to studies on demand for paratransit trips, studies on trip delay and 
travel-time reliability have been less common. One of the reasons for the scarcity 
of studies on paratransit trip delay and reliability is that acceptable measures of 
delay and reliability cannot be had without having estimates of network trip distance. 
However, trip distances are not usually available from transit agencies, because they 
usually keep record of travel time only. A substantial amount of time and energy were 
spent in this research to estimate network distances for approximately 1.9 million 
trips by using the ArcGIS network analyst. Estimation of trip distances allowed the 
development of measures to represent delay and reliability. Analysis with these 
measures helped identify factors that are associated with trip delay and travel time 
reliability. It is expected that, by taking a cue from this study, other researchers will 
conduct similar studies elsewhere and provide additional insights helpful to transit 
agencies, paratransit providers, and researchers. 
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ACRONYMS AND ABBREVIATIONS

AASHTO American Association of State Highway and Transportation 
Officials

ACEC American Council of Engineering Companies
ACI American Concrete Institute
ACS American Community Survey
ADA Americans with Disabilities Act
ANOVA Analysis of Variance
API Application Programming Interface
AREMA American Railway Engineering & Maintenance-of-Way 

Association
ASCE American Society of Civil Engineers
ASSIST-ME Advanced Software for State-Wide Integrated Sustainable 

Transportation System-Monitoring and Evaluation
BDI Bridge Diagnostics, Inc.
COV Coefficient of Variation
CRED Centre for Research on the Epidemiology of Disasters
CUSP Center for Urban Science and Progress
DEOS Delft Institute for Earth-Oriented Space Research
DORIS Delft Object-Oriented Radar Interferometric Software
DPM Delay per Mile
EECS Electrical Engineering and Computer Science
EM Electromagnetic
EMS Emergency Medical Service
ERDAS Earth Resources Data Analysis System
ERS European Remote Sensing (satellite)
ESA European Space Agency
ETC Electronic Toll Collection
FE Finite Element
GAO Government Accountability Office
GIS Geographic Information System
GLMM Generalized Linear Mixed Model
GPS Global Positioning System
GSP Garden State Parkway
InSAR Interferometric Synthetic Aperture Radar
ITS Intelligent Transportation Systems
IVHS Intelligent Vehicle-Highway Systems
KAIST Korea Advanced Institute of Science and Technology
KSI Kilograms per Square Inch
LDV Laser Doppler Vibrometer
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LEHD Longitudinal Employer-Household Dynamics
LOS Level of Service
LRFD Load and Resistance Factor Design
MOR Measure of Resiliency
MPH Miles per Hour
MPM Minutes per Mile
MTA Metropolitan Transportation Authority
NBHCE Newark Bay - Hudson County Extension
NCHRP National Cooperative Highway Research Program
NEC Northeast Corridor
NIRA Networked Infrastructure Resiliency Framework
NJ New Jersey
NJCL NJ Coast Line
NJDOT New Jersey Department of Transportation
NJRTM-E North Jersey Regional Transportation Model - Enhanced
NJSWM New Jersey State-Wide Planning Model
NJTPK New Jersey Turnpike
NRI Network Robustness Index
NSF National Science Foundation
NTA Neighborhood Tabulation Areas
NYC New York City
NYU New York University
OD Origin-Destination
OLS Ordinary Least Squares
P4S Plan4Safety
PABT Port Authority Bus Terminal
PATH Port Authority Trans-Hudson
PI Principal Investigator of Performance Index
RITS Rutgers Intelligent Transportation Systems Labratory
SAR Synthetic Aperture Radar
S-Curve Sigmoid Curve
SHM Structural Health Monitoring
SIC Standard Industry Classification
STS Structural Testing System
SUR Seemingly Unrelated Regression
TAC Techinical Activity Committee
TAZ Traffic Analysis Zone
TMS Traffic Monitoring System
TRB Transportation Research Board
TRCP Transit Cooperative Research Program
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TRANSCOM Transportation Operation Coordinating Committee (metro New 
York, New Jersey, and Connecticut)

UN/ISDR United Nations International Strategt for Disaster Reduction
US United States
UTRC University Transportation Research Center
V/C Volume-to-Capacity
VHT Vehicle Hours Traveled
VIF Variance Inflation Factor
VMT Vehicle Miles Traveled
VTC Alan M. Voorhees Transportation Center
WCTRS World Conference on Transportation Research Society
WIM Weigh-in-Motion
WTC World Trade Center
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NOMENCLATURE

Cam Capacity of Link a for a Travel Mode m
Cmax Maximum Capacity of all Network Links
ΔCost Difference in Cost before and after Event
d Equilibrium (or fixed) Demand Vector
DA Demand after Event
DB Demand before Event
𝜀𝜀(𝐺𝐺, 𝑑𝑑)  Network Performance/Efficiency Measure
f i

am Flow on Link a during Period Time i for a Travel 
Mode m

G Network Topology
kjam Congestion Density for Link a
la Length of Link a
MoPA Measure of Performance after Event
MoPB Measure of Performance before Event
na, Number of Lanes of Link a
rb Redundancy Measure
𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂 Total Network Costs Evaluated Under the System 

Optimal Flow Pattern with Original Capacities

𝑇𝑇𝑇𝑇𝑆𝑆−𝑂𝑂
𝛾𝛾  Total Network Costs Evaluated Under the System 

Optimal Flow Pattern with Remaining Capacities
𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂 Total Network Costs Evaluated Under the User 

Optimal Flow Pattern with Original Capacities

𝑇𝑇𝑇𝑇𝑈𝑈−𝑂𝑂
𝛾𝛾  Total Network Costs Evaluated Under the User 

Optimal Flow Pattern with Remaining Capacities
TTA Travel Time after Event
TTB Travel Time before Event
VAi Vulnerability Index i (i = 1,…6)
Vam Free Flow Speed of Link a for a Travel Mode m
V/C Volume-to-Capacity Ratio
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