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Public transportation or mass transit involves the movement of large numbers of people 

between a given numbers of locations. The services provided by this system can be 

classified into three groups: (i) short haul: a low-speed service within small areas with 

high population; (ii) city transit: transporting people within a city; and (iii) long haul: a 

service with long trips, few stops, and high speed (Khisty and Lall, 2003). It can be also 

classified based on local and express services. The public transportation planning 

includes five consecutive steps: (i) the network design and route design; (ii) the setting 

frequencies or line plan; (iii) the timetabling; (iv) the vehicle scheduling; and (v) the crew 

scheduling and rostering (Guihaire and Hao, 2008; Schöbel, 2012). 

The first part of this dissertation considers three problems in passenger railway 

transportation. It has been observed that the demand for rail travel has grown rapidly over 

the last decades and it is expected that the growth continues in the future. High quality 

railway services are needed to accommodate increasing numbers of passengers and 

goods. This is one of the key factors for economic growth. The high costs of railway 

infrastructure ask for an increased utilization of the existing infrastructure. Attractive 
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railway services can only be offered with more reliable rolling stock and a more reliable 

infrastructure. However, to keep a high quality standard of operations, smarter methods 

of timetable construction are indispensable, since existing methods have major 

shortcomings. 

The first part of this dissertation, comprising Chapters 1-6, aims at developing a 

cyclic (or periodic) timetable for a passenger railway system. Three different scenarios 

are considered and three mixed integer linear programs, combined with heuristics for 

calculating upper and lower bounds on the optimal value for each scenario, will be 

developed. The reason of considering a periodic timetable is that it is easy to remember 

for passengers. The main inputs are the line plan and travel time between and minimum 

dwell time at each station. The output of each model is an optimal periodic timetable.  

We try to optimize the quality of service for the railway system by minimizing the 

length of cycle by which trains are dispatched from their origin. Hence, we consider the 

cycle length as the primary objective function. Since minimizing travel time is a key 

factor in measuring service quality, another criterion—total dwell time of the trains—is 

considered and added to the objective function.  

The first problem, presented in Chapter 3, has already been published in a scholarly 

journal (Heydar et al., 2013). This chapter is an extension of the work of Bergmann 

(1975) and is the simplest part of this research. In this problem, we consider a single-

track unidirectional railway line between two major stations with a number of stations in 

between. Two train types—express and local—are dispatched from the first station in an 

alternate fashion. The express train stops at no intermediate station, while the local train 

should make a stop at every intermediate station for a minimum amount of dwell time. A 
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mixed integer linear program is developed in order to minimize the length of the 

dispatching cycle and minimize the total dwell time of the local train at all stations 

combined. Constraints include a minimum dwell time for the local train at each station, a 

maximum total dwell time for the local train, and headway considerations on the main 

line an in stations. Hundreds of randomly generated problem instances with up to 70 

stations are considered and solved to optimality in a reasonable amount of time. Instances 

of this problem typically have multiple optimal solutions, so we develop a procedure for 

finding all optimal solutions of this problem.   

In the second problem, presented in Chapter 4, we present the literature’s first mixed 

integer linear programming model of a cyclic, combined train timetabling and 

platforming problem which is an extension of the model presented in Chapter 3 and 

Heydar et al. (2013). The work on this problem has been submitted to a leading 

transportation journal (Petering et al., 2012). From another perspective, this work can be 

seen as investigating the capacity of a single track, unidirectional rail line that adheres to 

a cyclic timetable. In this problem, a set of intermediate stations lies between an origin 

and destination with one or more parallel sidings at each station. A total of T train 

types—each with a given starting and finishing point and a set of known intermediate 

station stops—are dispatched from their respective starting points in cyclic fashion, with 

one train of each type dispatched per cycle. A mixed integer linear program is developed 

in order to schedule the train arrivals and departures at the stations and assign trains to 

tracks (platforms) in the stations so as to minimize the length of the dispatching cycle 

and/or minimize the total stopping (dwell) time of all train types at all stations combined. 

Constraints include a minimum dwell time for each train type in each of the stations in 
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which it stops, a maximum total dwell time for each train type, and headway 

considerations on the main line and on the tracks in the stations. This problem belongs to 

the class of NP-hard problems. Hundreds of randomly generated and real-world problem 

instances with 4-35 intermediate stations and 2-11 train types are considered and solved 

to optimality in a reasonable amount of time using IBM ILOG CPLEX. 

Chapter 5 expands upon the work in Chapter 4. Here, we present a mixed integer 

linear program for cyclic train timetabling and routing on a single track, bi-directional rail 

line. There are T train types and one train of each type is dispatched per cycle. The 

decisions include the sequencing of the train types on the main line and the assignment of 

train types to station platforms. Two conflicting objectives—(1) minimizing cycle length 

(primary objective) and (2) minimizing total train journey time (secondary objective)—

are combined into a single weighted sum objective to generate Pareto optimal solutions. 

Constraints include a minimum stopping time for each train type in each station, a 

maximum allowed journey time for each train type, and a minimum headway on the main 

line and on platforms in stations. The MILP considers five aspects of the railway system: 

(1) bi-directional train travel between stations, (2) trains moving at different speeds on 

the main line, (3) trains having the option to stop at stations even if they are not required 

to, (4) more than one siding or platform at a station, and (5) any number of train types. In 

order to solve large scale instances, various heuristics and exact methods are employed 

for computing secondary parameters and for finding lower and upper bounds on the 

primary objective. These heuristics and exact methods are combined with the math model 

to allow CPLEX 12.4 to find optimal solutions to large problem instances in a reasonable 

amount of time. The results show that it is sometimes necessary for (1) a train type to 
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stop at a station where stopping is not required or (2) a train type to travel slower than its 

normal speed in order to minimize timetable cycle time. 

In the second part of this dissertation, comprising Chapters 7-9, we study a transit-

based evacuation problem which is an extension of bus routing problem. This work has 

been already submitted to a leading transportation journal (Heydar et al., 2014).  This 

paper presents a mathematical model to plan emergencies in a highly populated urban 

zone where a certain numbers of pedestrians depend on transit for evacuation. The 

proposed model features a two-level operational framework. The first level operation 

guides evacuees through urban streets and crosswalks (referred to as “the pedestrian 

network”) to designated pick-up points (e.g., bus stops), and the second level operation 

properly dispatches and routes a fleet of buses at different depots to those pick-up points 

and transports evacuees to their destinations or safe places. In this level, the buses are 

routed through the so-called “vehicular network.” An integrated mixed integer linear 

program that can effectively take into account the interactions between the 

aforementioned two networks is formulated to find the maximal evacuation efficiency in 

the two networks. Since the large instances of the proposed model are mathematically 

difficult to solve to optimality, a two-stage heuristic is developed to solve larger instances 

of the model. Over one hundred numerical examples and runs solved by the heuristic 

illustrate the effectiveness of the proposed solution method in handling large-scale real-

world instances. 
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Cyclic Train Timetabling and Platforming 
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Chapter 1 

Introduction 

1.1. Motivation 

Transportation plays an important role in modern societies. Rail transport consists of 

moving goods or passengers using railroads or railways. A railroad is composed of two 

parallel rails attached perpendicularly to beams called “crossties” or simply “ties” to keep 

a constant distant apart. The vehicles moving over the rails are arranged in a train: a set of 

vehicles coupled together. These vehicles are typically referred to as rolling stock. These 

vehicles may be powered or un-powered. Powered vehicles are referred to as locomotives 

while un-powered vehicles are referred to as cars, carriages, wagons or coaches (for 

passengers).  

Railroads provide the most energy efficient and cost-effective transportation services 

over land since, compared to vehicles on paved roads, railcars make much less friction 

when moving over rails. As a result, trains typically use less energy than road vehicles to 

transport a given tonnage of freight or a given number of passengers over a given 

distance. Nevertheless, rail is still a capital-intensive means of transport (Luthi, 2009).  

The problems that railroad companies are facing are generally more complex than 

those found in other modes of transportation such as trucking and air transportation. This 

is due mainly to the enormous, interrelated decisions involved (Ahuja et al., 2005). Many 

rail transportation problems are interesting combinatorial optimization problems. This 

difficulty has attracted operations research (OR) practitioners over the past two decades 



3 
 

 
 

which has resulted in numerous articles published in operations research journals. 

However, the U.S. railroad industry has not implemented many of these advances (Ahuja 

et al., 2005).  

Railway systems can be divided into two types: passenger and freight. Passenger 

railway systems are the focus of this dissertation and are becoming increasingly 

competitive with air transportation. High speed rail (HSR) is one type of passenger rail 

that has been receiving enormous attention over the last three decades. HSR is defined 

differently in different countries. In the European Union, a line is defined high-speed if it 

is built for speeds greater than or equal to 250 km/hr (150 mph) or is upgraded with 

speeds greater than 200 km/hr (124 mph) (International Union of Railways, 2009; 

Feigenbaum, 2013). The term is defined in U.S. quite differently. In this definition HSR 

has three classes: emerging, with a speed of 90-110 mph; regional, with a speed of 110-

150 mph; and express with speeds exceeding 150 mph (Feigenbaum, 2013). Campos and 

de Rus (2009) classify four types of high-speed railway services based on their 

relationship with conventional services: 

1) The dedicated or exclusive exploitation models in which high-speed rail and 

conventional rail have separate infrastructure. Japan’s Shinkansen uses this 

model. It was developed because the conventional infrastructure had reached 

its full capacity and the track was not able to support high-speed traffic due to 

its narrow gauge. The advantage of this model is that market organizations of 

these two services are independent. 

2) The mixed high-speed models that include both dedicated high-speed track 

and upgraded conventional track. Dedicated tracks serve high-speed trains 
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only, while upgraded tracks serve both high-speed and conventional trains. 

France’s TGV (Train à Grande Vitesse) is an example of this model. The 

reduced building cost is the main advantage of this model. 

3) The mixed conventional models consist of upgraded tracks—used by both 

high-speed and conventional traffic—and conventional tracks that serve only 

conventional trains. Spain’s AVE (Alta Velocidad Española) is an example of 

this mode. 

4) The fully mixed models in which both high-speed and conventional trains can 

use each type of infrastructure. The Inter City Express (ICE) in Germany is 

an example of this model. This model allows full flexibility depending on 

track availability the rolling stock can use it with its corresponding speed.  

 

High speed rail (HSR) is becoming more desirable as it aims at reducing highway 

and airport congestion, cutting national dependence on foreign oil, and improving rural 

and urban environments by reducing carbon emissions. For these reasons countries such 

as Japan, France, Germany, Spain, and Italy have developed large HSR networks in 

recent years (Albalate and Bel, 2012). China is the country with the most recent HSR 

network. A recent study by Albalate and Bel (2012) mentions that high speed trains now 

travel the 644-mile distance between Wuhan and Guangzhou in about three hours, much 

less than the ten hours that were previously needed to travel between these two major 

cities.  

Table 1.1 lists all countries that have high-speed railway systems in operation as of 

late 2013 (UIC High Speed Department, 2013). Japan’s Shinkansen was the first high-
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speed railway system in the world and was built in 1964 to connect the cities of Tokyo 

and Osaka (Feigenbaum, 2013). The system now includes seven lines operated by four 

operators: JR Central; JR West; JR East; and JR Kyushu. The current network features 

2664 kilometers of track with maximum speeds ranging from 245 to 320 km/hr. The 

system has 779 km of network in construction with 179 km planned for the future (UIC 

High Speed Department, 2013). 

Italy opened the second world’s high-speed railway line between Rome and Florence 

in 1977 (Feigenbaum, 2013). The Italian network now features 923 kilometers of track 

with maximum speeds between 250 and 300 km/hr. The services over the high-speed 

lines are provided by Nuovo Transporto Viaggiatori or NTV—a private owned 

company—and TrenItalia.  

After Japan and Italy, France developed the world’s third high-speed railway system. 

It is referred to as TGV (Train à Grande Vitesse) and operated by SNCF. The network 

now has 2036 kilometers of track in operation and connects many cities across France 

and adjacent countries with a maximum speed between 300 and 320 km/hr making it the 

fastest high-speed train in Europe.  

Germany’s high-speed rail system opened in 1991 which was encouraged mainly by 

France’s TGV and the high-speed rail line in Italy. Unlike the French network, the 

German ICE connects many different hubs resulting in more stops. The network includes 

eleven different train lines and 1334 kilometers of upgraded and newly built track with 

maximum speeds ranging from 230 to 300 km/hr (Feigenbaum, 2013; UIC High Speed 

Department, 2013).  
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Following Germany’s ICE, Spain opened its high-speed rail line—AVE—in 1992 

(Feigenbaum, 2013). The network now features 2515 kilometers of track with a 

maximum speed of 200 – 300 km/hr (UIC High Speed Department, 2013). Other 

countries in Europe that have more recently developed high-speed railway systems 

include Austria, Belgium, The Netherlands, Switzerland, and the UK (UIC High Speed 

Department, 2013).  

In recent years the following countries in Asia have also developed high-speed 

railway systems: China, South Korea, Taiwan, Turkey, and Uzbekistan. According to 

Feigenbaum (2013), China’s high-speed rail network is now the largest in the world. The 

network currently includes 9867 kilometers of track with another 9081 kilometers under 

construction. South Korea opened its high-speed railway system in 2004 with a single 

line connecting Seoul to Daegu. The second line which connects Daegu to Pusan started 

operating in 2010. Taiwan’s high-speed railway system, which began operating in 2007, 

includes a 345-kilometer line connecting Taipei to Kaohsiung with a maximum speed of 

300 km/h. In 2009, Turkey opened a 232-kilometer long high-speed rail line between 

Ankara and Eskisehir with 250 km/hr as the maximum speed.  

These successful high-speed rail implementations around the globe, together with 

various economic, mobility, and environmental concerns, are now being used to justify 

the construction and implementation of new HSR networks in other nations. Based on 

these considerations, in April 2009 the U.S. government unveiled its blueprint for a 

national HSR network. Table 1.2 displays the expected demand for the first four HSR 

lines in the United States.  
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Table 1.1 List of high speed railway systems around the world (source: UIC High Speed Department, 2013) 
Country In operation (km) Under construction (km) Total country (km) 
Austria 93 0 93 
Belgium 209 0 209 
China 9867 9081 18948 
France 2036 757 2793 
Germany 1334 428 1762 
Italy 923 0 923 
Japan 2664 779 3443 
Netherlands 120 0 120 
South Korea 412 186 598 
Spain 2515 1308 3823 
Switzerland 35 72 107 
Taiwan 345 0 345 
Turkey 444 603 1047 
United Kingdom 113 0 113 
United States 362 0 362 
Uzbekistan 344 0 344 

 

 

Subways and light rail systems are other types of passenger railway systems that are 

used to transport large numbers of passengers within a city. These systems are sometimes 

referred to as rapid transit systems, undergrounds, or metros. Table 1.3 lists all metro 

systems around the world that are in operation and have more than 100 stations. 

 

Table 1.2 Expected demand for the first four U.S. high speed railway route (source: Albalate and Bel, 2012) 

Route.  Maximum Speed Miles 
Annual Ridership 
 (one-way trips) 

Year 
forecast 

San Francisco-Los Angeles 220 mph 500 7.2 million 2035 
Chicago-St. Louis 220 mph 297 2.1 million 2035 
Orlando-Tampa 186 mph 85 1.6 million 2035 
Albany-New York City 220 mph 142 2.3 million 2035 

 

Freight railway systems are the other type of railway system. Although not the focus 

of this dissertation, they are vital to the U.S. economy. According to the American 

Association of Railroads, the freight railway industry moves over 30 million carloads per 

year in almost 500,000 railroad-owned railcars earning more than $50 billion per year in 

revenue (AAR, 2007). This activity accounts for approximately one-third of the total 
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freight moved in the US each year when measured in ton-miles (Gorman et al., 2011). 

The North American freight rail industry is composed of seven major railroads and 

several hundred regional and short-line carriers that span 120,000 track miles. For 

instance, as pointed out by Ahuja et al. (2005), a typical Class I U.S. railroad owns more 

than 10,000 miles of track, 2,000-3,000 locomotives, about 80,000 railcars, 200-300 

classification yards, and employs more than 5,000 crew members to operate thousands of 

trains. 

 

Table 1.3 List of subway in the world with more than 100 stations (source: Wikipedia) 
Location Country Name Year opened  Stations System length Year of last 

extension 
Vienna Austria Vienna U-Bahn 1976 104 80 km (50 mi) 2013 
Santiago Chile Santiago Metro 1975 108 103 km (64 mi) 2011 
Beijing China Beijing Subway 1981 232 465 km (289 mi) 2014 
Guangzhou China Guangzhou 1997 130 240 km (150 mi) 2013 
Hong Kong China Mass Transit 

Railway 
1979 152 218 km (136 mi) 2013 

Shanghai China Shanghai Metro 1993 263 538 km (334 mi) 2013 
Shenzhen China Shenzhen Metro 2004 131 178.4 km (110.9 mi) 2011 
Paris France Paris Metro 1900 303 214 km (133 mi) 2013 
Berlin Germany Berlin U-Bahn 1902 170 151.7 km (94.3 mi) 2009 
  Berlin S-Bahn 1924 166 332 km (206 mi) 2007 
Delhi India Delhi Metro 2002 141 190 km (118.1 mi) 2011 
Milan Italy Milan Metro 1964 103 94.5 km (58.7 mi) 2014 
Osaka Japan Osaka Municipal 

Subway 
1933 101 137.8 km (85.6 mi) 2006 

Tokyo Japan Toei Subway 1960 106 121.5 km (75.5 mi) 2000 
  Tokyo Metro 1927 179 195.1 km (121.2 mi) 2008 
Busan S Korea Busan Metro 1985 128 130.2 km (80.9 mi) 2011 
Seoul 
Metropolitan 
Area 

S Korea Seoul Subway 
(Lines 1-9) 

1974 296 327 km (203.2 mi) 2012 

Mexico City Mexico Mexico City 
Metro 

1969 195 226.5 km (140.7 mi) 2012 

Oslo Norway Oslo Metro 1966 105 84.2 km (52.3 mi) 2006 
Moscow Russia Moscow Metro 1935 194 325.4 km (202.2 mi) 2014 
Singapore Singapore Mass Rapid 

Transit 
1987 106 148.7 km (92.4 mi)  2013 

Barcelona Spain Barcelona Metro 1924 165 123.7 km (76.9 mi) 2011 
Madrid  Spain Madrid Metro 1919 300 293 km (182 mi) 2010 
Stockholm  Sweden Stockholm Metro 1950 100 105.7 km (65.7 mi) 1994 
Taipei Taiwan Taipei Metro 1996 103 121.3 km (75.4 mi) 2013 
London United 

Kingdom 
London 
Underground 

1890 270 402 km (250 mi) 2008 

Chicago United 
States 

Chicago ‘L’ 1897 145 165.4 km (102.8 mi) 1993 

New York 
City 

United 
States 

New York City 
Subway 

1904 421 373 km (232 mi) 2013 
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Figure 1.1 Hierarchy of decision problems in the railway planning process (source: Lusby et al., 2011a). 

 

1.2. The railway planning process 

A railway system consists of the following five components: 

1. The infrastructure on which the trains run including its power supply, 

telecommunication systems, safety systems, and traffic control systems. 
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2. The rolling stock which consists of locomotives, electrical multiple units (EMUs), 

and diesel multiple units (DMUs) (Goverde, 2005). 

3. The schedule which determines the arrival (departure) time of trains at (from) 

stations and/or junctions.  

4. The railroad employees 

5. The operational rules 

Planning railway transport and optimizing the use of railway infrastructure are highly 

complex tasks. Passenger railway companies divide the planning process into a 

hierarchical process with several phases (Bussieck, 1998). One way as noted by Lusby et 

al. (2011a) is to divide the problems, and associated decisions, into strategic, tactical, and 

operational phases (Figure 1.1). The time horizon for strategic decisions is 5-15 years and 

these decisions are often regarded as resource acquisition problems. Tactical decisions 

typically consider a 0.5 to 5 year planning horizon and their main goal is to allocate 

resources effectively and efficiently. Optimum resource allocation can make a difference 

between profit and loss for a railway transport company. Operational decisions are short 

term decisions and may have a planning horizon from 1 hour to several months. The main 

goal of these decisions is to manage resource consumption optimally (Bussieck et al., 

1997; Schlechte, 2012).    

The main problems at the strategic level are network planning—when and how to 

invest in railway infrastructure—and line planning—deciding train origins, destinations, 

and frequencies.  The railway network design problem takes railway transport and traffic 

demand into account. This problem and its associated decisions are costly and will have 

economic and environmental impacts which may last for several decades. Train types that 
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operate on a network can be homogeneous or heterogeneous (Goverde, 2005). A line is a 

route in a railway network that connects two terminal stations, called the origin and 

destination. The line planning problem (LPP) corresponds to the problem of selecting the 

set of lines and their frequencies with optimizing two objectives: minimizing the 

operational cost and maximizing the number of travelers with direct connections 

(Bussieck et al., 1996; Claessens et al., 1998; Goossens et al., 2004; Caprara et al., 2007).  

Timetabling is one of the four main tactical problems that are solved during the 

overall railway planning process (Figure 1.1). Other problems at this level include track 

allocation and train routing, rolling stock scheduling, and crew scheduling. A timetable 

specifies points in time and assigns them to a train’s arrival (departure) time at (from) 

several consecutive stations. Therefore, it connects the train line plan to the available 

infrastructure. The fundamental domains, structures, and principles of railway timetable 

planning and signaling are introduced in Section 1.3.  

Other decisions at the tactical level include track allocation and train routing, rolling 

stock scheduling, and crew scheduling. The purpose of track allocation and train routing 

is to implement the timetable that has just been developed considering infrastructure and 

the capacity on the main line, at stations, at sidings, and at junctions. The rolling stock 

decision assigns physical train units to the trains listed in the timetable considering the 

feasibility of this assignment during peak hour operations. Crew scheduling is the last 

decision at tactical level and assigns crew to the train units. This is an NP-hard problem 

(Goverde, 2005). Nowadays, the infrastructure, rolling stock, and operational rules are 

designed so that passengers and goods can be transported to their destination as safely, 

quickly, punctually, cheaply, and comfortably as possible. 
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1.3. Railway timetables 

After designing the line plan, the next step in planning process is to establish a 

timetable. A timetable (i.e. train schedule) specifies points in time and assigns them to 

train arrival (departure) events at stations or sidings. Train timetables and schedules have 

a significant impact on infrastructure utilization and punctuality. Decisions taken during 

operations are often based on the timetable. In principal two general methods are 

theoretically possible for railway operations: based on a detailed timetable or without a 

timetable. Regarding passenger trains, a timetable for customer information and trip 

planning is needed. On the other hand, demand for freight transport can change rapidly 

and requests for a train path are often short term. Consequently, rail freight traffic can 

sometimes be operated without a schedule even if most other trains are operated on the 

basis of an exact timetable. The schedule has a major impact on the competitiveness of 

transport and determines expenditure. Therefore, short and reliable travel times are 

needed to attract customers. 

A timetable is developed in several phases starting possibly with a conceptual idea 

about 10-20 years before implementation and ending as input for daily operation. The 

timetable in use is strongly connected with defining schedules for staff and rolling stock. 

In particular, during daily operations, a new schedule must ensure that, after incident or 

delay, the rolling stock and staff are ready to run a consecutive or new service (Luthi, 

2009). The final schedule accounts for the following time components: 

 The technical minimum run and dwell times 

 Running time and dwell time supplements 
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 Time supplements (or constraints) for connections as part of the integrated fixed-

interval timetable 

 Buffer times between trains, also referred to as headway. 

 

The timetable is a crucial factor for the success of passenger railways. Frequent, fast, 

and direct connections are desirable but not always possible. The service is thus 

optimized through coordinated connections.  

Generating a new timetable is a complex process. Even with the aid of computer 

programs, calculating a new timetable from scratch for an entire, complex network within 

a short time is not possible today. As a result, new timetables are usually modified based 

on the previous year’s timetable in critical sections by shifting train paths by a few 

minutes (Luthi, 2009). Chapters 2-6 of this dissertation will explore passenger train 

timetabling issues in detail. 

1.4. Related railway issues 

In this section we briefly discuss three issues related to railway timetabling systems: train 

control systems, passenger demand, and disruption management.  

1.4.1. Train control systems 

Safety is a very important factor in any railway system. Therefore, railway systems are 

equipped with safety systems through train control technology and track signaling 

systems. Track signaling systems are partitioned into two categories: automatic signals 

and controlled signals. Trains moving on a track may be separated by automatic block 

signaling and/or automatic train protection systems (Goverde, 2005). In railroad signal 

terminology, a block is a segment of track with predefined limits and typically can range 
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from half a mile to two miles long. There are two types of block signaling systems: fixed 

block signaling system and moving block signaling system. In the fixed block signaling 

system, each stretch of open track is divided into fixed block sections that are controlled 

by a signal governing train entrance into the block. The block signal at the entrance of an 

open track determines whether or not the block can be used by an entering train. In order 

to use the block signal, the train location should be determined by the system. In modern 

railway systems the presence of a train in a block is detected using train detection devices 

such as track circuits. A track circuit is connected to the signal via electric wire at its both 

ends. Automatic block signaling (ABS) systems protect trains against head-tail collisions. 

In the moving block systems, train locations are determined in real time based on the 

train performance characteristics. Most HSR systems use a different signaling system. In 

these systems, the communication equipment is fully integrated in the cab which makes 

signal control along the rail line unnecessary (Campos and de Rus, 2009). The most 

recent technology of train control systems is called positive train control (PTC) system. 

The U.S. Congress is requiring the implementation of PTC by all railway company across 

most of the U.S. by December 31, 2015 (Peters and Frittelli, 2012). As defined by 

Association of American Railroad (accessed May 7, 2014), “Positive train control (PTC) 

is advanced technology designed to automatically stop or slow a train before certain 

accidents occur. In particular, PTC is designed to prevent train-to-train collisions, 

derailments caused by excessive speed, and unauthorized movement of trains onto 

sections of track where repairs are being made or as a result of a misaligned track 

switch.” The PTC system works according the following steps (Chertock and Diaz, 

2012): 
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 An on-board computer is initialized before a train departs its origin. 

 The train’s location is determined by GPS in conjunction with a geographic track 

database. 

 The on-board computer calculates the warning and braking curve as the train 

moves on the line. 

 As the train is approaching down the track, the on-board computer connects to 

line-side devices for checking broken rails and signal aspects. 

This dissertation assumes the presence of the latter type of signaling system and 

assumes there is no block signaling system.  

1.4.2. Passenger demand 

Passenger demand is another issue with importance for passenger train timetabling. The 

demand for HSR is increasing due to the quality of service and flexibility it provides for 

passengers. Other factors of increasing demand include improved accessibility (Chang 

and Lee, 2008; Masson and Petiot, 2009) and potential development for the regions along 

the corridor between major cities (Lutter et al., 1997; Román et al., 2007). According to 

de Rus and Nombela (2007), HSR demand is very sensitive to the length of the line and 

population of cities among the line which means more people use the HSR service. 

The people that choose HSR are coming from other traffic modes (e.g. air and auto), 

other train services (e.g. conventional), or are choosing it as their first choice due to 

increased wealth due to economic growth (Cascetta and Coppola, 2012). Park and Ha 

(2006) considers the diversion from air to HSR and analyze the impact of Korean high-

speed rail—KTX—on air transport demand between Seoul and Daegu, a short-haul 

distance, using three variables: access and egress time, fare levels, and operational 
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frequency. Their results show that only 14% of passengers would prefer air travel which 

is mainly due to the short travel time, faster check-in processes, and more frequent 

service offered by KTX. This competitiveness is the result of HSR’s ability to offer short 

travel times between cities, reduce access times to the economic centers, handle large 

passenger volume, and better adjust to peaks or shocks in daily demand (Román et al., 

2007).  

Two main factors impact demand for their transportation: (1) income and population 

growth, and (2) the travel environment improvement itself (Yao and Morikawa, 2005). In 

their study, Yao and Morikawa (2005) investigate an integrated intercity travel demand 

model when service level of the transportation mode changes substantially. As a case 

study, an intercity high speed rail project in Japan is considered assuming that trip 

generation, destination choice, mode choice, and route choice are in the model. The 

results of the study show that induced travel demand increases when travel time, travel 

cost, and access time decreases. Also, increasing service frequency will increase travel 

demand as well. The results also show that business travel demand is more sensitive to 

the factors just mentioned than non-business travel demand.  

As mentioned, accessibility is one of the factors that impact HSR demand. Gutiérrez 

(2001) analyzes the accessibility impact of the high-speed line connecting Madrid, 

Barcelona, and the French border by means of three indicators: weighted average travel 

time, economic potential, and daily accessibility. Among these three indicators, daily 

accessibility is the most important since it measures relationships over the short distance 

nodes.  
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1.4.3. Disruption management 

Railway systems are subject to disruptions because they are very complex systems. In 

this context, the word disruption can refer to any unexpected event. According to 

Goverde (2005), there are two types of delays that cause disruptions. Primary delays are 

caused by disruptions within the process, e.g. failing switches, whereas secondary delays 

are caused by other trains in the form of a train conflict which necessitates waiting for 

another train. There is a distinction between these two delays: the former is related to 

infrastructure; while the latter is mainly related to process and planning. However, these 

two delays are somehow interconnected. That is, improving infrastructure such as the 

signaling system or adding overtaking points and/or doubling the track segments will 

create more room for train passing, thereby reducing or eliminating secondary delays. 

There are six types of secondary delay.  These delays occur when (i) a leading train is a 

slow train, (ii) two trains are assigned to the same platform or share the same route 

through stations, (iii) a block or track is occupied by another train so the following train 

must stop until the block or track become clear, (iv) passengers transfer between two 

trains, (v) rolling stocks are connected, and (vi) crews transfer between two trains or 

trips. Researchers have proposed several approaches for dealing with disruptions 

including contingency planning, stochastic models, robust optimization, recoverable 

robustness, and pure reparation rescheduling (Acuna-Agost, 2010). 

1.5. Contribution and novelty of the Research 

The first part of this dissertation focuses on operations research modeling of cyclic 

timetabling, cyclic platforming, and capacity optimization problems for passenger 

railways. Among these topics, we focus most on cyclic timetable optimization. 
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This research contributes to the existing literature on train timetabling, train 

platforming, and the application of operations research techniques in the railway industry 

in several ways. This research is the first work that (i) models a cyclic train timetabling 

problem using a mixed integer linear program (MILP) in which the cycle length, an 

important value that is considered as a parameter in all published works, is the primary 

objective function to be minimized and is a decision variable; (ii) investigates and 

maximizes railway capacity from a non-traditional perspective; (iii) presents optimized 

cyclic train timetables for real-world high-speed railway systems including the Japanese 

Shinkansen and the Taiwanese high speed railway system using state-of-the-art modeling 

techniques, heuristic methods, and optimization software; (iv) presents an MILP model 

that integrates cyclic train timetabling and cyclic train platforming decisions; and (v) 

generates cyclic timetable and platforming schedules for a bi-directional, single track rail 

line with heterogeneous rolling stock.  

1.6. Organization of Part I 

The remainder of Part I of this dissertation is organized as follows. Chapter 2 surveys the 

applications of operations research methods in railway transportation. In Chapter 3, we 

study cyclic train timetabling for a single track, unidirectional rail line with two trains 

types –express and local. A mixed integer linear program is developed to minimize the 

dispatching cycle of trains and the total dwell time of all train types at all stations 

combined. This work has already been published in Heydar et al. (2013). 

In Chapter 4, a mixed integer linear program (MILP) for cyclic train timetabling and 

platforming for a single track, unidirectional rail line with homogeneous rolling stock is 

developed. The objective function is to maximize line capacity through cycle time 
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minimization, and to minimize the total dwell time of all train types at all stations 

combined. In this problem it is assumed that there are multiple train types that can start or 

end their journey at stations other than the terminal stations. Also, the model determines 

the train routing—i.e. the platform assignment—at stations with more than one platform. 

In other words, this is the literature’s first MILP model to integrate cyclic train 

timetabling and train platforming problems. The model is then validated by solving two 

real-world examples taken from the Taiwanese and Japanese high speed railway systems.  

In Chapter 5, a more complex model for cyclic, combined train timetabling and 

platforming is considered for a bi-directional, single track railway line between two 

terminals with heterogeneous rolling stock. The proposed mixed integer linear program is 

developed to minimize cycle time and minimize total train journey time. The model also 

determines platform assignments at stations with more than one platform or track. It is 

assumed that trains can move slower than full speed. Also, another feature of this model 

is that some trains may stop at stations or sidings if their line plan does not require them 

to do so. This increases the model flexibility as well as complexity.  

Chapter 6 summarizes the work that has been conducted and lays the groundwork for 

future work in this area.  
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Chapter 2 

Review of literature of railway problems 

In this chapter we review the literature on railway operations that considers train 

timetabling, train routing, railway capacity analysis, or the railway literature itself. 

Excellent surveys of the railway operations literature have been done by Harrod (2012), 

Lusby et al. (2011a), Abril et al. (2008a), Caprara et al. (2007), Huisman et al. (2005), 

Cordeau et al. (1998), and Bussieck et al. (1997). A comprehensive overview of railway 

timetabling and traffic issues is provided by Hansen and Pachl (2008). 

Railway systems can be classified based on their purpose. Articles on railway 

operations may be divided into two main categories—those emphasizing passenger 

railway systems and those emphasizing freight railway systems. 

2.1. Freight railway systems 

Examples of recent research on freight railway systems include Ahuja et al. (2005), 

Crainic et al. (1990), Gorman et al. (2010), and Verma et al. (2011). The problems that 

can be addressed, and have been studied so far, include, but are not limited to, railroad 

blocking problem, train scheduling, classification yard location, train dispatching, 

locomotive scheduling, and crew scheduling. In this section the classification yard 

location problem and railroad blocking problem are discussed since they are unique to 

freight railway systems. Other problems will be discussed in Section 2.2 as they are 

common to both freight and passenger railway systems.  
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2.1.1. Classification yard location problem 

Classification yards are the intermediate nodes in a national rail network where railcars 

are attached to and detached from each other to form trains and train units called blocks. 

Yards are classified into three types: local, system, and regional. As pointed out by Ahuja 

et al. (2005) a major U.S. railroad has about 20-40 hub yards. The yard location problem 

considers where to locate new yards and where to close exiting yards (Ahuja et al., 2005). 

According to Ahuja et al. (2005), typical questions in this regard that can be answered 

through OR include: 

(i) What yards can be shut down with minimal impact on the transportation cost? 

(ii) What is the optimal trade-off between maximizing the number of yards and 

minimizing transportation costs? 

(iii) The locations and number of new yards in case of expansion. 

(iv)  What is the best network configuration?   

2.1.2. Railroad Blocking Problem  

The railroad blocking problem (RBP) is one of the most important problems in freight 

railway operations. A solution to this problem specifies how to combine a large number 

of shipments into a block, i.e. a large portion of railcars that are linked to each other 

within a larger train, so as to reduce their individual handling as they travel from an 

origin to a destination. The railroad blocking problem is to construct a network of blocks 

in order to minimize the total transportation cost when all rail shipments are routed over 

this blocking network. The objective function is the weighted sum of total travel cost and 

intermediate handling cost (Ahuja et al. 2005). Researchers have modeled and solved this 

planning problem using network models (Newton et al. 1998), mixed integer linear 
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programs (Barnhart et al, 2000) and heuristic algorithms such as very large-variable 

neighborhood search (VLNS) algorithm (Ahuja et al., 2007).  

2.2. Passenger railway systems 

Researchers have classified the planning decisions in passenger railway system in 

different ways. One way as noted by Lusby et al. (2011a) is to divide the problems into 

strategic, tactical, and operational planning phases (Figure 1.1). The main problems at the 

strategic level are network planning—when and how to invest in railway infrastructure—

and line planning—deciding train origins, destinations, and frequencies. At the tactical 

level, problems related to timetabling, track allocation and train routing, rolling stock 

scheduling, and crew scheduling are considered and solved. 

Operational planning mainly deals with real-time management of railway traffic. 

Other surveys that classified railway problems include Bussieck et al. (1997), Cordeau et 

al. (1998), Huisman et al. (2005), and Caprara et al. (2007). In what follows, the 

problems and literature related to each level of decisions will be presented. Although 

these decisions have been classified as passenger railway decision, the same decisions  

can be defined and considered for freight as well. For instance, train scheduling and 

timetabling problem can be defined for both systems. This classification is important 

since it enables us to compare the cyclic and noncyclic train timetables.   

2.2.1 Strategic decisions 

As defined, a strategy is a long-term plan which is made to achieve a certain objective 

and is concerned with the development of the network and long-term acquisition of 

resources. These decisions include network planning, rolling stock, crew planning and 

line planning.  
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The network planning problem deals with the design of railroad networks. This 

problem concerns construction of a new infrastructure and/or expansion or modification 

of an existing infrastructure such as addition of a second track (Lusby et al., 2011a).  This 

problem can be solved through facility location techniques; hence they are very complex 

problems. Rolling stock acquisition corresponds to the decision of buying, selling, 

leasing, hiring, or wasting locomotives and cars. This problem is considered as a strategic 

decision because of the cost and expected lifetime of the units. A line is a route in a 

railway network that connects two terminal stations, known as origin and destination. A 

line planning problem (LPP) corresponds to the problem of selecting the set of lines and 

their frequencies with optimizing two objectives: minimizing the operational cost and 

maximizing the number of travelers with direct connections (Bussieck et al., 1996; 

Claessens et al., 1998; Goossens et al., 2004; Caprara et al., 2007). According to Caprara 

et al. (2007) there are several options in designing a line in order to provide sufficient 

capacity to transport all passengers: (i) a line that is operated with a high frequency and 

with low capacity trains; or (ii) a line that is operated with a low frequency and with high 

capacity trains. The problems investigated in this dissertation are related to and provide 

results and information related to these options.  

2.2.2 Tactical decisions 

Tactical decisions are the second level in the railway planning process. These decisions 

are made more often than strategic decisions. Major problems in this level are 

timetabling, train routing (i.e. track allocation), rolling stock scheduling, and crew 

scheduling.  
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2.2.2.1. Timetabling and scheduling 

Train timetabling (i.e. scheduling) is the problem of constructing one or more timetables 

for trains that have been given a line plan. A timetable, by definition, defines the arrival 

(departure) time of the train at (from) stations. Train timetables can be divided into two 

types—those that are cyclic (periodic) and those that are non-cyclic (Caprara er al., 2007; 

Cacchiani et al, 2010).  

Noncyclic train timetables are good for heavy-traffic and long-distance railway 

networks. Roughly one hundred articles in the literature consider non-cyclic railway 

timetabling problems. Some of the early efforts in this area include Petersen (1974), 

Petersen and Taylor (1982), Ceder (1991), Jovanovic and Harker (1991), and Kraay et al. 

(1991). More recent studies include Carey and Lockwood (1995), Higgins et al. (1996), 

Brännlund et al. (1998), Caprara et al. (2002), Zhou and Zhong (2005), Caprara et al. 

(2006), Dessouky et al. (2006), Carey and Crawford (2007), Zhou and Zhong (2007), 

D’Ariano et al. (2007), Abril et al. (2008b), Castillo et al. (2009), Burdett and Kozan 

(2009a), Burdett and Kozan (2009b), Liu and Kozan (2009), Burdett and Kozan (2010a), 

Burdett and Kozan (2010b), Cacchiani et al. (2010), Castillo et al. (2011), Liu and Kozan 

(2011), Harrod (2011), and Narayanaswami and Rangaraj (2012). 

Cyclic train timetables have some advantage over non-cycle ones. The major 

advantage of cyclic train timetables is that they are easy-to-remember for the passengers. 

In a cyclic timetable, each trip is operated in a cyclic way, i.e. each period of the 

timetable is the same. For example, according to this timetable a certain train type t 

heading east always leaves a particular station, say station s, at times x:02, x:22, and x:42. 

The above departure times can be represented as	 , where e is the original departure 
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time (2 minutes after x in this example), T is the cycle time (20 minutes in this example), 

and k is an integer value. We will discuss these two classes of timetables in more details 

later in this chapter.  

2.2.2.2. Track allocation, platforming and train routing 

Track allocation and routing problem is the second tactical decision after train 

timetabling. One important problem in this level is Train Platforming Problem (TPP) 

which corresponds to routing trains through (and possibly stops at) stations.  The problem 

is very easy to solve for relatively small stations with very small number of alternative 

path, but for very complex stations, the problem becomes challenging. One possible 

objective function is the minimization of the sum of delays. The inputs of this problem 

include the directions of the trains, the scheduled arrival/departure time and complete 

information about the topology of platforms. It should be considered not only trains that 

pass the station, but also those trains or locomotives coming (going) from (to) the 

shunting area. This problem have not received considerable attention from the OR 

community (Caprara et al., 2007). In a very recent study, Cacchiani et al. (2014a) give an 

overview of train platforming problem.  

2.2.2.3. Rolling stock 

The rolling stock scheduling problem corresponds to assign the available stock of 

locomotives and cars while minimizing the total cost and satisfying all the constraints. 

This is important for train operations since the rolling stock acquisition is expensive. 

In this problem given a planned timetable and the expected number of passengers, the 

model determines an allocation of rolling stock to the service (Acuna-Agost, 2009). The 

model can consider the possibility to add or remove cars to trains in some stations. 
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Moreover it is possible to consider splitting or combining two or more trains. Possible 

objective functions include: minimization of the expected seat shortages, maximization of 

a measure of robustness, minimization of the total cost.  

This problem first is introduced by Schrijver (1993). The paper considers the problem 

of minimization the number of train units of different subtypes for an hourly line when 

satisfying a given seat demand of passengers. Another more complete version of the 

problem takes into account the changes of the composition of trains with the aim of 

having an indication of the robustness of the solution. Maroti and Kroon (2007) propose 

an integer programming model for the problem of the routing units in order to reach 

regular preventive maintenance. Cordeau et al. (2001) consider a time-space network 

representing all possible consecutive train sequences that available units can make. The 

LP relaxation of this model is solved by column generation and integer solutions are then 

obtained heuristically. 

2.2.2.4. Crew scheduling 

Crew scheduling is the fourth tactical problem and is defined as finding a set of rosters 

covering every trip once, satisfying all the operational constraints. A roster is defined as a 

cyclical sequence of trips performed by each crew. In this problem, a planned timetable 

for the train services is given that has to be performed every day for a certain period. 

Also, every service is divided in several trips that are the minimal route served by the 

same crew. Additionally, every trip starts at a defined time in a depart station and ends in 

the arrival station. It is necessary that each trip is performed by one crew (Caprara et al., 

1999). Crew scheduling problem is a very complex and challenging problem due to both 
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the size of the instances and the type and number of operational constraints (Caprara et 

al., 2007).  

Vaidyanathan et al. (2007) model the crew scheduling problem for North American 

Railroad by multicomodity network flow and then formulate it as an integer program that 

can be solved to optimality. In their model, the network flow maps the assignment of 

crews to train as the flow of crews on the network.  

2.2.3. Operational decisions 

The third level which corresponds to detailed plan is operational problems. In this level, 

according to Lusby et al (2011a) all real time decisions that discussed in tactical level are 

managed in a real-time manner. This class also deals with making decision in real-time 

where disturbances happen more often due to fluctuation in demand and incidents. Also 

in some cases, timetables are subject to disturbances. This problem of adjusting existing 

timetables is referred to as traffic rescheduling, train dispatching and train scheduling 

under disturbances (Acuna-Agost, 2009).  

Railway rescheduling problem (RRP) is one of the most important real-time 

problems. The recent survey on recovery models and algorithms for train timetable 

researching, rolling stock rescheduling, and crew rescheduling is done by Cacchiani et al. 

(2014b). Khosravi et al. (2012) use a modified version of shifting bottleneck heuristic for 

train rescheduling problem in the UK. Since the original shifting bottleneck procedure 

has been designed for job shop scheduling problem, they model the train scheduling and 

rescheduling problem as a job shop scheduling problem. Dündar and Şahin (2013) solve 

train rescheduling problem by genetic algorithm and artificial neural network. Corman et 

al. (2011) present an optimization framework for rescheduling trains with different 
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classes of priority. The objective that they consider is delay minimization which is the 

main objective of the infrastructure manager. This multi-class rescheduling problem is 

modeled via alternative graph that is solved to optimality by branch-and-bound in each 

step of the train scheduling problem.  

Acuna-Agost (2009) studies train scheduling problem and develops a daily timetable 

considering some aspects of “detailed platform assignment daily”. Real-time platform 

assignment appears when a new timetable should be constructed after a disrupted 

situation, and as a result train should be re-routed at that station. Rodriguez (2007) solves 

the problem of routing and scheduling at junction in real-time using constraint 

programming.  Recently, a set packing approach has been proposed for real-time junction 

train routing (Lusby et al., 2013). 

The shunting problem can be affected by disturbances as well. Real-time rolling stock 

problem as a reactive problem deals with the problem of finding a new assignment of 

train after disturbances. The main objective is to go back as soon as possible to normal 

operations. The objective of real-time crew scheduling is a combination of feasibility, 

minimization of operation cost and maximization of stability (Jespersen-Groth et al., 

2009). The objective of the crew rescheduling problem is the minimization of the 

rescheduling costs of crew and the costs of cancelling additional tasks (Cacchiani et al., 

2014b). 

2.3. Train timetabling and routing with mathematical programs 

As this dissertation focuses on the train timetabling and platforming, in this section we 

present the basic mathematical models presented in the literature for these two classes of 

NP-hard problems. 
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2.3.1. Noncyclic train timetabling 

In this section the basic non-cyclic timetable is presented that taken from Caprara et al. 

(2007). A basic non-cyclic train timetable problem consists of a single, one-way line 

connecting two major stations with a number of stations in between. Let S represent the 

set of stations, ordered according to the sequence they are appeared along the line for the 

direction considered, and T denotes the set of trains. Then, a timetable defines, for each 

train t ϵ T, the departure time from its origin ot ϵ S, the arrival time at is destination dt ϵ S, 

and the arrival and departure times for each intermediate station between origin and 

destination ot < s < dt, for all s ϵ S. Each train is then assigned an ideal timetable with 

departure Dts time for each station s: ot ≤ s < dt, and arrival time Ats for each station s: ot < 

s ≤ dt, which would be the most desirable timetable for the train, that may however be 

modified in order to satisfy other system constraints such as track capacity which restrict 

train overtaking. The final solution for the problem will be referred to as the actual 

timetable. The objective is to maximize the sum of the profit of the scheduled trains. The 

profit achieved for each train depends on the train’s ideal profit πt, on the shift νt, and on 

the stretch µt. Then, the profit for each train t is given by 

  t t t t tv      (2-1)

where Φ .  is a user-defined non-decreasing function penalizing the train shift, and γt is 

a given nonnegative parameter. Finally, the math model for noncyclic train timetabling 

can be modeled as follows (Caprara et al., 2002).  

Let G = (V, A) be the directed acyclic multigraph in which nodes corresponds to 

arrival and departures from stations along the line and arcs correspond both to trains stop 

at a station and to trips from a station s to s+1. For each station s, except the first one or 
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origin, defined by Us is the arrival time, and similarly for each station s, except the last 

one or destionation, defined by Ws is the departure time. The arc set in this graph is 

partitioned into arc sets At associated with each train t ϵ T. Arcs in At from a node w ϵ Ws-1 

to a node u ϵ Us model train t departing from station s-1 at time instant w and arriving at 

station s at time instant u. Moreover, arcs in At from a node u ϵ Us to a node w ϵ Ws model 

train t arriving at station s at time instant u and departing from station s at time instant w. 

To model train flow conservation two artificial nodes are defined: an artificial source 

node σ, and an artificial sink node τ. The objective function defines the profit pa with 

each arc a ϵ At for each train t. Before introducing integer linear program, let us first 

define the decision variable and parameters.   

    

1

0ax


 


 
If arc a is selected in an optimal solution for all a ϵ At and for all t ϵ T   

Otherwise 

δ+
t(v) The (possible empty) set of arcs in At leaving node v, for all v ϵ V, and for all t 

ϵ T  
δ-

t(v) The (possible empty) set of arcs in At entering node v, for all v ϵ V, and for all 
t ϵ T 

C The (exponentially large) family of maximal subsets c of pairwise of 
incompatible arcs 

 

 

Then, the mathematical program would be 
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                                                                                                       c C   (2-5)

 0,1ax  ,   a A   (2-6)

 

The objective function (2-2) is the sum of the profits of the arcs related to each path in the 

solution. Constraint set (2-3) imposes that at most one arc associated with a train can be 

selected to leave the source node σ. Constraint set (2-4) is the flow conservation 

associated with number of arcs entering and leaving each arrival or departure node. 

Finally, constraint set (2-5) is a clique constraint and forbids the simultaneous selection 

of incompatible arcs. For a recent survey on non-periodic train timetabling see Cacchiani 

et al. (2014a). 

2.3.2. Cyclic train timetabling 

Serafini and Ukovich (1989) are the first ones who developed a model for generating 

cyclic timetable. The model is called Periodic Event Scheduling Problem (PESP). Harrod 

(2012) mentions that the Periodic Event Scheduling Problem (PESP) provides the 

modeling framework for the vast majority of cyclic timetables (Kroon and Peeters, 2003; 

Liebchen, 2008). The PESP considers the problem of the scheduling a set of periodically 

recurrent events under time-windows constraints. In the PESP, all calculations are carried 

out modulo T, where T is the cycle time. A typical constraint in the PESP is the 

requirement that a certain process, that starts and ends at event times ve and ve´ 

respectively, has a duration of at least Le,e´ but no more than Ue,e´ (0 ≤ Le,e´ ≤ Ue,e´ < T). 
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This constraint is modeled by the inequality Le,e´ ≤ (ve´ _ ve) mod T ≤ Ue,e´ where 0 ≤ Le,e´ , 

ve´ , ve, Ue,e´ < T. The nonlinear modulus operator is then removed by introducing a binary 

decision variable Qe,e´ that indicates whether the process crosses the end of the cycle (=1) 

or not (=0). Everything is computed mod T, so ve´ is less (greater) than ve if the process 

crosses (does not cross) the end of the cycle. The final constraint—Le,e´ ≤ (ve´ _ ve) + T × 

Qe,e´ ≤ Ue,e´—is linear and fits within a standard mixed integer programming (MIP) 

framework (Kroon et al., 2008). According to Caprara et al. (2007), variables Qe,e´ make 

the PESP quite hard to solve by standard branch-and-bound methods, due to the relatively 

large coefficients of T and the LP relaxations of models based on this formulation of 

PESP are quite weak. Other possibilities for the PESP are to consider L and U as time 

instants instead of durations and/or to allow the event times ve and ve´ to be any real 

number ≥ 0 and Qe,e´ to be integral.  

The PESP is the basis for most cyclic railway timetabling studies including the works 

by Odijk (1996), Peeters and Kroon (2001), Kroon and Peeters (2003), Lindner and 

Zimmermann (2005), Liebchen (2008), Liebchen and Möhring (2008), and Liebchen, et 

al. (2008). Nachtigall and Voget (1996) perform a study outside the PESP paradigm in 

which genetic algorithms are used to optimally synchronize the operations on two or 

more railway lines that operate with different frequencies. 

Other approaches for modeling cyclic timetable are graph theory and machine 

scheduling problem. Caprara et al., (2001, 2002) build a periodic timetable in a 

unidirectional track by representing the problem using a directed graph. The graph is then 

transformed to an integer programming model that is solved by a Lagrangian relaxation 

approach.  
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Surprisingly, to our knowledge, Bergmann (1975) remains the only article to consider 

a cyclic train timetabling problem in which the minimization of the cycle length is the 

primary objective. The minimization of the cycle length requires the cycle time T to be a 

decision variable. However, within the PESP paradigm, this leads to a quadratically 

constrained formulation in which the two decision variables T and Qe,e´ are multiplied 

together (see above). By avoiding the PESP framework, Bergmann (1975) manages to 

create a linear formulation for a simple periodic timetabling problem in which the cycle 

time T is a decision variable and also the objective to be minimized. 

2.3.3. Solution approaches to train scheduling and timetabling 

Regardless of the nature of train timetable and modeling techniques that have been used, 

researches applied many techniques to solve the train timetabling and scheduling problem 

which its integer program formulation is known to be NP-hard (Cai and Goh, 1994). In 

this section, we briefly review the efforts that the researches have been made for solving 

this class of NP-hard problems. Particularly, we look at this problem from modeling 

method and solution approaches. 

De Oliveira (2001) considers the cyclic timetabling problem as a special case of the 

job-shop scheduling problem where jobs are trains and machines are track (sections) and 

solves it by constraint programming. Other works that model train scheduling problem as 

a job shop problem include Liu and Kozan (2009), Burdett and Kozan (2009c), Burdett 

and Kozan (2010b), Khosravi et al. (2012). Other approaches include lagrangian 

(Cacchiani et al., 2012; Caprara et al., 2006; Brännlund et al., 1998), branch and bound 

(D’Ariano et al., 2007), column generation (Min et al., 2011), constraint generation 

(Odijk, 1996), Genetic Algorithm (Nachtigall and Voget, 1996; Chung et al., 2009), 
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decomposition algorithm (Peng et al., 2013), modulo simplex algorithm (Goerigk and 

Schobel, 2013), Hypergraph (Harrod, 2011), independent set problem (Caimi et al., 

2009), and max-plus algebra (Goverde, 2007 and 2010). 

2.3.4. Train platforming and routing 

Billionnet (2003) presents one of the first advances on this topic after the original 

work of (DeLuca-Cardillo and Moine, 1998). They both formulate the problem as a 

graph-coloring problem which is based on a node packing formulation. We present here 

the model developed by Billionnet (2003). For this purpose, let us define the binary 

decision variable xir, equal to 1 if vertex vr (r = 1, …, n) is assigned color i ϵ L(Vr), and 

then formulate the k L-list τ graph coloring as the following feasibility problem: 

 

Find xir (2-7)

Such that    

 
1

r

ir
i L V

x


                                                                                       r = 1, …, n  (2-8)

 xir + xis ≤ 1                                               r < s, {Vr, Vs} ϵ E, i ϵ L(Vr) ∩ L(Vs)   (2-9)

 xir + xjs ≤ 1                                                                                {Vr, Vs, i, j} ϵ τ (2-10)

xir ϵ {0, 1}                                                                        r = 1, …, n, i ϵ L(Vr)  (2-11)

 

The binary variables determine the assignment of a particular platform to a given train. 

Therefore, by considering this type of decision variable any objective function would 

seek to maximize (minimize) the use of a certain platform within a station (Lusby et al., 

2011a). In the above formulation, constraint (2-8) enforces each train to be assigned to a 

platform. Two train should not and cannot be assigned to the same platform at the same 
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time (constraint (2-9)), and according to (2-10) two trains cannot be assigned different 

platform if their respective paths to the same platform conflicts. Other studies consider 

and model this problem as a node packing problem solved by a branch and cut approach 

(Zwaneveld et al., 1996) and as a circle graph, permutation graph, graph coloring and 

their combination (Demange et al., 2012).  

2. 4. Line capacity 

The current study also has significant overlap with the subject of railway capacity. 

Capacity is extremely dependent on infrastructure, traffic and operating parameters (Abril 

et al., 2008a). Railway capacity is normally defined as the maximum number of trains 

that can traverse a given section of a track in a given duration of time. Capacity depends 

on the particular mix of the trains and the order in which they run over line. Recent 

studies that focus on railway capacity issues include Burdett and Kozan (2006), Abril et 

al. (2008a), Dingler et al. (2009), Harrod (2009), and Salido and Barber (2009).  Indeed, 

all of the above articles adopt this definition of railway capacity. 

Surprisingly, to our knowledge, no article besides Bergmann (1975) has focused on 

the alternate definition used in the current study in which capacity is the minimum cycle 

length that can feasibly accommodate a given number of trains over a given section of 

track in each cycle. Note that this alternate definition of capacity is directly related to the 

standard definition. Indeed, by squeezing a given number of trains into a smaller cycle 

length, we are increasing the number of trains that can be squeezed into a given duration 

of time. 

Burdett and Kozan (2006), Abril et al. (2008a), Dingler et al. (2009), Harrod (2009) 

consider capacity in the context of a non-cyclic timetable. The article by Salido and 



36 
 

 
 

Barber (2009) is the study most closely resembling the current investigation in that it 

considers capacity in the context of a cyclic timetable and considers different values for 

the length of the cycle (e.g. 140, 120, 100, 90, 75, 60 min). However, Salido and Barber 

(2009) mainly focus on the standard definition of railway capacity, and they do not 

present a mathematical program whose objective is to minimize the length of the cycle. 

2. 5. Objectives of mathematical programs for railway timetabling and routing 

The objectives considered in train related articles include minimizing total time used by 

the passengers in the system (including travel time and waiting time), minimizing 

passenger waiting time (Lindner and Zimmermann, 2005), minimizing makespan 

(Burdett and Kozan, 2010a), minimizing the maximum duration between consecutive 

train arrivals at a station (Ceder, 1991), minimizing the cost of train delay and energy 

consumption (Kraay et al., 1991), minimizing the number of trains (Peeters and Kroon, 

2001), minimizing the delays of trains at destination and train operating cost (Higgins et 

al., 1996), minimizing the total cost of train stopping and waiting times at sidings (Cai 

and Goh, 1994), and maximizing profit (Caprara et al., 2002). The minimization of 

traveling time may arise in network timetabling or in case where train speed is not fixed 

between two connections and/or stations. Train schedule reliability is also considered as 

an objective to be maximized for single track rail line (Ferreira and Higgins, 1996). For 

measuring reliability Ferreira and Higgins (1996) use the amount of risk of delay (RD) 

associated with a given schedule as the reliability component of the optimization model. 

In summary, a detailed examination of the literature has yielded scores of outstanding 

contributions in the areas of train timetabling, train platforming, and railway capacity 

analysis. According to Gorman (2010), train scheduling is the most popular topic in the 
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railway operations literature, comprising about 19% of all articles published. 

Furthermore, the general topic of train scheduling and track capacity accounts for about 

40% of all articles in the railway operations literature that present optimization models. 

Thus, the general subject of the current investigation is hardly unfamiliar. However, the 

current study appears to be unique in many ways. First, it is the only study—after 

Bergmann (1975) —to present an MILP model for a cyclic train timetabling problem in 

which the length of the cycle time  is a decision variable. Second, it is the only study—

after Bergmann (1975)—to present an MILP model for a cyclic train timetabling problem 

where the primary objective is to minimize cycle length. Third, it is the only study that 

adopts the Bergmann’s definition of capacity, which is as the minimum cycle length that 

can feasibly accommodate a given number of trains over a given section of track. 

Therefore, in our approach capacity not only considers the track restriction in each cycle, 

but also integrates the station capacity. Fourth, it presents the literature’s first MILP 

model for a cyclic, combined train timetabling and platforming problem for single track 

unidirectional and bidirectional railway. Fifth, it presents the literature’s first MILP 

model for a cyclic train platforming problem in which the length of the cycle is a decision 

variable. Sixth, it is the first study to present a MILP model for a cyclic train platforming 

problem where the primary objective is to minimize cycle length. Seventh, this 

dissertation considers any number of train types per cycle. Eighth, we allow stations to 

have more than one siding. Finally, we allow trains to start or end at intermediate 

stations.  
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Chapter 3 

Mixed integer programming for minimizing the period of a 

cyclic timetable for a single track with two train types 

3.1. Introduction and problem description 

The material in this chapter has been published in Heydar et al. (2013). This work 

extends the work of Bergman (1975) to investigate the capacity of a single track, 

unidirectional rail line that adheres to a cyclic timetable. This problem is a basic problem 

in domain of train scheduling and timetabling. A set of intermediate stations lies between 

an origin and destination with one siding at each station. Two types of trains–express and 

local–are dispatched from the origin in alternating fashion. The local stops at every 

intermediate station and the express stops at no intermediate stations. Constraints include 

a minimum stopping (dwell, delay) time for the local train at each station, a maximum 

total dwell time for the local train at all stations combined, and headway considerations 

on the main line and in stations. Bergmann (1975) develops a mixed integer linear 

program for obtaining a feasible timetable with the objective of minimizing the length of 

the dispatching cycle. However, no numerical study is presented. In this chapter, we 

restate the problem from Bergmann (1975) using improved notations; modify 

Bergmann’s mathematical model by adding a second objective and removing 

unnecessary variables; and perform the first numerical analysis of this problem by 

considering hundreds of randomly generated instances with up to 70 stations.  



39 
 

 
 

Topological configuration of this railway system is depicted in Figure 3.1. In this 

figure the paths of express and local trains are shown by dashed and solid arrows above 

and below the track, respectively. Consider a situation in which trains are dispatched at 

regular intervals on a single, unidirectional track from an origin to a destination. Two 

types (categories) of trains are dispatched. The first category consists of local trains that 

stop at all S intermediate stations lying between the origin and destination.  The second 

category consists of express trains that do not stop at any of the intermediate stations. No 

passing is allowed on the main track. However, all stations in the system are located in 

the siding, so it is possible for an express train to pass a local train at a station. Thus, an 

express train’s passage of a station being served by a local train is unobstructed. Further 

each station siding is sufficiently long so that deceleration and acceleration by a local 

train moving into or out of a station does not interfere with the operations of the express 

trains in the traffic stream which the local train is leaving or entering. 

Local and express trains are dispatched alternately in order to create a cyclic 

timetable in which one train of each type is dispatched per cycle and the cycle length, 

Interval, is a decision variable. In particular, local trains are dispatched from the origin at 

times i × Interval, i ϵ {0, 1, 2, …}, and express trains are dispatched from the origin at 

times i × Interval + ∆, i ϵ {0, 1, 2, …}. The decision variable ∆ can have any value such 

that 0 < ∆ < Interval and all other constraints described below are satisfied. From this 

definition it is revealed that the tth local train leaves the origin at time (t ˗ 1) × Interval, 

and the tth express train leaves the origin at time (t ˗ 1) × Interval + ∆. The cyclic nature 

of the timetable means that all local trains are identical and all express trains are identical 

except for their departure times from the origin.  
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Figure 3.1 Topology of railway system investigated in this study   

. . . Origin 

Station 1 
Station 2

Main 
track 

Siding

. . . 
Express Train

Local Train

. . . 

Station S

(Upstream) (Downstream)

Direction of travel 

Merge 
point 

Express train 

Local train path

Destination 

Stop



41 
 

 
 

All trains travel at the same speed while on the main track. Let travs be the time 

required by a train making no stop to travel from the origin to the merge point–the point 

at which local trains return to the main track–just downstream from station s. Denote by 

dMins the minimum required delay or increase in train travel time due to stopping at 

station s rather than passing it. This is the minimum amount of time that a train must 

spend decelerating, unloading passenger, loading passengers, and accelerating on the 

siding beside station s in order to serve station s. For simplicity, we refer to this term as 

the minimum stopping (delay, dwell) time of a local train at station s. Denote by Ds the 

actual stopping (delay, dwell) time of a local train at station s. Ds is a decision variable 

that must be greater than or equal to dMins. A local train dispatched from the origin at 

time 0 reaches the merge point just downstream from station s at time
1

s

s qq
trav D


   . 

In this study two objectives are considered. The primary objective is to minimize 

Interval subject to four types of constraints. First, the actual dwell time Ds of a local train 

in station s must be greater than or equal to the minimum required dwell time dMins. 

Second, the total dwell time of the local train at all stations combined may not exceed 

dMax. Third, trains on the main track must be separated by a minimum headway of 

hTrack minutes. Finally, the departure time of a train from station s and arrival time of 

the next train after it into station s must be separated by a minimum headway of hStations 

minutes. For simplicity, we assume that a train’s “departure time” from a station occurs at 

the very end of its dwell time Ds in the station, and we assume that a train’s “arrival time” 

into a station occurs at the very beginning of its dwell time Ds in the station. The 

secondary objective is to minimize the total delay
1

S

ss
D

 experienced by the local train 

at all intermediate stations combined. 
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The primary objective directly relates to track capacity. Indeed, in order to determine 

the maximum capacity of a single track, we can either determine the maximum number 

of trains that can be dispatched within a period (or “cycle”) of given length, or we can 

determine the minimum cycle length such that a given number of trains can feasibly 

dispatched within one cycle. While almost all articles in the literature investigate capacity 

within the former conceptual paradigm, the study in this dissertation is unique in that it 

presents MILP models for investigating track capacity within latter paradigm.  

Figure 3.2 presents a time-space diagram of the type of cyclic train timetable 

described above. Each local (express) train is depicted using a solid (dashed) line. The 

slopes of all lines between stations are equal because all trains move at the same speed on 

the main line. Note that all terms described in the preceding paragraphs–including 

Interval, the length of the dispatching cycle–appear in the figure. The local train that 

departs the origin at time 0 is not depicted in order to create space for these terms. 

We now make a few additional comments and assumptions regarding the problem. 

First, we assume there is no limit on the number of trains available. That is, rolling stock 

components (i.e. locomotives, railcars, train sets) are assumed to be available whenever 

and wherever they are needed. Second, we assume the origin and destination have 

unlimited capacity to accommodate trains. In other words, we ignore any constraints on 

the operations at and before the origin, and at and after the destination. However, the 

headway constraints on the main track immediately after the origin and immediately 

before the destination are considered. Note that the origin and destination have been 

ambiguously defined so either or both of these locations may represent stations of simply 
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points on a track. However, the destination is also known as “stations S + 1” so that the 

parameter travS+1 can be used do denote the travel time from origin to destination. 

In this chapter, the problem from Bergmann (1975) is restated using the new 

notations introduced above; mathematical model is modified by adding a second 

objective and removing unnecessary variables; the first numerical analysis is performed 

by considering hundreds of randomly generated instances with up to 70 stations; and an 

algorithm is proposed to identify total number of optimal solutions. 
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Figure 3.2 Cyclic train timetable depicted as a time-space diagram 

O
rigin

 

Destination 

1 

2 

3 

S
ta

ti
on

s 

trav1 

Interval 

trav2 

hStation2 
dMin2 

D2 

dMax 

hTrack 

Time 

trav2-trav1 

Interval

                                                                                                         



45 
 

 
 

3.2. Review of related works 

This chapter focuses on passenger railway systems. Within this category, we focus on 

timetable optimization—otherwise known as train scheduling. As discussed in Chapter 1 

(Figure 1.1), timetabling is one of the four main tactical problems that are solved during 

the overall railway planning process. As mentioned in Chapter 1 and according to 

Gorman (2010), train scheduling is the most popular topic in the railway operations 

literature, comprising about 19% of all articles published. Furthermore, the general topic 

of train scheduling and track capacity accounts for about 40% of all articles in the railway 

operations literature that present optimization models. Thus, the general subject of the 

current investigation is hardly unfamiliar. 

Some of the early efforts in non-cyclic include Petersen (1974), Petersen and Taylor 

(1982), Ceder (1991), Jovanovic and Harker (1991), Kraay et al. (1991), Carey and 

Lockwood (1995), Higgins et al. (1996), Brännlund et al. (1998), Caprara et al. (2002), 

Zhou and Zhong (2005), Caprara et al. (2006), Dessouky et al. (2006), Carey and 

Crawford (2007), Zhou and Zhong (2007), D’Ariano et al. (2007), Abril et al. (2008b), 

Castillo et al. (2009), Burdett and Kozan (2009a), Burdett and Kozan (2009b), Liu and 

Kozan (2009), Burdett and Kozan (2010a), Burdett and Kozan (2010b), Cacchiani et al. 

(2010), Castillo et al. (2011), Liu and Kozan (2011), Harrod (2011), and Narayanaswami 

and Rangaraj (2013).  

We have already shown that cyclic railway timetabling has been addressed by about 

30 articles in the literature which most of them are based on the concept of Periodic 

Event Scheduling Problem (PESP) first introduced by Serafini and Ukoich (1989) in their 

seminal paper. The PESP is known as an NP-hard problem (Caprara et al., 2007). Those 
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studies that have been carried out based on the PESP include Odijk (1996), Nachtigall 

and Voget (1996), Peeters and Kroon (2001), Kroon and Peeters (2003), Lindner and 

Zimmermann (2005), Liebchen (2008), Liebchen and Möhring (2008), Liebchen et al. 

(2008), and Siebert  and Goerigk (2013).  Bergmann (1975) remains the only article that 

model cyclic train timetabling by mixed integer programming approach with the cycle 

length as the primary objective and decision variable which will create a quadratically 

constrained problem in the PESP paradigm.  

The current study gives an alternate definition of railway capacity and provides 

another method for finding the optimal level of line capacity by minimizing the cycle 

length. Recent studies that focus on railway capacity include Burdett and Kozan (2006), 

Abril et al. (2008a), Dingler et al. (2009), Harrod (2009), and Salido and Barber (2009). 

To the best of our knowledge, no article besides Bergmann (1975) has focused on the 

alternate definition used in the current study. 

Regarding the objective function, the work by Bergmann (1975) appears to be unique 

in that it is the only article to (1) consider a cyclic timetabling problem in which the 

minimization of the cycle length is the primary objective; (2) present a linear formulation 

of a cyclic timetabling problem in which the length of the cycle is a decision variable; 

and (3) focus on the alternate definition of railway capacity in which capacity is the 

minimum cycle length that can feasibly accommodate a given number of trains over a 

given section of track in each cycle. According to a Google Scholar, the article by 

Bergmann (1975) has not been cited even once as of May 31, 2013. This helps to explain 

why it remains a unique contribution in the literature despite being dated by almost 

40 years. One shortcoming of Bergmann (1975) is that the math model lacks an 
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accompanying numerical investigation. In the current study, we present a slightly 

modified version of the mathematical formulation presented in Bergmann (1975) and 

perform the first numerical study of the problem in which hundreds of problem instances 

with up to 70 stations are solved to optimality within a reasonable amount of computation 

time.  

3.3. Mathematical formulation 

In this section the mixed integer programming model is presented. The set of indices, 

parameters and decision variables, and their respective explanation, used to define the 

mathematical program are given in Table 3.1. The input data consists of eight primary 

parameters (S, travs, dMins, hTrack, hStations, dMax, wk and M) and one secondary 

parameter maxExpr that is derived from the primary parameters. The primary parameters 

are described in Section 3.1. For this model four decision variables are defined that will 

be defined in this section. 

In this model, three decision variables are related to time; hence they take real values. 

A by-product of this model is to sequence trains on the main track when a local train join 

the main track at the merge point just downstream any station. In other words, we must 

decide either local or express train goes first. The four decision variables are Interval, 

Ds,	∆, and the binary variable Yts. 
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Figure 3.3 Illustration of the number of express trains (maxExpr = 11 in this case) that must be compared to the 
local train that departs the origin at time 0 in order to guarantee solution feasibility with respect to the headway 
hTrack on the main line. 

 

 

The secondary parameter, maxExpr, represents the maximum number of express 

trains that could possibly come within hTrack minutes of the first local train (i.e. the local 

train that departs at time 0) on any portion of the main track. As illustrated in Figure 3.3, 

maxExpr gives the number of express trains that must be compared to first local train in 

order to guarantee solution feasibility with respect to the headway hTrack on the main 

line for the first local train versus all express trains. But, owing to the repetitive, cyclic 

nature of the timetable, the satisfaction of all main track headway constraints involving 

the first local train and all express trains implies satisfaction lf all main track headway 

constraints involving all local trains and all express trains. Note that maxExpr also 

provides an upper bound on the number of express trains that each local train meets 

during its journey. This latter quantity also equals the number of local trains that each 

express train passes during its journey. 
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Table 3.1 Indices, parameters and decision variables in mathematical model 

Indices  
k Objective function component (k = 1, 2) 
s Station (1 s S). 
t Express train 
Parameters  
S Number of intermediate stations excluding the origin and destination stations (integer, > 

0). 
travs Time required in minutes for an express train to travel from origin to the point at which 

local train returns to the main track just downstream from station s (real, > 0, 1 s
S+1). 

dMins
 

Minimum dwell time in minutes at station s for a local train (real, > 0, 1 s S) 
hTrack Minimum headway in minutes between successive trains on main track (real, > 0). 
hStations

 
Minimum required separation in minutes between two consecutive trains arriving at 
station s. This parameter combines the station approach velocity, emergency breaking 
system response time, train length, and level of operational deceleration, emergency 
deceleration and acceleration (real, > 0, 1 s S).   

dMax Maximum allowed difference in time (in minutes) which local and express trains 
require to travel between origin and destination (real, > 0).  

wk
 

Weight of objective k in the objective function (real, 0 wk  1). 
M A large positive number. 
maxExpr Maximum number of express trains that could possibly come within hTrack minutes of 

the first local train on the main track. 
Decision Variables 
Interval Interval at which both local and express trains are dispatched (real, > 0). 
Ds

 
Dwell time for a local train at station s or increase in train travel time due to stopping at 
station s rather than passing it (real, > 0).  

Δ Time when the first express train departs from the origin (real, > 0). 

1

0stY


 


 
If express train t arrives at the merge point just downstream from station s before the 
local train departing from the origin at time 0 arrives there. 
Otherwise (binary) 

 

The computation of maxExpr proceeds as follows. First, to maximize the number of 

express trains that could interfere with the first local train, we assume the first local train 

makes its journey. Using the maximum allowed time travS+1 + dMax from origin to 

destination, it therefore reaches the destination at time travS+1 + dMax. Then, to maximize 

the number of express trains that could interfere with the first local train, we assume that 

each express train leaves the origin as early as possible in each interval. So we assume 

the tth express train leaves the origin at time (t ˗ 1) × Interval + hTrack and reaches the 

destination at time travS+1 + (t ˗ 1) × Interval + hTrack. The secondary parameter 

maxExpr is the largest possible value of t such that the tth express train could reach the 
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destination less than hTrack minutes after the first local train reaches there. In other 

words, maxExpr is the largest integer t such that 

travS+1 + (t ˗ 1) × Interval + hTrack < (travS+1 + dMax) + hTrack 

 (3-1) 

 This can be simplified to 

(t ˗ 1) × Interval < dMax (3-2)

and further expressed as 

 1
dMax

t
Interval

    (3-3)

The unknown Interval appears in the denominator of (3-3). We therefore replace it 

with the higher of its two known lower bounds–2×hTrack and maxs {dMins + hStations}–

that are explained by the mathematical program below. In particular, the lower bound 

2×hTrack is identified by summing constraints (3-10) and (3-11), and lower bound maxs 

{dMins + hStations} is established by logically combining constraints (3-9) and (3-7). The 

replacement of Interval with its lower bounds ensures that maxExpr is conservatively 

calculated. In other words, maxExpr equals the highest value that is theoretically possible 

based on the extreme case where the length of each interval is as small as possible. The 

parameter maxExpr is therefore the largest integer t such that     

   1
2 , ,s s s

dMax
t

max hTrack max dMin hStation
 


  (3-4)

  

Note the strict inequality above. It follows that     

  2 , ,s s s

dMax
maxExpr

max hTrack max dMin hStation

 
  

  
 (3-5)
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In the above manner, maxExpr can be calculated based on the other input parameters 

and determined before the constraints in the math model are constructed. 

The four decision variables in the model are Interval, Ds, Δ, and Yst. As mentioned 

earlier, the first three variables take real values, and the last variable is binary. As 

mentioned in Section 3.1, Interval is the length in minutes of the dispatching cycle. It is 

the quantity we seek to minimize in this research. Ds is the stopping (delay, dwell) time 

of each local train in station s, and Δ is the time when the first express train departs the 

origin. The binary Yst variables indicate the sequence of trains on the main line; they help 

to enforce the headway restrictions on the main line. 

The mixed integer programming formulation of this problem is as follows:  

  Minimize  1 2
1

S

s
s

w Interval w D


    (3-6)

Subject to 

s sD dMin                                                                                      :1s s S     (3-7)

1

S

s
s

D dMax


  (3-8)

Interval ≥ Ds + hStations                                                                :1s s S      (3-9)

∆ ≥ hTrack (3-10)

Interval ˗ ∆ ≥ hTrack  (3-11)

 
1

1
s

q st
q

t Interval D MY hTrack


          

                                                                                     :1s s S      :1t t maxExpr     (3-12)

   
1

1 1
s

q st
q

t Interval D M Y hTrack
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                                                                                     :1s s S      :1t t maxExpr    (3-13)

The objective function (3-6) has two parts, weighted w1 and w2, which respectively 

pursue the minimization of the dispatching cycle and the minimization of the total delay 

experienced by the local train at all stations combined. Various objectives may be 

considered by changing the values of weights w1 and w2. The first objective is the main 

focus of this research, so w1 >> w2 in the most experiments in this research. Constraint (3-

7) defines the minimum dwell times for local trains at each station. Variable Ds has some 

minimum value, dMins, that is unique for each station. Constraint (3-8) ensures that the 

local train’s total dwell time in all stations combined does not exceed the maximum 

allowed value dMax. The main goal of this constraint is to measure the service level 

provided by the railway system. In other words, by putting an upper bound on the sum of 

dwell times the model tries to minimize travel time once a local train is dispatched from 

the origin. Moreover, this constraint represents the maximum difference in time which 

local and express trains require in traveling from stations 0  to station S (origin to 

destination). Constraint (3-9) enforces a minimum headway between trains in the 

stations. In particular, it ensures that the cycle length Interval is large enough so that the 

local train’s stop in each station s can be made without violating the minimum station 

headway value hStations. In other words, the departure time of a local train from station s 

and arrival time of the next local train after it into station s must be separated by a 

minimum headway of hStations minutes. Constraints (3-10) and (3-11) enforce the 

headway restriction on the main line between the origin and station 1.  

The last two constraints (3-12) and (3-13) are disjunctive constraints that enforce the 

headway restrictions on the main line between station 1 and the destination. In particular, 
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these constraints guarantee that express train t appears at the merge point just 

downstream from station s either hTrack minutes after (constraint (3-12)) or hTrack 

minutes before (constraint (3-13)) the first local train appears there for all t from 1 to 

maxExpr and for all s from 1 to S. In these constraints, the value travs has been removed 

from the traveling times of both express train t and the first local train because the travs 

values cancel each other out when the latter quantity
1

s

s qq
trav D


    is subtracted from 

the former [travs + (t ˗ 1) × Interval + ∆]. Note that, as argued earlier in this section, 

although constraints (3-12) and (3-13) only consider one local train and the first maxExpr 

express trains, it enforces headway constraints on the main track for all trains and all 

express trains owing to the repetitive, cyclic nature of the timetable.  

3.4. Illustrative examples  

In this section two small examples are given to depict how this model works. In the next 

section experimental study will be done. The above mathematical formulation was coded 

into Microsoft Visual C++ 2010. The code includes a procedure for automatically 

computing maxExpr before the constraints are constructed. ILOG Concert Technology 

was used to define the model within C++ and call the mixed integer linear programming 

solver IBM ILOG CPLEX 11.2 to solve instance within Windows XP environment on an 

IBM-compatible desktop computer with a 2.0 GHz processor and 2 GB of RAM.  

3.4.1 Illustrative example 1: 

For purpose of illustration a typical small size problem is solved. The input data for this 

problem instance is given in Table 3.2. The result of this example in a form of timetable 

is given in Table 2.3. The timetable displays the values of Interval and Ds at the top and 
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detailed schedules for the first five local and five express trains at the bottom. The 

schedule of each train is fully defined by the arrival and departure times of the train at 

each station as shown in Table 3.3. This solution is obtained in less than a second. Figure 

3.4 shows the same solution displayed in the form of time-space diagram. The diagram 

displays the progression of the first three local trains and first four express trains from the 

origin to destination. Local (express) trains are indicated with solid (dashed) lines.  

As Table 3.3 and Figure 3.4 indicate, the optimal value for this instance–the 

minimum value of Interval–is 4 min. This value is higher than the obvious lower bound 

for Interval owing to station headway constrains alone (maxs{dMins + hStations} = 2), 

and it is also higher than the obvious lower bound for Interval owing to main track heady 

constraints alone (2×hTrack = 3). In addition, the minimum value of Interval is also 

higher than the obvious lower bound of 3.5 that can be obtained by considering the main 

line headway constraints before and after, and the station headway constraints within, a 

single station where an express train passes a local train. Thus, the cyclic nature of the 

timetable and inclusion multiple stations lead to a non-intuitive result even for this small 

problem instance.  

 

 

Table 3.2 Input data for example 1 
S hTrack hStations dMax w1 w2 
4 1.5 0.5 for all s 15 1 0 
 Station 1 Station 2 Station 3 Station 4 Destination 

dMins
 

0.5 0.5 1.5 1.5 - 
travs

 
1.5 5 10.5 14 15 

maxExpr 5     
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Note in Table 3.3 and Figure 3.4 that the total delay time for each local train is 

3.5+0.5+3.5+3.5=11 min which is less than the maximum allowed delay of 15 min. In 

addition, note that each local train is passed by three express trains–in stations 1, 3, and 

4– and each express train passes three local trains–also in stations 1, 3, and 4. Also, the 

actual number of express trains that come within hTrack = 1.5 min of the first local train 

on any portion of the main track is 3. However, a conservative maxExpr = 5 express 

trains are compared to the first local train in constraints (12) and (13) to guarantee, 

beyond a doubt, that no express train are ever less than the minimum headway hTrack 

minutes away from the first local train on the main line. 

 

 

 

Figure 3.4 Time-space diagram for the first optimal timetable in Example 1. 
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Table 3.3 An optimal timetable for example 1 (passing occurs in stations 1, 3, 4) 

Minimum Interval  4      
  Station 1 Station 2 Station 3 Station 4 Destination 
Ds  3.5 0.5 3.5 3.5 - 
 Departure time 

from origin 
     

  
  

Local 0 1.5-5 8.5-9 14.5-18 21.5-25 26 
Express 1.5 3 6.5 12 15.5 16.5 
Local 4 5.5-9 12.5-13 18.5-22 25.5-29 30 
Express 5.5 7 10.5 16 19.5 20.5 
Local 8 9.5-13 16.5-17 22.5-26 29.5-33 34 
Express 9.5 11 14.5 20 23.5 24.5 
Local 12 13.5-17 20.5-21 26.5-30 33.5-37 38 
Express 13.5 15 18.5 24 27.5 28.5 
Local 16 17.5-21 24.5-25 30.5-34 37.5-41 42 
Express 17.5 19 22.5 28 31.5 32.5 

 

 

It is easy to see that there are multiple optimal solutions for this problem instance. 

Another optimal solution can be obtained by changing the delay times Ds of the local in 

station 1 and 2 from their current values of (3.5, 0.5) to (3, 1) while keeping all other 

aspects of the solution unchanged. We say that two optimal solutions are different in the 

trivial sense because they differ only in terms of timing (decision variables Ds and Δ) and 

not in terms of structure (decision variable Yst). On the other hand we say that two 

optimal solutions are different in the meaningful sense if they differ in terms of where 

passing occurs (decision variable Yst). 

We now solve the same problem instance with a modified objective function with 

weights w1 =1 and w2 = 0.001 to show that it has at least two meaningfully different 

optimal solutions. The weight for the second component of the objective function w2 is 

small enough so that it does not interfere with the primary goal of minimizing the cycle 

length but large enough to be able to identify, among all solutions tied for having the 

minimum Interval, a solution that ties for having the smallest total dwell time for the 

local train. The resulting optimal timetable is displayed in Table 3.4. Note that the 
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optimal value of Interval remains 4 but the total delay for the local train in all stations 

combined is 0.5+0.5+3.5+3.5=8 min which is much less than before. Also, the passing 

structure is different than before because passing only occurs in stations 3 and 4. A 

generic method for finding all meaningfully different optimal solutions for any problem 

instance is the topic of a future study. 

3.4.2 Illustrative example 2: 

As another numerical example, a railway system with 8 stations is considered. The input 

data are given in Tables 3.5. Table 3.6 shows an optimal solution for this instance in the 

form of a timetable. This solution is obtained in about one second. Figure 3.5 shows the 

same solution displayed in the form of a time-space diagram. As Table 3.6 and Figure 3.5 

indicate, the minimum value of Interval for this instance is 4 min. Again, this value is 

higher than the obvious lower bound for Interval owing to station headway constraints 

alone (3.5), and it is also higher than the obvious lower bound for Interval owing to main 

track headway constraints alone (= 2). Note in Table 3.6 that the total delay time for each 

local train is 17 min which is less (greater) than the maximum (minimum) possible total 

delay time of 18 (16) minutes. Finally, note that each local train is passed by four express 

trains–in stations 2, 4, 5, and 8–and each express train passes four local trains–also in 

stations 2, 4, 5, and 8. Also, the actual number of express trains that come within hTrack 

=1 min of the first local train on any portion of the main track is 4 which less than 

maxExpr = 6 for this example.  
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Table 3.4 A second optimal timetable for example 1 (passing occurs at stations 3 and 4 only) 

Minimum Interval  4        
  Station 1 Station 2 Station 3 Station 4 Destination 
Ds  0.5 0.5 3.5 3.5 - 
 Departure time 

from origin 
     

  
   

Local 0 1.5-2 5.5-6 11.5-15 18.5-22 23 
Express 2.5 4 7.5 13 16.5 17.5 
Local 4 5.5-6 9.5-10 15.5-19 22.5-26 27 
Express 6.5 8 11.5 17 20.5 21.5 
Local 8 9.5-10 13.5-14 19.5-23 26.5-30 31 
Express 10.5 12 15.5 21 24.5 25.5 
Local 12 13.5-14 17.5-18 23.5-27 30.5-34 35 
Express 14.5 16 19.5 25 28.5 29.5 
Local 16 17.5-18 21.5-22 27.5-31 34.5-38 39 
Express 18.5 20 23.5 29 32.5 33.5 

 

 

 

 

Figure 3.5 Time-space diagram for the optimal timetable in Example 2. 
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Table 3.5 Input data for example 2 

S hTrack hStations dMax w1 w2 
8 1 0.5 for all s 18 1 0 

 Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Destination Total 
dMins

 
1 2 2 3 3 1 1 3 - 16 

travs
 

2 5 8 12 17 24 25 29 33 - 
maxExpr  9         

 

 

Table 3.6 An optimal timetable for example 2 (passing occurs in stations 2, 4, 5, 8) 
Minimum Interval  4       

  Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Destination 
Ds  1 3 2 3 3 1 1 3 - 
 Departure time from origin          

Local 0 2-3 6-9 12-14 18-21 26-29 36-37 38-39 43-46 50 
Express 3 5 8 11 15 20 27 28 32 36 
Local 4 6-7 10-13 16-18 22-25 30-33 40-41 42-43 47-50 54 

Express 7 9 12 15 19 24 31 32 36 40 
Local 8 10-11 14-17 20-22 26-29 34-37 44-45 45-46 51-54 58 

Express 11 13 16 19 23 28 35 36 40 44 
Local 12 14-15 18-21 24-26 30-33 38-41 48-49 50-51 55-58 62 

Express 15 17 20 23 27 32 39 40 44 48 
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3.5. Experimental setup, results, and discussion 

In order to study the problem applicability, a number of problems are solved in this 

section. These problems can be classified as small, medium and large. The size of the 

model, like other mixed integer programming problems, depends on the number of 

constraints and decision variables and its difficulty refers to the number of binary 

decision variables which is a function of number of stations and number of intervals.  

We now perform the first numerical study of this problem to demonstrate the 

effectiveness of the model presented in Section 3.3. The problem instances are defined by 

the values of the input parameters S, travs, dMins, hTrack, hStations, dMax, wk, and M. 

Table 3.7 shows the parameter values that appear most often in the numerical study. The 

brackets “ , ” indicate the set of integers in the closed interval from a to b. Note that 

travs does not appear in the math model and therefore plays only a trivial role in defining 

each problem instances. Also, hStations = 0.5, for all stations s, w1 = 1, w2 = 0.0001, and 

M = 9999 in all experiments unless otherwise noted. Thus, the main parameters defining 

each problem instance are S, dMins, hTrack, and dMax. Note that every combination of 

parameter values satisfying
1

S

ss
dMax dMin


 leads to a feasible solution. In the 

majority of experiments, all input data are rounded to the nearest 0.5, so the optimal value 

of Interval is usually restricted to being a multiple of 0.5. The main objective of the math 

model is to minimize the cycle time and the secondary, subordinate objective is to 

minimize the total delay experienced by the local train. These two objectives are pursued 

in hierarchical fashion by setting w1=1 and w2=0.0001 in the majority of experiments. 

Note that there is no chance for weight w2 = 0.0001 to interfere with the pursue of the 
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first objective as long as (A) all input data are rounded to the nearest 0.5 and (B) dMax < 

5000. 

Table 3.8 shows the results from the first set of experiments in which 45 problem 

instances are solved to optimality. The main parameters defining each instance are given 

on the left side of the table. In the first 40 (last five) instances, all input data are rounded 

to the nearest 0.5 (0.01). Note that w1=1, w2=0.0001, hStations=0.5 for all s, and dMax = 

1.5 ×∑dMins + U ~ (1, 10) in all instances. In the first 40 instances, this random variable 

is rounded to the nearest integer. The main aspects of the optimal solution for each 

instance are given on the right. The results show that very large problems with up to 70 

stations can be solved to optimality within reasonable amount of time.  

  

Table 3.7 Most frequently used parameter values in the numerical study 

Parameters Possible Values 
S 5, 10, 15, 20, 30, 40, 50,60, 70 
travs - travs-1 [1,20] 
dMins [1,5] 
hTrack [1, 6] 
hStation 0.5 
dMax [20, 560] 
(w1,w2) (1,0.0001) 
M 9999 

 

Table 3.9 shows the results from a second set of experiments in which 32 problem 

instances–organized into eight groups of four instances each– are solved to optimality. 

The main parameters defining each instance are given on the left side of the table. The 

main aspects of the optimal solution for each instance are given on the right. The 

instances range in size from 5 to 70 stations. Each instance with ten or more stations is 

constructed by adding stations to the end of the corresponding instance with fewer 

stations. For example, the instance with 50 stations and hTrack=2 (in row 21) is 
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constructed by adding ten stations to the end of the instance with 40 stations and 

hTrack=2 (in row 17); the value of dMins for 1 ≤ s ≤ 40 are preserved. The results in 

Table 3.9 shows that, for the particular instances considered, the optimal value of Interval 

is not very sensitive to the problem size. Indeed, the optimal value of Interval in most 

instances with 10-70 stations is equal to the optimal value of Interval for the 

corresponding instance of the next smallest size and with the same hTrack. This 

observation may be a sequence of the particular problem instances considered and may 

not be a general phenomenon. 

Table 3.9 also shows how the CPU runtime required to find an optimal solution is 

affected by a problem’s input parameters. In particular, the integer-group results show 

that CPU runtime generally increase when S and maxExpr are simultaneously increased. 

This is not surprising because the number of decision variables and constraints increases 

when either S or maxExpr is increased. Surprisingly, the intra-group results in Table 3.9 

show that runtime generally increases (i.e. the problem becomes more difficult) when 

hTrack and dMax are simultaneously increased and S and maxExpr are held constant. 

This result is somewhat less intuitive because neither the number of decision variables 

nor the number of constraints increases when S and maxExpr are held constant. The 

increase in difficulty corresponds to an increase in the number of options that must be 

considered in order to verify that a given feasible solution is optimal. We hypothesize 

that this increase in difficulty reflects an increase in the decision maker’s flexibility. If 

this view is correct, it would imply that the reduction in flexibility created by an increase 

in hTrack is more than cancelled out by the increase in flexibility offered by an increase 
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in dMax, assuming maxExpr is constant. Overall, it appears that more experiments may 

be necessary to understand the exact origin of the runtime trends in Table 3.9.  

Table 3.8 Results from the first set of experiments (dMax = 1.5*∑dMins + U(1,10)). 

Problem instance Optimal solution 

S  

S

s sdMin
1

hTrack dMax maxExpr Interval 
No. local trains 
passed by each 
express train 

Total dwell 
time for each 

local train 

CPU 
time 
(sec) 

10 32 1 45 9 5.5 6 33 3 
 25 3 41 7 9 4 37 3 
 18 4 30 4 13 2 28 3 
 24 5 44 5 15 3 44 4 
 23 2 39 9 5.5 7 38 3 
 24 1 42 8 5.5 5 26 3 
 29 2 46 9 6 7 40 5 
 24 3 37 7 9 4 36 3 
 22 4 42 6 12 3 36 3 
 31 5 52 6 17 3 48 3 

30 69 4 111 14 16 7 110 10 
 73 5 118 12 19 6 117 8 
 70 5 107 11 21 5 107 5 
 74 3 115 20 11 10 112 12 
 68 4 107 14 15 7 105 8 
 67 1 103 19 5.5 13 74 5 
 77 2 122 23 6.5 19 122 9 
 73 1 118 22 5.5 15 81.5 4 
 72 2 111 21 7 14 96 12 
 78 5 124 13 21 6 123 10 

50 116 1 183 34 5.5 23 126 9 
 146 4 226 29 16 14 222 358 
 137 3 206 35 11 19 204 704 
 122 5 185 19 23 8 178 58 
 172 4 267 34 14 19 265 222 
 134 5 210 21 20 10 206 109 
 133 5 209 21 20 10 200 64 
 165 1 255 47 5.5 34 185.5 27 
 161 5 245 25 22 11 238 214 
 151 2 232 43 7 29 200 431 

70 194 5 294 30 22 13 291 671 
 229 2 345 63 6.5 49 318 1015 
 228 1 347 64 6 41 243 157 
 209 5 314 32 23 13 304 718 
 197 5 299 30 22 13 285 440 
 235 2 356 65 7 45 316 2877 
 198 3 304 51 11 26 287 14772 
 191 4 292 37 17 17 285 1613 
 194 4 294 37 17 17 285 2020 
 214 5 325 33 22 14 311 1560 

31 103.96 1.27 158.27 30 5.59 23 125.31 6 
39 112.87 4.34 174.75 21 17.78 9 168.98 24 
43 137.55 3.20 214.12 34 12.15 17 207.94 101 
56 172.47 2.33 260.43 48 8.20 30 248.96 489 
67 196.21 1.89 295.58 54 6.75 44 294.03 2719 
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Table 3.9 Results from the second set of experiments 

Problem instance Optimal solution 

S  

S

s sdMin
1

 hTrack dMax maxExpr Interval 

No. local trains 
passed by each 
express train 

Total dwell 
time for 

each local 
train 

CPU 
time 
(sec) 

5 11 2 12 3 9 1 12 5 
  3 18 3 9 2 18 5 
  4 24 3 11 2 23 7 
  5 30 3 13 2 29 4 

10 22 2 24 6 12 2 24 4 
  3 36 6 9 4 36 4 
  4 48 6 11 4 44 4 
  5 60 6 13 4 52 5 

15 34 2 36 9 15 2 36 4 
  3 54 9 11 4 52 5 
  4 72 9 11 6 67 6 
  5 90 9 13 6 79 4 

30 64 2 72 18 12 6 72 5 
  3 108 18 9 12 108 10 
  4 144 18 11 12 132 14 
  5 180 18 13 13 159 16 

40 79 2 96 24 12 7 90 27 
  3 144 24 9 15 135 42 
  4 192 24 11 15 165 54 
  5 240 24 13 16 205 144 

50 100 2 120 30 12 9 113 85 
  3 180 30 9 20 179 485 
  4 240 30 11 19 211 897 
  5 300 30 13 20 260 1504 

60 121 2 144 36 12 12 144 338 
  3 216 36 9 23 207 7755 
  4 288 36 11 23 256 6230 
  5 360 36 13 23 299 31144 

70 140 2 168 42 12 13 164 575 
  3 252 42 9 27 244 6332 
  4 336 42 11 27 298 254063 
  5 420 42 13 28 362 779530 

 

Table 3.10 presents the results of a third set of experiments that aim to isolate, and 

separately measure, the impact of hTrack and dMax on the runtime and optimal value. In 

all instances, S=70, w1=1, w2=0, hStations=0 for all s, and the values of dMins for 1 ≤ s ≤ 

40 are held constant. The results show that runtime generally increases as dMax increases 

with everything else unchanged. However, there are many specific cases that disagree 

with this general trend. The impact of hTrack on runtime is more difficult to distinguish. 
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Overall, it appears that runtime is concave in hTrack. That is, runtime increases as hTrack 

increases for small values of hTrack and runtime decreases as hTrack increases for large 

values of hTrack. If correct, this observation would indicate that the most difficult 

problems are characterized by an intermediate value of hTrack that is neither very low 

nor very high.  

Figure 3.6 is a graphical representation of the results regarding optimal value in Table 

3.10. The impact of dMax on optimal value is straightforward. As Figure 3.6 and Table 

3.10 demonstrate, the optimal value Interval is a decreasing and generally convex 

function of dMax when all other parameters are held constant. That is, the decrease in 

Interval is largest for small dMax and is 0 for large values of dMax that exceed a certain 

threshold value that depends on hTrack. The very large decrease in Interval when dMax 

changes from 140 to 150 can be attributed to the fact that the decision maker has no 

flexibility when dMax = 140 = ∑dMins Indeed, when dMax=140, the schedule of the first 

local train is already fixed  for alls sD dMin s . Thus, the decision maker’s only task is 

to find the starting times of the first express train and second local train such that the 

cycle length is minimized and the cyclic timetable is feasible. The optimal value of 17 

when hTrack=1 and dMax=140 indicates that between 8 and 9 express trains pass the first 

local train in the optimal timetable. In other words, the decision maker is lucky to find a 

feasible timetable that includes a lot of passing. The optimal values of (144, 146, 148, 

150, 152) when hTrack = (2, 3, 4, 5, 6) and dMax=140 indicate that there is no train 

passing in the optimal timetables for these highly-constrained instances. Figure 3.6 and 

Table 3.10 also show that Interval is an increasing function of hTrack when dMax and all 
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other parameters are held constant. This result agrees with our intuition that the problem 

becomes more constrained as the headway on the main line increased. 

 

 

 

 

 

 

Figure 3.6 Graphical representation of Table 3.10 showing the effect of parameters dMax and hTrack on 
decision variable Interval for a 70-stations problem instance.  
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Table 3.10 Effect of parameters dMax and hTrack on the optimal value (Interval) and runtime (in seconds) for a 
problem instance with 70 stations (w1 = 1, w2 = 0, and	∑ ) 

dMax 
hTrack 

1 2 3 4 5 6 

Interval Time Interval Time Interval Time Interval Time Interval Time Interval Time 

140 17 7 144 3 146 4 148 2 150 2 152 4 

150 8 559 21 86 43 114 53 12 80 8 82 10 

160 5 348 15 277 28 268 42 44 55 18 57 23 

170 5 961 12 708 22 571 30 49 37 25 47 24 

180 4.5 942 10 1246 18 1347 25 85 32 42 39 30 

190 4.5 1254 7 429 14 798 22 107 29 77 34 41 

200 4.5 1043 7 638 14 2357 20 171 26 108 31 48 

210 4.5 898 7 1886 14 4471 19 335 24 118 28 54 

220 4.5 2247 7 6140 12 1756 16 381 22 186 27 111 

230 4.5 1408 7 3454 11 3600 16 1950 21 240 25 227 

240 4.5 2006 7 9782 11 17972 16 2939 20 336 24 231 

250   7 6692 9 8797 14 1043 18 420 23 590 

260   6.5 3302 9 1548 14 2199 18 1780 23 1104 

270   6.5 1669 9 3357 13 2492 18 1465 20 246 

280   6.5 4094 9 4248 13 5433 18 2637 20 387 

290   6.5 14114 9 3794 13 10870 16 3377 20 522 

300   6.5 24915 9 1654 11 2381 16 4310 20 1115 

310   6.5 10874 9 1948 11 1515 15 4017 20 3077 

320   6.5 91560 9 2535 11 1435 15 10968 19 2614 

330     9 2430 11 7734 15 4288 18 1507 

340     8.5 7307 11 2036 15 27004 18 10282 

350     8.5 7835 11 1602 14 13897 17 5249 

360     8.5 17854 11 1866 13 6351 17 8737 

370     8.5 5858 11 2292 13 1085 17 21388 

380     8.5 4645 11 13172 13 2396 17 10065 

390     8.5 16058 11 5910 13 5713 17 18195 

400     8.5 5691 11 10404 13 3415 16 15091 

410       10.5 3509 13 2537 15 5555 

420       10.5 6609 13 14177 15 2758 

430       10.5 28285 13 26895 15 5248 

440         13 4377 15 3463 

450         13 3269 15 1532 

460         13 5213 15 3872 

470         13 2505 15 12885 

480         13 61151 15 31523 

490         12.5 46230 15 3125 

500           15 22169 

510           15 6808 

520           15 2521 

530           15 19522 

540           15 2079 

560           15 60948 
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Table 3.11 shows the results from a fourth set of experiments in which 27 problem 

instances–organized into three groups of nine instances each– are solved to optimality. 

The main parameters defining each instance are given on the left side of the table and the 

main aspects of the optimal solution for each instance are given on the right. These 

experiments investigate the effect of the number of stations on the optimal value when 

dMax, hTrack, and ∑dMins are held constant. In other words, we explore the effect of 

having (A) few stations with long dwell times at each station versus (B) many stations 

with short dwell times at each station on the optimal value of Interval. Put another way, 

we consider how the number of stations, over which the same total minimum dwell time 

is ∑dMins spread, affect the optimal value of Interval. 

The intra-group results in Table 3.11 reveal an interesting phenomenon, namely that 

the optimal value of Interval is generally convex in the number of stations over which 

same ∑dMins value is spread. In particular the optimal value of Interval is smallest when 

the number of stations over which the same ∑dMins value is spread neither very small nor 

very large, but rather an intermediate value. Not surprisingly, the values in the “number 

local trains passed by each express train” column have the opposite trend as those in the 

Interval column. Indeed, the smallest optimal value of Interval is attained precisely when 

the number of local trains passed by each express train in the optimal solution reaches its 

highest value. Regarding CPU runtime the intra-group results in Table 3.11 show that the 

runtime generally increases–i.e. the problem becomes more difficult–as the number of 

stations S increases. Also, the inter-group results show that the problem generally 

becomes more difficult when dMax and dMins are increased in the same proportion and 

the other parameters are unchanged. 
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Table 3.11 Effect of number of stations on the optimal value when dMax, hTrack and ∑dMins are held constant 

Problem Instance Optimal Solution 

dMax hTrack 


S

s
sdMin

1

 S Interval   

No. local 
trains passed 

by each 
express train 

Total dwell 
time for 

each local 
train 

CPU 
time 
(sec) 

100 3 70 5 14.5 3 5 70 8 
   10 13 4 7 85 7 
   15 10 3 10 100 8 
   20 9 6 10 90 9 
   30 10 7 10 100 12 
   40 14 9 7 98 24 
   50 15 12 6 97 191 
   60 15 12 6 98 181 
   70 16 12 6 100 371 

200 3 140 5 28.5 3 5 140 8 
   10 14.5 3 10 140 7 
   15 13.5 3 15 195 9 
   20 12 3 15 176 9 
   30 10 3 20 196 27 
   40 10 5 20 198 63 
   50 8 3 25 200 84 
   60 14 9 13 186 1313 
   70 14 5 14 196 3958 

300 3 210 5 42.5 3 5 210 9 
   10 21.5 3 10 210 7 
   15 15.5 3 15 223 8 
   20 15 3 15 222 9 
   30 12 3 20 237 12 
   40 12 6 20 237 166 
   50 9 3 25 225 46 
   60 9 4 32 286 29107 
   70 12 6 23 279 26784 

 

 

Table 3.12 shows the results from a fifth set of experiments that show the effect of the 

sequence of the same dMins values on the optimal value of Interval assuming all other 

parameters are unchanged. These experiments consider 48 problem instances. In every 

instance, S=15, w1=1, w2=0.0001, hStations=0.5 for all s, and the same set of dMins 

values are used. The exact sequence of dMins values considered for each instance is given 

in the left side of the table and the optimal value of Interval under four different 

combinations of values for dMax and hTrack are displayed on the right. Interestingly, the 

sequence of dMins values affects the optimal value of Interval in some cases but not in 
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others. When (dMax, hTrack) = (84, 3) or (104, 4), the optimal value of Interval is 

insensitive to the order of the dMins values. However, when (dMax, hTrack) = (84, 2) or 

(104, 3), the optimal value of Interval is sensitive to the order of the dMins values. Based 

on these results, we hypothesize that the optimal value of Interval becomes more 

sensitive to the sequencing of the dMins values as hTrack decreases or dMax increases. 

The results seem reasonable because the size of feasible region increases–i.e. the problem 

becomes less constrained–as hTrack decreases or dMax increases. More experiments are 

probably needed to understand the exact mechanism by which the sequence of the dMins 

values impacts the optimal values of Interval. 

 

Table 3.12 Effect of the sequence of dMins values on Interval with all other parameters unchanged. 

Optimal value of Interval is shown in the shaded region 
dMax dMax 

84 104 
dMins for s = hTrack hTrack 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 3 4 
1 1 2 2 2 4 4 4 4 4 4 4 4 5 5 8 10 10 12 
1 1 5 5 4 4 4 4 4 4 4 4 2 2 2 8 10 10 12 
2 2 2 1 1 4 4 4 4 4 4 4 4 5 5 8 10 10 12 
2 2 2 5 5 4 4 4 4 4 4 4 4 1 1 8 10 10 12 
5 5 1 1 2 2 2 4 4 4 4 4 4 4 4 8 10 10 12 
5 5 2 2 2 4 4 4 4 4 4 4 4 1 1 8 10 10 12 
5 2 1 1 4 4 4 4 4 5 2 2 4 4 4 7 10 10 12 
4 4 4 4 4 5 2 1 1 5 2 2 4 4 4 7 10 10 12 
2 1 5 4 4 4 4 1 4 5 4 4 4 2 2 6.5 10 8.5 12 
4 4 4 4 4 2 1 1 5 5 2 2 4 4 4 6.5 10 8.5 12 
5 2 1 4 4 4 4 1 4 5 2 2 4 4 4 6 10 8 12 
5 2 1 4 4 4 4 1 4 5 4 2 2 4 4 6 10 8 12 

 
 

Figure 3.7 shows the results from a final set of experiments that explore the trade-off 

between the minimization of Interval and the minimization of the total dwell time of the 

local train at all stations combined. This trade-off can be analyzed by adjusting the 

objective function weights w1 and w2. Figure 3.7 displays Pareto-optimal solutions for 

problem instances with 10-20 stations for six different values of hTrack. The horizontal 
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(vertical) axis indicates the local train’s total dwell time in minutes (the value of Interval) 

in the optimal solution. Graphs A-F pertain to a 10-station problem when hTrack equals 

to 1, 2, 3, 4, 5, and 6 respectively. Graphs G-L (M-R) show the results for a 15- (20-) 

station problem with the same hTrack values respectively. The steepness of the left 

portion of each curve indicates that in many cases it is possible to obtain substantial 

reduction with respect to objective 1 (the value of Interval) with only a small increase in 

objective 2 (total dwell time of the local train at all stations combined). The converse is 

also true. Indeed, in many cases it is possible to obtain substantial reduction with respect 

to objective 2 at the cost of little or no increase in objective 1. 
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Figure 3.7 Pareto optimal solutions for problem instances with 10-20 stations for six different hTrack values 
(horizontal axis = local train’s total dwell time in minutes, vertical axis = Interval). Graphs A-F relate to a 10-
station problem when hTrack equals to 1, 2, 3, 4, 5, and 6 respectively. Graphs G-L relate to a 15-station 
problem and graphs M-R relate to a 20-station problem with the same hTrack values, respectively.  
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3.6. Alternate optimal solutions 

As mentioned earlier in this chapter, one characteristic of this timetabling problem is the 

case of multiple optimal solutions (alternate optima) with respect to the first and main 

objective function of the problem, i.e. Interval. Also as discussed, by multiple optimal 

solutions we mean that two optimal solutions are different in the meaningful sense, i.e. 

passing occurs at different station or equivalently the locals meet different number of 

express trains in its journey from origin to destination. In other words, in two sets of 

solutions if the numbers of expresses are equal, express trains must pass the local at 

different stations but the two solution sets have the same optimal value of Interval; or the 

local meets different number of expresses in two different set for the same value of 

Interval. 

Now, the question is how to find other optimal solutions. This is of great importance 

from planning and decision making point of view. Since our emphasis is on the main and 

primary objective, from this point toward the end of this chapter we just focus on the 

single objective problem, rather than a multiple objective. But, we will make use of the 

secondary objective to find other optimal solutions. As defined, in our model with respect 

to the first objective, those solutions are considered as alternate which have different set 

of binary variables. Therefore, one method of finding alternate optima is equivalent to the 

weighted sum approach for multiple objective functions where the alternate optima can 

be obtained by varying weights (Cohen, 2003).   

Consider the following maximization problem and suppose that wk > 0, 1, ,k h   , 

and wk=0 for 1, 2, ,k h h p     .  
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 Maximize  

   1 2 1 1 2
1

, , , ; , , , , ,
p

n p k k n
k

Z x x x w w w Z x x x


    
(3-14)

Subject to 

  1 2, , , n Dx x x F   (3-15)

where (3-15) means that the constraints of the model must satisfy  DF  or solution space 

of the model. Suppose that we solve the above model and find alternate optimal solutions 

that give   *
1 2, , ,k n kZ x x x Z for 1, ,k h  . Then the following problem can be solved 

to find alternative optima. 

 

Maximize  

 1 2
1

, , ,
p

k k n
k h

w Z x x x
 
   

(3-16)

Subject to 

  1 2, , , n Dx x x F   (3-17)

                       *
1 2, , ,k n kZ x x x Z   1, ,k h   (3-18)

 

The values of wk are chosen in various combinations to find an approximation of other 

alternate optima. For our timetabling problem, a similar method is used. 

According to this method, for our mixed integer program three groups of instances 

with various numbers of stations are considered (10, 15 and 20 stations). For each group 

six different values of hTrack are considered. In order to find other optimal solutions, the 

second expression, total dwell times at stations, is added to the main objective, Interval. 
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The results are given in Table 3.13. For each 18 instances in Table 3.13, eight problems 

are solved with different coefficient for total dwell times, while keeping Interval 

coefficient fixed at 1. The coefficient set used are: (1, 0), (1, 0.0001), (1, -0.0001), (1, 

0.001), (1, -0.001), (1, 0.01), (1, -0.01) and (1, 0.1). Among these 8 cases for each 

instances, only for 10-station group the coefficient (1, 0.1) had the same objective value 

for Interval as other 7 sets. In other words, for 10-stations group we considered 48 

instances, 8 for each level of hTrack, and for two other groups 42 instances were 

considered. 

After showing the existence of alternate optima and describing a method based on 

weighted sum approach, we will present a procedure for the equivalent single objective 

problem (i.e. w1 =1 and w2 =0) of our mixed integer linear program for cyclic train 

timetabling. But before doing so, let us look at some previous works done on finding 

alternate optimal solutions for mixed integer programming models. There are some works 

in the literature devoted to development of techniques of generating other (near) optimal 

solutions. Among them we can name the work by Lee et al. (2000) which generates 

multiple optimal solutions for LP, Glover et al. (2000) use an MIP-based heuristic to 

generate multiple optimal solutions for MIP, and Danna et al. (2007) develops three 

heuristics namely one-three algorithm, a branch-and-bound-based algorithm, an 

algorithm based on MIP heuristics and an algorithm generalized from previous approach 

which generates multiple solutions sequentially. These three approaches are used in 

CPLEX. None of these approaches are applicable to our problem due mainly to the 

structure of the model and binary decision variables and their relationship. Therefore, a 
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similar method based on fixing variables, called “fix-and-cut”, is developed to find other 

optimal solutions which will be discussed hereafter. 

 Like other algorithms for generating optimal solutions, in our method, we first solve 

the problem to optimality in order to find the optimal value of the primary objective, 

Interval. Then, like weighted sum approach, the optimal value of the objective function is 

added to the model as a constraint. In the next step a binary decision variable (Yst) is 

forced to take on value 1. This is very close to the well-known method proposed by Balas 

and Jeroslow (1972) for finding other optimal solution for especial case of binary 

variable by adding one constraint to cut off the current solution and make it infeasible. 

There are differences between the proposed method and the one proposed by Balas and 

Jeroslow (Balas and Jeroslow, 1972) though. These differences are because of the special 

structure of the train timetabling mathematical model which will be discussed shortly. 

Based on this brief introduction, we are now ready to present the technique for 

finding all optimal solutions. This technique works in three steps: 

 

Step 1: 

Solve the problem and find the optimal solutions to binary variables and optimal 

value of objective function (Interval) 

Step 2: 

Add the objective function to the constraints and take binary decision variables 

into the basic by changing their values from 0 to 1. If this change leads us to a 

feasible, thus optimal, solution and it is new add it to Multiple Optimal Solutions; 
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if it becomes infeasible delete that decision variable from further consideration, 

thus fathomed.  

Step 3: 

Continue until there is no binary decision variable to be added to the basic. 

 

For illustration purposes and without loss of generality, consider an instance with 5 

intermediate stations with the following binary solutions shown  

Y11 = 1 

Y21 = 1 

Y31 = 1,  Y32 = 1 

Y41 = 1, Y42 = 1, Y43 = 1 

Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 

 

This output says that 4 expresses pass the first local at stations 1, 3, 4 and 5. As can be 

seen from the solution Ys1 = 1, 1,...,5s  . It is true since once an express train passes 

the local it cannot be overtaken by the same local, meaning that once an express arrives at 

the merge point of station s, it will arrive at all stations after station s. So all arrays should 

equal 1 in the column related to the express train after row s. Therefore, in the above 

solution, since the first express passes local at station 1, all entries in the first column 

should be 1.  The second express passes local at station 3, so in the second column all 

entries from row three should be 1 inclusive. Similarly, the third and fourth expresses 

pass the local at station 4 and 5 respectively. Therefore, in the third column all entries 
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after row 4, and in the fourth column the array in row 5 should be 1 (Note that the 

secondary parameter maxExpr is 4 for this typical example, therefore the size of matrix is 

5 × 4).  

From above description it can be revealed that binary decision variables have a 

special characteristics enforcing that a binary decision variable, say Yst can take on 1 only 

if 1, 1s tY   has taken value 1. This is because at each station at most one express can pass 

local while it dwells there, which is based on the assumption that in each interval there is 

only one express train. For instance, in the above solution the first express pass the first 

local at station 1 (Y11 =1) and the second express passes it at station 3 (Y32 = 1), but since 

Y11 = 1, it possible to consider another case where (Y22 = 1). Therefore, we fix Y22 at 1 

and add Y22=1 and objective function to the constraints, if it returns another solution, 

which is optimal; we consider the just generated solution as a new and different optimal 

solution with regard to Yst. Solving this new problem gives us the following optimal 

solution and since it is different from the above we can consider it as a new optimal 

solution.  

Y11 = 1 

Y21 = 1, Y22 = 1 

Y31 = 1, Y32 = 1 

Y41 = 1, Y42 = 1, Y43 = 1 

Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 

 

In the new optimal solution four expresses pass the first local at stations 1, 2, 4 and 5.  
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To restate the procedure used in the example, suppose that we can show the optimal 

binary decision variables in the matrix form as 

1 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 
 
 
 
 
 
  

 

Considering the initial optimal solution as the root of branching tree, we start from the 

upper left corner and take in (out) each binary decision variable to (of) basis. If it results 

in a new solution, we consider it as a new optimal solution and branch out from that node 

down the tree; otherwise we do not need to consider any node downward, so fathomed. 

This process is closely similar to branch and bound schematically. This technique was 

applied to the first group of problems in Table 3.13 and results are given in the Appendix 

(Table A.1 and Figure A.1). 

3.7. Discussion 

This chapter has extended the work of Bergmann (1975) to investigate the capacity of a 

single track, unidirectional rail line that adheres to a cyclic timetable. Within the railway 

operations literature, the work by Bergmann (1975) appears to be unique in that is the 

only article (1) consider cyclic timetabling problem in which the minimization of cycle 

length is the primary objective; (2) present a linear formulation of a cyclic timetabling 

problem in which the length of the cycle is a decision variable; and (3) focus on the 

alternate definition of railway capacity in which capacity is the minimum cycle length 

that can be feasibly accommodate a given number of trains over a given section of track 

in each cycle. The purpose of this chapter was to restate the problem from Bergmann 
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(1975) using improved notations, to modify the mathematical model by adding a second 

objective and removing unnecessary variables, and to perform the first numerical analysis 

of this problem by considering hundreds of randomly generated instances with up to 70 

stations.  

The experimental results can be summarized as follows. First, our ability to solve 

every problem instance to optimality in a reasonable amount of time using IBM ILOG 

CPLEX demonstrates the effectiveness of the model. Second, the problem becomes more 

difficult when (A) either of the parameter S or maxExpr are increased and everything else 

in unchanged; (B) parameter hTrack and dMax are simultaneously increased in such a 

way that neither the number of decision variables or the number of constraints (which are 

functions of S and maxExpr only) increases; or (C) dMax increases and everything else is 

unchanged. The case (A) is expected to happen, since increasing either S or maxExpr (or 

both) will increase the decision point or mathematically increase the size of the problem 

mathematically. Cases (B) and (C) are the direct results of expanding the solution space 

which requires more computation time. Third, problem difficulty appears to increase as 

the parameter hTrack increases for small values of hTrack but appears to decrease as 

hTrack increases for large values of hTrack. Fourth, the optimal value of Interval is 

smallest when the number of stations over which the same ∑dMins value is spread is 

neither very small nor very large, but rather an intermediate value. Fifth, the sequence of 

dMins values affects the optimal value of Interval in some cases but not in others. In 

particular, the optimal value of Interval seems to become more sensitive to the 

sequencing of the dMins values as hTrack decreases or dMax increases. Sixth, Pareto-

optimal solutions that explore the trade-off between cycle length and the local train’s 
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dwell time at all stations combined can be constructed by adjusting the objective function 

weights w1 and w2. Finally, since the problem has alternate optima, two methods are 

explored and described in order to find other optimal solutions. The first method is based 

on the weighted sum approach while the second one is based on the so called “fixed-and-

cut” procedure. 
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Table 3.13 Number of optimal solutions for selected instances 

 S 
 10 15 20 
hTrack 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 
dMax 72 92 112 142 172 212 104 134 154 194 244 294 144 174 234 284 334 374 
No. 
Optimal 
Solutions 
Found 

3 4 4 5 3 3 3 3 3 3 2 4 3 5 4 5 4 4 
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Chapter 4 

A mixed integer linear program for uni-directional cyclic train 

timetabling and platforming with homogenous rolling stock 

4.1. Introduction 

In chapter 3, we formulated a single-unidirectional track railway system with one siding 

at each station where local trains can stop to let passengers board and alight. Also, we 

considered only two types of trains: express and local. The express train will not make a 

stop once it departs from the origin until it arrives at final station, known as destination. 

However, local train must stop at every station between origin and destination.  

In this chapter we generalize the problem to investigate the capacity of a single track, 

unidirectional rail line that adheres to a cyclic timetable. A set of intermediate stations 

lies between an origin and destination with one or more parallel sidings at each station. A 

total of T train types—each with a given starting and finishing point and a set of known 

intermediate station stops—are dispatched from their respective starting points in cyclic 

fashion, with one train of each type dispatched per cycle. Two mixed integer linear 

programs (MILP) are developed in order to schedule the train arrivals and departures at 

the stations and assign train types to tracks (platforms) in the stations so as to minimize 

the length of the dispatching cycle and minimize the total stopping (dwell) time of all 

train types at all stations combined. Sets of constraints considered include: a) minimum 

dwell time for each train type in each of the stations in which it stops, b) a maximum total 

dwell time for each train type, and c) headway considerations on the main line and on the 
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tracks in the stations. The applicability of the model is shown by solving hundreds of 

randomly generated and real-world problem instances [with 4-33 stations and 2-11 train 

types] to optimality in a reasonable amount of time using IBM ILOG CPLEX 11.2 and 

12.4. 

As mentioned earlier, the current study generalizes the problem in chapter 3. This 

generalization is carried out through three different ways.  First, the current study 

considers any number of train types per cycle.  Second, we allow stations to have more 

than one siding.  Third, we allow trains to start or end at intermediate stations.  As we 

shall demonstrate, the generalization regarding the first aspect leads to a significantly 

more complex mathematical model than what is presented in chapter 3.  In addition, the 

generalization regarding the second aspect introduces a train platforming component that 

is modeled and investigated for the first time in this dissertation.  That is, in chapter 3 we 

consider a pure train timetabling problem, while the current study considers a combined 

train timetabling and platforming problem. 

4.2. Brief literature review  

As discussed in Chapter 2 cyclic train timetabling problem has been addressed by less 

than 50 articles in the literature and as pointed out by Harrod (2012) most of them rely on 

the Periodic Event Scheduling Problem (PESP), where all calculation are carried out 

modulo T, the cycle time. The minimization of the cycle length requires the cycle time T 

to be a decision variable. However, within the PESP paradigm, this leads to a 

quadratically constrained formulation. By avoiding the PESP framework, the current 

study manages to create a linear formulation for a periodic timetabling problem in which 

the cycle time is a decision variable and also an objective to be minimized. Surprisingly, 
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to our knowledge, Bergmann (1975) and Heydar et al. (2013) are the only two studies to 

consider a cyclic train timetabling problem in which the minimization of the cycle length 

is the primary objective. 

This chapter also relates to train platforming problem in that trains need to be 

assigned to tracks when they stop in stations that have more than one siding and/or 

platform. Train platforming (i.e. track allocation, train pathing) refers to the allocation of 

track to trains over time (Lusby et al. 2011a). This allocation may occur within stations 

(i.e. train platforming) or along portions of track between stations. This chapter considers 

the simplest form of the train platforming problem in which we decide the platform 

(track, siding) visited by a train in a station under the assumption that each platform 

specifies a unique predetermined path through the station over time. Recent contributions 

that consider train routing or platforming but not timetabling include Zwaneveld et al. 

(1996), Zwaneveld et al. (2001), Carey and Carville (2003), Cornelsen and Di Stefano 

(2007), Billionnet (2003), Chakroborty and Vikram (2008), Chung et al. (2009), Lusby et 

al. (2011b), Caprara et al. (2011), and Demange et al. (2012). 

Recent papers considering non-cyclic, combined timetabling and routing/platforming 

problems include Carey (1994), Ghoseiri et al. (2004), Carey and Crawford (2007), Lee 

and Chen (2009), and Yang et el. (2010). Other integration includes timetable planning 

and rolling stock in rapid transit networks (Cadarso & Marín, 2012).  

Almost no studies consider a cyclic, combined train timetabling and 

routing/platforming problem. Indeed, according to Liebchen and Möhring (2008), 

“routing of trains through stations or even alternative tracks” is “definitely beyond the 

scope of the PESP.” To our knowledge, Shafia et al. (2012) is the only study besides the 
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current study to consider a cyclic, combined train timetabling and platforming problem. 

That study differs from the current one in at least five ways. First, it adopts a fuzzy logic 

methodology. Second, it assumes a fixed-block signaling system which allows the 

authors to apply job shop scheduling models to the problem of interest. Third, train 

routing is implicitly performed using station capacity constraints (constraints 20-23) that 

limit the number of trains that can simultaneously dwell in a station. Fourth, a heuristic 

method is needed to consider large problems with 15 or more intermediate stations. Fifth, 

some stations (e.g. Kashan and Forudgah in Fig. 15) are not served by any trains. The 

current study, on the other hand, introduces an MILP model; does not assume a fixed-

block signaling system; explicitly assigns trains to tracks in each station; is able to obtain 

optimal solutions by direct application of the MILP model to large instances with more 

than 30 intermediate stations; and assumes that all stations are served by at least one train 

type. 

Our inspection of Shafia et al. (2012) revealed several problems. For example, 

decision variables zijk and z’ij are undefined. Also, index i is used in two ways in 

constraint 22—to indicate the number of trains that simultaneously dwell in a station and 

to indicate a particular train. Variable δijk, which is defined as a binary variable that 

equals 1 if trains i and j dwell in station k during overlapping time intervals, does not 

appear in any constraints. Rather, the variables δij, δ
k
ijA, and δk

ij, which are not defined, 

appear within constraints 20-22. Despite this confusion, it appears that the constraints 

where δ appears (constraints 20-22) are incorrect. Here, it is possible for all δ to be zero 

regardless of the values of the other decision variables. In other words, even if other 
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variables indicate that train overlapping occurs in one or more stations, all δ variables 

may take the value of zero. 

4.3. Problem definition 

We now formally introduce the problem, and then two mixed integer linear programs will 

be presented.  Figure 4.1 shows the topology of the railway system investigated in this 

chapter. We consider a single track, unidirectional rail line that consists of an origin, 

destination, S intermediate stations lying between the origin and destination, and a set of 

parallel sidings in each station that accommodate trains stopping in that station.  A total 

of P platforms (sidings, tracks) exist in the entire rail line (P ≥ S) and there is at least one 

siding in each station.  The platforms in each station are arranged in parallel and are 

capable of accommodating all train types that reside there.  P = S means that every station 

has exactly one siding and P > S means that at least one station has two or more sidings.  

Let sp denote the station in which platform p resides (1 ≤ p ≤ P) and let ps denote the set 

of platforms belonging to station s (1 ≤ s ≤ S). 
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Figure 4.1 Topology of the railway system investigated in this chapter 
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A total of T train types—each with a given starting and finishing point and a set of 

known intermediate station stops—are dispatched from their respective starting points in 

cyclic fashion, with one train of each type dispatched per cycle.  The starting point 

(origin station, oStationt) of train type t may be the origin (i.e. “station 0”) or any 

intermediate station.  The finishing point (destination station, dStationt) of train type t 

may be any intermediate station after oStationt or the destination (i.e. “station S+1”).  The 

given binary parameter wts defines each train type line plan and denotes whether or not 

train type t stops in station s.  That is, wts = 1 (0) means that train type t stops (does not 

stop) in station s.  The train type may relate to stopping frequency, train-station 

compatibility, or some other differentiating characteristic between train sets.  For 

example, there might be five train types dispatched per cycle: a super express train that 

makes no stops between the origin and destination; a limited express train that makes two 

stops between the origin and destination; an express train traveling from the origin to the 

destination that stops at every other station; a local train with (dStationt ≠ the destination) 

that stops at all stations between the origin and the point halfway along the rail line; and a 

local train with (oStationt ≠ the origin) that stops at all stations between the point halfway 

along the rail line and the destination.   

The single track makes it impossible for one train to pass another if both trains are on 

the main track.  However, there is at least one siding in each station, so it is possible for a 

train on the main line to pass a train that is stopped at a station.  Regarding passing, we 

assume that a through train’s passage of a station is entirely unobstructed by any trains 

that are stopped at the station.  Further, each station siding is sufficiently long so that 

deceleration and acceleration by a train moving into or out of a station does not interfere 
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with the operations of the through trains that do not stop at the station. Therefore, these 

required times are included in the minimum dwell times, dMints. 

Each of the T train types is dispatched from its starting point once per cycle and the 

cycle length, a decision variable, is Interval.  Let Dts denote the departure time of the 

original (i.e. first) train of type t from station s (oStationt ≤ s < dStationt) and Ats denote 

the arrival time of the original train of type t at station s (oStationt < s ≤ dStationt).  The 

cyclic nature of the timetable means that the departure (arrival) time of the ith train of 

type t from (at) station s is given by [(i-1) × Interval + Dts] ([(i-1) × Interval + Ats]).  The 

departure time from station s is the time when a train reaches the merge point—the point 

at which the sidings in station s return to the main track—just after station s. Note that

, tt oStationD denotes the departure time of the original train of type t from its starting point.  

Without loss of generality, we assume that 0 ≤ , tt oStationD ≤ Interval for all t. This 

constraint can be inferred from the assumption that there is one train dispatched in each 

cycle.   The cyclic nature of the timetable means that all trains of type t are identical 

except for their departure times from their starting point which is one cycle length apart 

from the original train type t. 

All trains travel at the same speed while on the main track.  Let travs be the traveling 

time for all train types along the main line between stations s and s+1.  Thus At,s+1 = Dts + 

travs for all train types t that travel between stations s and s+1.  Denote by dMints the 

minimum required delay or increase in travel time for trains of type t due to stopping at 

station s rather than passing it.  This is the minimum amount of time that the train type 

must spend decelerating, unloading passengers, loading passengers, and accelerating on 

the siding beside station s in order to serve station s.  For simplicity, we refer to this term 



91 
 

 
 

as the minimum stopping (delay, dwell) time for train type t at station s.  Note that (Dts - 

Ats) is the actual stopping (delay, dwell) time of the original train (and therefore all trains) 

of type t at station s.  Dts and Ats are decision variables whose values must satisfy (Dts - 

Ats) ≥ dMints. 

The primary objective is to minimize Interval subject to four types of constraints.  

First, the actual dwell time (Dts - Ats) of a train in a station must be greater than or equal 

to the minimum required dwell time dMints.  Second, the total dwell time of train type t at 

all stations combined,  1

1

t

t

dStation

ts tss oStation
D A



 
 , may not exceed dMaxt.  Third, trains on the 

portion of the main track between stations s and s+1 must be separated by a minimum 

headway of hTracks minutes (0 ≤ s ≤ S).  Finally, the departure time of a train from 

platform (track) p and arrival time of the next train after it into platform p must be 

separated by a minimum headway of hPlatformp minutes.  For simplicity, we assume that 

a train’s “departure time” from a station occurs at the very end of its dwell time in the 

station, and we assume that a train’s “arrival time” into a station occurs at the very 

beginning of its dwell time in the station.  The secondary objective is to minimize the 

total delay  1

1 1

t

t

T dStation

ts tst s oStation
D A



  
  experienced by all train types at all stations 

combined. 

As defined and discussed in Chapter 3, the primary objective directly relates to track 

capacity.  Indeed, in order to determine the maximum capacity of a single track, we can 

either determine the maximum number of trains that can be dispatched within a period (or 

“cycle”) of given length, or we can determine the minimum cycle length such that a given 

number T of trains can feasibly be dispatched within one cycle. The first objective deals 
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with the capacity of entire line whereas the second objective only considers each train 

type characteristics individually.  

Figure 4.2 presents a time-space diagram of cyclic train timetable described above in 

which T = 3. Each train type is depicted using a different style line (e.g. solid, dashed).  

The slopes of all lines between stations are equal because all trains move at the same 

speed on the main line.  Note that most of the terms introduced in the preceding 

paragraphs—including Interval, the length of the dispatching cycle—appear in the figure. 

We now make a few additional comments regarding the problem. First, we assume there 

is no limit on the number of trains available.  That is, rolling stock components (i.e. 

locomotives, railcars, train sets) are assumed to be available whenever and wherever they 

are needed.  Second, we assume the origin and destination have unlimited capacity to 

accommodate trains.  In other words, we ignore any constraints on the operations at and 

before the origin, and at and after the destination.  However, the headway constraints on 

the main track immediately after the origin and immediately before the destination are 

considered.  Likewise, for any train type t that makes a “short” journey (such that 

(oStationt ≠ the origin) or (dStationt ≠ the destination)), we assume that the train type 

does not use up capacity at or prior to oStationt, or at or after dStationt.  Thus, we only 

consider the train type’s impact on the capacity on the main line between, and the stations 

that are strictly between, oStationt and dStationt.  Here again, the origin and destination 

have been ambiguously defined so either or both of these locations may represent stations 

or simply points on a track.  The values of wts must be strictly followed.  In particular, if 

wts = 0, train type t may not stop in station s even if doing so would improve the objective 
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value.  Finally, stopping on the main line is not allowed.  That is, we assume that all train 

stops occur on sidings. 

4.4. Mathematical formulation 

In this section we present two mixed integer programming models for train timetabling 

and train platforming. Although, the first one is a novel model, it is still very difficult to 

solve due mainly to binary decision variables dimensions. For this reason, the second and 

more efficient model is developed and will be presented in this chapter. 

4.4.1. First mathematical model 

We now present the first MILP formulation of the problem. This model gives us a general 

case in which we have multiple classes of train and multiple platforms at (some) stations 

as discussed before. The indices, parameters, and decision variables in the mathematical 

program, and their respective explanations, are given in Table 4.1.  The input data 

consists of 14 primary parameters (S, P, sp, ps, T, oStationt, dStationt, travs, wts, dMints, 

dMaxt, hTracks, hPlatformp, and ak) and 9 secondary parameters that are derived from the 

primary parameters.  The primary parameters are described in Section 4.1.  The decision 

variables, described later in this section, are Interval, Dts, Ats, Xtp, Ztusij, and Ytusij. The first 

three variables take real values, and the last three variables are binary.  As mentioned 

before, Interval is the length in minutes of the dispatching cycle.  It is the quantity we 

seek to minimize. Ats and Dts are the arrival and departure times of the original train of 

type t at station s.  The binary variables Xtp indicate which train types are assigned to 

which platforms.  The binary variables Ztusij indicate the sequence of trains on the main 

line.  The binary variable Ytusij indicates the sequence of trains that are assigned to the 

same platform.  
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Figure 4.2 Cyclic train timetable depicted as a time-space diagram with input parameters and decision variables indicated. 



95 
 

 
 

Table 4.1 Indices, parameters and decision variables in the first mathematical model 

Indices 
t, u Train index 
s Station index 
p Platform index 
i, j Interval index 
Parameters 
T Number of trains 
S Number of intermediate stations 
P Number of platforms (P  S) 
a1, a2

 Weights for objective function components 
hTracks Headway on the main line between station s and s+1 
hStations Headway in station s 
oStationt Origin station for train t 
dStationt Destination station for train t 
travs Traveling time on the main line from s to s + 1 
Sp Station for platform p 
Ps Set of platforms in station s 

wts=




0

1
 

If train t stops at station s 

otherwise 
dMints Minimum dwell time for train t at station s 
dMaxt Maximum dwell time for train t 
M A very large number 
maxIntus Maximum number of intervals for sequence of train t and u at station s 
minIntus Minimum number of interval for sequence of train t and u at station s 
LBIntervals Lower bound on interval at station s 
maxLB Maximum lower bound  
Decision variables 
Interval Interval duration (real,  ) 
Ats Arrival time of train t at station s, tt dStationsoStations :  

Dts Departure time of train t at station s, tt dStationsoStations :  






0

1
tpX  

If train t is assigned to platform p 

Otherwise 






0

1
tupijY  

If train t of interval i comes before train u of interval j in platform p 

Otherwise 






0

1
tusijZ  

If train t of interval i comes before train u of interval j departing from station s 

Otherwise 

 

Minimize  

  
1

1 2
1 1

t

t

dStationT

ts ts
t s oStation

a Interval a D A


  

 
     

 
    

 

(4-1)
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Subject to  

, 1t s ts sA D trav                                                  , : oStationt tt s s dStation     (4-2)

, tt oStation sD Interval hTrack                                                       , 0t s S     (4-3)

 1ts ts ts tsA dMin D w M                               , : t tt s oStation s dStation     (4-4)

ts tsA D                                                               , : t tt s oStation s dStation     (4-5)

ts ts tsA D Mw                                                    , : t tt s oStation s dStation     (4-6)

 
1

1

t

t

dStation

ts ts t
s oStation

D A dMax


 

                                                                                t  (4-7)

     1ts s us tusiji Interval D hTrack j Interval D Z M         (4-8)

     1us s ts utsjij Interval D hTrack i Interval D Z M         (4-9)

1tusij utsjiZ Z                       

(4-10), : , : oStationt t u ut u t u s s dStation oStation s dStation       

, , , , 1tusij t u s i jZ Z    (4-11)

, , , 1,tusij t u s i jZ Z    (4-12)

 
s

tp ts
p P

X w


                                                                                                ,t s   (4-13)

     , , 1
p p pt s s u s tupiji Interval D hStation j Interval A Y M         

(4-14)

   , ,p p pt s s u s tupiji Interval A hStation j Interval D Y M        

, , , , 1tupij t u p i jY Y   (4-15)

, , , 1,tupij t u p i jY Y      (4-16)
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1tp up tupij utpjiX X Y Y     (4-17)

tp tupij utpjiX Y Y     (4-18)

up tupij utpjiX Y Y    (4-19)

, , , ,ptupij t u s i jY Z   (4-20)

, ,p p pt s t s sD A Interval hStation                                                        , ,t s p    (4-21)

maxLB ≤ Interval ≤ minUB    (4-22)

 

In the mathematical model above, the objective function (4-1) minimizes dispatching 

interval and total dwell time incurred by all train types running over this single-line with 

multiple platform railway system combined. The first objective is the main focus of this 

study, so a1 >> a2 in most experiments in this study. The constraint (4-2) guarantees that 

the time between departure and arrival to the next station for a train equals to the 

traveling time on that link. Constraint (4-3) says that each train is dispatched form its 

origin within the interval length because we assume that only one train of each type is 

dispatched per cycle. Constraints (4-4) – (4-6) are defining whether or not a train stops at 

a particular station, and if so it must stop there for at least a minimum amount time. 

Constraint (4-7) imposes an upper bound on total actual dwell time of a train. As 

mentioned since in this problem we consider passing situation that happens only at 

stations and/or sidings, a set of constraints must be defined to guarantee these kinds of 

possibilities. These constraints, previously introduced, are called ordering constraints. We 

have two kinds of ordering constrains. One for every pair of train on the main line and 

one for every pair of trains stop at the same platform of a particular station. Constraints 



98 
 

 
 

(4-8) – (4-10) determine order of two train types on the main line leaving station s toward 

station s+1. Constrains (4-11) and (4-12) are logical constraints and relate each train type 

to its immediate interval successor and interval predecessor. Constraint (4-13) plays the 

assignment role in this model. According to this equation, each train should assign to 

exactly one platform only if that station is part of train line plan and the train should shop 

in that station. Constraint (4-14) is the second ordering constraint as mentioned before. 

According to this constraint, if two train types are assumed to stop at the same station and 

are assigned to the same platform, the following train enters the station only after 

headway on station minutes that the preceding train has departed from that platform. In 

other words, this constraint guarantees that the platform is empty before to be assigned to 

a train. Constraints (4-15) and (4-16) are playing the same role at stations as constraints 

(4-11) and (412) do on the main line. The order of two trains must be determined, only if 

their assigned to the same platform, and this is achieved via constraints (4-17) – (4-19). 

According to these constraints, if two train types are assigned to the same platform one 

should be scheduled after the other. Constraint (4-20) connects two different ordering 

constraints. In other words, if one train precedes another one at a platform to which both 

are assigned, the second train type must follow the first train type on the main line 

following that station. Constraint (4-21) restricts actual dwell time of each train at each 

station meaning that each train cannot dwell at a station more than interval length. This 

guarantees that the train does not interfere with the first train of the next cycle which is 

more important at stations where only one train stops in each cycle. Constraint (4-22) 

defines the lower bound and upper bound on Interval which will be discussed later. 
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Special cases 

In the first mathematical model it is assumed that each train type has different origin and 

destination. One special case is that all trains are dispatched from the very first station 

known as origin and should stop at the very last station. In this case, constraint (4-3) is 

slightly changed into the following form:  

 

,0 0tD Interval hTrack                                                                           t T    (4-23)

 

According to this constraint each train should be dispatched sometime within the 

interval. The reason of subtracting hTrack is to make sure that the last train dispatched is 

at least separated by headway from the first train in the second cycle. The second special 

case is the one where each station has exactly one platform or siding for transferring 

passenger and/or passing other train from the station. In this case, assignment and other 

related constraints are not required to be defined explicitly. This will reduce the number 

of binary decision variables and constraints which will speed up computing time. 

4.4.2. Second mathematical model: an improvement 

The mathematical model proposed in Section 4.4.1 is very difficult to solve since binary 

decision variables used for ordering trains have five indices which require the model to 

define a huge amount of decision variables as well as constraint. For instance for a typical 

rail line with 30 stations, 5 train types and 5 intervals for each trains we need to define 

15000 binary variables in order to define ordering on the main track. Added to this 

consider ordering decisions at platforms, assigning trains to platform and 

arrival/departure decision variables. For this reason another mixed integer linear program 
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with fewer binary decision variables is defined and presented here. Like the first model 

the indices, parameters, and decision variables in the mathematical program, and their 

respective explanations, are given in Table 4.2.  The input data consists of 14 primary 

parameters (S, P, sp, ps, T, oStationt, dStationt, travs, wts, dMints, dMaxt, hTracks, 

hPlatformp, and ak) and nine secondary parameters that are derived from the primary 

parameters.  The primary parameters are described in Section 4.1.  The decision 

variables, described later in this section, are Interval, Dts, Ats, Xtp, Zitsu, Yitpu, and Vitpu. As 

before, the first three variables take real values, and the last four variables are binary.  Ats 

and Dts are the arrival and departure times of the original train of type t at station s.  The 

binary variables are the same as defined for the first mathematical model, except the fact 

that for ordering decision variables (Z, Y) we consider four indices instead of five indices, 

and we define another ordering decision variable V with four indices. The idea came from 

the cyclic structure of the model. In other words, because of the cyclic nature of the 

model, when the origin train of type t is compared with other trains, the same structure 

will be carried over for the second train of type t, the third train of type t, and so forth. 
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Table 4.2 Indices, parameters, and decision variables in the second mathematical model 

Indices 
s Station index (0 ≤ s ≤ S+1; 0 and S+1 represent the origin and destination) 
p Platform index (1 ≤ p ≤ P) 
t, u Train type index (1 ≤ t, u ≤ T) 
i Interval index; index for different trains of same type (integer; 0 = original interval) 
k Objective function component (k = 1, 2) 
Parameters 
S Number of intermediate stations (integer, > 0) 
P Number of platforms (integer, P ≥ S) 
sp Station in which platform p resides (p = 1 to P) 
ps Set of platforms in station s (s = 1 to S) 
T Number of train types (integer, > 0) 
oStationt Origin station for train type t (integer, ≥ 0, ≤ S) (t = 1 to T) 
dStationt Destination station for train type t (integer, ≥ 1, ≤ S+1) (t = 1 to T) 
travs Traveling time on main line from station s to s + 1 (minutes) (real, > 0) (s = 0 to S) 

wts=




0

1  If train type t stops at station s  
otherwise (binary) (t = 1 to T, s = 1 to S) 

dMints Minimum dwell time for train type t at station s (real, ≥ 0) ( st  , : oStationt < s < dStationt) 
dMaxt Maximum allowed total dwell time for train type t at all stations (minutes) (real, ≥ 0) (t = 1 to T) 
hTracks Headway on the main line between station s and s+1 (minutes) (real, > 0) (s = 0 to S) 
hPlatformp Headway on platform p (minutes) (real, ≥ 0) (p = 1 to P) 
ak Weight for objective function component k (real, ≥ 0) (k = 1, 2) 
minUB Minimum upper bound on optimal value of Interval (real, > 0) 
 
mainLB = maxs (s = 0 to S)





















)(*
1

t

T

t
ts dStationsoStationhTrack  (1=true, 0=false) 

stationLBs Lower bound on Interval obtained by assigning train types to platforms in station s (s = 1 to S) 
stationLB = maxs (s = 1 to S) {stationLBs} 
maxLB Maximum lower bound on optimal value of Interval (= max{mainLB, stationLB}) (real, > 0) 
lowIntMaintus Lowest interval of train type t that must be compared to the “interval 0 train of type u” to ensure 

headway constraints are enforced on the portion of the main line between stations s and s+1 
(integer) (defined  (t,u): t < u,  s from 0 to S) 
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Table 4.2 Continued

highIntMaintus Highest interval of train type t that must be compared to the “interval 0 train of type u” to ensure 
headway constraints are enforced on the portion of the main line between stations s and s+1 
(integer) (defined  (t,u): t < u,  s from 0 to S)  

lowIntPlattup Lowest interval of train type t that must be compared to “interval 0 train of type u” to ensure 
headway constraints are enforced on platform p (integer) (defined  (t,u): t < u,  p) 

highIntPlattup Highest interval of train type t that must be compared to “interval 0 train of type u” to ensure 
headway constraints are enforced on platform p (integer) (defined  (t,u): t < u,  p) 

Decision variables 
Interval Interval duration (minutes) (real, > 0) 
Dts Departure time of original train of type t from station s (real, ≥0) ( t, s: oStationt ≤ s <dStationt)
Ats Arrival time of original train of type t at station s (real, > 0) ( t, s: oStationt < s ≤ dStationt)  






0

1
tpX  If train type t is assigned to platform p 

Otherwise (binary) (t = 1 to T, p = 1 to P) 






0

1
itsuZ  

If “interval i train of type t” reaches merge point just after station s before original (i.e. interval 0) 
train of type u reaches there 
Otherwise (binary) ( s: 0 ≤ s ≤ S,  (t,u: t < u),  i: lowIntMaintus ≤ i ≤ highIntMaintus) 






0

1
itpuY  If “interval i train of type t” uses platform p before original (i.e. interval 0) train of type u 

Otherwise (binary) ( p,  (t,u: t < u),  i: lowIntPlattup ≤ i ≤ highIntPlattup) 






0

1
itpuV  If “interval i train of type t” uses platform p after original (i.e. interval 0) train of type u 

Otherwise (binary) ( p,  (t,u: t < u),  i: lowIntPlattup ≤ i ≤ highIntPlattup) 
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The second MILP formulation of this problem is as follows:  

 

Minimize    

 
1

1 2
1 1

t

t

dStationT

ts ts
t s oStation

a Interval a D A


  

 
    

 
   

(4-24)

Subject to 

,0
tt oStationD Interval                                                                              t T    (4-25)

, 1t s ts sA D trav                                               , : t tt s oStation s dStation      (4-26)

 1ts ts ts tsA dMin D w M                            , : t tt s oStation s dStation       (4-27)

ts tsA D                                                            , : t tt s oStation s dStation       (4-28)

ts ts tsA D Mw                                                 , : t tt s oStation s dStation     (4-29)

 
1

1

t

t

dStation

ts ts t
s oStation

D A dMax


 

                                                                      t T   (4-30)

   1ts us itsu si Interval D D Z M hTrack         (4-31)

 ts us itsu si Interval D D Z M hTrack       (4-32)

   0,..., , , : t t u us S t u t u oStation s dStation oStation s dStation           

: tus tusi lowIntMain i highIntMain    

1, , ,itsu i t s uZ Z     (4-33)

   0,..., , , : t t u us S t u t u oStation s dStation oStation s dStation           

: tus tusi lowIntMain i highIntMain    
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s

tp ts
p P

X w


                                                                               , 1,...,t s s     (4-34)

1tp up itpu itpuX X Y V       (4-35)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

tp itpu itpuX Y V    (4-36)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

up itpu itpuX Y V     (4-37)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

   , , 1
p pu s t s itpu pA i Interval D Y M hPlatform       (4-38)

   , , 1
p pt s u s itpu pi Interval A D V M hPlatform       (4-39)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

1, , ,itpu i t p uY Y    (4-40)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

1, , ,itpu i t p uV V    (4-41)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

, , ,pitpu i t s uY Z   (4-42)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       

 , , ,1
pitpu i t s uV Z   (4-43)

 , , : , : tup tupp t u t u i lowIntPlat i highIntPlat       
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    , ,p pt s t s tp pInterval D A X Platform      (4-44)

, : t p tt p oStation s dStation     

maxLB ≤ Interval ≤ minUB (4-45)

 

The objective function (4-24) is the same as the first model and has two parts, 

weighted a1 and a2, which respectively pursue the minimization of the cycle length and 

the minimization of the total delay experienced by all train types at all stations combined.  

The first objective is the main focus of this study, so a1 >> a2 in most experiments in this 

study.  Constraint (4-25) ensures that the original train of each type departs its starting 

point sometime during the first interval (i.e. “interval 0”).  Constraint (4-26) requires that 

travs be the traveling time for all train types along the main line between stations s and 

s+1.  Constraints (4-27) – (4-29) are related to train type line plan and ensure that (i) each 

train type stops for the required minimum amount of time in each of the stations it visits 

and that (ii) train type t does not spend any time in station s if wts = 0.  Constraint (4-30) 

ensures that the total dwell time of train type t in all stations combined does not exceed 

the maximum allowed value dMaxt.  Constraints (4-31) and (4-32) are disjunctive 

constraints that enforce the headway restrictions on the portion of the main line between 

stations s and s+1 for all s from 0 to S.  In particular, these constraints guarantee that the 

interval i train of type t appears at the merge point just after station s either at least 

hTracks minutes before (4-31) or after (4-32) the original train of type u appears there for 

all s from 0 to S, for all pairs of train types that travel along the portion of the portion of 

the main line between stations s and s+1, and for all intervals i of train type t that could 

possibly interfere with the original train of type u along that stretch of the main line.  
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Note that, although constraints (4-31) and  (4-32) consider many trains of type t and only 

one train of type u, they enforce headway constraints on the main track for all trains of 

type t versus all trains of type u owing to the repetitive, cyclic nature of the timetable.  

Regarding the ordering of trains on the main line, constraint (4-33) states that if the 

interval i train of type t is before the original train of type u, then the interval i-1 train of 

type t must also be before the original train of type u.  Constraint (4-34) ensures that each 

train type stopping (not stopping) in a station visits 1 (0) platform(s) in the station.  

Constraints (4-35) – (4-37) ensure that, if two train types utilize the same platform, then 

the first train type must either use the platform before or after the second train type; the 

two train types cannot utilize the platform simultaneously.  Constraints (4-38) – (4-39) 

enforce the headway restrictions on all station platforms.  In particular, if both train types 

t and u use platform p, these constraints guarantee that the interval i train of type t uses 

platform p either at least hPlatformp minutes before (4-38) or after (4-39) the original 

train of type u uses it for all p and for all intervals i of train type t that could possibly 

interfere with the original train of type u at that platform.  Note that, although constraints 

(4-38) – (4-39) consider many trains of type t and only one train of type u, they enforce 

headway constraints on the station platforms for all trains of type t versus all trains of 

type u owing to the repetitive, cyclic nature of the timetable.  Regarding the ordering of 

trains on the platforms, constraints (4-40) – (4-41) state that if the interval i train of type t 

is before (after) the original train of type u, then the interval i-1 (i+1) train of type t must 

also be before (after) the original train of type u.  Constraints (4-42) – (4-43) ensure that 

the ordering of two trains on the main line between stations s and s+1 agrees with the 

ordering in which these trains visit the same platform in station s.  Constraint (4-44) 
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ensures that the cycle length Interval is large enough so that each stop by a train at a 

platform can be made without the train overlapping with its sister train from the next 

interval.  Constraint (4-45) forces Interval to take a value that is no lower than its lower 

bound and no higher than its upper bound.  These constraints are redundant but help to 

shorten the time required to find an optimal solution. 

4.4.3. Upper bound on optimal value 

The parameter minUB provides an upper bound on the optimal value of Interval.  It 

equals the lowest value of Interval among the (T-1)! feasible solutions that are formed by 

considering all possible (T-1)! cyclic orderings of the train types and then scheduling 

train types in order one-at-a-time such that (A) all train types achieve their minimum 

station dwell times; (B) there is no passing; and (C) no two train types may be in the 

same station at the same time.  During the above scheduling process, the first train type is 

scheduled so it departs its starting point at time 0 and achieves its minimum dwell times 

in all stations it visits.  Each subsequent train type is scheduled one-at-a-time by (1) 

assuming it departs its starting point at a very large time value (e.g. 1000) and achieves 

its minimum station dwell times in all stations it visits and then (2) repeatedly scheduling 

the train’s departure earlier (i.e. pushing the train to the left) until it is as close as possible 

to the already scheduled train types without violating main line headway and station (i.e. 

platform) headway constraints.  During the above scheduling process, we forbid the 

overlapping of trains in stations. In the example, the train type ordering 2-1-3 produces 

the best upper bound of 17 (Figure 4.3 part B). 
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Figure 4.3The procedure for determining secondary parameters 
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4.4.4. Lower bound on optimal value 

The parameter maxLB provides a lower bound on the optimal value of Interval.  It equals 

the higher of two different lower bounds—mainLB and stationLB—that are computed as 

follows.  Parameter mainLB is the smallest value of Interval that could possibly be 

achieved due to headway constraints on the main line only.  It equals the highest value of 

(hTracks) × (number of train types that run on the portion of the main line between 

stations s and s+1) among all s from 0 to S.  Parameter stationLB is the smallest value of 

Interval that could possibly be achieved due to dwell time, headway, and capacity 

constraints inside the stations only.  It is obtained by solving, for each station s, the 

simple parallel machine scheduling problem shown in Table 4.3.  The problem is formed 

by considering each platform p in the station as a machine, each train type t that stops in 

station s as a job with duration dMints, and hPlatformp to be the setup time prior to each 

job that is scheduled on platform p.  The objective of the machine scheduling problem is 

to minimize the makespan.  Let stationLBs be the optimal value obtained by solving the 

machine scheduling problem for station s.  Then stationLB = maxs{stationLBs}.  The 

values of mainLB, stationLBs for all s, stationLB, and maxLB are shown in Figure 4.3 part 

C. 

4.4.5. Derivation of secondary parameters 

We now describe the secondary parameters.  Figure 4.3 illustrates how several of the 

secondary parameters are computed for a small problem instance.  The primary 

parameters for the problem instance are displayed in Figure 4.3 part A.  Note that wts = 0 

(1) when dMints is zero (nonzero). 
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The secondary parameters lowIntMaintus, highIntMaintus, lowIntPlattup, and 

highIntPlattup allow us to construct constraints enforcing the headway restrictions on each 

portion of the main line and on each platform.  Due to the cyclic nature of the timetable, 

these constraints often need to be investigated not only for the original train (i.e. interval 

0 train) of each type (that departs its starting point sometime between time 0 and 

Interval) but also to other trains of the same type that depart their starting point in 

intervals before or after the original one.  Here we define the interval i train of type t to 

be the train of type t that departs its starting point during interval i, i.e. sometime between 

time (i) × Interval and time (i+1) × Interval (i is any negative or non-negative integer).  

In general, the above parameters indicate how many “intervals worth” of trains of a given 

type could possibly have a headway conflict with another train type on a certain station 

platform or along a certain portion of the main line.  In particular, the parameters 

lowIntPlattup and highIntPlattup (lowIntMaintus and highIntMaintus) indicate the lowest and 

highest interval trains of type t that could possibly come within hPlatformp (hTracks) 

minutes of the original train of type u on platform p (the portion of the main line between 

stations s and s+1). 

  



 
 

 
 

111 

 
 
 

Table 4.3 Parallel machine scheduling problem for computing stationLBs 

Indices    
T train type  
P platform  

Parameters    
S Station under consideration. 
T Number of train types stopping in station s 
P Number of platforms in station s 
dMint Minimum required dwell time for train type t in the station (= dMints in Table 4.2, real, > 0) 
hPlatformp Minimum required headway between trains stopping on platform p (real, ≥ 0) 

Decision variables    
Xtp = 1 if train type t is assigned to platform p (binary). 
stationLBs Minimum makespan for the machine scheduling problem (real, > 0). 

Math program    
Objective:    
                    minimize   stationLBs

   

Subject to:    

                    tX
P

p
tp 



1
1

  
 
 

                    pstationLBhPlatformdMinX s

T

t
pttp 

1

))((   
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The computation of parameters lowIntMaintus, highIntMaintus, lowIntPlattup, and 

highIntPlattup begins with a calculation of the earliest and latest possible times when the 

original train of each type could possibly arrive at and depart from each station 

(including departing from the origin and arriving at the destination) (Figure 4.3 part E).  

The earliest possible arrival and departure times are calculated in a straightforward 

manner (part D upper left).  The latest possible arrival and departure times are calculated 

by first assuming that each train type t departs at time 0 and spends the maximum total 

dwell time dMaxt in stations; backwards recursion is used to make the arrival and 

departure times as high as possible while still adhering to main line traveling times and 

minimum required station dwell times (part D upper right).  These values are then 

increased by minUB (part D bottom right).  Part E is taken from the upper left and bottom 

right portions of part D.  Figure 4.3 part F shows the possible times when the original 

train of each type can dwell (i.e. stay, be present) in each intermediate station given the 

information in part E. 

The calculation of lowIntMaintus and highIntMaintus is shown in Figure 4.3 part G.  

This calculation makes use of information in parts C and E.  For each pair of train types t-

u, we determine the lowest and highest numbered interval of train type t that could still 

interfere with (i.e. be strictly less than hTracks minutes away from) the original train of 

type u on each portion s of the main line (0 ≤ s ≤ S).  Consider the computation for (t,u,s) 

= (1,2,1).  Here we refer to part E and we compare the feasible time window for the 

original train of type 1’s departure from station 1 (8-43) to the feasible time window for 

the original train of type 2’s departure from station 1 (5-22) and we add or subtract 

multiples of maxLB = 13 to the former time window until it is separated from the latter 
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time window by at least hTrack1 = 1.  Subtracting 1×13, 2×13, and 3×13 from (8-43) 

yields (-5-30), (-18-17), and (-31-4) respectively.  The first two time windows are within 

hTrack1 = 1 of time window (5-22) (they overlap with this window) but the third time 

window is at least hTrack1 = 1 minutes away from the window (5-22) (the windows are 

exactly 1 minute apart).  Thus, the original, interval -1, or interval -2 train of type 1 might 

interfere with the original train of type 2 on the portion of the main line between stations 

1 and 2.  But it is not possible for the interval -3 train of type 1 to interfere with the 

original train of type 2 on the portion of the main line between stations 1 and 2.  In other 

words, lowIntMain121 = -2.  Adding 1×13 and 2×13 to the window (8-43) yields (21-56) 

and (34-69) respectively.  The first window is within hTrack1 = 1 of time window (5-22) 

but the second time window is at least hTrack1 = 1 minutes away from the time window 

(5-22).  Thus, highIntMain121 = +1. 

The calculation of lowIntPlattup and highIntPlattup is shown in Figure 4.3 part H.  This 

calculation is similar to that for lowIntMaintus and highIntMaintus except that we refer to 

part F instead of part E.  Here, for each pair of train types t-u, we determine the lowest 

and highest numbered interval of train type t that could still interfere with (i.e. be strictly 

less than hPlatformp minutes away from) the original train of type u on each platform p (1 

≤ p ≤ P) that is eligible to be visited by both train types.  The term “n/a” indicates that 

two train types cannot possibly visit a platform. 

4.4.6. What is the best value for Big M? 

Another parameter that needs to be determined is M in the mixed integer linear program. 

In all mixed integer programs this value is defined as an arbitrary number, but care must 

be taken in determining and using this value. As one of the characteristic of a good model 
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is the tightness of constraints, it is important what value is picked up for M in the 

formulation in such a way that it guarantees feasibility of the model, because picking up a 

large value (compared to the other parameters) may result is infeasibility of the solution. 

For this reason, a simple method based on the disjunctive constraints in the model 

(referred to as ordering constraints) will be presented in this section. Without loss of 

generality, let us consider constraint (4-31) again for calculation purposes. The other two 

ordering constraints can be used as well.   

   1ts us itsu si Interval D D Z M hTrack         (4-31)
 

For this purpose, without loss of generality, we assume that one train moves as fast as 

possible and the other one moves as slow as possible. Further we will assume that this 

constraint must be satisfied for all station and in order for we can better differentiate 

between these two trains, the last station is considered for our calculation. Therefore, (4-

31) would be   

 tS uS itSu si Interval D D Z M M hTrack        (4-31*) 
 

Suppose train u is the fast train and train t is the slow train. Further assume that ZitSu = 

0. In order to estimate a value for M, we need to use other variables’ estimation. Also, to 

make M as large as possible the first parenthesis should get the largest value possible and 

the second parenthesis should get the smallest value possible. Since train of type t is 

slow, it should stop for maximum possible time which is maximum dwell time and 

largest value for i = max {highIntPlattup, highIntMaintus}, , :t u T t u   for all t and u. 

And since train of type u is fast, it should stop at each station for minimum possible 
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amount of time which is minimum dwell time and j = 0, the fast train in the first interval. 

By substituting these estimates in (4-31*) we have   

  
1

,
S

tup tus t ts
s

max highIntPlat highIntMain maxLB dMax dMin M


      (4-46)

 

4.4.7. Problem complexity 

We now prove a result regarding the complexity of the problem at hand. 

Theorem 1. The optimization problem at hand—defined by the MILP formulation in 

Section 3.2—is NP-hard. 

 
Proof. Consider the decision problem corresponding to the optimization problem 

P||Cmax, i.e. the P-machine parallel machine scheduling problem without preemption 

where the objective is to minimize the makespan. This decision problem is known to be 

NP-complete (Garey and Johnson (1978)). Furthermore, problem P||Cmax is 

polynomially reducible to the problem at hand. Indeed, problem P||Cmax is identical to 

an instance of the problem at hand where S = 1; P = P (the number of platforms in the 

train problem equals the number of machines in the machine scheduling problem); T 

equals the number of jobs in problem P||Cmax; oStationt = 0 for all t; dStationt = 2 for all 

t; travs = 0 for s = 0 and 1; wt1 = 1 for all t; dMint1 equals the processing time of job t in 

problem P||Cmax for all t; dMaxt = dMint1 for all t; hTracks = 0 for s = 0 and 1; 

hPlatformp = 0 for all p; a1 = 1; and a2 = 0. In other words, the task of finding a cyclic 

platform schedule with the minimum possible Interval at a single train station having P 

platforms and T trains stopping per cycle (with no meaningful constraints other than 

those that prevent train overlapping on platforms) is equivalent to finding the minimum 

possible makespan in a nonpreemptive parallel machine scheduling problem with P 
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machines and T jobs. Since problem P||Cmax is polynomially reducible to the problem at 

hand and decision problem P||Cmax is NP-complete, it follows that the decision problem at 

hand is also NP-complete. That is, the optimization problem at hand—defined by the 

MILP formulation in Section 4.4—is NP-hard. ∎ 

4.5. Illustrative examples 

The second mathematical formulation was coded into Microsoft Visual C++ 2010.  IBM 

ILOG Concert Technology was used to define the model within C++ and call the MILP 

solver IBM ILOG CPLEX 11.2 to solve instances defined in text files.  The code includes 

procedures for automatically computing the secondary parameters stationLBs, stationLB, 

maxLB, lowIntMaintus, highIntMaintus, lowIntPlattup, and highIntPlattup, then the minUB 

and lower bounds are calculated before the constraints are constructed.  The computation 

of stationLBs for all s involves calling CPLEX to solve several small machine scheduling 

problems—one in each station.  Two IBM-compatible computers were used to solve the 

problem instances considered in this study.  The first was a desktop computer running 

Windows XP with two 2.83 GHz processors and 2 GB of RAM.  The second was a 

laptop computer running Windows 7 with eight 1.73 GHz processors and 6 GB of RAM.
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Table 4.4 Input data for illustrative example #1 
T S P  hTracks  hPlatformp  a1  a2  oStationt dStationt  
4 12 14  2 for all s  1 for all p  1  0.0001  0 for all t 13 for all t  

 Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 Stat. 7 Stat. 8 Stat. 9 Stat. 10 Stat. 11 Stat. 12 Destination dMaxt 
#Platforms 1 1 1 2 1 1 1 2 1 1 1 1 -  

dMin1s 0 0 0 0 0 0 0 0 0 0 0 0 - 0 
dMin2s 0 0 0 3 0 0 0 4 0 0 0 0 - 20.5 
dMin3s 0 3 0 4 0 5 0 4 0 2 0 3 - 41.5 
dMin4s 3 5 1 5 3 4 3 1 4 6 2 4 - 70.5 
travs-1 7 5 5 9 6 8 9 7 6 8 5 7 5  

 stationLB = max {4, 10, 2, 9, 4, 11, 4, 7, 5, 10, 3, 9} = 11 maxLB = max{(4*2), 11} = 11 minUB = 49 

lowIntMain14s 
 

tus  
1,4,0 -4 
1,4,1 -4 
1,4,2 -3 
1,4,3 -3 
1,4,4 -3 
1,4,5 -3 
1,4,6 -2 
1,4,7 -2 
1,4,8 -2 
1,4,9 -1 
1,4,10 -1 
1,4,11 -1 
1,4,12 0 

 

highIntMain14s 
 

tus  
1,4,0 +4 
1,4,1 +7 
1,4,2 +8 
1,4,3 +8 
1,4,4 +8 
1,4,5 +8 
1,4,6 +9 
1,4,7 +9 
1,4,8 +9 
1,4,9 +9 
1,4,10 +10 
1,4,11 +10 
1,4,12 +11 

 

lowIntPlat34p 

 

tup  
3,4,1 n/a 
3,4,2 -6 
3,4,3 n/a 
3,4,4 -6 
3,4,5 -6 
3,4,6 n/a 
3,4,7 -5 
3,4,8 n/a 
3,4,9 -5 
3,4,10 -5 
3,4,11 n/a 
3,4,12 -5 
3,4,13 n/a 
3,4,14 -4 

 

highIntPlat34p 
 

tup  
3,4,1 n/a 
3,4,2 +7 
3,4,3 n/a 
3,4,4 +8 
3,4,5 +8 
3,4,6 n/a 
3,4,7 +8 
3,4,8 n/a 
3,4,9 +8 
3,4,10 +8 
3,4,11 n/a 
3,4,12 +8 
3,4,13 n/a 
3,4,14 +9 
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 We now present four illustrative examples and discuss their optimal solutions.  

Before doing so, we first discuss the setup common to all problem instances discussed in 

this section and Section 4.6.  This setup reflects the fact that the primary objective in the 

math model is to minimize the cycle time and the secondary, subordinate objective is to 

minimize the total train delay.  To accomplish this, all primary parameters besides a1 and 

a2 are multiples of 0.5.  This ensures that the optimal value of Interval is also a multiple 

of 0.5.  Also, a1 = 1, a2 = .0001, and
1

4999.5
T

tt
dMax


 .  Thus, 0.49995 is the 

maximum possible value of the second portion of the objective function, and 0.5 is the 

minimum change in the value of the first portion of the objective function when Interval 

changes.  Thus, the weight for a2 is small enough so that it does not interfere with the 

primary goal of minimizing the cycle length but is large enough to be able to identify, 

among all solutions tied for having the minimum Interval, a solution that ties for having 

the smallest total dwell time for all train types at all stations combined.  Unless otherwise 

mentioned, the input parameters throughout Section 4 are as follows: hPlatformp = 1 for 

all p, and oStationt = 0 and dStationt = S+1 for all t.  

4.5.1. First illustrative example 

The input data for the first problem instance is presented in Table 4.4.  This problem 

instance considers four train types with different stopping frequencies.  Train types 1, 2, 

3, and 4 are super express, limited express, express, and local trains respectively.  The 

primary parameters are shown on the top of Table 4.4.  The parameters sp and ps are not 

explicitly stated but can be inferred from row “#Platforms” which gives the number of 

platforms in each station.  Also, we assume that wts = 0 (1) when dMints is zero (nonzero).  

The secondary parameters are shown on the bottom of Table 4.4.  Due to space 



119 
 

 
 

limitations, only a subset of the values of lowIntMaintus, highIntMaintus, lowIntPlattup, and 

highIntPlattup are displayed. 

Table 4.5 shows an optimal solution for this instance in the form of a timetable.  This 

solution was obtained in 200 seconds.  The platform assignments are shown at the top; 

actual dwell time in each station for each train type is shown in the middle; and detailed 

schedules for the first five trains of each type are displayed at the bottom.  The schedule 

of each train is fully defined by the arrival and departure times of the train at each station.  

Figure 4.4 shows the same solution displayed in the form of a time-space diagram.  The 

diagram displays the progression of the first seven trains of each type from the origin to 

destination.  The platform schedules for stations 4 and 8 are shown in the bottom right of 

the figure.  In these platform schedules, the train departure times are labeled but the train 

arrival times are not. 

As Table 4.5 and Figure 4.4 indicate, the optimal value for this instance—the 

minimum value of Interval—is 13 minutes.  This value is strictly greater than the lower 

bound maxLB (= 11) and strictly less than the upper bound minUB (= 49).  Thus, the 

optimal value is probably not obtainable using a simple procedure such as trial-and-error, 

and it appears that math programming is the method most suited to address this NP-hard 

problem. 
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Time (sec) 

Figure 4.4 Optimal time-space diagram for illustrative example #1. 
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Table 4.5 Optimal track assignment and timetable for illustrative example #1 

Minimum Interval = 13 Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 Stat. 7 Stat. 8 Stat. 9 Stat. 10 Stat. 11 Stat. 12  
  Plat. 1 Plat. 2 Plat. 3 Plat. 4 Plat. 5 Plat. 6 Plat. 7 Plat. 8 Plat. 9 Plat. 10 Plat. 11 Plat. 12 Plat. 13 Plat. 14  

Platform Assignment 

Train 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Train 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0  
Train 3 0 1 0 1 0 0 1 0 0 1 0 1 0 1  
Train 4 1 1 1 0 1 1 1 1 1 0 1 1 1 1  

Actual station dwell times 
  Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 Stat. 7 Stat. 8 Stat. 9 Stat. 10 Stat. 11 Stat. 12 Total 
 Train 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
 Train 2 0 0 0 3 0 0 0 7 0 0 0 0 10 
 Train 3 0 3 0 6 0 6 0 8 0 2 0 3 28 
 Train 4 4 5 2 10 5 5 3 1 4 6 7 6 58 

Timetable 
 Origin Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 Stat. 7 Stat. 8 Stat. 9 Stat. 10 Stat. 11 Stat. 12 Destination 

Train 1 2 9 14 19 28 34 42 51 58 64 72 77 84 89 
Train 2 7 14 19 24 33-36 42 50 59 66-73 79 87 92 99 104 
Train 3 10 17 22-25 30 39-45 51 59-65 74 81-89 95 103-105 110 117-120 125 
Train 4 0 7-11 16-21 26-28 37-47 53-58 66-71 80-83 90-91 97-101 109-115 120-127 134-140 145 
Train 1 15 22 27 32 41 47 55 64 71 77 85 90 97 102 
Train 2 20 27 32 37 46-49 55 63 72 79-86 92 100 105 112 117 
Train 3 23 30 35-38 43 52-58 64 72-78 87 94-102 108 116-118 123 130-133 138 
Train 4 13 20-24 29-34 39-41 50-60 66-71 79-84 93-96 103-104 110-114 122-128 133-140 147-153 158 
Train 1 28 35 40 45 54 60 68 77 84 90 98 103 110 115 
Train 2 33 40 45 50 59-62 68 76 85 92-99 105 113 118 125 130 
Train 3 36 43 48-51 56 65-71 77 85-91 100 107-115 121 129-131 136 143-146 151 
Train 4 26 33-37 42-47 52-54 63-73 79-84 92-97 106-109 116-117 123-127 135-141 146-153 160-166 171 
Train 1 41 48 53 58 67 73 81 90 97 103 111 116 123 128 
Train 2 46 53 58 63 72-75 81 89 98 105-112 118 126 131 138 143 
Train 3 49 56 61-64 69 78-84 90 98-104 113 120-128 134 142-144 149 156-159 164 
Train 4 39 46-50 55-60 65-67 76-86 92-97 105-110 119-122 129-130 136-140 148-154 159-166 173-179 184 
Train 1 54 61 66 71 80 86 94 103 110 116 124 129 136 141 
Train 2 59 66 71 76 85-88 94 102 111 118-125 131 139 144 151 156 
Train 3 62 69 74-77 82 91-97 103 111-117 126 133-141 147 155-157 162 169-172 177 
Train 4 52 59-63 68-73 78-80 89-99 105-110 118-123 132-135 142-143 149-153 161-167 172-179 186-192 197 
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The passing structure in the optimal solution is as follows.  Train type 1—the super 

express—passes train types 2, 3, and 4 at the following stations respectively: {8}, {4, 8}, 

{1, 4, 6, 10, 12}.  Train type 2—the limited express—passes train types 3 and 4 at the 

following stations respectively: {6}, {2, 5, 10, 12}.  Train type 3—the express—passes 

train type 4 at the following stations: {4, 11}.  Most passing consists of the faster train 

type completely bypassing the station where the slower train type is stopped.  However, 

for the case where train type 3 passes train type 4 in station 4, both train types stop in the 

station but the faster train type arrives later and departs earlier.  Note that no passing is 

observed in stations 3, 7, and 9, indicating that the sidings at these stations would not be 

necessary if stopping on the main line were allowed.  Note that the number of super 

express trains that have already passed each local train by the time the local train gets to 

the merge point after station s is 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, and 5 for s = 1 to 12 

respectively.  These numbers are less than their respective upper bounds—7, 8, 8, 8, 8, 9, 

9, 9, 9, 10, 10, and 11 (+ 1)—that come from the secondary parameter highIntMain14s.  

Thus, constraints (4-31) – (4-33) in the second mixed integer program guarantee, beyond 

a doubt, that enough super express trains have been compared to the interval 0 local train 

to ensure that this pair of train types does not violate the headway restrictions on any 

portion of the main line. 

Our final observations are as follows.  The actual total station dwell times for train 

types 2, 3, and 4 are 10, 28, and 58 respectively which are strictly greater than the 

respective minimum required values but strictly less than the maximum allowed values of 

20.5, 41.5, and 70.5 respectively.  The sum of all station dwell times (= 10 + 28 + 58 = 

96) is as small as possible given the restriction that Interval be minimized.  This value 
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can probably be reduced below 96, but not without increasing Interval above 13.  Finally, 

the detailed platform schedules for stations 4 and 8 indicate that both stations are busy 

with an average platform utilization exceeding 50%.  Thus, it appears that two sidings are 

necessary in both stations in order for Interval to achieve the value of 13. 

4.5.2. Second illustrative example 

The inputs and the results related to the second problem instance are summarized in 

Figure 4.5.  The values of the primary input parameters for this instance are shown at the 

top of the figure.  This problem instance considers four train types, five stations, and 15 

platforms—three in each station.  Here, every train type stops in every station.  Due to 

space limitations, the secondary parameters are not displayed.  An optimal solution for 

this instance in the form of a time-space diagram is displayed at the bottom of the figure.  

This solution is obtained in 21 seconds.  Note that the minimum cycle length found by 

CPLEX is 12 minutes.  In the diagram, the horizontal lines represent train stops.  The 

platform assignments in each station are indicated by slight differences in the vertical 

placement of the horizontal lines.  Let us assume the platforms are numbered 1-15 from 

the bottom to the top of the diagram.  Then, according to the diagram, the assignment of 

train types to platforms is as follows.  In station 1, train types 1, 2, 3, 4 are assigned to 

platforms 3, 1, 1, 2 respectively.  In station 2, train types 1, 2, 3, 4 are assigned to 

platforms 4, 6, 5, 4.  In station 3, train types 1, 2, 3, 4 are assigned to platforms 7, 8, 8, 9.  

In station 4, train types 1, 2, 3, 4 are assigned to platforms 11, 12, 10, 10.  In station 5, 

train types 1, 2, 3, 4 are assigned to platforms 13, 14, 15, 13.  Although this solution uses 

all 15 platforms, there exists another solution with the same timetable that uses only two 

platforms in stations 2, 4, and 5.  However, there is no solution with the same timetable 



124 
 

 
 

that uses two or fewer platforms in station 1 or station 3.  A related question is whether 

three platforms are needed in station 1 and station 3 in order for Interval to be 12.  The 

input data dMint1 indicate that three platforms are needed in station 1; the optimizer needs 

to be re-run to determine if three platforms are needed in station 3.  Note that the 

timetable exhibits the phenomenon of multiple overtaking (Burdett and Kozan, 2009) in 

which one train type passes another train type at one station and is subsequently passed 

by the same train type at another station.  In particular, train type 3 passes train type 4 in 

station 1, but train type 4 passes train type 3 in station 5. This phenomenon is inevitable 

when the capacity maximization is of interest. 

4.5.3. Third illustrative example: Taiwanese high-speed railway system 

Our third illustrative example is taken from the Taiwanese high-speed railway system.  

The entire system consists of two single-track lines: one running southbound from Taipei 

(the origin) to Zuoying (the destination) with six intermediate stations and the other 

running northbound from Zuoying to Taipei with the same intermediate stations 

(Taiwanese High Speed Rail website, 2012).  
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Figure 4.5 Illustrative example #2: 4 train types, 5 stations, and 15 platforms (3 in each station). 

 

T S P 
4 5 15 

 dMin1s dMin2s dMin3s dMin4s travs 
Station 1 7 3 5 9 9 
Station 2 1 2 3 4 7 
Station 3 2 1 3 4 5 
Station 4 4 4 5 4 6 
Station 5 2 1 8 1 9 

 dMaxt 
 34.5 20.5 35.5 38  

hPlatformp = 1 for all p hTracks = 3 for all s Runtime (min) = 1080 
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Our work regarding the southbound timetable is summarized in Figure 4.6.  The top 

of the figure shows a typical portion of the actual timetable (departure times only).  

Notice that the timetable has a cycle of 60 minutes with four train types per cycle—two 

types that stop at all intermediate stations and two types that stop at two intermediate 

stations.  The input parameters in our model are shown on the left of Figure 4.6.  The 

number of platforms at Taoyuan and Taichung stations is known to be 1 and 2 

respectively.  Based on this information and the structure of the actual timetable, we 

assume there are 2, 1, 1, 2, 1, and 1 platforms at the intermediate stations respectively.  

The traveling times between pairs of stations travs and minimum dwell times in the 

intermediate stations dMints are inferred from the actual timetable.  We assume that wts = 

0 (1) when dMints is zero (nonzero).  The value of parameter dMaxt is determined by 

intuition.  An optimal solution for this problem instance is displayed in the form of a 

time-space diagram in the bottom right of Figure 4.6.  This solution was obtained in two 

seconds.  Notice that the optimal value of Interval (= 19) is greater than maxLB (=18) but 

is much less than the current cycle length of 60.  Thus, it appears that the existing track 

infrastructure in this system can feasibly handle at least three times as many trains as it 

currently accommodates while maintaining the existing 50-50 mix between “local” and 

“express” trains. 
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Portion of actual timetable (southbound) 

Train Taipei Banqiao Taoyuan Hsinchu Taichung Chiayi Tainan Zuoying 
135 10:30 10:38 - - 11:22 - - 12:06 
637 10:36 10:44 10:57 11:10 11:38 12:02 12:21 12:36 
139 10:54 11:02 - - 11:46 - - 12:30 
641 11:00 11:08 11:21 11:33 12:01 12:26 12:45 13:00 
143 11:30 11:38 - - 12:22 - - 13:06 
645 11:36 11:44 11:57 12:10 12:38 13:02 13:21 13:36 

 

Input parameters 
T S P 
4 6 8 

dmints 
Station Train 1 Train 2 Train 3 Train 4 
Banqiao 4 4 4 4 
Taoyuan 0 4.5 0 4.5 
Hsinchu 0 4.5 0 4.5 
Taichung 8 8 8 8 
Chiayi 0 7.5 0 7.5 
Tainan 0 7.5 0 7.5 
dMaxt 20 48 20 48 
hTracks = 3 for all s hPlatformp = 1 for all p 
Stations with two platforms: 
Banqiao, Taichung 
a1 = 1  a2 = 0.0001 
maxLB = 18 

 
 

 Train 1 Train 2 Train 3 Train 4 

Taipei 10 7 0 17 
 Actual Dwell Time 
Banqiao 4 4 4 4 
Taoyuan 0 8 0 9 
Hsinchu 0 9 0 8 
Taichung 8 8 8 9 
Chiayi 0 9 0 8 
Tainan 0 8 0 8 

 

Figure 4.6 Optimal time-space diagram for the Taiwanese high speed railway example. 
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4.5.4. Fourth illustrative example: Japanese high-speed railway system 

The fourth illustrative example is taken from the Japanese high-speed railway system. 

This system consists of several main lines, the most extensive of which is the Tokaido 

and Sanyo Shinkansen that runs 1436 km between Kagoshima and Tokyo in western 

Japan. Three main categories of trains—super express, limited express, and express—run 

on this line. Trains in these categories stop at roughly 25%, 50%, and 100% of the 

intermediate stations they encounter respectively. Trains in the same category do not pass 

each other. Super express trains may pass limited express and express trains, and limited 

express trains may pass express trains. No other passing combinations are allowed. The 

five subcategories of trains are the Nozomi super express (N), Mizuho super express (M), 

Sakura limited express (S), Hikari limited express (H), and Kodama express (K). The 

current timetable for this line is available on the internet (Japanese high speed rail 

website, 2012). 

The work on this problem considers the eastbound portion of the line that runs from 

Kagoshima (the origin) to Tokyo (the destination) and has 35 intermediate stations. The 

midday portion of the timetable strongly resembles a cyclic timetable with a one hour 

period and 11 train types per cycle. We focus on the final 22 trains in the top row in page 

2 of the timetable, i.e. the portion of the timetable beginning with train “K738” and 

ending with train “H468.” This portion of the timetable is almost perfectly cyclic; the 

final 11 trains are virtually identical to the first 11 trains except they are scheduled 60 

minutes later. Each cycle contains 11 train types: two N trains traveling from station 2-

36; one N train traveling from station 9-36; one N train traveling from station 20-36; one 

M train traveling from station 0-20; one S train traveling from station 0-20; two H trains 
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traveling from station 15-36 and 20-36 respectively; and three K trains traveling from 

station 2-15, 20-36, and 24-36 respectively. Thus, the actual timetable fits within the 

modeling framework of this study. The work on this problem is summarized in Figure 

4.7. Note that oStationt ≠ 0 or dStationt ≠ S+1 for all t. We assume there is one platform 

at every intermediate station. The traveling times between pairs of stations travs and 

minimum dwell times in the intermediate stations dMints are inferred from the actual 

timetable. The value of parameter dMaxt is 19-21 minutes higher than the sum of dMints 

for each t. The standard MILP model is supplemented with additional constraints of type 

(4-31) and (4-32) that ensure that the two N trains traveling from station 2-36—train 

types 1 and 10—maintain at least 20 minutes of headway on all portions of the main line.  

Figure 4.7 shows an optimal time-space diagram for this problem instance when a1 = 

1, a2 = 0.0001, and travs = 0 for all s. The optimal objective value is 59.0848 (Interval = 

59 and total train dwell time = 848 minutes). The parameter travs is zeroed out so that 

four intervals worth of trains can be displayed on a single page. Note that the optimal 

time-space diagram (timetable) for the original problem instance can be obtained by 

changing the vertical lines to a diagonal orientation (via a simple transposition in which 

an appropriate sum of travs parameters is added to each arrival and departure time in the 

timetable). This solution was obtained in 10,166 seconds. Notice that the optimal value of 

Interval (= 59) is slightly less than the actual cycle length of 60. Thus, it appears that the 

existing track infrastructure in this system is being pushed to its limits under the assumed 

values for dMints, hTracks, and hPlatformp. A second experiment considered the same 

instance with a1 = 1 and a2 = 0 and identified the optimal Interval (=59) in only 6415 
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seconds with total train dwell time = 912 minutes. This result indicates that the optimal 

Interval may be found more quickly when the second objective is disregarded.  

 Here, we fix Interval = 60 = minUB = maxLB and we only pursue objective 2. Our 

solution was obtained in 5921 seconds. In this case, the minimum total train dwell time is 

828 minutes, i.e. 20 minutes less than when Interval = 59. This result demonstrates that 

the two objectives are conflicting and it is possible to obtain substantial reduction with 

respect to objective 2 at the cost of little increase in objective 1. The runtime result 

indicates that the problem becomes easier to solve when extra “breathing room” in the 

form of a fixed, longer cycle length is incorporated into the timetable.  

4.6. Additional experiments: setup, results, and discussion 

We now perform several additional experiments to confirm the effectiveness of the 

second model presented in Section 4.3.  These experiments consider hundreds of problem 

instances, most solved to optimality.  In all experiments, CPLEX is given a 40 minute 

time limit for solving the overall math program presented in (4-24) – (4-45).  This time is 

in addition to the time used by CPLEX to solve preliminary machine scheduling 

problems in each station for calculating maximum lower bound (maxLB) (Table 4.3) and 

any other time needed to set up the problem. 

The problem instances are defined by the values of the primary input parameters S, P, 

sp, ps, T, oStationt, dStationt, travs, wts, dMints, dMaxt, hTracks, hPlatformp, and ak.  Table 

4.6 shows the parameter values that are considered in this section.  The brackets “[a,b]” 

indicate the set of integers in the closed interval from a to b.  
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Figure 4.7 Transposed version (travs = 0 for all s) of optimal time-space diagram for the Tokaido and Sanyo Shinkansen—the bullet train line that runs 1436 km from 

Kagoshima to Tokyo, Japan (S = 35, P = 35, T = 11, hTracks = 3, hPlatformp = 0.5, a1 = 1, a2 = .0001. Interval = 59, total dwell = 848.0.)
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Table 4.6 Parameter values considered in Section 4.6 
Parameter Value 
T 2, 3, 4, 5, 6 
S [1, 33] 
P S + X where X ~ B(S, 0.2) (B = binomial distribution) 
|ps| 1, 2 
oStationt 0 
dStationt S+1 
wts Usually = 1 if |ps| = 2; usually = Bernoulli(0.5) if |ps| = 1 
dMints = 1, 2, 3, 4, 5, or 6 if wts = 1; = 0 if wts = 0 

dMaxt  tsdMin5.1 + [0, 9] 

hTracks 1, 2, 3, 4 (held constant on entire main line in each instance) 
hPlatformp 0.5 
(a1, a2) (1, 0.0001) 
travs 5, 6, 7, 8, 9, 10 

 

Unless otherwise noted, the following procedures are used to determine the parameter 

values in all experiments in Section 4.6.  First, T and S are fixed.  Then we perform a 

Bernoulli trial in each station—there are two (one) platforms in station s with probability 

0.2 (0.8).  Thus, P = S + X where X ~ B(S, 0.2), a binomial distribution with S 

independent trials where the probability of success in each trial is 0.2.  Then oStationt = 0 

and dStationt = S+1 for all t.  Then wts is initially generated so that, for each train type t, 

the probability that it stops at a station s with 1 (2) platform(s) is 0.5 (1).  Each station s 

without a train stop then “steals” a stop from the closest station with at least two stops.  

This ensures that each station has at least one train type stopping in it.  Then dMints for 

each train stop (i.e. instance where wts = 1) is initially set to a random integer from 1 to 6 

inclusive; dMints is set to 0 when wts = 0.  Next, the non-zero dMints values are swapped 

among themselves so that (ΣdMints)/|ps| is roughly the same for each station s, i.e. so that 

the total minimum train dwell time per platform in each station is roughly equal.  This 

makes for a challenging problem instance in which no single station is the obvious 

bottleneck.  Then dMaxt is calculated based on dMints as shown in Table 4.6.  Finally, 
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hTracks, hPlatformp, a1, and a2 are set to the values shown in Table 4.6.  Note that the 

parameter travs plays only a trivial role in defining a problem instance.  Thus, T and S are 

decided by human judgment and the other parameter values are usually determined 

automatically. 

Note that every combination of parameter values satisfying the above criteria gives 

rise to a problem instance with a non-empty feasible region.  Also, both components of 

the objective function are minimized and both have zero as a lower bound.  Thus, every 

problem instance has an optimal solution.  In the figures showing the experimental 

results, a solid dot denotes an optimal solution and a hollow dot denotes the best feasible 

solution that was found when the time limit was reached. 

Table 4.7 shows the results from the first set of experiments in which 55 problem 

instances are considered.  The main parameters defining each instance are on the left and 

the main aspects of the solution are given on the right.  The results show that 53 (55) out 

of 55 problems are solved to optimality within the 40-minute time limit when both 

objectives are (only the first objective is) considered.  Also, the optimal value of Interval 

is usually not equal to the lower bound maxLB.  Not surprisingly, the runtime generally 

increases when any one of the parameters S, P, or T increases in isolation.  The second 

last column in Table 4.7 shows the runtime required to find the optimal Interval for each 

problem instance when a1 = 1 and a2 = 0.  The results in this column show there is a 

reduction (an increase) in runtime for 42 (12) problem instances when the second 

objective is disregarded.  Furthermore, the final column shows that the average reduction 

in runtime is more substantial than the average increase.  These results indicate that the 

problem becomes significantly easier to solve when the second objective is disregarded. 
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Table 4.7 Results for 55 problem instances (hTracks = 1) 
Input Parameters Solution 

Instance # S P T maxLB Interval 
Two Objectives  First Objective Only 

Total Dwell Time (sec) Status Time (sec) Change 

1 5 5 3 12 14 44.5 3 Optimal 2 -1 
2 5 5 3 12 14 49 4 Optimal 3 -1 
3 5 6 4 11 12 53.5 5 Optimal 7 +2 
4 6 8 4 13 13 75.5 16 Optimal 4 -12 
5 6 8 4 13.5 13.5 77.5 27 Optimal 15 -12 
6 7 7 4 11 12.5 58 6 Optimal 4 -2 
7 7 7 4 11 15 56.5 5 Optimal 5 same 
8 8 9 3 12 12 72 5 Optimal 3 -2 
9 8 9 4 11.5 14 83 14 Optimal 9 -5 
10 8 11 4 13 13.5 104 29 Optimal 95 +66 
11 9 9 3 13 13 92 5 Optimal 3 -2 
12 9 10 3 12 14.5 95.5 6 Optimal 4 -2 
13 9 10 4 13 16 105.5 14 Optimal 13 -1 
14 10 10 4 13 14.5 100.5 11 Optimal 5 -6 
15 10 11 3 12 16 103 7 Optimal 5 -2 

16 10 13 3 13 13 105.5 7 Optimal 6 -1 
17 10 13 3 12.5 13.5 98.5 12 Optimal 18 +6 
18 11 11 4 12 15 117.5 14 Optimal 9 -5 
19 11 11 4 13 15.5 112.5 13 Optimal 9 -4 
20 12 12 4 13 16 135.5 17 Optimal 10 -7 
21 12 12 4 12 14 132.5 20 Optimal 9 -11 
22 12 13 3 13 14.5 129 8 Optimal 6 -2 
23 12 13 4 13 14 134 19 Optimal 11 -8 
24 12 13 4 13 17.5 150.5 23 Optimal 24 +1 
25 12 14 3 13 14.5 138 8 Optimal 5 -3 
26 12 14 4 13 14 145 38 Optimal 56 +18 
27 12 14 4 12 16 137 55 Optimal 66 +11 
28 13 13 3 12 16 137 9 Optimal 5 -4 
29 13 13 4 13 15.5 129 31 Optimal 15 -16 
30 13 13 4 13.5 15.5 137 23 Optimal 17 -6 

31 13 13 4 13 17 142.5 20 Optimal 10 -10 
32 14 15 3 12 12 127.5 8 Optimal 5 -3 
33 14 16 3 13 13.5 141 13 Optimal 9 -4 
34 15 16 4 14 15.5 153 25 Optimal 18 -7 
35 15 18 3 12 13 159 13 Optimal 10 -3 
36 16 18 3 12 14.5 166 16 Optimal 11 -5 
37 16 18 3 13 16.5 177.5 13 Optimal 9 -4 
38 17 18 4 13 16.5 186 736 Optimal 433 -303 
39 17 19 4 12 14.5 182.5 363 Optimal 282 -81 
40 17 20 3 13 15 188 18 Optimal 15 -3 
41 18 19 4 12.5 15.5 204 72 Optimal 70 -2 
42 18 20 3 13 14.5 187.5 58 Optimal 94 +36 
43 18 21 4 13 14.5 210 510 Optimal 735 +225 
44 19 20 3 13 16 190.5 17 Optimal 19 +2 
45 19 21 3 13 14 203 18 Optimal 14 -4 

46 19 22 3 13 16 200 29 Optimal 39 +10 
47 20 21 3 12 14 196 24 Optimal 34 +10 
48 20 22 4 13 15.5 230 1655 Optimal 173 -1482 
49 20 23 4 13 14.5 227 2440 Feasible 374 -2066 
50 21 22 4 13 16.5 236 971 Optimal 365 -606 
51 22 23 4 13 16 230.5 1484 Optimal 923 -561 
52 22 24 4 13 16.5 257 259 Optimal 206 -53 
53 23 24 4 13.5 17 243 154 Optimal 218 +64 
54 24 28 3 13 13.5 263 376 Optimal 108 -268 
55 26 29 4 13.5 17 321 2410 Feasible 754 -1656 
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Figure 4.8 Effect of hTracks on Interval for the 55 problem instances considered in Table 4.8. 

 

Figure 4.8 displays the results of a second set of experiments that show the impact of 

hTracks on the optimal value of Interval.  Here we consider four different values of 

hTracks—1, 2, 3, and 4—in each of the 55 problem instances from Table 4.7.  Thus, we 

consider 220 problem instances total, and the same value of hTracks is applied to the 

entire main line in each instance.  The results for the cases with hTracks = 1 are copied 

from Table 4.7.  Not surprisingly, the results show that the optimal value of Interval 

increases monotonically as hTracks increases.  However, the amount of increase in 

Interval depends on the problem instance.  For example, there are problem instances in 

which (i) Interval increases steadily as hTracks increases (instance 11); (ii) Interval 

increases only when hTracks changes from 2 to 3 (instance 33); and (iii) Interval is the 
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Figure 4.9 Impact of adding extra train types to 20 base problem instances (hTracks = 1). 
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Interval depends on the base instance and on the exact specifications of the added train 

type.  Indeed, sometimes the optimum Interval is unchanged when a new train type is 

added (e.g. base instances 12 and 15) and sometimes the optimum Interval changes 

drastically (e.g. base instances 3 and 6) when a new train type is added.  Figure 4.10 

shows the total runtime for the instances considered in Figure 4.9.  Here, we see a 

dramatic increase in runtime as train types are added, which agrees with Table 4.7 and 

completes our conclusion. 

 

 
Figure 4.10 Computation times for instances considered in Figure 4.9 
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(a) (b) 

(c) (d) 
Figure 4.11 Impact of doubling the number of train types via cloning for 20 base problem instances with 2 train 

types (a, c) and 20 base problem instances with 3 train types (b, d). 
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Figure 4.11 displays the results of a fourth set of experiments that show how the two 

parts of the objective value—Interval and total train dwell time—are affected when we 

double the number of train types via cloning.  Here, we consider 40 base instances—20 

with T = 2 and 20 with T = 3.  These base instances are identical to the corresponding 

instances with T = 2 and T = 3 in Figure 4.9 (instances 16 and 17 appear in reverse order).  

Each base instance forms the basis of a larger “twin” instance whose train types consist 

of two exact copies of each train type in the base instance.  Thus, we consider 80 

instances total, each having between 10 and 19 intermediate stations.  The results show 

that the optimal value of Interval and the associated total train dwell time for the twin 

instance are usually exactly double that of the corresponding base instance.  However, 

there are several exceptions to this general trend.  For example, in instance 15 with 2/4 

train types, Interval (total train dwell time) for the twin instance is double (less than 

double) that of the base instance.   Also, in instance 5 with 3/6 train types, Interval (total 

train dwell time) for the twin instance is less than double (more than double) that of the 

base instance.  Finally, in instances 3 and 10 with 3/6 train types, both Interval and total 

train dwell time for the twin instance are less than double that of the base instance.  Thus, 

it is sometimes possible to increase line capacity by doubling the number of train types 

dispatched per cycle via cloning. 

Figure 4.12 displays the results and impact of adding extra stations to the end of an 

existing line on Interval and total dwell time which is the fifth set of experiments. The 

three base instances have T = 2, 3, and 4 with S = 4.  The results for the base instances are 

copied into the left-most portion of parts (a), (b), and (c) in the figure.  These base 

instances are extended by adding four stations to the line at a time in three different ways.  
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In part (a), two intermediate stations are added to the beginning of the line (i.e. prior to 

station 1) and two stations are added to the end of the line (i.e. after to station S) in 

sequential fashion until the total number of stations is 32.  In part (b) four stations are 

added to the beginning of the line in sequential fashion until S = 32.  In part (c) four 

stations are added to the end of the line in sequential fashion until S = 32.  Thus, Figure 

4.12 summarizes the results from a total of (3)(1 + 7*3) = 66 problem instances.  Each 

station has one platform in all instances (i.e. P = S).  The instances are constructed so 

there is a maximum sharing of input data.  That is, the input data for every instance with 

n train types (n = 3, 4) is identical to the input data for the corresponding instance with n-

1 train types except that one additional train type—defined by wts, dMints, and dMaxt—is 

considered.  Also, the input data for every instance with n stations (n ≥ 8) is identical to 

the input data for the corresponding instance with n-4 stations except that four additional 

stations—defined by hTracks, hPlatformp, travs, wts, and dMints—are considered.  Finally, 

the input data for the stations in parts (b) and (c) are used to form the input data for the 

stations in part (a).  Not surprisingly, the results show that both Interval and total dwell 

time generally increase as stations are added to the ends of an existing line regardless of 

whether these stations are added at the beginning, at the end, or both at the beginning and 

at the end of the line. 

The sixth set of experiments investigates the effect of number of platforms on 

Interval (rail line capacity) by adding extra platform to the station of an existing line one-

by-one. Figure 4.13 displays the result of this investigation. The result for the base 

instance—in which T = 3, S = 15, and P = 15—is displayed on the left of.  Here, we 

explore two methods for inserting additional platforms into the base instance.  In both 
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methods, platforms are added to the instance one-by-one until all stations have two 

platforms.  The bold line shows the result when platforms are added to the stations 

according to their position along the line, i.e. in sequential fashion beginning with station 

1 and ending with station 15.  The dashed line shows the result when platforms are first 

added to the stations s with the highest
1

T

tst
dMin

 .  That is, platforms are first added to 

the stations that “need” them the most.  Thus, Figure 4.13 shows the results for a total of 

(1 + 14×2 + 1) = 30 problem instances.  Each dot in the figure is labeled with the number 

of the station in which the extra platform is installed.  The results indicate that the 

strategic placement of only one or two extra platforms in particular stations along a rail 

line may have a greater impact on capacity than the comprehensive placement of many 

extra platforms along a large portion on the line.  Also, the increase in line capacity 

obtained by adding one platform at a particular station (e.g. station 9 or 15) depends on 

the number of platforms already installed at other stations. 

Figure 4.14 displays the results from a final set of experiments that show the impact 

on Interval of increasing dMaxt above
1

1

t

t

dStation

tss oStation
dMin



  for six base instances.  The main 

input parameters for each base instance—in the format (S_P_T)—are shown in the upper 

right portion of the figure.  Each base instance is constructed so that

1

1

t

t

dStation

t tss oStation
dMax dMin



 
  for all t.  The results for the base instances are shown on the 

left.  Other instances are obtained increasing the dMaxt for all t in the base instance by the 

amount shown on the x-axis while holding all other parameter values (including dMints) 

constant.  Thus, the figure shows the results for a total of [6×10 = 60] problem instances.  

The results show that the optimal value Interval is a decreasing and generally convex 
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function of the dMaxt.  The large decreases in Interval when the dMaxt are initially 

increased above the ∑dMints are attributed to the fact that the decision maker has no 

flexibility when the dMaxt = ∑dMints.  In this case, adding just a little flexibility to a case 

with no flexibility leads to a substantial improvement in Interval.  Note that, in all 

problem instances, no further improvement in Interval is achieved when the dMaxt 

exceed ∑dMints by more than ten minutes.  In other words, we can often obtain the 

optimal value of Interval without much increase in train dwell times above the minimum 

required train dwell times. 
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(a)-(b) 2 stations added at the 
beginning and 2 at the end 
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Figure 4.12 Impact of adding 4 stations at a time on Interval and total dwell time (P = S). 
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Figure 4.13 Impact on Interval of adding platforms to the stations of an existing line (labels indicate stations 

were an extra platform is installed). 
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Figure 4.14 Impact on Interval of increasing dMaxt above ∑dMints for six base instances. 
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4.7. Conclusion 

In this chapter we have presented two mixed integer linear programming models of a 

cyclic, combined train timetabling and routing. This is the first attempt of integrating 

cyclic train timetabling and routing by mixed integer linear programs in the literature.  

These MILP models schedule train arrivals and departures at stations and assigns train 

types to platforms in the stations so as to minimize the length of the dispatching cycle 

and/or minimize the total stopping (dwell) time of all train types at all stations combined.  

The first objective—minimization of the length of the dispatching cycle—directly relates 

to rail line capacity.  The current study generalizes the model presented in Chapter 3 in 

three ways.  First, we consider any number of train types per cycle.  Second, we allow 

stations to have more than one siding.  Third, we allow trains to start or end at 

intermediate stations.  Two real-world problems along with hundreds of randomly 

generated and real-world problem instances have been considered and solved to 

optimality in a reasonable amount of time using IBM ILOG CPLEX 11.2 and 12.4. 

The experimental results yield several managerial insights.  First, our ability to solve 

large problem instances to optimality—including an instance with 11 train types and [33] 

intermediate stations taken directly from the Japanese Shinkansen bullet train system 

timetable—demonstrates the effectiveness of the model.  Second, problems of this type 

generally become more difficult when the number of stations, platforms, or train types 

increases.  On the other hand, the problem becomes significantly easier to solve when (i) 

the second objective—minimizing total train dwell time—is disregarded or (ii) the 

dispatching cycle is fixed to a value with some “breathing room” and only the second 

objective is considered.  Not surprisingly, the optimal cycle length increases 
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monotonically as (i) the minimum required headway on the main line increases, (ii) extra 

train types are added to an existing rail line, or (iii) extra stations are added to the ends of 

an existing line.  The optimal cycle length decreases monotonically as (i) extra platforms 

are added to the stations in an existing rail line or (ii) actual train dwell times are allowed 

to deviate by a greater amount from their respective minimum required dwell times in the 

stations where they stop.  In addition, it is sometimes possible to increase the line 

capacity by doubling the number of train types dispatched per cycle via cloning.  Finally, 

the optimal value of Interval can often be obtained without sacrificing too much in the 

form of increased train dwell times above the minimum required train dwell times in the 

stations. 
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Chapter 5 

Bi-directional cyclic train timetabling and platforming with 

heterogeneous rolling stock 

5.1. Introduction 

This chapter presents a new mixed integer linear program for the cyclic train timetabling 

and platforming for a single-track bi-directional rail line between two major cities known 

as west and east terminals with heterogeneous rolling stock. This model extends the 

problem presented in Chapter 4 in four different ways: (i) train types can travel in both 

directions, (ii) some train types can stops at stations other than those specified by their 

line plan, (iii) some train types are forbidden to stop at some stations, and (iv) train types 

have different travel times on the main line and the actual travel time is a decision 

variable which will be determined by the model. From (ii) and (iii) it can be inferred that 

the model will determine where a particular train type stops in order to increase line 

capacity. 

Figure 5.1 illustrates the problem setting at hand. Consider a single track, bi-

directional rail line with two endpoints and a set of S intermediate stations between them. 

It is assumed that the stations are labeled from 0 to S+1 from west to east. Further, it is 

assumed that some stations may have more than one platform allowing more trains to 

reside in them at any given time. Therefore, there are P platforms such that P ≥ S. A total 

of T different train types with their respective starting (oStation) and ending (dStation) 
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points and station stopping patterns (wts) are dispatched in cyclic fashion with one train 

type in each cycle. There are two subsets of trains denoted by T1 and T2, respectively, 

where T1 is the set of eastbound trains and T2 is the set of westbound trains  1 2T T T . 

The starting point or origin (oStationt) of train type t may be either of the endpoints (i.e. 

“station 0” or “station S+1”) or any intermediate station. The destination (dStationt) of 

train type t may be the other endpoint (other than starting point, i.e. “station S+1” or 

“station 0”) or any station after oStationt (if t is an eastbound train) or before oStationt (if 

t is a westbound train). Each train type, as specified by its line plan, must stop for 

minimum time at each station or it might be forbidden to stop at a particular station. 

Without loss of generality, this minimum time, also known as dwell time, can be zero 

meaning that the stop has not been defined for the train at the time of defining line plan. 

Therefore, if it is not forbidden, the model can determine whether the train stops or not, 

i.e. those trains with zero dwell time can stop at the station in order to facilitate other 

trains’ movements on the main line and/or through stations. This characteristic enhances 

system flexibility and may shorten cycle length depending upon the degree of the 

importance of the first objective. The train type, in our definition, may relate to direction, 

stopping frequency, train-station compatibility, or some other differentiating 

characteristics between train sets.  
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Figure 5.1 Topology of the railway system investigated in this study. 
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The general feature of the rail line is the same as the problem investigated in Chapter 

4 except the bi-directional train movement and heterogeneous rolling stocks, but for the 

sake of simplicity will be restated here. The single track makes it impossible for one train 

to pass another if both trains are on the main line. However, there is at least one siding in 

each station, so it is possible for a train on the main line to pass a train that is stopped at a 

station. Regarding passing, we assume that a through train’s passage of a station is 

entirely unobstructed by any trains that are stopped at the station. Further, each station 

siding is sufficiently long so that deceleration and acceleration by a train moving into or 

out of a station does not interfere with the operations of the through trains that do not stop 

at the station. 

Each train type t is dispatched from its starting point once per cycle and the cycle 

length, a decision variable, is called Interval. The departure (arrival) time from (at) 

station s is the time when the train reaches the merge point—the point at which the 

sidings in station s return to the main track just after (before) station s. The cyclic nature 

of the timetable means that the journeys of all trains of type t are identical except for their 

departure times from their starting point. 

As mentioned earlier in this chapter, in this problem, it is also assumed that each train 

type’s traveling time on the main line between two stations is a decision variable which is 

bounded below. The total travel time of each train type, referred to as journey time in this 

paper, is bounded by an upper bound. This upper bound on each train journey allows 

train to stop at stations for a longer time or move over the main track at slower speed. 
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Figure 5.2 Cyclic train timetable depicted as a time-space diagram. 
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Here, again, the primary objective is to minimize Interval subject to five sets of 

operational and safety constraints which shape this problem. First, there is a minimum 

dwell time at each station for those train types that are allowed to stop in a station. Some 

train types are not specified to stop, meaning dwell time is set to zero, but depending on 

the system situation those train types may stop if doing so lowers the objective function 

value and/or clear a conflict.  The second constraint is related to traveling time on the 

main line. According to this constraint each portion of the main line or a train type is 

subject to a speed limit. Third, each train type’s total journey time from origin to 

destination cannot exceed an upper bound. In the fourth constraint—a safety-type 

constraint—trains on the portion of the main track between station s and s+1 heading the 

same direction must be separated by a minimum headway of hTracks minutes. Similarly, 

the opposite direction trains must be separated by the minimum safety time which is 

called gaps in this dissertation. The last set of constrains are related to safety 

consideration in stations. According to these safety constraints or regulations every pair 

of train types that are assigned to the same platform must be separated by a safety time, 

denoted by hPlatformSamep for trains going the same direction and hPlatformDiffp for 

trains going in opposite direction, respectively. In other words, the departure time of a 

train type leaving from platform p must be separated by at least hPlatformSamep 

(hPlatformDiffp) minutes from the arrival time of the next train for same-direction 

(opposite-direction) trains. For simplicity, we assume that a train’s “departure/arrival 

time” from/to station occurs at the very end/beginning of its dwell time in the station. The 

secondary objective is to minimize the total journey time of all train types combined. 

Figure 5.2 shows a time-space diagram of the type of cyclic train timetable described 
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here in which 3T  where  1 1, 2T  and  2 3T  . Each train type is depicted using a 

different style line (e.g. solid, dashed). Note that the most of the terms introduced in the 

preceding paragraph—including Interval, the length of the dispatching cycle—appear in 

the figure.  

5.2. Brief literature review 

As mentioned in this chapter we focus on timetabling optimization (i.e. train scheduling) 

and train platforming (i.e. track allocation) where different train types have different 

speeds on the mail line and different minimum dwell times at stations. Some efforts that 

considered bi-directional track include Ceder (1991), Jovanović and Harker (1991), 

Higgins et al. (1996), Higgins et al. (1997), Harrod and Schlechte (2013), Caprara et al. 

(2006), Shafia et al. (2012), and Zhou and Zhong (2007). Recent contribution that just 

consider train routing/platforming but not timetabling in any form include Zwaneveld et 

al. (2001), Billionnet (2003), Lusby et al. (2011b), and Caprara et al. (2011). Demagne et 

al. (2012) model the track assignment problem by online graph coloring and study the 

computational complexity of the problem. No train scheduling or timetabling problem is 

considered. 

Among all previous works, Bergmann (1975), Heydar et al. (2013), and current study 

are the only studies that apply mixed integer programming for cyclic train timetabling 

with the minimization of cycle length as the primary objective. This requires the cycle 

time to be a decision variable. This is another characteristic that makes their work and the 

current study different from other researches in the field of train timetabling. This chapter 

further generalizes the cyclic timetabling problem by considering train movement in both 

directions on the mail line.  
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In summary, a close examination of the railway operations literature has yielded 

many outstanding contributions in the areas of train timetabling, train scheduling, train 

platforming, and railway capacity analysis. However, the problem investigated in this 

chapter appears to be the first study to (1) present a MILP model for a cyclic timetabling 

problem for a single-track bi-directional rail line in which the length of the cycle is a 

decision variable and objective function; (2) present a model that allows train types to 

move at different speed; (3) present a model that allows train types stop at stations other 

than their line plan; and (4) all other aspects of problems considered in Chapter 3 and 

Chapter 4, respectively.  

5.3. Mathematical formulation 

We now present an MILP formulation for the problem. The indices, parameters, and 

decision variables are given in Table 5.1. There are two types of parameters for this 

model. The primary parameters define a problem instance and can be read from an 

external file or database. The secondary parameters are derived from the primary ones 

and are described after presenting mathematical model. Table 5.2 defines the equivalent 

mathematical expressions for index ranges given in Table 5.1. 
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Table 5.1 Indices, parameters, and decision variables in mathematical model 
Indices:  
s, m Station index (0 ≤ s, m ≤ S+1; 0 and S+1 represent the west terminal and east terminal) 
P Platform index (1 ≤ p ≤ P) 
D Train direction (1 = Eastbound  or 2 = Westbound) 
t, u Train type index (1 ≤ t, u ≤ T, tT1 are eastbound trains and tT2 are westbound trains)  
I Interval index; index for different trains of same type (integer; 0 = original interval) 
K Objective function component (k = 1, 2) 
Parameters:  
S Number of intermediate stations (integer, ≥ 1) 
P Number of platforms (integer, P ≥ S) 
sp Station in which platform p resides (p = 1 to P) 
ps Set of platforms in station s (s = 1 to S) 
Td Number of train types traveling in direction d (d = 1, 2) 
T Number of train types (integer, ≥ 1, T = T1 + T2) 
dt Direction for train type t (t = 1 to T) 
oStationt Origin station for train type t (integer, ≥ 0, ≤ S+1) (t = 1 to T) 
dStationt Destination station for train type t (integer, ≥ 0, ≤ S+1) (t = 1 to T) 
dMints Minimum dwell time for train type t at station s (real, ≥ 0) (  ,t s: 1 ≤ t ≤ T1 and oStationt < s < dStationt OR T1+1 ≤ t ≤ T  

and dStationt < s < oStationt) 

forbidts = 





0

1  
If train type t is forbidden from stopping in station s 

Otherwise (binary)  (same index ranges as for dMints) 

jMaxt Maximum allowed journey time for train type t from its starting point to its ending point (minutes) (real, > 0) (t = 1 to T) 
travMints Minimum possible travel time for train type t on main line between station s and s + 1 (real, > 0) (  ,t s: 1 ≤ t ≤ T1 and 

oStationt < s < dStationt OR T1+1 ≤ t ≤ T and dStationt < s < oStationt) 
hPlatformSamep Headway on platform p for trains traveling in same direction (real, ≥ 0) (p = 1 to P)  
hPlatformDiffp Headway on platform p for trains traveling in opposite directions (real, ≥ 0) (p = 1 to P)  
hTracks Headway between trains traveling in same direction on portion of main line between station s and s+1 (real, > 0) (s = 0 to S)  
gaps Minimum time separation at any point along portion of main line between station s and s+1 for trains traveling in opposite 

directions (real, > 0) (s = 0 to S)  
ak Weight for objective function component k (real, ≥ 0) (k = 1, 2) 
minUB Minimum upper bound on optimal value of Interval (real, > 0) 

mainLBs = maxs (s=1 to S)     suslowsufastsstslowstfast DAgapDA ,1,11,, *2    : 21 , TuTt   

mainLB  = maxs(mainLBs) 
stationLBs Lower bound on Interval obtained by assigning train types to platforms in station s (s = 1 to S) 
stationLB = maxs (s=1 to S) {stationLBs} 
maxLB Maximum lower bound on optimal value of Interval (= max{mainLB, stationLB}) (real, > 0) 
lowIntMaintus Lowest interval of train type t that must be compared to the “interval 0 of train type u” to ensure headway constrains are 

enforced on the main line between station s and s+1 (integer) 

(defined s from 0 to S, :u)(t,  t < u and both train t and u use the portion of the main line between station s and s+1) 
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Table 5.1 Continued 
highIntMaintus [replace “Lowest” with “Highest” in the above definition] 
lowIntPlattup Lowest interval of train type t that must be compared to the “interval 0 of train type u” to ensure headway constrains are 

enforced on platform p (integer) 
( :u)(t, train types t and u are eligible to visit platform p defined and  t < u) 

highIntPlattup [replace “Lowest” with “Highest” in the above definition] 
Decision Variables: 
Interval Interval duration (minutes) (real, > 0) 
Ats Arrival time of original train of type t at station s (real, > 0)  
Dts Departure time of original train of type t from station s (real, ≥0) 

Zitsu = 




0

1
  

If “interval i train of type t” appears on the portion of the main line between station s and s+1 before original (i.e. interval 0) 
train of type u appears there 

Otherwise (binary) (defines, t, u for which lowIntMaintus is defined,  i: lowIntMaintus ≤ i ≤ highIntMaintus) 

Z’ itsu= 




0

1
 

If “interval i train of type t” uses the portion of the main line between station s and s+1 before original (i.e. interval 0) train of 
type u uses it 

Otherwise (binary) (s: 0 ≤ s ≤ S, (t,u: t < u, dt ≠ du) oStationt ≤ s < dStationt and dStationu ≤ s ≤ oStationu,  i: 
lowIntMaintus ≤ i ≤ highIntMaintus)   

Qts= 




0

1
  

If train type t stops in station s 

Otherwise (binary) (same index ranges as for dMints) 

Xtp= 




0

1
 

If train type t is assigned to platform p 

Otherwise (binary) (t = 1 to T, p = 1 to P) 

Yitpu= 




0

1
 

If “interval i train of type t” uses platform p before original (i.e. interval 0) train of type u uses it 

Otherwise (binary)   

 (defined p, t, u for which lowIntPlattup is defined, i: lowIntPlattup ≤ i ≤ highIntPlattup) 
Vitpu= [replace “before” with “after” in the above definition] 
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Table 5.2 Equivalent mathematical expressions for index ranges mentioned in Table 5.1 
Index ranges:  
English description Equivalent mathematical expression 
Train type t uses the portion of the main 
line between stations s and s+1  

(  ,t s: 1 ≤ t ≤ T1 and oStationt < s < dStationt OR T1+1 ≤ t ≤ T  and dStationt < s < 

oStationt) 
Both train t and u use the portion of the 
main line between station s and s+1 

dt = du and dt = 1and oStationt ≤ s < dStationt and oStationu ≤ s < dStationu) 
OR 
dt = 2 and dStationt ≤ s < oStationt and dStationu ≤ s < oStationu) 

Both train t and u are eligible to visit 
platform p 

dt = du = 1and oStationt < sp < dStationt and oStationu < sp < dStationu) 
OR 
dt = du = 2 and dStationt < sp < oStationt and dStationu < sp < oStationu) 
OR 
dt = 1 and du = 2 and oStationt < sp < dStationt and dStationu < sp < oStationu) 

Train type t is eligible to visit platform 
p  

p , t : forbidt(s_pi) = 0  

Train type t arrives at station s (  ,t s: 1 ≤ t ≤ T1 and oStationt < s ≤ dStationt OR T1+1 ≤ t ≤ T  and dStationt ≤ s < 

oStationt) 
Train tope t departs from station s (  ,t s: 1 ≤ t ≤ T1 and oStationt ≤ s < dStationt OR T1+1 ≤ t ≤ T  and dStationt < s ≤ 

oStationt) 

 

 

Table 5.3 Parallel machine scheduling problem for computing stationLBs 
Indices   
t train type (1 ≤ t ≤ T)  
p platform (1 ≤ p ≤ P)  
Parameters   
s Station under consideration. 
T Number of train types stopping in station s 
P Number of platforms in station s 
dMint Minimum required dwell time for train type t in the station (= dMints in Table 5.1, real, > 0) 
hPlatformp Lower bound on inimum required headway between trains stopping on platform p = min{hPlatforSamep, 

hPlatformDiffp} (real, ≥ 0) 
Decision variables   
Xtp = 1 if train type t is assigned to platform p (binary). 
stationLBs Minimum makespan for the machine scheduling problem (real, > 0). 
Math program   
Objective:    
                    minimize   stationLBs 

  

Subject to:   

tX
P

p
tp 


1

1

 

pstationLBhPlatformdMinX s

T

t
pttp 

1

))((  
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5.3.1. Mathematical Model 

There are nine decision variables in the model: the first three are real variables and other 

six are yes-no decision variables forming our mixed integer linear program. As 

mentioned in Section 1, Interval is the length in minutes of the dispatching cycle. It is the 

quantity we seek to minimize in this study. Ats and Dts are the arrival and departure times 

of the original train of type t at station s. The binary variables Qts determine whether or 

not train type t stops at a station. The binary variables Xtp indicate which train types are 

assigned to which platforms. The binary variables Zitsu indicate the sequence of train 

types on the main line that move in the same direction; while, Z’ itsu indicate the sequence 

of train types on the main line that move in opposite directions. The binary variables Yitpu 

and Vitpu indicate the sequence of train types visiting the platforms.  

Our MILP formulation of this problem is as follows:  

 

Minimize      1 2 , ,t tt dStation t oStation
t T

a Interval a A D


      (5-1)

Subject to  

,0
tt oStationD Interval                                                                                   

t T   
(5-2)

, 1ts ts t sD travMin A                                  : 1, :t t tt d s oStation s dStation       (5-3)

, 1 , 1ts t s t sD travMin A                              : 2, :t t tt d s dStation s oStation      (5-4)

 ts ts tsD A dMin                                                              , : tst s dMin is defined (5-5)

  0ts tsD A                                        , : tst s forbid is defined and 1tsforbid   (5-6)
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  , ,t tt dStation t oStation tA D jMax                                                                       t T   (5-7)

 

Constraints (5-8) – (5-11) are created , , ,i t s u for which Zitsu is defined and 1t ud d    

   1ts us itsu si Interval D D Z M hTrack         (5-8)

 ts us itsu si Interval D D Z M hTrack       (5-9)

   , 1 , 1 1t s u s itsu si Interval A A Z M hTrack          (5-10)

 , 1 , 1t s u s itsu si Interval A A MZ hTrack       (5-11)

 

Constraint (5-12) needs slightly different range than constrains (5-8) – (5-11). 

1, , ,itsu i t s uZ Z   (5-12)

 

Constraints (5-13) – (5-16) are created , , ,i t s u for which Zitsu is defined and 2t ud d     

   , 1 , 1 1t s u s itsu si Interval D D Z M hTrack          (5-13)

 , 1 , 1t s u s itsu si Interval D D MZ hTrack        (5-14)

   1ts us itsu si Interval A A Z M hTrack         (5-15)

 ts us itsu si Interval A A MZ hTrack      (5-16)

 

Constraint (5-17) needs slightly different range than constrains (5-3) – (5-16).  

1, , ,itsu i t s uZ Z   (5-17)
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Constraints (5-18) and (5-19) are created , , ,i t s u for which itsuZ is defined and 1td  and

2ud    

   , 1 , 1 1t s u s itsu si Interval A D Z M gap          (5-18)

 ts us itsu si Interval D A MZ gap      (5-19)

Constraint (5-20) needs slightly different range than constrains (5-18) and (5-19). 

1, , ,itsu i t s uZ Z     (5-20)

 ts ts tsQ M D A                                                              , : tst s Q  is 

defined 

(5-21)

ts ts tsD A M Q                                                              , : tst s Q  is defined (5-22)

s

tp ts
p P

X Q


                                                                        , : tst s Q  is defined (5-23)

1tp up itpu itpuX X Y V      (5-24)

tp itpu itpuX Y V    (5-25)

up itpu itpuX Y V     (5-26)

   , , 1
p pu s t s itpu pA i Interval D Y M hPlatformSame       (5-27)

   , , 1
p pt s u s itpu pi Interval A D V M hPlatformSame       (5-28)

  , , ,p t u i for which Yitpu is defined and t ud d   

   , , 1
p pu s t s itpu pA i Interval D Y M hPlatformDiff       (5-29)

   , , 1
p pt s u s itpu pi Interval A D V M hPlatformDiff       (5-30)
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, , ,p t u i for which Vitpu is defined and 1td  and 2ud    

1, , ,

1, , ,

, , ,

, , ,1
p

p

itpu i t p u

itpu i t p u

itpu i t s u

itpu i t s u

Y Y

V V

Y Z

V Z






 
 

  

  

(5-31)

 , ,p pt s t s tp pInterval D A X hPlatformSame      (5-32)

 , : , 1t p p tp t oStation s dStation d      

     or   ,, 2 , 0
pt p t t t sdStation s oStation d forbid      

maxLB ≤ Interval ≤ minUB (5-33)

 

The objective function (5-1) is a weighted sum of the primary objective, Interval, and the 

secondary objective, total journey time of all train types combined, that we want to 

minimize. The first objective is the main focus of this study, so a1 >> a2 in most 

experiments. Constraint (5-2) ensures that the original train of each type departs its 

starting point during the first interval (i.e. “interval 0”). Constraint (5-3) guarantees the 

sequencing of stations that each eastbound train type should visit and also requires that at 

least travMints be the traveling time for train type t along the main line between station s 

and s+1. Constraint (5-4) is the same as constraint (5-3) but for westbound trains. 

Constraints (5-5) and (5-6) ensure that (i) each train type can stop for at least the required 

minimum amount of time in each station it visits if forbidts = 0 and (ii) train type t does 

not spend any time in station s if forbidts = 1. Constraint (5-7) ensures that the total 

journey time of train of type t does not exceed the maximum allowed value, jMaxt. 
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Constraints (5-8) and (5-9) are disjunctive constraints that enforce the headway 

restriction on two eastbound trains of type t and of type u departing station s towards 

station s+1 for all s from 0 to S. In particular, these constraints guarantee that the interval 

i train of type t appears at the merge point just after station s either at least hTracks 

minutes before (5-8) or after (5-9) the original train of type u appears there for all s from 

0 to S, for all pairs of train types that travel along the portion of the main line between 

station s and s+1, and for all intervals i of train type t that could possibly interfere with 

the original train of type u. Note that, although constraints (5-8) and (5-9) consider a 

finite number of trains of type t and only one train of type u, they enforce headway 

constraints on the main track for all trains of type t versus all trains of type u owing to the 

repetitive, cyclic nature of the timetable. The idea is the same as the second problem 

considered in Chapter 4 which is due to repetitive cyclic fashion of problem, every pair-

wise comparison can move over planning horizon. Constrains (5-10) and (5-11) are 

ordering constraints that work together with constraints (5-8) and (5-9) to separate 

eastbound train type t and u at the arriving point of station s+1 coming from station s. 

Based on these constraints, if train type t leaves station s at least hTracks minutes before 

(5-8) the original train of type u, it should arrive at station s+1 at least hTracks minutes 

before (5-10) the original train of type u. In a similar way, if train type t leaves station s at 

least hTracks minutes after (5-9) the original train of type u, it should arrive at station s+1 

at least hTracks minutes after (5-11) the original train of type u. In other words, 

constraints (5-10) and (5-11) guarantee the headway on the main line and ensure that 

trains do not overtake due to different speeds while moving on the main line between 

station s and s+1. Regarding the ordering of trains on the main line, constraint (5-12) 
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states that if the interval i train of type t is before the original train of type u, then the 

interval i-1 train of type t must also be before the original train of type u. Constraints (5-

13) – (5-17) are the counterparts of the constraints (5-8) – (5-12) that are defined for 

westbound train types. Constraints (5-18) and (5-19) are disjunctive constraints that 

enforce the time separation between two train types moving in opposite directions on the 

portion of the main line between station s and s+1 for all s from 0 to S. In particular, these 

constraints guarantee that the interval i train of type t uses the portion of the main line 

between station s and s+1 either at least gaps minutes before (5-18) or after (5-19) the 

original train of type u uses that portion for all s from 0 to S, for all pair of train types that 

travel along that portion of the main line such that trains of type t that are eastbound and 

trains of type u that are westbound. Constraint (5-20) states that if the interval i train of 

type t is before the original train of type u, then the interval i-1 train of type t must also be 

before the original train of type u. Constraint (5-21) states that if there is no difference 

between arrival time and departure time of train type t in station s, then train type t must 

not stop in station s. On the other hand, Constraint (5-22) states that if there is a 

difference between arrival time and departure time of train type t in station s, then train 

type t must stop in station s. Constraint (5-23) ensures that each train type stopping (not 

stopping) in a station visits 1 (0) a platform in the station. Constraints (5-24) – (5-26) 

ensure that, if two train types, regardless of their directions, utilize the same platform, 

then the first train type must either use the platform before or after the second train type; 

the two train types cannot utilize the platform simultaneously. Constraints (5-27) – (5-30) 

enforce the headway restriction on all stations platforms. In particular, constraints (5-27) 

and (5-28) are disjunctive constraints and guarantee the headway separation between two 
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train types traveling in the same direction. In other words, if both train types t and u can 

stop at station s where platform p resides and use platform p, these constraints guarantee 

that the interval i train type t uses platform p either at least hPlatformSamep minutes 

before (5-27) or after (5-28) the original train of type u uses it for all p and for all 

intervals i of train type t that could possibly interfere with the original train type u at that 

platform. Again, due to repetitive, cyclic nature of the model, constraints (5-27) and (5-

28) enforce headway constraints on the station platform for all trains of type t versus all 

trains of type u owing to the repetitive, cyclic nature of the timetable. Constraints (5-29) 

and (5-30) are disjunctive constraints that guarantee the platform headway separation 

between an eastbound train type t and a westbound train type u, if both stop and reside on 

platform p in station s. According to these constraints, if both trains stop on platform p, 

then the interval i train of type t uses platform p either at least hPlatformDiffp minutes 

before (5-29) or after (5-30) the original train of type u uses it for all p and for intervals i 

of train type t that could possibly interfere with the original train of type u at that 

platform. The first two constrains in (5-31) state that if the interval i train of type t is 

before (after) the original train of type u, then the interval i-1 (i+1) train of type t must 

also use platform p before (after) the original train of type u. The second two constraints 

in (5-31) ensure that the ordering of two trains on the main line between station s and s+1 

agrees with the ordering in which these trains visit the same platform in station s. 

Constraint (5-32) guarantees that the cycle length Interval is large enough so that each 

stop by a train type at a platform can be made without the train overlapping with its sister 

train from the next interval. Constraint (5-33) forces Interval to take a value that is no 
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lower than its lower bound and no higher than its upper bound; these bounds are defined 

and discussed in Sections 5.3.2 and 5.3.3. 

5.3.2. Upper bound on optimal value 

We now describe the calculation of minimum upper bound used in the mathematical 

model. The parameter minUB provides an upper bound on the optimal value of Interval. 

It equals the lowest value of Interval among the T1! feasible orderings of eastbound trains 

and T2! feasible orderings of westbound trains. This is obtained by considering all 

possible T1! cyclic orderings of eastbound train types and then scheduling them in order 

one-at-a-time such that (a) all train types achieve their minimum station dwell and 

traveling time; (b) there is no passing; and (c) no two train types may be in the same 

station at the same time. During the scheduling process, the first eastbound train type is 

scheduled so it departs its origin at time 0. Then, each subsequent eastbound train type is 

scheduled one-at-a-time as early as possible considering the above assumptions and the 

fact that the subsequent train must be separated by hPlatformSamep within stations and 

hTracks on the main line from its predecessor. Then we update minUB = Interval + gaps, 

where Interval is the difference between arriving the last eastbound train at its destination 

and departing the first train from its origin. At the next step we do the same procedure for 

the T2! of westbound train types. 

5.3.3. Lower bound on optimal value 

Parameter maxLB provides a lower bound on the optimal value of Interval. It equals the 

higher of two different lower bounds: stationLB and mainLB. Parameter stationLB is the 

minimum value of Interval that could possibly be achieved by considering train dwell 

time, headway in stations and the number of tracks in each station or station capacity.  It 
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is obtained by solving a parallel machine scheduling problem for each station s, where 

platforms are considered as machines and train types that stop in station s as jobs with 

processing time dMints with hPlatformSamep as setup time (Table 5.3). The objective of 

this machine scheduling problem is to minimize makespan. Let stationLBs be the optimal 

makespan of the machine scheduling problem related to station s. Then stationLB = 

maxs{stationLBs}. 

Parameter mainLB is the minimum value of Interval that could possibly be achieved 

due to headway constraints on the main line only. Let mainLBs be the lowest possible 

value of Interval due to headway restrictions on the portion on the portion of the main 

track between station s and s+1 for all s from 0 to S+1. Then mainLB = maxs{mainLBs}. 

In order to obtain mainLBs, first we identify the set of eastbound trains that use the 

portion of the main line between station s and s+1and we sort these train types in 

increasing order of travel time on the main line between station s and s+1. Then we find 

the difference between the arrival of the last (slowest) train at s+1 and the departure of 

the first (fastest) train from s. 

This partial lower bound should be then increased by the gaps. Up to this point we 

have only considered eastbound train types. In the similar way, we identify the set of 

westbound trains that use the portion of the main line between stations s+1 to s and sort 

them in increasing order of travel time along this portion of the main line; and calculate 

the difference between arrival of the slowest train to station s and departure of fastest 

train from station s+1, then update mainLBs by adding this value. Finally increasing 

mainLBs by gaps will provide us with the final value of mainLBs. 
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5.3.4. Derivation of secondary parameters 

We now describe the derivation of the secondary parameters. The secondary parameters 

lowIntMaintus, highIntMaintus, lowIntPlattup, and highIntPlattup allow us to construct 

required number of constraints enforcing the headway restriction on each portion of the 

main line and on each platform depending upon whether or not a pair of train types uses 

that portion of main line or platform. This is also crucial because of the cyclic nature of 

the timetable. Here we define the “interval i train of type t” to be the train of type t that 

departs its starting point during interval i – i.e. sometime between time (i) × Interval and 

time (i+1) × Interval – where i is any negative or non-negative integer. In general, the 

above parameters indicate how many “intervals worth” of trains of a given type could 

possibly have a headway conflict with the original train – i.e. the train dispatched during 

interval 0 – of another type on a certain station platform or along a certain portion of the 

main line where a headway constraint is required. The computation of these four 

parameters is based on and begins with a calculation of the earliest and latest possible 

arrival/departure time of the original train of each type at/from each station (including 

departing from origin and arriving at destination). The earliest possible arrival and 

departure times assume each train starts from origin at time 0 and spends minimum dwell 

time (dMints) at each station. 

The latest possible arrival and departure times are calculated by first assuming that 

each train type t (regardless of its direction) departs at time minUB and makes a journey 

of duration jMaxt; backward recursion is used to make the arrival and departure times as 

high as possible still adhering to minimum main line traveling times and minimum 

required station dwell times.  
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5.3.5. Determining the smallest possible value of Big M 

In this problem we have a very large number that is used for ordering (either-or) 

constraint. Usually an arbitrary large number is picked up for the binary coefficients in 

either-or constraints. Because this value is very problem dependent, the question is how 

large this coefficient should be for each specific problem. For our general train 

timetabling and platforming problem, the same method as discussed in Chapter 4 is 

applied. In other words, one of the ordering constraints is selected and based on other 

parameters, a value is determined so as to keep the problem feasible for all possible 

combinations of trains at all stations and platform (without loss of generality, it is 

possible to consider all ordering constraints and choose the maximum value of M as the 

coefficient. This, of course, requires more pre-processing and may increase the 

computational time).      

5.3.6. A note on problem complexity 

We now prove a theorem regarding the problem complexity. 

Theorem 1. The train timetabling and routing optimization problem defined by the MILP 

formulation in Section 5.3.1 is NP-hard.  

Proof. The decision problem P||Cmax, the parallel machine scheduling problem with 

makespan minimization, is known to be NP-complete. This problem is polynomially 

reducible to the train timetabling and routing problem. Consider a train problem instance 

where S = 1; therefore oStationt = 0 for all t; dStationt = 2 for all t; P = P (the number of 

platforms in the train problem equals the number of machines in the machine scheduling 

problem); T equals the number of jobs in P||Cmax; travMints = 0 for all t, and for s = 0 and 

1; forbidt1 = 0 for all t; dMint1 equals the processing time of job t in P||Cmax for all t; jMaxt 
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= dMint1 for all t; hTracks = gaps = 0 for s = 0 and 1; hPlatformSamep = hPlatformDiffp = 

0 for all p; a1 = 1; and a2 = 0. In other words, the problem is to assign T train types to P 

platforms in a single station disregards all other problem aspects. In this problem, 

Interval minimization is equivalent to makespan minimization with P parallel machine 

and T jobs, shown symbolically as P||Cmax. Since P||Cmax is polynomially reducible to the 

problem at hand and P||Cmax is NP -complete, it follows that that the problem is NP -

complete. And this completes the NP-hardness proof.∎ 

5.4. Two illustrative examples 

The mixed integer program was coded into Microsoft Visual C++ 2008. IBM ILOG 

Concert Technology was used to define the model within C++ and call the MILP solver 

IBM ILOG CPLEX 12.4 to solve instances defined in text files. The code includes 

procedures for automatically computing minUB, mainLB, stationLBs, stationLB, maxLB, 

lowIntMaintus, highIntMaintus, lowIntPlattup, and highIntPlattup before the constraints are 

constructed. The computation of stationLBs for all s involves calling CPLEX to solve the 

parallel machine scheduling problem, as discussed before, for each station.  

Before presenting illustrative examples, let us discuss the default setup used for all 

problem instances in this chapter unless otherwise specified. This setup reflects the fact 

that the primary objective in the mathematical model is to minimize the cycle length and 

secondary, subordinate objective is to minimize the total train journey time. To 

accomplish this, all primary parameters besides a1 and a2 are multiples of 0.5. The 

objective function weights are determined in such a way that the primary goal of 

minimizing the cycle length does not interfere with the secondary one, but is large 

enough to be able to identify, among all solutions tied for having minimum Interval, a 
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solution that ties for having the smallest total journey time for all train types combined. 

As shown in Chapter 3 this way we can select an optimal solution from a set of 

alternative optimal solutions. Therefore, in majority of experiments it is assumed that a1 

= 1 and a2 = 0.0001. In this case, if
1

4999.5
T

tt
jMax


 , then the maximum possible 

value of the second term of the objective function is 0.49995 and 0.5 is the minimum 

change in the value of the first term of the objective function. Therefore, these two values 

never interfere with each other. 

We now present two illustrative problem instances using above setup and discuss 

their optimal solutions. Text files defining all problem instances described here are 

available from the authors upon request.  

The input data for the first problem instance is given in Table 5.4. This problem 

instance considers four train types with different stopping frequencies. Train types 1 and 

2 eastbound trains, and train types 3 and 4 are westbound trains. The primary parameters, 

except sp and ps which can be inferred from the data, are shown in Table 5.4. Table 5.5 

shows an optimal solution for this instance in the form of a cyclic timetable. This solution 

was obtained in 131 seconds. In this table, the platform assignments are shown at the top; 

actual dwell time in each station for each train type is shown in the next, the actual 

traveling times on each portion of the main line follow; and detailed schedule for the first 

three cycles is displayed. The schedule of each train can be derived from this table using 

arrival and departure times of the train at each station. Figure 5.3 shows the same optimal 

schedule in the form of time-space diagram. The platform assignments in stations 3 and 5 

are indicated by slight differences in the vertical placement of the horizontal line. As can 

be seen from Table 5.5 and Figure 5.3, the optimal value for this instance, i.e. the 
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minimum value of Interval, is 36 minutes. This value is strictly greater than the lower 

bound maxLB (= 12) and strictly less than the upper bound minUB (= 83). In this 

particular example actual total station dwell times are {12, 33.5, 8, 19.5} for train types 1, 

2, 3 and 4 respectively. The total journey times are {34, 55.5, 32, 43.5} for train types 1, 

2, 3 and 4 respectively which are strictly less than the maximum allowed values of 100, 

110, 110 and 100, respectively.   

Figure 5.4 shows an optimal time-space diagram for a second problem instance with 

T = 6 train types, where T1 = {1, 2, 3} and T2 = {4, 5, 6}, and S = 20 stations. In this 

example we assume 3 train types are eastbound trains and the other 3 train types are 

westbound trains. We further assume that all train types are long distance trains, 

mathematically oStationt = 0 and dStationt = 21,  t T1˄ dt = 1, and oStationt = 21 and 

dStationt = 0,  t T2 ˄ dt = 2. The optimal value of Interval is 75 minutes. In Figure 5.4 

two complete cycles or intervals are depicted. As can be seen from this figure, some 

trains slow down at some links between stations, or wait longer time at some stations in 

order to create room for passing possibility. These passing possibilities will increase 

problem flexibility which will be resulted in an optimal value for Interval. 
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Table 5.4 Input data for illustrative example #1 

T1 T2 S P hTracks gaps 
hPlatformSam

ep 
hPlatformDif

fp 
a1 a2 forbidts 

2 2 6 8 1 for all s 1 for all s 0.5 for all p 1 for all p 1 0.0001 
0 for all t and 

s 

 West 
Terminal 

Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 East Terminal jMaxt 

#Platforms - 1 1 2 1 2 1 -  
dMin1s Origin 1 3 3 0 2 3 Destination 100 
dMin2s Origin 1 2 4 1 5 4 Destination 110 
dMin3s Destination 1 1 1 1 1 2 Origin 110 
dMin4s Destination 5 1 3 2 4 0 Origin 100 
travMin1,s-1  3 3 3 3 3 3 4  
travMin2,s-1  3 3 3 3 3 3 4  
travMin3,s-1  3 3 3 3 3 3 4  
travMin4,s-1  3 3 3 3 3 3 4  

 

Figure 5.3 Optimal time-space diagram for illustrative example # 1. 
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Table 5.5 Optimal platform assignment and timetable for illustrative example #1 
Minimum  Interval = 36 Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6  
  Plat. 1 Plat. 2 Plat. 3 Plat. 4 Plat. 5 Plat. 6 Plat. 7 Plat. 8  

Platform 
Assignment 

Train 1 1 1 1 0 0 0 1 1  
Train 2 1 1 1 0 1 0 1 1  
Train 3 1 1 0 1 1 1 0 1  
Train 4 1 1 0 1 1 1 0 0  

 Actual station dwell time  
  Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 Total 

12 
33.5 
8 
19.5 

 Train 1 1 3 3 0 2 3 
 Train 2 1 2 11.5 1 14 4 
 Train 3 1 1 1 2 1 2 
 Train 4 5 1 7.5 2 4 0 
  Actual traveling time from s to s+1 for eastbound trains and from s+1 to s for westbound trains
  E. Terminal Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 
 Train 1 3 3 3 3 3 3 4 
 Train 2 3 3 3 3 3 3 4 
 Train 3 3 3 3 3 5 3 4 
 Train 4 3 3 3 5 3 3 4 
 Timetable  
 E. Terminal Stat. 1 Stat. 2 Stat. 3 Stat. 4 Stat. 5 Stat. 6 W. Terminal 
Train 1 11 14 – 15 18 – 21 24 – 27 30  33 – 35 38 – 41 45 
Train 2 15.5 18.5 – 19.5 22.5 – 24.5 27.5 – 39 42 – 43 46 – 60 63 – 67 71 
Train 3 46 42 – 43 38 – 39 34 – 35 29 – 31 23 – 24 18 – 20 14 
Train 4 43.5 35.5 – 40.5 31.5 – 32.5 21 – 28.5 14 – 16 7 – 11 4 0 
Train 1 47 50 – 51 54 – 57 60 – 63 66  69 – 71 74 – 77 81 
Train 2 51.5 54.5 – 55.5 58.5 – 60.5 63.5 – 75 78 – 79 82 – 96 99 – 103 107 
Train 3 82 78 – 79 74 – 75 70 – 71 65 – 67 59– 60 54 – 56 50 
Train 4 79.5 71.5 – 76.5 67.5 – 68.5 57 – 64.5 50 – 52 43 – 47 40 36 
Train 1 83 86 – 87 90 – 93 96 – 99 102 105 – 107 110 – 113 117 
Train 2 87.5 90.5 – 91.5 94.5 – 96.5 99.5 – 111 114 – 115 118 – 132 135 – 139 143 
Train 3 118 114 – 115 110 – 111 106 – 107 101 – 103 95 – 96 90 – 92 86 
Train 4 115.5 107.5 – 112.5 103.5 – 104.5 93 – 100.5 86 – 88 79 – 83 76 72 

   



 
 

 
 

174 

 

 

Figure 5.4 Optimal time-space diagram for illustrative example # 2. 
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5.5. Additional experiments: setup, results, and discussion 

We now perform several additional experiments to confirm the effectiveness of the model 

presented in Sections 5.3.1. These experiments consider hundreds of problem instances, 

most solved to optimality. The results in this section are obtained by CPLEX 12.4 

running on an IBM-compatible desktop computer using an Intel Core 2 Duo processor 

with two 2.83 GHz cores, and 2 GB of RAM. In all experiments in this section, CPLEX 

12.4 is given 10000 minutes time limit for solving the math program. This time is in 

addition to the time used by CPLEX to solve preliminary machine scheduling problems 

in each station and any other time needed to set up the problem. The problem instances 

are defined by the values of the primary input parameters given in Table 5.6. 

Now we will discuss eight sets of experiments each showing one aspect of the train 

timetabling problem presented in this paper by the mathematical program. 

Table 5.7 shows the results from the first set of experiments in which 28 problem 

instances are considered. The main parameters defining each instance are on the left and 

the main aspects of the solution are given on the right. Also hTracks, gaps, 

hPlatformSamep and hPlatformDiffp are fixed at 1, 1, 0.5 and 1, unless otherwise 

specified. The results show that 27 (24) out of 28 problems are solved to optimality 

within time limit when both objectives are (only the first objective is) considered. The 

second last column in Table 5-7 shows the runtime required to find the optimal Interval 

for each problem instance when a1 = 1 and a2 = 0. The result in this column show there is 

an increase in runtime for 21 problem instances when the second objective is disregarded. 

The results indicate that the problem becomes more difficult to solve when the second 

objective is disregarded. 
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Table 5.6 Parameter values considered in Section 5.5 
Parameter Value 
T 2,3,4,5,6 
S Integers ≥ 4 and ≤ 20 
P S + X where X ~ b(S, 0.2) (b = binomial distribution) 
|ps| 1 or 2 
oStationt 0 or S+1 
dStationt 0 or S+1 
forbidts Usually = 1 if |ps|; usually = b(0.5) if |ps| = 1  
dMints 1, 2, 3, 4, 5, 6 (if forbidts = 0) (=0 if forbidts =1) 
jMaxt 1.5×∑dMints + ∑travMints + (random integer ≥ 40 and ≤ 60) 

hTracks 1, 2, 3, 4 (held constant on entire main line in each instance) 
gaps 1, 2, 3, 4 (held constant on entire main line in each instance) 
hPlatformSamep 0.5 
hPlatformDiffp 1 
(a1, a2) (1, 0.0001) 
travMints 1, 2, 3, 4, 5, 6 
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Table 5.7 Results for 28 problem instances. All solutions are optimal unless indicated otherwise indicated. 
Input parameters Solution 

Instance # S P T maxLB 
Two objectives First objective only 

Interval Total jurney Time (sec) Interval Time (sec) change 
1 5 5 3 12 67 102 7 Same 4 -3 
2 6 8 4 16 45 175 22 Same 26 +4 
3 9 10 3 13 31 203 10 Same 15 +5 
4 9 11 4 13 37 270 290 Same 680 +390 
5 10 10 4 13 42 251 26 Same 38 +12 
6 10 11 3 12 45 195 22 Same 31 +9 
7 10 11 6 30 64 335 2610 Same 1082 -1528 
8 10 13 3 13 40 210 18 Same 15 -3 
9 10 13 3 13 33 222 21 Same 16 -5 
10 10 13 5 22 74 408 512 Same 744 232 
11 12 13 3 13 36 231 33 Same 54 +21 
12 12 13 4 13 29 193 1160 Same 29 4236 
13 12 13 4 14 36 246 2771 Same 5790 +3019 
14 12 13 6 26 79 413 10002* 56 10001* - 
15 12 14 4 13 23 224 4663 Same 6719 +2056 
16 12 14 5 17 33 270 5258 Same 10001* - 
17 13 13 3 12 42 205 17 Same 24 +7 
18 13 13 4 13 37 324 49 Same 58 +9 
19 13 14 3 13 33 209 25 Same 26 +1 
20 14 15 3 13 27.5 186 49 Same 52 +3 
21 14 15 5 24 50 347 6056 Same 10002* - 
22 14 16 3 13 40 228 40 Same 38 -2 
23 15 16 4 14 42 215 624 Same 17684 +17060 
24 17 19 4 12 33 336 526 Same 1209 +683 
25 17 19 5 17 46 398 767 Same 3546 +2779 
26 18 19 4 12.5 40 261 335 Same 2004 +1669 
27 20 20 6 26 75 510 8951 - 10000* - 
28 20 22 4 13 37 370 304 Same 623 +319 
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Figure 5.5 Effect of hTracks on Interval for the 20 
problem instances 

Figure 5.6 Effect of gaps on Interval for the 14 problem 
instances 

  
Figure 5.7 Impact of adding extra train types to each 
of 5 different problem instances.  

Figure 5.8 Impact on Interval of adding platforms to 
the stations of an existing line (labels indicated 
number of platform(s) added to station(s)). 

  
Figure 5.9 Effect of train heterogeneity on optimal 
Interval.  

Figure 5.10 Effect of fixing travMin at its minimum 
value on Interval. 
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Figure 5.5 displays the results of a second set of experiments that show the impact of 

hTracks on the optimal value of Interval. Here we consider three different values of 

hTracks – 2, 3 and 4 – for 20 problem instances. Thus, we consider 60 problem instances 

total, and the same value of hTracks is applied to the entire main line in each instance. 

The results show that there is no difference between hTracks = 2 and hTracks = 3, but 

optimal value of Interval may change (roughly 40 percent) when hTracks is increased to 

4. However, the amount of increase in Interval depends on the problem instance. 

Figure 5.6 displays the results of a third set of experiments that show the impact of 

gaps on the optimal value of Interval. For this experiment three different values of gaps – 

2, 3 and 4 – for 14 problem instances are considered. Therefore, 42 different instances are 

considered, and the same value of gaps is applied to the entire main line in each instance. 

As can be seen from Figure 5.6, the optimal value of Interval increases as long as gaps 

increases. This increase is mainly due to the fact that a train can use the track not only the 

track should be available, but also the next station should be available for either stop or 

passing.  

Figure 5.7 displays the results of a fourth set of experiments that show how the 

optimal value of Interval changes when extra train types are added to a problem instance. 

For this experiment we considered 5 different instances with 3 train types each, and 

added on train type at a time up to 6 train type (T = 3, 4, 5 and 6). Thus, we consider 20 

instances total (10 ≤ s ≤ 14 and 11 ≤ p ≤ 15). Each base instance starts with three train 

types (T = 3) and extra train types are added to it one-by-one. That is, the input data for 

each instance with n train types (n = 4, 5, 6) is identical to the input data for the 

corresponding instance with n-1 train types except that one additional train types. The 
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results show that the optimal value of Interval increases monotonically as new train types 

are added to an existing problem instance. However, the amount of increase in Interval 

depends on the base instance and on the exact specification of the added train type. In this 

experiment, in instance number 3 with T = 5 and 6, CPLEX could find a feasible solution 

within time limit. Also, CPLEX found a feasible solution for instance number 4 with T = 

6. But, as can be seen from Figure 5.7, no feasible solution found for instance number 6 

with T = 6 in the given time limit.  

Figure 5.8 displays the results from a fifth set of experiments that show the impact on 

Interval of adding extra platform(s) to station(s) of an existing line. For this experiment, a 

base instance of 6 stations, 8 platforms and 4 trains (two eastbound train types and two 

westbound train types) in which stations 3 and 5 have two platforms and all other stations 

have one platform. We consider
4

1
4 15

n
nC


 possibilities of increasing the number of 

platforms from 8 to 16. Thus, we consider 15 total problem instances total. In this figure, 

the labels show the number of platforms and stations where these platforms are added. 

For example, 2P12 is an instance where 2 extra platforms are added to stations 1 and 2. 

The results show that capacity of the railway can be increased by adding more platforms 

to accommodate more train types, but it is important to consider which station can 

increase the capacity. This experiment also reveals how much the line capacity can be 

increased. In this particular case, the Interval can be decreased from 36 minutes to 19 

minutes only if all stations have 2 platforms. 

Figure 5.9 displays the results from a sixth set of experiments that show the effect of 

train heterogeneity on optimal Interval and total train journey time of an existing line. In 

this experiment, we consider 12 problem instances total each consists of 10 stations, 11 
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platform and 4 trains (two eastbound train types and two westbound train types) in 4 

different categories. In Figure 5.9, the instances labeled by even numbers are the same as 

odd ones except their minTravts are swapped. In the first category (instances 1 and 2), one 

eastbound (westbound) train type is an express train that stops only at two stations and 

one eastbound (westbound) train type is a local train that stops at all stations. In the 

second category (i.e. instances 3-6), the first eastbound (westbound) train stops at the first 

half of the stations and the other eastbound (westbound) stops at the second half 

(instances 3 and 4). Then stopping pattern of these two eastbound (westbound) trains are 

swapped (instance 5 and 6). In the third category (i.e. instances 7-10), the first eastbound 

(westbound) train stops at odd stations, and the second eastbound (westbound) train stops 

at even stations (instance 7-8). Then in instances 9 and 10, the stopping patterns are 

swapped. In the last category (i.e. instances 11 and 12), all train types (either eastbound 

or westbound) are defined as local trains meaning that they stop at every station. Figure 

5.9 shows that the Interval creates a concave function which has its minimum at category 

3 where all trains stop at every other station. This means that in third category we create 

more passing options compared with other three categories. Hence, optimal value of 

Interval has been improved tremendously. 

Figure 5.10 displays the results for the seventh set of experiments. In this experiment 

the effect of travMints on the Interval. For this purpose, we consider 10 base instances 

and solve them using CPLEX. After that, we fix the traveling constraints from ≥ to = and 

solve these 10 instances once more in order to see how optimal value of Interval will 

change. As can be seen from Figure 5.10, in once case we will observe an increase in 

optimal value of Interval—in instance number 4 where Interval increases from 37 to 38. 



182 
 

 

There are two reasons that can explain these two type outcomes. We can expect an 

increase because by fixing traveling time on the main line, we actually reduce the model 

flexibility. In other words, a train (or perhaps a set of trains) must wait for longer time at 

stations in order to let the occupied track to be cleared. And because of constraint (5-32) 

the Interval may increase. Using the same reasoning, we can expect no increase in 

optimal value of Interval at all. In other words, the time saved by trains due to movement 

at maximum speed will be lost at stations to guarantee system safety. As general rule, 

fixing traveling time may increase optimal value of Interval, but this should be further 

studied.  

Figure 5.11 displays the results of the eighth and last set of experiments that show the 

effect of fixing actual dwell time of a train at zero if forbidts = 0 on optimal value of 

Interval. In this experiment the assumption “that trains can stop at station even if they 

required to” is relaxed and its effect on optimal Interval is studied by looking at 15 

different problem instances. The result show that in more than 50% of cases the optimal 

value of Interval increases which is true. In other words, this result shows that giving this 

allowance to trains to stop will create more passing options, and hence increase 

flexibility. 

In summary, by allowing train types to stop (i) more passing options will be opened; 

(ii) flexibility of the system will be increased; and (iii) Interval value will be decreased 

which will result in an increase in rail line capacity. 
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Figure 5.11 Effect of fixing actual dwell time of a train at zero if forbidts=0 value on Interval. 

5.6. Conclusion 

In this study we have presented a mixed integer linear programming model for cyclic, 

combined train timetabling and platforming along a bi-direction rail line. The proposed 

model schedules train types’ arrivals and departures at stations and assigns train types to 

platforms in the stations so as to (i) minimize the length of the dispatching cycle – 

denoted by decision variable Interval in the model – and/or (ii) minimize total journey 

time of all train types. The first objective can be regarded as optimizing rail line capacity. 

Hundreds of randomly generated instances have been considered and solved to optimality 

in a reasonable amount of time using IBM ILOG CPLEX.   

The experimental results yield several meaningful insights. First the ability to solve 

large problems instances to optimality. Second, problems of this type generally become 

more difficult when the number of stations, platforms, or train types increases. On the 
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other hand, the problem becomes easier to solve when (i) both objectives are considered 

or (ii) train types are forbidden to stop when minimum dwell time is zero.  
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Chapter 6  

Summary and conclusion 

The first part of this research presents mixed integer programming models for cyclic train 

timetabling and platforming. Three models are developed and presented. The first model, 

presented in Chapter 3, has extended the work of Bergmann (1975) to investigate the 

capacity of a single track, unidirectional rail line that adheres to a cyclic timetable. In this 

chapter we restate the problem from Bergman (1975) using improved notation, to modify 

the mathematical model by adding a second objective and removing unnecessary 

variables, and to perform the first numerical analysis of this problem by considering 

hundreds of randomly generated instances with up to 70 stations. The experimental 

results can be summarized as follows. First, our ability to solve every problem instance to 

optimality in a reasonable amount of time using IBM ILOG CPLEX demonstrates the 

effectiveness of the model. Second, the problem becomes more difficult when (A) either 

of the parameter S or maxExpr are increased and everything else in unchanged; (B) 

parameter hTrack and dMax are simultaneously increased in such a way that neither the 

number of decision variables or the number of constraints (which are functions of S and 

maxExpr only) increases; or (C) dMax increases and everything else is unchanged. The 

case (A) is expected to happen, since increasing either S or maxExpr (or both) will 

increase the decision point or mathematically increase the size of the problem 

mathematically. Cases (B) and (C) are the direct results of expanding the solution space 

which requires more computation time. Third, problem difficulty appears to increase as 

the parameter hTrack increases for small values of hTrack but appears to decrease as 
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hTrack increases for large values of hTrack. Fourth, the optimal value of Interval is 

smallest when the number of stations over which the same ∑dMins value is spread is 

neither very small nor very large, but rather an intermediate value. Fifth, the sequence of 

dMins values affects the optimal value of Interval in some cases but not in others. In 

particular, the optimal value of Interval seems to become more sensitive to the 

sequencing of the dMins values as hTrack decreases or dMax increases. Sixth, Pareto-

optimal solutions that explore the trade-off between cycle length and the local train’s 

dwell time at all stations combined can be constructed by adjusting the objective function 

weights w1 and w2. Finally, since the problem has alternate optima, two methods are 

explored and described in order to find other optimal solutions. The first method is based 

on the weighted sum approach while the second one is based on the so called “fixed-and-

cut” procedure. Future work on the problem might proceed in several directions. First, 

additional experiments might be conducted in order to fully analyze all of the 

relationships discussed in the preceding sections. Since, the problem has alternate optima; 

a method can be designed and developed mathematically to find all Pareto-optimal 

solutions in more structured way.  

In Chapter 4, we present two mixed integer linear programming models of a cyclic, 

combined train timetabling and platforming which is the first attempt of integrating cyclic 

train timetabling and cyclic platforming via mixed integer linear program in the literature. 

These MILP models schedule train arrivals and departures at stations and assigns train 

types to platforms in the stations so as to minimize the length of the dispatching cycle 

and/or minimize the total stopping (dwell) time of all train types at all stations combined.  

The first objective—minimization of the length of the dispatching cycle—directly relates 
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to rail line capacity.  The current study generalizes the model presented in Chapter 3 in 

three ways.  First, we consider any number of train types per cycle.  Second, we allow 

stations to have more than one siding.  Third, we allow trains to start or end at 

intermediate stations.  Two real-world problems along with hundreds of randomly 

generated and real-world problem instances have been considered and solved to 

optimality in a reasonable amount of time using IBM ILOG CPLEX 11.2 and 12.4.  

The experimental results yield several managerial insights.  First, our ability to solve 

large problem instances to optimality—including an instance with 11 train types and [33] 

intermediate stations taken directly from the Japanese Shinkansen bullet train system 

timetable—demonstrates the effectiveness of the model.  Second, problems of this type 

generally become more difficult when the number of stations, platforms, or train types 

increases.  On the other hand, the problem becomes significantly easier to solve when (i) 

the second objective—minimizing total train dwell time—is disregarded or (ii) the 

dispatching cycle is fixed to a value with some “breathing room” and only the second 

objective is considered.  Not surprisingly, the optimal cycle length increases 

monotonically as (i) the minimum required headway on the main line increases, (ii) extra 

train types are added to an existing rail line, or (iii) extra stations are added to the ends of 

an existing line.  The optimal cycle length decreases monotonically as (i) extra platforms 

are added to the stations in an existing rail line or (ii) actual train dwell times are allowed 

to deviate by a greater amount from their respective minimum required dwell times in the 

stations where they stop.  In addition, it is sometimes possible to increase the line 

capacity by doubling the number of train types dispatched per cycle via cloning.  Finally, 

the optimal value of Interval can often be obtained without sacrificing too much in the 
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form of increased train dwell times above the minimum required train dwell times in the 

stations. Future work on the problem presented in chapter 4 might proceed in several 

directions.  For example, the modeling framework could be extended to consider trains 

running at different speeds along the main line. Also, heuristic methods that quickly solve 

very large problem instances could be developed.  

In Chapter 5, we present a mixed integer linear programming model for cyclic, 

combined train timetabling and platforming along a bi-direction rail line. The proposed 

model schedules train type’s arrivals and departures at stations and assigns train types to 

platforms in the stations so as to (i) minimize the length of the dispatching cycle – 

denoted by decision variable Interval in the model – and/or (ii) minimize total journey 

time of all train types. The first objective can be regarded as optimizing rail line capacity. 

Hundreds of randomly generated instances have been considered and solved to optimality 

in a reasonable amount of time using IBM ILOG CPLEX.   

The experimental results yield several meaningful insights. First the ability to solve 

large problems instances to optimality. Second, problems of this type generally become 

more difficult when the number of stations, platforms, or train types increases. On the 

other hand, the problem becomes easier to solve when (i) both objectives are considered 

or (ii) train types are forbidden to stop when minimum dwell time is zero. Developing 

heuristic methods that quickly solve extremely large problem instances can be considered 

as future work on this problem. The model can be extended to consider the rolling stock 

constraints in the model and mixed integer programming model combined with heuristic 

can be developed to model and solve the problem. 
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The models developed here have other advantages and contribute indirectly to 

different real world problems in the railway planning process. By considering short-haul, 

local trains, the model can handle passenger transfer between trains. To do so, the 

objective function can be modified by adding another component or third objective which 

minimizes passenger waiting time. In another scenario, the models can be modified by 

fixing the primary objective at a given value, e.g. 60 minutes as it is the case in all real-

world cyclic timetables, and minimize just the total traveling time and/or total travelling 

cost of all train types. 

At the end, it should be noted that we did not assume any signaling or blocking in the 

math models developed in this dissertation, but by dividing each link between two 

stations, sidings or both we can incorporate that concept in the mixed integer program. In 

all models presented we do not model passenger demand fluctuation during a day—i.e. 

pick hour in the morning and afternoon and off-pick hour in the middle of day— but the 

optimal solution of the mixed integer programs can be easily modified and some trains 

can be removed from timetable. 
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Appendix for Part I 

Table A.1 All unique optimal solutions for problem with S = 10, hTrack = 10, dMax = 72 

Root  (1) 
Y11 = 1 
Y21 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1 
Y11 = 0 (2) 
Y21 = 1 
Y31 = 1 
Y41 = 1, Y42 = 1 
Y51 = 1, Y52 = 1, Y53 = 1 
Y61 = 1, Y62 = 1, Y63 = 1 
Y71 = 1, Y72 = 1, Y73 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1 
Y11 = 0, Y21 = 1, Y32=1 (3) 
Y21 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1 
Y11 = 0, Y21 = 1, Y32 = 0, Y42 = 1, Y53 = 1, Y64 = 1 (4) 
Y21 = 1 
Y31 = 1 
Y41 = 1, Y42 = 1 
Y51 = 1, Y52 = 1, Y53 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1 
Y11 = 0, Y21 = 1, Y32 = 0, Y42 = 1, Y53 = 1, Y64 = 0, Y74 = 1 (5) 
Y21 = 1 
Y31 = 1 
Y41 = 1, Y42 = 1 
Y51 = 1, Y52 = 1, Y53 = 1 
Y61 = 1, Y62 = 1, Y63 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1 
Y11 = 1 (6) 
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Y11 = 1 
Y21 = 1, Y22 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1 
Y11 = 1, Y22 = 1, Y33 = 0, Y43 = 1, Y54 = 1, Y65=1  (7) 
Y11 = 1 
Y21 = 1, Y22 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1, Y65 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1, Y75 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1, Y86 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 Y97 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1, Y108 = 1 
Y11 = 1, Y22 = 1, Y33 = 0, Y43 = 1, Y54 = 1, Y65 = 0, Y75 = 1  (8) 
Y11 = 1 
Y21 = 1, Y22 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1, Y75 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1, Y86 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 Y97 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1, Y108 = 1 
Y11 = 1, Y22 = 0, Y32 = 1, Y 43 = 1  (9) 
Y11 = 1 
Y21 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1, Y65 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1, Y75 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1, Y86 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 Y97 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1, Y108 = 1 
Y11 = 1, Y22 = 0, Y32 = 1, Y43 = 1, Y65 = 0  (10) 
Y11 = 1 
Y21 = 1 
Y31 = 1, Y32 = 1 
Y41 = 1, Y42 = 1, Y43 = 1 
Y51 = 1, Y52 = 1, Y53 = 1, Y54 = 1 
Y61 = 1, Y62 = 1, Y63 = 1, Y64 = 1 
Y71 = 1, Y72 = 1, Y73 = 1, Y74 = 1, Y75 = 1 
Y81 = 1, Y82 = 1, Y83 = 1, Y84 = 1, Y85 = 1, Y86 = 1 
Y91 = 1, Y92 = 1, Y93 = 1, Y94 = 1, Y95 = 1, Y96 = 1 Y97 = 1 
Y101 = 1, Y102 = 1, Y103 = 1, Y104 = 1, Y105 = 1, Y106 = 1, Y107 = 1, Y108 = 1 
 



203 
 

 

 

Figure A.1 Tree for counting the number of optimal solutions 
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Part II 

A Bus Routing Problem with Application in Transit-Based 

Emergency Evacuation 
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Chapter 7 

Introduction and literature review 

7.1. Introduction 

Natural and man-made disasters (e.g., hurricanes, floods, terrorist attacks and chemical 

spills) could cause huge economic loss and damage to society. In some cases like 

hurricanes there might be some information about the time and location. Therefore, 

communities can plan and relocate threatened or affected populations to a safer area. 

These planning activities are commonly referred as emergency evacuation. During the 

evacuation process, people would usually use their own vehicles to evacuate from the 

affected zones. However, there are some cases where people may not have access to 

reliable personal vehicles or using personal cars is not possible; then they need to rely on 

other forms of transportation. Different modes of transportation can be used to evacuate 

people, such as public transit, school buses, charter buses, demand-responsive vans, rail, 

and ambulances. According to Sayyady and Eksioglu (2010) public transit plays a crucial 

role in all phases of emergency management: mitigation, preparedness, response and 

recovery. These processes involve various complexities and are often challenged by the 

limited capacity of transportation system. This part of dissertation focuses on the role of 

public transit for the preparedness phase.  

The second part of this dissertation presents a mathematical model along with a 

solution algorithm to design a plan for evacuating the car-less (also referred to as transit-



206 
 

 

dependent) using public transit to a safer area. The mathematical model combines two 

networks—pedestrian and vehicular—where the former assigns evacuees from parking 

lots to pick-up points considering the shortest distance and pickup point capacity, and the 

latter designs the routes for transit vehicles (in this paper it is assumed that the only 

available transit vehicle type is bus, so these two terms may be used interchangeably) to 

transport evacuees from pick-up points to the safer area. The objective is to minimize the 

total time it takes to evacuate all evacuees from parking lots to the safer area. The inputs 

of the model are the demand and location of parking lots, capacities and locations of the 

pickup points, number and locations of depots, fleet size, capacity and location of the 

safer area. The outputs are the number of evacuees at each pickup point, the routes of the 

transit vehicles, and the number of evacuees assigned to each bus during the evacuation 

process. Since this problem belongs to class of NP-hard problems, the larger size of this 

model is solved using a simulated annealing algorithm combined with an exact method.  

Note that the problem studied here is static, in the way that stable tables of evacuee 

demand and the number of buses during an evacuation period are given. The assignment 

of evacuees and routing of buses also use a static representation of the network condition. 

The importance of the problem at hand is that the proposed model can be used by disaster 

management authorities at the planning stage or in some scenarios at the operational 

stage. The model can be used to determine how the carless people should be assigned to 

pick-up points and identify the number of vehicles as well as vehicle routes during the 

evacuation process.  
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7.2. Review of Literature 

In a review of the literature, early efforts tackling evacuation modeling primarily 

focused on the network flow optimization problems that are designed to optimize various 

types of measurement of effectiveness (MOE), such as the evacuation time, the network 

clearance time, the maximum network flow, the total distance by evacuees, and the 

shortest paths, depending on the encountered emergency situations and management 

requirements (Sheffi et al., 1982; Southworth, 1991; Hobeika et al., 1994; Pidd et al., 

1996; Urbina and Wolshon, 2003). To represent the evolution of an evacuation process 

over time, a pioneering work by Chalmet et al. (1982) develop a time-space network flow 

model with the objective of minimizing the total clearance time, known as the quickest 

flow problem. Choi et al. (1988) formulate three dynamic network flow problems (i.e., 

maximum flow, minimum cost and quickest flow problems) for evacuation and 

introduced additional constraints to define link capacity as a function of the incoming 

flow rate. Cova and Johnson (2003) propose an innovative lane-based network routing 

strategy, which provides an effective approach to reduce traffic delays at intersections. 

Miller-Hooks and Patterson (2004) propose the time-dependent quickest flow problem in 

time varying capacitated evacuation networks, where link travel times and capacities vary 

with time. Barbarosoglu and Arda (2004) propose a two-stage stochastic programming 

for transportation planning based on multi-commodity, multi-modal network flow 

formulation in disaster response. Liu et al. (2008) develop a two-level integrated 

optimization model to yield evacuation routing and traffic management plans 

concurrently. Kalafatas and Peeta (2009) and Xie and Turnquist (2011) further expand 

the capacity of the evacuation network by combining the crossing-conflict elimination 
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and the contra flow design, which have been shown to be efficient strategies in terms of 

better using the network capacity for evacuation (Urbanik, 2000; Kim et al., 2008; Xie et 

al., 2010).  Lim et al. (2012) model and solved the short notice evacuation problem by 

capacitated network flow problem. The model finds evacuation paths as well as flows and 

schedules in order to maximize the total number of evacuees for short notice planning.  

Although a significant contribution has been made in evacuation modeling, only a 

limited number of quantitative studies discuss the use of transit to evacuate people during 

emergency management. One stream of researchers has employed simulation-based tools 

to study the feasibility and performance of transit evacuation plans. Liu et al. (2007, 

2008) present an integrated system that embeds the evacuation of carless people; 

however, the transit demand is converted into passenger car traffic in their system. 

Elmitiny et al. (2007) perform a simulation study to evaluate alternative plans for the 

deployment of transit during an emergency situation in a transit facility such as a bus 

depot. Evacuation strategies evaluated include traffic diversion, bus signal optimization, 

access restriction, different destinations, and pedestrian evacuation. Naghawi and 

Wolshon (2011a, 2011b) conduct a simulation-based assessment of the performance of 

multi-modal evacuation traffic networks. The simulation results show that buses are able 

to increase the total number of people evacuated from the threatened area while adding 

average queue length on some interstate freeway segments. Mastrogiannidou et al. (2009) 

develop an effective integration of the micro-simulation software package (VISTA) with 

transit-based emergency evacuation models. A heuristic was developed to assign 

vehicle(s) to pick-up points based on the shortest time criterion. They also studied the 

impact of different numbers of available buses on routing strategies. 
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Another group of researchers has developed mathematical optimization models to 

obtain the best transit evacuation strategy. Perkins et al. (2001) discuss the use of buses to 

evacuate people (elderly and disabled) under a no-notice scenario. They assume that 

buses are at a garage and optimize the departure time of buses from the garage to pick-up 

points to minimize the total travel time of buses. However, the routing strategy is static in 

their model and each bus would travel on a pre-set route to leave the affected area. The 

number of evacuees for each pickup point is not mentioned. Sayyady (2007) formulate 

the carless evacuation problem with a minimum cost flow model under additional side 

constraints. The model assumes that bus stops are the pick-up locations and the carless 

are guided to the stop closest to their current location waiting for pickup during an 

emergency. A Tabu search technique was used to identify evacuation routes for buses. In 

those studies, buses would only carry out one single trip and will not return to pick up the 

carless after leaving the affected area. Another study (Sayyady and Eksioglu, 2010) also 

develop mixed-integer linear programming models to find the optimal evacuation routes 

for transit. 

Margulis et al. (2006) develop a binary integer-programming model to determine the 

assignment of buses to pick-up points and to shelters during an evacuation. The objective 

of their model is to maximize the amount of evacuee throughput in a given time period. 

However, their model assumes buses are at the pickup points at the beginning of the 

evacuation and regulates each bus to return to the same evacuation site. He et al. (2009) 

develop a stochastic optimization model to generate evacuation plans for transit-

dependent residents in the event of a natural disaster. Their formulation features a 

location-routing problem (LRP) framework and solves for the number of shelters, their 
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locations, the number of buses required, and their routes with the objective to minimize 

the total evacuation time. Comparative studies were performed to analyze single-stage 

and two-stage transit evacuation strategies. However, their assumption that all buses are 

at shelters might not be appropriate. Chen and Chou (2009) develop an optimal waiting 

spots and service locations selection model for transit-based emergency evacuation 

planning and study the impact of transit-based evacuation on a highly dense populated 

area based on effectiveness measures such as network clearance time, move time, delay 

time, total travel time, and average traffic speed. 

A very recent study by Chan (2010) propose a two-stage model for carless evacuation 

including a location problem that aims at congregating the carless at specific locations 

and a routing problem with the objective to pick up the carless from these evacuation 

sites and deliver them to safe locations. The model explicitly considers the dynamic 

demand pattern of evacuees to pick-up points as well as multiple trips of buses from 

pickup points to shelters. However, the model does not discuss how to optimally guide 

evacuees to pick up points to better use the available buses 

Despite the significant contribution of previous studies in transit-based evacuation, 

none of those studies has seamlessly integrated the interactive processes of evacuee 

guidance (from buildings or parking lots to pick-up points) and bus routing (from pick-up 

points to shelters). Such integration will combine two networks: one for pedestrians and 

one for fleet of buses, thus making the problem an extension of the Vehicle Routing 

Problems (VRP). Some related previous works on VRP are reviewed below. 

VRP falls into different categories. One type of VRP is the vehicle routing problem 

with pickup and delivery, in which vehicles transport goods and materials (also known as 
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loads) from origins to destinations without transhipment at intermediate facilities 

(Savelsbergh and Sol, 1995). Gribkovskaia et al. (2007, 2008) present a mixed integer 

linear programming model and a Tabu search method to solve the single vehicle routing 

problem with pickups and deliveries. Mitra (2007) considers the problem with split 

deliveries and pickups and propose a parallel clustering technique to solve it. Such a 

situation happens in cases when the demand exceeds vehicle capacity and existing 

pickup-delivery algorithms cannot be used. Gulczynski et al. (2010) consider a special 

case of split delivery VRP in which some customers want their service in one visit. Nagy 

and Salhi (2005) investigate a problem with multiple depots and developed a heuristic 

algorithm to solve it. In their model, they relax one common VRP assumption that every 

pickup must be scheduled after all deliveries. In addition to meta-heuristic algorithms, 

some researchers also develop exact solution techniques for pickup and delivery 

problems. Jin et al. (2008) propose a column generation approach for the split delivery 

problem.  

Another category of VRP is the one with multiple depots, since the original VRP 

assumes that there is only one depot from which vehicles start their trip and return to 

when they finish their services (Cordeau et al., 1997). Extension has also been made for 

VRP in a dynamic environment. Haghani and Jung (2005) study the dynamic VRP with 

time-dependent travel times combined with multiple vehicles with different capacities. 

Mingyong and Erbao (2010) develop a heuristic for solving the pickup and delivery VRP 

with time windows. Their proposed approach improves an initial solution using the 

Improved Differential Evolution (IDE), and uses a penalty function to prevent generating 

infeasible solutions. 
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A literature review shows very limited efforts to extend the VRP in the context of 

transit-based evacuation. Most studies have neglected the integrated operation of 

pedestrian assignment and transit routing, which can significantly improve the 

performance of the transit routing in response to the evacuee demand variation and 

maximize the use of the available number of buses by adjusting the demand distribution 

of evacuees at pickup points. In response to such critical research and operational needs, 

this study contributes to the literature of evacuation planning in different ways: (i) it is 

the first study that proposes an integrated mixed integer linear program (MILP) model for 

a two-level evacuation problem; (ii) it is the first study that model vehicular and 

pedestrian networks into a single network; (iii) the first study that models the integrated 

network as multiple depots bus routing problem with split pickup and delivery; (iv) it is 

capable of seamlessly and simultaneously coordinating the evacuee guidance and transit 

routing process. 
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Chapter 8 

A mixed integer programming model and algorithm for 

strategic evacuation planning with pedestrian guidance and 

bus routing 

8.1. Problem description 

In this chapter, we describe the two-level framework for transit-based evacuation 

planning and propose a mixed-integer programming formulation. The “two-level” means 

that two different decision processes that have been made separately in previous studies 

are now combined in a single problem and solved simultaneously. The first level of the 

model guides evacuees from buildings and parking lots to designated pickup points (e.g., 

bus stops), and the second level of the model dispatches and routes buses from depots to 

pick-up points and transports evacuees to a safe place. The proposed two-level problem 

can be converted into a (complete) graph, as shown in Figure 8.1, in which nodes 

represent the parking lots, pickup points, depots, and the safer area; arcs connecting those 

nodes represent the road network. 

In Figure 8.1, two bus routes are highlighted: the first one, shown in solid line (depot 

1 – pickup 1 – pickup 2 – safer area – depot 1) and the second one, shown in dashed line 

(deport 2 – pickup 3 – pickup 4 – pickup 1 – safer area – depot 2). The aim of the 

proposed mixed integer program is to find a sub-graph that maximizes the efficiency of 

the evacuation plan. In this network, evacuees are assigned to pick-up points based on the 
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capacities of pickup points and their accessing distances. Once the evacuees are assigned 

to the pickup points, the evacuation route for each bus will be constructed to transfer 

evacuees waiting at the pickup points to a safer area. Considering the nature of this two-

level problem, we formulate it as a combined vehicle routing and assignment problem. 

As shown in Figure 8.1, one pickup point is served by two bus trips, this is another 

characteristic of this problem which resembles the VRP with split services (in this case 

split pickup). This characteristic requires more decision to be made for a bus upon its 

visit at a pickup point which increases the problem complexity. 

Now let us formally describe the problem. Consider a network (N, E), where N and E 

denote the set of nodes and arcs, respectively. N is composed of four subsets of nodes: L, 

a set of parking lots/building nodes where demand for evacuation is initially generated 

and assigned to pickup points; D, a set of depot nodes where buses are initially located 

and dispatched from in order to pick up evacuees; P, set of pickup points, each represents 

a location where evacuees are waiting for buses arrival and evacuation services; H, a set 

of pickup nodes and the safer area (or shelter) node. There is a set of available buses, B, 

each has a capacity Qb. Parking lot/building node l has demand Dl, l ϵ L and pickup node 

p ϵ P, has the capacity of Cp. Each arc (i, j) has a non-negative travel time of tijb, (i, j) ϵ E. 

The objective is to assign evacuees from building/parking lots to pickup points and route 

and schedule the buses simultaneously in order to minimize the total walking and 

traveling times, while satisfying all evacuee demand and without violating both pickup 

points and buses capacities. As mentioned, split delivery service is allowed meaning that 

the number of evacuees at a pickup node might be greater than the capacity of a bus, thus 

requiring split services. 
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Figure 8.1 Graphical representation of the two-level evacuation problem 
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Figure 8.2 An example of evacuation network   
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Figure 8.2 illustrates an example of this evacuation planning network with on depot 

(D1), 4 demand nodes (L1, L2, L3, and L4), two pickup nodes (P1 and P2), and one shelter. 

This network has a different structure from the traditional routing and assignment 

problems, which requires a novel mixed integer program. We now list problem 

assumption, then present indices, parameters, decision variables and mathematical model. 

To ensure that the proposed formulations are tractable and also to realistically reflect 

the real-world constraints, this study has employed the following assumptions in the 

model development: (1) There is a positive demand in the network, i.e. there is at least 

one evacuee waiting at parking lot; (2)  Evacuees’ walking time from buildings/parking 

lots to pick-up points and bus travel time among pickup points are given; (3) There is a 

super evacuation destination in the network; (4) The location and capacity of each pick-

up point is given; (5) The capacity of buses are known a priori; (6) Total demand served 

by each bus cannot exceed its capacity; (7) Each pickup point may be served by more 

than one bus; and (8) Buses are restricted to return to the same deport after sending 

evacuees to the destination. 
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Table 8.1 Parameters and variables in the mathematical model 

Indices  

b Bus index b ϵ B 

d Index for depot d ϵ D

i, j, k Vehicular node index i, j, k ϵ N

l Parking lot / building index l ϵ L

p Pickup point index p ϵ P

Sets  

B Set of buses  

D Set of depots 

L Set of parking lots/building

P Set of pick-up points

S Set of safer areas (shelters), without loss of generality we are assuming a single shelter in 
this model 

N Set of nodes in vehicular networks N = D + P + S

H Set of service points H = P + S

Parameters  

Dl Demand at parking lot/building l; l ϵ L 

Cp Capacity of pickup point p; p ϵ P 

Qb Capacity of bus b; b ϵ B 

tijb Average travelling time of bus b from node i to node j; i, j ϵ N, b ϵ B  

wlp Average walking time from parking lot/building l to pick-up point p; l ϵ L, p ϵ P 

Decision Variables 
Apb Number of evacuees at pickup point p assigned to bus b; b ϵ B, p ϵ P  
Ylp Number of evacuees that is going from parking lot/building l to pick-up point p; l ϵ L, p ϵ P
Tijb Number of evacuees on bus  going from node i to node j; j ϵ N, b ϵ B  
Ujb An auxiliary (integer) variable for sub-tour elimination constraint in route b; b ϵ B, j ϵ H 

1

0ijbX


 


  
If arc (i, j)  is traversed by bus b 

Otherwise; i, j ϵ N, b ϵ B  

1

0lpZ


 


  
If parking lot/building l is assigned to pick-up point p 

Otherwise; l ϵ L, p ϵ P  

 

8.2. Model formulation 

To facilitate model presentation, notations used hereafter are summarized in Table 8.1. 

The evacuation problem can be formulated as the following mixed integer linear program 

(MILP):  
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Minimize  
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b B l L

A Y
 

                                                                                    p P    (8-13)

 ,lp l p lpY min D C Z                                                                ,p P l L      (8-14)

lp l
p P

Y D


                                                                                              l L    (8-15)

ip p
i L

Y C


                                                                                             p P    (8-16)

 

In this formulation, the objective function is given by Eq. (8-1), which includes two 

terms: the first term is dealing with routing and the second one is related to assigning 

evacuees to the pickup points. The first term minimizes the total time it takes by the 

buses to pick up all evacuees and travel through vehicular network and to drop them off 

at the safe area and the second term minimizes to total walking time of assigning 

evacuees from building/parking lots to pick-up points.  

Constraint (8-2) indicates that the number of buses leaving each node should be at 

least one. This constraint also guarantees that each route should start from a depot. In the 

same fashion, constraint (8-3) guarantees that the number of buses entering a node can be 

greater than one and a route should be finished at a depot. Constraint (8-4) is used for 

sub-tour elimination in the VRP problem and is a constraint with polynomial cardinality 

(Laporte, 1986; Miller, 1995). Constraints (8-5) and (8-6) are flow conservation 

constrains for buses and evacuees, where constraint (8-5) guarantees a bus leaves a node 

once visits it; while constraints (8-6) guarantees that if a node is a pickup point and 

visited by a bus, the number of evacuees leaving that node by the bus should be equal to 

the total number of evacuees coming to that node on the bus and evacuees assigned to the 

bus at that node. Constraints (8-7), (8-9) and (8-10) guarantee that all evacuees must be 
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dropped off at the safer area, and the capacity of each bus at the pick-up point is 

constrained by (8-8). By constraint (8-11), any direct route from depots to the safer area 

is prohibited. Constraint (8-12) ensures that the bus capacity is not violated while moving 

over the link connecting two nodes. In other words, this constraint in conjunction with 

constraint (8-8) take the bus capacity into consideration in such a way that the former 

focuses on the nodes and the latter focuses on the links. Constraint (8-13) ensures that all 

evacuees assigned to a pick-up point must be taken by the bus (buses) which is (are) 

passing through. Constraint (8-14) indicates that evacuees can be assigned to a pick-up 

point only if that pickup point has been selected. Constraints (8-15) and (8-16) guarantee 

that the demand at parking lots/buildings and the capacity at each pick-up point must be 

satisfied, respectively. 

8.3. Complexity 

The proposed evacuation problem is NP-hard as it can be reduced to the classical 

capacitated vehicle routing problem (CVRP), which is a NP-hard problem, by setting B = 

1, S = ∅, and removing safer area and constraint (8-13) – (8-16).  

8.4. Model validation 

In this section, the structure and applicability of the proposed formulation is verified by 

one typical example and results are discussed. Note that in the mixed integer program, 

since each decision variable Tijb and Xijb is non-negative, constraints (8-10) and (8-11) 

can be replaced by Tijb = 0, for i ϵ S, j ϵ D, b ϵ B, and Xijb = 0, for i ϵ D, j ϵ S, b ϵ B, 

respectively. This modification will reduce the problem complexity, as we will see later 

even the medium-sized instances of the model are difficult to solve. In addition, since 

constraint (8-9) is obtained directly from constraint (8-10), and also due to the fact that all 
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buses are empty at the time of departure from their respective depots, therefore we can 

have Tijb = 0 for i ϵ D and j ϵ P. As a result of this simplification, we have the following 

constraints, instead of their original forms in the model: 

0ijbT                     , ,i D j P b B                                                         (8-17) 

0ijbT                , ,i S j D b B                 (8-18) 

0ijbX                    , ,i D j S b B          (8-19) 

 

The modified mathematical model was then coded into Microsoft Visual C++ 2010. 

Then, ILOG Concert Technology was used to define the model into C++ and call the 

mixed integer linear programming solver IBM ILOG CPLEX 12.4 to solve this instance 

within Windows 7 environment on a desktop computer with 3.1 GHz processor and 32 

GB of RAM. Data used in the example are given in Table 8.2, in which buildings, pickup 

points and depots are represented by initials. 

Table 8.2(a) lists all problem indices that will be used to solve the example. Entries in 

this table are self-explanatory. Table 8.2(b) depicts distances from buildings/parking lots 

to each pickup point. Distances between nodes of vehicular network (pickup points, 

depots and safer area) are given in Table 8.2(c), in which P’s and D’s stand for pickup 

points and depots, respectively. Tables 8.2(d) and 8.2(e) give the number of evacuees 

(demands) at each building/parking lot and the capacity of each pickup point, 

respectively. For example, the number of evacuees waiting at the first building is 10 and 

the first pickup point can accommodate no more than 80 evacuees. Note that data used in 

the numerical example are to validate the proposed model and may not be realistic 
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considering a real-world evacuation problem. However, the proposed model is generic 

and can handle real-world evacuation scenarios when the data are available.  

The numerical example is solved in 1153 seconds of computer time with the optimal 

objective function value of 215 units of time. The assignment of evacuees from 

buildings/parking lots to pick-up points (the first level problem) and the bus routing plans 

among pickup points, depots and  the safer area (the second level problem) are solved 

concurrently with the proposed formulation. From eight available buses only seven buses 

are used to transport evacuees to the safer area. It should be noted that since one term of 

the objective function is related to route travel time, the model indirectly minimizes the 

number of buses used to evacuate carless people. A graphical illustration of the numerical 

example results is shown in Figure 8.3. In the figure, shaded circles are buildings/parking 

lots from which evacuees are assigned to pick-up points. The bus routing plans that take 

evacuees from pick-up points to the safer area and then return to their depot are also 

illustrated in Figure 8.3. For instance, one route (bus) starts from depot 2 to pick-up point 

2, goes to the safe area and finishes its journey by returning to its origin (which is depot 

2).  
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Table 8.2 Data used in the numerical example 
(a) Number of nodes and buses of the numerical example 

 
 
 

(b) Walking time from buildings (B) to pick-up points (P) (in minutes) 
 P1 P2 P3 P4 P5 P6 

L1 3 4 1 2 1 3 
L2 2 1 3 1 1 1 
L3 1 1 1 1 2 2 
L4 1 2 2 1 2 3 
L5 1 2 3 3 4 1 
L6 3 4 1 2 1 3 
L7 2 1 3 1 1 1 
L8 1 1 1 1 2 2 
L9 1 2 2 1 2 3 
L10 1 2 3 3 4 1 

 
(c) Traveling time matrix for vehicular network (in minutes) 

 D1 D2 D3 P1 P2 P3 P4 P5 P6 S 
D1 1000 20 30 20 10 30 20 10 15 10 
D2 20 1000 40 30 10 20 30 40 15 10 
D3 30 40 1000 10 20 5 15 25 35 10 
P1 10 20 30 1000 40 25 35 40 45 10 
P2 20 10 40 30 1000 25 35 45 5 10 
P3 20 20 40 30 10 1000 30 40 15 10 
P4 30 40 15 10 20 5 1000 25 35 10 
P5 20 40 40 30 10 20 30 1000 15 10 
P6 10 20 30 45 40 25 35 40 1000 10 
S 10 10 10 10 10 10 10 10 10 1000 

 
(d) Number of evacuees at each building (unit: # of evacuees) 

Building/ 
Parking lot 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

Demand 10 40 36 64 14 10 40 36 64 14 

 
(e) Capacity of each pickup point (unit: # of evacuees) 

Pickup points P1 P2 P3 P4 P5 P6 
Capacity 80 60 70 60 50 80 

 

 

 

 

Parking Lots Pickup Points Depots Bus Bus capacity 
10 6 3 8 50 
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For the first level, evacuees are assigned based on the accessibility and available 

capacity at designated pickup points, as shown in Table 8.3. For instance, 36 evacuees are 

waiting at building 3; 6 of them are assigned to pick-up point 1 and the remaining 30 are 

assigned to pick-up point 3. On the other hand, the capacity of pickup point 1 is 48, 

which takes 6 evacuees from building 3, 28 from building 4, and 14 from building 10. 

For the second level, the routing plan for each bus during the evacuation process is 

summarized in Table 8.4. Also reported in Table 8.4 is the number of evacuees taken at 

each pickup point and transported to the evacuation destination by each bus. It can be 

observed that more than one bus has been assigned to each route depending on the 

number of evacuees. For example, buses 1 and 3 in this table have the same route because 

the number of evacuees at pickup point 6 is 80, hence bus 1 will take 50, and the 

remaining 30 evacuees are transported by bus 3. This is because the proposed problem 

structure allows multiple buses on each route which is different from the assumption of 

the traditional vehicle routing problem. Another notable fact is that the capacity of each 

bus is fully used. Since bus capacity is 50, if we look at results in Table 8.4, we can 

observe that buses 1- 6 are used with full capacity and bus 7 carries less than capacity 

because the numbers of evacuees waiting in those places are less than bus capacity. 

Based on the results given in Tables 8.3 and 8.4, it is apparent that the proposed 

mathematical model can solve this evacuation example to optimality and both the 

evacuee assignment and bus routing plans generated from the model are valid. The 

validation of the model will give us some guidelines to design a heuristic algorithm to 

find a good solution more quickly, which will be discussed in more details in the next 

section. 
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Figure 8.3 Graphical representation of the numerical example results 
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Table 8.3 Assignment of evacuees from buildings/parking lots to pickup points (unit: # of evacuees) 

 

 

Table 8.4 The routing plan of each bus and the total of number of evacuees transported 
Buses Routing Plan #of Evacuees/Throughput 

1 Depot 2 – Pickup 6 – Safer Area – Depot 2 50 
2 Depot 3 – Pickup 3 – Safer Area – Depot 3 50 
3 Depot 2 – Pickup 6 – Safer Area – Depot 2 30 
4 Depot 1 – Pickup 2 – Safer Area – Depot 1 50 
5 Depot 1 – Pickup 5 – Safer Area – Depot 1 50 
6 Depot 3 – Pickup 4 – Safer Area – Depot 3 50 
7 Depot 3 – Pickup 1 – Safer Area – Depot 3 48 
8 Unused. - 

 

 

  

 Pick-up 1 Pick-up 2 Pick-up 3 Pick-up 4 Pick-up 5 Pick-up 6 Total 

Building 1   10    10 
Building 2     40 40 
Building 3 6 30    36 
Building 4 28   36   64 
Building 5  14    14 
Building 6   10   10 
Building 7     40 40 
Building 8  36    36 
Building 9  14 50  64 
Building 
10 

14      14 

Total 48 50 50 50 50 80  
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8.5. Heuristic method 

As discussed in Section 8.3, the proposed problem is an NP-hard problem and solving the 

large-scale instances is intractable. Therefore, in this section a two-stage procedure is 

proposed. In the first stage, a relaxed assignment problem is solved to find the evacuee 

demand assigned at each pickup point based on which a route for each bus is constructed 

through a meta-heuristic algorithm. The second stage is a simulated annealing (SA) meta-

heuristic that solves the VRP sub-problem. 

8.5.1. Stage I: assignment of evacuees to pick-up points 

In the first stage of the algorithm, some constraints of the proposed mathematical model 

are relaxed in a way that only the assignment part of the model is considered. In other 

words, in this stage we try to assign evacuees in the buildings/parking lots to pick-up 

points considering demand and pick-up point capacities. This will lead to a generalized 

assignment model (referred as Model-I hereafter), given by: 

 

Minimize  
1 1

P L

lp lp
p l

w z
 
                       (8-20) 

lp l
p P

Y D


                 l L           (8-21) 

 min ,lp l p lpY D C Z        ,l L p P                     (8-22) 

lp p
l L

Y C


      p P           (8-23) 

 

The output of Model-I will provide the input for the second stage of the solution 

algorithm which focuses on the routing part of the model in order to transfer evacuees to 
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the safe area. A Simulated Annealing (SA) based algorithm is employed which is detailed 

in the following section. 

8. 5.2. Stage II: Simulated Annealing (SA) algorithm for bus routing 

Simulated annealing (SA) is a probabilistic technique that has its origin in statistical 

mechanics first introduced by Kirkpatrick et al (1983) and used for global optimization 

problems. The SA generates neighboring state or solutions and accepts it, and proceeds if 

that state has lower energy. In case of higher energy, SA may allow the search to proceed 

to a neighboring state based on the value of acceptance probability. The latter case is 

possible to guarantee that the algorithm will not stop at local optima. Suppose that the 

neighboring solution selected for the next move is denoted by  . If this new solution 

does not deteriorates the objective function value, then the new solution is accepted. If 

the new move deteriorates the objective function value, then it is accepted with a 

probability
 e 

to allow the search to escape from local optimal solution, where θ is a 

parameter called temperature and    OFV OFV    . The value of   starts with a 

relatively large value, and decreases gradually to a small value close to zero. These 

values or parameters are controlled by a cooling scheme that specifies the initial and 

incremental temperature values at each stage of the algorithm. 

Initial solution generation 

In order to generate initial solution for the SA, we use a route constructive heuristic 

considering the fact that the number of evacuees waiting at pick-up points is known by 

solving a simple assignment problem in the Stage I. In this method it is assumed that the 

maximum bus capacity is equal to the maximum available capacity. Further, it is assumed 

that when a route is constructed, the remaining and used capacity of each bus is updated 
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accordingly until that specific route is completed. The depot where a selected bus starts 

its journey from is selected randomly. The heuristic algorithm creates feasible solution 

since the available capacities are taken into account as the algorithm completes a route. 

The proposed algorithm for initial solution generation is presented as follows:  

Let N be the set of nodes including depots, pick-up points and the safe area with D as 

the number of depots. Also let U be a set of not served nodes, this includes nodes that are 

not served completely, where  1U N D   . Let B be the set of buses, and let B0 be the 

set of unused buses such that 0B B . Also i i  is the number of customers served at 

node i up to now. Steps of the complete algorithm are given in Table 8.5. 

Neighborhood generation mechanism 

To search the solution space in order to obtain the (near) optimal solution, one has to 

generate neighborhood solutions. In this study an extension of 1-opt and 2-opt 

mechanisms are applied as proposed in the literature (Tarantilis et al., 2004). These 

operators are explained below and depicted in Figures 8.4 and 8.5. 

 In a 1-opt operator, like the traditional operator, from the current solution two 

routes (each belongs to one bus) are randomly selected. A node (other than depot) 

is selected randomly from one route. Then, by considering the capacity of the 

other bus on the second route, this selected node will be added to the second 

route. For this operator two cases may happen. In one case, the number of 

evacuees waiting at a pick-up point is less than or equal to the capacity of the bus, 

so all evacuees can be assigned to the bus. In this operator, in order to avoid a 

degenerate solution, the just emptied pick-up point should be removed from the 

route. In the second case, the number of evacuees is greater than the capacity of 
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the bus, therefore the number of evacuees should be split and as a result the node 

should be added to the second route as well. This is the split-service characteristic 

of the model which is similar to the split-service VRP. This operator is shown in 

Figure 8.4.  

 In a 2-opt operator, two routes belong to two different buses are selected 

randomly from the current solution. Then, two nodes are chosen randomly and 

exchanged with each other with the observance of each bus capacity and whether 

or not any node(s) is (are) depot(s). This operator is shown in Figure 8.5. Table 

8.5 shows the pseudo code for this initial solution generation procedure. 

 

 

 

Figure8.4 1-opt implementation: (a) classical case and (b) split service 
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SA implementation 

The SA algorithm has two loops: inside and outside. The inside loop which is the core of 

SA and refers to Metropolis procedure simulates the annealing process in the current 

temperature r . The outside loop controls the rate of the decrease in temperature. The SA 

parameters are summarized in Table 8.6; and Table 8.7 depicts the pseudo code of SA 

meta-heuristic of the solution algorithm. 

In summary, the overall solution algorithm for the proposed evacuation mixed integer 

linear program that combines the assignment problem and simulated annealing is 

presented in Figure 6 in the form of a flowchart. 

 

 

Figure 8.5 2-opt implementation 
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Table 8.5 Algorithm for initial solution generation 
Algorithm I. Initial solution generation 

Step 1 
Let U = N – {D + 1}, B0 = B and q = 0, where q is a counter of the number of used capacity in the 

current allocated bus. 
Step 2 
If U    and 0B   , then the current solution is infeasible and exit; otherwise, select node i 

randomly where i ϵ U and node d, d ϵ D, at random so that a bus can be assigned to start its journey. 
Step 3 
Dispatch bus b ϵ B0 from depot d to node i. Let  ,b i iq q min Q     and

 ,i i b i imin Q      . If i i  then let  U U i  . If maxq Q then dispatch b to the shelter 

and go to step 5, else go to step 4. 
Step 4 
Find node j at random, where j ϵ U, and dispatch b from node i to node j. Then, let

 ,b j jq q min Q     and  ,j j b j jmin Q      . If j j  then let  U U j  . If 

maxq Q then dispatch b to the shelter and go to step 5; otherwise let i = j and repeat step 4. 

Step 5 
 Dispatch bus b to the shelter and let b* = b and set  *

0 0B B b  . 

Step 6 
Repeat steps 2 through 5 untilU   , i.e. all evacuees are transported to the shelter. 

 

8.6. Computational results 

In this section, the proposed model is solved by the heuristic developed in the previous 

sections and computational results are discussed and reported here. 

Fifteen problem instances that can be classified into medium to large are randomly 

generated. The sizes of instances vary from 15-200 buildings, 6-150 pickup points, 1-3 

depots, and 2-170 buses. Specifications of these instances are given in Table 8.8. Each 

instance can be characterized by its size which is defined by the number of parking lots, 

pick-up points, depots and buses, or symbolically as L|P|D|B, and will be used hereafter. 

For example, an instance with 15 parking lots, 6 pick-up points, 3 depots and 10 buses 

can be represented as 15|6|3|10. Looking at the size of parameters will reveal that all of 

these instances are considered as large-scale instances for the proposed mathematical 

model. SA parameters are set experimentally in advance as shown in Table 8.9. The 
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cooling scheme parameter and its effect will be discussed further in this section; therefore 

it will be setting up for each instance and experiment individually. 

 

Table 8.6 Parameters of SA algorithm 
MP Number of the accepted solutions in each temperature in Metropolis procedure. 
MNTT Maximum number of consecutive temperature trails 
θ0 Initial temperature 
α Rate of decreasing temperature (cooling scheme) 
σ0, σn, σnew and σbest  Initial, current, new and the best solution or state of the optimization problem
OFV(σ) The value of the objective function for solution σ 
n Counter for the number of the accepted solutions in each temperature 
r Counter for number of consecutive temperature trails, where θr is equal to 

temperature in iteration r. 

 

Table 8.7 The pseudo code of SA meta-heuristic 

Algorithm II. Simulated Annealing 
Initialize parameters θ0, θr, MP and MNTT. 

          r = 0, and
best    

Generate initial solution σ0 by the proposed algorithm given in section 5.2.1. 

         
0best   

Do { 
n = 0 
Do { 

Select an operator (1-opt or 2-opt) randomly and execute it on solution  

  
operatornew n   

   new nOFV OFV OFV      

IF 0OFV   THEN 
best new   
n new   

1n n   
  ELSE 

Generate φ ~ U(0, 1) randomly and set ϑ = EXP (˗ ∆OFV / θr) 
IF φ < ϑ THEN  

n new   
1n n   

END IF 
} while ( n < MP ) 

1r r   

1 1r r r      

} while (r < MNTT &  θr > 0) 

Print
best  
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The generated problem instances are first solved by IBM ILOG CPLEX 12.4 and a 

computational time limit of 3 hours is imposed. Through this restriction, we are able to 

compare the performance of the algorithm in terms of the quality of the solution and 

running time as well as the trade-off that has to be made between these two criteria. 

Computation results are shown in the rightmost four columns (Best Integer, Best bounds, 

Gap, and Time) of Table 8.8. In this table, Best Integer shows the best integer value of 

the objective function found by CPLEX as the solution procedure proceeds. Similarly, 

Best Bound and Gap columns report their respective values from CPLEX. As can be seen 

from the table, CPLEX is able to find feasible solutions for only 5 instances within a 

given time limit, among which only one instance (i.e. INS01 with the optimal value of 

685 unit of time) is solved to optimality. For all other instances, CPLEX is not able to 

construct or find the best integer values in 10800 seconds (3 hours). These results 

apparently show that finding the optimal solutions using the current system specifications 

and settings is not practically feasible. For those instance that cannot be solved to 

optimality (INS02 – INS05) the best integer solution have been reported in order to 

assess the quality of the proposed algorithm that will be discussed later. 

To assess the quality of the solutions obtained by the proposed heuristic, each of the 

15 problem instances was solved for 10 times with two different values for α (0.8 and 

0.1), therefore a total of 300 instances are solved using the heuristic. All the best 

objective function values found for each trial are reported in columns 3-12 in Table 8.10 

and the average objective function is shown in the column 13 of this table. Columns 14 

and 15 show the best objective function values found for each problem along with the 

CPU time in seconds. Table 8.10 shows that the proposed methodology can handle very 
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large instances with over 200 demand points and over 150 buses. From this table a couple 

of observations can be made. The first observation is the effect of cooling scheme on the 

quality of the solution and CPU time. As can easily be observed from Table 8.10, in all 

15 instances the time required to terminate the algorithm is a (monotonically) decreasing 

function of α. This is true because according to the outside loop (see Table 8.7), 

algorithm searches more area of the solution space. Such an impact can be further 

illustrated by Figure 8.7, which shows the impact of parameter  on the quality of 

solutions obtained for a relatively small instance of 10|3|6|3. Five levels of cooling 

schemes are designed with α = 0.99, 0.9, 0.8, 0.5 and 0.1. As shown in Figure 8.7, the 

best objective function values found will improve as the value of α decreases from 0.99 

to 0.1, indicating that a lower cooling rate will allow the algorithm to spend more time in 

searching the global optimal solution. 

 

 

Table 8.8 Specifications of the 15 instances in the numerical study and results solved by CPLEX  
Instance # L P D B   Best Integer Best 

Bounds 
Gap Time(sec) 

INS01 15 6 3 10 145 685* 679 0.88% 2939 
INS02 50 20 3 20 145 936 671 28.26% 10800 
INS03 50 50 1 2 100 431 366 15.08% 10800 
INS04 50 50 1 5 50 639 388 39.28% 10800 
INS05 100 20 2 50 120 4155 1860 55.23% 10800 
INS06 100 25 1 50 120 N/A    
INS07 100 25 2 50 120 N/A    
INS08 100 50 1 50 120 N/A    
INS09 100 50 2 50 120 N/A    
INS10 100 100 1 20 100 N/A    
INS11 100 100 2 20 100 N/A    
INS12 200 100 2 30 100 N/A    
INS13 200 150 2 30 100 N/A    
INS14 200 150 2 110 150 N/A    
INS15 200 150 2 170 100 N/A    
* This is the optimal value of the objective function. 
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Figure 8.6 Solution flowchart for the proposed evacuation problem 
 

  



237 
 

 

 

 

 

Figure 8.7 The effect of a on the solution quality 

 

 
Table 8.9 General settings for SA parameters 

MP  MNTT θ0  1-Opt rate 2-Opt rate 

1000  1000  10000 0.5 0.5 
 

 

The second observation is the effectiveness of the heuristic in yielding good 

solutions. This observation, and its immediate conclusion, can be made by comparing 

Tables 8.8 and 8.10. As mentioned earlier, CPLEX is able to solve only one instance to 

optimality, and to provide the feasible solution for four instances within 3 hours limit. 

From results reported in Table 8.10, we can see that the best objective value for INS01 

(15|6|3|10), with α = 0.1, is 701 which is only +2.19% from optimal value reported in 

Table 8.8. The algorithm cannot return a good solution for INS02 (50|20|3|20). However, 
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for INS03 - INS05 the algorithm is able to significantly improve the best objective value 

found by CPLEX. From Table 8.10, it can be seen that when α = 0.1 is used, the OFV has 

been reduced from 431 to 409 (5.1%) and 639 to 562 (about 12.05%) for INS03 and 

INS04, respectively. In a similar way, for INS05 the best objective function has been 

reduced from 4155 to 3789 (8.81%) when α = 0.1 was used in the algorithm. It should be 

noted that these instances can be classified as large scale problems and the proposed 

heuristic can yield a better solution than CPLEX in a much shorter amount of 

computational time. As mentioned earlier, we were able to find optimal (feasible) 

solution for only 5 instances within 3 hours of running time by CPLEX, but the proposed 

heuristic yields feasible and good solutions for the other 10 instances in a reasonable time 

window. Therefore, it can be concluded that the proposed heuristic works well in 

providing us with (near) optimal or feasibly good solution for medium- to large-scale 

problem that may arise in real transit-based evacuation situations.  

To further illustrate the efficiency of the proposed heuristic, Figure 8.8 shows the 

convergence process of the algorithm for the instance INS04 (50|50|1|5). As shown in the 

figure, the algorithm was able to solve this instance in a few seconds. The results 

illustrate that the proposed solution algorithm performs well and converges fast to a good 

near optimal solution. 
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Figure 8.8 Convergence of the solution algorithm for INS04 
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Table 8.10 Computation results by the proposed heuristic 

IS α 
Run No. 

Avg. OFV 
Best 
OFV 

CPU (sec) 
1 2 3 4 5 6 7 8 9 10 

1 
0.8 764 748 799 769 746 725 740 744 728 755 754.8 728 6 
0.1 719 710 719 719 730 701 732 710 750 748 723.8 701 640 

2 
0.8 3392 2589 2541 1761 1551 2353 3690 1560 4645 2641 2672.4 1552 11 
0.1 1586 1513 1383 1444 1492 14556 1456 1512 1500 1512 1497.4 1383 1270 

3 
0.8 719 695 647 743 622 526 647 732 667 711 743.9 622 5 
0.1 511 409 525 543 494 527 530 506 534 541 520 409 640 

4 
0.8 728 727 731 687 732 786 697 690 724 700 720.2 687 5 
0.1 593 581 622 562 593 563 584 588 612 573 587.1 562 620 

5 
0.8 4556 4640 4396 4601 4537 4584 4611 4630 4400 4712 4567 4396 25 
0.1 3789 3912 3920 4223 4062 3945 4011 4160 4004 3909 3993.5 3789 3200 

6 
0.8 5028 5097 5146 5076 5170 5190 5133 5135 5291 5201 5146.7 5028 26 
0.1 4779 4862 4853 4998 4836 4895 4769 4795 4746 4799 4833.2 4746 3400 

7 
0.8 4829 5027 5041 4620 4785 4859 5002 4992 5004 4857 4901.6 4620 28 
0.1 4439 4290 4348 4140 5025 4242 4364 4215 4177 3835 4227.5 3935 3419 

8 
0.8 4959 4711 4706 4915 4909 4987 4939 4838 4956 4826 4874.6 4706 28 
0.1 4782 5076 4681 4851 4797 4741 4786 4734 4752 4692 4789.2 4681 3520 

9 
0.8 4888 4796 4719 4858 4753 4618 4693 4664 4799 4735 4752.3 4618 26 
0.1 4698 4546 4602 4598 4853 4609 4621 4595 4493 4582 4619.7 4493 3482 

10 
0.8 2439 2444 2582 2703 2735 2683 2595 2698 2592 2455 2589.6 2439 11 
0.1 1374 1336 1250 1338 1336 1306 1311 1327 1222 1339 1313.9 1222 1147 

11 
0.8 2604 2427 2205 2564 2379 2424 2604 2628 2424 2234 2449.3 2205 11 
0.1 1157 1234 1298 1234 1140 1156 1175 1179 1112 1247 1193.2 1112 1142 

12 
0.8 3432 3349 3474 3446 3440 2293 3344 3121 3394 3262 3355.5 3121 19 
0.1 3594 3253 3032 3302 3303 3433 3130 3178 3152 3061 3243.8 3032 1848 

13 
0.8 3350 3927 3807 3557 3764 3800 3920 3714 3661 3747 3704.7 3350 20 
0.1 3253 3279 3200 3345 3306 3260 3591 3330 3328 3227 3321.9 3227 1898 

14 
0.8 11648 11393 11065 11519 11677 11356 11999 11242 11798 11325 11492 11065 55 
0.1 11525 11184 10898 11373 11447 11211 11431 10903 11564 11564 11.310 10898 5616 

15 
0.8 15206 14847 15125 15013 14828 14732 14763 15077 14403 15205 14916 14403 81 
0.1 14961 14509 14566 14633 14488 14612 14707 14805 14273 14603 14618 14273 6576 
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Chapter 9 

Conclusion and future work 

The second part of this dissertation presents a mixed integer linear program (MILP) for 

evacuation planning in highly populated urban zones where a potentially large number of 

pedestrians depend on transit for evacuation. The uniqueness of the proposed model lies 

in its capability to concurrently operate the interactive processes of evacuee guidance 

(from buildings or parking lots to pick-up points) and bus routings (from pickup points to 

shelters). Such integration will significantly improve the performance of the transit 

routing in response to the evacuee demand variation and maximize the use of the 

available number of buses by adjusting the demand distribution of evacuees at pick-up 

points. The feasibility and applicability of the proposed model is illustrated with an 

illustrative example solved to optimality. Results show that the proposed model can yield 

valid and detailed evacuee guiding and transit routing plans during the evacuation. 

A two-stage algorithm is designed to solve this combined routing and assignment 

problem for large-scale instances. In the first stage, an assignment sub-problem is solved 

to determine the optimal assignment of evacuees to pick-up points. In the second stage, a 

SA-based algorithm is designed to solve the routing part of the model. In the proposed 

SA algorithm an extension of 1-Opt and 2-Opt operators applied to the multiple depot 

capacitated split service vehicle routing problem.  

The proposed model and solution algorithm are validated with an extensive number 

of tests. Compared to solutions obtained by CPLEX, the proposed algorithm is 
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demonstrated to be able to yield effective solutions to the proposed problem for large and 

realistic evacuation scenarios in a reasonable amount of time. Trade-off between the 

quality of solutions and the computational time can be easily made by adjusting the 

cooling rate parameter in the proposed algorithm, which offers the flexibility for the 

transportation authorities to make decisions depending on the time and budget 

constraints. 

Note that the problem studied here is static, in a way that a stable table is given of 

evacuee demand and the number of buses during an evacuation period. The assignment of 

evacuees and routing of buses also use a static representation of the network condition. 

Therefore, this model is very useful at the initial stage of strategic evacuation planning. 

Extending the model to an explicitly dynamic setting with time-varying demand 

generation rates and travel times is a worthwhile direction for further work. 



243 
 

 

References for Part II 

1. Barbarosoglu,  G., & Arda, Y, (2004). A two-stage stochastic programming 
framework for transportation planning in disaster response. Journal of the 
Operational Research Society, 55, 43-53. 

 
2. Chalmet, L., Francis, R., & Sanders, P. (1982). Network models for building 

evacuation. Management Science, 28(1), 86-105. 
 

3. Chan, C. P. (2010). Large scale evacuation of carless people during short-and 
long-notice emergency. Unpublished PhD Thesis: The University of Arizona. 

 
4. Chen, C., & Chou, C. (2009). Modeling and performance assessment of a transit-

based evacuation plan within a contraflow simulation environment. 
Transportation Research Record: Journal of the Transportation Research Board, 
2091(-1), 40-50. 

 
5. Choi, W., Hamacher, H. W., & Tufekci, S. (1988). Modeling of building 

evacuation problems by network flows with side constraints. European Journal of 
Operational Research, 35(1), 98-110. 

 
6. Cordeau, J., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for 

periodic and multi-depot vehicle routing problems. Networks, 30(2), 105-119. 
 

7. Cova, T. J., & Johnson, J. P. (2003). A network flow model for lane-based 
evacuation routing. Transportation Research A, 37(7), 579-604. 

 
8. Elmitiny, N., Ramasamy, S., & Radwan, E. (2007). Emergency evacuation 

planning and preparedness of transit facilities: Traffic simulation modeling. 
Transportation Research Record: Journal of the Transportation Research Board, 
1992(1), 121-126. 

 
9. Gribkovskaia, I., Halskau, Ø., Laporte, G., & Vlček, M. (2007). General solutions 

to the single vehicle routing problem with pickups and deliveries. European 
Journal of Operational Research, 180(2), 568-584. 

 
10. Gribkovskaia, I., Laporte, G., & Shyshou, A. (2008). The single vehicle routing 

problem with deliveries and selective pickups. Computers & Operations 
Research, 35(9), 2908-2924. 

 
11. Gulczynski, D., Golden, B., & Wasil, E. (2010). The split delivery vehicle routing 

problem with minimum delivery amounts. Transportation Research Part E, 46(5), 
612-626. 

 
12. Haghani, A., & Jung, S. (2005). A dynamic vehicle routing problem with time-

dependent travel times. Computers & Operations Research, 32(11), 2959-2986. 
 



244 
 

 

13. He, S., Zhang, L., Song, R., Wen, Y., & Wu, D. (2009). Optimal transit routing 
problem for emergency evacuations. In Transportation Research Board 88th 
Annual Meeting (No. 09-0931). 
 

14. Heydar, M., Liu, Y., Petering, M. E. H., & Yu, J. (2014). A mixed integer 
programming and algorithm for strategic evacuation planning with pedestrian 
guidance and bus routing. Submitted manuscript. 

 
15. Hobeika, A. G., Kim, S., & Beckwith, R. E. (1994). A decision support system for 

developing evacuation plans around nuclear power stations. Interfaces, 24(5), 22-
35. 

 
16. Jin, M., Liu, K., & Eksioglu, B. (2008). A column generation approach for the 

split delivery vehicle routing problem. Operations Research Letters, 36(2), 265-
270. 

 
17. Kalafatas, G., & Peeta, S. (2009). Planning for evacuation: Insights from an 

efficient network design model. Journal of Infrastructure Systems, 15(1), 21-30. 
 

18. Kim, S., Shekhar, S., & Min, M. (2008). Contraflow transportation network 
reconfiguration for evacuation route planning. Knowledge and Data Engineering, 
IEEE Transactions on, 20(8), 1115-1129. 

 
19. Kirkpatrick, S., Gellat, C. D., & Vecchi, M. P. (1983). Optimization by Simulated 

Annealing. Science, 220(4598), 671-680. 
 

20. Laporte, G. (1986). Generalized subtour elimination constraints and connectivity 
constraints. Journal of Operational Research Society, 37(5), 509-514. 

 
21. Lim, G. J., Zangeneh, S., Reza Baharnemati, M., & Assavapokee, T. (2012). A 

capacitated network flow optimization approach for short notice evacuation 
planning. European Journal of Operational Research, 223(1), 234-245. 

 
22. Liu, Y., Chang, G., Lai, X., & Liu, Y. (2007, October). CAPEVACUATION: The 

corridor-based emergency traffic evacuation system for Washington DC. In the 
14th World Congress on Intelligent Transportation Systems. 

 
23. Liu, Y., Chang, G., Liu, Y., & Lai, X. (2008). Corridor-based emergency 

evacuation system for Washington DC: System development and case study. 
Transportation Research Record: Journal of the Transportation Research Board, 
2041(1), 58-67. 

 
24. Margulis, L., Charosky, P., Fernandez, J., & Centeno, M. A. (2006, June). 

Hurricane evacuation decision-support model for bus dispatch. In Fourth 
International Latin American and Caribbean Conference on Engineering and 
Technology, Puerto Rico. 



245 
 

 

25. Mastrogiannidou, C., Boile, M., Golias, M., Theofanis, S., & Ziliaskopoulos, A. 
(2009). Using transit to evacuate facilities in urban areas: A micro-simulation 
based integrated tool. In Proceedings of 88th Annual Meeting of the 
Transportation Research Board, pp. 11-15. 

 
26. Miller, D. L. (1995). A matching based exact algorithm for capacitated vehicle 

routing problems. ORSA Journal on Computing, 7(1), 1-9. 
 

27. Miller-Hooks, E., & Stock Patterson, S. (2004). On solving quickest time 
problems in time-dependent, dynamic networks. Journal of Mathematical 
Modelling and Algorithms, 3(1), 39-71. 

 
28. Mingyong, L., & Erbao, C. (2010). An improved differential evolution algorithm 

for vehicle routing problem with simultaneous pickups and deliveries and time 
windows. Engineering Applications of Artificial Intelligence, 23(2), 188-195. 

 
29. Mitra, S. (2007). A parallel clustering technique for the vehicle routing problem 

with split deliveries and pickups. Journal of the Operational Research Society, 
59(11), 1532-1546. 

 
30. Naghawi, H., & Wolshon, B. (2011a). Operation of multimodal transport systems 

during regional mass evacuations. In Proceedings of 90th Annual Meeting of the 
Transportation Research Board, pp. 23-27. 

 
31. Naghawi, H., & Wolshon, B. (2011b). Performance of multi-modal evacuation 

traffic networks: A simulation based assessment. In Proceedings of 90th Annual 
Meeting of the Transportation Research Board, pp. 23-27. 

 
32. Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot 

vehicle routing problems with pickups and deliveries. European Journal of 
Operational Research, 162(1), 126-141. 

 
33. Perkins, J. A., Dabipi, I. K., & Han, L. D. (2001). Modeling Transit Issues Unique 

to Hurricane Evacuations: North Carolina's Small Urban and Rural Areas. 
 

34. Pidd, M., De Silva, F., & Eglese, R. (1996). A simulation model for emergency 
evacuation. European Journal of Operational Research, 90(3), 413-419. 

 
35. Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery problem. 

Transportation Science, 29(1), 17-29. 
 

36. Sayyady, F. (2007). Optimizing the use of Public Transit System in no-Notice 
Evacuations in Urban Areas. Master Thesis: Mississippi State University. 

 



246 
 

 

37. Sayyady, F., & Eksioglu, S. D. (2010). Optimizing the use of public transit system 
during no-notice evacuation of urban areas. Computers & Industrial Engineering, 
59(4), 488-495. 

 
38. Sheffi, Y., Mahmassani, H., & Powell, W. B. (1982). A transportation network 

evacuation model. Transportation Research Part A, 16(3), 209-218. 
 

39. Southworth, F. (1991). Regional evacuation modeling: A state-of-the-art review. 
Oak Ridge National Laboratory, Oak Ridge, TN, USA. 

 
40. Tarantilis, C.D., Kiranoudis, C.T., & Vassiliadis, V. S. (2004). A threshold 

accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. 
European Journal of Operational Research, 152(1), 148-158. 

 
41. Urbanik, T. (2000). Evacuation time estimates for nuclear power plants. Journal 

of Hazardous Materials, 75(2), 165-180. 
 

42. Urbina, E., & Wolshon, B. (2003). National review of hurricane evacuation plans 
and policies: A comparison and contrast of state practices. Transportation 
Research Part A, 37(3), 257-275. 

 
43. Xie, C., Lin, D., & Travis Waller, S. (2010). A dynamic evacuation network 

optimization problem with lane reversal and crossing elimination strategies. 
Transportation Research Part E, 46(3), 295-316. 

 
44. Xie, C., & Turnquist, M. A. (2011). Lane-based evacuation network optimization: 

An integrated lagrangian relaxation and tabu search approach. Transportation 
Research Part C, 19(1), 40-63. 

  



247 
 

 

 

CURRICULUM VITAE 

Mojtaba Heydar 

Place of Birth: Tehran, Iran 

EDUCATION 

Ph.D. University of Wisconsin-Milwaukee                                                         May 2014 
Major: Industrial Engineering—Operations Research  
Minor: Transportation Engineering 
Dissertation title: Operations Research Modeling of Cyclic Train Timetabling, Cyclic 
Train Routing, and Bus Routing Problems 
Advisor: Matthew E. H. Petering 
 
MSc. Azad University, Tehran South Branch, Tehran, Iran                                  July 2008 
Industrial Engineering—Industrial Engineering  
Thesis Title: Multi-objective scheduling of flexible manufacturing cells using genetic 
algorithm  
 
BSc. Azad University, South Tehran Branch, Tehran, Iran                                  July 2005 
Major: Industrial Engineering—Production Systems 
 

PUBLICATIONS 

Refereed Journal Publications 
M Heydar, MEH Petering & D Bergmann, 2013, “Mixed integer programming for 
minimizing the period of a cyclic railway timetable for a single track with two train 
types,” Computers & Industrial Engineering, 66(1), 171-185 
 
S Ebrahimnejad, SM Mousavi, R Tavakkoli-Moghaddam & M Heydar, “A new fuzzy 
compromise approach for ranking risk in mega projects: a comparative analysis,” to 
appear in Journal of Intelligent and Fuzzy Systems, 26(2), 949-959  

 
Journal Submissions 

MEH Petering, M Heydar & D Bergmann, “Mixed integer programming for cyclic train 
timetabling and routing along a single track line,” Transportation Science, submitted in 
2012 
 
M Heydar, Y Liu, MEH Petering & Jie Yu, “A mixed integer programming and 
algorithm for strategic evacuation planning with pedestrian guidance and bus routing”, 
submitted in January 2014 

  



248 
 

 

Working Papers 
M Heydar & MEH Petering, “Cyclic train scheduling and train routing: a mathematical 
approach,”  
 

Refereed Conference Proceedings 
M Heydar, Y Liu & MEH Petering, 2011, “Evacuating highly populated urban zones 
during emergency: A transit-based solution and optimal operational strategies,” 
Proceeding of Transport Chicago, Chicago, USA, 3 June 
 
SS Mousavi, F Ghazi Nezami, M Heydar & MB Aryanejad, 2009, “A new hybrid fuzzy 
group decision making and factor analysis for selecting maintenance strategy,” 
Proceeding of the 39th International Conference on Computers & Industrial 
Engineering, Troyes, France, 6-8 July 
 
M Heydar, SM Moosavi, R Tavakkoli-Moghaddam & SMH Mojtahedi, 2008, “Fuzzy 
multi criteria decision making method for temporary storage design in industrial plants,” 
Proceeding of IEEE International Conference on Industrial Engineering and 
Engineering Management, Singapore, 8-11 December 

 
Presentations 

M Heydar, Y Liu, M.E.H. Petering, A MIP model for strategic evacuation planning with 
pedestrian guidance and bus routing, INFORMS Annual Meeting, Minneapolis, MN, 
USA, 6-9 October, 2013 
 
M. Heydar, M.E.H. Petering, D. Bergmann, Mixed integer programming for capacity 
analysis of a single track railway part II: generalized model, INFORMS Annual Meeting, 
Phoenix, AZ, USA, 14-17 October, 2012 
 
Y Liu, M Heydar, MEH Petering, A two-level transit-based evacuation model for 
planning of emergency in highly populated urban zones, 2nd International Conference on 
Evacuation Modeling and Management (ICEM 2012), Northwestern University, 
Evanston, IL USA, 13-15 August, 2012 
 
M Heydar, Y Liu, MEH Petering, An integrated pedestrian guiding and bus routing 
model for emergency evacuation planning, INFORMS Annual Meeting, Charlotte, NC, 
USA, 13-16 November, 2011 
 
M Heydar, Y Liu, MEH Petering, Evacuating highly populated urban zones during 
emergency: A transit-based solution and optimal operational strategies, Transport 
Chicago, Chicago, USA, 3 June, 2011 
 

 
TEACHING EXPERIENCE 

Primary Instructor, University of Wisconsin – Milwaukee (Spring 2013) 
 IND ENG 360 – Engineering Economic Analysis (34 junior and senior students) 

 
Teaching Assistant, University of Wisconsin – Milwaukee (Fall 2012) 

 IND ENG 470 – Methods Engineering (lab instructor -  18 senior and graduate students) 



249 
 

 

HONORS AND AWARDS 
 Distinguished Dissertator Fellowship (2013 – 2014 academic year) 

Graduate School, University of Wisconsin – Milwaukee 
  

 Chancellor's Award (2009, 2010, 2011,2012) 
Department of Industrial & Manufacturing Engineering, University of Wisconsin – 
Milwaukee 
 

 Graduate School Travel Award (Fall 2011, Fall 2012) 
       University of Wisconsin – Milwaukee 
 

 Scholarship for rail short course, National Center for Freight & Infrastructure Research &   
Education (CFIRE), University of Wisconsin – Madison (Fall 2012) 
 

 Young Researchers Group Travel Award (Fall 2008)  
Azad University - South Tehran Branch 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2014

	Operations Research Modeling of Cyclic Train Timetabling, Cyclic Train Platforming, and Bus Routing Problems
	Mojtaba Heydar
	Recommended Citation


	Microsoft Word - Dissertation_MojtabaHeydar_Final_05062014.docx

