2,216 research outputs found

    Mapping Cloud-Edge-IoT opportunities and challenges in Europe

    Get PDF
    While current data processing predominantly occurs in centralized facilities, with a minor portion handled by smart objects, a shift is anticipated, with a surge in data originating from smart devices. This evolution necessitates reconfiguring the infrastructure, emphasising computing capabilities at the cloud's "edge" closer to data sources. This change symbolises the merging of cloud, edge, and IoT technologies into a unified network infrastructure - a Computing Continuum - poised to redefine tech interactions, offering novel prospects across diverse sectors. The computing continuum is emerging as a cornerstone of tech advancement in the contemporary digital era. This paper provides an in-depth exploration of the computing continuum, highlighting its potential, practical implications, and the adjustments required to tackle existing challenges. It emphasises the continuum's real-world applications, market trends, and its significance in shaping Europe's tech future

    Comparative analyzes of technological tools between industry 4.0 and smart cities approaches: the new society ecosystem

    Get PDF
    Today the growth of modern cities is unprecedented in the history of urbanization and the urban environmental problems have also been increased. Unfortunately, there is no much time to modify past failures and improve the status quo, and ensure the protection of the environment. Consequently, it’s important to pay attention to the development of sustainable urban planning and its role in urban management issues is an objective that requires a new approach.On the other hand, Industry 4.0 (I.4.0), as called the 4th Industrial Revolution, carries impacts in the production on companies, the economy and society, with disruptive character, creating new markets and destabilizing the traditional way of doing business. Once I.4.0 is a strategic approach to the integration of advanced control systems with internet technology, enabling communication between people, products and complex systems, it’s expected to follow the same in the Smart Cities development.This article aims to relate technological tools of I.4.0 and the dimensions of “Smart Cities”, based on analytical framework for better understanding the emergence of new society ecosystem focused on the redefinition of the cities’ concept, urbanism and way of life, motivated by this new reconfiguration

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Development of a Risk Framework for Industry 4.0 in the Context of Sustainability for Established Manufacturers

    Get PDF
    The concept of “Industry 4.0” is expected to bring a multitude of benefits for industrial value creation. However, the associated risks hamper its implementation and lack a comprehensive overview. In response, the paper proposes a framework of risks in the context of Industry 4.0 that is related to the Triple Bottom Line of sustainability. The framework is developed from a literature review, as well as from 14 in-depth expert interviews. With respect to economic risks, the risks that are associated with high or false investments are outlined, as well as the threatened business models and increased competition from new market entrants. From an ecological perspective, the increased waste and energy consumption, as well as possible ecological risks related to the concept “lot size one”, are described. From a social perspective, the job losses, risks associated with organizational transformation, and employee requalification, as well as internal resistance, are among the aspects that are considered. Additionally, risks can be associated with technical risks, e.g., technical integration, information technology (IT)-related risks such as data security, and legal and political risks, such as for instance unsolved legal clarity in terms of data possession. Conclusively, the paper discusses the framework with the extant literature, proposes managerial and theoretical implications, and suggests avenues for future research

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Avoiding the internet of insecure industrial things

    Get PDF
    Security incidents such as targeted distributed denial of service (DDoS) attacks on power grids and hacking of factory industrial control systems (ICS) are on the increase. This paper unpacks where emerging security risks lie for the industrial internet of things, drawing on both technical and regulatory perspectives. Legal changes are being ushered by the European Union (EU) Network and Information Security (NIS) Directive 2016 and the General Data Protection Regulation 2016 (GDPR) (both to be enforced from May 2018). We use the case study of the emergent smart energy supply chain to frame, scope out and consolidate the breadth of security concerns at play, and the regulatory responses. We argue the industrial IoT brings four security concerns to the fore, namely: appreciating the shift from offline to online infrastructure; managing temporal dimensions of security; addressing the implementation gap for best practice; and engaging with infrastructural complexity. Our goal is to surface risks and foster dialogue to avoid the emergence of an Internet of Insecure Industrial Things

    Towards a semantic Construction Digital Twin: directions for future research

    Get PDF
    As the Architecture, Engineering and Construction sector is embracing the digital age, the processes involved in the design, construction and operation of built assets are more and more influenced by technologies dealing with value-added monitoring of data from sensor networks, management of this data in secure and resilient storage systems underpinned by semantic models, as well as the simulation and optimisation of engineering systems. Aside from enhancing the efficiency of the value chain, such information-intensive models and associated technologies play a decisive role in minimising the lifecycle impacts of our buildings. While Building Information Modelling provides procedures, technologies and data schemas enabling a standardised semantic representation of building components and systems, the concept of a Digital Twin conveys a more holistic socio-technical and process-oriented characterisation of the complex artefacts involved by leveraging the synchronicity of the cyber-physical bi-directional data flows. Moreover, BIM lacks semantic completeness in areas such as control systems, including sensor networks, social systems, and urban artefacts beyond the scope of buildings, thus requiring a holistic, scalable semantic approach that factors in dynamic data at different levels. The paper reviews the multi-faceted applications of BIM during the construction stage and highlights limits and requirements, paving the way to the concept of a Construction Digital Twin. A definition of such a concept is then given, described in terms of underpinning research themes, while elaborating on areas for future research

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application
    • …
    corecore