2,380 research outputs found

    Sapo: Reachability Computation and Parameter Synthesis of Polynomial Dynamical Systems

    Get PDF
    Sapo is a C++ tool for the formal analysis of polynomial dynamical systems. Its main features are: 1) Reachability computation, i.e., the calculation of the set of states reachable from a set of initial conditions, and 2) Parameter synthesis, i.e., the refinement of a set of parameters so that the system satisfies a given specification. Sapo can represent reachable sets as unions of boxes, parallelotopes, or parallelotope bundles (symbolic representation of polytopes). Sets of parameters are represented with polytopes while specifications are formalized as Signal Temporal Logic (STL) formulas

    Percentile Queries in Multi-Dimensional Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function ff, thresholds viv_i (one per dimension), and probability thresholds αi\alpha_i, we show how to compute a single strategy to enforce that for all dimensions ii, the probability of outcomes ρ\rho satisfying fi(ρ)≄vif_i(\rho) \geq v_i is at least αi\alpha_i. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS

    Full text link
    Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Θ(nk)\Theta(n^k), for some integer k≀dk\leq d, where dd is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal kk. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a kk such that the termination complexity is Ω(nk)\Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.Comment: arXiv admin note: text overlap with arXiv:1708.0925

    Hyperplane Separation Technique for Multidimensional Mean-Payoff Games

    Full text link
    We consider both finite-state game graphs and recursive game graphs (or pushdown game graphs), that can model the control flow of sequential programs with recursion, with multi-dimensional mean-payoff objectives. In pushdown games two types of strategies are relevant: global strategies, that depend on the entire global history; and modular strategies, that have only local memory and thus do not depend on the context of invocation. We present solutions to several fundamental algorithmic questions and our main contributions are as follows: (1) We show that finite-state multi-dimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weight is fixed; whereas if the number of dimensions is arbitrary, then problem is already known to be coNP-complete. (2) We show that pushdown graphs with multi-dimensional mean-payoff objectives can be solved in polynomial time. (3) For pushdown games under global strategies both single and multi-dimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multi-dimensional problem is also undecidable (whereas under modular strategies the single dimensional problem is NP-complete). We show that if the number of modules, the number of exits, and the maximal absolute value of the weight is fixed, then pushdown games under modular strategies with single dimensional mean-payoff objectives can be solved in polynomial time, and if either of the number of exits or the number of modules is not bounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multi-dimensional mean-payoff games or pushdown games under modular strategies with single-dimensional mean-payoff objectives would imply the solution of the long-standing open problem of fixed parameter tractability of parity games.Comment: arXiv admin note: text overlap with arXiv:1201.282

    The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems

    Full text link
    A constant-rate multi-mode system is a hybrid system that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. Alur, Wojtczak, and Trivedi have shown that reachability problems for constant-rate multi-mode systems for open and convex safety sets can be solved in polynomial time. In this paper, we study the reachability problem for non-convex state spaces and show that this problem is in general undecidable. We recover decidability by making certain assumptions about the safety set. We present a new algorithm to solve this problem and compare its performance with the popular sampling based algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion Planning Library (OMPL).Comment: 26 page

    Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time

    Get PDF
    We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.Comment: Corrected proof of Lemma 6.2 (thanks to Dmitry Chistikov for spotting an error in the previous proof
    • 

    corecore