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Fixed-Dimensional Energy Games are in
Pseudo-Polynomial Time ?

Marcin Jurdziński1, Ranko Lazić1, and Sylvain Schmitz1,2

1 DIMAP, Department of Computer Science, University of Warwick, UK
2 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. We generalise the hyperplane separation technique (Chat-
terjee and Velner, 2013) from multi-dimensional mean-payoff to energy
games, and achieve an algorithm for solving the latter whose running
time is exponential only in the dimension, but not in the number of ver-
tices of the game graph. This answers an open question whether energy
games with arbitrary initial credit can be solved in pseudo-polynomial
time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves
the complexity of solving multi-dimensional energy games with given ini-
tial credit from non-elementary (Brázdil, Jančar, and Kučera, 2010) to
2EXPTIME, thus establishing their 2EXPTIME-completeness.

1 Introduction

Multi-Dimensional Energy Games are played turn-by-turn by two players on a
finite multi-weighted game graph, whose edges are labelled with integer vectors
modelling discrete energy consumption and refuelling. Player 1’s objective is to
keep the accumulated energy non-negative in every component along infinite
plays. This setting is relevant to the synthesis of resource-sensitive controllers
balancing the usage of various resources like fuel, time, money, or items in stock,
and finding optimal trade-offs; see [4, 10, 3, 11] for some examples. Maybe more
importantly, energy games are the key ingredient in the study of several related
resource-conscious games, notably multi-dimensional mean-payoff games [6] and
games played on vector addition systems with states (VASS) [4, 2, 9].

The main open problem about these games has been to pinpoint the com-
plexity of deciding whether Player 1 has a winning strategy when starting from a
particular vertex and given an initial energy vector as part of the input. This par-
ticular given initial credit variant of energy games is also known as Z-reachability
VASS games [4, 5]. The problem is also equivalent via logarithmic-space reduc-
tions to deciding single-sided VASS games with a non-termination objective [2],
and to deciding whether a given VASS (or, equivalently, a Petri net) simulates
a given finite state system [9, 1]. As shown by Brázdil, Jančar, and Kučera [4],
all these problems can be solved in (d− 1)EXPTIME where d ≥ 2 is the number
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of energy components, i.e. a TOWER of exponentials when d is part of the input.
The best known lower bound for this problem is 2EXPTIME-hardness [9], leaving
a substantial complexity gap. So far, the only tight complexity bounds are for
the case d = 2: Chaloupka [5] shows the problem to be PTIME-complete when
using unit updates, i.e. when the energy levels can only vary by −1, 0, or 1.
However, quoting Chaloupka, ‘since the presented results about 2-dimensional
VASS are relatively complicated, we suspect this [general] problem is difficult.’

When inspecting the upper bound proof of Brázdil et al. [4], it turns out that
the main obstacle to closing the gap and proving 2EXPTIME-completeness lies in
the complexity upper bounds for energy games with an arbitrary initial credit—
which is actually the variant commonly assumed when talking about energy
games. Given a multi-weighted game graph and an initial vertex v, we now wish
to decide whether there exists an initial energy vector b such that Player 1 has a
winning strategy starting from the pair (v,b). As shown by Chatterjee, Doyen,
Henzinger, and Raskin [6], this variant is simpler: it is coNP-complete. However,
the parameterised complexity bounds in the literature [4, 7] for this simpler
problem involve an exponential dependency on the number |V | of vertices in the
input game graph, which translates into a tower of exponentials when solving
the given initial credit variant.

Contributions. We show in this paper that the arbitrary initial credit problem
for d-dimensional energy games can be solved in time O(|V | · ‖E‖)O(d4) where
|V | is the number of vertices of the input multi-weighted game graph and ‖E‖
the maximal value that labels its edges, i.e. in pseudo-polynomial time (see
Thm.3.3). We then deduce that the given initial credit problem for general multi-
dimensional energy games is 2EXPTIME-complete, and also in pseudo-polynomial
time when the dimension is fixed (see Thm. 3.5), thus closing the gap left open
in [4, 9]. Our parameterised bounds are of practical interest because typical
instances of energy games would have small dimension but might have a large
number of vertices. By the results of Chatterjee et al. [6], another consequence
is that we can decide the existence of a finite-memory winning strategy for
fixed-dimensional mean-payoff games in pseudo-polynomial time. The existence
of a finite-memory winning strategy is the most relevant problem for controller
synthesis, but until now, solving fixed-dimensional mean-payoff games in pseudo-
polynomial time required infinite memory strategies [8].

Overview. We prove our upper bounds on the complexity of the arbitrary initial
credit problem for d-dimensional energy games by reducing them to bounding
games, where Player 1 additionally seeks to prevent arbitrarily high energy levels
(Sec. 2.3). We further show these games to be equivalent to first-cycle bounding
games in Sec.5, where the total effect of the first simple cycle defined by the two
players determines the winner. More precisely, first-cycle bounding games rely
on a hierarchically-defined colouring of the game graph by perfect half-spaces
(see Sec. 4), and the two players strive respectively to avoid or produce cycles in
those perfect half-spaces.

First-cycle bounding games coloured with perfect half-spaces can be seen as
generalising quite significantly both the ‘local strategy’ approach of Chaloupka
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Fig. 1: A 2-dimensional multi-weighted game graph.

[5] for 2-dimensional energy games, and the ‘separating hyperplane technique’
of Chatterjee and Velner [8] for multi-dimensional mean-payoff games.

The reduction to first-cycle bounding games has several important corollaries:
the determinacy of bounding games, and the existence of a small hypercube
property, which in turn allow to derive the announced complexity bounds on
energy games (see Sec. 3). In fact, we found with first-cycle bounding games a
highly versatile tool, which we use extensively in our proofs on energy games.

We start by presenting the necessary background on energy and bounding
games in Sec. 2. Some omitted material can be found in the full paper available
from http://arxiv.org/abs/1502.06875.

2 Multi-Weighted Games

We define in this section the various games we consider in this work. We start
by defining multi-weighted game graphs, which provide a finite representation
for the infinite arenas over which our games are played. We then define energy
games in Sec. 2.2, and their generalisation as bounding games in Sec. 2.3.

2.1 Multi-Weighted Game Graphs

We consider game graphs whose edges are labelled by vectors of integers. They
are tuples of the form (V,E, d), where d is the dimension in N, V def= V1 ] V2 is a
finite set of vertices, which is partitioned into Player 1 vertices (V1) and Player 2
vertices (V2), and E is a finite set of edges included in V ×Zd×V , and such that
every vertex has at least one outgoing edge; we call the labels in Zd ‘weights’.

Example 2.1. Figure 1 shows on its left-hand-side an example of a 2-dimensional
multi-weighted game graph. Throughout this paper, Player 1 vertices are de-
picted as triangles and Player 2 vertices as squares.

Norms. For a vector a, we denote the maximum absolute value of its entries by
‖a‖ def= max1≤i≤d |a(i)|, and we call it the norm of a. By extension, for a set of
edges E, we let ‖E‖ def= max(v,u,v′)∈E ‖u‖. We assume, without loss of generality,
that ‖E‖ > 0 in our multi-weighted game graphs. Regarding complexity, we
encode vectors of integers in binary, hence ‖E‖ may be exponential in the size
of the multi-weighted game graph.

Paths and Cycles. Given a multi-weighted game graph (V,E, d), a configuration
is a pair (v,a) with v in V and a in Zd. A path is a finite sequence of configurations

http://arxiv.org/abs/1502.06875


4 M. Jurdziński et al.

π = (v0,a0)(v1,a1) · · · (vn,an) in (V × Zd)∗ such that for every 0 ≤ j < n
there exists an edge (vj ,aj+1 − aj , vj+1) in E (where addition is performed
componentwise). The total weight of such a path π is w(π) def=

∑
0≤j<n aj+1−aj =

an − a0. A cycle is a path (v0,a0)(v1,a1) · · · (vn,an) with v0 = vn. Such a cycle
is simple if vj = vk for some 0 ≤ j < k ≤ n implies j = 0 and k = n. We assume,
without loss of generality, that every cycle contains at least one Player 1 vertex.
We often identify simple cycles with their respective weights; the weights of the
four simple cycles of the game graph in Fig.1 are displayed on its right-hand-side.

Proposition 2.2. In any game graph (V,E, d), the total weight of any simple
cycle has norm at most |V | · ‖E‖.

Plays and Strategies. Let v0 be a vertex from V . A play from v0 is an infinite
configuration sequence ρ = (v0,a0)(v1,a1) · · · such that a0 = 0 is the null vector
and every finite prefix ρ|n

def= (v0,a0) · · · (vn,an) is a path. Note that, because
a0 = 0, the total weight of this prefix is w(ρ|n) = an. We define the norm of
a play ρ as the supremum of the norms of total weights of its prefixes: ‖ρ‖ def=
supn ‖w(ρ|n)‖. A strategy for Player p, p ∈ {1, 2}, is a function σp taking as input
a non-empty path π · (v,a) ending in a Player p vertex v ∈ Vp, and returning
an edge σp(π · (v,a)) = (v,u, v′) from E. We employ the usual notions of plays
consistent with strategies, and given some winning condition on plays, of winning
strategies for a player.
Example 2.1 (continued). For instance, in the game graph depicted in Fig. 1, a
strategy for Player 1 could be to move to vL whenever the current energy level
on the first coordinate is non-negative, and to vR otherwise—note that this is
an infinite-memory strategy—:

σ1(π · (v0,a)) def=

{
(v0, (0, 0) , vL) if a(1) ≥ 0,
(v0, (0, 0) , vR) otherwise,

(1)

and one for Player 2 could be to always select one particular edge in every vertex,
regardless of the current energy vector—this is called a counterless strategy [4]—:

σ2(π · (v,a)) def=

{
(vL, (−2, 2) , v0) if v = vL

(vR, (2,−1) , v0) otherwise.
(2)

2.2 Multi-Dimensional Energy Games
Suppose (V,E, d) is a multi-weighted game graph, v0 an initial vertex, and b is
a vector from Nd. A play ρ from v0 is winning for Player 1 in the energy game
∆b(V,E, d) with initial credit b if, for all n, b + w(ρ|n) ≥ 0, using the product
ordering over Zd. Otherwise, Player 2 wins the play. An immediate property of
energy games is monotonicity : if σ1 is winning for Player 1 with some initial
credit b, and b′ ≥ b, then it is also winning for Player 1 with initial credit b′.
Example 2.1 (continued). For example, one may observe that the strategy (1)
for Player 1 is winning for the game graph of Fig. 1 with initial credit (2, 2) (or
larger). A geometric intuition comes from the directions of the total weights of
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simple cycles in Fig. 1: by choosing alternatively edges to vL or vR, Player 1 is
able to balance the energy levels above the ‘x+ y = 0’ line.

2.3 Multi-Dimensional Bounding Games

A generalisation of energy games sometimes considered in the literature is to
further impose a maximal capacity c ∈ Nd (also called an upper bound) on
the energy levels during the play [10, 11]. Player 1 then wins a play ρ if 0 ≤
b + w(ρ|n) ≤ c for all n.

In the spirit of the arbitrary initial credit variant of energy games, we also
quantify c existentially. This defines the bounding game Γ (V,E, d) over a multi-
weighted game graph (V,E, d), where a play ρ is winning for Player 1 if its norm
‖ρ‖ is finite, i.e. if the set {‖w(ρ|n)‖ : n ∈ N} of norms of total weights of all
finite prefixes of ρ is bounded, and Player 2 wins otherwise, if it is unbounded.
In other words, Player 1 strives to contain the current vector within some d-
dimensional hypercube, while Player 2 attempts to escape.

Example 2.1 (continued). Note that Player 2 is now winning the bounding game
defined by the game graph of Fig. 1 from any of the three vertices, for example
using the strategy (2). Indeed, this strategy ensures that the only simple cycles
that can be played have weights (−2, 2) and (2,−1). Because these vectors belong
to an open half-plane, the total energy will drift deeper and deeper inside that
open half-plane and its norm will grow unbounded.

Lossy Game Graphs. If Player 1 wins the bounding game, then there exists
some initial credit for which she also wins the energy game. For a converse,
let lossy(V,E, d) denote the lossy multi-weighted game graph obtained from
(V,E, d) by inserting, at each Player 1 vertex and for each 1 ≤ i ≤ d, a self-loop
labelled by the negative unit vector −ei. In a bounding game played over a lossy
game graph, it turns out that Player 1 can always bound the current vector from
above by playing these unit decrements, hence she only has to ensure that the
current vector remains bounded from below, i.e. she has to win the energy game
for some initial credit. Formally (see the full paper for a proof):

Proposition 2.2. From any vertex in any multi-weighted game graph (V,E, d):
1. Player 1 wins the energy game ∆b(V,E, d) for some b ∈ Nd if and only if

Player 1 wins the bounding game Γ (lossy(V,E, d)).
2. Player 2 wins the energy game ∆b(V,E, d) for all b ∈ Nd if and only if

Player 2 wins the bounding game Γ (lossy(V,E, d)).

Our task in the following will be therefore to prove an upper bound on the
time complexity required to solve bounding games.

Example 2.3. By Prop. 2.2, because she was winning the energy game of Fig. 1
with initial credit (2, 2), Player 1 is now winning the bounding game played on
the lossy version of the multi-weighted game graph of Fig. 1.

Example 2.4. As a rather different example, consider the multi-weighted game
graph of Fig. 2. Although Player 2 does not control any vertex, and Player 1
controls the ‘direction of divergence’, Player 2 wins the associated bounding
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vL vR

(−1, 0)

(0,−1)

(1,−1) (−1, 1)

Fig. 2: A 2-dimensional game graph with only Player 1 vertices.

game. Indeed, Player 1 can either eventually stay forever at one of the two
vertices, or visit both vertices infinitely often. In any case, she loses.

3 Complexity Upper Bounds

Our main results are new parameterised complexity upper bounds for deciding
whether Player 1 has a winning strategy in a given energy game. In turn, we
rely for these results on a small hypercube property of bounding games, which
we introduce next, and which will be a consequence of the study of first-cycle
bounding games in Sec. 5.

3.1 Small Hypercube Property

In a bounding game, if Player 1 is winning, then by definition she has a winning
strategy σ1 such that for all plays ρ consistent with σ1 there exists some bound
Bρ with ‖ρ‖ ≤ Bρ. We considerably strengthen this statement in Sec.5 where we
construct an explicit winning strategy, which yields an explicit uniform bound B
for all consistent plays:
Lemma 3.1. Let (V,E, d) be a multi-weighted game graph. If Player 1 wins
the bounding game Γ (V,E, d), then she has a winning strategy which ensures
‖ρ‖ ≤ (4|V | · ‖E‖)2(d+2)3 for all consistent plays ρ.

Note that our bound is polynomial in |V | the number of vertices, unlike
the bounds found in comparable statements by Brázdil et al. [4], Lem. 7 and
Chatterjee et al. [7], Lem. 3, which incur an exponential dependence on |V |.
This entails pseudo polynomial complexity bounds when d is fixed:

Corollary 3.2. Bounding games on multi-weighted graphs (V,E, d) are solvable
in time (|V | · ‖E‖)O(d4).
Proof. By Lem. 3.1, the bounding game is equivalent to a reachability game
where Player 2 attempts to see the norm of the total weight exceed B def= (4|V | ·
‖E‖)2(d+2)3 . This can be played within a finite arena of size (2B+1)d and solved
in time linear in that size using the usual attractor computation algorithm.

3.2 Energy Games with Arbitrary Initial Credit

The arbitrary initial credit problem for energy games takes as input a multi-
weighted game graph and an initial vertex v0 and asks whether there exists a
vector b in Nd such that Player 1 wins ∆b(V,E, d) from v0:
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Theorem 3.3. The arbitrary initial credit problem for energy games on multi-
weighted game graphs (V,E, d) is solvable in time (|V | · ‖E‖)O(d4).
Proof. This follows from Prop. 2.2, and Cor. 3.2 applied to the game graph
Γ (lossy(V,E, d)).

3.3 Energy Games with Given Initial Credit

The given initial credit problem for energy games takes as input a multi-weighted
game graph (V,E, d), an initial vertex v0, and a credit b in Nd and asks whether
Player 1 wins the energy game ∆b(V,E, d) from v0. Thanks to Lem.3.1, a proof
of the upcoming Thm. 3.5 could be obtained using the work of Brázdil et al.
[4], and more generally the techniques of Rackoff [12]. As usual in this work, we
rather proceed by transferring that setting to that of bounding games (and thus
to that of first-cycle bounding games). Our key lemma shows that any energy
game with a given initial credit played over some multi-weighted game graph
is equivalent to some bounding game played over a double-exponentially larger
game graph:
Lemma 3.4. Let b ∈ Nd, (V,E, d) be a multi-weighted game graph, and v ∈ V .
One can construct in time O(|V ′| · |E|+d · log ‖b‖) a multi-weighted game graph
(V ′, E′, d) and a vertex vb in V ′ with |V ′| ≤ (4|V |·‖E‖)2d(d+3)3d

and ‖E′‖ = ‖E‖
s.t., for all p ∈ {1, 2}, Player p wins the energy game ∆b(V,E, d) from v iff
Player p wins the bounding game Γ (V ′, E′, d) from vb.

By applying Cor.3.2 to the game graph (V ′, E′, d) and since |E| ≤ |V |2 ·‖E‖d,
we obtain a 2EXPTIME upper bound on the given initial credit problem, which
is again pseudo-polynomial when d is fixed:
Theorem 3.5. The given initial credit problem with credit b for energy games
on multi-weighted game graphs (V,E, d) is solvable in time O(|V |·‖E‖)2O(d·log d)

+
O(d · log ‖b‖).
This matches the 2EXPTIME lower bound from [9], and encompasses Chaloupka’s
PTIME upper bound in dimension d = 2 with unit updates, i.e. with ‖E‖ = 1.
Because the given initial credit problem for energy games of fixed dimension
d ≥ 4 is EXPTIME-hard [9], the bound in terms of ‖E‖ in Thm. 3.5 cannot be
improved.

4 Perfect Half-Spaces

We recall in this section the definition of subsets of Qd called perfect half-spaces.
They will be used next in Sec.5 to define a condition for Player 2 to win bounding
games, which relies on Player 2’s ability to force cycles inside perfect half-spaces.
This can be understood as a generalisation of Chatterjee and Velner’s approach
for solving multi-dimensional mean-payoff games [8], which as we recall in the
full paper relies on a similar ability to force cycles inside open half-spaces. We
employ perfect half-spaces in Sec. 5 to colour the edges in first-cycle bounding
games, which determine the winner using both the colours and the weight of the
first cycle formed along a play.
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4.1 Definitions from Linear Algebra

Given a subset A of Qd, we write span(A) (resp., cone(A)) for the vector space
(resp., the cone) generated by A, i.e., the closure of A under addition and under
multiplication by all (resp., nonnegative) rationals. A k-perfect half-space of Qd,
where k ∈ {1, 2, . . . , d}, is a (necessarily disjoint) union Hd ∪ · · · ∪Hk such that:
– Hd is an open half-space of Qd;
– for all j ∈ {k, . . . , d − 1}, Hj ⊆ Qd is an open half-space of the boundary

of Hj+1.
Whenever we write a k-perfect half-space in form Hd ∪ · · · ∪Hk, we assume that
each Hj is j-dimensional. We additionally define the (d + 1)-perfect half-space
as the empty set; a partially-perfect half-space is then a k-perfect half-space for
some k in {1, . . . , d+ 1}. A perfect half-space is a 1-perfect half-space.

4.2 Generated Perfect Half-Spaces

In order to pursue effective and parsimonious strategy constructions, we consider
perfect half-spaces generated by particular sets of vectors, which will correspond
to the total weights of simple cycles in multi-weighted game graphs. Given a
norm M in N, we say that an open half-space H is M -generated if its boundary
equals span(B) for some set B of vectors of norm at most M . By extension,
a partially-perfect half-space is M -generated if each of its open half-spaces is
M -generated.
Proposition 4.1. Any k-dimensional vector space of Qd has at most L(k) def=
2(2M + 1)d(k−1) open half-spaces that are M -generated.

Example 4.2. In the game graph of Fig. 2, there are three 1-generated open
half-spaces of interest: the half-plane H2

def= {(x, y) : x + y < 0} with bound-
ary span((−1, 1), (1,−1)) and containing (−1,−1), and the two half-lines H1

def=
{(x, y) : x+ y = 0∧x < 0} and H ′1

def= {(x, y) : x+ y = 0∧x > 0} with boundary
span(0) and containing, respectively, (−1, 1) and (1,−1). Those open half-spaces
define two perfect half-spaces: H2 ∪H1 and H2 ∪H ′1.

4.3 Hierarchy of Perfect Half-Spaces

Finally, we fix a ranked tree-like structure on all M -generated partially-perfect
half-spaces, which provide a scaffolding on which we will build strategies in multi-
dimensional bounding games. Observe that an M -generated partially-perfect
half-space Hd∪· · ·∪Hk for k > 1 can be extended using any of the M -generated
open half-spaces H of the boundary of Hk; note that this boundary then equals
span(H). In Example 4.2, H2 can be extended using H1 or H ′1, and span(H1) =
span(H ′1) = {(x, y) : x+ y = 0}.

The set of M -generated perfect half-spaces can be totally ordered by positing
a linear ordering < between all M -generated open half-spaces. We write ≺ for
the lexicographically induced linear ordering between all M -generated perfect
half-spaces of Qd: if H = Hd ∪ · · · ∪ H1 and H′ = H ′d ∪ · · · ∪ H ′1, we define
H ≺ H′ to hold iff Hj = H ′j for all j ∈ {k + 1, . . . , d} and Hk < H ′k for some
k ∈ {1, 2, . . . , d}.
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5 First-Cycle Bounding Games

We define in this section first-cycle bounding games, which provide the key tech-
nical arguments for most of our results. Such games end as soon as a cycle is
formed along a play, and the weight of this cycle determines the winner, along
with a colouring information chosen by Player 2. In sections 5.2 and 5.3, we
are going to show that first-cycle bounding games and infinite bounding games
are equivalent, by translating winning strategies for each Player p, p ∈ {2, 1},
from first-cycle bounding games to bounding games. This yields in particular
the small hypercube property of Lem. 3.1.

5.1 Definition

We define the first-cycle bounding game G(V,E, d) on a multi-weighted game
graph (V,E, d):
– at any Player-1 vertex, Player 2 chooses a |V | · ‖E‖-generated perfect half-

spaceH of Qd, and then Player 1 chooses an outgoing edge, whose occurrence
in the play becomes coloured by H;

– at any Player-2 vertex, he chooses an outgoing edge;
– the game finishes as soon as a vertex is visited twice, which produces a simple

cycle C with coloured Player-1 edges;
– Player 2 wins if w(C), the total weight of the cycle, is in the largest partially-

perfect half-space of Qd that is contained in all the colours in C, i.e. the least
common ancestor of all the colours in C; Player 1 wins otherwise.

Example 5.1. Player 2 wins the first-cycle bounding game played in Fig. 1 (but
loses in its lossy version). For example, strategy (2) is winning for Player 2 if
he colours the edges outgoing from v0 by the perfect half-space H ′2 ∪H1 where
H ′2

def= {(x, y) : x+ y > 0} and H1
def= {(x, y) : x+ y = 0 ∧ x < 0}.

Example 5.2. Player 2 wins the first-cycle bounding game played in Fig. 2. In-
deed, he can choose the colour H2 ∪ H1 in vL and the colour H2 ∪ H ′1 in vR.
Then Player 1 cannot avoid forming a simple cycle in either H2 ∪H1 (if cycling
on vL), in H2 ∪H ′1 (if cycling on vR), or in H2 (if cycling between vL and vR).

Observe that first-cycle bounding games are finite perfect information games,
and are thus determined : from any vertex, either Player 1 wins or Player 2 wins.

5.2 Winning Strategies for Player 2

Suppose σ is a strategy of Player 2 from a vertex v0 in a first-cycle bounding game
G(V,E, d). Let σ̃ be the following strategy of Player 2 in the infinite bounding
game Γ (V,E, d):
– at any Player-2 vertex, σ̃ chooses the edge specified by σ;
– whenever a cycle is formed, σ̃ cuts it out of its memory, and continues playing

according to σ.

Lemma 5.3. If σ is winning for Player 2 in G(V,E, d) from some vertex v0,
then σ̃ is winning for Player 2 in Γ (V,E, d) from the same vertex v0.



10 M. Jurdziński et al.

Proof idea. Consider any infinite play ρ̃ consistent with σ̃, and let:
– ρ be obtained from ρ̃ by colouring all Player 1’s edges with the |V | · ‖E‖-

generated perfect half-spaces of Qd as specified by σ;
– C1, C2, . . . be the cycle decomposition of ρ, and for each n, ρn be the simple

path that remains after removing Cn;
– Hn be the largest partially-perfect half-space of Qd that is contained in all

the colours in Cn, for each n.

Since σ is winning for Player 2 in the first-cycle game, each cycle weight w(Cn)
belongs to the partially-perfect half-space Hn. The bulk of the proof consists in
extracting a ‘direction of divergence’ of the total energy, notwithstanding that
the Hn’s may keep varying.

In short, by distinguishing those n’s for which the length of the simple path ρn
is the smallest one that occurs infinitely often, we are able to show that the set of
Hn’s that occur infinitely often has a unique smallest element H = Hd∪· · ·∪Hk

with respect to inclusion. Further linear-algebraic reasoning then shows that
one of the component half-spaces Hk′ of H provides the desired direction of
divergence: after some N > 0, all the sums of cycle weights w(CN )+w(CN+1)+
· · · + w(Cn) belong to the topological closure Hk′ and their distances from the
boundary of Hk′ diverge. See the full paper for details.

5.3 Winning Strategies for Player 1

If there is no winning strategy for Player 2 in the first-cycle bounding game
G(V,E, d) from a vertex v0, then by determinacy of first-cycle bounding games,
there is a winning strategy σ for Player 1 in G(V,E, d) from v0.

Example 5.4. Consider the lossy version of the game graph in Fig. 1. Because
Player 1 wins the energy game with initial credit (2, 2), by Prop.2.2 and Lem.5.3,
she wins the first-cycle bounding game. One winning strategy, whose moves
depend only on the latest visited vertex (here only v0) and colour H chosen by
Player 2 in v0, is as follows:
(i) if (−2, 2) and (−1, 3) are both outside H, move to vL, and

(ii) if (2,−1) and (3,−3) are both outside H, move to vR, and
(iii) otherwise perform the self-loop labelled (−1, 0).

Observe that the first two cases (i) and (ii) are disjoint. Since there is no per-
fect half-space that contains (−1, 0) and intersects both {(−2, 2), (−1, 3)} and
{(2,−1), (3,−3)}, this strategy is indeed winning for Player 1—the same would
apply if she were to choose the other self-loop (0,−1) instead.

The proof of our main result consists in constructing from σ a finite-memory
winning strategy σ̃ for Player 1 in the infinite bounding game Γ (V,E, d) from v0,
which ensures the small hypercube property stated in Lem. 3.1. Let us outline
this construction. The memory of σ̃ consists of:
a simple path γ from the initial vertex v0 to the current vertex v, in which

Player 1’s edges are coloured by |V | ·‖E‖-generated perfect half-spaces of Qd

(this can be represented concretely by a sequence of coloured edges from E);
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a colour i.e. a |V | · ‖E‖-generated perfect half-space H = Hd ∪ · · · ∪H1 of Qd

(initially the ≺-minimal one);
counters c(k,W ) for every k ∈ {1, 2, . . . , d} and for every nonzero total weight

W of a simple cycle, which are natural numbers (initially 0).

Strategy σ̃ copies its moves from strategy σ for the first-cycle bounding game,
based on the coloured simple path and the colour it has in its memory. Whenever
a cycle is formed it is removed from the simple path, and provided its weight W
is nonzero, all the counters c(k,W ) are incremented.

Together with the current path, the counters provide the current energy level,
which equals w(γ) +

∑
W c(d,W ) ·W throughout the play, where W ranges over

all simple cycle weights. To keep the counters and thus the total energy bounded,
σ̃ may perform one of the following operations after a counter increment:
– a k-shift to H ′k > Hk changes the current colour H to the ≺-minimal perfect

half-space of the form Hd ∪ · · · ∪Hk+1 ∪H ′k ∪ · · · ∪H ′1, and resets to 0 all
the counters c(k′,W ) with k′ < k;

– a k-cancellation changes the current colour H to the ≺-minimal perfect
half-space of the form Hd ∪ · · · ∪ Hk+1 ∪ H ′k ∪ · · · ∪ H ′1. Simultaneously,
given some simple cycle weights W1, . . . ,Wn and a positive integral solu-
tion x to

∑n
i=1 x(i)Wi = 0, it subtracts x · u(k) where u(k) def= (4|V | ·

‖E‖)(2k−1)(d+2)2 from all the tuples (c(k′,W1), . . . , c(k′,Wn)) with k′ ≥ k,
and resets to 0 all the counters c(k′,W ) with k′ < k.

These operations allow to maintain two main invariants, from which the small
hypercube property of Lem. 5.5 is derived. For all 1 ≤ k ≤ d and simple path
weights W in the span of Hk:
– initially, after any>k-shift, and after any≥k-cancellation, c(k,W ) < U(k) def=

(4|V | · ‖E‖)2k(d+2)2 , the so-called k-soft bound ;
– at all times, c(k,W ) < U(k) + u(k), the so-called k-hard bound.

To ensure those invariants, strategy σ̃ further maintains that, whenever
c(k,W ) ≥ U(k) and W is in span(Hk), then W is in Hk. When this new invariant
cannot be preserved by any k-shift, then a version of the Farkas-Minkowski-Weyl
Theorem implies that it can be enforced through a k-cancellation, in which a
small positive integral solution can be found for the associated system of equa-
tions where W1, . . . ,Wn are the offending cycle weights.

This strategy shows a statement dual to Lem. 5.3, and thereby entails both
the equivalence of infinite bounding games with first-cycle bounding games and
the small hypercube property of Lem. 3.1 (see the full paper for a proof):
Lemma 5.5. If σ is winning for Player 1 in G(V,E, d) from some vertex v0,
then σ̃ is winning for Player 1 in Γ (V,W, d) from v0, and ensures energy levels
of norm at most (4|V | · ‖E‖)2(d+2)3 .

6 Concluding Remarks

In this paper, we have shown in Thm. 3.3 and Thm. 3.5 that fixed-dimensional
energy games can be solved in pseudo-polynomial time, regardless of whether
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the initial credit is arbitrary or fixed. For the variant with given initial credit,
this closes a large complexity gap between the TOWER upper bounds of Brázdil,
Jančar, and Kučera [4] and the lower bounds of Courtois and Schmitz [9], and
also settles the complexity of simulation problems between VASS and finite state
systems [9]:
Corollary 6.1. The given initial credit problem for energy games is 2EXPTIME-
complete, and EXPTIME-complete in fixed dimension d ≥ 4.

The main direction for extending these results is to consider a parity con-
dition on top of the energy condition. Abdulla, Mayr, Sangnier, and Sproston
[2] show that multi-dimensional energy parity games with given initial credit
are decidable. They do not provide any complexity upper bounds—although
one might be able to show TOWER upper bounds from the memory bounds on
winning strategies shown by Chatterjee et al. [7], Lem. 3—, leaving a large com-
plexity gap with 2EXPTIME-hardness. This gap also impacts the complexity of
weak simulation games between VASS and finite state systems [2].
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