Markov decision processes (MDPs) with multi-dimensional weights are useful to
analyze systems with multiple objectives that may be conflicting and require
the analysis of trade-offs. We study the complexity of percentile queries in
such MDPs and give algorithms to synthesize strategies that enforce such
constraints. Given a multi-dimensional weighted MDP and a quantitative payoff
function f, thresholds vi (one per dimension), and probability thresholds
αi, we show how to compute a single strategy to enforce that for all
dimensions i, the probability of outcomes ρ satisfying fi(ρ)≥vi is at least αi. We consider classical quantitative payoffs from
the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum,
discounted sum). Our work extends to the quantitative case the multi-objective
model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape