We consider quantitative extensions of the alternating-time temporal logics
ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in
which the value of a counter can be compared to constants using equality,
inequality and modulo constraints. We interpret these logics in one-counter
game models which are infinite duration games played on finite control graphs
where each transition can increase or decrease the value of an unbounded
counter. That is, the state-space of these games are, generally, infinite. We
consider the model-checking problem of the logics QATL and QATLs on one-counter
game models with VASS semantics for which we develop algorithms and provide
matching lower bounds. Our algorithms are based on reductions of the
model-checking problems to model-checking games. This approach makes it quite
simple for us to deal with extensions of the logical languages as well as the
infinite state spaces. The framework generalizes on one hand qualitative
problems such as ATL/ATLs model-checking of finite-state systems,
model-checking of the branching-time temporal logics CTL and CTLs on
one-counter processes and the realizability problem of LTL specifications. On
the other hand the model-checking problem for QATL/QATLs generalizes
quantitative problems such as the fixed-initial credit problem for energy games
(in the case of QATL) and energy parity games (in the case of QATLs). Our
results are positive as we show that the generalizations are not too costly
with respect to complexity. As a byproduct we obtain new results on the
complexity of model-checking CTLs in one-counter processes and show that
deciding the winner in one-counter games with LTL objectives is
2ExpSpace-complete.Comment: 22 pages, 12 figure