237 research outputs found

    Reachability in Concurrent Uninterpreted Programs

    Get PDF
    We study the safety verification (reachability problem) for concurrent programs with uninterpreted functions/relations. By extending the notion of coherence, recently identified for sequential programs, to concurrent programs, we show that reachability in coherent concurrent programs under various scheduling restrictions is decidable by a reduction to multistack pushdown automata, and establish precise complexity bounds for them. We also prove that the coherence restriction for these various scheduling restrictions is itself a decidable property

    An Intelligent Multicriteria Model for Diagnosing Dementia in People Infected with Human Immunodeficiency Virus

    Get PDF
    Hybrid models to detect dementia based on Machine Learning can provide accurate diagnoses in individuals with neurological disorders and cognitive complications caused by Human Immunodeficiency Virus (HIV) infection. This study proposes a hybrid approach, using Machine Learning algorithms associated with the multicriteria method of Verbal Decision Analysis (VDA). Dementia, which affects many HIV-infected individuals, refers to neurodevelopmental and mental disorders. Some manuals standardize the information used in the correct detection of neurological disorders with cognitive complications. Among the most common manuals used are the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) of the American Psychiatric Association and the International Classification of Diseases, 10th edition (ICD-10)—both published byWorld Health Organization (WHO). The model is designed to explore the predictive of specific data. Furthermore, a well-defined database data set improves and optimizes the diagnostic models sought in the research.info:eu-repo/semantics/publishedVersio

    S2TD: a Separation Logic Verifier that Supports Reasoning of the Absence and Presence of Bugs

    Full text link
    Heap-manipulating programs are known to be challenging to reason about. We present a novel verifier for heap-manipulating programs called S2TD, which encodes programs systematically in the form of Constrained Horn Clauses (CHC) using a novel extension of separation logic (SL) with recursive predicates and dangling predicates. S2TD actively explores cyclic proofs to address the path explosion problem. S2TD differentiates itself from existing CHC-based verifiers by focusing on heap-manipulating programs and employing cyclic proof to efficiently verify or falsify them with counterexamples. Compared with existing SL-based verifiers, S2TD precisely specifies the heaps of de-allocated pointers to avoid false positives in reasoning about the presence of bugs. S2TD has been evaluated using a comprehensive set of benchmark programs from the SV-COMP repository. The results show that S2TD is more effective than state-of-art program verifiers and is more efficient than most of them.Comment: 24 page

    Asynchronous n-Level Hypergraph Partitioning

    Get PDF

    Automated Verification of Complete Specification with Shape Inference

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms
    corecore