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Automated Verification of

Complete Specification with Shape Inference

Abstract

To achieve the highest Evaluation Assurance Level, mission-critical software

components are required to be specified by formal specification and be verified

by a proof system [3]. However, existing verification systems focus mostly on

good (safe) scenarios of functional properties (nothing bad will happen), while

real world programs often contain bad scenarios. To bridge this gap, the thesis

presents a solution for specifying, verifying and synthesizing both good and bad

scenarios of heap-manipulating programs.

In the first part of this thesis, we present a complete specification mechanism

that can specify both good and bad scenarios of program executions. A good

execution is one that takes any permitted input and produces the expected

output without any errors. A bad execution is one that takes some input but

leads to some unexpected error. We present a verification system that supports

complete specification. Our proposed system is capable of ensuring good

scenarios (from safety proving) and detecting bad scenarios (from errors

validation). A key principle of our proposal is a lattice of program status at the

logic level, that is used to denote good and bad program states, and a new

calculus to support systematic reasoning in the presence of errors.

In the second part of this thesis, we propose to automate verification system

with specification inference. In the context of heap-manipulating programs,

specification inference captures the analysis of shapes to describe abstractions for

data structures used by each method. While previous shape analysis proposals

rely on using a predefined vocabulary of shape definitions (typically limited to

singly-linked list segments), our approach is able to synthesize, from scratch, a

xi



set of shape abstractions that is needed for ensuring memory-safe operations.

The key concept behind our novel proposal is a second-order bi-abduction

mechanism. With bi-abduction, we infer missing information that helps verifiers

to either prove memory safety (for the good scenarios) or disprove it (for the bad

scenarios). In this second-order mechanism, we use unknown predicates (or

second-order variables) as place-holders for shape predicates that are to be

synthesized. Our second-order bi-abduction generates missing information as a

set of relational assumptions on the unknown predicates that are obtained

directly from proof obligations gathered by our verification process.

We next propose a transformational approach on each gathered set of

relational assumptions. Our approach includes derivation and normalization

steps. While the derivation infers sound definition for each unknown predicate,

the normalization step further simplifies those definitions into a more concise,

understandable and re-usable predicate form.

We have implemented the proposals in a prototype system and evaluated

them by using the system to specify, verify, and synthesize specifications of

programs with complex data structures. The experimental results demonstrate

the viability of our proposals in inferring memory-safe specification and the

verification of programs with complete specifications.

Keywords: Second-Order Bi-Abduction, Specification Inference, Complete

Specification, Shape Analysis, Shape Synthesis, Separation Logic.

Thesis Advisor: Associate Professor Chin Wei-Ngan, Computer Science

Department, SoC-NUS.
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Chapter 1

Introduction

Reliable software, especially safety critical systems found in aeronautics, avionics

and banking, should meet safety requirements that conform to regulation

standards [53]. To uphold these standards, the software should be verified by

automatic software verification systems. Software verification is a long-standing

and important problem. Recently, software verification has received much

attention with a number of commercially viable systems, such as Infer [22] at

Facebook, Astree [15] at Airbus, Codesonar [75] at GammaTech, Dafny [96] and

Slayer [13] at Microsoft and Parfait [34] at Oracle.

Software verification is the art of using formal mathematics to prove or disprove

the correctness of a given program with respect to certain formal specifications.

Software verification can be classified into two major flavors: static analysis and

deductive verification. Static analysis automatically computes properties about

the behavior of a program without (or with little) users’ guidance. An important

foundation of static analysis is the abstract interpretation framework proposed by

Cousot and Cousot [39], which is a framework for sound and terminating analyses

based on partially ordered set and fixpoint computation. Static analysis can be

fully automatic and scalable. However, it is typically not very expressive; as it

is designed to work on a predefined set of properties over a fixed set of abstract
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domains. In the literature, static analysis has been studied to compute reachability

property [34], points-to property [71], shape of pointers [128], termination [37], and

so on. This technique has also been used to prove the absence of some classes of

errors, such as division-by-zero [59], out of bound [40], and memory errors (e.g.

null dereference and leaks) [13, 22]. The techniques have been well studied over

several abstract domains such as linear equalities [84], linear congruences [63],

octagons [109], octahedra [35], polyhedron [41], and string manipulations [56].

Deductive verification is the art of generating mathematical proof obligations

from program and its annotated specification, based on a set of deduction rules.

The truth of those obligations guarantees the conformance of the program to its

specification. The obligations are discharged by either automatic theorem

provers (e.g. Omega [125] and Mona [85]), or satisfiability modulo theories

(SMT) solvers (e.g. Z3 [45]). Design by Contract [108] is a good representative

of deductive verification. It provides a good design for deductive verification

systems and requires software designers to specify requirement formally and have

method’s correctness checked by an automatic proof system. Deductive

verification approach is quite expressive since the properties that need to be

analyzed are not hard-wired. Instead, they are flexible and are meant to be

guided by user-provided specifications.

The main disadvantage of the deductive approach is that it typically requires

users to understand the targeted software in detail and to manually provide

specifications for each software component or method. However, writing

specifications is typically avoided by developers [117]. This is mostly due to the

high cost and time consuming nature of writing and maintaining up-to-date

specifications. For new and especially legacy systems, it may be too much work

to write functional specifications for every method. Even when a system has

been developed with a set of written specifications, software maintenance efforts
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may require each affected specification to be refined to reflect its improved

functionality. Automating or semi-automating the specification writing and

maintaining processes would be much desired.

As a solution for automating deductive verification, specification inference is a

technique that uses static analysis to synthesize specifications in order to guarantee

the absence of some kinds of errors [27, 40]. In the context of heap manipulating

programs, specification inference relies on capabilities of shape analysis. Given

a program, shape analysis infers shapes of pointers at program locations that

are required for memory safety. For recursive methods, existing shape analyses

typically require shape annotations on inputs and outputs. The past decade has

seen rapid development of shape analyses in automatic verification systems. Based

on abstraction domains, the analysis on shape can be divided into three major

groups: (1) three-valued Logic (TVLA) [81, 133], (2) graph types [86, 110, 85],

and (3) Separation Logic [9, 20, 57, 73, 130]. TVLA, pioneered by Sagiv, Reps and

Wihhelm, is one of the earliest shape analysis framework which used very generic

and powerful abstractions based on three-valued logic. Graph types together with

pointer assertion logic, invented by Moeller and Schwartzbach, provides a highly

expressive mechanism to specify and verify invariants of complex data structures.

Separation logic, proposed by O’Hearn and Reynolds [115, 116], has been recently

established as an excellent abstraction to reason on heap-manipulating programs.

Shape analysis on separation logic can efficiently handle a wide range of data

structures, from simply-linked data structures (variants of lists and trees [9, 20])

to complex nested data structures [68, 73], and can be extended to handle pure

properties [14, 28, 70, 102, 105, 107, 135].

Although specification language and automatic verification have been well

studied, it is still far from the expectation of the software community. We shall

discuss several challenges that are faced by software verification systems next.
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1.1 Challenges of Automated Verification

Systems

As shown in the previous section, three main components of a deductive

verification system are specification, verification, and inference. In this section,

we highlight limitations of existing systems over these components towards

completeness and automation. We also outline two key challenges from dealing

with these limitations.

(1) Specifying and Reasoning about Errors.

Although there are numerous specification and verification systems, existing

systems focus on expressing good (safe) scenarios of functional properties and

missing out on potential bad scenarios (errors) since they use the idealistic

assumption that analyzed programs should be safe. However, real world

programs often contain errors. For example, methods of Linux kernel

Application Programming Interface (API) contain both safety and errors. They

typically return outputs with explicit status through numbers, non-negative for

safety and negative for errors. For reasoning on errors, there are static analyses,

like [67, 87], that detect bugs on handling those returns of the Linux kernel-level

and OpenSSL code. In the deductive verification approach, there are verification

systems, like those based on JML [19] and Spec# [8], that attempt to indirectly

specify and verify bad scenarios via exception mechanism. However those

exception-based approaches are neither general nor effective. They currently

handled bad scenarios at the program level that are supported by program

verifiers, but they have not been integrated into entailment procedures. Hence,

they can neither handle sophisticated errors that arise from entailment checks,

nor support error explanation, nor capture dead code, nor handle

non-terminated loops. Designing and implementing a specification and modular
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verification for both good and bad scenarios are important and represent the

first step towards handling real world programs.

(2) Inferring Specification of Heap-Manipulating Programs.

Specification inference of heap-based programs relies on shape analysis.

Current shape analysis mechanisms typically infer specifications for memory

safety with a predetermined set of shape predicates [13, 20, 28, 105]. However,

discovering arbitrary shape abstractions can be rather challenging, as linked data

structures span a wide variety of forms, from singly-linked lists, doubly-linked

lists, circular lists, to tree-like data structures. Furthermore, such abstractions

would also need to cater to various specializations, such as strictly non-empty

structures or segmented structures (e.g. list/tree segments) with outward

pointing references. It is interesting and challenging to develop a mechanism

from first principle that would be capable of inferring complicated shape

specifications, from scratch, directly from heap-manipulating programs. We shall

show how this can be done in this thesis.

1.2 My Thesis

This thesis proposes solutions to overcome the above challenges for automated

deductive verification systems. The thesis has been developed in the context

of a specification and verification system for heap-manipulating programs. Our

technical starting point is a semi-automatic verification system presented in [33,

114] where users provide formal specification for each method with the correctness

of each method certified by an automatic verifier. On dealing with error scenarios,

we propose a novel mechanism towards complete specification and verification. On

automated inference, we first describe a principled shape analysis as a first step

towards the discovery of shape specifications that can be used by our automated

verification system. After that, we present a transformational approach to the
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inferred shape predicates to obtain concise and usable specifications.

Towards Complete Specification.

We propose a stronger specification language for expressing functional

requirements. Regarding complete specifications, while authors in [123] aim to

express all properties of class invariants in good postconditions, our approach is a

complement to theirs; as we aim to express both good and potential bad scenarios

in preconditions. Furthermore, we shall provide a verification system to support

this new specification mechanism.

In order to specify and verify programs with both good and bad scenarios, we

will introduce new notations at the logic level that are used to distinguish good and

bad program states. We will also provide a calculus to determine program states

during verification. We will show how to integrate the calculus into a separation

logic entailment procedure and extend it to verify heap-manipulating programs

and to support error explanation.

Towards Specification Inference.

We propose a solution for specification inference that can support a wide

range of programs that manipulate complex data structures. Our core proposal

is an entailment procedure with second-order bi-abduction mechanism used

within a modular verification framework that can support shape abstraction

discovery. With second-order feature, we introduce an entailment procedure that

can support unknown predicates using second-order variables as place-holders.

Through bi-abduction, we incorporate capability of abduction and frame

inference into the entailment procedure. The abduction capability helps our

procedure to infer missing information of antecedent in order to either prove or

disprove entailment. The frame inference capability helps the entailment

procedure discover part of antecedent which is not required in consequent of the

current entailment. Furthermore, such frame inference capability is critical to
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support modular verification systems that are expected to work on a per method

basis.

More concretely, we propose an entailment procedure that can generate

missing information as a set of relational assumptions over the unknown

predicates to either prove (i.e. in inferring specification of good scenarios) or

disprove (i.e. in inferring specification of bad scenarios) proof obligations. We

also propose a modular verifier that accepts the unknown predicates in program

states, generates proof obligations for memory safety, invokes the above

entailment procedure to discharge the obligations, and accumulates the set of

relational assumptions over the unknown predicates. For soundness, the truth of

each set of relational assumptions inferred can guarantee the conformance of

input program to the correctness of its memory safety proof.

Our proposed entailment mechanism works with pointer-based programs to

support inference of shape specifications that ensures memory safety. This yields

a novel approach to shape analysis that works on arbitrary data structures and

provides direct support for recursive procedures. We present a bi-abductive

entailment procedure in separation logic that supports unknown shape

predicates. A key part of our proposal is the capability for generating a set of

relational assumptions over the unknown predicates. These assumptions are then

refined into predicate definitions, by a follow-up predicate derivation and

normalization steps.

Using abduction for inference is not new, as it was deployed in [48, 61] to

generate missing preconditions and in [49] to infer inductive invariants. However,

those proposals were limited to numerical domains. In the shape domain,

bi-abduction was described in [20] for generating missing assumptions in a

modular shape analysis algorithm. However, this algorithm uses a fixed set of

shape predicates based on variants of list data structure. In contrast, we propose
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second-order variables to support arbitrary shape predicates. Thus, our proposal

propels automated verification systems to a higher level of both automation and

expressiveness. The closest to our proposal is a shape analysis presented in [16].

This analysis proposes a novel way to synthesize inductive predicates by ensuring

both memory safety and termination. Unlike ours, this proposal is based on

cyclic proving mechanism and is currently limited to a simple imperative

language with only loops but not methods.

Transformational Approach to Shape Predicates.

Shape analysis, which naively follows the structure of programs, may produce

predicates that are overtly complex. As an intermediate output of shape

analysis, the inferred set of relational assumptions, is not immediately usable by

automated verification systems. We proceed to derive definition for each

unknown predicate and further normalize these definitions into more concise and

re-usable form. Our design considers soundness and usability. For soundness, the

derivation should distinguish shape predicates in pre-conditions from those in

post-conditions; since the former may be safely strengthened, while the latter

may only be safely weakened. For usability, the normalization should transform

inferred shape predicates into a fragment whose expressiveness is as close as

possible to the capability of existing verification systems.

Our fragment of shape predicates was adapted by those presented in

[33, 76, 114]. This fragment requires all predicate parameters to be involved in

the predicate definition, and each predicate to have a single root pointer. As

such, we shall syntactically detect the violation of the above form and provide a

semantic-based mechanism for its normalization.

1.3 Contributions

This thesis makes three technical contributions.
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Complete Specification with an Error Calculus.

We present basic mechanisms that could be used to support the verification of

complete specifications. These can be used to uniformly specify and verify both

safe and unsafe execution scenarios. Our key research contributions are:

• We propose a novel calculus, based on a four-point lattice domain, for

verifying safety and/or the absence of must/may errors.

• We extend this calculus to support concise error explanation that gives

priority to must errors.

• We design a specification mechanism for error-based scenarios

• We provide an implementation of the error calculus in separation logic with

support for user-defined predicates and lemmas, so as to support verification

for functional correctness with error validation.

Shape Analysis via Second-Order Bi-Abduction.

We propose a shape analysis via the second-order bi-abductive mechanism. We

make the following contributions.

• We design a novel entailment procedure in separation logic to support

inference via bi-abduction which uses a combination of abduction and

frame inference. This procedure performs abduction to infer missing

information in antecedent that is required for the validity of entailment. It

also infers residual heaps that are not needed for the entailment to hold.

More concretely, this entailment supports unknown shape predicates

(second-order variables) and builds relational assumptions (over the shape

predicates) that are required for the validity of entailment. We also present

two novel features, guarded context and a scheme for instantiation, that

are used to guide this bi-abduction mechanism.
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• We develop a sound and modular shape analysis that is applied on a per

method basis. Most existing shape analyses require global analyses or re-

verification, as they are unable to directly infer memory-safe (or sound)

heap preconditions. For example, bi-abduction in [20] requires its method’s

inferred pre-condition to be re-verified due to the use of over-approximation

on heap pre-condition.

• We provide an implementation of the second-order bi-abduction mechanism

within a modular shape analysis.

Transformational Approach to Shape Predicate.

We present an approach to deriving and normalizing shape predicates from a

set of relational assumptions. Our technical contribution includes:

• We propose a set of sound derivation rules for solving each set of relational

assumptions. This helps to derive suitable definition for each unknown shape

predicate.

• We describe a set of normalization operations to transform predicate

definitions into simplified and re-usable form. Those operations include (1)

detecting and eliminating dangling predicate, (2) detecting and eliminating

useless parameters, (3) predicate splitting, and (4) predicate reuse. The

first operation detects unaccessed pointers through the identification of

dangling predicates. The useless parameter elimination operation removes

unused parameters of predicates. The splitting operation decomposes

complex predicates into multiple simplier predicates. The reuse operation

semantically matches inferred shape predicates with existing predicates.

These operations will help reduce the complexity of predicates and can

enhance the usability for automated verification system.

• We give a preliminary discussion on inferring complete shape specification.
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• We provide an implementation and experiments on shape inference, that

has been systematically integrated into an existing automated verification

system.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows.

• Chapter 2 gives background information that forms the basis of our research.

It introduces literature review, specification language, entailment procedure,

and a motivating example.

• Chapter 3 presents a novel specification mechanism that forms the basis for

a complete verification system. The main contribution of this chapter is

a lattice domain with four status values that are combined with program

states.

• Chapter 4 proposes a mechanism for shape analysis. The main contribution

of this chapter is a novel second-order bi-abductive entailment procedure of

separation logic. This entailment takes antecedent and consequent as inputs

and produces residues states and a set of relational assumptions.

• Derivation and normalization approaches to shape predicates are introduced

in Chapter 5. The main contribution of this chapter are sets of rules and an

algorithm to derive sound but concise and usable shape predicates.

• Chapter 6 concludes the thesis with a summary of our research achievements

and also discusses future works.

11



12



Chapter 2

Preliminaries

First, we review several known automatic verification systems. After that, we

describe a specification language and entailment procedure used in this thesis.

Finally, we illustrate our contributions through a motivating example.

2.1 Existing Verification System

2.1.1 Specification Language

Formal specification languages at the method level have been well studied. There

are several well known specification systems, such as Java Modeling Language

(JML) [19], Spec# [8], Larch/C++ [93], Alloy [79], and Vienna Development

Method (VDM) [4, 82]. Those specification systems provide notations for

formally specifying behaviours and interfaces of methods. Their syntax can

express safety scenarios with normal and exception-oriented

pre-condition/post-condition, object-oriented features (modifiers, visibility,

inheritance), frame and case specifications. In the following, we discuss in detail

JML [19] and Spec# [8] specification systems.

JML.
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JML [19] is a specification language used to specify interfaces and behaviors

of Java programs. JML is a comprehensive modelling language. It provides

notations for standard pre- and post-conditions, frame conditions (with

Assignable clause), both normal execution (with normal behavior clause) and

abnormal execution (with exceptional behavior clause and ensure false), and

multiple specification cases. However, exceptions are not technically the same as

errors since the former may be handled but not the latter. Besides, JML provides

pure method that helps to leverage on its underlying programming language.

While this mechanism is powerful, it is not totally side-effect free since new heap

nodes may be allocated by such pure functions. We note that such pure methods

are not classified as pure formula in the domain of separation logic.

Spec#.

Spec# [8] is a specification language that is built on top of the Boogie

automatic program verifier. Spec# specification language provides notations to

specify standard pre- and post-conditions, exceptions and constraints on data

fields of objects for C# programs. In particular, Spec# presents a hierarchical

design on exceptional specifications towards modular reasoning. For example,

exceptional specifications are categorized according to preconditions proving

(client failures) and postconditions proving (provider failures). Like JML, it also

provides programmers with a mechanism to declare classes of exceptions as

either checked or unchecked. Spec# supports the otherwise keyword to capture

the rest of input domain [6]. However, this notation was mainly used to denote

unchecked exceptions (rather than complete preconditions).

2.1.2 Automatic Verification System

Recently, research in verification has achieved several important milestones.

Verification systems can automatically verify large and real-world source code,
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such as Linux kernel (Forester [57, 73]), and Windows drivers (Slayer [9, 13]).

They can also support various programming languages (C [33, 36], Java [29] and

C# [40]), handle a large range of input programs (such as complex data

structures [13, 33], and concurrency - VCC [36]), and targeted at a large range of

defects (type error [101], null dereference [13, 33, 34, 74], functional correctness

violation [13, 33, 96], and deadlocks [88] without running the program).

In the following, we discuss three verification systems that are capable of

reasoning about heap-based programs.

Dafny.

Dafny [99] is an automatic program verification that can be used to verify

functional correctness of heap-manipulating programs. It includes a specification

language which is based on JML [19] and Spec# [8], and a program verifier which

supports pointer-based programs. The specification language consists of standard

pre- and post-conditions, (explicit) framing constructs and terminating metrics.

Especially, Dafny specification language supports ”ghost” mathematical functions

(like pure methods in JML and Spec#). These functions use the same syntax

as its programming language and thus can be deployed for both verification and

program code. Furthermore, the functions can be used to construct concise and

modular pre-, post-conditions and assertions.

Dafny follows the approach of modular verification and relies on Boogie system

[7] to verify programs. It does this even to establish proof of lemma which is

encoded as a kind of method verification. Dafny transforms input program into

the Boogie intermediate verification language. The soundness of Dafny verifier

is reduced to the soundness of the Boogie verification system. Dafty system can

be used to specify and verify some challenging algorithms, including Schorr-Waite

algorithm [99].

Dafny system is still actively being developed and is a good tool for ensuring
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reliable software. Recently, the system has been extended with two important

and challenging features: induction [97] and co-induction [98]. These new features

enhance the expressiveness of Dafny verification system.

Smallfoot.

Smallfoot [12] is one of the first verification system based on separation logic.

It was incrementally developed based on separation logic [115] with strong

semantic foundations [10, 11, 20, 25] and an evolution of practical tools

[9, 12, 13, 23, 24, 50, 138]. Smallfoot verification system consists of three key

components: specification language, proof obligation generation and decision

procedure. Specification language of Smallfoot is based on a practical and

decidable fragment of separation logic with spatial conjunction predicate (∗),

points-to predicate ( 7→), and list segment predicate [10]. The decision procedure

of Smallfoot has been proven to be both sound and complete, and can infer

residual heap of entailment check [12]. Smallfoot analyses program based on

symbolic execution paradigm and generates proof obligations for modular

reasoning that is potentially scalable [11].

For better automation, Smallfoot was latter extended with some techniques

on shape analysis over the above fragment [50]. This shape analysis infers

heap-based invariants on program pointers that guarantee the absence of

memory errors. The same shape analysis was further extended to the abstract

domain with pointer arithmetic [23]. Later, its abstraction operation was

improved to provide better scalability [9, 138]. Finally, to fully support modular

shape analysis, it was integrated with abduction to obtain a combined

mechanism, called bi-abduction [20]. The scalability of this technique was

confirmed by the experimental results in [57]. Recently, there have been several

important improvements to this fragment. For example, decision procedure via

graph technique [38, 69], decision procedure via superposition [118, 119], and
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GRASS reduction [120].

Smallfoot is not only an excellent verification platform for reasoning with

complex heap-based programs, as it has pioneered a new research direction on

the use of separation logic.

HIP/SLEEK.

HIP/SLEEK [33, 114] is a deductive verification system in separation logic.

It consists of a specification language, the entailment procedure SLEEK and the

modular verifier HIP.

HIP/SLEEK introduced an expressive specification language. This is one of

the first automated verification system that directly reasons with user-defined

predicates in separation logic. This system also supported separation logic

reasoning with non-heap pure domains; HIP/SLEEK proposed a fragment of

separation logic that combined standard heap features with pure constraints on

Presburger arithmetic, polynomial real arithmetic, and monadic bag/set

domains. This combined domain was beyond the (dis)equality domains used by

prior work [12, 118]. The specification language was enhanced (i) to be more

complete with multiple pre- and post-conditions [30], and (ii) to be even more

concise, precise and efficient with case specification [60] and immutability

annotation [44].

SLEEK is one of the first entailment proving procedures for separation logic

with frame inference capability. For entailment checking of inductive shape

predicates, SLEEK introduced a procedure based on unfolding and folding

operations. 1 The entailment check proves that (i) all matching models of the

antecedent would be subsumed by models of the consequent; and (ii) irrelevant

part of the antecedent will be inferred as residual frame. Firstly, the matching of

heap part is performed until heap in the consequent is empty. After that, the

1More detail about SLEEK entailment procedure will presented in section 2.3.
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entailment in separation logic is reduced (or approximated) to a sound

implication in pure logic. Finally, the implication of the pure part is checked

semantically through external SMT solvers and theorem provers. For efficiency, a

technique for pruning unfeasible disjuncts to enhance the unfolding on inductive

predicates was proposed [32].

SLEEK was also one of the first system to make extensible use of lemma

mechanism [113], a semi-automatic mechanism for induction proving in

separation logic. This mechanism allows users to declare lemmas manually and

SLEEK will apply those lemmas automatically during proof search. Lemmas

may be used to relate abstractions, i.e. relate different predicates so as to

provide more comprehensive reasoning. These lemmas are also considered as

induction assumptions and are automatically deployed to support inductive

proofs. The automation of induction proving, without explicitly supplied

lemmas, was later proposed through the cyclic proving mechanism [17].

HIP is a modular verifier. It transforms imperative program based on

symbolic execution and automatically generates sound proof obligations for

checking correctness of the input program against user-provided specifications.

In turn, those obligations are discharged by the SLEEK entailment procedure.

Beside a core imperative language [114], HIP was also extended to object

oriented language [31].

Recently, the fragment of separation logic with user-defined predicates has

been the focus of active research. There are many new emerging studies, both

theorically and practically, on the logic fragment, including issue of completeness

of the fragment [134], techniques based on cyclic proof [17, 18], DRYAD [126],

GRASS approach [120, 121, 122], and techniques based on automata [76, 77].

This thesis aims to enhance the HIP/SLEEK system to an automated

verification system for complete specification. First, HIP/SLEEK system will be
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Disj. formula Φ ::= ∆ | Φ1 ∨ Φ2

Formula ∆ ::= ∃v̄·(κ∧π)
Spatial formula κ ::= emp | x 7→c(fi : vi) | P(v̄) | κ1∗κ2

Pure formula π ::= b | α | i | ϕ | ¬α | π1∧π2

Boolean formula b ::= true | false | v | b1=b2
Ptr (Dis)Equality α ::= v1=v2 | v=NULL | v1 6=v2 | v 6=NULL
Linear arithmetic i ::= a1=a2 | a1≤a2

a ::= kint | v | kint×a | a1+a2 | −a
| max(a1,a2) | min(a1,a2)

Bag constraint ϕ ::= v∈B | B1=B2 | B1⊏B2
B ::= B1⊔B2 | B1⊓B2 | B1−B2 | {} | {v}

P ∈ Pred c ∈ Node fi ∈ Fields v, vi, x, y ∈ Var v̄ ≡ v1. . .vn

Figure 2-1: Fragment of Separation Logic

supported with a complete specification mechanism to capture both good and

bad scenarios (see [91] and Chapter 3). After that the system will be empowered

with second-order bi-abduction for heap-based specification inference (see [90],

Chapter 4 and Chapter 5).

2.2 Specification Language

Syntax. Our specification language is based on separation logic [78, 127]. We

restrict our interest to a practical fragment of separation logic with spatial

conjunction operator (∗), points-to predicate ( 7→), and user-defined predicate

[114]. Currently, our system does not support the separating implication

operator (−∗) since it is based on a forward reasoning system which does not

usually require this operator. Note that −∗ has been mainly used to express the

weakest preconditions for backward reasoning systems [78, 115]. We have thus

omitted −∗ for simplicity.

The fragment of separation logic used in this thesis is presented in Figure

2-1. A formula (symbolic heap) ∆ consists of spatial formula and pure formula.
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Separation logic introduces two core features: spatial conjunction (∗) predicate to

express two disjoint heap regions; points-to ( 7→) predicate to express a heap with

one memory cell. The points-to predicate x 7→c(fi : vi) asserts that x points to

an object of data type c with fields fi and their downstream pointers vi. Each C

data structure has a corresponding points-to predicate that expresses an allocated

object. Furthermore, the logic also supports user-defined predicates P(v̄) which

denotes a set of (unbounded) objects. Those predicates help to concisely express

complex heap-based data structures. Pure formula is in the form of first-order

logic of a combination of (dis)equality α (on pointers), linear arithmetic i and bag

ϕ domains. Note that v1 6= v2 and v 6= NULL are just short forms for ¬(v1 = v2)

and ¬(v = NULL), respectively. To express different scenarios for shape predicates,

the fragment supports disjunction Φ over formulas.

Semantics Concrete heap models assume a fixed finite collection Node, a fixed

finite collection Fields , a disjoint set Loc of locations (heap addresses), a set of

non-address values Val , with NULL ∈ Val and Val ∩ Loc = ∅. With this, we define:

Heaps
def
= Loc⇀fin(Node → Fields → Val ∪ Loc)}

Stacks
def
= Var → Val ∪ Loc

where dom(f) returns the domain of function f . e is the empty heap that is

undefined everywhere.

In our system, pure domains include integer domain (Ints), bag of Val (2Val),

and boolean. The evaluation for pure expressions are determined by valuations as

follows:

s(a) ∈ Ints s(B) ∈ 2Val s(b) ∈ {true , false }

The semantics is given by a forcing relation: s, h |= Φ that forces the stack
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s and heap h to satisfy the constraint Φ where h ∈ Heaps, s ∈ Stacks, and Φ is a

separation logic formula.

The semantics is presented as in Figure 2-2.

s |= π1∧π2 iff s |= π1 and s |= π2

s |= v1⊘v2 iff |= s(v1) ⊘ s(v2), where ⊘ ∈ {=, 6=}
s |= a1⊘a2 iff |= s(a1) ⊘ s(a2), where ⊘ ∈ {=,≤}
s |= B1⊘B2 iff |= s(B1) ⊘ s(B2), where ⊘ ∈ {∈,=,⊏,⊔,⊓,−}
s, h |= emp iff h = e
s, h |= v 7→c(fi : vi) iff l=s(v), dom(h)={l → r} and r(c, fi)=s(vi)
s, h |= p(v̄) iff (s(v̄), h) ∈ 〚p(v̄)〛
s, h |= κ1 ∗ κ2 iff ∃h1, h2 · h1#h2 and h=h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= true iff always
s, h |= false iff never
s, h |= ∃v1, ..., vn·(κ∧π) iff ∃α1...αn · s(v1 7→α1∗...∗vn 7→αn), h |= κ

and s(v1 7→α1∗...∗vn 7→αn) |= π
s, h |= ¬Φ iff s, h 2 Φ
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

Figure 2-2: Semantics of Specification Language

As pure formula is independent from heap, semantics of pure formula only

depends on stack valuations. The model relation for pure formula s |= π denotes

that the formula π evaluates to true in s.

Note that h1#h2 denotes that heaps h1 and h2 are disjoint, i.e. dom(h1) ∩

dom(h2) = ∅; h1 · h2 denotes the union of two disjoint heaps. emp asserts that h

is empty. With points-to predicate v 7→c(fi : vi), h is a singleton heap function.

Set of models of a shape predicate p(v̄) is interpreted as its least fixpoint set [18].

2.2.1 User-Defined Predicate

Definition 1 (Shape Predicate). A shape predicate P is defined as

P(v̄) ≡
n
∨

i=1

(∃w̄i · ∆i) inv: π;
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where

• P is predicate name.

• v̄ is a set of formal parameters including pointers to heap and pure

parameters for expressing structural properties (size, bag of values).

•

∨n
i=1 ∃w̄i · ∆i = (∃w̄1 · ∆1) ∨ ... ∨ (∃w̄n · ∆n) is a definition. ∃w̄i · ∆i (i ∈

1...n) is a branch of the disjunction.

• π is predicate invariant. π expresses superset of all possible models of P via

a pure constraints on stack.

Predicate invariants are over-approximation and are used in checking

entailment among formulas. Users can choose not to supply predicate invariants

as our systems can infer those automatically too.

Branches containing (mutually) recursive user-defined predicates are called

recursive branches. Otherwise, they are base branches.

Definition 2 (Root Parameter). Given shape predicate P with the following

definition:

P(v̄) ≡
n
∨

i=1

(∃w̄i · ri1 7→c(v̄i1) ∗...∗ rik 7→c(v̄ik) ∗ P1(w̄i1) ∗...∗ Pj(w̄ij) ∧ πi) inv: π;

A parameter r ∈ v̄ is a root if for all i from 1 to n, one of following four conditions

holds:

• r points-to an allocated heap: r ∈ {ri1, ..., rik}.

• r equals to NULL: πi contains r=NULL formula.

• r equals to another parameter: πi contains r=s formula, where s ∈ v̄.

• r is a root parameter of another shape predicate: ∃m ∈ 1...k · r ∈ w̄im and r

is a root pointer of the predicate Pm.
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For example, we define the lsegn predicate to describe a list segment with

length property as follows:

data c1 { c1 next; }// data structure declaration

pred lsegn(root, s, n) ≡ emp ∧ root=s ∧ n=0

∨ ∃ q,n1 · root7→c1(q)∗lsegn(q,s,n1)∧n1=n−1 ∧ root6=s

inv: n≥0;

The first parameter of lsegn is a root parameter.

Our specification language is expressive enough to describe complex data

structures, e.g. binary search trees, balance trees [114], trees with parent pointer

and tree with linked leaves [76, 90]. For example, we define balance trees as

follows:

data c2 { c2 left; c2 right; }// data structure declaration

pred avln(root,n,h) ≡ emp ∧ root=NULL ∧ n=0 ∧ h=0

∨ ∃ l,r,n1,n2,h1,h2 · root7→c2(l,r)∗avln(l,n1,h1)∗avln(r,n2,h2)∧

n=n1+n2+1∧h=1+max(h1,h2)∧−1≤h1−h2≤1

inv: n≥0 ∧ h≥0;

Note: It is required that mutually recursive predicates have at least one base

branch each. Reasoning on mutually recursive predicates without any base

branch required co-inductive proofs [98], which is beyond scope of this thesis.

For example, our current system cannot handle the following infinite predicate:

I(x) ≡ ∃ q · x 7→node( , q)∗I(q)

Unfolding User-Defined Predicate. The function unfold(∆, P, t̄) unfolds once

the first user-defined predicate P with actual parameter t̄ of the formula ∆. The
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step is formalized as follows:

P(v̄)≡∨n
i=1(∃w̄i · κi∧πi) fresh w̄′

i ρi=[w̄′
i/w̄i] κ′

i = κi[ρi] π′
i = πi[ρi]

ρ0=[t̄/v̄] κ′′
i = κ′

i[ρ0] π′′
i = π′

i[ρ0]

unfold(∃w̄0 · P(t̄)∗κ0∧π0, P, t̄) ❀
∨n

i=1(∃w̄0 ∪ w̄′
i · κ0 ∗ κ′′

i∧π0∧π′′
i )

In the first line, the function looks up the definition of P, refreshes the existential

quantifiers. In the second line, formal parameters are substituted by the

corresponding actual arguments. Finally, substituted definition is combined (and

normalized) with residual formula as shown in the RHS of ❀.

Implicit Heap Constraints. Our language does not allow dereference pointers

on pure constraints, e.g. x.p 6= NULL, lsegn(x, NULL, n)∧x.p 6= NULL. This kind of

pure constraints implicitly captures constraints on heaps. We require the explicit

form, e.g. x 7→c1(p) ∧ p 6= NULL, x 7→c1(p)∗lsegn(p, NULL, n1)∧p 6= NULL∧n1=n−1,

which can mostly be obtained by unfolding relevant predicates.

2.2.2 User-Defined Lemma.

Nguyen et. al. [113] proposed a mechanism that allows users to interact with the

entailment procedure. Users can provide lemmas to express predicates

relationships and a procedure automatically applies those lemmas as alternative

predicate unfolding, where possible. Moreover, this is done as a proof search.

Lemma can be defined as either weakening or strengthening as follows:

Lemma ::= Weakening Lemma | Strengthening Lemma

Weakening Lemma ::= κ1∧π1 → ∃w∗·κ2∧π2

Strengthening Lemma ::= κ1∧π1 ← ∃w∗·κ2∧π2

For weakening lemma, it requires that κ1∧π1 must contain a user-defined

predicate with an explicit root pointer. Similarly for strengthening lemma, it
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requires that κ2∧π2 must contain a user-defined predicate with an explicit root

pointer.

For instance, user can define the lemma to express a relationship between list

segment lseg and acyclic list lls, as follows:

lemma lseg(root,p,n)∧p=NULL↔ lls(root,n)

where the definition of the acyclic list lls

pred lls(root,n) ≡ root=NULL∧n=0

∨ ∃ q, n1 · root7→c1(q)∗lls(q,n1)∧n1=n−1

(↔ is a shorthand of both weakening and strengthening lemmas.)

Nguyen et. al. [113] also proposed an approach to proving user-defined lemmas.

That can be encoded as a lemma proving step, named lemma check. For example,

to denote the proving of the above lemma, we capture it as follows:

lemma check lseg(root,p,n)∧p=NULL↔ lls(root,n)

2.3 Entailment Procedure of Separation Logic.

2.3.1 Overview

There are large number of proposals on entailment procedures for separation

logic. We shall now highlight some state-of-the-art procedures in the literature.

Smallfoot [11] is the first practical entailment procedure for separation logic.

This solver was customised to work with variants of linked list, supports frame

inference, but not induction proving. Some optimization on segment feature for

the fragment of Smallfoot [11] was presented in [38] (using graph technique),
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[118] (using superposition calculus), and [111] (using SMT reduction). However,

those proposals did not show how to infer frame (as in [11]) and thus cannot

work with modular verification mechanism for heap-manipulating programs.

More specially, GRASS-based decision procedures support all shape predicates

that can be reduced to some special predicates in GRASS logic, such as SLLB

for list segment [120], and GRIT for tree data structures [121]. This reduction

approach is promising; as it can check both valid and invalid entailment, support

frame inference, abduction and combination of shape and pure properties.

However, this approach has not supported induction proving and currently works

with just a predefined set of shape predicates.

To handle the combination of heap and pure domains, DRYAD [103, 126] and

GRASS approaches [122] make use of the combination capability of SMT-solvers

(i.e. Z3 [45]). Also SLEEK [114] employs proof slicing technique [92].

For more expressive predicates, the decision procedures presented in [77, 114,

126] make a good effort to enhance the power of separation logic solvers. Solvers

presented in [114, 126] support a combination with the pure domains, but they are

not complete. Recently, Iosif et. al. [76] presented a neat proposal for a decidable

fragment of separation logic with user-defined predicates. They also provided an

implementation together with a sound and complete decision procedure in [77]. It

is interesting to see how further this procedure can be extended to handle pure

constraints and inductive proving in future.

The cyclic prover [17] showed how to perform automatic induction for the

entailment procedure of separation logic. This prover can support fairly expressive

shape predicates in separation logic. Unfortunately, this technique has supported

neither pure constraints, nor show how frame inference can be done. Hence, cyclic

technique is not applicable for general-purpose program verification.

In the following, we discuss in detail SLEEK entailment procedure that is used
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in the verification system of this thesis.

2.3.2 SLEEK

[ENT−PTO−MATCH]
π1 =⇒ r=r′

ρ=[v̄/w̄] πeq = freeEQ(ρ, V )

κ1∧π1∧πeq ⊢κ∗r 7→c(v̄)
V−w̄ ∆2[v̄/w̄]❀ΦR

r 7→c(v̄)∗κ1∧π1 ⊢κV r′ 7→c(w̄)∗∆2 ❀ΦR

[ENT−PRED−MATCH]
π1 =⇒ r=r′

ρ=[v̄/w̄] πeq = freeEQ(ρ, V )

κ1∧π1∧πeq ⊢κ∗P({r,v̄})V−w̄ ∆2[v̄/w̄]❀ΦR

P({r, v̄})∗κ1∧π1 ⊢κV P({r′,w̄})∗∆2 ❀ΦR

[ENT−UNFOLD]
∆u1
∨ ... ∨∆un

= unfold(P(v̄)∗∆1, P, v̄)
∆ui
∗∆1 ⊢κV ∆2 ❀∆Ri

i=1...n

P(v̄)∗∆1 ⊢κV ∆2 ❀
∧{∆Ri

| i∈1...n}
[ENT−FOLD]

(∆r, κr, πr)∈foldκ(P(p1v̄1)∗κ1∧π1, p1 7→c(v̄2))

(πa, πc)=split
{v∗

2
}

V (πr) ∆r∧πa⊢κr

V (κ2∧π2∧πc) ∗Φ
P(p1, v̄1)∗κ1∧π1 ⊢κV p1 7→c(v̄2)∗κ2∧π2 ❀Φ

[ENT−EMP]
XPURE(κ1∗κ)∧π1 =⇒ ∃V·π2τ

κ1∧π1 ⊢κV π2 ❀κ1∧π1

[ENT−LHS−EX]
fresh w

∆1[w/v] ⊢κV ∆2 ❀ΦR

∃v ·∆1 ⊢κV ∆2❀ΦR

[ENT−RHS−EX]
∆1 ⊢κV ∪{w} (∆2[w/v])❀∆i

ΦR=∃ w ·∆i

∆1 ⊢κV (∃ v ·∆2)❀ΦR

Figure 2-3: Basic Inference Rules for Entailment Checking

SLEEK is an entailment procedure of separation logic that supports user-

defined inductive shape predicates and frame inference.

As separation logic is a sub-structural logic, we have to account for heap

memory as a resource. Thus, entailment in separation logic is typically supported

with a frame inference capability [33, 116], similar to the following format:

Φ1 ⊢ Φ2 ❀ Φ3
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whereby antecedent Φ1 entails Φ2 with a residue frame captured by Φ3.

Logically, the above entailment is equivalent to Φ1 =⇒ Φ2∗Φ3 where Φ3 may

contain existential variables that have been instantiated and pure formula that

were already established in Φ1.

For each entailment check, our procedure proves that (i) all matching models

of the antecedent would be subsumed by models of the consequent; (ii) irrelevant

part of the antecedent will be inferred as residual frame. Firstly, the matching of

heap part is performed until heap in the consequent is empty ([ENT−∗−MATCH],

[ENT−UNFOLD], [ENT−FOLD] inference rules). After that, the implication of the

pure part is checked semantically through external SMT solvers and theorem

provers ([ENT−XPURE] inference rule). The inference rules are presented in

Figure 2-3. Typically, an entailment is performed as follows.

• Matching. This matches up identified heaps of LHS and RHS. Starting

from identified root pointers, the procedure keeps matching all their

reachable heaps with both points-to (with [ENT−PTO−MATCH] rule) and

user-defined predicate matching (with [ENT−PRED−MATCH] rule). The

former (latter) matches two points-to (user-defined, resp.) predicates in

antecedent and consequent if they have identified root and stores matched

points-to predicates in a footprint heap. After that, it unifies the

corresponding fields of matched roots by using auxiliary function

freeEQ(ρ, V ): freeEQ([ui/vi]
n
i=1, V ) =

∧n
i=1{ui = vi | vi /∈ V }.

• Unfolding-Folding. This derives alternative heap chains, connected

points-to or user-defined predicates. When the procedure is unable to make

any progress on matching, it will look up alternative chains for matching

through unfolding heap predicates. For termination, SLEEK restricts

user-defined predicates to within a well-founded form. For unfolding in the

antecedent ([ENT−UNFOLD] rule), the unfolding performs a case split in the
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proof. For unfolding in the consequent ([ENT−FOLD] rule), instead of

unfolding the RHS and doing proof search over case split, SLEEK performs

folding in the LHS. This helps instantiate existential parameters for better

completeness. The unfold operator is defined in section 2.2. The fold

operation is defined next.

• Over-approximate Reduction. We reduce entailment checking on

separation logic to implication checking on first-order logic. When the

consequent becomes an empty heap, the procedure performs a sound

reduction to transform the entailment to an implication on first-order logic,

i.e. πa =⇒ πc. Technically, to perform such implication checking, the

following satisfiability check is performed: sat(πa ∧ ¬(πc)). If it returns

unsat, the result of the implication is valid; otherwise, the result of the

implication is unknown.

Folding User-Defined Predicate. The formalism of the fold function on

predicate P is as follows:

P(v̄)≡∨n
i=1(∃w̄i · κi∧πi) ρ0=[t̄/v̄]

κ∧π ⊢κ′

t̄

∨n
i=1(∃w̄i · κi∧πi)[ρ0] ❀ {∆i, κi, Vi, πi}ni=1 Wi=Vi−t̄

foldκ
′

(κ∧π, P, t̄) ❀ {∆i, κi, ∃Wi · πi}ni=1

First it looks up suitable branches of the predicate P via entailment checks.

These checks require a special revision of the entailment procedure which returns

three more components: consumed heap nodes (κi), existential variables used (Vi),

and final consequent πi.

When folding a user-defined predicate P(v̄), pure constraints related to v̄ are

important. The constraints related to parameters of v̄ that are free will be

moved to LHS of the entailment as it can help support instantiation of

existential variables. Otherwise, they are kept in the RHS. This processing of
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2.2.4 lsegn(q2, NULL, n2)∧n>0∧p=q3∧n2=n−1 ∧ q3=v
⊢κ2

∅
emp ❀ (∆2, valid) EMP

2.2.3 lsegn(q2, NULL, n2) ∧ n>0 ∧ p=q3 ∧ n2=n−1 ∧ q3=v ⊢κ2

∅
emp MATCH

2.2.2 p 7→c1(q2)∗lsegn(q2, NULL, n2) ∧ n>0 ∧ p=q3 ∧ n2=n− 1
⊢κ1

∅
q3 7→c1(v) ❀ (∆3, valid) RHS−EX

2.2.1 p 7→c1(q2)∗lsegn(q2, NULL, n2) ∧ n>0 ∧ p=q ∧ n1=n− 1
⊢κ1

∅
∃q · (q 7→c1(v)) LHS−EX

2.2 ∃q1, n1 · p 7→c1(q1)∗lsegn(q1, NULL, n1) ∧ n>0 ∧ p=q ∧ n1=n− 1
⊢κ1

∅
∃q · (q 7→c1(v)) UNFOLD(Ind)

2.1.1. false ⊢κ1

∅
∃q·(q 7→c1(v)) ❀ (∆1, valid) EMP

2.1 p = NULL ∧ n>0 ∧ p=q ∧ n=0 ⊢κ1

∅
∃q · (q 7→c1(v)) UNFOLD(Base)

1 lsegn(p, NULL, n)∧n>0∧p=q ⊢κ1

∅
∃q · (q 7→c1(v)) MATCH

0 x 7→c1(p)∗lsegn(p, NULL, n)∧n>0 ⊢emp
∅
∃q·(x 7→c1(q)∗q 7→c1(v))

❀ (∆1 ∨∆3, valid)

Figure 2-4: SLEEK Entailment Procedure: An Example.

pure constraints was implemented through the function split [33].

Example. We illustrate the entailment procedure through the example shown

in Figure 2-4. In the proof, the LHS of the entailment has been performed

bottom-up while the result in RHS is computed top-down. For simplicity, we

discard some intermediate RHS, and write UNFOLD instead of [ENT−UNFOLD] to

annotate rule applied at each step. The steps from 2.1* correspond to base case

of the unfolding over predicate lsegn(p, NULL, n). The steps from 2.2*

correspond to the inductive case of the unfolding over predicate

lsegn(p, NULL, n). The footprints accumulated during this checking are

κ1=x 7→c1(p), and κ2=κ1 ∗ q 7→c1(NULL). The residual heap in two cases of the

unfolding is: ∆1=false , ∆2=lsegn(q1, NULL, n2)∧n>0∧p=q∧n2=n−1, and

∆3 = ∃q ·∆2.

2.4 A Motivating Example

We present a motivating example to highlight our contributions. We employ the

fragment of separation logic in section 2.2 to express heap abstraction.
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1. struc node { struc node ∗next };
2. struc node∗ get last (struc node ∗x) {
3. if (x->next==NULL)
4. return x;
5. else {
6. return get last(x->next);
7. }
8. }

Figure 2-5: Motivating Example: Code of get last Method.

We illustrate our proposal through the get last method presented in Figure

2-5. The get last example is to get the last element of a singly-linked list x.

2.4.1 Complete Specification with an Error Calculus

Specification is used to describe the relation of input and output in a program. The

get last method has two return points at lines 4, and 6. Both the returns describe

explicit normal execution. Besides, the program contains an implicit assumption

at the memory dereference on the pointer x at line 3. That is, for memory safety,

the input linked list x must have at least one element. Otherwise, the program

raises a runtime error as an abnormal execution.

We classify the former (normal) execution as good scenarios and the latter

(abnormal) execution as bad scenarios. We expect that users would like to

capture both these scenarios in the same specification and be able to verify its

implementation against the expected specification. We would like to emphasize

that existing specification approaches focus on only specifying good scenarios of

functional properties and typically ignore bad scenarios. For example, existing

separation logic approaches would declare abstraction for the data structure node
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and the linked list lseg, as follows:

data node { node next; }// data structure declaration

pred lseg(root,s) ≡ (emp ∧ root=s)

∨ (∃ q · root7→node(q)∗lseg(q,s) ∧ root6=s);

and capture the functional specification of the get last program as:

requires lseg(x,NULL) ∧ x 6=NULL

ensures lseg(x,last) ∗last 7→node(NULL) ∧ res=last ∧ x 6=NULL;
(1)

where res is a reserved variable to denote the result of the method.

For bad scenarios, the basis of our proposal is the identification of a lattice

domain with four points (that are partially ordered) and a calculus, called error

calculus. While the four-point domain is used to capture the status of each program

state, the calculus is meant to combine and capture program states during symbolic

execution. The four points that are used to characterize program status are as

follows:

• ⊥: denotes dead code or non-terminated loops of execution.

•
√
: denotes normal program execution.

• ℧: denotes expected abnormal execution.

• ⊤: denotes unknown execution. That is, it could either be ⊥, or √ or ℧.

As such, to capture the requirement on the erroneous execution of the get last

method, the user can provide the following specification:

requires x=NULL ensures (true ) ℧;

To express a complete specification for both good and bad scenarios, we
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integrate the four-point status into the structured specification presented in [60].

For example, the specification of the get last can be constructed as in Figure

2-6.

case {
x=NULL → ensures (true ) ℧;
x 6=NULL →

requires lseg(x,NULL)
ensures lseg(x,last) ∗last 7→node(NULL) ∧ res=last

√
;

}

(2)

Figure 2-6: Complete Specification of get last Method.

Moreover we also propose a verification mechanism to support this complete

specification language. The proposal provides an entailment procedure on pure

logic to determine the status of each implication. This is being also tightly

integrated into a separation logic entailment procedure and a forward symbolic

reasoning mechanism based on a set of Hoare triple rules.

2.4.2 Shape Analysis via Second-Order Bi-Abduction

A main disadvantage of deductive verification systems is the need for manually

writing methods’ specification. To overcome this, we will highlight specification

inference in the next two subsections. In the context of pointer-based programs,

we propose the second-order bi-abduction for shape analysis. That analysis will

help to infer shape specifications for error-free programs.

Current shape analysis mechanisms [13, 20, 57] using list segment abstraction

are unable to capture the pre-condition for the get last method under which

memory-safe operation could be carried out. In this thesis, we propose a shape

synthesis to infer shape specification that guarantees memory safety. In the

context of the get last method, our shape analysis would introduce the
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following unknown predicates as input:

requires H(x) ensures G(x, res);

whereby res is a reserved keyword to represent the return value of the method.

Our shape analysis shall be supported by a separation logic verifier that is

able to collect and solve the proof obligations involving the unknown predicates

that must hold in order to guarantee memory safety. The analysis can infer the

A1. H(x) ⇒ x 7→node(q)∗U(q)
A2. U(q)∧q 6=NULL ⇒ H(q)
A3. x 7→node(q)∗G(q, res)∧q 6=NULL ⇒ G(x, res)
A4. x 7→node(q)∗U(q)∧q=NULL∧res=x ⇒ G(x, res)

Figure 2-7: Result of the Shape Analysis on get last Method.

set of four relational assumptions (in separation logic) form as in Figure 2-7;

where U is new unknown predicate that was introduced during the synthesis.

These four assumptions A1, A2, A3 and A4 have been inferred while the proposed

second-order bi-abductive entailment procedure discharges the proof obligations

generated for safety. More concretely, A1 has been generated at right before line

3 to ensure absence of null-dereference at line 3; A2 has been generated right

after return statement at line 4 to ensure postcondition; A3 has been generated

right before line 6 to meet pre-condition of the function call at line 6; and A4 has

been generated right after return statement at line 6 to ensure postcondition.

This set of assumptions indirectly expresses the expected shape abstraction of

predicates. Its validity guarantees the safety of the get last program.

The use of the separation logic formalism facilitates abstractions through

inductive shape predicates expressed using separation logic formulas.

Furthermore we may leverage on a bi-abduction mechanism for pure properties

[135] to refine the resulting shape predicates with other relevant properties of
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interests.

2.4.3 Transformational Approach to Shape Predicates

Derivation. The set of assumptions above is not easily understood by

programmers. For example, it is non-trivial to figure that U is an acylic list, H

and G are full lists with at least one element and the second parameter of the

predicate G points to the last element. From the output of the shape analysis

presented in Figure 2-7, we shall now derive definition for each shape predicate.

The results are as follows:

H(x) ≡ x 7→node(q)∗U(q)

U(x) ≡ emp∧x=NULL ∨ x 7→node(q)∗U(q)

G(x,res) ≡ x 7→node(NULL) ∧ res=x ∨ x 7→node(q)∗G(q,res)

Using them, the specification for the get last method can now be refined to:

requires x 7→node(q)∗U(q) ensures G(x, res) (3)

Specification (3) and predicate definitions inferred in this section are quite

precise, but are still less understandable than the user-supplied specification (1)

given in section 2.4.1. Such inferred specification and shape predicates would be

subjected to a normalization phase, as described next.

Normalization. To illustrate the important of the normalization, consider the

method append in Figure 2-8. This method allocates a new node and appends

it at the end of the input list. It employs the method get last to return the

last element. Assume that specification of the method get last at (3). Let us

examine a modular verification (like [13, 114, 90]) on the method append with

given specification at lines 2, 3 in Figure 2-8. At line 9, in order to ensure memory
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1. struc node∗ append (struc node∗ x)
2. requires lseg(x,NULL)
3. ensures ∃p · lseg(x,p) ∗p 7→node(NULL)
4. {
5. struc node∗tmp = (struc node∗) malloc(sizeof(struc node));
6. tmp->next = NULL;
7. if (x ! = NULL) {
8. struc node∗ last = get last(x);

/∗ α=G(x, last) ∗/
9. last->next=tmp;//fail here
10. tmp = x;
11. }
12. return tmp;
13. }

Figure 2-8: Code of append Method.

safety of the pointer dereference, the state α must imply that the pointer last be

allocated. This means the following entailment must hold:

G(x, last) ⊢ ∃q · last 7→node(q) (4)

with G being the predicate inferred in the previous section. We believe that such

entailment is beyond the capability of existing entailment procedures in

separation logic. To overcome this problem, one solution is to transform the

definition of the predicate G such that the G explicitly expresses that pointer last

as a cutpoint that is allocated. In the following, we implement that solution

through a transformation.

First, we present a normal form which is based on the fragment of separation

logic with inductive predicates [76]. This form syntactically restricts to ensure

that each predicate describes heap region that is accessible via one root pointer.

Shape predicates with zero or more root pointers could be transformed into this

normalized form. Second, we present a semantic transformation via a lemma
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mechanism. We extend the lemma mechanism in [113] to support lemma synthesis:

lemma infer [Ū] LHS → RHS

lemma infer [Ū] LHS ← RHS

where [Ū] is a set of unknown shape predicates that are to be inferred. To infer

a lemma, we first make an assumption on the validity of the lemma. To support

inductive proof, this lemma itself would be considered as induction hypothesis.

After that, we make use of second-order bi-abductive mechanism to infer a set

of constraints that guarantee the validity of the entailment checks. Lastly, we

recursively invoke the transformation to derive shape predicate definition.

Our normalization mechanism comprises a set of three operations called:

useless parameter elimination, predicate splitting, and predicate reuse. We

illustrate these operations (predicate splitting, useless parameter elimination and

predicate reuse) through the normalization of the predicate G.

A root parameter is a parameter that is allocated or is equal to NULL in every

branch of predicate definition. (See section 2.2 for a formal definition of root

parameter). In the inferred definition of G, since two parameters x and res are

roots, the synthesized predicate G is not normalized. We are going to transform

that predicate into normal form through lemma synthesis. Based on the violation

of the restriction above, we propose to split the predicate G using the following

weakening lemma:

lemma infer [U1; U2] G(x,res)→ U1(x,res) ∗ U2(res,x)

where U1 and U2 are unknown predicates that need to be inferred.

Using shape analysis (e.g. in the previous section), we can infer the following
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definition:

U1(x,s) ≡ emp ∧ x=s ∨ x 7→node(q)∗U1(q,s)

U2(y,z) ≡ y 7→node(NULL)

After that, the second parameter of the predicate U2 is detected as a useless

parameter. This parameter is semantically eliminated through the following

lemma:

lemma infer [U3] U2(y,z)↔ U3(y)

whereby the predicate U3 is another unknown predicate and inferred as:

U3(y) ≡ y 7→node(NULL)

Finally, the predicate G is decomposed into two predicate U1 and U3. This split

is described in the synthesized lemma as follows:

lemma G(x,res)→ U1(x,res) ∗ U3(res)

Furthermore, to obtain an equivalent transformation, the following

strengthening lemma shall be proven to be valid:

lemma check G(x,res) ← U1(x,res) ∗ U3(res)

Once inferred, the definitions of U1 and U3 can be used to prove the validity of

the above strengthening lemma. With this result, the following equivalent lemma

can be confirmed:

lemma G(x,res) ↔ U1(x,res) ∗ U3(res)

Consequently, if the shape predicate lseg in section 2.4.1 is given in advance (as

library predicates), the reuse operation will match inferred U predicate in section
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2.4.2 and inferred U1 predicate to form the following lemmas:

lemma U(x) ↔ lseg(x,NULL)

lemma U1(x,s) ↔ lseg(x,s)

Finally, we generate the following specification for the get last method:

requires x 7→node(q) ∗ lseg(x,NULL)

ensures lseg(x,last) ∗ last 7→node(NULL) ∧ res=last;

With this, let us now return to the entailment (4). Using the synthesized

lemma above, the predicate G of the entailment would be transformed as follows:

lseg(x,last) ∗ last 7→node(NULL) ⊢ ∃q · last 7→node(q)

The procedures of [13, 114, 90] can now process the above entailment and thus

verify memory safety property of the method append.

In the next three chapters, we present our main technical contributions in

order for enhancing the HIP/SLEEK system to an automated verification system

of complete specifications. Lastly, we conclude the thesis followed up by a future

work discussion.
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Chapter 3

Verifying Complete Specification

We present an error calculus to support a novel specification mechanism for

sound and/or complete safety properties that are to be given by users. With

such specifications, our calculus can form a foundation for both proving program

safety (nothing bad will happen) and/or discovering real errors (something bad

will happen). The basis of our calculus is an algebra with a lattice domain of four

abstract statuses (namely unreachability, validity, must-error and may-error) on

possible program states and four operators for this domain to calculate suitable

program status. We show how proof search and error localization can be

supported by our calculus. Our calculus can also be extended to separation logic

with support for user-defined predicates and lemmas. We have implemented our

calculus in an automated verification tool for pointer-based programs. Initial

experiments have confirmed that it can achieve the dual objectives, namely of

safety proving and bug finding, with modest overheads.

3.1 Complete Specifications

Traditionally, program specifications are given primarily for safety scenarios, i.e.

proving functional correctness and memory safety of programs, and are used to
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describe the states under which program execution would occur safely. When

successfully verified, such specifications are said to be sound for their specified

input scenarios. That is, a specification is said to be sound if it has identified

input scenarios (or preconditions) that are guaranteed to lead to safe program

execution. However, we are also interested in complete specifications that will

additionally verify the remaining input scenarios (that lead to bad execution,

execution failure) are invalid ones. Informally, a specification is said to be complete

if it has unambiguously identified both input scenarios that lead to safe code

execution, and input scenarios that lead to code execution failure.

Such complete specifications for programs are helpful for two reasons. Firstly,

they can be used to specify precisely (through weakest precondition1) when inputs

can be handled correctly by programs. Conversely, we are also able to precisely

identify when programs would fail to work properly (or safely). Secondly, the

specifications on erroneous inputs can be used to help pinpoint actual software

bugs in programs as they could be used to indicate where each given error occurs.

Though useful, the task of capturing complete specifications is very challenging,

and may not always be possible since the input scenarios under which failures could

occur may not be unambiguously specified and verified. In this paper, we shall

provide the basic mechanisms that can help specify complete specifications, where

possible. To achieve this goal, we propose a lattice domain of four abstract status

(namely unreachability, validity, must-error and may-error) and make use of the

validity (must-error) status for specifying safe (unsafe, resp.) execution scenarios.

Furthermore, when the complete requirements are hard (or impossible) to specify,

we have also provided approximation mechanisms that can help us specify near-

complete specifications through the use of may-error as opposed to must-error

1While it may be desirable to have weakest precondition that guarantee safety or correctness,
we also allow flexibility for users to specify a wider range of specifications that include those with
either stronger preconditions and/or weaker postconditions. Though weaker specifications give
fewer guarantees, often they can be verified more easily and may be enough to ensure reliability.
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classification in weakened postcondition.

Our motivation for developing complete specifications for programs was

further heightened by the VSTTE competition [1] that was held in November

2011. Out of five problems that the participants were asked to verify for safety

and correctness, there were two problems (problem 4 and problem 5) where more

complex specifications that satisfy completeness were requested. As complete

specifications must additionally address erroneous scenarios, we have recently

developed a comprehensive verification framework that could just as easily deal

with input scenarios that invoke errors, as it would with input scenarios that led

to safe program execution.

To efficiently support complex data structures in pointer-manipulating

programs, we make use of separation logic (see section 2.2). Our verification

system employs the entailment procedure presented in [114]. As presented in

section 2.3, this procedure follows UNFOLD/FOLD and MATCH paradigm to search a

proof for entailment check. To support such proof search, we extend the calculus

to a set of sound structural rules. Another difficulty is how to define negation for

inductive predicates on complex data structures for the completeness proving.

We provide a machinery for this by detecting contradiction at the predicate level

and through user-supplied lemmas. These lemmas, in turn, can be automatically

proven and applied.

Yet another benefit from our calculus is the capability of localizing program

statements relevant to errors. Existing approaches for error localization, e.g.

[65, 83], are typically separate from program verification system. Thus the error

localization component cannot exploit information, e.g. error trace conditions,

from program verifiers. Hence, such information may be constructed twice, one

for verification and another for error localization. In contrast, our system can

support a combination of program verification and error localization by first
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l

Figure 3-1: Status on Program States.

extending the four-point lattice with error messages and then enhancing the

structural rules to support the localization. Indeed, our system can provide

concise localizations for both must and may errors, and thus help the user to

comprehend the reason for verification failures.

3.2 Motivation and Overview

3.2.1 An Algebra on Status of Program States

⊓ ⊤ ℧
√ ⊥

⊤ ⊤ ℧
√ ⊥

℧ ℧ ℧ ⊥ ⊥√ √ ⊥ √ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

⊔ ⊤ ℧
√ ⊥

⊤ ⊤ ⊤ ⊤ ⊤
℧ ⊤ ℧ ⊤ ℧√ ⊤ ⊤ √ √
⊥ ⊤ ℧

√ ⊥

⊗ ⊤ ℧
√ ⊥

⊤ ⊤ ℧ ⊤ ⊥
℧ ℧ ℧ ℧ ⊥√ ⊤ ℧

√ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

⊕ ⊤ ℧
√ ⊥

⊤ ⊤ ⊤ √ ⊥
℧ ⊤ ℧

√ ⊥√ √ √ √ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Figure 3-2: An Algebra on Status of Program States.

The basis of our proposal is the identification of an algebra (E , F) in which

E is a lattice domain (see Fig. 3-1) with four points used to capture the status of
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each program state, while F is a set of four binary operators (meet (⊓), join (⊔),

compose (⊗) and search (⊕)) to combine the status of program states.

The four points that are used for program status are as follows:

• ⊥: denotes an unreachable state.

•
√
: denotes a valid program state from normal program execution.

• ℧: denotes a state that corresponds to a must (or definite) error scenario.

• ⊤: denotes a state that corresponds to a may error or an unknown scenario.

That is, it could either be ⊥, or √ or ℧.

Note that the must error status (℧) subsumes the unreachable ⊥ status. Where

possible, we would also like to classify a satisfiable must error status that explicitly

excludes the ⊥ status. This is to help us identify input scenarios for real bugs that

are reachable, and can be achieved by confirming that the state at that program

point is provably satisfiable. The may error status (⊤) comes from imprecision

or from dependency on some unknown input. In our system, potential sources of

imprecision include imprecise specifications, imprecise invariants of complex data

structures and incomplete domains. Although we could separately identify those

kinds of imprecision, for simplicity we uniformly specify them with the ⊤ status

value. In the implementation, we distinguish them through different messages

with status (see Sec. 3.4.3).

Let � be a partial ordering relation on status whereby τ1 � τ2 means status

τ1 is more precise than status τ2. The ⊔ and ⊓ operators denote the least upper

bound and the greatest lower bound, respectively, over the lattice domain. The

domain E and two operations ⊓, ⊔ form a complete lattice D = 〈E ,�,⊔,⊓,⊥,⊤〉

organized as shown in Fig. 3-1. This lattice forms a core part of the underlying

abstract semantics for our system. Furthermore, ⊥ is zero element of ⊗ and ⊕

operations; it means x ⊕ ⊥ = ⊥ and ⊥ ⊗ x = ⊥ for any values x. The remaining
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calculations of ⊗ and ⊕ are illustrated in Fig. 3-2. The ⊗ operator is meant to

support conjunctive proving, and searches for failures from ℧ and ⊤ status . The

⊕ operator is meant to support proof search, and searches for
√

status to succeed

in proving. Thus the priority order of the ⊗ operator is ℧, ⊤ and lastly
√
, and

the priority order of the ⊕ operator is
√
, ⊤ and lastly ℧. Contrast this with the

⊔ operator which doesn’t have any priority between
√

and ℧. So it would simply

yield ⊤ when the two status are combined together.

3.2.2 Mechanism for Sound and Complete Specifications

To illustrate our new specification mechanism, we consider a method that returns

the data which its input points to, as shown below

int get data(node x)

case{ x 6=NULL→ requires x 7→node〈d, p〉 ensures (res=d)
√
;

x=NULL→ ensures (true ) ℧; }

where res is a reserved identifier denoting the method’s result and the data

structure node is declared as: data node { int val; node next }.

We would like to remind that each method is specified by pre- and

post-conditions (through separation logic formulas), denoted by requires and

ensures keyword, respectively. In the specification above, we also use structured

specifications [60] where disjoint conditions are expressed using case construct

for expressing both sound (with x 6=NULL condition) and complete (with x=NULL

condition) requirements, as can be seen for the above specification of get data

(with the
√

and ℧ status in postconditions, resp.). In comparison, if we are only
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interested in sound specification, we would just use the following instead:

int get data(node x)

requires x 7→node〈d, p〉 ensures (res=d)
√
;

Occasionally, it may be possible to automatically generate complete specification

by negating the input conditions of sound specification. However, this may not

always be feasible. Firstly, negation computation may be hard to implement in

complex domains. For example, it is unclear how to compute negation in

separation logic (which our system relies on). Secondly, not all methods have

clearly delineated boundary between sound and complete conditions, as an

example, consider the interactive schedule (ischedule) method in Fig. 3-3. With

prio=0 condition, this method’s status depends on the user input which is

unknown at verification time. Therefore, there exists a gap between soundness

and completeness that cannot be derived using just the negation operation.

For this example, we can instead provide a near-complete specification, as

shown in Fig. 3-3. Informally, a specification is said to be near-complete if it

captures all possible input conditions but contains either a ⊤ program status or an

ambiguous disjunction, comprising of both
√

and ℧ status, in its postconditions.

We note that our approach for proving the completeness of program is based

on the assumption that the user-supplied specification is complete; namely that it

covers all values of the input domain and that each error program state denotes an

input scenario where no valid output state is possible. Checking the completeness

of specifications is a challenging research direction that could be investigated in

the future.
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1. int ischedule(int prio){
2. if (prio>0)/*run it */ return 0;
3. else if (prio<0) abort();
4. else{
5. printf(”Allow this task to run? y or n”);
6. char c=getc();
7. if (c =′ y′)/*run it */ return 0;
8. else abort(); } }
Sound Specification:
l1. int ischedule(int prio)
l2. requires prio>0 ensures (res=0)

√
;

Near-Complete Specification:
l3. int ischedule(int prio)
l4. case { prio>0→ ensures (res=0)

√
;

l5. prio<0→ ensures (true )℧;
l6. prio=0→ ensures (true )⊤; }

Figure 3-3: Code and Specification of ischedule Method.

3.2.3 Essence of Error Calculus

To highlight how our calculus can be used to verify programs, consider the method

foo in Fig. 3-4. We shall verify the code of foo in a forward manner, and would

compute a program state for each of its program point. Each program state, Φ, is

a formula on the state of variables and heap. Each program state can be combined

with a status and is represented by (Φ, τ) where τ denotes a status value from

our lattice. As part of compositional verification, the precondition of each callee

is checked against the current calling context and the postcondition is checked at

the exit of the method’s body. In the example, we can identify four program states

of interests that correspond to four exits (L1, L2, L3 and L4) of the method. The

following illustrates how the statuses are decided at exits through proof obligations

discharged for postcondition checking with the help of the entailment procedure ⊢

that conforms to our error calculus. Given a program state πa and a post-condition

πc, we can determine the status s for such checking with the help of the following
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1 int foo(int x, int y)
2 requires x≥0
3 ensures (res>0)

√
; {

4 if (x<0) return −1; /∗L1∗/
5 else{
6 if (y>1) return 1; /∗L2∗/
7 else if (y<0) return −1; /∗L3∗/
8 else return y; /∗L4∗/
9 }}

Figure 3-4: Verifying foo Method with Error Calculus.

judgment: πa ⊢p πc ❀ s. The resulting statuses generated by the entailment

procedure are as follows:

L1 : x≥0 ∧ x<0 ∧ res=−1 ⊢ res>0 ❀ ⊥

L2 : x≥0 ∧ ¬(x<0) ∧ y>1 ∧ res=1 ⊢ res>0 ❀
√

L3 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ y<0 ∧ res=−1 ⊢ res>0 ❀ ℧

L4 : x≥0 ∧ ¬(x<0) ∧ ¬(y>1) ∧ ¬(y<0) ∧ res=y ⊢ res>0 ❀ ⊤

Each of the above proofs yields a status based on the outcome of its entailment.

This status can be added to program state for each of these program points. At

L1, the antecedent is unsatisfiable which corresponds to an unreachable scenario

(either infinite loop2 or dead code) that can be captured by (false ,⊥) with

false denoting contradiction at that program point. At L2, the consequent can

be directly proven using the antecedent. This yields a valid program state that can

be represented by (x≥0∧¬(x<0)∧y>1∧res=1,
√
). This program state indicates

that the method will exit safely at this location with res=1. At L3, the negation

of the consequent can be proven from its antecedent. The program state at L3 can

be computed to be a must error as (x≥0∧¬(x<0)∧y<0,℧). The sub-formula on

2Although we provide a mechanism to specify infinite loop, proving termination is beyond
the scope of this paper.

49



result res=−1 is dropped since we have a must error outcome where the output

state is unimportant. At L4, the antecedent can neither prove the consequent

nor its negation. Hence, we would need to classify this program point as a may

error whose state is (x≥0∧¬(x<0)∧¬(y>1)∧¬(y<0)∧ res=y,⊤). A formula on

result res=y is still captured since the ⊤ status includes possibly safe output.

When an entailment checking fails, an error message is generated with relevant

information to help debugging process. For example, the error message at L3 is:

Verify method foo. Proving postcondition fails:

Failure (must):

(x≥0, 2) ∧ (¬(x<0), 5) ∧ (¬(y>1), 6) ∧ (y<0, 7) ∧ (res=−1, 7) ⊢ (res>0, 3)

where irrelevant formulas are sliced away and failures are localized by pairs of the

relevant failing formulas and their corresponding statement code or specification

line numbers.

3.3 Complete Specification Mechanism

Ψ ::= {Φ1, . . . ,Φn}
ℜ ::= {Φ′

1, . . . ,Φ
′
n}

Φ′ ::=
∨

(∃w∗·(κ∧π)τ)∗
τ ::= ⊥ | ℧ | √ | ⊤

Figure 3-5: Complete Specification Language

In our extended specification, we add a status value to separation formula Φ′

(as defined in Fig.3-5) to help specify if we are expecting either valid or error

scenario. The status captured by (τ) can be from the 4-point lattice domain

introduced in section 3.2.1. This logic provided can be used to write Hoare-style
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(pre/post) specifications for each method of a program. Figure 3-6 provides a

syntactic description of our extended specification, an extension of the structured

specification presented [60]. Y denotes the (pre/post) specification while Φ denotes

the formulas that may be used for pre/post specifications, as well as for predicate

definitions. The requires keyword introduces a precondition. The postcondition

is captured after each ensures keyword, which must appear as a terminating

branch (or leaf) for the tree-like specification format. The postcondition may

then include explicit error scenarios represented by the formula Φ′.

Y ::= case{π1⇒Y1; . . . ; πn⇒Yn} case analysis
| requires Φ Y precond
| ensures Φ′ postcond

Figure 3-6: Complete Pre/Post Specifications

The extended specification mechanism will be further clarified through the

examples as follows.

We shall now look at how (and why) specifications with explicit error scenarios

can be written for pointer-based programs. Consider a simple example to sum up

some values from two pointer locations.

int hoo(node x, node y)

{ return x.val+ y.val; }

One simple specification for this method is the following:

requires x 7→node(a, ) ∗ y 7→node(b, )

ensures (res=a+ b)
√
;

Though sound, this safety specification cannot be used to help the error

51



calculus evaluate must/may bugs; the given precondition does not satisfy the

dichotomy property, since there is another scenario with heap state

x7→node(a, )∧x=y that also lead to a valid
√

outcome. If we wish to obtain a

complete safety precondition, we would have to add this extra valid scenario into

our specification, as follows:

case {

x=y → requires x 7→node(a, )

ensures (res=2 ∗ a)√;

x 6=y → requires x 7→node(a, )∗y 7→node(b, )

ensures (res=a+ b)
√

;

}

With this more complete specification, all potential valid states are now

captured by its precondition. Any contradiction with the precondition of this

specification now represents a must error. However, specification with complete

safety precondition can only be proven, if there is a way (either automatic or

manual) to derive the negation of its precondition. As the negation operator are

undecidable in many domains, including separation logic, there is not a general

method for verifying that the code satisfies any given complete safety

specifications. Our solution to this problem is to encourage users to write a more

comprehensive specifications with explicit error scenarios. For our example, we

could provide the following specification that fully captures all valid and error

scenarios as shown in Figure 3-7.

3.4 A Calculus on Errors

In this section, we initially formalize the calculus with pure (without heap)

formulas π. The extension of the calculus to heap formulas will be presented in
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case {x=NULL∨y=NULL → ensures (true )℧;
x 6=NULL∧y 6=NULL→
case {

x=y → requires x 7→node(a, )
ensures (res=2 ∗ a)√;

x 6=y → requires x 7→node(a, )∗y 7→node(b, )
ensures (res=a+ b)

√
;

}
}

Figure 3-7: Complete Specification Example.

the next section.

3.4.1 The Entailment Procedure

Given a program state πa and a postcondition state πc, we can determine the status

s for such checking with the help of the following judgment: πa ⊢p πc ❀ s. The

basic machinery for the judgment πa ⊢p πc ❀ s is captured by the following four

rules. We use underlying theorem solvers for answering sastifiability. Note that

unsat(π) denotes that π is unsatisfiable and sat(π) denotes that π is satisfiable .

[EC−[BOTTOM]]

unsat(πa)

πa ⊢p πc ❀ ⊥

[EC−[OK]]

unsat(πa ∧ ¬πc)

πa ⊢p πc ❀
√

[EC−[MUST−ERROR]]

unsat(πa ∧ πc)

πa ⊢p πc ❀ ℧

[EC−[MAY−ERROR]]

sat(πa ∧ ¬πc) sat(πa ∧ πc)

πa ⊢p πc ❀ ⊤
Two rules at the first line check the success of the entailment and classify it as

unreachable (⊥) or valid (
√
) as usual (checking unsat(πa ∧ ¬πc) is equivalent to

checking πa =⇒ πc). Next two rules at the second line check and classify the

must/may error scenarios. In the first rule, a must error (invalid) is identified
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when πa =⇒ ¬πc is provable.
3 Due to the imprecision, entailments which has not

been proven (as either valid or invalid) are marked with unknown status through

the second rule.

To illustrate this entailment procedure, let us consider a postcondition check,

x≥0, under four different program states, as shown below.

x≤−1∧x=0 ⊢p x≥0 ❀ ⊥

x>0 ⊢p x≥0 ❀
√

x≤−1 ⊢p x≥0 ❀ ℧

true ⊢p x≥0 ❀ ⊤

3.4.2 Structural Rules

We provide sound structural rules that would carry out the entailment proving

process. These rules support error localization, separation entailment procedure

and modular verification.

[PEC−[⊔ JOIN]]

π1 ⊢p π ❀ τ1

π2 ⊢p π ❀ τ2

π1∨π2 ⊢p π ❀ τ1⊔τ2

[PEC−[⊗ COMPOSE]]

π ⊢p π1 ❀ τ1

π ⊢p π2 ❀ τ2

π ⊢p π1∧π2 ❀ τ1⊗τ2

[PEC−[⊕ SEARCH]]

π ⊢p π1 ❀ τ1

π ⊢p π2 ❀ τ2

π ⊢p π1∨π2 ❀ τ1⊕τ2

These rules use the algebraic operations presented in Sec. 3.2 to combine the

results. The first rule decomposes disjunction on the antecedent, while the

second rule decomposes conjunction on the consequent. Both these rules can be

implemented without any loss of information. The third rule performs a search

over a disjunction in the consequent. This search returns a set of possible proofs

for the entailment. According to the ⊕ operator, if at least one
√

status is found

in this solution set, the entailment succeeds.

Theorem 1 (Soundness of the Structural Rules). Given an entailment π1⊢pπ2.

If the application of the structural rules [PEC−[...]] on the given antecedent π1 and

3Without loss of generality, we assume that the [EC−[BOTTOM]] rule has always been checked
before [EC−[MUST−ERROR]]. Thus, when the latter rule is checked, πa should be satisfiable.
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consequent π2 returns the result τ , then the application of the [EC−[...]]rules on the

given antecedent π1 and consequent π2 returns the same result τ , namely

π1 ⊢p π2 ❀ τ .

Proof The proof is by an induction on structural rules [PEC−[...]] and a case

analysis on the returned result τ . As an illustration, suppose that the structural

rule [PEC−[⊗ COMPOSE]] using entailment ⊢ is applied on the antecedent π1 and the

consequent π′
2 ∧ π′′

2 returning ℧. According to the ⊗ operator rules, we can have

either π1 ⊢p π′
2 ❀ ℧ or π1 ⊢p π′′

2 ❀ ℧ or both are ℧. Assuming the former case is

taken, and then using the rule [EC−[MUST−ERROR]] we have (unsat(π1∧π′
2)). Hence

we can deduce that unsat(π1∧π′
2∧π′′

2) is valid, and then using [EC−[MUST−ERROR]]

we get π1 ⊢p π′
2 ∧ π′′

2 ❀ ℧.

We present full proof of this theorem in Appendix .1.

3.4.3 Error Localization Extension to Calculus

τ [m] ::= ⊥[∅] | ℧[m] | √[m] | ⊤[m]
m ::= bm | m1⊔m2 | m1⊗m2|m1⊕m2

bm ::= π1 =⇒ π2 (valid)
| π1 =⇒ π2 (must error)
| π1 =⇒ π2 (may error)

τ1[m1] ⋄ τ2[m2] ⇒ (τ1⋄τ2)[m1⋄m2]
m ⋄ ∅ ⇒ m
∅ ⋄ m ⇒ m
⊥[m] ⇒ ⊥[∅]

Figure 3-8: Program State: Status and Message

To provide support for error localization, we must extend the four-point lattice

with messages that capture the reason for each success or failure (see the left of

Figure 3-8).

Status ⊥ does not carry any message which is denoted by ∅. When faced with

a message with error from m1⊔m2 and m1⊗m2, both of the two smaller messages

(with possible errors), denoted by m1 and m2, must be resolved, before the main

message is said to be resolved. When faced with a message with error of the form

m1⊕m2, only one of the messages with errors from either m1 or m2 needs to be
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resolved, before the main message m1⊕m2 is resolved. We may now modify the

three operators ⊔, ⊗ and ⊕, to propagate messages capturing the localizations

for successes and failures. Let us denote this using a generic name ⋄ for the three

operators. We propagate every message, where possible, as shown to the right

of Fig. 3-8. In case empty message ∅ is generated, we remove it from the main

message as shown in the second and third rules. In case the resulting status from

τ1⋄τ2 is ⊥, we remove its messages, as shown in the last rule.

3.5 Error Calculus for Separation Logic

While we have formulated a must/may error calculus for pure logic, we shall

now extend it to separation logic. In this section, we show how our calculus can

be used to support the reasoning of pointer-based programs via separation logic

[116]. Separation logic with user-defined predicates can provide concise and precise

notations for verifying programs with complex data structures. We show how our

calculus can be used to support the reasoning of pointer-based programs via the

fragment of separation logic presented in Chapter 2.

3.5.1 Separation Entailment with Proof Search

To support proof search, we enhance the entailment procedure for separation logic

presented in section 2.3 as follows:

Φ1 ⊢κV Φ2 ❀ (Ψ, τ)

whereby Ψ captures a set of residual program states with status information. We

use a set of program states (Ψ) since our entailment procedure may have to conduct

a proof search with the help of lemmas. The variable κ captures the current set

of heap nodes (and predicates) that have been consumed (or accounted) by the
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[EENT−EMP]
XPure(κ1∗κ)∧π1 ⊢p ∃V·π2 ❀ τ

κ1∧π1 ⊢κV π2❀ (κ1∗κ∧π1, τ)

[EENT−LEMMA]
Φ1 ⊢κV Φ2 ❀ (Φ0, τ0)

Φi
1/2 = APP(LEMi,Φ1/2) Φ

i
1 ⊢κV Φi

2 ❀ (Φi, τ i)

Φ1 ⊢κV Φ2 ❀ (⊕{Φ0; Φi},⊕{τ0; τ i})

[EENT−LHS−OR]
Φi ⊢κV Φ3 ❀ (Ψi, τi) i ∈ {1, 2}
Φ1∨Φ2 ⊢κV Φ3 ❀ (

∨

Ψi,⊔τi)

[EENT−RHS−OR]
Φ1 ⊢κV Φi ❀ (Ψi, τi) i ∈ {2, 3}
Φ1 ⊢κV (Φ2∨Φ3)❀ (

⋃

Ψi,⊕τi)
[EENT−LHS−EX]

[w/v]Φ1 ⊢κV Φ2 ❀ (Φi, τ)
fresh w

∃v · Φ1 ⊢κV Φ2 ❀ (Φi, τ)

[EENT−RHS−EX]
Φ1 ⊢κV ∪{w} ([w/v]Φ2)❀ (Φi, τ)

fresh w Φj=∃ w ·Φi

Φ1 ⊢κV (∃ v ·Φ2)❀ (Φj, τ)

Figure 3-9: Separation Entailment with Set Outcomes

entailment procedure, while V captures existential variables from the consequent

(that may be instantiated). If the antecedent semantically entails the consequent,

the entailment succeeds and we expect status τ to be set to
√
. Otherwise, the

entailment fails and we expect τ to be set to either ℧ or ⊤.

To simplify our presentation, only the five structural rules and a base case (or

non-recursive) rule, are shown in Figure 3-9. In addition, our algorithm also

performs matching of heap nodes (and predicates), unfolding (of a predicate in

the antecedent), or folding (of a predicate in the consequent with support for

variable instantiation). These steps are automatically applied, and are now

standard features for entailment procedures that are designed to support

automated program verification with user-defined predicates.

The final step prior to a successful entailment is the [EENT−EMP]-rule that

is only triggered when the consequent is just a pure formula. To support error

calculus, we must modify (or implement) this rule as described.Reduce entailment

checking on separation logic to implication checking on the first order-logic with

[EENT−EMP] rule. When the consequent remains empty heap, e.g. emp ∧ πc, the
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procedure employs [EENT−EMP] inference rule to decide the entailment result.

Firstly, this rules make use of the eXPure reduction to transform the combination

of remain heaps in the antecedent and footprints into the first order-logic formula

on the combination of pure domains, e.g. πa. Then it checks the implication

πa ⊢p πc.

Note that ⊕ is overloaded. When it is applied for a set of the status, it is

defined as ⊕{τ1, τ2, . . . , τn} = (. . . ((τ1 ⊕ τ2) ⊕ τ3) . . . τn);
4 when it is applied for

a set of residual states, it will search for all successful states (and will remove all

the failed states). Finally,
∨

is a lifted disjunction operation and is defined as

Ψ1 ∨Ψ2 = {Φ1 ∨ Φ2|Φ1 ∈ Ψ1 ∧ Φ2 ∈ Ψ2}.

Furthermore, we must extend our entailment procedure in the following ways:

• The rule [EENT−LEMMA] illustrate how the calculus supports lemma

application [113]. This rule expresses the possibility of lemma application

in LHS and RHS. The status values of all possible lemma applications are

combined by the union operator (⊕) where ℧ takes priority over ⊤. Hence,

if a proof search attempt fails, we return a ℧ status, rather than a ⊤

status since the latter prevents a ℧ failure from being reported, even if

they can be confirmed by a different proof search.

• When our entailment procedure becomes stuck with a non-empty

consequent (comprising some heap predicates) we shall firstly determine a

pure approximation of the consequent for both heap and pure data. We

may then determine if there is any contradiction with the antecedent to

decide whether must or may failure is going to be reported.

4⊕ is the search operator as described in Sec. 3.2.1.
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3.5.2 Examples on Separation Entailment

Let us examine four simple examples to better understand how status outcome is

being determined by the entailment procedure of separation logic.

Example 1

x 7→node( , q) ∗ q 7→node( , NULL) ⊢ x 7→node( , p)

❀ (q 7→node( , NULL) ∧ p=q ∧ x 6=NULL,√)

This entailment yields a residue q 7→node( , NULL) and an instantiation p=q from

(implicit) existential variable p. It also carries a pure formula x 6=NULL from the

antecedent.

Example 2

x 7→node( , q) ∗ q 7→node( , NULL) ⊢ x 7→node( , NULL)

❀ (true ,℧)

This entailment yields a must failure, denoted by ℧. The consequent expects

q=NULL, but the antecedent had q 7→node( , NULL). This contradiction has caused

a ℧ failure to be raised. The residue captures the state when failure was detected.

Entailment 3

x 7→node( , q) ∗ q 7→node( , NULL) ⊢ x 7→node(3, p)

❀ (true ,⊤)

This entailment yields a may failure, denoted by ⊤. The consequent expects value

3 to be proven as the data field of x. However, the antecedent has no information

on that field position. Hence, a ⊤ failure was raised.

Entailment 4

x 7→node( , ) ∗ y 7→node( , ) ⊢ x=y

❀ (true ,℧)

This entailment yields a must failure. The consequent expects value x=y to be
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proven. However, the antecedent has x and y pointing to disjoint memory. This

contradiction has caused a ℧ failure to be raised.

To handle linked-list of arbitrary length, we could use the following list segment

predicate:

pred lseg〈root, n, p〉≡root=p∧n=0

∨ ∃ d, q · (root7→node〈d, q〉∗ lseg〈q, n−1, p〉)

inv n≥0

In addition, we declare plseg predicate that defines a list segment with only

positive integers:

pred plseg〈root, n, p〉≡

∃ d · (root7→node〈d, p〉∧n=1∧d>0)

∨ ∃ d, q · (root7→node〈d, q〉∗ plseg〈q, n−1, p〉∧d>0)

inv n≥1

We now examine the two following separation entailments involving user-defined

recursive predicates.

Example 5:

plseg〈x, 2, NULL〉

⊢ x 7→node(a, y) ∗ y 7→node(b, q)∧a+b<0

After unfolding on the antecedent followed by a matching, the entailment is:

∃a′, z · plseg〈z, 1, NULL〉 ∧ x 6= NULL ∧ a′ = a ∧ z=y ∧ a′>0

⊢ y 7→node(b, q)∧a+b<0

Again we do unfold on the antecedent followed by a matching, causing a consequent

with no heap. We then apply the [EENT−EMP] rule, the following pure entailment
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is checked (for simplicity, we have omitted superfluous equalities):

x 6=NULL∧a>0 ∧ z=y∧y 6=NULL∧b>0∧q=NULL ⊢ a+b<0

Obtain pure over-approximation and applying the calculus on pure entailment,

the ℧ error is returned as follow:

a>0∧b>0 ⊢ a+b<0 ❀ ℧

Example 6:

plseg〈x, 2, NULL〉 ⊢ lseg〈x, 2, q〉

This entailment fails with mismatch error (τ0=℧). To improve our analysis, user

may provide the following lemma:

lemma “w1” plseg〈root, n, p〉 →lseg〈root, n, p〉

The procedure then applies the lemma w1 to weaken a plseg (to become a

lseg). With the help of the lemma w1, another possible solution for proof

search is to first apply the weakening lemma on x. It is then easy to prove

(τ1=
√
) by applying a matching ([ENT−PRED−MATCH] in Section 2.3) followed by

the [EENT−EMP] rule. Finally, we apply the [EENT−LEMMA] rule to combine the

program status and residue by the search (⊕) operator which results in program

status: τ=τ0⊕τ1=℧⊕√=√.

3.5.3 Entailment with Contradiction Lemma

In separation logic, it is not clear how to define negation for inductive predicates

of complex data structures. In this section, we address this by providing a new

mechanism to support the detection of must errors at the predicate level: we

propose a new scheme for entailment with contradiction lemmas. We allow users

to declare contradiction lemmas of the following form:
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LHS→ (RHS)℧

These lemmas can help detect contradiction at the predicate level. Semantically,

if the above contradiction lemma can be proven, we can confirm LHS =⇒ ¬(RHS).

Operationally, the contradiction lemma is proven through the following separation

logic entailment:

LHS ⊢ RHS ❀ (Φ)℧.

Application of this contradiction lemma causes a must error to be detected at

the predicate level. Our lemmas must be supplied by users, but will be

automatically proven and applied by our system.

For illustration, consider the plseg defined in the previous subsection, and its

negation nplseg, which contains at least one non-positive integer.

pred nplseg〈root, n, p〉≡ root=p∧n=0

∨ ∃ d, q · (root7→node〈d, q〉∗ lseg〈q, n−1, p〉∧d≤0)

∨ ∃ d, q · (root7→node〈d, q〉∗ nplseg〈q, n−1, p〉)

inv n≥0

To capture their relation, we provide the following contradiction lemma:

lemma “w2” nplseg〈root, n, p〉 →plseg〈root, n, p〉℧

When invoked, each application of such lemmas causes a must error to be

triggered for the particular branch of the entailment proof. For example,

consider the list sqrt aux procedure shown in Figure 3-10. The method

list sqrt aux is an auxilary method which helps to compute square roots of

numbers from a list. It computes square root of the current node y, if applicable,

by function sqrt at line 6 and inserts the result at the beginning of the

processed positive list segment x. We provide a specification to capture its
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1 node list sqrt aux(node x, node y)
2 requires plseg〈x, n, y〉 ∗ y 7→node〈v, p〉
3 case {
4 v>0→ ensures (plseg〈res, n+ 1, p〉) √;
5 v≤0→ ensures (true ) ℧;

}
{

6 if (y.val > 0) y.val = sqrt int(y.val);
7 node tmp=y.next;
8 y.next=x;
9 x.last().next=tmp;
10 return y;
}

Figure 3-10: Code of list sqrt aux Method.

correctness. Line 4 is for soundness of the method, while line 5 is for its

completeness, so as to capture the remaining cases. Intuitively, the two scenarios

in the specification correspond to two path traces of the conditional statement.

We focus on the (implicit) else path trace which leads to an error scenario. At

line 10, the condition of this trace is transformed to be a program state which is

checked against the specification. Its proof obligation is generated as follows:

y 7→node〈v, x〉 ∗ plseg〈x, n, p〉∧¬(v>0) ⊢ plseg〈y, n+ 1, p〉

Since v≤0, y cannot be matched in both sides and this entailment proof fails as a

must error. Therefore, the specification at line 5 cannot be properly proven.

To improve our analysis, we now apply the lemma w2 . With the help of the

lemma w2, another possible solution for proof search is to first apply the weakening

lemma on x. After that, y can now be folded to become a nplseg based on the

definition of the nplseg predicate. Lastly, applying the contradiction lemma on y

makes this entailment proof return a must error as (ideally) expected.

Nguyen et. al. [113] proposed a lemma mechanism to relate user-defined

predicates. While they focus on subsumed and equivalent relations, we focus on
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disjoint relations (contradiction). Nevertheless, both enhance the completeness of

program verification.

3.6 Modular Verification with Error Calculus

Code verification is typically formalised using Hoare triples of the form

{pre}c{post}, where pre, post are the initial and final states of program code c.

We would like to remind that to incorporate status into our program state, we

shall use disjunctive program state of form
∨

(Φ, τ), giving us a new Hoare triple

of the form {∨(Φ1, τ1)} c {
∨

(Φ1, τ1)}. To simplify our presentation, we shall use

(Φ, τ) instead of the more general disjunctive program state
∨

(Φ, τ) that had

been implemented.

Method Verification Rule. The verification requirement for methods can be

affected by progressively accumulating the preconditions from the structured

specification, prior to the verification of its method body. The forward

verification rules are presented in Figure 3-11. The verification for each method

is done by [FV−[METH]] rule. This rule uses a initial program state
∧

(v′ = v)∗

that the current values of program variables are the same as their original

parameters’ values. In the [FV−[M−CASE]] rule, each branch is processed

separately and their results are combined by join operations:
∨

(as defined in

previous section) for program states and ⊔ for status of program states. Finally,

verification process is terminated by [FV−[M−ENSURES]] rule. In this rule, the

status returned from the entailment proving of postcondition will be composed

(⊗) with the status of code verification to become τ4. τ4 is then matched (by inv

function) with τ . The function inv is implemented as follows: (1) if this is a

safety proving (τ =
√
), then inv returns τ4; (2) if this is an error verified (τ = ℧

or τ = ⊤), then inv returns
√

in the cases of τ4 = ℧ (or τ4 = ⊤, respectively),

otherwise it returns ℧.
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Method Call Rule. The abstract semantics of each method call is captured by

[FV−[METH]]
Φ1 =

∧

(v′ = v)∗

⊢ {(Φ1,
√
)} {Y c} {Φ2, τ2}

⊢ t0 mn ([ref] t v)∗ Y {c}(Φ2, τ2)

[FV−[M−ENSURE]]
⊢ {(Φ1, τ1)} {c} {Φ2, τ2}

Φ2 ⊢κV Φ❀ (Φ3, τ3) τ4 = τ2 ⊗ τ3
⊢{(Φ1, τ1)}{ensures (Φ, τ) c}(Φ3, inv(τ, τ4))

[FV−[M−REQUIRES]]
⊢ {(Φ1 ∗ Φ, τ1)} {Y c} {Φ2, τ2}
⊢{(Φ1, τ1)}{requires Φ Yc}(Φ2, τ2)

[FV−[M−CASE]]
⊢ {(Φ1 ∧ πi, τ1)} {Y c} {Φi, τi} i = 1 . . . n
⊢{(Φ1, τ1)}{case{πi⇒Yi}∗}(

∨

Φi,⊔τi)

Figure 3-11: Forward Verification Rules.

its specifications. We encode its verification with the rule [FV−[CALL]]. Note that

(t v)∗ and (ref t u)∗ denote pass-by-value and pass-by-reference parameters,

respectively. Each method call mn(v∗, u∗) in our core language has only variables

as arguments. To avoid the need for argument substitutions, we assume that

each method declaration from Program has been suitably renamed so that actual

arguments are identical to the formal arguments.

[FV−[CALL]]

t0 mn ((t v)∗, (ref t u)∗) Y {c} ∈ Program

Φ1 ⊢ Y ❀ (Φ2, τ2)

ΦR = if τ1=
√

then (∃v′∗·Φ2) else Φ1

{(Φ1, τ1)} mn ((t v)∗, (ref t u)∗){(ΦR, τ1 ⊗ τ2)}

The proof obligations are generated and verified at the second line, provided that

the incoming status τ1 is
√
. Furthermore, output states from proving entailment

are composed with status from pre-state at the third line. By default, if the caller

context contains errors, such errors are simply propagated to the next instruction

in a similar manner as exceptions. However, unlike exceptions, error states are
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never caught. To generate proof obligations for the extended specification, we

propose to extend the entailment procedure to handle specification with separation

formulas. The revised judgement has the form Φ1 ⊢ Y ❀ (Φ2, τ2), where Φ1 is

the current state, Y is the specification and (Φ2, τ2) is the residual state and

its status. Three syntax-directed rules are extended. They are used to prove

each precondition and assume its respective postcondition for the callee, as shown

below:

[FV−[C−REQUIRES]]

Φ1 ⊢ Φ ❀ (Φ2, τ2) (Φ2) ⊢ Y ❀ (Φ3, τ3)

Φ1 ⊢ requires Φ Y ❀ (Φ3, τ2⊗τ3)

[FV−[C−CASE]]

Φ∧πi ⊢ Yi ❀ (Φi, τi) i = 1 . . . n

Φ ⊢ case{πi⇒Yi}∗ ❀ (
∨

Φi,⊔τi)

[FV−[C−ENSURES]]

Φ1 ⊢p true ❀ (Φ, τ1)

Φ1 ⊢ ensures (Φ2)τ2 ❀ (Φ1 ∗ Φ2, τ1⊗τ2)

3.7 Implementation and Experiments

We have implemented our error calculus inside a program verification system for

separation logic, called S2. We use S2 to verify C-based programs against

user-given specifications. The verification is performed compositionally for each

method, and loops are transformed to recursive methods. S2 eventually

translates separation logic proof obligations to pure formulas that can be

discharged by different theorem provers. Our system uses Omega [125], MONA

[85], Redlog [55] and Z3 [45] as underlying theorem provers for answering the

satisfiability and simplification queries. When program code is not successfully

verified against safety properties, S2 not only further classifies the failures into

the must or may errors but also localizes program statements and specifications

relevant to the errors.
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Programs Size #P Time(sec.) Invo.(#)
LOC LOS # wo w wo w

Linked list 327 50 26 0.44 0.46 2738 3202
Linked list 157 27 13 0.58 0.6 1520 1724
Sorted llist 98 11 6 0.46 0.49 955 1060
Doubly llist 186 23 13 0.34 0.34 1864 2083
Doubly llist 91 13 5 0.5 0.5 1309 1429
CompleteT 106 12 5 0.87 0.94 2149 2533
Heap trees 179 13 5 1.9 1.91 4540 4954

AVL 313 27 12 3.44 3.59 7863 8585
AVL2 152 37 7 2.83 3 6959 7876
BST 177 18 9 0.35 0.37 1883 2192
BST 153 12 6 0.3 0.31 1581 1836
RBT 508 48 19 3.32 3.38 13069 16687

Bubble sort 75 9 4 0.21 0.21 1092 1254
Quick sort 82 10 4 0.27 0.28 778 832
Merge sort 109 11 6 0.47 0.5 1035 1074

Quick sort - queue 127 4 2 4.25 5.27 13218 21139
Total 2840 325 142 20.53 22.15 62553 78460

Table 3.1: Verification Performance with (w) and without (wo) Error Calculus

3.7.1 Calculus Performance for Heap-Based Programs

To evaluate the overheads of error calculus, we executed our system S2 twice,

once with error calculus and a second time without, on a suite of bug-free pointer-

based programs. We stress that although the sizes of these programs are fairly

small, they deal with fairly complex heap-based data structures, such as linked

lists, doubly-linked lists and AVL-trees. Therefore, these programs can be used to

fully evaluate the performance of our calculus which has been embedded inside a

separation logic prover. The results are summarized in Table 3.1. The first column

contains the list of the verified programs and their proven properties while the

second, third and fourth columns describe number of lines of code (LOC), number

of lines of specification (LOS) and number of procedures in each program (#P).

On average, LOS is around 12% of LOC and specifications are complicated enough

to demonstrate the performance of our calculus. The fifth and sixth columns show

the total verification time (in seconds) for the system S2 without and with error
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Programs LOC LOS #P. #V. #F. ℧ ⊤1 ⊤2 LOE time(s)
tcas 173 48 9 41 48 31 14 3 3.48 3.06

schedule2 374 108 16 10 10 5 0 3 3 8.25
schedule1a 412 50 18 10 16 15 0 1 4.38 18.13
schedule1b 413 50 18 9 8 7 0 1 4.25 32.29
replace 564 73 21 24 24 18 0 6 4.21 17.89

print tokens2 570 64 19 10 10 7 0 1 4.88 20.42
print tokens 726 87 18 7 9 8 0 1 3.67 6.73
Total/(Avr.) 3232 480 119 111 125 91 14 16 (3.98) (15.25)

Table 3.2: Bugs finding & localizing with programs in the Siemens Test Suite

calculus, respectively. The last two columns capture the number of satisfiability

and simplification queries sent to the provers for each experiment.

In Table 3.1, the results show that the total overhead introduced by our error

calculus is around 1.62 seconds (8%). This overhead is proportional to the

number of extra satisfiability and simplification queries shown in the last two

columns. These experimental results have shown that must/may error calculus

with messages can be supported with modest overhead.

3.7.2 Calculus Usability

In order to show the usability of our error calculus on bugs finding and localizing,

we evaluated our system on the Siemens test suite [52] of programs. The test

suite contains programs with complex data structures (e.g. linked lists, queues),

arrays and loops. Each program in the suite has #P number of procedures, has

one non-faulty version, v0, and a number of seeded faulty versions (#V). column

in Table 3.2) from v1 to vn. Each of these faulty versions has one or more (seeded)

faults. Total number of faults is captured in #F column. These faulty versions

are suitable for checking the ability of tools in finding bugs and localizing errors

(as used in [83]).We provide specifications for each program such that S2 (1)

successfully verifies safety (sound or complete requirements) in the non-faulty

versions, and (2) captures potential must-bug errors that are complementary to the
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safety scenarios. We emphasize that these specifications were designed primarily

to verify safety scenarios without considering the faulty versions of each program.

Nevertheless, S2 is able to utilize the same specification to find and explain the

presence of bugs in the faulty versions, as elaborated below.

Table 3.2 shows the result of running our system on six programs from the suite.

The properties our tool proved include: (i) memory safety (all), (ii) size of data

structures (schedule1a, schedule1b and schedule2 program), (iii) array-related

properties (tcas, print token, print token2 and replace program), (iv) functional

arithmetic constraints between input and output (all). We are interested in finding

out all the errors in the programs and classifying them as must (℧), disjunctive

may (⊤1) or may (⊤2) errors. For instance, from 48 faults of program tcas,

S2 was able to detect all the errors in the program, and classified 31 of them as

must (℧) errors, 14 as disjunctive may (⊤1) errors and 3 as may (⊤2) errors. In

summary, S2 detected 97% of real bugs including 73%, 11% and 13% of ℧, ⊤1

and ⊤2 errors, respectively.

However, a few errors were not detected by our system, e.g. v4, v9 of

schedule2 and v1, v2 of print tokens2 were verified successfully by S2. Upon

careful examination, we found that the substituted statement in v9 is

semantically equivalent with the non-faulty one in v0. Hence, we consider it as a

bug in constructing the benchmark rather than a real program bug. For v1, v2

and v4, there were omitted statements that are related to the I/O systems. For

instance, the following statement is omitted in v1:

if(ch == EOF) fprintf(stdout, “It can not get character”);

This was not picked up by our system since the specification of I/O operations

were not being modelled. It would be interesting to see I/O operations being

modelled in future.

Our calculus further supports debugging in localizing the errors. The LOE
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column shows the average number of lines of program code and specification

relevant to the errors for each program. We are able to provide concise (between

3-5 lines) error locations for all the bugs in the suite. Such short but accurate

localizations make it easier for users to comprehend the discovered errors. The

last column shows the average time which S2 took for verifying a faulty version

of each program.

Purely from the system point of view and on the assumption that specifications

have already been provided, S2 took on average 16 seconds for safety proving, bug

finding and error localization on one faulty version of each program.

3.8 Discussions

Recent work in first order relational logic [54, 80, 136] also addresses the problem

of finding bugs in programs with pointers and linked data structures. The method

is based on under approximation for loops and heap, thus it only finds the must

bugs in the code. Furthermore since they consider only postcondition violation

as a must error, they do not report on the more common bugs that are due to

preconditions. The underlying assumption in [80] is that most bugs can be found in

the program with small scope (loop unrolling) and small heap size. Our approach

is more comprehensive since it treats error conditions as first class values that can

be specified and we use predicates based on separation logic to represent the heap.

Static analysis based bug finding is not new and already exists for languages

like Java [59]. As static analysis suffers from precision problem, there have been

attempts to use dynamic or hybrid analysis for safety and bug finding. Check ’n’

Crash [42] uses dynamic analysis techniques on the constraints produced by

ESC/Java [59] to generate concrete test cases that can expose the true bugs. An

approach based on dynamic analysis to infer likely invariants from code is

implemented in [58]. Invariants discovered can be used as method annotations or
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assumptions, which can aid the static checker to detect bugs in the code [43].

This hybrid analysis uses a combination of under approximation and over

approximation by doing different phases of analysis. In our approach we do not

rely on dynamic analysis as our complete lattice can symbolically capture a

richer set of possible program states. Our method integrates both bug-finding

and safety proving within a single calculus, without prejudice to working with

dynamic-based analyses for maybe error scenarios. Another approach based on

dual analysis was presented in [46]. In this work, the may and must queries

corresponds to safety and liveness properties. They require both over- and

under-approximation and their conditions are computed with respect to a finite

abstraction for each particular property. In comparison, the conditions for our

must/may error are captured in terms of symbolic (infinite) domain that relies

on only over-approximation mechanisms. Moreover, we have also shown how our

error calculus can handle data structures accurately with must aliasing through

a simple integration with separation logic. Lastly, the use of negation on

postconditions to characterize errors have been explored in [83, 65]. Our

proposal supports must bug checking for not only postconditions of method

implementation but also preconditions of their method calls.

For explaining failure, while Bug Assist [83] uses maximum satisfiability

query to localize the errors, authors in [65] use a bounded model checker for

verifying abnormal predicates which are constructed from counterexamples and

negated specifications. In the domain of program optimization, Daniel et. al.

[137] describe how to explain failures in program analysis by reasons. The

reasons computed by their system constitute necessary and sufficient conditions

for the failure. In contrast, minimum satisfying assignments are used to compute

abductions in [48] to support error diagnosis. They handle error report

classification using proof obligations and failure witness derived from abductive
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inference. We use structural entailment rules to provide precise and concise error

explanations.

Traditionally, the way to precisely derive the error conditions is via a

backwards precondition calculation which was used by ESC/Java [26, 59, 72].

Snugglebug [26] has looked at ways to practically infer the potential error

conditions in real programs by means of directed call graph construction to

support weakest precondition calculation. However, they can only support may

aliasing in their work which hampers the analysis of pointer-based programs.

Our specification mechanism for must errors allows us to integrate the validation

of bug with verification, within the separation logic framework, thus supporting

a richer set of pointer-based programs. Similarly, to generate error conditions,

Exorcise [72] is based on weakest liberal precondition. However, Exorcise only

verifies must error conditions. Our calculus is more expressive (with verifying

not only must error but safety and maybe error) with the help of new

specification mechanism with explicit error scenarios.

Manually writing functional specifications for methods is costly, potentially

inaccurate and time consuming. Thus, having a toolset to automatically develop

and maintain program specifications is crucial to support a rigorous development

paradigm for reliable software. In the context of heap-manipulating programs,

specification inference relies on shape synthesis. In the next two chapters, we

shall introduce a foundation of shape specifications inference via second-order bi-

abduction.
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Chapter 4

Towards Specification Inference

We present second-order bi-abduction mechanism in order to integrate inference

capability into a modular-based verification system. In the context of pointer-

based programs, we specialize our mechanism to inferring shape specifications.

This forms a novel approach to shape analysis via the second-order bi-abductive

mechanism in separation logic. 1

In this chapter, we will present an overall discussion on the specification

inference approach, but focus on shape domain. After that, we present a shape

analysis mechanism via second-order bi-abduction. More concretely, we propose

an entailment procedure of separation logic that is capable of abduction and

frame inference. Finally, we provide an extension of the second-order

bi-abduction to infer the complete specification. The output of the shape

analysis will be further refined with a transformation in the next chapter.

4.1 From Shape Analysis to Shape Synthesis

An important challenge for automatic program verifiers lies in inferring shapes

describing abstractions for data structures used by each method. In the context

1In separation logic, Calcagno et al. [20] introduced bi-abduction as a combination of
abduction with frame inference.
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of heap manipulating programs, determining the shape abstraction is crucial for

proving memory safety and is a precursor to supporting functional correctness.

However, discovering shape abstractions can be rather challenging, as linked

data structures span a wide variety of forms, from singly-linked lists,

doubly-linked lists, circular lists, to tree-like data structures. Previous shape

analysis proposals have made great progress in solving this problem. However,

the prevailing approach relies on using a predefined vocabulary of shape

definitions (typically limited to singly-linked list segments) and trying to

determine if any of the pre-defined shapes fit the data structures used. This

works well with programs that use simpler shapes, but would fail for programs

which use more intricate data structures. An example is the method below

(written in C and adapted from [76]) to build a tree whose leaf nodes are linked

as a list.

struct tree { struct tree∗ parent; struct tree∗ l;

struct tree∗ r; struct tree∗ next;

}

struct tree∗ tll(struct tree∗ x, struct tree∗ p, struct tree∗ t) {

x->parent = p;

if (x->r==NULL) {

x->next=t;

return x;

}else{

struct tree∗ lm = tll(x->r, x, t);

return tll(x->l, x, lm); }

}

Our approach to modular shape analysis would introduce an unknown
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pre-predicate H (as the pre-condition), and an unknown post-predicate G (as the

post-condition), as shown below, where res is the method’s result.

requires H(x, p, t) ensures G(x, p, res, t)

Using Hoare-style verification and a new second-order bi-abduction entailment

procedure, we would derive a set of relational assumptions for the two unknown

predicates. These derived assumptions are to ensure memory safety, and can

be systematically transformed into concise predicate definitions for the unknown

predicates, such as:

H(x,p,t) ≡ x 7→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x 7→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t) ∧ r 6= NULL

G(x,p,res,t) ≡ x 7→tree(p,Dl,r,t) ∧ res=x∧r=NULL

∨ x 7→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r 6=NULL

Figure 4-1: An example of G(x,p,res,t)

The derived pre-predicate H captures a binary tree-like shape that would be

traversed by the method. x7→tree(Dp,Dl,r,Dn) denotes that x refers to a tree

node with its parent, l, r and next fields being Dp, Dl, r and Dn, respectively. We

use dangling references, such as Dl,Dp,Dn, as generic markers that denote field

pointers that are not traversed by the method. Thus no assertion can be made on

any of the D pointers. The post-predicate G, illustrated in Fig 4-1, adds parent
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field links for all nodes, and next field links for just the leaves. 2

Current shape analysis mechanisms [13, 20, 57] are unable to infer pre/post

specifications that ensure memory-safety for such complex examples. In this

paper, we propose a fresh approach to shape analysis that can synthesize, from

scratch, a set of shape abstractions that ensure memory safety. The central

concept behind our proposal is the use of unknown predicates (or second-order

variables) as place holders for shape predicates that are to be synthesized

directly from proof obligations gathered by our verification process. Our

proposal is based on a novel bi-abductive entailment that supports second-order

variables. The core of the new entailment procedure generates a set of relational

assumptions on unknown predicates to ensure memory safety. These

assumptions are then refined into predicate definitions, by predicate derivation

and normalization steps.

By building the generation of the required relational assumptions over unknown

predicates directly into the new entailment checker, we were able to integrate

our shape analysis into an existing program verifier with changes made only to

the entailment process, rather than the program verification/analysis itself. Our

proposed shape analysis thus applies an almost standard set of Hoare rules in

constructing proof obligations which are discharged through the use of a new

second-order bi-abductive entailment.

To sum up, we present a new modular shape analysis that can synthesize

heap memory specification on a per method basis. We rely on a second-order bi-

abduction mechanism that can give interpretations to unknown shape predicates

by inferring relational assumptions on unknown predicates, before a predicate

derivation and normalization process. There are several novel features in our

shape analysis. Firstly, it is grounded on second-order abduction rather than

2Note that new links formed by the method are dashed and colored in red.

76



deduction. Secondly we provide a heap guard mechanism to support more precise

preconditions for heap specification. Lastly, we provide a instantiation scheme to

guide the entailment procedure. Our approach has been proven sound and been

implemented on top of an existing automated verification system. We show its

versatility in synthesizing a wide range of intricate shape specifications.

Organization. We shall present the shape fragment of separation logic used

for the analysis in section 4.2. We introduce the second-order bi-abductive

mechanism in section 4.3. After that we describe the instantiation scheme and

formalism of the second-order bi-abduction in section 4.4. Section 4.5 presents

Hoare rules and section 5.5 highlights the soundness. The two last sections show

our implementation and a comparative remark.

4.2 Logic Syntax for Shape Specification

We revise the fragment of specification logic in section 2.2. We outline below the

fragment underlying the proposed analysis:

Disj. formula Φ ::= ∆ | Φ1 ∨ Φ2

Guarded Disj. Φg ::= ∆ | (∆ @ (κ∧π)) | Φg
1 ∨ Φg

2

Conj. formula ∆ ::= ∃v̄·(κ∧π)

Spatial formula κ ::= emp | ⊤ | v 7→c(v̄) | P(v̄) | U(v̄) | κ1∗κ2
Pure formula π ::= α | ¬α | π1∧π2
Var (Dis)Equality α ::= v|v1=v2|v=NULL|v1 6=v2|v 6=NULL

Pred. Defn. Pdef ::= P(v̄) ≡ Φg

Pred. Dict. Γ ::= {Pdef1 , . . . , Pdefn }

P ∈ Known Predicates U ∈ Unknown Predicates

c ∈ Data Nodes v ∈ Variables v̄ ≡ v1. . .vn
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We introduce ∆ @ (κ∧π), a special syntactic form called guarded heap that

capture a heap context κ∧π in which ∆ holds. Thus, ∆ @ (κ∧π) holds for heap

configurations that satisfy ∆ and that can be extended such that they satisfy

∆ ∗ κ∧π. In Sec.5.2 we will describe its use in allowing our shape inference to

incorporate path sensitive information in the synthesized predicates. The

assertion language is also extended with the following formula for describing

heaps: emp denoting the empty heap; ⊤ denoting an arbitrary heap (pointed by

dangling reference); points-to assertion, x 7→c(v̄), specifying the heap in which x

points to a data structure of type c whose fields contain the values v̄; known

predicate, P(v̄), which holds for heaps in which the shape of the memory

locations reachable from v̄ can be described by the P predicate; unknown

predicates, U(v̄), with no prior given definitions. Separation conjunction κ1∗κ2

holds for heaps that can be partitioned in two disjoint components satisfying κ1

and κ2, respectively. The pure formula captures only pointer equality and

disequality. We allow a special constant NULL to denote a pointer which does not

point to any heap location. Known predicates P(v̄) are defined inductively

through disjunctive formulas Φg . Their definitions are either user-given or

synthesised by our analysis. We will use Γ to denote the repository (or set) of

available predicate definitions. Through our analysis, we shall construct an

inductive definition for each unknown predicate, where possible. Unknown

predicates that have not been instantiated would not have any definition. They

denote data fields that are not accessed by their methods, and would be marked

as dangling pointers.

4.3 Overview of Shape Inference

Our approach on specification inference comprises three main steps: (i) inferring

relational assumptions for unknown predicates via Hoare-style verification, (ii)
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deriving predicates from relational assumptions, (iii) normalizing predicates. In

this chapter, we discuss the first step, the second-order bi-abduction mechanism.

The remain steps, step (ii) and step (iii), will be discussed in the next chapter.

For (i), a key machinery is the entailment procedure that must work with

second-order variables (unknown predicates). Previous bi-abduction entailment

proposals, pioneered by [20], would take an antecedent ∆ante and a consequent

∆conseq and return a frame residue ∆frame and the precondition ∆pre, such that

the following holds: ∆pre∗∆ante � ∆conseq∗∆frame . Here, all four components use

separation logic formulas based on known predicates with prior definitions.

Taking a different tact, we start with an existing entailment procedure for

separation logic with user-defined predicates, and extend it to accept formulas

with second-order variables such that given an antecedent ∆ante and a consequent

∆conseq the resulting entailment procedure infers both the frame residue ∆frame

and a set (or conjunction) of relational assumptions (on unknowns) of the form

R =
∧n

i=1(∆i ⇒ Φg
i) such that:

R ∧ ∆ante � ∆conseq∗∆frame

The inferred R ensures the entailment’s validity. We shall use the following

notation ∆ante ⊢ ∆conseq❀ (R,∆frame) for this second-order bi-abduction process.

There are two scenarios to consider for unknown predicates: (1) ∆ante contains

an unknown predicate instance that matched with a points-to or known predicate

in ∆conseq; (2) ∆conseq contains an unknown predicate instance. An example of the

first scenario is:

U(x) ⊢ x7→snode(n)❀ (U(x)⇒x7→snode(n)∗U0(n), U0(n))

Here, we generated a relational assumption to denote an unfolding (or

instantiation) for the unknown predicate U to a heap node snode followed by
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another unknown U0(n) predicate. The data structure snode is defined as

struct snode { struct snode∗ next}. A simple example of the second scenario is

shown next.

x7→snode(NULL)∗y7→snode(NULL) ⊢ U1(x)❀ (x7→snode(NULL)⇒U1(x), y7→snode(NULL))

The generated relational assumption depicts a folding process for unknown U1(x)

which captures a heap state traversed from the pointer x. Both folding and

unfolding of unknown predicates are crucial for second-order bi-abduction. To

make it work properly for unknown predicates with multiple parameters, we

shall later provide a novel #-annotation scheme to guide these processes. For the

moment, we shall use this annotation scheme implicitly. Consider the following

method which traverses a singly-linked list and converts it to a doubly-linked list

(let us ignore the states α1, .., α5 for now):

struct node { struct node∗ prev; struct node∗ next}

void sll2dll(struct node∗ x, struct node∗ q)

{(α1) if (x==NULL)

(α2) return;

(α3) x->prev = q;

(α4) sll2dll(x->next, x); (α5)

}

To synthesize the shape specification for this method, we introduce two

unknown predicates, H for the pre-condition and G for the post-condition, as

below.

requires H(x, q) ensures G(x, q)

We then apply code verification using these pre/post specifications with

unknown predicates and attempt to collect a set of relational assumptions (over
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(A1).H(x, q) ∧ x=NULL⇒ G(x,q)

(A2).H(x, q) ∧ x 6=NULL⇒
x 7→node(xp, xn)∗Hp(xp, q)∗Hn(xn, q)

(A3).Hn(xn, q)⇒ H(xn, x) @ x 7→node(q, xn)

(A4).x 7→node(q,xn)∗G(xn,x)⇒ G(x,q)

(a)
(α1). H(x,q)

(α2). H(x, q)∧x=NULL
(α3). x 7→node(xp,xn)∗Hp(xp,q)∗Hn(xn,q)∧x 6=NULL
(α4). x 7→node(q, xn)∗Hp(xp, q)∗Hn(xn, q)∧x 6=NULL
(α5). x 7→node(q, xn)∗Hp(xp, q)∗G(xn, x)∧x 6=NULL

(b)

Figure 4-2: Relational assumptions (a) and program states (b) for sll2dll

the unknown predicates) that must hold to ensure memory-safety. These

assumptions would also ensure that the pre-condition of each method call is

satisfied, and that the coresponding post-condition is ensured at the end of the

method body. For example, our analysis can infer four relational assumptions for

the sll2dll method as shown in Fig. 4-2(a).

These relational assumptions include two new unknown predicates, Hp and Hn,

created during the code verification process. All relational assumptions are of

the form ∆lhs⇒∆rhs, except for (A3) which has the form ∆lhs⇒∆rhs @∆g where

∆g denotes a heap guard condition. Such heap guard condition allows more

precise pre-conditions to be synthesized (e.g. Hn in (A3)), and is shorthand for

∆lhs∗∆g⇒∆rhs∗∆g.

Let us look at how relational assumptions are inferred. At the start of the

method, we have (α1), shown in Fig. 4-2 (b), as our program state. Upon exit

from the then branch, the verification requires that the postcondition G(x, q) be

established by the program state (α2), generating the relational assumption (A1)
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via the following entailment:

(α2) ⊢ G(x,q) ❀ (A1, emp ∧ x=NULL) (E1)

To get ready for the field access x->prev, the following entailment is invoked to

unfold the unknown H predicate to a heap node, generating the relational

assumption (A2):

H(x, q)∧x 6=NULL ⊢ x 7→node(xp,xn) ❀ (A2, Hp(xp,q)∗Hn(xn,q) ∧ x 6=NULL) (E2)

Two new unknown predicates Hp and Hn are added to capture the prev (xp) and

next (xn) fields of x (i.e. they represent heaps referred to by xp and xn respectively).

After binding, the verification now reaches the state (α3), which is then changed

to (α4) by the field update x->prev = q. Relational assumption (A3) is inferred

from proving the precondition H(xn,x) of the recursive call sll2dll(x->next, x) at

the program state (α4):

(α4) ⊢ H(xn, x) ❀ (A3, x 7→node(q,xn)∗Hp(xp,q)∧x 6=NULL) (E3)

Note that the heap guard x 7→node(q, xn) from (α4) is recorded in (A3), and is

crucial for predicate derivation. The program state at the end of the recursive call,

(α5), is required to establish the post-condition G(x, q), generating the relational

assumption (A4):

(α5) ⊢ G(x,q) ❀ (A4, Hp(xp,q)∧x 6=NULL) (E4)

These relational assumptions are automatically inferred symbolically during

code verification.
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(1).H(x,p,t)⇒ x 7→tree(xp,l,r,n)∗Hp(xp,p,t)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)
(2).Hr(r,p,t) ∧ r 6=NULL @ x 7→tree(p,l,r,n)⇒ H(r,x,t)
(3).Hl(l,p,t)⇒ H(l,x,lm) @ (x 7→tree(p,l,r,n) ∧ r 6=NULL)
(4).Hl(l,p,t)∗Hr(r,p,t)∗x 7→tree(p,l,r,t)∧r=NULL∧res=x⇒ G(x,p,res,t)
(5).Hn(n,p,t) ∗ x 7→tree(p,l,r,n) ∗ G(r,x,lm,t) ∗ G(l,x,res,lm)∧

r 6=NULL⇒ G(x,p,res,t)

Figure 4-3: Relational assumptions for tll

The tll example. Let us revisit the tll example shown in section 4.1. To

synthesize the shape specification for this method, we introduce two unknown

predicates, H for the pre-condition and G for the post-condition, as mentioned

earlier.

requires H(x, p, t) ensures G(x, p, res, t)

We then apply code verification using these pre/post specifications with

unknown predicates and attempt to collect a set of relational assumptions (over

the unknown predicates) that must hold to ensure memory-safety. These

assumptions would also ensure that the pre-condition of each method call is

satisfied, and that the post-condition is ensured at the end of its method body.

For example, our analysis can infer the following five relational assumptions

for the tll method as in Figure 4-3.

Our relational assumptions include four new unknown predicates, Hp, Hl, Hr and

Hn, that were created during the code verification process.

Let us look at how relational assumptions are inferred. For illustration, we

83



annotate program states into the tll example as follows:

struct tree∗ tll(struct tree∗ x, struct tree∗ p, struct tree∗ t) {

(S1)x->parent = p;

(S2)if (x->r==NULL) {

(S3) x->next=t; (S6)

return x; }

else{

(S4) struct tree∗ lm = tll(x->r, x, t);

(S5) return tll(x->l, x, lm); (S7) }

}

(S1). H(x,p,t)

(S2). x 7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∗Hp(xP ,p,t)

(S3). x 7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∧r=NULL

(S4). x 7→tree(p,l,r,n)∗Hl(l,p,t)∗Hr(r,p,t)∗Hn(n,p,t)∧r 6=NULL

(S5). x 7→tree(p,l,r,n)∗Hl(l,p,t)∗G(r,x,lm,t)∗Hn(n,p,t)∧r 6=NULL

(S6). x 7→tree(p,l,r,t)∗Hl(l,p,t)∗Hr(r,p,t)∧r=NULL∧res=x

(S7). x 7→tree(p,l,r,n)∗G(l,x,res,lm)∗G(r,x,lm,t)∗Hn(n,p,t)∧r 6=NULL

At the start of the method, we have (S1), shown above, as our program state.

Due to a field update, x->parent, relational assumption (1) was inferred which

lead to (S2). The conditional evaluation led to (S3) and (S4), as the program

states at the start of the then-branch and else-branch, respectively. Relational

assumption (2) was then inferred from proving pre-condition H(r, x, t) of

recursive call tll(x->r, x, t) under (S4), yielding program state (S5). Also, (3)

was inferred from proving pre-condition H(l, x, lm) of the second recursive call

tll(x->l, x, lm). When inferring (3), heap guard x 7→tree(p, l, r, n)∧r 6=NULL from
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the program state (S5) was used, since Hl(l, p, t)⇒H(l, x, lm), by itself, neither

capture a connected context r 6=NULL from the then-branch, nor properly

instantiate the back (parent) pointer x. The program state (S6) at the end of

then-branch was then used to prove post-condition G(x, p, res, t). This proving

lead to relational assumption (4). Similarly, program state (S7) at the end of the

else-branch, which assumed G(r,x,lm,t)∗G(l,x,res,lm) from the two recursive

calls, would infer (5) when proving the post-condition of the method itself.

These relational assumptions are inferred symbolically during code verification

with the help of second-order bi-abduction mechanism that we are proposing.

They are also being modularly inferred on a per method basis, using automatically

generated template pre/post conditions with unknown predicates.

Compared to some prior shape analyses, such as [57, 68], which requires the

entire program to be available for analysis, our approach can perform this task

modularly on a per method basis instead.

Our approach currently works only for shape abstractions of tree-like data

structures with forward and back pointers. We are unable to infer specifications

for graph-like or overlaid data structures yet. These abstractions are being inferred

modularly on a per method basis. The inferred preconditions are typically the

weakest ones that would ensure memory safety, and would be applicable to all

contexts of use. We shall next elaborate and formalise on our second-order bi-

abduction process.

4.4 Second-Order Bi-Abduction

We have seen the need for a bi-abductive entailment procedure to systematically

handle unknown predicates. To cater to predicates with multiple parameters, we

shall use an automatic #-annotation scheme to support both unfolding and

folding of unknown predicates. Consider a predicate U(v1, .., vn, w1#, .., wm#),
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where parameters v1, .., vn are unannotated and parameters w1, .., wm are

#-annotated. From the perspective of unfolding, we permit each variable from

v1, .., vn to be instantiated at most once (we call them instantiatable), while

variables w1, .., wm are disallowed from instantiation (we call them

non-instantiatable). This scheme ensures that each pointer is instantiated at

most once, and avoids formulas, like U3(y, y) or U2(r, y)∗U3(y, x#), from being

formed. Such formulas, where a variable may be repeatedly instantiated, may

cause a trivial false pre-condition to be inferred. Though sound, it is imprecise.

From the perspective of folding, we allow heap traversals to start from variables

v1, .., vn and would stop whenever references to w1, .., wm are encountered. This

allows us to properly infer segmented shape predicates and back pointers. Our

annotation scheme is fully automated, as we would infer the #-annotation of

pre-predicates based on which parameters could be field accessed; while

parameters of post-predicates are left unannotated. For our running example,

since q parameter is not field accessed (in its method’s body), our automatic

annotation scheme would start with the following pre/post specification:

requires H(x, q#) ensures G(x, q)

Unfold. The entailment below results in an unfolding of the unknown H

predicate. It is essentially (E2) in Sec 4.3, except that q is marked explicitly as

non-instantiatable.

H(x, q#)∧x 6=NULL ⊢ x 7→node(xp, xn)❀ (A2,∆1) (E2′)

With non-instantiatable variables explicitly annotated, the assumption (A2)

becomes:

A2 ≡ H(x, q#)∧x 6=NULL ⇒ x 7→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)
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As mentioned earlier, we generated a new unknown predicate for each pointer

field (Hp for xp, and Hn for xn), so as to allow the full recovery of the shape of the

data structure being traversed or built. Note that each x, xp, xn appears only once

in unannotated forms, while the annotated q# remains annotated throughout to

prevent the pointer from being instantiated. If we allow q to be instantiatable in

(E2′) above, we will instead obtain:

H(x, q)∧x 6=NULL ⊢ x 7→node(xp, xn)❀ (A2′,∆′
1)

We get

A2′ ≡ H(x, q)∧x 6=NULL ⇒ x 7→node(xp, xn)∗Hp(xp, q#)∗Hn(xn, q#)∗U2(q, x#),

where the unfolding process creates extra unknown predicate U2(q, x#) to capture
shape for q.

Our proposal for instantiating unknown predicates is also applicable when

known predicates appear in the RHS. These known predicates may have

parameters that act as continuation fields for the data structure. An example is

the list segment lseg(x, p) predicate where the parameter p is a continuation

field.
ll(x) ≡ emp∧x=NULL ∨ x 7→snode(n) ∗ ll(n)

lseg(x, p) ≡ emp∧x=p ∨ x 7→snode(n) ∗ lseg(n, p)

Where snode (defined in the previous section) denotes singly-linked list node. Note

that continuation fields play the same role as fields for data nodes. Therefore,

for such parameters, we also generate new unknown parameters to capture the

connected data structure that may have been traversed. We illustrate this with

two examples:

U(x) ⊢ ll(x)❀ (U(x)⇒ll(x), emp)

U(x) ⊢ lseg(x, p)❀ (U(x)⇒lseg(x, q)∗U2(q), U2(p))

The first predicate ll(x) did not have a continuation field. Hence, we did not
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generate any extra unknown predicate. The second predicate lseg(x, p) did have

a continuation field p, and we generated an extra unknown predicate U2(p) to

capture a possible extension of the data structure beyond this continuation field.

Fold. A second scenario that must be handled by second-order entailment

involves unknown predicates in the consequent. For each unknown predicate

U1(v̄, w̄#) in the consequent, a corresponding assumption ∆⇒U1(v̄, w̄#) @∆g is

inferred where ∆ contains unknown predicates with at least one instantiatable

parameters from v̄, or heaps reachable from v̄ (via either any data fields or

parameters of known predicates) but stopping at non-instantiatable variables w̄#;

a residual frame is also inferred from the antecedent (but added with pure

approximation of footprint heaps [33]). For example, consider the following

entailment:

x 7→snode(q)∗q 7→snode(NULL)∧q 6=NULL ⊢ U1(x, q#)❀ (Af1,∆1)

The output of this entailment is:

Af1 ≡ x 7→snode(q)∧q 6=NULL⇒U1(x, q#) ∆1 ≡ q 7→snode(NULL)∧x 6=NULL∧x 6=q

As a comparison, let us consider the scenario where q is unannotated, as follows:

x 7→snode(q)∗q 7→snode(NULL)∧q 6=NULL ⊢ U1(x, q)❀ (Af2,∆2)

In this case, the output of the entailment becomes:

Af2 ≡ x 7→snode(q)∗q 7→snode(NULL) ⇒ U1(x, q) ∆2 ≡ x 6=NULL∧q 6=NULL∧x 6=q

Moreover, the folding process also captures known heaps that are reachable from

#-parameters as heap guard conditions, e.g. x7→node(q, xn) in our running example
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(E3):

x 7→node(q,xn)∗Hp(xp,q#)∗Hn(xn,q#)∧x6=NULL ⊢ H(xn, x#)

❀ (Hn(xn, q#)⇒ H(xn, x#) @x 7→node(q, xn), x 7→node(q,xn)∗Hp(xp,q#)∧x6=NULL) (E3′)

Such heap guards help with capturing the relations of heap structures and

recovering those relationships when necessary (e.g. back-pointer x#).

Formalism. Bi-abductive unfold is formalized in Fig. 4-4. Here, project(w̄, π)

is an auxiliary function that existentially quantifies in π all free variables that

are not in the set w̄. Thus it eliminates from π all subformulas not related to

[SO-ENTAIL-UNFOLD]
κs ≡ r 7→c(p̄) or κs ≡ P(r, p̄)

κf = ∗pj∈p̄ Uj(pj , v̄i#, v̄n#) κr = Urem(v̄i, v̄n#, r#) where Ur, Uj : fresh preds
πa = project({r, v̄i, v̄n, p̄}, π1) πc = project({p̄}, π2)

σ ≡ (U(r, v̄i, v̄n#) ∧ πa ⇒ κs ∗κf ∗κr ∧ πc)
κ1 ∗ κf ∗κrem ∧ π1 ⊢ κ2 ∧ π2❀ (R,∆R)

U(r, v̄i, v̄n#)∗κ1∧π1 ⊢ κs∗κ2∧π2❀ (σ∧R,∆R)

Figure 4-4: Bi-Abductive Unfolding.

w̄ (e.g. project({x, q}, q=NULL∧y>3) returns q=NULL). In the first line, a RHS

assertion, either a points-to assertion r7→c(p̄) or a known predicate instance P(r, p̄)

is paired through the parameter r with the unknown predicate U. Second, the

unknown predicates Uj are generated for the data fields/parameters of κs. Third,

the unknown predicate Urem is generated for the instantiatable parameters v̄i of

U. The fourth and fifth lines compute relevant pure formulas and generate the

assumption, respectively. Finally, the unknown predicates κf and κr are combined

in the residue of LHS to continue discharging the remaining formula in RHS.

Bi-abductive fold is formalized in Fig. 4-5. The function reach(w̄, κ1∧π1, z̄#)

extracts portions from the antecedent heap (κ1) that are (1) unknown predicates

containing at least one instantiatable parameter from w̄; or (2) point-to or
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known predicates reachable from w̄, but not reachable from z̄. In our running

example (the entailment (E3′) on last page), the function

reach({xn},x 7→node(q, xn)∗Hp(xp, q#)∗Hn(xn, q#)∧x 6=NULL,{x#}) is used to

obtain Hn(xn, q#). More detail on this function is in the report [89]. The

heaps(∆) function enumerates all known predicate instances (of the form P(v̄))

and points-to instances (of the form r 7→c(v̄))) in ∆. The function root(κ) is

defined as: root(r 7→c(v̄)))={r}, root(P(r, v̄)) = {r}. In the first line, heaps of LHS

are separated into the assumption κ11 and the residue κ12. Second, heap guards

[SO-ENTAIL-FOLD]
κ11=reach(w̄, κ1∧π1, z̄#) ∃κ12 · κ1=κ11∗κ12

κg = ∗{κ | κ∈heaps(κ12)∧root(κ)⊆z̄} r̄=
⋃

κ∈κg
root(κ)

σ ≡ (κ11∧project(w̄, π1) ⇒ Uc(w̄, z̄#) @κg∧project(r̄, π1))
κ12 ∧ π1 ⊢ κ2 ∧ π2 ❀ (R,∆R)

κ1 ∧ π1 ⊢ Uc(w̄, z̄#) ∗ κ2 ∧ π2 ❀ (σ∧R,∆R)

Figure 4-5: Bi-Abductive Folding.

(and their root pointers) are inferred based on κ12 and the #-annotated

parameters z̄. The assumption is generated in the third line and finally, the

residual heap is used to discharge the remaining heaps of RHS.

4.5 Hoare Rules for Shape Inference

By supporting relational assumptions in the entailment prover, we were able to

support shape analysis within an existing program verifier. We were able to

leverage on the arithmetic reasoning capability of the verifier presented in [33] to

move beyond purely shape analysis. Though we use C as our source language,

we translate it into a core imperative language that supports a mutable

heap-based data structures (datat) and a set of methods (meth). The language is

presented in Figure 4-6. A method declaration includes a prototype,
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Program ::= datat∗ meth∗

datat ::= data c { field∗ }
field ::= t v t ::= int | bool | void | c | . . .
meth ::= t mn (([ref] t v)∗) Φpr Φpo; {e}
e ::= NULL | kτ | v | v.f | v=e | v.f=e | new c(v∗)

| e1; e2 | t v; e | mn(v∗)| if v then e1 else e2

Figure 4-6: Core Imperative Language.

pre-/post-condition and its body code. Methods can have call-by-reference

parameters (prefixed with ref). Loops are included by transforming to

tail-recursive methods with ref parameters to capture mutable variables. Code

verification is formulated as a validity proof of a Hoare-style triple

⊢ {∆pre}e{∆post}, where ∆pre denotes a formula abstracting pre-states from

which program code e can safely run and ∆post denotes a formula abstraction of

all possible post states. To support shape analysis, we extend the formulation to:

⊢ {∆pre} e {R,∆post}

where R accumulates the set of relational assumptions generated by the

entailment procedure. To support inference, the specification may contain

unknown predicates in preconditions, where they are classified as pre-predicates,

or unknown predicates in postconditions, where they are classified as

post-predicates. For clarity, we occasionally denote pre-predicates using U
pre

i and

post-predicates using U
post

i .

We list below the resulting verification rules for field access, method calls and

method declaration as shown in Figure 4-7. Note that the primed variable (e.g. x′)

denotes the latest value (of the program variable x). The formula ∆1∗̄v∆2 denotes

∃r̄ · ([r̄/v̄′]∆1) ∗ ([r̄/v̄]∆2) ([33]).

The key outcome is that if a solution for the set of relational assumptions R

can be found, the program is memory-safe and all the methods abide by their
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[SA-FLD-RD]

data c {t1 f1, .., tn fn} ∈ Program ∆1 ⊢ x′ 7→c(v1..vn)❀ (R,∆3)

∆4=∃v1..vn · (∆3∗x′ 7→c(v1..vn)∧res=vi)

⊢ {∆1} x.fi {R,∆4}
[SA-METH]

⊢ {Φpr∧
∧

(u′=u)∗} e {R1,∆1} ∆1 ⊢ Φpo ❀ (R2,∆2)
Γ = solve(R1∪R2)

t0 mn ((t u)∗) Φpr Φpo {e}
[SA-CALL]

t0 mn ((ref ti vi)
m−1
i=1, (tj vj)

n
j=m) Φpr Φpo; {e} ∈ Program

ρ=[v′k/vk]
n
k=1 Φ′

pr = ρ(Φpr) W={v1, .., vm−1} V={vm, .., vn}
∆ ⊢ Φ′

pr ❀ (R,∆2) ∆3=(∆2 ∧
∧n

i=m(v
′
i = vi)) ∗V ∪W Φpo

⊢ {∆} mn(v1, .., vm−1, vm, .., vn) {R,∆3}

Figure 4-7: Hoare Rules for Shape Inference.

specifications. Furthermore, we propose a bottom-up verification process which

is able to incrementally build suitable predicate instantiations one method at a

time by solving the collected relational assumptions R progressively. Our main

procedure (solve) consists of two separate operations described in the next

chapter: predicate synthesis, pred syn, and predicate normalization, pred norm.

That is solve(R) = pred norm(pred syn(R)). After the method is successfully

verified, the resulting predicate definitions Γ provide an interpretation for the

unknown predicates appearing in the specifications such that memory safety is

guaranteed. By returning Γ, the method verification allows the inferred

definitions and specifications to be consistently reused in the verification of the

remaining methods.

4.6 Soundness of Bi-Abductive Entailment

For brevity, we introduce the notation R(Γ) to denote a set of predicate

instantiations Γ satisfying the set of assumptions R. That is, for all assumptions
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∆⇒ Φg ∈ R, (i) Γ contains a predicate instantiation for each unknown predicate

appearing in ∆ and Φg ; (ii) by interpreting all unknown predicates according to

Γ, then it is provable that ∆ implies Φg , written as Γ : ∆ ⊢ Φg

With respect to the abduction phase, soundness requires that if all the

relational assumptions generated are satisfiable, then the entailment is valid.

Lemma 1. Let R be the set of relational assumptions returned by our bi-abductive

entailment checker:

∆ante ⊢ ∆conseq❀ (R,∆frame)

If there exists Γ={U1(v̄1)≡∆1, ..Un(v̄n)≡∆n}, a set of instantiations for unknown

predicates such that R(Γ), then the following entailment holds:

Γ : ∆ante ⊢ ∆conseq ∗∆frame.

Proof See Appendix .2.1.

4.7 Implementation

We have implemented the proposed shape analysis within a separation logic

verification system. The resulting verifier, called S2, uses the CIL infrastructure

[112] to support heap-based C programs. Our translation converts each

C-program to an expression-oriented core language with heap allocation.

Stack-allocated data structures are mimicked as heap-allocations that are

disposed at the exit of their declaration block. This allow us to guarantee

memory safety for stack accesses too. Each loop is converted to a tail-recursive

method, with pass-by-reference semantics for variables that are being updated.

Our tool utilizes external provers, e.g. Omega [125] and Z3 [45], to discharge

pure proof obligations. Our analysis modularly infers the pre/post specification

for each method. It attempts to provide the weakest possible precondition to

ensure memory safety (from null dereferencing and memory leaks), and the
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strongest possible post-condition on heap usage pattern, where possible.

We have explored the generality and efficiency of the proposed analysis through

a number of small but challenging examples. We have evaluated programs which

manipulate a wide range of data structures. The evaluation showed that our

proposed shape analysis can handle recursive methods with an expressive fragment

of shape predicate including lists (singly-, doubly-linked, nested and skip variants),

trees (binary, rose and mcf) and combinations (e.g. tll: trees whose leaves are

chained in a linked list).

4.8 Discussion

A significant body of research has been devoted to shape analysis. Most proposals

are orthogonal to our work as they focus on determining shapes based on a fixed

set of shape domains. For instance, the analysis in [106] can infer shape and certain

numerical properties but is limited to the linked list domain. The analyses from

[9, 13, 51, 66, 100, 138] are tailored to variants of lists and a fixed family of list

interleavings. Likewise, Calcagno et al. [21] describe an analysis for determining

lock invariants with only linked lists. Lee et al. [94] presents a shape analysis

specifically tailored to overlaid data structures. In the matching logic framework,

a set of predicates is typically assumed for program verification [131]. The work

[5] extends this with specification inference. However, it currently does not deal

with the inference of inductive data structure abstractions.

The proposal by Magill et al. [106, 135] is able to infer numerical properties.

While the former is still parametric in the shape domain, the latter is not fully

automatic. Similarly, the separation logic bi-abduction described in [20, 70]

assumes a set of built-in or user-defined predicates. Xisa, a tool presented by

Rival et. al. [28], works on programs with more varied shapes as long as

structural invariant checkers, which play the role of shape definitions, are
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provided. A later extension [130] also considers shape summaries for procedures

with the additional help of global analysis. Other similarly parameterized

analysis includes [62]. In comparison, our approach is built upon the foundation

of second-order bi-abductive entailment, and is able to infer unknown predicates

from scratch or guided by user-supplied assertions. This set-up is therefore

highly flexible, as we could support a mix of inference and verification, due to

our integration into an existing verification system.

With respect to fully automatic analyses, there are [16], [68] and the Forester

system [73]. Although very expressive in terms of the inferred shape classes, the

analysis proposed by Guo et al. [68] relies on a heavy formalism and depends

wholly on the shape construction patterns being present in the code. They

describe a global analysis that requires program slicing techniques to shrink the

analyzed code and to avoid noise on the analysis. Furthermore, the soundness

of their inference could not be guaranteed; therefore a re-verification of the

inferred invariants is required. Brotherston and Gorogiannis [16] propose a novel

way to synthesize inductive predicates by ensuring both memory safety and

termination. However, their proposal is currently limited to a simple imperative

language without methods. A completely different approach is presented in the

Forrester system [73] where a fully automated shape synthesis is described in

terms of graph transformations over forest automata. Their approach is based on

learning techniques that can discover suitable forest automata by incrementally

constructing shape abstractions called boxes. However, their proposal is

currently restricted both in terms of the analysed programs, e.g. recursion is not

yet supported, and in terms of the inferred shapes, as recursive nested boxes

(needed by tll) are not supported.

In the TVLA tradition, [129] describes an interprocedural shape analysis for

cut-free programs. The approach explores the interaction between framing and
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the reachability-based representation. Other approaches to shape analysis include

grammar-based inference, e.g. [95] which relies on inferred grammars to define

the recursive backbone of the shape predicates. Although [95] is able to handle

various types of structures, e.g. trees and dlls, it is limited to structures with only

one argument for back pointers. [102] employs inductive logic programming (ILP)

to infer recursive pure predicates. While, it might be possible to apply a similar

approach to shape inference, there has not yet been any such effort. Furthermore,

we believe a targeted approach would be able to easily cater for the more intricate

shapes. Since ILP has been shown to effectively synthesize recursive predicates, it

would be interesting to explore an integration of ILP with our proposal for inferring

recursive predicates of both shape and pure properties. A recent work [64] that

aims to automatically construct verification tools has implemented various proof

rules for reachability and termination properties however it does not focus on

the synthesis of shape abstractions. In an orthogonal direction, [47] presents an

analysis for constructing precise and compact method summaries. Unfortunately,

both these works lack the ability to handle recursive data structures.
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Chapter 5

Derivation and Transformation of

Shape Predicates

Given a set of relational assumption on unknown shape predicates, we propose a

solver with a set of derivation rules to infer sound definitions to the shape

predicates. To distinguish unknown pre-predicates in pre-conditions from

unknown post-predicates in post-condition, we invoke a sound mechanism to split

relational assumptions at shared base formulas. For a precise synthesis of

pre-predicates, we presented a heap guard mechanism to capture spatial context

while generating relational assumptions, we now show how to derive context of

predicate definitions, and to employ such context of the definitions during

performing inline. The proposed shape solver will be presented in section 5.2.

As shape analysis typically follows the structure of programs, it may produce

overtly complicated result and occasionally can not be immediately used by

verification systems. In our framework, the shape solver above may produce a

set of inductive predicate definitions that are beyond the capability of entailment

procedures. Especially, in a modular shape analysis, shape predicates inferred for

specifications of callees may involve in proof obligations generated to prove the

correctness of callers. Such obligations may contain different shape predicates.
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However, reasoning with different shape predicates have not been well supported

by existing entailment procedures of separation logic. A direct solution to handle

such reasoning requires capability of induction proving, like cyclic proof

presented in [17]. But the cyclic technique has not been extended to infer heap

frame. And thus, it can not be deployed in the modular reasoning. Instead of

enhancing decision procedure with such a hard requirement, we propose an

indirect solution to match predicates which have different syntactical names but

are semantically equivalent. More concretely, we propose a transformational

approach to classify shape predicates into equivalent sets. This helps to minimize

the requirement of proving among different predicates. The proposed approach

has been implemented through two phases. In the first phase, it simplifies shape

predicates by eliminating predicate without definition and eliminating useless

parameters of predicates to increase the opportunity of predicate matching. In

the second phase, it semantically matches predicates via a new lemma

mechanism. As expected, inferred specifications are more concise with smaller

number of equivalent sets of predicates. The proposed transformation will be

presented in section 5.4.

5.1 Illustration

We would like to remind that our approach on specification inference comprises

three main steps: (i) inferring relational assumptions for unknown predicates via

Hoare-style verification, (ii) deriving predicates from relational assumptions, (iii)

normalizing predicates. We discussed the first step, the second-order bi-abduction

mechanism, in the previous chapter. In this chapter, we discuss step (ii) and step

(iii), a transformation of the output from step (i). The transformation takes a set

of relational assumptions over unknown predicates as input, then it will (ii) derive

predicates from relational assumptions, (iii) normalize predicates.
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5.1.1 The sll2dll Example

With the set of relational assumptions inferred by the shape analysis in Figure

4-2, we proceed to transform them as follows. For (ii), we employ a predicate

derivation procedure to transform (by either equivalence-preserving or abductive

steps) the set of relational assumptions into a set of predicate definitions. Sec. 5.2

gives more details on predicate derivation. For our sll2dll example, we initially

derive the following predicate definitions (for H and G):

H(x, q) ≡ emp∧x=NULL ∨ x 7→node(xp, xn) ∗ Hp(xp, q) ∗ H(xn, x)

G(x, q) ≡ emp∧x=NULL ∨x 7→node(q, xn) ∗ G(xn, x)

Although the definition of the shape predicate H is sound, it is not easy to realize
that H is a full singly-linked list. Thus we proceed to the last step, step (iii), for a

further simplification.

In the last step, we use a normalization procedure to simplify the definition of

predicate H. Since Hp is discovered as a dangling predicate, the special variable Dp

corresponds to a dangling reference introduced:

H(x, q) ≡ emp∧x=NULL ∨ x 7→node(Dp, xn) ∗ H(xn, x).

Furthermore, we can synthesize a more concise H2 from H by eliminating its useless

q parameter:

H(x, q) ≡ H2(x)

H2(x) ≡ emp∧x=NULL ∨ x 7→node(Dp, xn) ∗ H2(xn)

As can be seen, the predicate H2 is a singly-linked list and H is equivalent to H2.

If singly-linked list (named sll) and doubly-linked list (named dll) predicates

are provided in advance, the predicates H, H2 and G would be matched as:

H(x, q) ≡ sll(x) H2(x) ≡ sll(x) G(x,q) ≡ dll(x,q)
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5.1.2 The tll Example

Similarly, with the set of relational assumptions inferred by the shape analysis in

Figure 4-3, we proceed to transform them in this chapter. The tll example will

be used as a running example to highlight our derivation and normalization in

this chapter. For a summary, at the end our transformation can synthesize the

following predicate definitions (for H and G):

H(x,p,t) ≡ x 7→tree(Dp,Dl,r,Dn)∧r=NULL

∨ x 7→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t) ∧ r 6= NULL

G(x,p,res,t) ≡ x 7→tree(p,Dl,r,t) ∧ res=x∧r=NULL

∨ x 7→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r 6=NULL

The variables Dl, Dp and Dn correspond to dangling predicates that have not been

field accessed. Note that for memory safety, the input tree x must contain at

least one node and that x->l must be non-null when x->r is non-null. These

requirements are captured by our synthesized pre-predicate.

5.2 Deriving Shape Predicates

Given a set of the relational assumptions, we proceed to split them into two

sets: a set of relational assumptions of pre-predicates and another set of relational

assumptions of post-predicates. We then apply a series of refinement steps in order

to derive predicate definitions for each pre- and post-predicate.

5.2.1 Algorithm Outline

Fig. 5-1 outlines our strategy for applying the refinement steps. We use the

[Syn-∗] notation for refinement rules that are described in later sub-sections.

First, assumptions on pre-predicates from those on post-predicates are separated
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function pred syn( R)
Γ← ∅
R ← exhaustively apply [Syn-Base] on R
Rpre,Rpost ← sort-group(R)
while Rpre 6=∅ do

Upre, σ ← pick unknown and select related assumptions in Rpre

U
pre

def← apply [Syn-Case], [Syn-Group-Pre],[Syn-Pre-Def] on σ
Rpre,Rpost ← inline Upredef in (Rpre \ σ) and Rpost

Γ← Γ ∪ {Upredef}
end while
while Rpost 6=∅ do

Upost, σ ← pick unknown and select related assumptions in Rpost

U
post

def ← apply [Syn-Group-Post], [Syn-Post-Def] on σ
discharge Upost obligations
Rpost ← Rpost \ σ Γ← Γ ∪ {Upostdef }

end while
return Γ

end function

Figure 5-1: Shape Derivation Outline

by splitting base-case constraints in relational assumptions with both types of

predicates.

5.2.2 Base Splitting of Pre/Post-Predicates

[Syn-base]
σ : Upre(x̄)∗κ∧π ⇒ Upost(ȳ)

σ1 : Upre(x̄)∧project(x̄, π)⇒emp σ2 : κ∧π ⇒ Upost(ȳ)
κg=∗{κ1 | κ1∈heaps(κ)∧pars(κ1)∩x̄6=∅} w̄=

⋃{pars(κ1) | κ1∈κg}
σ3 : Upre(x̄)⇒Ufr(x̄) @κg∧project(x̄∪w̄, π) σ4 : Ufr(x̄) ⇒ ⊤

if is base(x̄, π)=true then (σ1∧σ2) else (σ∧σ3∧σ4)

Figure 5-2: Shape Predicate Derivation: Base Splitting Rule

We first deal with relational assumptions of the form Upre(. . .)∗∆ ⇒ Upost(. . .),

which capture constraints on both a pre-predicate and a post-predicate. To allow

greater flexibility in applying specialized techniques for pre-predicates or post-
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predicates, we split the assumption into two assumptions such that pre-predicate

Upre is separated from post-predicate Upost. Base splitting can be formalized as in

Figure 5-2. The premise contains an assumption (σ) which could be split. The

conclusion captures the new relational assumptions. There are two scenarios:

(1) The first scenario takes place when the test is base(x̄, π) holds. It signifies that

π contains a base case formula for some pointer(s) in x̄. Note that is base(x̄, π)

holds if and only if (∃ v∈x̄. π ⊢ v=NULL) or (∃v1,v2∈x̄.π ⊢ v1=v2). In such a situation,

the assumption σ is split into σ1 and σ2. This reflects the observation that a pre-

predicate guard will likely constrain the pre-predicate to a base-case with empty

heap. This scenario happens in our running example where the assumption (A1)

is split to:

(A1a). H(x, q) ∧ x=NULL⇒ emp (A1b). emp ∧ x=NULL⇒ G(x,q)

(2) If the test is base(x̄, π) fails, there is no base case information available for us

to instantiate Upre(x̄). The assumption σ is not split and kept in the result. To

have a more precise derivation, we would also record the fact that Upre(x̄) has no

instantiation under the current context. To do this, in the second line we record

in κg such a heap context (related to x̄), extract in w̄ related pointers from the

context, and introduce a fresh unknown predicate Ufr as the instantiation for Upre,

as indicated by the assumption σ3 in the third line. Note the heap guard specifies

the context under which such an assumption holds. We also add σ4 into the

result, where the new predicate Ufr is instantiated to the afore-mentioned memory

locations (encapsulated by ⊤). Assumptions of the form Ufr(p)⇒ ⊤ are being used

to denote dangling pointers. We also note that introducing the dangling predicate

Ufr into the guarded assumption σ3 is essential to help relate non-traversed pointer

fields between the pre-predicate Upre and the post-predicate Upost. The function

pars(κ) (the 2nd line) retrieves parameters: pars(r7→c(v̄))) = v̄, pars(P(r, v̄)) = v̄.

As an example, consider splitting
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(σ5) : Upre(p)∗x 7→node(p,n)∧n=NULL⇒ Upost(x).

The test is base({p}, n=NULL) fails. In addition to (σ5), the splitting returns also

(σ6) : U
pre(p)⇒ Ufr(p) @ (x 7→node(p,n)∧n=NULL) (σ7) : U

fr(p)⇒ ⊤

For the tll example in Sec 4.3, the [Syn-base] transformation can be applied to

assumption (4) yielding the following three new assumptions:

(4a) res 7→tree(p,l,r,t)∗Hl(l,p,t)∧r=NULL∧res=x⇒ G(x,p,res,t)

(4b) Hr(r, p, t) ∧ r=NULL⇒ emp

(4c) Hl(l,p,t)⇒ Hfl(l,p,t) @ (res7→tree(p,l,r,t)∧r=NULL)

(4d) Hfl(l,p,t)⇒ ⊤

Pre-predicate Hr captures r=NULL as its base-case split. Pre-predicate Hl uses a

heap guard for its base context, and ⊤ to denote an un-accessed dangling heap

residue encapsulated in Hfl.

5.2.3 Assumption Sorting and Partitioning

In order to allow for a convenient instantiation order, we sort and group together

each set of relational assumptions pertaining to the same predicate, through sort-

group(R). Intuitively, the call to sort-group(R) will sort assumptions relevant to

each predicate according to the following pattern:

1. H(. . .) ∧ π ⇒ H2(. . .) @∆

2. H(. . .)⇒ H2(. . .)

3. H(. . .) ∗∆⇒ H2(. . .)

4. H(. . .)⇒ ∆

5. H(. . .) ∧ π ⇒ ∆

6. ∆⇒ G(. . .)

The first four forms could be used directly for in-lining if they are not
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self-recursive. Guarded assumptions (even if disjunctive but not self-recursive)

are given high priority to facilitate their early removal by inlining. The fifth form

leads to disjunctive recursive formula, and is not inlined for conciseness reason.

As mentioned, post-predicates are only processed after all the pre-predicates

have been synthesized. In order to decrease the number of assumptions that need

to be considered during the derivation, we will try to partition the assumptions

relevant to a predicate into assumptions that will used in the synthesise proces

and assumptions that will be treated as proof obligations to be discharged after

the predicate synthesis. As a simple example, the relational assumptions

generated for the tll structure would be ordered and partitioned into: (i)

assumptions to be used in pre-predicate synthesis [(3), (2), (4b), (4c), (4d), (1)],

(ii) assumptions denoting outstanding proof obligations related to pre-predicates

∅, (iii) assumptions to be used in post-predicate synthesis [(4a), (5)], (iv)

post-predicate obligations ∅. Note that we order pre-predicates before

post-predicates, and would synthesize the simpler Hl and Hr predicates, before

the H predicate. Also, the processing of post-obligation for a post-predicate is

done after the synthesis of the respective post-predicate. This could generate

extra assumptions for other un-sythesised predicates.

5.2.4 Deriving Pre-Predicates

[Syn-Case]
U(x̄)∧π1⇒∆1 @∆1g U(x̄)∧π2⇒∆2 @∆2g π1∧π2 6=⇒ false

∆1∧∆2⇒x̄
∧∆3 ∆1g∧∆2g⇒x̄

∧∆3g sat(∆3g)

U(x̄)∧π1∧¬π2⇒∆1 @∆3g U(x̄)∧π2∧¬π1⇒∆2 @∆3g

U(x̄)∧π1∧π2⇒∆3 @∆3g

Figure 5-3: Shape Predicate Derivation: Case Split on Pre-Predicates Rule

Pre-predicates typically appear in relational assumptions under pure guards π,
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as illustrated below:

Upre(. . .)∧π⇒∆

In order to derive definitions for these pre-predicates, the first step is to transform

the relational assumptions that overlap on their guards by forcing an explicit case

analysis that generates a set of relational assumptions disjoint on their guard

conditions as in Figure 5-3. For brevity, we assume a renaming of free variables

to allow x̄ to be used as arguments in both assumptions. Furthermore, we use the

⇒x̄
∧ operator to denote a normalization of overlapping conjunction, ∆1∧∆2 [127].

Informally, in order for ∆1∧∆2 to hold, it is necessary that the shapes described by

∆1 and ∆2 agree when describing the same memory locations. Normalization thus

determines the overlapping locations, ∆c such that ∆1=∆c∗∆′
1 and ∆2=∆c∗∆′

2

and returns ∆c∗∆′
1∗∆′

2. We defer formal definition of⇒x̄
∧ to Section 5.3.1.Once all

the relational assumptions for a given pre-predicate have been transformed such

that the pure guards do not overlap, we may proceed to combine them as follows:

[Syn-Group-Pre]

U(x̄)∧π1 ⇒ Φg
1 U(x̄)∧π2 ⇒ Φg

2 π1∧π2 ⇒ false

U(x̄) ∧ (π1∨π2) ⇒ Φg
1∧π1 ∨ Φg

2∧π2

We shall perform this exhaustively until a single relational assumption for U is

derived. If the assumption RHS is independent of any post-predicate it becomes

the unknown pre-predicate definition.

[Syn-Pre-Def]

Upre(x̄)⇒Φg no post(Φg)

Upre(x̄) ≡ Φg
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[Syn-Inline]
U
pre

d (x̄) ≡ ∆1 @ (κ1∧π1) ∨ . . . ∨∆n @ (κn∧πn)
Upre(x̄)∧πa ⇒ (Upred (x̄) ∗ κ∧π) @ (κg∧πg)
S1 = {∆i∗∆r∗κi | κ∧π ⊢ κi∧πi ❀ (∅,∆r)}

S2 = {κ∗∆i∧π @ (κi∧πi) | sat(κ∧κi∧π∧πi), κ∧π 6⊢κi∧πi}
Upre(x̄)∧πa⇒

∨

∆∈S1∪S2
(∆ @ (κg∧πg))

Figure 5-4: Shape Predicate Derivation: Inline Rule.

For the tll example, by the above rules, (2) and (4b) yield:

(6). Hr(r,p,t) ≡ H(r,x,t)∧r 6=NULL @ x 7→tree(p,l,r,n) ∨ emp∧r=NULL

Similarly, (3) and (4c) derives Hl:.

(7). Hl(l,p,t) ≡ H(l,x,lm) @ x 7→tree(p,l,r,n)∧r 6=NULL

∨ Hfl(l,p,t) @ x 7→tree(p,l,r,n)∧r=NULL

This conversion of each derived relational assumption into a definition for its

pre-predicate is done without any weakening. As the derived predicate may

contain heap guards, we may remove them by inlining predicate occurrences with

the relevant heap context. For example, relational assumption (1) for unknown

predicate H contains a heap context that would allow Hr and Hl to be safely

inlined, giving:

H(x,p,t) ≡ x 7→tree(xp,l,r,xn)∗H(l,x,lm)∗H(r,x,t)∗Hp(xp,p,t)∗Hn(xn,p,t)∧r 6=NULL

∨ x 7→tree(xp,l,r,xn)∗Hfl(l,x,t)∗Hp(xp,p,t)∗Hn(xn,p,t)∧r=NULL

Formally, such predicate inlining can be carried out as shown in Figure 5-4.

Inlining serves two purposes: (i) allow instantiation of back pointers with the use

of heap guards; (ii) minimize the number of predicates a definition relies on. As
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an eager optimization, the inlining discards infeasible disjuncts in which the

context contradicts the guard and also drops the guard where it is already

satisfied.

5.2.5 Deriving Post-Predicates

We start the derivation for a post-predicate after all pre-predicates have been

derived. We can incrementally group each pair of relational assumptions on a

post-predicate, as follows:

[Syn-Group-Post]

∆a ⇒ Upost(x̄) ∆b ⇒ Upost(x̄)

∆a ∨∆b ⇒ Upost(x̄)

By exhaustively applying the above reduction all assumptions relating to predicate

Upost get condensed into an assumption of the form: ∆1 ∨ . . . ∨ ∆n ⇒ Upost(x̄).

This may then be used to confirm the post-predicate by generating the following

predicate definition:

[Syn-Post-Def]

∆1 ∨ . . . ∨∆n ⇒ Upost(x̄)

Upost(x̄) ≡ ∆1 ∨ . . . ∨∆n

Using this, we can combine (4a) and (5) to give:

G(x,p,res,t) ≡ x 7→tree(p,l,r,t)∗Hl(l,xh,th) ∧ res=x∧r=NULL

∨x 7→tree(p,l,r,n)∗G(r,x,lm,t)∗G(l,x,res,lm)∗Hn(n,xh,th)∧r 6=NULL

5.2.6 Obligation for Post-Predicates

Memory locations abstracted by post-predicates may be further accessed after a

recursive call. This may lead to relational assumptions of the following form.

Upost(. . .) ∧ π ⇒ ∆
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We regard this as an obligation that has to be proven, and at the same time it could

also be used to infer the definition of unknown post-predicates that were generated.

As an example, consider the following post-predicate relational obligation:

G(r, x)∧x 6=NULL⇒ r 7→node(rv, rn) ∗ Gr(rn, x#)∗Gx(x, r#)

This obligation introduces two extra unknown post-predicates Gr and Gx. In order

to synthesize definitions for them, it is possible to leverage on earlier synthesized

definitions for G. Thus, if such a definition exists, say:

G(r, x) ≡ x 7→node(v, NULL) ∧ r = x

∨ x 7→node(xv, xn) ∗ Gx(xn, r) ∗ r 7→node( , NULL)

We can re-use our second-order entailment to prove the earlier post-predicate

obligation, which generates the following set of relational assumptions on Gr and

Gx.

r=NULL ⇒ Gr(r, )

x=r ∧ x 6=NULL ⇒ Gx(x, r)

x 7→node( , xn) ∗ Gx(xn, r) ⇒ Gx(x, r)

Subjecting them to synthesis for post-predicate yields:

Gr(r, ) ≡ r=NULL

Gx(x, r) ≡ x=r ∧ x 6=NULL ∨ x 7→node( , xn) ∗ Gx(xn, r)

More formally,

[Syn-Post-Obl]

Upost(v̄)∧π ⇒ ∆ (Upost(v̄)≡∆Upost) ∈ Γ ∆Upost∧π ⊢ ∆❀ (R,∆f)

R
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π ∧∆⇒v̄
∧ (∆ ∧ π, { }) ∆ ∧ π ⇒v̄

∧ (∆ ∧ π, { })
∆1 ∧∆3 ⇒v̄

∧ (∆5,S1) ∆2 ∧∆4 ⇒v̄
∧ (∆6,S2)

(∆1 ∨∆2) ∧ (∆3 ∨∆4)⇒v̄
∧ (∆5 ∨∆6,S1 ∪ S2)

P is known x∈v̄ ȳ ∩ v̄ = ∅ ρ=[ȳ 7→ z̄]
∆1 ∧ ρ ∆2 ⇒v̄∪z̄

∧ (∆3,S)
P(x, z̄) ∗∆1 ∧ P(x, ȳ) ∗∆2 ⇒v̄

∧ (P(x, z̄) ∗∆3,S)
U1, U2 are dangling x ∈ v̄ ρ = [ȳ 7→ z̄] ȳ ∩ v̄ = ∅

∆1 ∧ ρ ∆2 ⇒v̄∪z̄
∧ (∆3,S) S1 = S∪{U1≡U2}

U1(x, z̄)∗∆1 ∧ U2(x, ȳ)∗∆2 ⇒v̄
∧ (U1(x, z̄)∗∆3,S1)

x∈v̄ ρ = [ȳ 7→ z̄] ȳ∩v̄=∅ ∆1 ∧ ρ ∆2 ⇒v̄∪z̄
∧ (∆3,S)

x 7→c(z̄) ∗∆1 ∧ x 7→c(ȳ) ∗∆2 ⇒v̄
∧ (x 7→c(z̄) ∗∆3,S)

Figure 5-5: Conjunctive Unification Rules.

5.3 Unification

5.3.1 Conjunctive Unification

When describing the pre-predicate derivation, we observed that there is a need

for a normalization operation for formulas ∆1 ∧∆2 to ensure the result is within

the logic fragment described in Sec. 4.2. We obtain this normalization through a

conjunctive unification step, ⇒v̄
∧. Informally, in order for ∆1∧∆2 to be satisfiable,

to describe at least one feasible heap, it is necessary that the shapes described

by ∆1 and ∆2 agree when describing the same memory locations. Based on this

observation, it is possible to construct a possibly stronger approximation for ∆1 ∧

∆2 expressed in our logic fragment by unifying the common heap locations as

presented in Figure 5-5. To streamline the unification process, the ⇒∧ operation

is parameterized with a set of variables v̄ which denotes the set of possibly common

memory locations. We seed this parameter initially with the set of arguments of

the predicate under construction.

In the process of unifying predicate instances or heap nodes, the
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transformation on one hand modifies the formulas by applying a substitution of

the arguments, and on the other constructs extra constraints on dangling

predicates, thus strengthening the result. We observe however that this does not

affect the soundness of the result as this strengthening is restricted to

pre-condition predicate definitions. By imposing an equality constraint on

dangling predicates the resulting definitions become more concise, with fewer

extra predicates being synthesized.

Naturally, this strengtheningmay lead to a contradiction which we will consider

as a failure of shape analysis, due to contradictory scenarios. An example is

illustrated below:

x=NULL ∧ x 7→node(p, n)⇒x
∧ (false , { })

The formula above is contradicted since it is required that the pointer x both

equals to NULL and points to an allocated object.

Conjunctive unification may also lead to a satisfiable program state, but it is

allowed to impose some equivalent constraints on the unknown predicates. This is

helpful for obtaining more concise specification with fewer synthesized predicates.

5.3.2 Disjunctive Unification

We propose to apply disjunctive unification to derive more concise definitions for

post-predicate. The aim here is to factor out common constraints on disjunctive

branches of a given post-predicate:

x 7→c(ȳ) ∗∆1 ∨ x 7→c(ȳ) ∗∆2 ⇒ U(x, ā)

⇒∨











x 7→c(ȳ)∗R(x, ā, ȳ)⇒ U(x, ā)

∆1 ∨∆2 ⇒ R(x, ā, ȳ)

so that common heap terms in disjunct can be abstracted.
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5.4 Normalizing Shape Predicates

In this chapter, we propose a preliminary investigation into normalizing inferred

shape predicates. Our primary aims is to reduce the complexity of the inferred

predicates.

Shape predicates are either provided by programmers or derived by shape

analysis (like in Chapter 4). Before feeding those to program verification, we

propose to apply normalization to transform each predicate definition to its most

concise form. Given a set of shape predicates Γ, our current method uses four key

steps:

function pred norm(Γ)

Γ1 ← process-dangling-and-unused-preds Γ

Γ2 ← eliminate-useless-parameters Γ1

Γ3 ← perform-predicate splitting on Γ2

return reuse-predicates Γ3

end function

5.4.1 Detecting and Eliminating Dangling Predicates

We have seen how relational assumptions are soundly transformed into predicate

definitions. However, it is still possible for some pre-predicates not to have any

definition. As mentioned in Section, 4.3, these dangling predicates denote fields

that were not accessed. Though it is safe to drop such predicates (by frame rule),

we keep them to capture linking information between pre- and post-conditions.

In this predicate normalization step, we associate each dangling predicate

U(x, ..) encapsulating a pointer that is instantiated and not an argument of the

current method, with a logical variable DU denoting such a predicate instance.

With this extra notation, in effect, we are making explicit that the addresses

pointed to by such fields have neither been read nor written to during the
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execution of its method. Thus, these logical variables appear in the precondition,

and after the execution, may also appear in the postcondition. For example, in

Section 5.2 we showed how definitions for H, G, Hn and Hp can be obtained. Since

Hfl, Hn and Hp are dangling predicates, we can further refine the definitions for H,

G as follows:

H(x,p,t) ≡ x 7→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x 7→tree(Dp,l,r,Dn)∗H(l,x,lm)∗H(r,x,t)∧r 6=NULL

G(x,p,res,t) ≡ x 7→tree(p,Dl,r,t)∧res=x∧r=NULL

∨x 7→tree(p,l,r,Dn)∗G(l,x,res,lm)∗G(r,x,lm,t)∧r 6=NULL

Notice that the marking of pointers as dangling is guided by the context and thus

reflects the access patterns. For example the left field in both H and G predicates,

in the branch with NULL right subtree, are marked as dangling since the method

does not accessed any of these left fields, thus imposing no constraints over these

subtrees. Similarly, in the post predicate G the next field is dangling for nodes

that are not leaves as those fields have not been accessed. We can formalize these

steps as follows:

U(ȳ) ≡ (Ud(x, v̄)∗κ∧π) @ (κg∧πg) ∨ Φg x 6∈ ȳ Ud(x, v̄) ≡ ⊤

fresh DUd δ={(DUd/x)}

U(ȳ) ≡ ((κ∧π)[δ]) @ (κg∧πg) ∨ Φg

This step consists of (a) identifying each unknown predicate with no

definition (i.e. Ud(x, v̄) ≡ ⊤); (b) associating the field with a unique logical

variable denoting the set of all possible values for that field (i.e. fresh DUd); (c)

substituting each predicate instance with the logical variable. These steps denote

equivalent-preserving transformations.
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5.4.2 Eliminating Useless Parameters

We observe that there are cases in which predicate arguments are not used in

the synthesized definitions. For example, the last two parameters of our derived

pre-predicate for tll are redundant.

In order to simplify the definitions and improve predicate reuse, we propose

to detect and eliminate such arguments. For a given predicate definition, P(x̄) ≡

∆, we can discover if any constraint in the predicate body involves a parameter

through a standard, but sound flow analysis. Once a set of candidate arguments, z̄,

has been identified, we construct a new unknown predicate Uz(x̄
′) where x̄′ = x̄\ z̄

which can then be instantiated by running the bi-abductive entailment check on

the following entailment where P′(x̄) ≡ ∃z̄.∆:

P′(x̄) ⊢ Uz(x̄′)

This would gather the necessary set of assumptions on Uz that can provide a

definition for the new predicate without the useless argument(s). This could be

followed by an equivalent check that with the inferred definition Uz(x̄)⊢P′(x̄). Thus,

ideally, the resulting definitions should be:

P(x̄) ≡ Uz(x̄
′) Uz(x̄

′) ≡ ∆′

Using this step, we can obtain a much simpler pre-predicate for tll:

H(x,p,t) ≡ Hf(x)

Hf(x) ≡ x 7→tree(Dp,Dl,r,Dn) ∧ r=NULL

∨ x 7→tree(Dp,l,r,Dn)∗Hf(l)∗Hf(r) ∧ r 6= NULL
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5.4.3 Reusing Predicates

In order to derive more concise predicate definitions, we propose an equivalence

detection step that would try to match a newly inferred definition with a

predicate definition previously provided or inferred. We leverage on our

second-order entailment prover to perform this task, but limit its folding steps to

syntactically matching of predicates that are possibly equivalent. We also use an

analysis to pre-determine those predicates that are unlikely to be equivalent, or

have already been processed as such. For any two synthesized predicates U1(v̄)

and U2(w̄), we first align their parameters, and then prove two entailments

unfold[U1(v̄)] ⊢ U2(w̄) and unfold[U2(w̄)] ⊢ U1(v̄). (Each unfold replaces a

predicate instance by its definition. It ensures that our inductive proof is

well-founded.) If both entailments fail, we assert the pair of predicates to be

disequal. If only one of the entailments succeeds, we assert that a predicate

subsumption has been detected. If both succeeded, we may return a further set

of possibly equivalence pairs, from with we must prove the equivalence. When no

more pairs of possibly equivalent predicates are found, we assert U1(v̄) ↔ U2(v̄)

to indicate the equivalence of the sets of pairs of predicates that we have just

proven. For our running tll example, we can detect the following subsumption:

G(x,res,t) → H(x). While this is not an equivalence, the newly discovered

implication could serve as a lemma that may be automatically utilized by the

entailment process.

5.4.4 Predicate Splitting

We illustrate our proposal through the zip method presented in Figure 5-6. The

zip example is to sum up the corresponding integers from two lists. The two lists

are of the same length, otherwise the program aborts.

The zip method has three return points at lines 4, 5, and 9. While the
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1. struc node { int val; struc node ∗next};
2. struc node∗ zip (struc node ∗x, struc node ∗y) {
3. if (x==NULL)
4. if (y!=NULL) abort;
5. else return x;
6. else {
7. x->val = x->val+y->val;
8. x->next = zip(x->next, y->next);
9. return x;
10. }
11. }

Figure 5-6: Split Predicates: Code of zip Method.

returns at lines 5 and 9 describe normal execution, the return at line 4 captures

an abnormal execution.

We classify the former execution as good scenarios and the latter execution

as bad scenario such that users want to specify their requirements and verify

its implementation against the specification. For the good scenarios, the shape

analysis presented in section 5.2 can infer the following shape specification that

guarantees memory safety for the method:

requires twosame(x, y) ensures twosame(x, y)∧res=x

with the following predicate for the safety of the above program:

twosame(x, y) ≡ x=NULL ∧ y=NULL

∨ x 7→node( , q)∗y 7→node( , r)∗twosame(q, r)

Inspired by a decidable fragment of separation logic with inductive predicates

presented in [76], we restrict that each predicate expresses heap region accessible

via one root pointer. In the example, the pointers x and y in synthesized

predicate twosame are both roots and thus twosame is not normalized. We are

going to transform that predicate into normal form through a mechanism of
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lemma synthesis. Our lemma notations are adopted from [113].

With the predicate twosame given above , we illustrate a split-predicate tactic

to derive, where possible, lemmas of the following form:

lemma infer [U1; U2] twosame(x, y)→ U1(x)∗U2(y)

with U1 and U2 are unknown predicates that need to be inferred. The lemma above

denotes known facts about valid implication over heap formula that can be used

by the entailment checker. To explore such splitting, we can follow the example

of useless parameter elimination where our second-order bi-abductive entailment

is again used to infer definitions for unknown predicates, U1 and U2. Once these

definitions are derived, we can even use the same entailment check to determine if

the converse implication twosame(x, y) ← U1(x)∗U2(y) holds. For this example,

Using shape analysis (e.g. in the previous section), we can infer the following

definition:

twosame(x, y) → U1(x)∗U2(y)

U1(x) ≡ x=NULL ∨ x 7→node( , n) ∗ U1(n)

U2(x) ≡ x=NULL ∨ x 7→node( , n) ∗ U2(n)

Furthermore, to obtain an equivalent transformation, the strengthening lemma has

to be valid:

lemma check twosame(x, y) ← U1(x)∗U2(y)

However, those inferred definitions of HP1 and HP2 above can not be used to

prove the validity of the strengthening lemma.

We only derive a weakening lemma that can be applied to post-condition, but

not to pre-condition. For safely splitting pre-condition of twosame which captures

two lists of the same length, we will need to extend our inference to capture size

properties on lists.

To assure its validity, we must first detect that size property of the predicates
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should be captured. We extend U1 and U2 predicates with size property by using

predicate extension mechanism presented in [135]

U1(x,n) ≡ (x=NULL∧n=0) ∨ (x 7→node( ,p) ∗ U1(p,n−1))

U2(x,n) ≡ (x=NULL∧n=0) ∨ (x 7→node( , p) ∗ U2(p,n−1))

After that, we invoke the following strengthening lemma synthesis:

lemma infer [P] H(x, y) ← U1(x, m) ∗ U2(y, n) ∧ P(m,n)

with P is unknown predicate on pure properties that needs to be inferred

Using pure bi-abduction mechanism [135], the lemma above is valid when the

following set of constraints has a solution:

P(m,n) ⇒ m=0 ∧ n=0

P(m,n) ⇒ m1=m−1 ∧ n1=n−1 ∧ P(m1,n1)

By invoking a fixpoint computation (e.g. [124]), we obtain

P(m,n) ≡ m=n

Finally, we synthesize the following lemma:

lemma H(root,y) ↔ U1(root,m) ∗ U1(y,n) ∧ m=n

Using these newly synthesized predicates U1 and U2, we have more opportunity

to match/reuse them with given library predicates. For example, using technique

in section 5.4.3, we can match U1 and U2 with the lln, a linked list with length

property. Finally, we generate the following specification for the zip method:
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requires lln(x,m)∗ lln(y,n)∧m=n ensures lln(x,m)∗ lln(y,n)∧m=n∧res=x

5.5 Soundness of Derivation and Normalization

Here we briefly outline several key soundness results, and leave some of the proof

details to Appendix .2. For brevity, we introduce the notation R(Γ) to denote a

set of predicate instantiations Γ satisfying the set of assumptions R. That is, for

all assumptions ∆⇒ Φg ∈ R, (i) Γ contains a predicate instantiation for each

unknown predicate appearing in ∆ and Φg ; (ii) by interpreting all unknown

predicates according to Γ, then it is provable that ∆ implies Φg , written

as Γ : ∆ ⊢ Φg

In order to prove the synthesis step sound we need to prove that if a set of

predicate definitions is constructed then those definitions satisfy the initial set

of assumptions. Since the synthesis consists of assumption refinement, predicate

generation and predicate normalization, we will argue (i) assumption refinement

does not introduce spurious satisfying instantiations, (ii) the generated predicates

satisfy the refined assumptions, and (iii) normalization is meaning preserving.

Lemma 2. Given a set of relational assumptions R, let R′ be the assumption

set obtained by applying any of the refinement steps [Syn-Base], [Syn-Case],

[Syn-Group-Pre], [Syn-Inline], or [Syn-Group-Post], then for any Γ such that R′(Γ), we

have R(Γ).

Proof See Appendix .2.2.

Lemma 3. Given a set of relational assumptions R with only one pre-assumption,

Upre(v̄)⇒Φg , on a predicate Upre, if a final solution Γ is produced by our algorithm,

then (Upre(v̄)≡Φg)∈ Γ. Similarly, given a set of relational assumptions R with
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only one post-assumption on Upost⇒Φg , if a final solution Γ is produced, then

(Upost(v̄)≡Φg)∈ Γ.

Proof See Appendix .2.3.

While the above lemmas state that the constructed definitions satisfy the

constraints used to construct them, it must also be shown that all assumptions

have been considered.

Lemma 4. Given a set of assumptions R, if the pred syn(R) produces a set of

instantiations Γ then R(Γ).

Proof Sketch : By case analysis on the assumption structure we show that all

assumptions have either been proven or incorporated into predicate definitions.

The full proof is presented in Appendix .2.4. ✷

Lastly, it is needed to show that for a given set of assumptions, R, and a

set of instantiations Γ that satisfies R, the normalization of Γ produces a set of

instantiations that still satisfies R.

Lemma 5. Given a set of assumptions R and a predicate instantiation Γ such that

R(Γ), let Γ′ be the set of predicate instantiations such that Γ′ = pred norm(Γ), then

R(Γ′).

Proof Sketch : We show that by construction the normalization steps are

meaning preserving. See Appendix .2.5 for the full proof. ✷

Theorem 5.5.1 (Soundness). Given two separation logic formulas with unknown

predicates ∆ante and ∆conseq, if

∆ante ⊢ ∆conseq❀ (R,∆frame) and Γ=pred norm(pred syn(R))

then Γ : ∆ante ⊢ ∆conseq ∗∆frame

Proof It follows from the structure of pred syn, pred norm and Lemmas 1 to

5.
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5.6 Towards Complete Specification Inference

We are beginning to work towards complete specification inference. In this section,

we give a preliminary discussion on extending the shape analysis to this research

direction.

5.6.1 Enhancing Second-order Bi-Abduction

The [SO-ENTAIL-UNFOLD] rule, presented in section 4.4, infers missing information

that is safe to establish pointer field accesses. To support specification inference

for both safe and erroneous scenarios, we need to revise this rule to infer additional

information that causes memory errors on those field accesses. More concretely,

we need to enhance the abduction to infer missing guards that is either consistent

with heaps of RHS (for safety) or inconsistent with heaps of RHS (for error). As a

result, the revised [SO-ENTAIL-UNFOLD] is able to generate relational assumptions

for both safety and errors.

Computing the guards above relies on a reduction, called eXPure, from a

separation logic formula to a first-order logic formula. To implement this

reduction, we make use of the decision procedure presented in [18] to compute

shape predicate invariants. That procedure provides an algorithm to compute fix

points (as exact pure formula) of a separation logic formula with inductive shape

predicates. With the fragment of separation logic in section 4.2 which consists of

heaps and only (dis)equality pure constraints, this computation is sound,

complete and terminating. We illustrate the reduction through the two following

examples:

eXPure(x 7→snode(NULL) ∧ z=NULL) ❀ x 6=NULL ∧ z=NULL

eXPure(x 7→snode(y)∗y 7→snode(NULL)) ❀ x 6=NULL∧y 6=NULL∧x 6=y

With this eXPure reduction, we now give two entailment checks to illustrate

120



the extension of the [SO-ENTAIL-FOLD] as discussed above.

Example 1.

H(x) ⊢ x 7→snode(p)

In this entailment, we propose to perform bi-abduction to get either a valid or

an invalid result. For a valid check, we infer a guard condition that is necessary

for the unknown predicate H to establish the RHS. We make use of error status

values presented in Chapter 3 to explicitly express status of states
√

for safety and

℧ for errors. For example, from x 7→snode(p) of RHS, we can infer a guard that

is consistent with the RHS as follows: πg ≡ eXPure(x 7→snode(p)). That yields

πg≡x 6=NULL. Like the present mechanism, we can infer the following relational

assumption:

σs ≡ H(x) ⇒ x 7→snode(p)∗Hp(p)
√

and the residue is ∆s=x 7→snode(p)∗Hp(p)∧x 6=NULL
√
.

For an invalid check, we infer a guard condition that is unsatisfiable for the

unknown predicate H to establish the RHS. For example, from x 7→snode(p) of

RHS, we can infer a guard as the negation of πg that is inconsistent with the RHS.

With this guard, we can infer the following relational assumption:

σe ≡ H(x) ⇒ emp∧x=NULL √

and the residue is ∆e=emp ∧ x=NULL ℧.

Finally, the output of the entailment check is the set of the two above states,

as follows: {(∆s, σs), (∆e, σe)}.

Example 2.

H(x)∧x 6=NULL ⊢ x 7→snode(p)

Compared to the entailment 1, this entailment already has the pure constraint

x6=NULL in its LHS. This constraint contradicts with the guard condition of the

invalid case (x=NULL) and prevents to generate the relational assumption for invalid
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result. More concrete, the result for invalid scenario is as follows:

σe ≡ H(x)∧x 6=NULL ⇒ emp∧x=NULL √

and the residue is ∆e=emp∧x 6=NULL∧x=NULL ℧. The state ∆e is unreachable and

will be eliminated. Therefore, the output of this entailment check contains only

the state of the valid scenario: {(∆s, σ
′
s)}, whereby

σ′
s ≡ H(x)∧x 6=NULL ⇒ x 7→snode(p)∗Hp(p)

√

5.6.2 Enhancing Transformation

For complete specification inference, we extend the shape analysis to collect set

of states generated by the new second-order bi-abductive entailment procedure.

This set includes states with
√

status for safety specification as well as states

with ℧ status for error specification. From these states, we collect their relational

assumptions to construct multiple specifications. We illustrate this enhancing

shape analysis over the following examples.

foo Example.

struct snode∗ foo(struct snode∗ x){

return x->next;

}
The foo example returns the next pointer of the input x. At the starting point,

our analysis will generate the following specification with two unknown predicates

H1 and G1 that are need to be inferred:

requires H1(x) ensures G1(x, res);
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At the field access, our analysis generates the following proof obligation:

H1(x) ⊢ x 7→snode(p)

Similar to the Example 1, the enhancing second-order bi-abduction produces

a set of two states {(∆s, σs), (∆e, σe)}. Assumptions of these states are collected

for specification inference. Only safe states (i.e. {(∆s, σs)) will be forwarded to

analyse the rest of program. At the exit point, our shape analysis will generate

the following proof obligations:

1. x 7→snode(p)∗Hp(p)∧x 6=NULL∧res=p
√ ⊢ G1(x, res)

2. emp ∧ x=NULL ℧ ⊢ G1(x, res)

The enhancing second-order bi-abduction produces one state for each

entailment check above. Their assumptions are as follows:

σs2 ≡ x 7→snode(p)∗Hp(p)∧x 6=NULL∧res=p
√ ⇒ G1(x, res)

σe2 ≡ emp ∧ x=NULL ℧ ⇒ G1(x, res)

Finally, our shape analysis collects these four relational assumptions, and hands

them to the transformation engine. This engine will generate the definition for H1

and G1 as follows:

H1(x) ≡ emp∧x=NULL√ ∨ x 7→snode(DP)
√

G1(x, res) ≡ emp∧x=NULL ℧ ∨ x 7→snode(DP)∧res=DP√

Based on these predicate definitions, the analysis will generate the following

multiple specifications:

requires x=NULL ensures (true ) ℧

requires x 7→snode(DP) ensures x 7→snode(DP) ∧ res=DP
√
;
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Finally, we may need to enhance the normalization to transform these multiple

specifications into complete specification. The expected complete specification we

would like to infer is:

case { x=NULL → ensures (true ) ℧;

x 6=NULL →

requires x 7→snode(DP)

ensures x 7→snode(DP) ∧ res=DP
√
;

}

goo Example.

struct snode∗ goo(struct snode∗ x){

return x->next->next;

}

The goo example returns the pointer at the second next fields of the input pointer.

Our analysis will generate the following specification with two unknown predicates

H2 and G2 that are need to be inferred:

requires H2(x) ensures G2(x, res);

The shape analysis of the first field access is similar to the one in example foo. For

example, it returns a set of two states: one for safety and another for error.While

the latter will not be forwarded, the former will be used to analyzed the second

field access. Similarly, this analysis also generates two more states, one for safety

another for error. Therefore, there are three states at the exit point, two for errors

and one for safety. The proving for postcondition is similar to the foo example.
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Our approach would infer the following definitions for H2 and G2

H2(x) ≡ emp∧x=NULL√ ∨x 7→snode(NULL)
√ ∨ x 7→snode(p)∗p 7→snode(DP)

√

G2(x, res) ≡ emp∧x=NULL℧ ∨ x 7→snode(NULL)℧∨

x 7→snode(p)∗p 7→snode(DP)∧res=DP√

Based on these predicate definitions, the analysis will generate the following

multiple specifications:

1. requires x=NULL ensures (true ) ℧

2. requires x 7→snode(NULL) ensures true ℧;

3. requires x 7→snode(p) ∗ p 7→snode(DP)

ensures x 7→snode(p) ∗ p 7→snode(DP) ∧ res=DP
√
;

Finally, the expected complete specification we would like to infer for the goo

example is:

case {

x=NULL → ensures (true ) ℧;

x 6=NULL → requiresx 7→snode(p)

case {

p=NULL → ensures (true ) ℧;

p 6=NULL →

requires p 7→snode(DP)

ensures p 7→snode(DP) ∧ res=DP
√
;

}

The get last Example.

Running shape analysis on the motivating example get last in Figure 2-5, we

obtains the set of relational assumptions as shown in Figure 5-7.
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relational assumptions for safety
s1. H(x) ⇒ x 7→node(q)∗U(q) √
s2. U(q)∧q 6=NULL ⇒ H(q)

√
s3. x 7→node(q)∗G(q, res)∧q 6=NULL ⇒ G(x, res)

√
s4. x 7→node(q)∗U(q)∧q=NULL∧res=x ⇒ G(x, res)

√

relational assumptions for errors
e1. H(x) ⇒ emp∧x=NULL √
e2. emp∧x=NULL ℧ ⇒ G(x)

Figure 5-7: Relational Assumptions for Safety and Errors.

For this set of relational assumptions, we invoke the transformation steps

(derivation and normalization) in this chapter to synthesize predicate definition

for each unknown predicate. One possible result of the transformation would be

as follows:

H(x) ≡ emp∧x=NULL√ ∨ x 7→node(q)∗U(q) √

U(x) ≡ (emp∧x=NULL ∨ x 7→node(q)∗U(q))√

G(x) ≡ emp∧x=NULL ℧ ∨ U2(x,q)∗q 7→node(NULL)
√

U2(x,s) ≡ (emp∧x=s ∨ x 7→node(q)∗U2(q,s))
√

with U2 is a new predicate introduced during the normalization.

This extension enables us to infer the complete specification of the get last

method as in Figure 5-8.

case {
x=NULL → ensures (true ) ℧;
x 6=NULL →

requires x 7→node(q) ∗ U(q)
ensures U2(x,last) ∗ last 7→node(NULL) ∧ res=last

√
;

}

Figure 5-8: Complete Specification Inferred for get last Method.
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5.7 Implementation and Experimental Results

We have implemented the proposal as a separate features of S2: derivation and

normalization. Those features can be used to refined the output of the shape

analysis in chapter 4 or in [16]. In the rest of this chapter, we evaluated each

feature on the output of shape analysis in chapter 4.

5.7.1 Two More Examples

We provide further illustrations of our proposal through two examples to highlight

key features of our shape inference mechanism.

struct dnode { struct dnode∗ prev struct dnode∗ next};
void append(struct dnode ∗ x, struct dnode ∗ y)
requires H(x, y#) ensures G(x, y#)
{
if (x->next) append(x->next, y);
else {
x->next = y;
y->prev = x;
}
}

Figure 5-9: Code of append Method.

The append method shown in Figure 5-9 joins two doubly-linked lists. To

guide the shape synthesis, the initial stub specification is pre-analysed with #

annotations. Thus, by the same process described in the previous sections the
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following relational assumptions are inferred:

1 H(x,y#)⇒ x 7→dnode(xp,xn)∗Hp(xp,y#)∗Hn(xn,y#)∗Hy(y,x#)

2 Hn(xn,y#)∗Hy(y,x#)∧xn 6=NULL⇒ H(xn,y#)

3 Hy(y,x#)⇒ y 7→dnode(yp,yn)∗Hyp(yp,x#)∗Hyn(yn,x#)

4 Hn(xn,y#)∧xn=NULL⇒ emp

5 Hp(xp,y#)∗x 7→dnode(xp,xn)∗G(xn,y#)∧xn 6=NULL⇒ G(x,y#)

6 x 7→dnode(xp,y)∗y 7→dnode(x,yn)∗Hyn(yn,x#)∗Hp(xp,y#)⇒G(x,y#)

We can then synthesize the following predicate definitions:

H(x, y)≡x 7→dnode(Dp, xn)∗Hn(xn)∗y 7→dnode(Dyp,Dyn)

Hn(xn)≡emp∧xn=NULL ∨ xn 7→dnode(Dp, xnn)∗Hn(xnn)

G(x, y)≡x 7→dnode(Dp, y)∗y 7→dnode(x,Dyn)

∨ x 7→dnode(Dp, xn)∗G(xn, y)∧xn 6=NULL

Our shape inference mechanism manages to infer a precise (weak) pre-condition

which only requires a singly-linked list for the first parameter, and a single node for

the second parameter without enforcing unnecessary constraints on the rest of the

locations reachable from the second parameter. Furthermore, the derived post-

predicate describes a non-empty recursive list segment joined with the structure

described by the second parameter. Through the use of dangling references, the

derived specification permits cyclic data structures for the second parameter, and

moreover guarantees that only its first node is being changed. This more precise

pre/post specification subsumes the specification which uses two doubly-linked

lists for the two parameters.

To illustrate a more complex data structure, consider the mutual-recursive

methods shown in Figure 5-10. Those procedures validate a rose tree, whose

children are linked via a doubly-linked list with parent pointers. The rose tree is
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defined as follows:

struct mtree {int val; struct mtree∗ children; }

struct mnode { struct mtree∗ child; struct mnode∗ prev;

struct mnode∗ next; struct mnode∗ parent; }

This checker code is special in that we are using it to validate some expected data

bool c tree (struct mtree∗ t)
requires H1(t) ensures G1(t) ∧ res;
{
struct mnode∗ n=NULL;
if (t->children == null) return true;
else return c child(t->children, NULL, t);
}

bool c child(struct mnode∗ l, struct mnode∗ prv,struct mtree∗ par)
requires H2(l, prv, par) ensures G2(l, prv, par) ∧ res;
{
if (l == null) return true;
else

if (l->parent == par && l->prev == prv)
return c child(l->next, l, par) && c tree(l->child);

else return false;
}

Figure 5-10: Example on trees on benchmark 181.mcf from SPEC2000.

structure. We use it here primarily for evaluating the precision of our synthesis

method. Notice the use of mixed constraints e.g. G1(t) ∧ res, which requires

both inference and verification to work together. This comes naturally from our

integration of second-order bi-abduction into an existing separation logic verifier

with proving capability. Essentially, this code is checking that each tree node

contains a pointer to a null-terminated doubly-linked list, with pointers to parent

node. Our approach is able to derive the following precise and concise predicate

definitions. We achieve this feat by using normalization techniques which unify
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Example size Syn. Veri.
SLL (delete) 9 0.23 0.2
SLL (reverse) 20 0.2 0.18
SLL (insert) 13 0.21 0.21
SLL (setTail) 7 0.18 0.18
SLL (get-last) 20 0.24 0.22

SLL-sorted (check) 8 0.26 0.23
SLL (bubblesort) 13 0.26 0.31
SLL (insertsort) 15 0.26 0.25

SLL (zip) 12 0.31 0.36
SLL-zip-leq 10 0.3 0.32

SLL + head (check) 9 0.23 0.2
SLL + tail (check) 9 0.25 0.23
skip-list2 (check) 11 0.3 0.27
skip-list3 (check) 17 0.45 0.45
SLL of 0/1 SLLs 8 0.24 0.25
CSLL (check) 8 0.23 0.22

Table 5.1: Experimental Results for Shape Analysis

disjuncts and semantically-equivalent predicates, where possible.

H1(t)≡t 7→mtree(v,c)∗H2(c,NULL,t)

H2(l,b,p) ≡ emp∧l=NULL

∨ H2(nl,l,p)∗l 7→mnode(cl,b,nl,p)∗cl 7→mtree(v,c)∗H2(c,NULL,cl)

G1(t) ≡ H1(t)

G2(l, b, p) ≡ H2(l, b, p)

5.7.2 Expressivity

In this experiment, we evaluated the expressiveness of our inference system. For

each method, we employed the shape analysis in chapter 4 to infer shape

abstraction for memory safety and further derived definition for each unknown

predicate in pre- and post-condition of the method. The experiments were

performed on a machine with the Intel i7-960 (3.2GHz) processor and 16 GB of

RAM. Table 5.1 and Table 5.2 presents our experimental results. For each test,
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Example size Syn. Veri.
CSLL (traverse) 8 0.23 0.33

CSLL of CSLLs (check) 18 0.31 0.31
SLL2DLL 8 0.19 0.19

DLL (check) 8 0.2 0.2
DLL (append) 23 0.18 0.19
CDLL (check) 9 0.25 0.23

CDLL of 5CSLLs 29 0.69 118
CDLL of CSLLs2 33 0.44 0.51

tree (search) 11 0.25 0.24
tree-parent (traverse) 14 0.22 0.27

rose-tree (check) 9 0.22 0.23
swl (traverse) 19 0.39 1
mcf (check) 28 0.31 0.26
tll (traverse) 18 0.19 0.23
tll (check) 39 0.21 0.29

tll-parent (check) 19 0.24 0.29

Table 5.2: Experimental Results for Shape Analysis (cont.)

we list the name of the manipulated data structure and the effect of the verified

code under the Example column. We use SLL for singly-linked lists, DLL for

doubly-linked lists, CLL for cyclic-singly linked-lists, CDLL for cyclic-doubly

linked-lists. SLL + head (tail) stands for a SLL where each element points to the

head (tail) of the SLL. For nested lists, SLL of 0/1 SLLs stands for a SLL nested

by a SLL of size 0 or 1, CSLL of CSLLs for CSLL nested by CSLL, CDLL of

5CSLLs for CDLL where each node is a source of five CSLL, and CDLL of

CSLLs2 for CDLL where each node is a nested CSLL. The skip lists subscript

denotes the number of skip pointers. The swl procedure implements list traversal

following the DeutschSchorr-Waite style. rose-trees are trees with nodes that

are allowed to have variable number of children, typically stored as linked lists,

and mcf trees [68] are rose-tree variants where children are stored in

doubly-linked lists with sibling and parent pointers. The size column shows the

number of conjuncts in the synthesized shapes. The Syn. column describes the

synthesis times in seconds. In order to evaluate the performance of our shape
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synthesis, we re-verified the source programs against the inferred specifications.

The verification time (in seconds) is captured in the Veri. column. All the

inference times and most of the verification times are took under one second

each. This was due to Omega taking a long time for several large proof

obligations that were generated for that example. When we replace the

underlying prover by Z3, the same example took about 1s to verify.

The experiments showed that our tool can handle fairly complex recursive

methods, like the recursive method operating over a tll structure. It can

synthesize shape abstractions for a large variety of data structures; from list and

tree variants to combinations. Furthermore, the tool can infer shapes with

mutual-recursive definitions, like the rose-trees, trees with nodes that are

allowed to have variable number of children, typically stored in linked lists, and

mcf trees which are rose-tree variants where children are stored in doubly-linked

lists with sibling and parent pointers.

5.7.3 Experimental Results on Normalization

The normalization phase aims to reduce the complexity of inferred shape

predicates. To evaluate its effectiveness, we further employ normalization feature

to refine the result of the analysis in Section 5.7.2. Now, we have a synthesis on

two scenarios: without (w/o) (in Section 5.7.2) and with (w) normalization. The

number of conjuncts in the synthesized shapes is captured with size column in

Table 5.3 and Table 5.4. This experiment showed that the normalization reduces

68% (169/533) the size of synthesized predicates with an overhead of 27%

(8.37s/10.62s). It is able to detect and eliminate useless parameters, to split the

predicate and to match with existing predicates.
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Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

SLL (delete) 9 0.23 2 0.23 0.29
SLL (reverse) 20 0.2 8 0.23 0.22
SLL (insert) 13 0.21 11 0.21 0.21
SLL (setTail) 7 0.18 2 0.19 0.18
SLL (get-last) 20 0.24 17 0.24 0.75

SLL-sorted (check) 8 0.26 2 0.27 0.27
SLL (bubblesort) 13 0.26 9 0.29 0.36
SLL (insertsort) 15 0.26 11 0.26 0.3

SLL (zip) 12 0.31 2 0.31 0.32
SLL-zip-leq 10 0.3 2 0.3 0.27

SLL + head (check) 9 0.23 2 0.25 0.2
SLL + tail (check) 9 0.25 2 0.26 0.18
skip-list2 (check) 11 0.3 1 0.29 0.25
skip-list3 (check) 17 0.45 1 0.46 0.3
SLL of 0/1 SLLs 8 0.24 1 0.24 0.23
CSLL (check) 8 0.23 2 0.2 0.21

Table 5.3: Experimental Results for Transformation Approach

5.7.4 Larger Experiments

We have evaluated S2 on real source code from the Glib open source library

[2]. Glib is a cross-platform C library including non-GUI code from the GTK+

toolkit and the GNOME desktop environment. Due to our focus, we restrict our

experiments to only those files which implemented heap data structures, such

as SLL (gslist.c), DLL (glist.c), balanced binary trees (gtree.c) and N-ary trees

(gnode.c). Our experimental results are presented in Table 5.5. LOC reports

the number lines of code (exclusive of comment), #Proc (#Loop) captures the

number of procedures (number of while/for loops) in each file. Also, #
√

column

reports the number of procedures and loops for which S2 inferred specifications

that guarantee memory safety. S2 can infer specifications that guarantee memory

safety for 90% of procedures and loops (200/223) 1. To show limitation of our

current proposal, we highlight a example i.e the g tree insert internal presented

1Our current implementation does not support array data structures. Hence, procedures like
g tree insert internal cannot be verified too.
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Example
w/o norm. w/ norm.

Veri.
size Syn. size Syn.

CSLL (traverse) 8 0.23 5 0.23 0.24
CSLL of CSLLs (check) 18 0.24 4 0.23 0.22

SLL2DLL 18 0.19 2 0.2 0.18
DLL (check) 8 0.21 2 0.23 0.19
DLL (append) 11 0.2 8 0.2 0.2
CDLL (check) 23 0.22 8 0.26 0.21

CDLL of 5CSLLs 28 0.39 4 0.66 1.3
CDLL of CSLLs2 29 0.33 4 0.44 0.29

tree (search) 33 0.23 2 0.24 0.23
tree-parent (traverse) 11 0.23 2 0.29 0.24

rose-tree (check) 14 0.28 14 0.3 0.23
swl (traverse) 19 0.23 13 0.27 22
mcf (check) 19 0.26 17 0.28 0.26
tll (traverse) 21 0.23 2 0.25 0.21
tll (check) 21 0.29 2 0.32 0.19

tll-parent (check) 39 0.24 2 0.35 0.24

Table 5.4: Experimental Results for Transformation Approach (cont.)

LOC #Proc #Loop #
√

Syn. (second)
gslist.c 863 44 19 59 3.45
glist.c 957 29 19 43 6.41
gtree.c 1334 36 14 43 5.26
gnode.c 1131 37 25 55 9.17

Table 5.5: Experimental Results on Glib Programs

in Figure 5-11, where we are currently unable to prove memory safety. In this

example, the lists l1 and l2 are actually from overlapping heap memory since

they are computed from the same list, list. Our current modular procedure

infers two disjoint lists as pre-condition of the loop, with l1 being longer than l2

through a composite predicate (similar to the zip example). Precondition of this

loop cannot be currently proven inside g slist sort real. To analyse this example

successfully, our current tool would have to be extended to infer immutability and

size property of heap data structure, so that certain heap overlaps can be handled.

In particular, we would need to infer the following more precise specification:
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struct GSList∗
g slist sort real(struct GSList∗ list, ...) {
struct GSList ∗l1, ∗l2;
if (!list) return NULL;
if(!list->next) return list;
l1 = list; l2=list->next;
while ((l2=l2->next) 6= NULL){
if ((l2=l2->next) == NULL) break;
l1=l1->next; } //failed precondition

l2=l1->next;
...}

Figure 5-11: Code of g tree insert internal Method (Glib).

requires (lseg(l2,NULL,n)@L∧lseg(l1,q,n−1)@L)∧n>0

ensures l′2=NULL∧l′1=q

Here, list segments of l1 and l2 of lengths n and n−1 are overlapping but accessed

in read-mode via the @L annotation. l′1 and l′2 captures the updated variables

at exit of loop. Furthermore, there are other examples which rely on both shape

and pure properties (e.g. sortedness or size) for memory safety. These failures

motivate us to explore S2 to infer immutability and pure properties in the near

future. We discuss a preliminary step in this direction next.

5.7.5 Extension to numerical properties

While outside the focus of the current proposal, we confirm that our shape

synthesis system can be extended to analyse data structures with deeper

numerical invariant properties, such as sorted lists. We achieved this by a small

extension that generates unknown predicates for numerical fields. As a simple

example, consider the singly-linked list node with a numerical field val, with

code snippet presented in Figure 5-12. In the verification process, our extension

provides support for the following bi-abductive entailment:

H(x, v:int) ⊢ x7→node(a, b)❀ (H(x, v) ⇒

x7→node(n, q)∗H2(q, v)∗R(n, v), H2(b, v)∗R(a, v))
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bool check sorted(struct node∗ x, int v)
requires H(x, v) ensures G(x, v)∧res;
{
if (x==NULL) return true ;
else

return (v≤x->val) && check sorted(x->next,x->val);
}

Figure 5-12: Code of check sorted Method.

which generates R(v, n), an unknown predicate over two numerical parameters. By

solving the generated constraints, our system can synthesize a new heap predicate

over sorted linked-lists, as follows:

H(x, v) ≡ emp∧x=NULL ∨ x7→node(n, q)∗H(q, n)∧v≤n

5.8 Discussions

Typically, shape analysis infers invariants and post-abstractions for pointers of

programs based on predefined shape abstractions. As shape analysis follows the

structure of programs, it may produce an overtly complex and less understandable

results. Furthermore, due to unbounded data structures, computing fix point of

shape analysis may be not terminating. Hence, shape analysis typically introduces

an abstract post operator to obtain fix points and produce suitable results.

In separation logic, for the termination of fix point computation, shape

analysis typically introduces a finite ”canonical abstraction”, which is a fragment

of separation logic with a set of predefined shape predicates. For example, the

canonical abstraction of the shape analyses presented in [9, 28, 51, 138] limits to

variants of list data structure. To transform the results of shape analysis into the

canonical abstraction, those analyses made use of abstract post operators, i.e.

widening [51] and join [28, 138], with a set of rewrite rules. Compared to those
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analyses, our proposal analyzes shapes for pointers of both pre- and

post-condition at the same time. Hence, our analysis needs additional step to

distinguish abstractions of pre-predicates from abstractions of post-predicates.

After that the analysis applies appropriate rewrite rules for each set of

abstractions. For a combination of shape and numerical domain, authors in [104]

propose a analysis based on symbolic execution mechanism. This analysis also

introduces a set of rewrite rules for an attempt to find fix points.

The closest to our system is the shape analysis Caber presented in [16].

Caber infers a set of assumptions for both safety and termination of

heap-manipulating programs. While our transformation attempts to derive a

concise, understandable and usable definition for each shape predicate, the post

operator of Caber only checks and removes inconsistent assumptions [18]. Thus,

the results of Caber may not be immediately usable by verification systems.
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Chapter 6

Conclusion

In this thesis, we have proposed new mechanisms to specify, verify and

synthesize complete specification of programs using complex heap-based data

structures. Complete specifications capture functional properties, for both safety

and error scenarios, of programs.

Foundation of the complete specification mechanism is the error calculus.

Instead of using exception mechanism, we have proposed a lattice domain with

four-point status values that explicitly captures erroneous (and safe) program

states. To integrate reasoning on errors into verification systems, we have

introduced a calculus on these status values. We have also carefully re-designed

an entailment procedure of separation logic to support reasoning on both safety

and errors in the presence of data structures with sophisticated invariant, via

user-defined predicates and lemmas. Furthermore, through the calculus we can

provide a fairly precise and concise explanation when the verification fails to

either prove safety or validate errors.

We have also developed an inference methodology that centers on a second-

order bi-abduction that can synthesize arbitrary shape predicates, from scratch,

needed to ensure memory safety. Second-order variables are place-holders for

unknown predicates that can be synthesized from proof obligations gathered by
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Hoare-style verification. The soundness of our inference is based on the soundness

of the entailment procedure itself, and is not subjected to a re-verification process.

Our proposal for shape analysis has been structured into two key stages:

1. Gathering of relational assumptions on unknown shape predicates.

2. Synthesis of predicate definitions via derivation and normalization steps to

provide concise, understandable and usable shape definitions.

As shown in Appendix .2, our analysis has been proven sound. Compared to

state-of-the-art work [13, 20, 132], our work is capable of synthesizing shape

predicates for preconditions (and can directly work with recursive methods). We

have discussed a preliminary extension of the second-order bi-abduction to

complete specification. The key point of this extension is an abduction

mechanism to disprove proof obligations. We believe that this work is

particularly useful for automatically discovering effective formal specifications

required by automated verification systems.

We have designed and implemented a prototype system of the proposed

verification system within an existing verification infrastructure for C language

and conducted experiments with medium-sized programs manipulating complex

data structures. Our initial experiments suggest that our complete specification

language is expressive enough to capture functional properties of programs with

both safe and erroneous scenarios. Moreover, our verification system can provide

concise error explanations with modest overheads. The experimental results also

showed that the inference system can synthesize non-trivial shape predicates

definitions that could not be inferred before. Lastly, our framework can support

a mix of verification and inference through partial specifications. It will be

interesting to explore how our framework could be structured to support

incremental inference.
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6.1 Future Works

One possible future direction is to enhance the second-order bi-abductive

mechanism to infer both complete and concise specification.

To enhance completeness, our second-order bi-abduction may be extended to

support safety and errors as well as combined domains inference. We have

discussed an extension of the second-order bi-abduction to capture preconditions

that lead to implicit (memory) error execution. It is also useful to carry out an

analysis that is able to capture specifications that lead to explicit abnormal

execution, such as abort statements (e.g. the method zip in Figure 5-6) or

negative returns in Linux kernel API [67, 87]). Our second-order bi-abduction

mechanism was formulated for shape domain and did not fully consider

information from pure domain. A recent work [135] proposed a semi-automatic

mechanism based on unknown pure predicates to extend shape predicates with

pure properties (numerical and bag domains). To further enhance on

completeness, it is interesting to extend the mechanism to a combination of

shape and pure domains.

David et. al. [44] pointed out that it is more concise, precise and efficient when

specification logic captures immutability information. To enhance conciseness, we

would like to infer specification with immutability annotation. To do that, we

need to investigate mechanisms to infer immutability information.

Another possible future work is to develop our S2 tool further into a more

robust and scalable verification system, targeting on real-world software such as

API of Linux kernel. As this work requires significant engineering efforts, we have

left this topic to be explored in the future.

With these extensions, we hope that the new analysis can automatically verify

a wide range of programs to a higher level correctness and scalability.
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.1 Proof of the Soundness of the Structural

Rules for ⊢p

We prove Theorem 1 inductively on the structural rules through ⊔ operator, ⊗

operator and ⊕ operator.

.1.1 JOIN (⊔) Operator

[EC−[⊔ JOIN]]

π1 ⊢p π ❀ τ1

π2 ⊢p π ❀ τ2

π1 ∨ π2 ⊢p π ❀ τ and τ1 ⊔ τ2 = τ

We prove Theorem 1 by the case analysis on the returned τ .

Case τ = ⊥.

Based on the lattice of program status, τ1 ⊔ τ2 = ⊥ if τ1 = ⊥ and τ2 = ⊥. It means

τ1 ⊔ τ2 = ⊥ if π1 ⊢p π ❀ ⊥ and π2 ⊢p π ❀ ⊥.

Follow the entailment procedure ⊢p, we have πi ⊢p π ❀ ⊥ infers that unsat(πi)

with i ∈ {1, 2}.

We have:

unsat(π1) ∧ unsat(π2)

≡ ¬π1 ∧ ¬π2

≡ ¬(π1 ∨ π2)

≡ unsat(π1 ∨ π2)

Again, follow the entailment procedure ⊢p we conclude: π1 ∨ π2 ⊢p π ❀ ⊥

Therefore, τ1 ⊔ τ2 = τ .
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Case τ =
√
.

Based on the lattice of program status, τ1 ⊔ τ2 =
√

if

1. τ1 =
√

and τ2 =
√
. Or

2. One of them is ⊥ and another is
√
. We assume τ1 = ⊥ and τ2 =

√

Case τ1 =
√

and τ2 =
√

τ1 =
√
, it means π1 ⊢p π ❀

√
. Follow the entailment procedure ⊢p, we have:

unsat(π1 ∧ ¬π) (1.a.1)

Similarly, with τ2 =
√
, we have:

unsat(π2 ∧ ¬π) (1.a.2)

From (1.a.1) and (1.a.2), we have:

¬ (π1 ∧ ¬π) ∧ ¬ (π2 ∧ ¬π)

≡ (¬π1 ∨ π) ∧ (¬π2 ∨ π)

≡ ≡ (¬π1 ∧ ¬π2) ∨ π

≡ ¬(π1 ∨ π2) ∨ π

≡ ¬((π1 ∨ π2) ∧ ¬π)

≡ unsat(π1 ∨ π2) ∧ ¬ π) (1.1)

From (1.1), and follow the entailment procedure ⊢p we conclude:

π1 ∨ π2 ⊢p π ❀
√
.

So, τ1 ⊔ τ2 = τ .

Case τ1 = ⊥ and τ2 =
√

It means π1 ⊢p π ❀ ⊥ and π2 ⊢p π ❀
√
.
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Follow the entailment procedure ⊢p, we have:

unsat(π1)∧ (1.b.1)

unsat(π2 ∧ ¬π) (1.b.2)

From unsat(π1), we have π1 =⇒ π.

Moreover, with π1 =⇒ π and π2 =⇒ π, follow the same proof leading to

(1.2) of case τ1 =
√

and τ2 =
√

we have:

(π1 ∨ π2) =⇒ π (1.3)

From (1.3), and follow the entailment procedure ⊢p we conclude:

π1 ∨ π2 ⊢p π ❀
√
.

Therefore, τ1 ⊔ τ2 = τ .

Case τ = ℧.

Based on the lattice of program status, τ1 ⊔ τ2 = ℧ if

1. τ1 = ℧ and τ2 = ℧. Or

2. One of them is ⊥ and another is ℧. We assume τ1 = ⊥ and τ2 = ℧

Case τ1 = ℧ and τ2 = ℧

τ1 = ℧, it means π1 ⊢p π ❀ ℧. Follow the entailment procedure ⊢p, we have:

unsat(π1 ∧ π) (1.c.1)

Similarly, with τ2 = ℧, we have:

unsat(π2 ∧ π) (1.c.2)
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From (1.c.1) and (1.c.2), we have:

unsat(π1 ∧ π) ∧ unsat(π2 ∧ π)

≡ ¬(π1 ∧ π) ∧ ¬(π2 ∧ π)

≡ (¬π1 ∨ ¬π) ∧ (¬π2 ∨ ¬π)

≡ (¬π1 ∧ ¬π2) ∨ ¬π

≡ ¬(π1 ∨ π2) ∨ ¬π

≡ ¬((π1 ∨ π2) ∧ π)

≡ unsat((π1 ∨ π2) ∧ π) (1.4)

From (1.4), and follow the entailment procedure ⊢p we conclude:

π1 ∨ π2 ⊢p π ❀ ℧.

So, τ1 ⊔ τ2 = τ .

Case τ1 = ⊥ and τ2 = ℧

τ1 = ⊥, it means π1 ⊢p π ❀ ⊥. Follow the entailment procedure ⊢p, we have:

unsat(π1) (1.d.1)
τ2 = ℧, it means π2 ⊢p π ❀ ℧. Follow the entailment procedure ⊢p, we have:

unsat(π2 ∧ π) (1.d.2)

From (1.d.1) we have:

unsat(π1)

≡ ¬π1

⇒ ¬π1 ∨ ¬π (1.d.3)

From (1.d.2) we have:

unsat(π2 ∧ π)

≡ ¬(π2 ∧ π)

≡ ¬π2 ∨ ¬π (1.d.4)
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From (1.d.3) and (1.d.4) we have:

(¬π1 ∨ ¬π) ∧ (¬π2 ∨ ¬π)

≡ (¬π1 ∧ ¬π2) ∨ ¬π

≡ ¬(π1 ∨ π2) ∨ ¬π

≡ ¬((π1 ∨ π2) ∧ π)

≡ unsat((π1 ∨ π2) ∧ π) (1.5)

From (1.5), and follow the entailment procedure ⊢p we conclude:

π1 ∨ π2 ⊢p π ❀ ℧.

Therefore, τ1 ⊔ τ2 = τ .

Case τ = ⊤.

Based on the lattice of program status, τ1 ⊔ τ2 = ⊤ if

1. Either τ1 or τ2 is ⊤. Assume τ1 = ⊤. Or

2. τ1 = ℧ and τ2 =
√
.

Case τ1 = ⊤

τ1 = ⊤, it means π1 ⊢p π ❀ ⊤.

Follow the entailment procedure ⊢p, we have:

sat(π1 ∧ ¬π)∧ (1.e.1)

sat(π1 ∧ π) (1.e.2)

From (1.e.1) we have:

sat(π1 ∧ ¬π)

⇒ sat((π1 ∧ ¬π) ∨ (π2 ∧ ¬π))

≡ sat((π1 ∨ π2) ∧ ¬π) (1.6)
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From (1.e.2) we have:

sat(π1 ∧ π)

⇒ sat((π1 ∧ π) ∨ (π2 ∧ π))

≡ sat((π1 ∨ π2) ∧ π) (1.7)

From (1.6), (1.7) and follow the entailment procedure ⊢p we conclude: π1 ∨

π2 ⊢p π ❀ ⊤.

Therefore, τ1 ⊔ τ2 = τ .

Case τ1 = ℧ and τ2 =
√

τ1 = ℧, it means π1 ⊢p π ❀ ℧. Follow the entailment procedure ⊢p, we have:

unsat(π1 ∧ π) (1.f.1)

τ2 =
√
, it means π2 ⊢p π ❀

√
. Follow the entailment procedure ⊢p, we have:

unsat(π2 ∧ ¬π) (1.f.2)

We prove sat(π2 ∧ π) by contradiction. Assume that unsat(π2 ∧ π).

unsat(π2 ∧ π)

≡ ¬(π2 ∧ π)

≡ ¬π2 ∨ ¬πCombined with (1.f.2), we have:

(¬π2 ∨ ¬π) ∧ (¬π2 ∨ π)

≡ ¬π2 ∧ (¬π ∨ π)

≡ ¬π2 contradict with (1.f.2)

Hence, we conclude sat(π2 ∧ π).

sat(π2 ∧ π)

⇒ sat((π1 ∧ π) ∨ (π2 ∧ π))

≡ sat((π1 ∨ π2) ∧ π) (1.8)
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Similarly, we can prove that

sat((π1 ∨ π2) ∧ ¬π) (1.9)

From (1.8), (1.9) and follow the entailment procedure ⊢p we conclude:

π1 ∨ π2 ⊢p π ❀ ⊤.

Therefore, τ1 ⊔ τ2 = τ .

.1.2 COMPOSE (⊗) Operator

[EC−[⊗ COMPOSE]]

π ⊢p π1 ❀ τ1

π ⊢p π2 ❀ τ2

π ⊢p π1 ∧ π2 ❀ τ and τ1 ⊗ τ2 = τ

We prove Theorem 1 by the case analysis on the returned τ .

Case τ = ⊥.

Based on ⊗ operator, the result of τ1 ⊗ τ2 is ⊥ if either τ1 or τ2 is ⊥. Assume

τ1 = ⊥. It means π ⊢p π1 ❀ ⊥.

Follow the entailment procedure ⊢p, we infer: unsat(π1).

Again, follow the entailment procedure ⊢p we conclude π ⊢p π1 ∧ π2 ❀ ⊥

So, τ1 ⊗ τ2 = τ .

Case τ =
√
.

Based on ⊗ operator, the result of τ1 ⊗ τ2 is
√

if both τ1 and τ2 are
√
. It means

π ⊢p π1 ❀
√

and π ⊢p π2 ❀
√
.

Follow the entailment procedure ⊢p, we have:

unsat(π ∧ ¬π1) ∧ (2.a.1)

unsat(π ∧ ¬π2) (2.a.2)
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From (2.a.1) and (2.a.2), we have:

unsat(π ∧ ¬π1) ∧ unsat(π ∧ ¬π2)

⇒ (¬π ∨ π1) ∧ (¬π ∨ π2)

≡ ¬π ∨ (π1 ∧ π2)

≡ unsat(π ∧ ¬(π1 ∧ π2)) (2.1)

From (2.1), and follow the entailment procedure ⊢p we conclude: π ⊢p π1 ∧

π2 ❀
√

Therefore, τ1 ⊗ τ2 = τ .

Case τ = ℧.

Based on ⊗ operator, the result of τ1 ⊗ τ2 is ℧ if one of them (τ1, τ2) is ℧, and

another is not ⊥. Assumme τ1 = ℧ and τ2 6= ⊥.

τ1 = ℧ means π ⊢p π1 ❀ ℧. Follow the entailment procedure ⊢p, we have:

unsat(π ∧ π1) (2.b.1)

From (2.b.1), we have:

unsat(π ∧ π1)

⇒ unsat(π ∧ π1 ∧ π2) (2.2)

From (2.2) and follow the entailment procedure ⊢p we conclude: π ⊢p π1 ∧

π2 ❀ ℧

Therefore, τ1 ⊗ τ2 = τ .

Case τ = ⊤.

Based on ⊗ operator, τ1 ⊗ τ2 = ⊤ if

1. τ1=⊤ and τ2 = ⊤. Or
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2. One of them (τ1, τ2) is ⊤, another is
√
. Assume τ1=⊤ and τ2 =

√
.

Case τ1=⊤ and τ2 = ⊤

τ1=⊤ means π ⊢p π1 ❀ ⊤. Follow the entailment procedure ⊢p, we have:

sat(π ∧ π1) (2.c.1)

Similary, with τ2=⊤, we have:

sat(π ∧ π2) (2.c.2)

We prove sat(π ∧ π1 ∧ π2) by contradiction. Assume ¬(π ∧ π1 ∧ π2).

¬(π ∧ π1 ∧ π2)

≡ ¬((π ∧ π1) ∧ (π ∧ π2))

≡ ¬(π ∧ π1) ∨ ¬(π ∧ π2) (2.c.3)

(2.c.3) contradicts with both (2.c.1) and (2.c.2). Hence, we conclude:

sat(π ∧ π1 ∧ π2) (2.3)

From (2.3), and follow the entailment procedure ⊢p we conclude: π ⊢p π1 ∧

π2 ❀ ⊤

Therefore, τ1 ⊗ τ2 = τ .

Case τ1 = ⊤ and τ2 =
√

τ1=⊤ means π ⊢p π1 ❀ ⊤. Follow the entailment procedure ⊢p, we have:

sat(π ∧ π1) (2.d.1)

τ2=
√

means π ⊢p π2 ❀
√
.

unsat(π ∧ ¬π2) (2.d.2)
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We prove sat(π ∧ π1 ∧ π2) by contradiction. Assume ¬(π ∧ π1 ∧ π2).

¬(π ∧ π1 ∧ π2)

≡ ¬(π ∧ π1) ∨ ¬π2)

Combined with (2.d.2), we have:

¬(π ∧ π1) ∨ ¬π2) ∧ (¬π ∨ π2)

⇒ ¬π

This contradicts with (2.d.1).

Hence, we conclude:

sat(π ∧ π1 ∧ π2) (2.4)

From (2.4), and follow the entailment procedure ⊢p we conclude: π ⊢p π1 ∧

π2 ❀ ⊤

Therefore, τ1 ⊗ τ2 = τ .

.1.3 UNION (⊕) Operator

[EC−[⊕ UNION]]

π ⊢p π1 ❀ τ1

π ⊢p π2 ❀ τ2

π ⊢p π1 ∨ π2 ❀ τ and τ1 ⊕ τ2 = τ

We prove Theorem 1 by the case analysis on the returned τ .

Case τ = ⊥.

Based on ⊕ operator, the result of τ1 ⊕ τ2 is ⊥ if either τ1 or τ2 is ⊥. Assume

τ1 = ⊥. It means π ⊢p π1 ❀ ⊥.

Follow the entailment procedure ⊢p, we infer: unsat(π1).
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Again, follow the entailment procedure ⊢p we conclude π ⊢p π1 ∨ π2 ❀ ⊥.

Therefore, τ1 ⊕ τ2 = τ .

Case τ =
√
.

Based on ⊕ operator, the result of τ1 ⊕ τ2 is
√

if either (τ1 or τ2) is
√
. Assume

τ1 =
√
. It means π ⊢p π1 ❀

√
.

Follow the entailment procedure ⊢p, we have:

unsat(π ∧ ¬π1) (3.a.1)

From (3.a.1), we have:

unsat(π ∧ ¬π1)

⇒ (¬π ∨ π1) ∨ π2

≡ ¬π ∨ (π1 ∨ π2)

≡ unsat(π ∧ ¬(π1 ∨ π2)) (3.1)

From (3.1), and follow the entailment procedure ⊢p we conclude π ⊢p π1 ∨

π2 ❀
√
.

Therefore, τ1 ⊕ τ2 = τ .

Case τ = ℧.

Based on ⊕ operator, the result of τ1 ⊕ τ2 is ℧ if both τ1 and τ2 are ℧.

τ1 = ℧ means π ⊢p π1 ❀ ℧.

Follow the entailment procedure ⊢p, we have:

unsat(π ∧ π1) (3.b.1)

Similarly, with τ1 = ℧ we have:

unsat(π ∧ π2) (3.b.2)
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From (3.b.1) and (3.b.2), we have:

unsat(π ∧ π1) ∧ unsat(π ∧ π2)

⇒ (¬π ∨ ¬π1) ∧ (¬π ∨ ¬π2)

≡ ¬π ∨ (¬π1 ∧ ¬π2)

≡ ¬π ∨ ¬(π1 ∨ π2)

≡ ¬(π ∧ (π1 ∨ π2))

≡ unsat(π ∧ (π1 ∨ π2)) (3.2)

From (3.2) and follow the entailment procedure ⊢p we conclude π ⊢p π1 ∨

π2 ❀ ℧. Therefore, τ1 ⊕ τ2 = τ .

Case τ = ⊤.

Based on ⊕ operator, the result of τ1 ⊕ τ2 is ℧ if one of them (τ1, τ2) is ⊤, and

another is neither ⊥ nor
√
. We assume τ1 = ⊤ and τ2 is neither ⊥ nor

√
.

τ1 = ⊤ means π ⊢p π1 ❀ ⊤.

Follow the entailment procedure ⊢p, we have:

sat(π ∧ π1) (3.c.1)

τ2 is neither ⊥ nor
√
, then π ⊢p π1 ❀ t and t 6= ⊥ ∧ t 6= √. Follow the

entailment procedure ⊢p, we have:

sat(π ∧ ¬π2) (3.c.2)

From (3.c.1), we have:

sat(π ∧ π1)

⇒ sat((π ∧ π1) ∨ (π ∧ π2))

≡ sat((π ∧ (π1 ∨ π2)) (3.3)

From (3.3) and follow the entailment procedure ⊢p we conclude π ⊢p π1 ∨

π2 ❀ ⊤. Therefore, τ1 ⊕ τ2 = τ .
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.2 Expanded Soundness of Shape Synthesis

.2.1 Proof for Lemma 1

We will show that for all ∆ante and ∆conseq such that

∆ante ⊢ ∆conseq❀ (R,∆frame)

and Γ={U1(v̄1)≡∆1, ..Un(v̄n)≡∆n}, a set of instantiations for unknown predicates

such that R(Γ) then the entailment Γ:∆ante ⊢ ∆conseq∗∆frame holds. We will show

by structural induction on ∆conseq.

Due to the construction of the ∆ante ⊢ ∆conseq❀ (R,∆frame) procedure as an

extension of an existing entailment procedure with frame inference, for all ∆ante

and ∆conseq not involving unknown predicates R = true and

Γ:∆ante ⊢ ∆conseq∗∆frame.

Bellow we consider the cases that actually involve unknown predicates. These

cases fall under two categories:

• ∆ante = U(r, v̄i, v̄n#)∗κ1∧π1 and ∆conseq = κs∗κ2∧π2 where κs ≡ r 7→c(d̄, p̄)

or κs ≡ P(r, d̄, p̄). By hypothesis ∆ante ⊢ ∆conseq❀ (R,∆frame). Then, as

described in Sec. 4.6 the [SO-ENTAIL-UNFOLD] step must hold ensuring the

following assertion holds:

κ1∗∆dangl∗∆rem∧π1 ⊢ κ2∧π2❀ (R′, ∆frame)

where R = R′ ∧ (U(r, v̄i, v̄n#) ∧ πa ⇒ κs ∗∆dangl ∗∆rem ∧ πc) It follows from

the structural induction hypothesis that:

Γ:κ1∗∆dangl∗∆rem∧π1 ⊢ (κ2∧π2) ∗ ∆frame (1)
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From R(Γ) it follows that

Γ:U(r,v̄i,v̄n#)∧πa⊢κs∗∆dangl∗∆rem∧πc (2)

From equations 1 and 2 it follows that Γ:∆ante ⊢ ∆conseq ∗∆frame.

• ∆ante=κ1∧π1 and ∆conseq=Uc(w̄,z̄#)∗κ2∧π2.

Let πr = project(r̄, π1) and πw = project(w̄, π1). By hypothesis

∆ante ⊢ ∆conseq❀ (R,∆frame). Then, as described in Sec.4.6 the

[SO-ENTAIL-FOLD] step must hold ensuring the following assertions hold:

– κ1 = κ11∗κ12

– κ12 ∧ π1 ⊢ κ2 ∧ π2❀ (R′, ∆frame) which by structural induction leads to

Γ:κ12 ∧ π1 ⊢ (κ2 ∧ π2) ∗ ∆frame

– R=(κ11∧πw⇒Uc(w̄, z̄#) @κg∧πr) ∧R′ which by R(Γ) leads to:

Γ:κ11∧πw ⊢ Uc(w̄, z̄#) @κg∧πr Note that by the definition in Sec.2.2 for

guarded assumptions, it follows that ∆ @ (κg∧πr) ∗ κg∧πr is equivalent

with ∆ ∗ (κg∧πr).

From the above three assertions it follows that Γ:∆ante ⊢ ∆conseq ∗∆frame

.2.2 Proof for Lemma 2

We will show that given a set of relational assumptions R and one of the synthesis

rules is applied to obtain R′ then if exists Γ such that R′(Γ) then R(Γ).

• If [Syn-Base] was applied to R ∧ (Upre(x̄)∗κ∧π⇒Upost(ȳ)) then the resulting

assumptions are either:
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1. R′=R∧ (Upre(x̄)∧π′⇒emp) ∧ (κ∧π ⇒ Upost(ȳ))

OR

2. R′=R∧ (Ufr(x̄) ⇒ ⊤) ∧ (Upre(x̄)⇒Ufr(x̄) @ (κg∧πg))∧

(Upre(x̄)∗κ∧π ⇒ Upost(ȳ)) where Ufr is a fresh unknown predicate

If there exists Γ such thatR′(Γ) then by definition, using the Γ interpretation

for the unknown predicates then either:

1. Γ:Upre(x̄)∧π′ ⊢ emp and Γ:κ∧π ⊢ Upost(ȳ) and since by construction π⊢π′

it follows that Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) thus R(Γ).

2. Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) and Γ:Upre(x̄) ⊢ Ufr(x̄) @ (κg∧πg) and

Γ:Ufr(x̄) ⊢ ⊤ leading to Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) ∗ ⊤ @ (κg∧πg) which

by construction of κg∧πg and σ2 leads to Γ:Upre(x̄)∗κ∧π ⊢ Upost(ȳ) and

thus R(Γ).

• If [Syn-Case] was applied to:

R∧ (U(x̄)∧π1⇒∆1 @ ∆1g)∧(U(x̄)∧π2⇒∆2 @ ∆2g)

To generate:

R′ = R∧ (U(x̄)∧π1∧¬π2⇒∆1 @ ∆3g)∧

(U(x̄)∧π2∧¬π1⇒∆2 @ ∆3g) ∧ (U(x̄)∧π1∧π2⇒∆3 @ ∆3g)

with π1∧π2 6=⇒ false and ∆1∧∆2⇒x̄
∧∆3 and ∆1g∧∆2g⇒x̄

∧∆3g and exists a Γ

such that R′(Γ). From R′(Γ) it follows that:

Γ:U(x̄)∧π1∧¬π2 ⊢ ∆1 @ ∆3g Γ:U(x̄)∧π2∧¬π1 ⊢ ∆2 @ ∆3g
Γ:U(x̄)∧π1∧π2 ⊢ ∆3 @ ∆3g

We need to show that:
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Γ:U(x̄)∧π1 ⊢ ∆1 @ ∆1g and Γ:U(x̄)∧π2 ⊢ ∆2 @ ∆2g.

Note that by the definition of the conjunctive unification, it follows that if

∆1∧∆2⇒x̄
∧∆3 then Γ:∆3 ⊢ ∆1 and Γ:∆3 ⊢ ∆2. Thus from

Γ:U(x̄)∧π1∧π2 ⊢ ∆3 @ ∆3g and follows that:

Γ:U(x̄)∧π1∧π2 ⊢ ∆1 @ ∆3g and Γ:U(x̄)∧π1∧π2 ⊢ ∆2 @ ∆3g Thus it follows:

Γ:U(x̄)∧π1∧(¬π2 ∨ π2) ⊢ ∆1 @ ∆3g which simplifies to Γ:U(x̄)∧π1 ⊢ ∆1 @ ∆3g
which by the construction of ∆3g leads to Γ:U(x̄)∧π1 ⊢ ∆1 @ ∆1g. Similarly we

obtain: Γ:U(x̄)∧π2 ⊢ ∆2 @ ∆2g.

• [Syn-Group-Pre] The proof obligation reduces to: if there exists Γ such that

Γ:U(v̄) ∧ (π1∨π2) ⊢ Φg1∧π1 ∨ Φg2∧π2 and π1∧π2 ⊢ false then

Γ:U(v̄)∧π1 ⊢ Φg1 and Γ:U(v̄)∧π2 ⊢ Φg2. It follows that

Γ:U(v̄)∧π1 ⊢ Φg1∧π1∨Φg2∧π2 and

Γ:U(v̄)∧π2 ⊢ Φg1∧π1∨Φg2∧π2. And since π1∧π2 ⊢ false it follows that

Γ:U(v̄)∧π1 ⊢ Φg1∧π1 and Γ:U(v̄)∧π2 ⊢ Φg2∧π2.

• [Syn-Group-Post] It follows trivially that Γ:∆a ⊢ Upost(v̄) and Γ:∆b ⊢ Upost(v̄)

from Γ:∆a ∨ ∆b ⊢ Upost(v̄).

• if [Syn-Inline] was applied to :

R∧(Upre(x̄)∧πa ⇒ (Upred (x̄) ∗ κ∧π) @ (κg∧πg))

resulting in the assumption set:

R′ = R∧(Upre(x̄)∧πa⇒
∨

∆i∈S1∪S2

(∆i @ (κg∧πg)))
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when

U
pre

d (x̄) ≡ ∆1 @ (κ1∧π1) ∨ . . . ∨ ∆n @ (κn∧πn)

S1 = {∆i∗∆r∗κi | κ∧π ⊢ κi∧πi❀ (∅, ∆r)}

S2 = {κ∗∆i∧π @ (κi∧πi) | SAT(κ∧κi∧π∧πi), κ∧π 6⊢κi∧πi}

We need to prove that if exists Γ such that R′(Γ) then, R(Γ). That is:

Γ:Upre(x̄)∧πa ⊢ (Upred (x̄) ∗ κ∧π) @ (κg∧πg). Which by using the Upred definition

translates in having to prove:

Γ:Upre(x̄)∧πa ⊢
∨

i∈1...n

((∆i @ (κi∧πi) ∗ κ∧π) @ (κg∧πg))

From R′(Γ) it follows that:

Γ:Upre(x̄)∧πa⊢
∨

∆i∈S1∪S2

(((κ∧π)∗∆i) @ (κg∧πg))

We will show that:

∨

∆i∈S1∪S2
(((κ∧π)∗∆i) @ (κg∧πg)) ≡
∨

i∈1...n(∆i @ (κi∧πi) ∗ κ∧π) @ (κg∧πg)

Observe that by the definition of the guard assertion, a RHS disjunction

(∆i @ (κi∧πi) ∗ κ∧π) where the guard κi∧πi contradicts the context κ∧π is

equivalent to false and thus can be discarded, leaving only disjuncts that

do not contradict the context. Note that by construction, S1 ∪ S2 denotes

exactly that set. Furthermore, by the definition of the guarded assumption,

assertions (∆i @ (κi∧πi) ∗ κ∧π) in which κ∧π ⊢ κi∧πi can be reduced to

∆i ∗ κ∧π. Observe that the result of the application of the above two

equivalence preserving simplification steps on the RHS is identical to the

LHS. Thus the required disjunction equivalence holds.
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.2.3 Proof for Lemma 3

Follows from the observation that there are only two rules generating predicate

definitions: [Syn-Pre-Def] and [Syn-Post-Def]. Each applicable only if there exists only

one assumption corresponding to the predicate that is currently being derived.

Each rule generates exactly the predicate definition that would satisfy the unique

assumption.

.2.4 Proof for Lemma 4

We observe that the algorithm in Fig.5-1 finishes only when all assumptions have

been catered for: assumptions used for synthesis have been reduced to a unique

assumption which becomes the predicate definition; assumptions not included in

the synthesis are discharged by an entailment step. Thus by the previous lemmas

and the soundness of the underlying entailment checker the resulting definitions

satisfy all the initial assumptions.

.2.5 Proof for Lemma 5

We will show that all normalization steps are meaning preserving:

• Dangling elimination: We need to show that if Ud(x, v̄) ≡ ⊤ and x 6∈ ȳ then:

U(ȳ) ≡ ([x7→DUd ](κ∧π)) @ (κg∧πg) ∨ Φg

is equivalent to:

U(ȳ) ≡ (Ud(x, v̄)∗κ∧π) @ (κg∧πg) ∨ Φg

We first observe that variables local to the predicate definition, not part of

the predicate arguments, are implicitly existentially quantified.As

mentioned, we use the DUd notation as a visual aid, to identify an instance

of the predicate Ud whose root pointer x is reachable but has been neither
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read nor written to. By expanding the notation, the equivalence to be

proven becomes:

∃x.(Ud(x, v̄)∗κ∧π)≡∃fv.[DUd 7→ fv]([x7→DUd ](κ∧π))∗Ud(fv2, . . .)

By applying the predicate definitions:

∃x.(⊤∗κ∧π)≡∃fv.[DUd 7→ fv]([x7→DUd ](κ∧π))∗⊤

Which holds trivially.

• Eliminating useless parameters: We need to show that if at this step a

predicate P(x̄) ≡ ∆1 is distilled into Q(x̄′) ≡ ∆2 then P ′(x̄) ≡ Q(x̄′) that is,

∆1 holds iff ∆2 holds. By construction x̄′ = x̄ \ z̄ and ∃z̄.∆1 ⊢ ∆2 and also

∆2 ⊢ ∃z̄.∆1 which leads to ∆2 ≡ ∃z̄.∆1 and by the soundness of the flow

analysis used to detect that variables z̄ are not used in ∆1 it follows that

∆1 ≡ ∃z̄.∆1.

• Re-using predicates: We need to show that if at this step a predicate

P(x̄) ≡ ∆1 is found to be equivalent with Q(x̄′) ≡ ∆2 then ∆1 holds iff ∆2

holds. By the premise of this normalization step, ∆1 ⊢ Q(x̄′) and also

∆2 ⊢ P(x̄) which leads to ∆2 ≡ ∆1.

• Predicate splitting: Soundness follows from the construction. Given a

predicate P(x̄) we need to show that if the bi-abduction succeeds in

discovering definitions for U1(x̄) and U2(x̄) such that P(x̄) ⊢ U1(x̄) ∗ U2(x̄)

and if the derived predicate definitions can be used to prove

P(x̄) ≡ U1(x̄) ∗ U2(x̄) which follows from the soundness of the bi-abduction

and of the entailment methods.
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