
09381 Extended Abstract Collection

Re�nement Based Methods for the Construction

of Dependable Systems

� Dagstuhl Seminar �

Jean-Raymond Abrial1, Michael Butler2, Rajeev Joshi3, Elena Troubitsyna4

and Jim C. P. Woodcock5

1 ETH Zürich, CH
2 University of Southampton, GB

mjb@ecs.soton.ac.uk
3 Jet Propulsion Laboratory, USA

rajeev.joshi@jpl.nasa.gov
4 Aabo Akademi University - Turku, FIN

elena.troubitsyna@abo.fi
5 University of York, GB

jim.woodcock@york.ac.uk

Abstract. With our growing reliance on computers, the total societal

costs of their failures are hard to underestimate. Nowadays computers

control critical systems from various domains such as aerospace, auto-

motive, railway, business etc. Obviously, such systems must have a high

degree of dependability � a degree of trust that can be justi�ably placed

on them. Although the currently operating systems do have an acceptable

level of dependability, we believe that they development process is still

rather immature and ad-hoc. The constantly growing system complex-

ity poses an increasing challenge on the system developers and requires

signi�cant improvement on the existing developing practice. To address

this problem, we investigated how to establish a set of re�nement-based

engineering methods that can provide the designers with a systematic

methodology for development of complex systems.

Keywords. Speci�cation, re�nement, veri�cation, modelling, depend-

able systems

Executive summary

The seminar brought together academicians that are experts in the area of
dependability and formal methods and industry practitioners that are working
on developing dependable systems. The industry practitioners have described
their experience and challenges posed by formal modeling and veri�cation. The
academicians tried to address these challenges while describing their research

Dagstuhl Seminar Proceedings 09381
Re�nement Based Methods for the Construction of Dependable Systems
http://drops.dagstuhl.de/opus/volltexte/2010/2374

2 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

work. We seminar proceeded in a highly interactive manner and provided us
with an excellent opportunity to share experience.

One of the outcomes of that seminar was the identi�cation of the following
list of challenging issues faced by industrial users of formal methods:

� Team-based development
� Dealing with heavy model re-factoring
� Linking requirements engineering and FMs
� Abstraction is di�cult
� Re�nement strategies are di�cult to develop
� Guidelines for method and tool selection
� Keeping models and code in sync
� Real-time modelling
� Supporting reuse and variants
� Proof automation
� Proof reuse
� Handling complex data structures
� Code generation
� Test case generation
� Handling assumptions about the environment

The seminar has encouraged knowledge transfer between several major ini-
tiatives in the area of formal engineering of computer-based systems. We have
got a good understanding of the advances made within the EU-funded project
Deploy "Industrial deployment of system engineering methods providing high
dependability and productivity". The project aims at integration of formal engi-
neering methods into the existing development practice in such areas as automo-
tive industry, railways, space and business domains. The participants described
advantages and problems of re�nement-based development using Event-B and
Rodin tool platform. The advances made within the Grand Challenge in Veri�ed
Software initiative have been described by the researchers working on the Mon-
dex system and a veri�ed �le store. Several large-scale experiments on system
development and software veri�cation were presented by the various researchers
working in the software industry.

Discussions of such topics as foundations of program re�nement, veri�cation,
theorem proving, techniques for ensuring dependability, automatic tool support
for system development and veri�cation, modeling concurrency and many others
resulted in several new joint research initiatives and collaborative works.

This document consists of two parts: the �rst is a collection of short abstracts
of talks and the second is the collection of extended abstracts.

Re�nement Based Methods for the Construction of Dependable Systems 3

.

Part 1. Short Abstracts

4 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

Re�nement of programs of distributed agents

Egon Boerger (University of Pisa, IT)

We present a notion of program re�nement and re�nement correctness that
works for stepwise re�ning programs to be used in runs of distributed agents. As
case study we investigate an implementation of synchronous message passing by
semaphores together with its correctness proof.

This is ongoing joint work with Iain Craig (Birmingham) and part of a larger
project to model and verify operating system kernels.

Security speci�cation: completeness, feasibility, re�nement

Eerke Boiten (University of Kent, GB)

The formal methods and re�nement community should be able to contribute
to the speci�cation and veri�cation of security protocols. This talk describes a
few of the essential di�erences, or problems. First, security properties go beyond
functional correctness, and are fundamentally di�erent for di�erent applications.

Moreover, tomorrow's attacks may not be anticipated by yesterday's security
properties. Second, notions of security may not be absolute: it may be good
enough if guessing our secret is merely hard rather than impossible � and in
some cases that may be provably the best we can get. Where does that leave us
in wanting to provide security protocols "correct by construction"?

An overview of the Rodin toolset

Michael Butler (University of Southampton, GB)

Rodin is a toolset for the Event-B language and re�nement method. The core
functionality includes support for for static checking of models, generation of con-
sistency and re�nement proof obligations, and automatic and interactive proof.
A key design consideration is support for the interaction between modellinig and
proof. A further key design consideration is open architecture that enables ex-
tension to support additional modelling and analysis functionality. The toolset
is implemented on Eclipse and is open source.

A roadmap for the Rodin toolset

Michael Butler (University of Southampton, GB)

Event-B is a formal method for system-level modelling and analysis. Key features
of Event-B are the use of set theory as a modelling notation, the use of re�nement
to represent systems at di�erent abstraction levels and the use of mathematical
proof to verify consistency between re�nement levels.

Re�nement Based Methods for the Construction of Dependable Systems 5

The Rodin Platform6 is an Eclipse-based toolset for Event-B that provides
e�ective support for re�nement and mathematical proof.

Keep aspects of the are support for abstract modelling in Event-B; support
for re�nement proof; extensibility; open source.

To support modelliing and re�nement proofs Rodin contains a modelling
database surrounded by various plug-ins: a static checker, a proof obligation
generator, automated and interactive provers.

The extensibility of the platform has allowed for the integration of various
plug-ins such as a model-checker (ProB), animators, a UML-B transformer and
a LATEX generator. The database approach provides great �exibility, allowing the
tool to be extended and adapted easily. It also facilitates incremental develop-
ment and analysis of models.

The platform is open source, contributes to the Eclipse framework and uses
the Eclipse extension mechanisms to enable the integration of plug-ins.

Joint work of: Abrial, Jean-Raymond; Butler, Michael; Hallerstede, Stefan;
Voisin, Laurent

Challenges in Applying Formal Methods - SME view

Mathieu Clabaut (SYSTEREL Aix en Provence, FR)

This paper outlines past and foreseen challenges in applying both classical B
and event B to design safety related systems in an SME.

On Proving with Event-B that a Pipelined Processor
Model Implements its ISA Speci�cation

John Colley (University of Southampton, GB)

Microprocessor pipelining is a well-established technique that improves perfor-
mance and reduces power consumption by overlapping instruction execution.
Verifying, however, that an implementation meets this ISA speci�cation is com-
plex and time-consuming.

One of the key veri�cation issues that must be addressed is that of overlapping
instruction execution. This can introduce hazards where, for instance, a new
instruction reads the value from a register which will be written by an earlier
instruction that has not yet completed.

Using Event-B's support for re�nement with automated proof, a method is
explored where the abstract machine represents directly an instruction from the
ISA that speci�es the e�ect that the instruction has on the microprocessor reg-
ister �le. Re�nement is then used systematically to derive a concrete, pipelined
execution of that instruction.
6 Available from www.event-b.org

www.event-b.org

6 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

Microarchitectural considerations are raised to the speci�cation level and
design choices can be veri�ed much earlier in the �ow.

The method proposed therefore has the potential to be integrated into an
existing high-level synthesis methodology, providing an automated design and
veri�cation �ow from high-level speci�cation to hardware.

Joint work of: Colley, John; Butler, Michael

Mechanising a correctness proof for a lock-free stack

John Derrick (She�eld University, GB)

Concurrent objects are inherently complex to verify. In the late 80s and early
90s, Herlihy and Wing proposed linearizability as a correctness condition for
concurrent objects, which - once proven - allows to reason about concurrent
objects using pre- and postconditions only. A concurrent object is linearizable
if all of its operations appear to take e�ect instantaneously some time between
their invocation and return.

Here we discuss simulation-based proof conditions for linearizability and ap-
ply them to two a concurrent implementations of a lock-free stack. Similar to
other approaches, we employ a theorem prover (here, KIV) to mechanize our
proofs. Contrary to other approaches, we also use the prover to mechanically
check that our proof obligations actually guarantee linearizability. This check
employs the original ideas of Herlihy and Wing of verifying linearizability via
possibilities.

Linearizability - deriving and mechanically verifying proof
obligations

John Derrick (She�eld University, GB)

Concurrent objects are inherently complex to verify. In the late 80s and early
90s, Herlihy and Wing proposed linearizability as a correctness condition for
concurrent objects, which - once proven - allows to reason about concurrent
objects using pre- and postconditions only. A concurrent object is linearizable
if all of its operations appear to take e�ect instantaneously some time between
their invocation and return.

In this paper we propose simulation-based proof conditions for linearizability
which have been shown to be applicable to two concurrent implementations, a
lock-free stack and a set with lock-coupling. Similar to other approaches, we
employ a theorem prover (here, KIV) to mechanize our proofs. Contrary to
other approaches, we also use the prover to mechanically check that our proof
obligations actually guarantee linearizability. This check employs the original
ideas of Herlihy and Wing of verifying linearizability via possibilities.

Re�nement Based Methods for the Construction of Dependable Systems 7

Joint work of: Derrick, John; Schellhorn, Gerhard; Wehrheim, Heike

Beetlz

Fintan Fairmichael (University College - Dublin, IE)

When a change to a system under development is motivated from new-found
constraints, realisations, or changes at the implementation level, should we treat
the change di�erently to a modi�cation of the requirements? Can we develop in
such a way that is both rigorous and �exible in the face of such changes? We ad-
vocate that our processes should design for reversibility from the implementation
level all the way through to the highest level of abstraction. We will take a brief
look at our recently developed tool, Beetlz, for checking and maintaining the
consistency between BON speci�cations and the corresponding implementation
in JML-annotated Java.

Formal modelling and re�nement of OS kernels

Leo Freitas (University of York, GB)

During the POSIX pilot project on veri�ed �ash �le stores, we realised the need
for an underlying formalised kernel. This motivated work on modelling a simple
and a separation real-time kernel for embedded devices, which we will present.

The work is also related to other pilot projects in the grand challenge, such
as the veri�cation of the real-time operating systems (e.g., FreeRTOS). The
key di�erence from FreeRTOS is that, instead of trying to verify such successful
product's code, we are modelling the kernel from the requirements down through
to C code using Z and the re�nement calculus. In this process, we found many
interesting lemmas and general data structures that are useful for other domains
and pilot projects. We will report here on the current state of this work and where
is it going in the near future.

Towards Reasoned Modelling: Turning Proof Obligations
into Modelling Guidance

Gudmund Grov (University of Edinburgh, GB)

The activities of formal modelling and reasoning are closely related.
But while the rigour of building formal models brings signi�cant bene�ts,

formal reasoning remains a major barrier to the wider acceptance of formalism
within design. Here we propose reasoned modelling - a technique which aims
to abstract away from the complexities of low-level proof obligations, and pro-
vide high-level modelling guidance to designers when proofs fail. Inspired by
proof planning, the technique will combine modelling and reasoning patterns.
We present the results of our initial investigations into reasoned modelling, and
outline how we plan to realize our proposal.

8 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

An outline of a proposed system that learns from experts
how to discharge proof obligations automatically

Gudmund Grov (University of Edinburgh, GB)

Most formal methods give rise to proof obligations (POs) which are putative
lemmas that need proof.

Discharging these POs can become a bottleneck in the use of formal methods
in practical applications.

It is our aim to increase the repertoire of techniques for reducing this bottle-
neck by tackling learning from proof attempts.

In many cases where a correct PO has not been discharged, an expert can
easily see how to complete a proof.

We believe that it would be acceptable to rely on such expert intervention to
do one proof if this would enable a system to kill o� others �of the same form�.

Joint work of: Bundy, Alan; Grov, Gudmund; Jones, Cli�

A (small) improvement of Event-B?

Stefan Hallerstede (Universität Düsseldorf, DE)

Event-B and the Rodin tool use a number of simple techniques that make the
modelling method around them e�ective in practical applications. We present
two of these techniques, anticipation and witnesses. It is interesting how a couple
of very simple techniques are so important for the method to work. Finally we
propose a small enhancement of Event-B that would extend the use of witnesses.

Event-B Decomposition for Parallel Programs

Thai Son Hoang (ETH Zürich, CH)

We present here an approach for developing a parallel program combining re�ne-
ment and decomposition techniques. This involves in the �rst step to abstractly
specify the aim of the program, then subsequently introduce shared informa-
tion between sub-processes via re�nement. Afterwards, decomposition is applied
to separate the resulting model into sub-models for di�erent processes. These
sub-models are later independently developed using re�nement. Our approach
aids the understanding of parallel programs and reduces the complexity in their
proofs of correctness.

Joint work of: Hoang, Thai Son; Abrial, Jean-Raymond

Re�nement Based Methods for the Construction of Dependable Systems 9

Qualitative Reasoning for the Dining Philosophers

Thai Son Hoang (ETH Zürich, CH)

We continue our investigation of qualitative probabilistic reasoning in Event-B.
In the past we have applied it protocol veri�cation, in particular, the Firewire
protocol. There is still some way to go to achieve a practical method for quali-
tative probabilistic reasoning. In this presentation we attempt the probabilistic
solution to the dining philosophers problem to move further towards such a
method.

Joint work of: Hallerstede Stefan; Hoang, Thai Son

Structuring Speci�cations with Modes

Alexei Iliasov (University of Newcastle, GB)

The two dependability means considered in this paper are rigorous design and
fault tolerance. It can be complex to rigorously design some classes of systems,
including fault tolerant ones, therefore appropriate abstractions are needed to
better support system modelling and analysis. The abstraction proposed in this
paper for this purpose is the notion of operation mode. Modes are formalised and
their relation to a state-based formalism in a re�nement approach is established.
The use of modes for fault tolerant systems is then discussed and a case study
presented. Using modes in state-based modelling allows us to improve system
structuring, the elicitation of system assumptions and expected functionality, as
well as requirement traceability.

Joint work of: Iliasov, Alexei; Alexander Romanovsky; Fernando Lu�s Dotti

Launching Formal Methods into Space

Dubravka Ilic (Space Syst. Finland Ltd, FI)

This paper gives an overview of the experiences and so far known challenges in
applying Event-B in the space domain.

Reasoned Modelling: Combining Proof and Modelling
Patterns to Guide Systems Design

Andrew Ireland (Heriot-Watt-University Edinburgh, GB)

The activities of formal modelling and reasoning are closely related.

10 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

But while the rigour of building formal models brings signi�cant bene�ts,
formal reasoning remains a major barrier to the wider acceptance of formalism
within design. Here we propose reasoned modelling - a technique which aims
to abstract away from the complexities of low-level proof obligations, and pro-
vide high-level modelling guidance to designers when proofs fail. Inspired by
proof planning, the technique will combine modelling and reasoning patterns.
We present the results of our initial investigations into reasoned modelling, and
outline how we plan to realize our proposal.

Joint work of: Ireland, Andrew; Grov, Gudmund

Re�nement, Problems and Structures

Michael Jackson (The Open University - Milton Keynes, GB)

Re�nement can be applied explicitly to the structure of the problem world, suc-
cessive re�nement steps taking account of problem domains in order of decreasing
distance from the hardware/software machine. In this way system requirements
can in principle be re�ned to software speci�cations.

The question immediately arises: Does the development deal with a single
tree, or with a forest of re�nements? For a realistic system only a forest is
possible. Further questions then arise: How are the trees to be identi�ed and
separated? How are they to be recombined? What is the structure of the devel-
opment process and its product? These are fundamental questions about problem
analysis and solution.

Answers to these fundamental questions must recognise the importance of
human understanding in software and system development. Formal tools are
most e�ectively deployed within an intellectual framework based on principles
of understanding.

Abstraction is all we've got

Cli�ord B. Jones (University of Newcastle, GB)

My talk was a condensed version of a submitted paper available as a report
http://www.cs.ncl.ac.uk/publications/trs/papers/1166.pdf It's abstract follows:

This paper presents a formal development of a non-trivial parallel program:
Simpson's implementation of asynchronous communication mechanisms
(ACMs). Although the correctness of this �4-slot algorithm� has been shown
elsewhere, earlier proofs fail to o�er much insight into the design.

The aims of this paper include both the presentation of an understandable
(yet formal) design history of this one algorithm and teasing out of the techniques
employed in the explanation for wider application. Among these techniques is
using a ��ction of atomicity� as an aid to understanding the initial steps of
development.

Re�nement Based Methods for the Construction of Dependable Systems
11

The rely-guarantee approach is, here, combined with notions of read/write
frames and �phased� speci�cations; the atomicity assumptions implied by
rely/guarantee conditions are realised by clever choices of data representation.

Verifying Large Probabilistic Models by 3-Valued
Abstraction

Joost-Pieter Katoen (RWTH Aachen, DE)

Model checking of probabilistic models is used in many di�erent areas such as
performance and dependability evaluation, security protocols, randomized algo-
rithms, and biological systems. Tools have been successfully applied to numerous
case studies, but like in traditional model checking, the state explosion problem
forms a serious limitation. Although many techniques from traditional model
checking have been generalized towards probabilistic models such as BDDs and
partial-order reduction, more aggressive reduction techniques are needed. In this
talk, we introduce model checking of continuous-time Markov chains (CTMCs),
present a three-valued abstraction technique, and present several examples to
show its e�ectiveness when applied to huge, and even in�nite CTMCs.

Verifying the Microsoft Hyper-V Hypervisor with VCC
(with Thomas Santen)

Dirk Leinenbach (DFKI Saarbrücken, DE)

The European Microsoft Innovation Center (EMIC), the German Research Cen-
ter for Arti�cial Intelligence (DFKI), and Saarland University cooperate in the
Verisoft project on verifying the kernel of Hyper-V, Microsoft's server virtual-
ization software. The �rst part of the talk presents VCC, an industrial-strength
veri�cation suite for low-level concurrent C code developed jointly by EMIC and
Microsoft Research. The second part concentrates on the speci�cs of applying
VCC for the veri�cation of Hyper-V, e.g., the formal models required to express
(and verify) hypvervisor correctness.

Joint work of: Leinenbach, Dirk; Santen, Thomas

Developing Tools for Formal Methods: Lessons and
Outlook

Michael Leuschel (Universität Düsseldorf, DE)

We will present the ProB toolset for animation, model checking and re�nement
checking of B, Event-B, CSP and Z speci�cations.

12 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

We summarise recent developments surrounding the toolset, with successful
application in the railway industry. We summarise our experience in developing
tools for formal methods, and conclude with an overview of the major challenges
for the future.

Formal Methods in the Automotive Sector - Challenges
for Deployment

Felix Loesch (Robert Bosch GmbH - Stuttgart, DE)

The presentation will give a summary of the challenges for deployment of formal
methods in the automotive sector.

Can we reuse qualitative proofs for quantitative security
analysis?

Larissa Meinicke (Macquarie University - Sydney, AU)

One would ideally like Formal Methods for verifying and developing software
applications that exhibit probabilistic behaviours and are subject to security re-
quirements. One of the main goals of our current research is to integrate security,
probability and modularity features into re�nement-based Formal Methods.

A "�rst step" on this path was the introduction (Morgan 2006) of a "Shadow
Model" that could be used to develop non-interference style protocols by re�ne-
ment. Using this model it was shown how qualitative proofs could be performed
using routine algebraic laws and calculations.

Since this model does not take probability into consideration, proofs of cor-
rectness using the Shadow Model may not be correct given the ability of an
attacker to perform repeat-experiments or statistical analysis: correctness with
respect to this more sophisticated form of attack need to be veri�ed in more
complex, probabilistic model extensions.

This leads us to wonder "under what circumstances do "Shadow proofs"
guarantee correctness in such an extended model in which, say, hidden choices
are replaced by uniform probabilistic choices"?

In this talk we explore the idea that "Shadow programs" �in which un-
certainty is abstracted by nondeterministic choices� and "probabilistic Shadow
programs" �in which uniform probabilistic choices take the place of purely non-
deterministic choices� share many algebraic rules; and we show that this makes it
possible to use qualitative proofs (like those already used in The Shadow to prove
the correctness of a variety of security protocols) to verify security applications
with respect to a notion of testing that allows statistical attacks.

Re�nement-based guidelines for constructing algorithms

Dominique Mery (LORIA - Nancy, FR)

Re�nement Based Methods for the Construction of Dependable Systems
13

The correct-by-construction approach can be supported by a progressive and in-
cremental process controlled by the re�nement of models of programs. We explore
the Event-B modelling language to illustrate the expression of our methodologi-
cal proposal using proof-based patterns called guidelines. The main objective is
to facilitate the correct-by-construction approach for designing classical sequen-
tial and distributed algorithms. We address the description of guidelines for the
design of programs and algorithms and the integration of proof-based aspects
using the RODIN platform. More precisely, we introduce several methodolog-
ical steps identi�ed during the development of case studies, and we propose
auxiliary notions, such as re�nement diagrams, for guiding users during problem
analysis. A general structure characterizes the relationship between the contract,
the Event B, and the developed algorithm using a speci�c application of Event
B models and re�nement. We simplify the translation of Event B models into
algorithmic elements by promoting the use of recursive constructs. The result-
ing algorithm is proved to be sound with respect to the pre/post speci�cation,
namely, the contract.

Applications rely on a dynamic programming technique that illustrates the
applicability of these patterns based on a call-as-event relationship. Each proof-
based development is validated using the RODIN platform. Distributed algo-
rithms are considered with respect to the local computation model based on a
relabelling relation over graphs representing distributed systems. The VISIDIA
toolbox provides facilities for simulating local computation models which can be
easily modelled using Event B and the re�nement.

Simple probabilistic proofs for simple probabilistic
programs

C. Carroll Morgan (Univ. of New South Wales, AU)

While expectation transformers are fully general for proofs of programs with
both demonic and probabilistic choice, in some cases an expectation invariant
for a loop an be hard to �nd. This is particularly striking when the program has
a simple intuitive justi�cation, but the invariant is elusive, complex or unknown.

I'll propose a simpli�ed reasoning technique, based on convex sets of dis-
tributions, which is appropriate only for purely probabilistic (ie deterministic,
non-demonic) programs. Its justi�cation will however be given in terms of ex-
pectation transformers. Thus simple- and complex arguments should be able to
exist within the same system, each used where it is needed and appropriate.

With luck, some version of this should be amenable to event-B -style reason-
ing.

14 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

Formal Methods for Enterprise Applications - Challenges
and Experiences

Andreas Roth (SAP Research - Darmstadt, DE)

We report on �rst experiences with applying formal speci�cation and veri�cation
techniques in the development of enterprise applications - most of them within
the context of the Deploy project. We highlight the challenges we see when
applying re�nement based methods in this area and our current approaches to
address them.

Formal Methods in the Development of Business Software

Andreas Roth (SAP Research - Darmstadt, DE)

We discuss the suitability of Formal Methods for the development of business
software as well as experiences and challenges in this area. Business software
involves very di�erent kinds of software: technical components, business ap-
plications, analytical applications. Our focus is on business applications which
promise a good probability of a second use of Formal Methods. We investigate
service choreography models, business object models, and business process mod-
els, as typical instances of models in this domain. Our approach is to take exist-
ing diagrammatic models and translate them to a formal language, e.g. Event-B.
Though the approach works well, there are a number of challenges. These are
especially the provision of good user feedback on prover or model checker results,
the need for better automation, and a better usage of re�nement.

The seed was spread out: An Overview of Formal Methods
Application in Brazil

Aryldo G Russo Jr (AeS Group - Sao Paolo, BR)

The use of formal methods has constantly increased, although with basically two
constraints: their use has been concentrated mostly in Europe, and they have
been used only by big companies which are in charge of developing some safety
critical applications and in some how are conected with academia projects. The
aim of this talk is to present how formal methods have been applied in other
parts of the world, mainly South America, by a small company headquarted in
Brazil. It is splited in three parts. First, an introduction about the AeS Group,
a small company that is been trying to apply Formal Methods in its projects.
Second, some real industrial applications are presented (with some reasoning
about why the used tool was selected) and how the formal method culture can
drastically help the development process. And �nally, some of the ongoing work
(industrial and academic) that is been developed by the author and gaps iden-
ti�ed in industry that can be ful�lled by extending the features of the actual
tools.

Re�nement Based Methods for the Construction of Dependable Systems
15

Formal Foundation to Systematic Development of
Simulink/State�ow Models

Manoranjan Satpathy (General Motors - TCI - Bangalore, IN)

The Simulink/State�ow (SL/SF) environment from Mathworks is widely used in
industry for the development of control applications, especially in the automo-
tive and aerospace domains. Such models are constructed by control engineers
directly from the requirements, and the models are usually validated by sim-
ulation. This process can have the following de�ciencies: (a) there is a large
semantic gap between the informal requirements and the SL/SF design mod-
els and hence errors are likely to creep in, and (b) simulation alone may not
discover errors/ambiguities in the model. Our research focuses on correct con-
struction of Simulink/State�ow models. We follow the Event-B method for the
construction of hybrid control systems, and after the requirements are su�ciently
re�ned, our method generates SL/SF models from the re�ned Event-B models.
The SL/SF models so generated would be correct with respect to the require-
ments. Many veri�cation/validation (V/V) infrastructures like Hardware-in-loop
(HIL) testing, Plant-in-loop (PIL) testing and FlexRay bench have been built
around Mathwork's SL/SF models. The SL/SF models that we generate out of
the Event-B models can get the bene�t of existing V/V infrastructure.

Joint work of: Satpathy, Manoranjan; Ramesh, S

Abstract Speci�cation of the UBIFS File System for Flash
Memory

Gerhard Schellhorn (Universität Augsburg, DE)

Flash memory is used in more and more applications (mp3 players, mass storage
systems, automotive applications, space crafts) since it has certain advantages
over magnetic disks like higher speed and resistance against kinetic shock.

However, to e�ciently use �ash memory, its speci�c characteristics demand
the use of a specialized �le system.

Development of a veri�ed �le system has been proposed as a case study in
the context of the Grand Veri�cation Challenge.

The talk describes a formal speci�cation of the core data structures used in
such a �le system: an inode-based store for the data, index structures for e�cient
access, and a journal to deal with intermediate crashes. The model was based
on an analysis of the UBIFS �lesystem which was recently integrated into the
Linux kernel.

The model is intended as an intermediate level of a re�nement tower that
starts with a standard (POSIX) speci�cation of �le system operations and ends
with hardware operations according to the ONFI standard. We plan to develop
such a tower, and the talk gives some challenges for the re�nements of this e�ort.

16 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

Joint work of: Schellhorn, Gerhard; Schierl, Andreasl; Haneberg, Dominik;
Reif, Wolfgang

Abstract Speci�cation of the UBIFS File System for Flash
Memory

Gerhard Schellhorn (Universität Augsburg, DE)

Today we see an increasing demand for �ash memory because it has certain
advantages like resistance against kinetic shock. However, reliable data storage
also requires a specialized �le system that can handle the limitations of �ash
memory. This paper develops a formal, abstract model for the UBIFS �ash �le
system. We develop formal speci�cations for the core components of the �le
system: the inode-based �le store, the �ash index, its cached copy in the RAM
and the journal to save the di�erences. We give an abstract speci�cation of the
interface operations of UBIFS and prove some of the most important properties
using the interactive veri�cation system KIV.

Joint work of: Schellhorn, Gerhard; Schierl, Andreas; Haneberg, Dominik; Reif,
Wolfgang

Pattern-based Re�nement of Con�dentiality Requirements

Holger Schmidt (Universität Duisburg-Essen, DE)

We present an approach to security requirements engineering, which makes use
of special kinds of problem frames that serve to structure, characterize, analyze,
and solve software development problems in the area of software and system
security.

In this paper, we focus on con�dentiality problems. We enhance previously
published work by formal behavioral frame descriptions, which enable software
engineers to formally specify security requirements. Consequently, software engi-
neers can prove that the envisaged solutions provide functional correctness and
that the solutions ful�ll the speci�ed security requirements.

Full Paper:
http://swe.uni-duisburg-essen.de/en/members/schmidt/index.php

http://swe.uni-duisburg-essen.de/en/members/schmidt/index.php

Re�nement Based Methods for the Construction of Dependable Systems
17

Modelling Finitary Fairness in Event B

Emil Sekerinski (McMaster University, CA)

In modelling concurrent systems, fair choice allows to abstract from scheduling
policies of processes or from processor speeds. Re�nement approaches like Event
B support only the weaker notion of nondeterministic choice. We show how �ni-
tary weak fairness can be expressed in Event B. Compared to standard fairness,
�nitary fairness is a "more re�ned" model, that simpli�es veri�cation of liveness
properties and is suitable for fault-tolerant distributed computing. A generic
transformation of an Event B model with �nitary fairness to a standard Event
B model is suggested. The re�nement process is illustrated with the development
of the alternating bit protocol.

Joint work of: Sekerinski, Emil; Zhang, Tian

Ensuring Correctness of Network Applications with
MIDAS

Kaisa Sere (Aabo Akademi University - Turku, FI)

Network applications and services are pervading our society in a unforeseen man-
ner. On one hand, this creates an extraordinary market for innovative networked
applications and information services. On the other hand, these applications and
services tend to be more and more complex, while the human perception of the
supporting network more acute, as we expect to be able to use networks any-
where and at any time. The framework that we propose in this paper sets out
to alleviate the task of a network application developer in two directions. First,
we employ modularity and stepwise development to address the inherent appli-
cation complexity. Second, we employ a reasoning framework named MIDAS to
ensure the correctness of the proposed modeling, both at the application and at
the supporting network level.

Joint work of: Petre, Luigia; Sere, Kaisa; Waldén, Marina

Specifying Safety Requirements for a Railway Interlocking
System (An example using re�nement in UML-B)

Colin F. Snook (University of Southampton, GB)

We illustrate the use of UML-B to specify safety requirements in a railway in-
terlocking system. Starting from a list of documented hazards, the example uses
three re�nement levels to concisely specify what is meant by a safe interlocking
system. The re�nements �rstly introduce the basic domain concepts involved in
an unsafe railway system, then document assumptions about the system that are

18 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

relied upon to mitigate hazards, and �nally specify the safety requirements that
the proposed system must meet in order to avoid hazards. Hence, the model is
progressively constrained from an unsafe one to a safe one.

Re�nement-Based Speci�cation and Veri�cation

Maria Spichkova (TU München, DE)

The main focus of this approach is on interactive real-time systems. The ap-
proach is based on the methodology "Focus on Isabelle" where speci�cation and
veri�cation/validation methodologies are treated as a single, joined, methodol-
ogy with the main focus on the speci�cation part � using coupling of the formal
speci�cation framework Focus in the generic theorem prover Isabelle/HOL.

By considering the framework "Focus on Isabelle", which is result of the cou-
pling, we can in�uence the complexity of proofs already during the speci�cation
phase.

The presentation introduces how the ideas of speci�cation groups, re�nement-
based veri�cation as well as decomposition and re�nement layers can be used to
optimize the veri�cation process, and which in�uences they have on the speci�-
cation process.

Formal Development and Assessment of Dependable
Control Systems

Elena Troubitsyna (Aabo Akademi University - Turku, FI)

Dependability is degree of reliance that can be justi�ably placed on a computer-
based system. It is a multi-facet system characteristic that encompasses safety,
reliability, availability, maintainability and security. Dependability is impaired
by faults that might propagate to a system level and result in a system failure.
If a failure occurs then the system might cease to provide its services or provide
them incorrectly. A set of techniques known as means for dependability aims
at mitigating consequences of fault occurrence as well as avoiding and removing
faults during the system design. Means for dependability include fault avoidance,
fault tolerance, fault removal and fault forecasting. We argue that by interfacing
re�nement process with these techniques we would signi�cantly enhance system
development process. We present several examples to support our argument.

Joint work of: Troubitsyna, Elena; Laibinis, Linas; Tarasyk, Anton

Re�nement Based Methods for the Construction of Dependable Systems
19

Practical Experiences Constructing Working Virtual
Machines

Stephen Wright (University of Bristol, GB)

The Instruction Set Architecture (ISA) of a computing machine is the de�nition
of the binary instructions, registers, and memory space visible to an executing
program. Despite there being many ISAs in existence, all share a set of core
properties which have been tailored to their particular applications. An abstract
model may capture these generic properties and be subsequently re�ned to a
particular machine: this is a task to which the Event-B formal notation is well
suited. The motivation for the work is the systematic speci�cation of the ISA�s
behavior for all possible instruction sequences loaded into the machine, whether
part of a correct program or an erroneous one.

The constructed model consists of two parts: a generic description of prop-
erties common to most ISAs, and re�nement to particular ISAs. The generic
part is incrementally constructed from a very trivial initial model, and the sec-
ond part constructs a particular ISA from this. The complete re�nement process
is demonstrated by the creation and testing of Virtual Machines automatically
generated as C source code via a translation tool, which was developed as part
of the project.

The technique is demonstrated by re�nement to the MIDAS (Microproces-
sor Instruction and Data Abstraction System) ISA speci�cation. MIDAS is a
speci�cation capable of executing binary images compiled from the C language.
It is intended to be representative of typical microprocessor ISAs, but using a
minimal number of de�ned instructions in order to make a complete re�nement
practical. There are two variants: a stack-based machine and a randomly accessi-
ble register array machine. The two variants employ the same instruction codes,
the di�erences being limited to register �le behavior. Compiler tool chains for
each variant have been developed.

Some numbers: the MIDAS ISAs have thirty four instructions; their complete
re�nements consist of over thirty steps, expanding a single initial event to over
one hundred for each variant. This process involves the discharging of nearly
�ve thousand proof obligations. Automatic translation yields over four thousand
lines of C source code for each variant.

This presentation will give an overview of the MIDAS project as an exam-
ple of a model re�nement of su�cient scale, depth and detail to be suitable for
automatic translation into a usable executable. The place of Event-B model con-
struction within a wider development process is described. Various scaling issues
are discussed, including editing and manipulation of Event-B notation via the
user interface, discharging of the vast number of proof obligations, and the prac-
tical limits of Rodin as an Eclipse/Java platform. The modeling techniques used
to mitigate some of these scaling issues are described, and promising emerg-
ing or proposed Event-B features highlighted. Suggestions for possible future
enhancements are made.

20 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna
and Jim C. P. Woodcock

.

Part 2. Extended Abstracts

Security specification: completeness, feasibility,
refinement

Eerke Boiten

Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.
E.A.Boiten@kent.ac.uk www.cs.kent.ac.uk/˜eab2/

Abstract. The formal methods and refinement community should be
able to contribute to the specification and verification of cryptography
based security protocols. This paper describes a few of the challenges
that arise in this context. These include: security properties which differ
from one application to another, and as a consequence issues of specifica-
tion completeness; approximate rather than absolute notions of security,
and underlying theories which do not provide obvious methods for “cor-
rectness by construction”.

1 Introduction: Commitment and Completeness

At a first glance, cryptographic protocols provide exactly the kind of problems
that formal methods are most suitable for and perform best at: short programs
(most fit on a single page), based on rich algebraic mathematics, whose correct-
ness is highly critical. However, the mathematics and the notions of security
(correctness) are very different from the usual formal methods repertoire.

As an example, consider the cryptographic primitive of bit commitment. This
is an essential ingredient of many cryptographic applications, particularly to
build up trust between different parties, e.g. in authentication, and for zero-
knowledge proofs of knowledge. Commitment, informally, is like putting a value
in a locked box. One party (the “committer”) chooses a message, and transforms
it in a way which makes sure they cannot later claim it was a different message (it
is “binding”), and the other party (the “receiver”) cannot see it (it is “hiding”),
and passes the transformed message to the other party (it “commits”). After
commitment has taken place, typically further interaction will follow. At some
point the commitment may be opened, e.g. as a check for honesty. One then
expects the original message to be retrieved (“correctness”). The three prop-
erties: hiding, binding, and correctness together constitute the specification of
commitment. When the message is a single bit, it is called bit commitment.

Another method of specifying this functionality is in what is commonly called
the “ideal model” [12], where parties can communicate securely with an incor-
ruptable third party. In that model, the committer sends their message to the
trusted intermediary, who then confirms to the receiver that some commitment is
made. When the committer asks for the commitment to be opened, the interme-
diary sends the original message to the receiver. Security of an implementation

in this model means: any attack that succeeds against the implementation is as
likely to succeed against the ideal model scenario. Although we have omitted the
formal details here, it appears as if hiding, binding and correctness are indeed
guaranteed in this specification. Conversely, it would be difficult to come up
with a simpler “ideal model” specification that satisfies those three properties.
We will come back to this in detail in Section 2.

To consider a rather more complicated example, protocols for electronic vot-
ing have been studied for many years, leading to an extensive list of desirable
security properties [11]:

fairness, eligibility, individual verifiability, universal verifiability, vote-
privacy, coercion-resistance, receipt-freeness

with many of these varying depending on whether computers and election offi-
cials can be trusted or not. Even though the cited work provides a lot of structure
by establishing relations between all these properties, it would still be hard to
be certain that this set of properties or any future extension completely covers
all possible attacks on an electronic voting protocol [9].

In general, when stated security properties closely match attacks that have
been envisioned, clearly any verification is relative to the set of attacks consid-
ered, and completeness remains an issue. The cryptographic security community
is undecided as to whether ideal model specification addresses this completeness
problem [9, 10].

2 Commitment and Feasibility

We examine commitment and its security properties in more detail here. The
context in which commitment schemes must be understood is as part of a pro-
tocol. A protocol involves at least two parties and is an algorithmic prescription
for a number of causally related communications between the involved parties,
aiming to achieve a particular objective. A protocol may succeed, or it may fail.
It fails when the exchange of messages stops prematurely, for example after one
party observes that another party is not adhering to the protocol. It succeeds
if the protocol has completed and none of the parties has declared failure ex-
plicitly. Parties which act according to the protocol’s rules and aim to achieve
the protocol objective are called “honest”. If the protocol succeeds although the
objective has not been achieved, this indicates a breach of security. The protocol
is expected to fail if some of the parties act dishonestly – thus, it is never in the
interest of a dishonest party to perform an action that is guaranteed to lead to
the protocol’s failing. A practically relevant expectation is that a cryptographic
protocol has a fixed number of fixed size messages, where the numbers may de-
pend on the sizes of any protocol parameters, or on a security parameter (such
as a key size).

The bit commitment scheme consists of three phases: preparation, commit-
ted, and opened. In the preparation stage, no bit has been chosen yet; in the
commited stage, the committer has chosen a bit b that they cannot change

(binding), and that the receiver does not know (hiding); in the opened phase,
the receiver knows that the committer originally committed to b. The transitions
between phases are achieved by messages from the committer to the receiver.

A first, obviously broken, attempt at a protocol is where the committer sends
out a value commit(b) for a known function commit, and later the value b as an
opening. Correctness is guaranteed, but hiding normally is not: the receiver can
check immediately by “exhaustive” search whether they received commit(0) or
commit(1). However, if commit(0) = commit(1) then hiding is guaranteed, but
binding is not.

The normal solution for this is randomisation. The traditional argument
for the need for randomisation in cryptography is masking known distributions
within plaintexts in encryption algorithms – this is another. There are two com-
mon views of probabilistic algorithms. One view is that they include explicit
probabilistic choices “inside”. This model fits best when e.g. considering the
combination of non-deterministic and probabilistic specification [13]. The other
view is to consider “deterministic extensions” of probabilistic algorithms: these
are deterministic algorithms which take an additional argument (sampled from
a given distribution) representing the actual probabilistic choices made. In the
context of commitment, we need the latter view. Thus we end up with a new
specification, where commit takes an additional argument, which is also sent at
opening time to allow the receiver to verify correctness. However, due to the
assumption of bounded sized messages, this additional argument is bounded,
and thus both sides can attempt to cheat. When the committer has sent out
c = commit(0, r), he can search for r′ such that commit(0, r) = commit(1, r′) in
order to defeat the binding property: he could claim to have committed to 1 and
provide r′ as the evidence. Thus, such r′ should not exist. However, in order to de-
feat hiding, the receiver can search exhaustively for r such that c = commit(0, r)
or c = commit(1, r). One of these is guaranteed to succeed, so the only case
where hiding succeeds because the cheating receiver has no information is when
c = commit(0, r) = commit(1, r′) – exactly the case where binding fails. Thus,
binding and hiding are contradictory properties, and a protocol of the suggested
shape satisfying both cannot exist, despite the existence of an “ideal model”
specification.

However, commitment is considered useful, even if practical schemes cannot
live up to the ideal. The compromise of completely dropping one of the two
crucial properties is clearly unacceptable – and we can do significantly better
than that, by bringing in a computational notion of correctness. In summary:
the ideal combination of “perfect” binding and hiding is not achievable; however,
the literature shows that schemes exist which approximate both as closely as
required, provided we assume (dishonest) parties to be constrained to bounded
(polynomial) time. We will briefly describe approximate notions of correctness
and refinement in Section 3.

A final aside about commitment relates to the notion of universal compos-
ability [7]. This is a formal methods inspired concept, of conditions which would
allow compositional reasoning, in the sense that one could substitute the ideal

model specification of a scheme instead of an implementation when reasoning
about protocols built using the scheme. For commitment, it has been proved
that an implementation satisfying this strong compositional notion of correct-
ness cannot exist [8, 10].

3 Computational Correctness

Notions of statistical and computational correctness (“provable security”) in
cryptography are built on the idea that breaking a system may only need to be
hard and unlikely, rather than theoretically impossible. For commitment this is
the best that can be achieved; for other applications it may be more realistic and
efficient. Attack models then include explicit probabilism, reflecting situations
like it always being possible to correctly guess an encryption key, though with a
very small probability only. Informally, the computational version of the hiding
property is as follows. Let the randomising argument to commit have length
n bits. Then, for any probabilistic algorithm with time complexity polynomial
in n, the probability of it distinguishing outputs of commit for bit 0 with uni-
formly chosen randomising input, and similar for bit 1, is negligible (i.e., smaller
in the limit than 1 divided by any positive polynomial). A similar definition
exists for binding, and commitment schemes have been defined in the literature
that achieve one security property in the absolute sense, and the other in the
computational sense described here.

For more details of this and the reconstruction of the commitment primitive
from a formal methods perspective, see the draft paper [4]. Clearly there is a
connection between the notion of approximate correctness described here, and
our notion of approximate refinement [6] – the draft paper also gives more details
of that.

4 Towards Correctness by Construction

For a slightly more extensive discussion, see [5]. The state of the art for cryp-
tographic protocols is that verification is done post-hoc only, with very little
machine support. Proofs for provable security are hard: notations and theories
such as probability theory and complexity theory do not have strong algebraic
traditions or properties. In particular, proofs over “all probabilistic polynomial
algorithms” have no induction principles to support them, so are typically carried
out by contradiction and probabilistic reduction. (“If we had an efficient algo-
rithm to break this cryptographic scheme, this could be used to solve a known
difficult number-theoretic problem.”) Promising approaches in this area include
universal composability discussed above, and “game hopping” [2] supported by
the CryptoVerif proving system [3].

On the formal methods side, recent developments in probabilistic refinement
[13, 16], action refinement [1], and secrecy-preserving refinement [15, 14] con-
tribute to solving the problem of finding refinement relations that will one day

allow us to derive cryptographic protocols from abstract specifications, providing
correctness by construction.

References

1. R. Banach and G. Schellhorn. On the refinement of atomic actions. ENTCS,
201:3–30, 2008. Proceedings BCS-FACS Refinement Workshop 2007.

2. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 409–426. Springer, 2006.

3. Bruno Blanchet. A computationally sound mechanized prover for se-
curity protocols. IEEE Transactions on Dependable and Secure Com-
puting, 5(4):193–207, October–December 2008. Special issue IEEE Sym-
posium on Security and Privacy 2006. Electronic version available at
http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.1005.

4. E.A. Boiten. Commitment: A challenge for formal methods, 2008. Draft paper,
www.cs.kent.ac.uk/˜eab2/crypto/commit.pdf.

5. E.A. Boiten. From ABZ to cryptography (abstract). In E. Börger, M. Butler, J.P.
Bowen, and P. Boca, editors, ABZ 2008, volume 5238 of LNCS, page 353. Springer,
September 2008. www.cs.kent.ac.uk/˜eab2/crypto/abz.pdf.

6. E.A. Boiten and J. Derrick. Formal program development with approximations.
In H. Treharne, S. King, M. Henson, and S. Schneider, editors, ZB 2005, volume
3455 of Lecture Notes in Computer Science, pages 375–393. Springer, 2005.

7. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

8. R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 19–40.
Springer, 2001.

9. R. Cramer and I. Damg̊ard. Multiparty computation, an introduction.
Material for a course on Cryptologic Protocol Theory, Aarhus University,
www.daimi.au.dk/~ivan/CPT.html (last checked April 17, 2007), 2004.

10. A. Datta, A. Derek, J.C. Mitchell, A. Ramanathan, and A. Scedrov. Games and the
impossibility of realizable ideal functionality. In S. Halevi and T. Rabin, editors,
TCC, volume 3876 of Lecture Notes in Computer Science, pages 360–379. Springer,
2006.

11. S. Delaune, S. Kremer, and M.D. Ryan. Verifying privacy-type properties of elec-
tronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

13. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Springer, 2004.

14. Carroll Morgan. How to brew-up a refinement ordering. ENTCS, 2009. Proceedings
of Refine 2009, to appear.

15. Carroll Morgan. The shadow knows: Refinement and security in sequential pro-
grams. Sci. Comput. Program., 74(8):629–653, 2009.

16. M. Ying. Reasoning about probabilistic sequential programs in a probabilistic
logic. Acta Informatica, 39(5):315–389, 2003.

A roadmap for the Rodin toolset?

Jean-Raymond Abrial1, Michael Butler2, Stefan Hallerstede3, and Laurent Voisin4

1 Independent Consultant, France
2 University of Southampton, UK

3 Heinrich-Heine-Universität Düsseldorf, Germany
4 Systerel, France

1 Event-B and the Rodin Platform

Event-B is a formal method for system-level modelling and analysis [?]. Key features
of Event-B are the use of set theory as a modelling notation, the use of refinement to
represent systems at different abstraction levels and the use of mathematical proof
to verify consistency between refinement levels.

The Rodin Platform5 [2] is an Eclipse-based [3] toolset for Event-B that provides
effective support for refinement and mathematical proof. Keep aspects of the are

– support for abstract modelling in Event-B
– support for refinement proof
– extensibility
– open source

To support modelliing and refinement proofs Rodin contains a modelling database
surrounded by various plug-ins: a static checker, a proof obligation generator, au-
tomated and interactive provers. The extensibility of the platform has allowed for
the integration of various plug-ins such as a model-checker (ProB), animators, a
UML-B transformer and a LATEX generator. The database approach provides great
flexibility, allowing the tool to be extended and adapted easily. It also facilitates
incremental development and analysis of models. The platform is open source, con-
tributes to the Eclipse framework and uses the Eclipse extension mechanisms to
enable the integration of plug-ins.

For a fuller description of the Rodin tool see [1].

2 Roadmap

In its present form, Rodin provides a powerful and effective toolset for Event-B
development and it has been validated by means of numerous medium-sized case
studies. Naturally further improvements and extensions are required in order to
improve the productivity of users further and in order to scale the application of
the toolset to large industrial-scale developments. We outline the main extensions
to Rodin that we have planned for a four year time frame. The outline descriptions
of these planned extensions are grouped into sections 2.1 to 2.5 as follows.

? The continued development of the Rodin toolset is funded by the EU research project
ICT 214158 DEPLOY (Industrial deployment of system engineering methods providing
high dependability and productivity) www.deploy-project.eu. The toolset was originally
developed as part of the project IST 511599 RODIN (Rigorous Open Development
Environment for Complex Systems).

5 Available from www.event-b.org

2.1 Model construction

Rodin provides a structured editor for constructing and modifying models stored in
the database. As mentioned above, this facilitates easy extension as well as incre-
mental development and analysis of models. Rodin needs further improvement to
make it easier to perform standard editing tasks such as text search, copy/paste and
undo/redo. Rodin will be extended to provide refactoring facilities, such as identifier
renaming, that can be applied not just to models but to proof obligations, proofs
and other forms of elements. Better support for browsing refinement links between
models will be provided, for example, allowing the refinements and abstractions of
events to be followed down or up a refinement chain.

2.2 Scaling

Event extension: In many Event-B developments it is common to perform super-
position refinement where existing model features are maintained and additional fea-
tures are added (e.g., additional variables, invariants, events and additional guards
and actions for existing events). Currently events can be inherited as a whole but
not extended. Rodin will support event extension (or superposition) where only
the additional features are defined in a refined event and the existing features are
inherited.

Composition and decomposition: Composition and decomposition of mod-
els is essential for scalability. There are plans to support two styles of composition
for Event-B in Rodin:

Shared variable composition Sub-models interact via shared variables
Shared event composition Sub-models interact via synchronisation over events

Rodin will be extended to provide support for composing models as well as de-
composing models according to these styles. The proof obligation generator will be
extended to enable independent refinement of sub-models.

Team-based development: Support for composition and decomposition will
go some way towards enabling team-based development. But there will still be
situations where a team needs to access a common set of models. Rodin will be
extended to support concurrent modification of developments by providing viewing
of change conflicts and automated merge of changes. It will provide support for
version control. Support to analyse the impact of multiple user modifications on
proof will be investigated.

2.3 Extending the proof obligations and theory

Proof obligations: Event-B models will be extended to include external vari-
ables. The proof obligation for such variables is that they must be preserved via a
functional gluing invariant between abstract and concrete external variables. Other
forms of proof obligations will also be added to support different paradigms (con-
current, distributed, sequential systems). These include proof obligations for preser-
vation of event enabledness and richer variant structures(such as pointwise ordering
and lexicographic ordering) for convergence proof obligations.

Mathematical extensions: Rodin will be extended to support richer types
such as record structures and user-defined data types including inductive data types.
Appropriate automated and interactive proof support for richer types will be inves-
tigated and provded. Higher order provers should enable proof support for inductive
datatypes. Users will be able to define operators of polymorphic type (but not use
operator overloading) as well as parameterised predicate definitions. Support for
disjointness constraints will be added.

2.4 Proof and model checking

Rodin provides an open architecture for proof in the form of a proof manager
that can use a range of provers to discharge proofs and sub-proofs. The existing
automated provers will be extended with more powerful decision procedures. The
use of existing first order and higher order automated provers will be investigated. As
mentioned already, higher order provers should enable proof support for inductive
datatypes. The possibility of exploiting automated techniques such as SMT and
SAT will be investigated. The facilities of the ProB model checker will be fully
integrated into Rodin.

2.5 Animation

Prototype animation plug-ins already exist. The animation facilities will be ex-
tended to allow for greater automation of large animations to support regression
testing of models. A clear API to the animation will be provided to allow for easy
integration with graphical animation tools.

2.6 Process and productivity

Requirements Handling and Traceability: The interplay between informal
requirements and formal modelling is crucial in system development and needs
better tool support. Facilities for constructing structured requirements documents
and for building links between informal and formal elements will be added to Rodin.
These will support traceability between requirements and formal models. Support
for recording validation of these links and for managing consistency under change
to requirements and to formal models will be provided.

Document management: Currently, the B2Latex plug-in for Rodin gener-
ates a LATEX version of an Event-B model. The structure of the document follows
the structure of the model. For proper document generation tool support will be
provided whereby users dictate the order in which parts of the model are presented.
They should be able to write a document, structured according to their needs that
includes parts of an Event-B project and that is automatically kept in synchrony
with the models.

Automated model generation: Automatic generation of refinements will be
investigated and appropriate tool support provided. More general modelling and
refinement patterns, enabling greater reuse of modelling and refinement idioms,
will be investigated and tool support provided. Code generation from models will
be investigated. An indirect route for achieving code generation will be to generated
classical B and use the existing code generators for classical B.

3 Tool development procedures

We are promoting a rigorous approach to the development of Rodin. Key features
of Rodin, e.g., the static checker and the proof obligation generator, were specified
formally before being implemented. Test procedures are developed in tandem with
implementing. We are setting up rigorous specification and code review procedures.
The development of new features should also follow this approach.

Many of the extensions listed above will first be implement as separate Eclipse
plug-ins. When their general value and quality is assured, they will be incorporated
into the platform release.

The management of platform release versions will be coordinated amongst the
platform and plug-in developers. Facilities for importing existing developments into
newer versions of Rodin will be provided. Support documentation and tutorial mate-
rial for tool users and plug-in developers will continue to be improved and updated.

4 Concluding

Many of the Rodin extensions outlined above will be implemented as part of the
DEPLOY project. However, we welcome support from other researchers and tool de-
velopers in elaborating and realising the roadmap. Furthermore, we anticipate that
researchers will investigate and implement Rodin extensions that are not identified
in our roadmap.

References

1. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and reasoning in
Event-B. http://deploy-eprints.ecs.soton.ac.uk/130/, 2009.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM
2006, volume 4260, pages 588–605. Springer, 2006.

3. Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.

Acknowledgements

We would like to thank the many contributors to the Rodin platform and plug-ins
including Nicolas Beauger, Jens Bendisposto, Mathieu Clabaut, Kriangsak Dam-
choom, Andy Edmunds, Fabian Fritz, Andreas Fürst, Thai Son Hoang, Alexei Il-
iasov, Michael Jastram, Thierry Lecomte, Michael Leuschel, Issam Maamria, Christophe
Métayer, Farhad Mehta, Carine Pascal, Antoine Requet, Abdolbaghi Rezazadeh,
Mar Yah Said, Matthias Schmalz, Renato Silva, Colin Snook, Francois Terrier. In
addition, Dominique Cansell and Cliff Jones provided valuable feedback on the de-
sign of the tool.

Challenges in Applying Formal Methods

An SME View

Mathieu Clabaut

Systerel, Aix-en-Provence, France

mathieu.clabaut@systerel.fr

Abstract. This paper outlines past and foreseen challenges in applying

both classical B and event B to design safety related systems in an SME.

1 Activities

Systerel is an SME doing mainly �xed-price activities in the domain of real-time
systems and safety-critical software ranging from on-board train speed controller
to track-side automatic train protection. Systerel uses formal methods for some
of these developments, most of which have been done with classical B.

Nowadays, we are doing some analysis and design of safety-critical systems
with the help of event B while still developing safety-critical real-time embedded
software.

2 Past Challenges: Classical B

2.1 At the Beginning

The earlier challenges met when �rst using the classical B method were mainly
the following ones:

Planning proof workload was impossible to estimate, which was not in favour
of formal method, since the workload of tests used in classical methods was
far more easy to estimate.

Monitoring progress was very di�cult. How to estimate the proof progress
when a single unprovable proof obligation may require a break down of the
whole architecture of your software?

Customer evaluation of formal method contribution was not always positive,
notably with respect to the development costs: Where is the return on in-

vestment?

2.2 Now

Planning and monitoring is a bit easier as we have gained experience and domain
knowledge. We thus do know where to apply formal methods and where not to.

We are now able to precisely draw the limits of software responsibility with
respect to safety and then narrow down the formal properties which are to be
modelled with B.

We also have collated somewhat usable metrics and rules of thumbs, and
while still having to work until there is no more proof obligations left, we have
a better con�dence on our modelling principles for a given domain.

We claim better model designs which allow for simpler proofs and better
reuse. The fact that a model is designed to be proved is now the core of our
process.

Customer evaluation is now backed by some years of experience and nowadays,
most of our customers reckon quality gains (albeit still internally disputed for
some others). For those who master the formal process, using classical B is less
expensive than traditional safety-critical developments.

2.3 Process

Our classical B process is composed of:

{ Software requirements document, written by small teams.
{ Formal design and proof done within small teams.
{ Formal coding and proof done within large teams.
{ Translation and compilation (automated).
{ Integration and functional testing done within large teams.

This process is suitable for big industrial software with large teams of devel-
opers.

3 Today and Future Challenges: Event B

Nowadays, we are going a step further with the use of formal methods, by using
event B to help the design of safety-critical systems.

3.1 Process

The starting point of our process, backed by our classical B experience, is that
the model has to be designed for proving it which also implies that event B may
not be convincing for analysis of existing systems (so called retro-modelling)1

and may only show its usefulness for ab initio design, where one is allowed to
tweak the design in order to reject complexity (with respect to safety proof).

The process in use today is made of the following steps:

{ System requirement document (small team)
{ Re�nement plan (small team)

1 But still more exible than classical B where architectural constraints make retro-

design in B even more di�cult.

{ Modelling / proving (small team | basically, one person)
{ Testing (To be de�ned. . .)

The scalability of such a process is poor. New tools and concepts will de�-
nitely be needed to manage complexity and to allow team work on big models.

It is to be noted that despite these di�culties, event B proves to be very
useful in designing a safety system.

3.2 Project Management

Our main challenge with the use of event B and the companion tool Rodin are
about project management and convey the fact that:

{ the desired system design is not known at the beginning of the process,
{ heavy model refactoring are thus common.

Planning and monitoring is then a di�cult task. How one can estimate the
design and proof e�ort? How can one devise measurement to monitor design
and proof progress?

Relation with customers on such a base are also not easy: reporting is no con-
vincing given the lack of monitoring capabilities. The customer evaluation is
then done on a poor basis: \a model has been done, and then? . . . "

The ROI justi�cation of the modelling work is still di�cult, even if we are
utterly convinced of its usefulness.

4 What's Needed

Roughly stated, the main needs are the following one:

1. Master the modelling process.
2. Reduce costs and delays.
3. Convince customers.

For this, we de�nitely need tools and methods for tackling model complex-
ity (team based development, decomposition, mathematical extensions, patterns
or automated re�nements,. . .), for improving planning and monitoring and for
improving customer evaluation and appreciation.

Some interest was also expressed by the space industry in being able to
formalize requirements and the companion engineering process with the help of
re�nement-based formal methods. Maybe an issue to be tackled in the coming
years?

Linearizability - deriving and mechanically
verifying proof obligations

John Derrick1, Gerhard Schellhorn2, and Heike Wehrheim3

1Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

3Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Concurrent objects are inherently complex to verify. In the
late 80s and early 90s, Herlihy and Wing proposed linearizability as a
correctness condition for concurrent objects, which - once proven - allows
to reason about concurrent objects using pre- and postconditions only.
A concurrent object is linearizable if all of its operations appear to take
effect instantaneously some time between their invocation and return.
In this paper we propose simulation-based proof conditions for lineariz-
ability and apply them to two concurrent implementations, a lock-free
stack and a set with lock-coupling. Similar to other approaches, we em-
ploy a theorem prover (here, KIV) to mechanize our proofs. Contrary
to other approaches, we also use the prover to mechanically check that
our proof obligations actually guarantee linearizability. This check em-
ploys the original ideas of Herlihy and Wing of verifying linearizability
via possibilities.

Keywords: Z, refinement, concurrent access, linearizability, non-
atomic refinement, theorem proving, KIV.

1 Introduction

In 1987, Herlihy and Wing [10, 11] introduced the notion of linearizability as a
correctness criterion for concurrent objects. Concurrent object are data struc-
tures (like sets, stacks, queues) shared by parallel processes. Implementations
of concurrent objects usually apply fine-grained synchronisation schemes for ac-
cess as to allow for a high degree of concurrency. Such synchronisation schemes
might employ locking of single elements in the object (like a node in a linked list)
but might as well completely dispose with locking. Such concurrent algorithms
are intrinsically difficult to prove correct, and the down-side of the performance
gain from permitting concurrency is the much harder verification problem: how
can one verify that the implementation of a concurrent object is correct? Lin-
earizability does not fix the “how” but defines “what” needs to be proven for
correctness. Like serializability for database transactions, linearizability permits

one to view operations on concurrent objects as though they occur in some
sequential order [11]:

Linearizability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

Unlike serializability, linearizability is however a local property, the proof of it
can be carried out on individual objects. Once linearizability of a concurrent
object has been shown, reasoning about it can be done in terms of the pre- and
postconditions of operations alone.

Recently, a number of distributed algorithms have been shown to be lineariz-
able, these works including [9, 4, 1, 12, 15, 2, 3] as well as our own [7, 8]. In these
works, a number of different techniques are employed ranging from shape anal-
ysis or separation logic over rely-guarantee reasoning to simulation-based meth-
ods. The simulation-based methods show that an abstraction (or simulation or
refinement) relation exists between the abstract specification and the concur-
rent implementation. The proofs employed in the above range from manual over
partly theorem prover supported (e.g., with PVS) to automatic ones. Apart from
our own [8], all of these papers, however, only argue at an informal level that
their proof technique actually implies the original linearizability criterion of [11].
In this paper our aim is to give a formal theory that relates refinement theory
and linearizability, and which has furthermore been fully mechanized using the
interactive theorem prover KIV [14]. Two cases studies have been used to vali-
date the approach: a concurrent implementation of a set and of a stack. These
two examples differ in that while the first algorithm (taken from [15]) employs
locks (on a small-grained scale), the second one [13] is a lock-free, non-blocking
algorithm.

Linearizability
⇑

Data Refinement
⇑

Forward Simulation using Possibilities
⇑

Local proof obligations

Fig. 1. The structure of the generic part of the proof of correctness

Our methodology of proving linearizability consists of two parts: A generic part
which derives proof obligations, and an application specific part instantiating
these to case studies.

The generic part of the methodology needs to show that our proof obligations
guarantee linearizability. This is done in several steps as illustrated in Fig. 1. As
a first step, we show that linearizability can be seen as a specialised instance of

data refinement [5, 6]. Data refinement relates specifications on different levels
of abstraction (abstract and concrete data types) with the aim of guaranteeing
substitutability. It requires that any permitted observations of the concrete type
are consistent with those that could be made of the abstract type. Normally these
observations are the outputs of the data type, however, by extending the data
types with histories (of operation executions) and adapting outputs to generate
histories, we define a notion of data refinement which implies linearizability.

Data refinement is usually proven in a step-wise manner via forward or back-
ward simulations [6]. To show that our proof obligations imply linearizability,
we construct a forward simulation relation between the extended concrete and
abstract data types out of our proof obligations. This turned out to be the hard
part in the proof, and here we, in fact, re-used the original alternative proof
technique for linearizability of Herlihy and Wing, that is of employing possibili-
ties. This simulation relation then finally needs to be shown to indeed fulfill the
conditions for forward simulations. All definitions and proof steps for the generic
part have been formalised and mechanically verified using the theorem prover
KIV.

In [] the application of the methodology to specific algortihms is illustrated
by considering two case studies. The first is an implementation of a stack via a
linked list [13]. It implements atomic push and pop operations as instructions
to read, write and update local variables as well as the stack contents. The
only atomic operations are the reading and writing of variables and an atomic
compare-and-swap (atomically comparing the values of two variables plus setting
a variable). This provides for a non-blocking algorithm on the stack, requiring no
locking scheme at all. The second example, taken from [15], is an implementation
of a set, again as a linked list but this time employing a lock-coupling scheme
on consecutive nodes in the list. Besides reading and writing of variables, here
locking (i.e. testing and setting a lock) is an atomic step. We show that our proof
obligations hold on both examples, and again all proofs have been mechanized
within KIV.

The methodology we have derived is sufficiently rich to be applicable to a
number of algorithms. There are, however, a range of algorithms that are outside
its range, and the extension of the methodology to them forms the basis of our
continuing programme of work.

The first extension involves the location of non-determinism in an algorithm,
and how that can be resolved in any implementation. This is pertinent since
although forward simulations can be used to verify the majority of naturally
occurring algorithms, in cases where the non-determinism is postponed in an
implementation, backward simulations need to be used (and, in general, both can
be needed). There are known cases of lock-free algorithms that need backward
simulations, and one direction for this work is to provide the extension to this
case.

Harder still are algorithms were the location of the linearization points is
not static. Specifically, the linearization point of one operation can only be de-
termined by the current progression of other operations in the data type. At

present our formalisation of the status function cannot be used in such circum-
stances and we need to seek a tractable formalisation that can cope with all the
generality.

References

1. J.-R. Abrial and D. Cansell. Formal Construction of a Non-blocking Concurrent
Queue Algorithm (a Case Study in Atomicity). Journal of Universal Computer
Science, 11(5):744–770, 2005.

2. Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Ya-
hav. Comparison under abstraction for verifying linearizability. In Werner Damm
and Holger Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer
Science, pages 477–490. Springer, 2007.

3. Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis. Modular safety
checking for fine-grained concurrency. In SAS 2007, volume 4634 of LNCS, pages
233–238. Springer, 2007.

4. R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data structures by
simulation. ENTCS, 137:93–110, 2005.

5. W. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

6. J. Derrick and E. Boiten. Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer, May 2001.

7. J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic
refinement. In J. Davies and J. Gibbons, editors, IFM, volume 4591 of Lecture
Notes in Computer Science, pages 195–214. Springer, 2007.

8. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanizing a correctness proof for a
lock-free concurrent stack. In G. Barthe and F. de Boer, editors, FMOODS 2008:
Formal methods for open, object-based distributed systems, volume 5051 of LNCS,
pages 78–95. Springer, 2008.

9. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a prac-
tical lock-free queue algorithm. In FORTE 2004, volume 3235 of LNCS, pages
97–114, 2004.

10. M. Herlihy and J. Wing. Axioms for concurrent objects. In ACM Symposium on
Principle of Programming Languages, pages 13–26. ACM, 1987.

11. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

12. Wim H. Hesselink. A criterion for atomicity revisited. Acta Inf., 44(2):123–151,
2007.

13. Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared — memory multiprocessors. Journal of
Parallel and Distributed Computing, 51(1):1–26, 1998.

14. W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and
interactive proofs with KIV. In W. Bibel and P. Schmitt, editors, Automated
Deduction—A Basis for Applications, volume II: Systems and Implementation
Techniques, chapter 1: Interactive Theorem Proving, pages 13 – 39. Kluwer Aca-
demic Publishers, Dordrecht, 1998.

15. Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving cor-
rectness of highly-concurrent linearisable objects. In PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 129–136, New York, NY, USA, 2006. ACM.

Formal modelling and refinement of OS kernels

Leo Freitas

Department of Computer Science, University of York, YO10 5DD, York, UK

Abstract. During the POSIX pilot project on verified flash file stores, we
realised the need for an underlying formalised kernel. This motivated work on
modelling a separation real-time kernel for embedded devices. The work is also
related to other pilot projects in the grand challenge, such as the verification
of the real-time operating systems (e.g., FreeRTOS). The key difference from
FreeRTOS is that, instead of trying to verify such successful product’s code,
we are modelling the kernel from the requirements down through to C code
using Z and the refinement calculus. In this process, we found many interesting
lemmas and general data structures that are useful for other domains and pilot
projects. We will summarise here on the current state of this work and where
is it going in the near future.

Keywords: Grand challenge; OS kernels; theorem proving; verification

1 Introduction

Formal methods for software development allow the construction of an accurate char-
acterisation of a problem domain that is firmly based on mathematics; by applying
standard mathematical analyses, these methods can be used to prove the correctness
of systems. The survey presented in [26] describes over 60 industrial projects, and
discusses the effect formal methods have on time, cost, and quality. It shows that
with tools backed by mature theory, formal methods are becoming cost effective, and
their use is easier to justify, not as an academic or legal requirement, but as part
of a business case. These recent advances in theory and tool support have inspired
industrial and academic researchers to join up in an international Grand Challenge
(GC) in Verified Software [12, 24]. Work has started with the creation of a Verified
Software Repository (VSR) with two principal aims: (i) the construction of verified
software components; and (ii) industrial-scale verification experiments to drive future
research in the development of theory and tool support [2].

This extended abstract paper summarises an experiment undertaken as part of a
pilot project on verifying operating system (OS) kernels within the GC. It explores
the mechanisation of proofs of correctness of the formal specification and design of
critical parts of operating systems kernels for real-time embedded systems constructed
by Craig [5], such as its key data types [10]. This is not to be confused with another
pilot project: the mechanisation of FreeRTOS [6], the real-time operating system. One
key difference in Craig’s kernel is the use of refinement from an abstract specification
down to code. We have already mechanised the abstract parts of the scheduler and
its scheduling policy [27, 23]. Since these models are all in the Z notation [20], it
naturally follows that we use a Z tool, and for us that is the Z/Eves theorem prover
(v. 2.4) [19, 18]. The choice is based on its ease of use, long previous experience and,
most importantly for involving students, its gentle learning curve.

Related work. In 2006, the first VSR pilot project was undertaken on the verification
of the Mondex smart card [21] to ITSEC Level 6 (Common Criteria Level 7) [14].
The work is reported in [16], where a summary of Mondex and its original devel-
opment and certification are described [16, p.5–19]. The experiment mechanised the

original manual proofs in Alloy [16, p.21–39], ASM [16, p.41–59], Event-B [16, p.61–
77], OCL [16, p.79–100], ¼-calculus [15], Raise [16, p.101–116], and Z [16, p.117–139].
A second pilot project on POSIX compliant flash file stores followed [11]. A domain
model with widely used terminology and well-understood requirements is needed, and
we have based our mechanised domain model based on the formal refinement of OS
kernel designs [5].

There are two other related GC pilot projects: FreeRTOS [6] and the Microsoft
Hypervisor [4]. FreeRTOS is an open-source real-time embedded operating system
written in pointer-rich C, and it does not have a specification, making it an attractive
topic for research in formal analysis and top-down development. The extensive use
of pointers offers two complementary challenges: (i) the annotation of the code with
suitable assertions and the verification of the code against these assertions; and (ii) the
top-down development of the code, starting from a suitable specification of its abstract
behaviour. The goal of the Microsoft Hypervisor Verification Project is to develop
an industrially viable verification methodology for low-level code, and to use this
methodology to verify the functional correctness of the Microsoft Hypervisor [17].
The hypervisor is a 60kLoC C and assembler program that turns a multi-processor
(MP) x64 machine into a number of virtual MP x64 machines.

2 Verified OS kernels pilot project

An OS kernel is a central component of most operating systems, providing an interface
to the management of hardware and software resources, including memory, processors,
and I/O devices. It offers this interface to application processes through inter-process
communication mechanisms and system calls. Among its features, the most important
are: low-level scheduling of processes; inter-process communication; process synchroni-
sation; context switching; manipulation of process control blocks; hardware interrupt
handling; process creation and destruction; etc.. Kernel development has a reputa-
tion for being a very difficult and complex programming task for two prime reasons.
First, every computing system requires the OS kernel to provide correct functional-
ity and good performance. Second, because the kernel cannot make (direct) use of
the abstractions it provides (e.g., processes, semaphores, etc.), which would make
higher-level programming of embedded and real-time systems easier.

Our pilot project is inspired by Iain Craig’s book on the formal refinement of
OS kernels [5]. The objectives are to demonstrate feasibility of top-down OS kernel
development using formal specification and verification, with refinement down to a
C implementation. Craig uses the Z notation [20, 25, 13] for specification and refine-
ment, and recording correctness arguments in hand-written proofs. Our pilot project
investigates the tractability of mechanising all the models in each kernel development,
including formalising all proofs. A key principle is to retain these models as far as pos-
sible, making changes only for correctness, not for easing the task of mechanisation.

Part of this investigation involves constructing prototype tool chains for the devel-
opment process from specification through design and down to code. For the specifica-
tion and verification we use Z theorem provers like Z/Eves [19]. Data refinement [25]
links the abstract specification to a concrete design that is closer to code, and we again
use a Z theorem prover. After that, we use the Z refinement calculus (ZRC) [3] to go
down to the guarded command language. The invariants and pre- / postconditions for
each programming statement are then converted to a formal annotation language for
C, such as Spec# [1]. Finally, tools like Boogie and the Microsoft Verified C Compiler
can be used to perform static and partial correctness analysis. All results, including
models, lemmas, papers, tools, etc. are being curated in the VSR.

The pilot project is currently in an exploratory phase, having mechanised the
whole of the simple kernel [27], and various parts of a separation kernel [23]. We
have found some interesting issues, including missing and hidden invariants. Although

Craig’s models have great insight from an OS engineer in necessary underlying data
types, a series of mistakes are introduced, both clerical and on more substantial design
decisions. On the other hand, despite these errors, the work is carried out using the
refinement calculus [3] and goes down to a real ANSI-C implementation running on
embedded processors, like the Intel IA32 architecture. With this work, our attempt is
to straight up all that effort more rigourously.

In the kernel, processes can synchronise using counting semaphores, FIFO queues,
and so on. They are defined as separate mathematical data type, later refined to a
chain of process identifiers [10]. Message passing enable processes to exchange mes-
sages, where the discipline that receivers wait and senders retry is observed. System
calls can be used to: create or terminate processes; retrieve process identifiers; send or
receive synchronous messages; allocate and release semaphores; put processes to wait
or to sleep, as well as signal them; etc.

The aim is to gain a more intimate understanding of the invariants for the kernel’s
basic data structures that are relevant to scheduler design. We take a step back from
OS kernel design and verify its basic data structures to see which invariants are
fundamental, and which can be relaxed and proved as properties instead. We have
reports related to this paper with all definitions and proofs that can be found in [7–9].

3 Interesting lessons

Mechanisation has led to a deeper understanding of the kernel’s components. We
attempted simplifications by weakening some of the invariants that could have been
derived as properties, in order to make our proofs simpler, but without compromising
the specification. The lack of mechanisation in [5] led to missing invariants and other
errors at the most crucial data structure in the kernel scheduler: its priority ready
queue. This exercise shows the importance of tools in formal modelling in general, and
theorem proving in particular, when one wants to provide greater levels of assurance.
In practice, kernels use a matrix of priorities per sequences of identifiers, hence many
problems of having a flat sequence might be simplified. This could be a good candidate
for data refinement of the priority ready queue.

In fairness to Craig’s original model, despite the mistakes mentioned, the sheer ef-
fort undertaken was considerable and worthwhile. His expertise in operating systems
implementation is clear through the book. Luckily, many of the mistakes were consis-
tent and easy to spot, which makes correcting them a simple task. And that is despite
its serious consequences at times, like loosing scheduled processes FIFO ordering when
priorities are the same. Overall, the exercise has proved worthwhile in establishing a
solid foundation upon which one can build the top-level kernel components.

Overall, we tried to strike a balance between reusing good parts of the models
and remodelling from scratch based on the intended goals to capture the underlying
requirements. The motivation for doing that is to save important invariants already
discovered and modelled by a domain expert.

3.1 Going back to the scheduler design

Besides the scheduler and its data structures, other familiar OS components are mod-
elled, such as a global semaphore table, a synchronous message passing system, a
process sleeping mechanism, and so on.

4 Conclusions

The Grand Challenge’s pilot projects help us to learn the best ways to model various
application domains and how to verify those models. The intention is to make it easier
for the next team who want to work in the application domain. In that direction, a

series of data types and useful lemmas are needed if one is to make progress in tackling
the central problems with OS kernel scheduling.

The experiments that started with mechanising the refinement of simple OS kernel
schedulers led to the mechanisation of a set of abstract data types useful for this kind
of modelling in general. This in itself instigated thinking about general properties for
injective functions, transitive closure, sequences, and started few reports [7–9] that
are good candidates to become part of the VSR as reusable mathematical data types.
In more detail: we already have most (95%) of [5, Ch. 3], which is discussed in [27,
10] and in here. Our model contains a series of declarations from Craig’s book, and
mechanically verified theorems. The general theories contain well over 120 theorems
about various mathematical data types [7]. As a result of this work, our library of
general theorems grew by 20 theorems; for the declared types, we needed 34 automa-
tion lemmas. The three components have a total of 145 schemas, type, and axiomatic
declarations, with 44 precondition proofs, and 16 lemmas about the data type’s prop-
erties. In total, these proofs were discharged with around 1540 proof commands, of
which more than 2/3 were trivial, whereas the reminder 1/3 was divided in either
creative steps involving quantifier’s witnesses, or knowledge on how the tool works.

We improved the specification of most data structures used in the simple kernel
and in the Separation Kernel described in [5]. The work incurred mostly in identifying
useful properties about these data types and their use, as well as calculating the
preconditions for each operation, and later proving data refinement about them. This
mechanisation enabled both a better understanding of the various data structures,
and a clearer definition of the Separation Kernel’s scheduler specification use of it. As
its use in [5] had modelling errors on data types, as well as the missing error cases
uncovered here, we believe this to be an important contribution in building theories
for formal modelling of OS kernels.

Future work We are currently writing up reports about the various parts of the simple
kernel, and how they are woven together. We have one MSc student working on the
modelling of the Separation Kernel, as well as the refinement of the core data struc-
tures presented here. Colleagues from another research group in Brazil are working on
combining all the kernel’s components into a single top-level user-interface. With that
in place, we will start to apply the refinement calculus to derive the kernel’s code.
Another approach is to go bottom-up from the already available C-code up towards
the refined specifications.

Acknowledgements We are grateful to QinetiQ Malvern for its long term support for
our research. We are also grateful for the National Physical Laboratory, a more recent
supporter of our research. We are thankful to Juan Perna Osmar Santos, and Andrius
Velykis for fruitful discussions about properties of various parts of the kernel. We are
also grateful to Iain Craig for producing an useful account of the formal specification
and refinement of OS kernels.

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In In CASSIS, volume 3362 of LNCS. Springer, 2004.

2. Juan Bicarregui, Tony Hoare, and Jim Woodcock. The verified software repository: a
step towards the verifying compiler. FACJ, 18(2):143–151, 2006.

3. Ana Cavalcanti. A Refinement Calculus for Z. PhD thesis, Oxford, 1997.
4. Ernie Cohen. Validating the Microsoft Hypervisor. In Jayadev Misra et al., editors,

14th International Symposium on Formal Methods, volume 4085 of LNCS, pages 81–81,
Hamilton Canada, 2006. FM 2006, Springer.

5. Iain Craig. Formal Refinement of OS Kernels. Springer, 1st edition, 2007.
6. FreeRTOS. www.freertos.org.

7. Leo Freitas. Extended Z mathematical toolkit. Technical Report CRG13, University of
York, April 2008.

8. Leo Freitas. Formal model of a reusable Cℎain data type. Technical Report CRG14,
University of York, April 2008.

9. Leo Freitas. Mechanising data-types for Kernel design in Z. Technical Report CRG15,
University of York, March 2009.

10. Leo Freitas and Jim Woodcock. A Chain Datatype in Z. International Journal of
Software Informatics, 2009. In Press.

11. Leo Freitas, Jim Woodcock, and Andrew Buterfield. POSIX and the Verification Grand
Challenge: a Roadmap. In IEEE Proceedings of 13tℎ ICECCS, Belfast, pages 153–162.
IEEE, April 2008.

12. Tony Hoare. The verifying compiler: A grand challenge for computing research. Journal
of the ACM, 50(1):63–69, 2003.

13. ISO/IEC 13568. Information Technology—Z Formal Specification Notation—Syntax,
Type System and Semantics. ISO/IEC, first edition, 2002.

14. ITSEC. Information technology security evaluation criteria: primary harmonised criteria.
Technical Report COM(90) 314, Commission of the European Communities, Jun. 1991.
version 1.2.

15. Cliff Jones and Ken Pierce. What can the ¼-calculus tell us about the mondex purse
system? In 12th International Conference on Engineering of Complex Computer Systems
(ICECCS), pages 300–306, New Zealand, 2007. IEEE.

16. Cliff Jones and Jim Woodcock, editors. Formal Aspects of Computing — special issue
on Mondex, volume 20:1. Springer, Jan. 2008.

17. Mike Neil et al. Hypervisor Top Level Functional Specification v0.83. Technical report,
Microsoft Coorporation, Dec. 2007.

18. Mark Saaltink. Z/Eves 2.0 Math. Toolkit. ORA, Oct. 1999. TR-99-5493-05b.
19. Mark Saaltink. Z/Eves 2.0 User’s Guide. ORA Canada, 1999. TR-99-5493-06a.
20. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1998.
21. Susan Stepney et al. An Electronic Purse: Specification, Refinement, and Proof. PRG

126, Oxford University, Jul. 2000.
22. Susan Stepney et al. A z patterns catalogue vol 1. Technical Report YCS-349, University

of York, 2003.
23. Andrius Velykis Formal Modelling of Separation Kernels MSc in Software Engineering,

University of York, 2009.
24. Jim Woodcock. First steps in the verified software grand challenge. IEEE Computer,

39(10):57–64, 2006.
25. Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice

Hall, 1996.
26. JimWoodcock et al. Formal methods: practice and experience. ACM Computing Surveys,

2009. In Press.
27. Jim Woodcock, Leo Freitas, and Ian Craig. A Verified Simple Operating System Kernel.

In Workshop on the Verified Software Repository as part of FM Symposium, Turku,
Finland, 2008. Formal Methods Europe.

An outline of a proposed system that learns
from experts how to discharge proof obligations

automatically (extended abstract)

Alan Bundy1, Gudmund Grov1,2, and Cliff B. Jones2

1 School of Informatics, University of Edinburgh
{bundy,ggrov}@staffmail.ed.ac.uk

2 School of Computing Science, University of Newcastle
cliff.jones@ncl.ac.uk

1 Introduction

Many formal methods are “posit and prove” where a designer posits a speci-
fication, and then seeks to justify it. This justification is in the form of proof
obligations (POs), putative lemmas that need proof. A large proportion of these
can be discharged by automatic theorem provers, but there are still some that
require user interaction (typically of the order of 5-20%). Discharging these POs
can become a bottleneck in the use of formal methods in practical applications,
and there are two approaches to dealing with them:

– Follow a modelling strategy : change the model/abstraction to a strategy that
simplifies the proofs, thus increasing the number of automatically discharged
POs.

– Follow a proof strategy : accept the challenging POs, and define a strategy
for discharging them. Such a strategy must be sufficiently abstract to be
able to discharge “similar POs”. This is the approach we will take in our
AI4FM project. Our aim here is to increase the repertoire of techniques for
the proof-strategy approach by learning from proof attempts.

In many cases where a correct PO has not been discharged, an expert can
easily see how to complete a proof. We believe that it would be acceptable to
rely on such expert intervention to do one proof if this would enable a system
to discharge others “of the same form”. Specifically, we hope to build a system
that will learn enough from one proof attempt to improve the chances of proving
“similar” results automatically. By “proof attempt” we include things like the
order of the steps explored by the user (not just the chain of steps in the final
proof). Thus it is central to our goal that we find high-level strategies capable of
cutting down the search space in proofs. By separating information about data
structures and approaches to different patterns of POs, a taxonomy begins to
evolve. A proof (attempt) might be seen to use “generalise induction hypothesis”
(e.g. adding an argument to accumulate values) in a specific proof about, say,
sequences; a future use of the same PO might involve a more complicated tree
data structure — but if it has an extended induction rule, the same strategy

might work. So our hypothesis is: we believe that it is possible (to devise a high-
level strategy language for proofs and) to extract strategies from successful proofs
that will facilitate automatic proofs of related POs.

We have previously outlined the strategy language in [1]. In this paper we
attempt to show how the shape of proofs of one result helps in another proof –
and also how a proof can be reused in another example. In AI4FM we are not
restricting ourselves to one particular formal method, which is illustrated here
by providing both VDM [2] and Event-B [3] examples. In §2 we will indicate
what we would like to achive; this is followed by an example of tool constraints
§3; before we discuss our solution and conclude in §4.

2 Examples indicating scope

This section indicates what we would like to achieve. The examples (taken from
the literature) are just sketched here but a technical report version of this short
paper will have more detail in appendices.

2.1 A simple example

A trivial teaching example in [2] uses two disjoint sets to record“students who
do exercises”; the state in VDM notation is:

Studx :: y : Id -set
n : Id -set

inv (mk -Studx (y ,n)) 4 y ∩ n = { }
A representation of Studx could be

Studx1 = Id m−→ {Y, N}
VDM reification proofs require that one defines a retrieve function from the

concrete to the abstract state. In this case:
retr -Studx : Studx1→ Studx

retr -Studx (m) 4 mk -Studx ({n | n ∈ dom m ∧m(n) = Y},
{n | n ∈ dom m ∧m(n) = N})

In order to prove the refinement correct, there are two POs on the types and
retrieve function. The first is that the retrieve function must be total — this is
trivial. Secondly, the “adequacy” PO has the form:

∀a ∈ A · ∃r ∈ R · retr(r) = a

This is not quite as simple because it depends on the invariant on Studx .
The proof obligations for each operation are (i) the domain rule:

∀r ∈ R · pre-A(retr(r)) ⇒ pre-R(r)

and (ii) the result rule:
∀↼−r , r ∈ R ·

pre-A(retr(↼−r))∧post-R(↼−r , r) ⇒ post-A(retr(↼−r), retr(r))

For such a simple example, we would expect all of these to be discharged
automatically or with minimal hand intervention.

2.2 A partitioning reification

The example here is less trivial than that in Section 2.1; the interest is that the
first reification step is remarkably similar to the earlier one and thus makes it
possible to indicate what we hope to achieve in AI4FM.

This example is derived from Chapter 11 of [2]. The idea is that there is
some equivalence relation over X and elements are partitioned according to this
relation. Here, the underlying state is a set of disjoint sets. Thus, the state is a
partition and is represented by the following type:

Part = (X -set)-set
inv (p) 4 { } /∈ p ∧ ∀s, t ∈ p · s = t ∨ s ∩ t = { }

If we choose to use a representation of:
Keyed = X m−→ Key

with the following retrieve function:
retr -Part : Keyed → Part

retr -Part(m) 4 {{d | d ∈ dom m ∧m(d) = k} | k ∈ rng m}

The first steps (adequacy etc.) of the reification proof are (not quite obvious)
generalisations of what is done in Section 2.1. Our “ambition” is that the proofs
from that section would provide a sufficient strategy to generalise to this case.
So here we have an example of the reuse “pattern” of reification proofs being
what we hope to achieve.

The actual Fisher/Galler representation can be thought of as a Forest :
Forest = X m−→ X
inv (m) 4 ∀s ⊆ dom m ·s 6= { } ⇒ ∃e ∈ s ·m(e) /∈ s ∨ m(e) = e

This representation follows the Fisher/Galler inspiration that elements are equal
iff they have the same root.3 In this representation a root is therefore a mapping
to itself:

roots : (X m−→ X)→ X -set

roots(m) 4 {x | m(x) = x}

The retrieve function is:
retr -Keyed : Forest → Keyed

retr -Keyed(f) 4 {x 7→ root(x , f) | x ∈ dom f }

where
root : X × Forest → X

root(e, f) 4 if e ∈ roots(f) then e else root(f (e), f)

3 This representation deviates from [2] with respect to the representation of roots: the
type in [2] is “total” (

S
p = X) and the roots are simply those elements x /∈ dom p

where p ∈ Forest .

These POs are more difficult than the ones on the first reification because
the inductive structure of Forest is not obvious. The “ambition” here is that
the proofs of the first operation PO would provide a model for those that follow
(including those on the operations). This is an example where the way an expert
approaches the first operation should hopefully carry over to proofs about further
operations.

Another exercise would be to look at the direct development from Part to
Forest .

3 Example indicating tool constraints

This section illustrates current tool constraints. The example is developed within
Event-B [3] and the Rodin toolset4. It models door lock states (e.g. locked,
locking, unlocking, unlocking) – and, similar to §2.1, disjoint sub-sets of door
identifiers (type DOORS) are represented as a function doors, from the type of
door identifier DOORS into a type DOORSTATE , which enumerates all possible
states.

In Event-B, the correspondance between the description and actual represen-
tation is formalised by a gluing invariant (comparable to the retrieve function
in VDM), and in this example the gluing invariant is a conjunction – where each
conjunct has the “form” illustrated by “the door-locking state”:

doors locking = doors -1[{DoorLocking}].

Note that doors locking is a (abstract) set of door identifiers. We will focus
on the event where a door enters this state, and the description/abstract (left)
and representation/concrete (right) events (with all non-relevant parts stripped)
becomes:

EVENT lock door 4
ANY d , · · ·
WHERE

d ∈ doors locking , · · ·
THEN

doors locked : = doors locked ∪ {d}
doors locking : = doors locking\{d}
· · ·

EVENT lock door 4
REFINES lock door
ANY d , · · ·
WHERE

doors(d) = DoorLocking , · · ·
THEN

doors(d): = DoorLocked
· · ·

The gluing invariant must be preserved by all events, and the proof obligation
expressing this for the invariant over lock door is not discharged automatically
by the Rodin automatic provers:

∆, doors locking = doors -1[{DoorLocking}] `
doors locking\{d} = (doors �- {d 7→ DoorLocked})-1[{DoorLocking}]

4 see http://www.event-b.org.

The proof proceeds by first proving the following intermediate lemma (i.e. ap-
plying the cut rule):

(doors �- {d 7→ DoorLocked})-1[{DoorLocking}] = doors -1[{DoorLocking}]\{d}

Both the intermediate lemma and the main goal are then proved automatically
by the Rodin predicate prover (PP).

Note that the intermediate lemma could have been avoided by substituting
the doors locking term with doors -1[{DoorLocking}] using the equality in the
hypothesis (this technique is known as weak fertilization in rippling [4]). The new
goal is then equal to the intermediate lemma (modulo reflexitivity). However,
the PP tactic was not able to prove this.

4 Discussion

The major challenge in being able to reuse proof strategies, as illustrated in §2
and §3 (the strategy described in §3 was used on all “similar” gluing invariant
POs), is to design a sufficiently general-purpose and robust strategy language
so that it can deal with unanticipated proof plans and patches that experts
will devise. If we knew in advance what these plans and patches would be, we
could include them in the theorem prover, so that the problematic POs would
be discharged and would not require expert attention. For example, the strategy
used in §2.1 is reused in §2.2.

The strategy language will combine a high-level proof strategy with a “vocab-
ulary” of terms that might be instantiated in the separate theories of data struc-
tures stored in the system. The meta-language employed in our rippling/induction
proof-planning work [4] provides an existence proof for such a strategy language.
We refer to [1] for more details of how we envisage this strategy language.

Acknowledgements This work has been supported by UK EPSRC grants
EP/E005713/1 and EP/E035329/1.

References

1. Bundy, A., Grov, G., Jones, C.B.: Learning from experts to aid the automation of
proof search. In O’Reilly, L., Roggenbach, M., eds.: AVoCS’09 – PreProceedings of
the Ninth International Workshop on Automated Verification of Critical Systems.
Technical Report of Computer Science CSR-2-2009, Swansea University, Wales, UK
(2009) 229–232 To appear in the EASST electronic publications.

2. Jones, C.B.: Systematic Software Development using VDM. Second edn. Prentice
Hall International (1990)

3. Abrial, J.R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press (2009) To be published.

4. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Volume 56 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (2005)

A (Small) Improvement of Event-B?

Stefan Hallerstede

University of Düsseldorf
Germany

stefan.hallerstede@wanadoo.fr

Abstract. Event-B and the Rodin tool use a number of simple tech-
niques that make the modelling method around them effective in prac-
tical applications. We present two of these techniques, anticipation and
witnesses. It is interesting how a couple of very simple techniques are so
important for the method to work. Finally we propose a small enhance-
ment of Event-B that would extend the use of witnesses.

1 Introduction

We believe that the main purpose of
modelling is reasoning, finding out why
something works or why it does not.
Reasoning should be formal in order to
achieve a high degree of certainty about
the corresponding claims we make. In

Proof
ObligationsModelling Proving

Fig. 1: Formal Reasoning in Event-B
the Event-B modelling method [1] reasoning is supported by formal proof. With
each formal model we create a number of proof obligations is associated that,
once discharged, establish certain properties of the model. Reasoning is not con-
fined to carrying out a formal proof though. Whenever we fail to discharge some
proof obligations, we modify the model and try to discharge the proof obliga-
tions of the modified model, and so on (Figure 1). This method of reasoning is
supported by the Event-B formalism that has been designed to achieve a close
correspondence between models and proof obligations. Event-B is intended for
the modelling of complex systems. The large number of details of a complex
system to be considered is introduced piecemeal by formal refinement [9]. We
use refinement more as a technique to structure complex proofs, focusing less on
preserving correctness along a sequence of models.
During the evolution of Event-B [1,3,2,4,5,6,7,8,12,15] many decisions and de-
velopments have been made to make Event-B an effective practical modelling
method. Many of those are as simple as effective. In this paper we discuss two
of them, the use of anticipated events [5] and of refinement witnesses [12].

In Section 2 we briefly discuss anticipation of events and in Section 3 we
discuss refinement witnesses and suggest a small improvement of Event-B: to
use witnesses also for non-deterministic assignments.1

1 We do not present an introduction to Event-B. Introductions to Event-B can be
found in the references mentioned above.

2 Anticipation

Anticipated events are described in [5] as a technique to couple events introduced
during refinement with their variant and decouple them from variables. The
approach solves the technical problem of finding a good ordering for a chain of
refinements by relaxing the constraints on that order thus increasing the number
of good orderings. Anticipated events can be used to avoid using lexicographic
variants altogether,

(m 7→ n) < (m′ 7→ n′) ⇔ m < m′ ∨ (m = m′ ∧ n < n′) .

Say, m is the variant of a machine M and n the variant of some refinement N of
M . For an anticipated event f of M we would show that it does not increase m,
that is, m < m′. Ultimately, event f has to be refined by a convergent event f
in machine N , say. In machine N we have to show that f decreases the variant n,
that is, n < n′. Following this technique we implicitly construct a lexicographic
variant (m 7→ n), similar to the one shown above.

Anticipated events have turned out to be a very useful concept for modelling
beyond the original purpose. Below are three examples of their practical use.
Counter abstraction: specification of an abstract timer. An abstract
model of timer needs only express that after an arbitrary finite amount of time
it will raise an alarm. The counter by which it could be implemented is irrelevant.

invariants
alarm ∈ BOOL
v ∈ 0 .. 1
v = 1⇒ alarm = TRUE

event INITIALISATION
alarm :∈ BOOL
v := 0

anticipated event tick
when v = 0
then alarm :∈ BOOL

event one
when alarm = TRUE
then v := 1

In some refinement the timer can be implemented by a counter or in some other
way that provides convergence.
Fewer variables: avoid introducing new variables. In Event-B new events
must refine skip. This means that usually variables manipulated in a loop can
not be variables from an abstract machine. The gcd algorithm, for instance,
computes its result in variable q:

q ←− getgcd(x, y) event getgcd
p, q := x, y; q := gcd(x, y)
do p < q → q := q − p
� q < p → p := p− q anticipated event loop2
od q :∈ N1

In the corresponding abstract Event-B machine we model the body of the loop
by an anticipated event loop2, specifying that in some refinement loop2 is im-
plemented by a convergent event that may modify variable q.

2

Decomposition of a proof: partial correctness and termination. When
introducing a loop in a development of a sequential program, we have to prove
that the loop body preserves the invariant and decreases a variant. If we make
the loop body an anticipated event, we can prove invariant preservation at one
stage and termination at a later stage. This reduces the complexity at each stage
and separates concerns of invariant preservation from termination.

3 Witnesses

Originally, witnesses have been introduced in Event-B in order to decompose
proof obligations [11] but also the methodical benefits had been recognised [12].
The reasoning underlying the use of witnesses is very simple: Let v be the ab-
stract variables, I(v) the abstract invariant, w the concrete variables, J(v, w)
the gluing invariant, p the abstract event parameters, G(p, v) the abstract event
guard, S(p, v, v′) the abstract event actions before-after predicate, q be the con-
crete event parameter, H(q, w) the concrete event guard, and T (q, w, w′) the
concrete event actions before-after predicate. With

K(v, q, w, w′) =̂ I(v) ∧ J(v, w) ∧ H(q, w) ∧ T (q, w, w′)
L(p, v, w, w′) =̂ G(p, v) ∧ S(p, v, v′) ∧ J(v′, w′)

the refinement proof obligation for the refinement of the abstract by the concrete
event is thus:

K(v, q, w, w′) ⇒ ∃ p, v′ · L(p, v, w, w′) . (1)

In the introduction we discussed the close correspondence between Event-B mod-
els and proof obligations. We see that the granularity of the correspondence
could be improved greatly if (1) could be decomposed into three implications
with conclusions G(p, v), S(p, v, v′), and J(v′, w′), for instance. Because of the
existential quantification “ ∃ p, v′ ” this is not possible. In some step of the proof
of (1) we would usually instantiate the bound identifiers p and v′ by expressions
r and u′, subsequently, proving the conclusions G(r, v), S(r, v, u′), and J(u′, w′)
separately. We can do this systematically for all refinements specifying witnesses
W (p, v, v′, q, w, w′) that serve to instantiate p and v′. Of course, we have to verify
that the witnesses exist 2

K(v, q, w, w′) ⇒ ∃ p, v′ · W (p, v, v′, q, w, w′) . (2)

Applying modus ponens in the premises of (1) and observing that p and v′ do
not occur free in (1) the following (3) implies (1)

K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ ∃ p, v′ · L(p, v, w, w′) . (3)

2 This proof obligation is usually a simple consequence of the invariant and easily
discharged.

3

Finally, we can instantiate “ p, v′ := p, v′ ” in the conclusion so that (4) implies
(3), hence, also (1):

K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ L(p, v, w, w′) . (4)

Implication (4) can now be decomposed and proved separately for each conjunct
G(p, v), S(p, v, v′), and J(v′, w′) in the conclusion.3 As an example of the use of
witnesses we refine the abstract timer from the preceding section where witnesses
are specified in the with clauses of the events:

invariants
time ∈ N
time = 0⇒ alarm = TRUE
time > 0⇒ alarm = FALSE

event INITIALISATION
with alarm′ = FALSE
then

time :∈ N1

v := 0

convergent event tick
when time > 0
with alarm′ = bool(time′ = 0)
then time := time− 1

event one
when time = 0
then v := 1

More complicated examples of witnesses can be found, for instance, in [13].
Witnesses have turned out to be very valuable for explaining how refinement is
achieved. They have also increased the potential of animation of Event-B models
opening up an efficient possibility for refinement animation [14].
A small improvement: witnesses for non-deterministic choices. We
have shown how witnesses are used to obtain proof obligations that are easier to
handle than (1). In practice, we observe however, that the refinement condition
K(v, q, w, w′) ∧ W (p, v, v′, q, w, w′) ⇒ S(p, v, v′) that we have obtained from
the decomposition often has itself a form similar to (1).

In order to be able to use witnesses for non-deterministic assignments, too,
in the absence of explicit support, non-deterministic assignments can be mod-
elled by means of guards [10,14] and distinguished by a labelling convention;
for instance, guards are labelled grdn and non-deterministic assignments chcn.
However, this complicates support for certain proof obligations, in particular,
deadlock freedom. (Relying on a labelling convention for proof obligation gen-
eration does not appear reliable.) The best solution would seem to treat non-
deterministic assignments the same way as guards. An additional benefit would
be that the need for primed identifiers in Event-B models would disappear, too,
simplifying further the existing concept of witnesses described above.

4 Conclusion

The modelling method Event-B is effective in practice because of a number of
simple techniques that have been incorporated into it. They usually originated as
3 Note, that we have not renamed any identifiers in the conclusion which would have
obscured the correspondence with model.

4

a solution to some technical problem but then proved to be useful in a much wider
context. We believe that it is important to take note of such developments. If
we keep record of the small improvements, we can mark the methodical progress
we make and we avoid losing the knowledge about why Event-B works.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2009. To appear.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: An Open Toolset for Modelling and Reasoning
in Event-B. Software Tools for Technology Transfer, 2009. To appear.

3. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM
2006, volume 4260, pages 588–605. Springer, 2006.

4. Jean-Raymond Abrial and Dominique Cansell. Click’n’Prove: Interactive Proofs
within Set Theory. In Theorem Proving in Higher Order Logics, volume 2758 of
LNCS, pages 1–24, 2003.

5. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Refinement and
Reachability in EventB. In Helen Treharne, Steve King, Martin Henson, and Steve
Schneider, editors, ZB 2005, volume 3455 of LNCS, pages 222–241, 2005.

6. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and In-
stantiation of Discrete Models: Application to Event-B. Fundamentae Informatica,
77(1-2):1–28, 2007.

7. Jean-Raymond Abrial and Louis Mussat. Introducing dynamic constraints in B.
In Didier Bert, editor, B’98 : The 2nd International B Conference, volume 1393 of
LNCS, pages 83–128. Springer, 1998.

8. Jean-Raymond Abrial and Louis Mussat. On using conditional definitions in formal
theories. In D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson, editors, ZB 2002,
volume 2272 of LNCS, pages 242–269, 2002.

9. Ralph-Johan Back. Refinement Calculus II: Parallel and Reactive Programs. In
J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems, volume 430 of Lecture Notes in Computer Science, pages
67–93. Springer, May 1989.

10. John Colley. Private communication, 2009.
11. Stefan Hallerstede. The Event-B Proof Obligation Generator. Technical report,

ETH Zürich, 2005.
12. Stefan Hallerstede. Justifications for the Event-B Modelling Notation. In J. Jul-

liand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages 49–63.
Springer, 2007.

13. Stefan Hallerstede. Proving Quicksort correct in Event-B. In Eerke Boiten and
John Derrick, editors, Refine 2009, ENTCS, 2009.

14. Stefan Hallerstede, Michael Leuschel, and Daniel Plagge. Refinement-Animation
for Event-B — Towards a Method of Validation. In ABZ 2010, LNCS. Springer,
2007. 14 pages. To appear.

15. Christophe Métayer, Jean-Raymond-Abrial, and Laurent Vosin. Event-B Lan-
guage. Technical report, ETH Zürich, 2005.

5

Qualitative Reasoning for the Dining Philosophers ?

— Extended Abstract —

Stefan Hallerstede1 and Thai Son Hoang2

1 Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

halstefa@cs.uni-duesseldorf.de
2 Department of Computer Science

Swiss Federal Institute of Technology Zürich (ETH Zürich)
htson@inf.ethz.ch

Abstract. We continue our investigation of qualitative probabilistic reasoning in
Event-B. In the past we have applied it protocol verification, in particular, the
Firewire protocol. There is still some way to go to achieve a practical method
for qualitative probabilistic reasoning, especially concerning with refinement. We
describe here our attempt for a probabilistic solution to the dining philosophers
problem, in order to move further towards such a method.
Keywords: Event-B, probability, qualitative reasoning, refinement.

1 Overview

Our motivation here is construct a proof for the probabilistic solution for the Dining
Philosophers problem. The proof from McIver and Morgan [5] uses both fairness as-
sumption and probabilistic arguments. We attempt here to reason using only qualitative
reasoning, hence the fairness assumption is replaced by a probabilistic reasoning. More-
over, we want to construct a practical method for reasoning about this kind of system
which should be simple to use. We now give an overview of some important properties
of the Event-B method that we are going to use, in particular about different technique
for proving convergent of events.

1.1 The Event-B Modelling Method
A development in Event-B [2] is a set of formal models. The models are built from ex-
pressions in a mathematical language, which are stored in a repository. Event-B mod-
els are organised in terms of the two basic constructs: contexts and machines. Con-
texts specify the static part of a model whereas machines specify the dynamic part.
Contexts may contain carrier sets, constants, axioms, and theorems. Machines specify
behavioural properties of Event-B models. Machines may contain variables, invari-
ants, theorems, events, and variants. Variables v define the state of a machine. They
are constrained by invariants I(v). Possible state changes are described by events. Each
event is composed of a guard G(t, v) (the conjunction of one or more predicates) and
? Part of this research was carried out within the European Commission ICT project 214158

DEPLOY (http://www.deploy-project.eu/index.html).

http://www.deploy-project.eu/index.html

2

an action S(t, v), where t are the parameters of the event. The guard states the nec-
essary condition under which an event may occur, and the action describes how the
state variables evolve when the event occurs. An event can be represented by the term
“any t where G(t, v) then S(t, v) end”. We use the short form “when G(v) then S(v)
end” when the event does not have any parameters, and we write “begin S(v) end”
when, in addition, the event’s guard equals true. A dedicated event of the last form is
used for initialisation.

The action of an event is composed of one or more assignments of the form

x := E(t, v) (1)
x :∈ E(t, v) (2)
x :| Q(t, v, x′) , (3)

where x is a variable contained in v, E(t, v) is an expression, and Q(t, v, x′) is a pred-
icate. Assignments of the form (1) are deterministic, whereas the other two forms are
nondeterministic. In (2), x (which must be a single variable) is assigned an element of a
set. In (3), Q is a “before-after predicate”, which relates the values x (before the action)
and x′ (afterwards). (3) is the most general form of assignment and nondeterministi-
cally selects an after-state x′ satisfying Q and assigns it to x. Variables other than x are
unchanged by the above assignments. There is also a side condition on the action of
an event: the variables on the left-hand side of the assignments contained in the action
must be disjoint.

Proof obligations serve to verify certain properties of machines. Formal definitions
of all proof obligations are given in [1]. For a machine, we must prove invariant preser-
vation and feasibility of events. Invariant preservation states that invariants hold when-
ever variables change their values. Feasibility state that the action of an event must be
feasible whenever the event is enable.

Machine refinement provides a means to introduce details about the dynamic prop-
erties of a model [2]. For more details on the theory of refinement, we refer to the Action
System formalism [3], which has inspired the development of Event-B.

A machine CM can refine another machine AM . We call AM the abstract machine
and CM the concrete machine. The state of the abstract machine is related to the state
of the concrete machine by a gluing invariant J(v, w), where v are the variables of the
abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events ec.
Let the abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (4)
ec =̂ any u where H(u, w) then T (u, w) end . (5)

Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than the
guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a sim-
ulation of ec by ea (simulation). Proving guard strengthening just amounts to proving
an implication. For simulation, under the assumption of the invariants and of the con-
crete guard H(u, w) we must show that it is possible to choose a value for the abstract
parameter t such that the abstract guard holds and the gluing invariant J(v, w) is re-
established. The possible values for the abstract parameter are given as witness in ec
with the keyword with. In the course of refinement, new events are often introduced

3

into a model. New events must be proved to refine the implicit abstract event SKIP,
which does nothing.

Moreover, it may be proved that events do not collectively diverge. In other words,
the events cannot take control forever and hence one of the other events eventually
occurs. To prove this, one gives a variant V , which maps a state w to a finite set. One
then proves that each new event strictly decreases V .

Given an event

evt
any x where

G(x, v)
then

v :| S(x, v, v′)
end

ones has to prove

Invariants and axioms
G(x, v)
`
∀v′ ·S(x, v, v′)⇒

V (v′) ⊂ V (v)

1.2 Qualitative Reasoning: Probabilistic Action
In our earlier work [4], we extend the Event-B with probabilistic action v ⊕| S(v, v′),
and the notion of probabilistic (eventually) termination of events. This extension re-
quires a slightly modification to the variant proof obligation: event might decrease the
variant V .

Given an event

evt
any x where

G(x, v)
then

v ⊕| S(x, v, v′)
end

ones has to prove

Invariants and axioms
G(x, v)
`
∃v′ ·S(x, v, v′)∧

V (v′) ⊂ V (v)

A great advantage of this approach is that the proof obligations still within first-
order predicate logic hence we do not need to extend our proof system.

2 The Dining Philosophers

We summary the dining philosophers problem as follows:

– A number of philosophers sit at a round table.
– Between each adjacent pair of philosopher is a single fork.
– In order to eat, each philosopher need two forks on both sides.
– When hungry, a philosopher might want to pick up a fork, but this might already be

taken by his neighbouring philosopher.
– There is a possibility of deadlock or livelock.

There are various solution for the problem, including some deterministic solutions, e.g.
using a waiter to break symmetry. We consider here a symmetric probabilistic solution
as described in [5]. The algorithm for each philosopher is summarised in Figure 1. The
table describes possible state changes for a particular philosopher. The only probabilis-
tic choice that the philosopher made is when deciding either to pick up the left fork first
or the right fork first.

The proofs from [5] using the fairness assumption which prove the Pseudo loop on
the left to terminate. By replacing the fairness assumption with a probabilistic one, we
attempt to verify that the Pseudo loop on the right to terminate probabilistically.
Some philosophers are hungry;
while ”No philosopher is eating” do

Schedule one of the philosopher fairly
end

Some philosophers are hungry;
while ”No philosopher is eating” do

Schedule one of the philosopher probabilistically
end

Our initial model is as follows, where h , t and e represent the set of hungry, thinking
and eating philosophers, respectively.

4

Action Before After
Becomes hungry t h
Decides h l 0.5⊕ r
Picks first left fork (if left fork available) l L
Picks first right fork (if right fork available) r R
Eats by pick up right (if right fork available) L E
Drops left fork (if right fork not available) L h
Eats by pick up left (if left fork available) R E
Drops right fork (if left fork not available) R h
Thinks E t

t thinking
h hungry
l left first
r right first
L hold left only
R hold right only
E eating

(holding both forks)

hE t

L l

rR

Fig. 1. Actions of a philosophers

variables: h, t, e
invariants:

partition(P, h, t, e)

init
begin

h, t :| partition(P, h′, t′) ∧ h′ 6= ∅
e := ∅

end

eats
any p where

p ∈ h
then

e := e ∪ {p}
h := h \ {p}

end

thinks
any p where

p ∈ e
then

t := t ∪ {p}
e := e \ {p}

end

getsHungry
any p where

p ∈ t
then

h := h ∪ {p}
t := t \ {p}

end

Our idea for developing the algorithm is as follows. Using refinement, we introduce the
details of the approach with different set of philosophers, e.g. holding forks, picking
forks. As a result, more events are introduced into the development. Our termination is
established by the following arguments:

– Prove that events other than eats are (probabilistic) convergent.
– System is deadlock-free.

We formalise the lexicographic variant as presented in [5] in our Event-B development.
The decrement of the variant can be split into different phases depending on the state of
the system, where phase A is when no philosophers holding forks; phase BL (resp. BR)
is when there are some philosophers holding left forks (resp. right forks); and phase Ci

is when there are some philosophers holding left forks and some philosophers hold
right forks. In particular, the convergent proof in phase BL and BR using probabilistic
termination argument as mentioned earlier in Section 1.2.

AGFED@ABC BLGFED@ABC

BRGFED@ABC
Cn
GFED@ABC Cn−1GFED@ABC C0

GFED@ABC44jjjjjj

**TTTTTT
**TTTTTT

44jjjjjj
// //

We focus now on the probabilistic convergent argument in phases Ci. In particular, we
have the events of the following forms:

chooseLeft
any p where

p ∈ l
. . .

then
. . .

end

dropLeft
any p where

p ∈ L
. . .

then
. . .

end

. . .

5

The difficulty here is that the probabilistic choice is associated with the parameter p for
the philosophers. In particular, our reasoning must take into account all the actions that
a philosopher can do. For our probabilistic termination argument, we have to prove the
following: There exists a philosopher such that he can always act, and any action that
he made decreases the variant. At the moment, our proof obligations cannot express the
above condition, hence we need to extend the proof obligation rule.

evti
any t where

Gi(t, v)
then

v :| Qi(t, v, v′)
end

variant: V

witness: W (t, v)

– Sketch of probabilistic termination witness for t, say W (t, v).

– Sketch of the proof obligations.
1. Existent of witness: I(v)⇒ (∃t·W (t, v)).

2. Given the witness, at least one probabilistic event is enable.
I(v) ∧W (t, v)⇒G1(t, v) ∨ . . . ∨Gn(t, v)

3. For any probabilistic event evti, it decreases the variant V : I(v) ∧W (t, v) ∧
Gi(t, v) ∧Qi(t, v, v′)⇒ V (v′) ⊂ V (v)

3 Conclusions

We sketch here an extension to our qualitative reasoning for proving probabilistic ter-
mination of an algorithm for the dining philosophers problem. Our proposed extension
includes a new interpretation for probabilistic choice between events’ parameters and
new proof obligations which are practical for having tool support.

Moreover, for future work, because of the fact that refinement can reduce non-
determinism, qualitative termination is not necessary preserved through refinement in
general. We need to have additional proof obligation(s) for preserving qualitative ter-
mination, however, any approach should be simple and usable.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Design. CUP, 2009. To appear.
2. J-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of Discrete

Models: Application to Event-B. Fundamentae Informatica, 2006.
3. R-J Back. Refinement Calculus II: Parallel and Reactive Programs. In Stepwise Refinement

of Distributed Systems, 1989.
4. S. Hallerstede and T.S. Hoang. Qualitative probabilistic modelling in event-b. In J. Davies

and J. Gibbons, editors, IFM, volume 4591 of LNCS, pages 293–312. Springer, 2007.
5. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.

Springer, 2005.

Event-B Decomposition for Parallel Programs
— Extended Abstract —?

Thai Son Hoang and Jean-Raymond Abrial

Deparment of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich),

CH-8092, Zurich, Switzerland
htson@inf.ethz.ch, jrabrial@neuf.fr

Abstract. We present here an approach for developing a parallel program com-
bining refinement and decomposition techniques. This involves in the first step
to abstractly specify the aim of the program, then subsequently introduce shared
information between sub-processes via refinement. Afterwards, decomposition is
applied to separate the resulting model into sub-models for different processes.
These sub-models are later independently developed using refinement. Our ap-
proach aids the understanding of parallel programs and reduces the complexity in
their proofs of correctness.
Keywords: Event-B, parallel programs, decomposition, refinement.

1 Introduction

There are a number of methods for proving the correctness of parallel programs [4].
Our main contribution is an approach applying the technique of refinement and decom-
position in Event-B [1]. The approach contains four steps as follows.

1. Starts with an abstract specification in-one-shot giving the purpose of the program.
2. Refines this abstract specification by introducing details about the shared variables.
3. Decomposes the model in the previous step to split the model into several (abstract)

sub-models for processes.
4. Refines each sub-model in the previous step independently.

In the last step, each sub-model can be seen as a new abstract specification, hence
application of steps 2, 3 and 4 can be repeated again. The novelty of our approach is in
step 2 where we specify shared information between processes. This information has
dual purpose. Firstly, it contains the necessary guarantee condition from each process
to establish the final result. Secondly, it also gives the condition for which each process
can rely on in further development. This decision, i.e. to have this step early in our
development, takes advantage of decomposition technique and results in simpler models
and reduces the complexity of proving programs. This is the main advantage of our
method over existing approaches. More information on related work is in Section 4.

? Part of this research was carried out within the European Commission ICT project 214158
DEPLOY (http://www.deploy-project.eu/index.html).

http://www.deploy-project.eu/index.html

2

2 The Event-B Modelling Method

A development in Event-B [3] is a set of formal models. Event-B has a semantics based
on transition systems and simulation between such systems, described in [2]. We will
not describe in detail, just high-lights some important points for Event-B semantics.

Event-B models are organised in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the
dynamic part. Contexts may contain carrier sets, constants, axioms, and theorems.

Machines specify behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are described
by events. Each event is composed of a guard G(t, v) (the conjunction of one or more
predicates) and an action S(t, v), where t are the parameters of the event. Proof obliga-
tions serve to verify certain properties of machines. Given a machine, we need to prove
the following obligations:

– Invariant preservation: invariants hold whenever variables change their values.
– Feasibility: For an event the action is feasible whenever the guard is enable.

Machine refinement provides a means to introduce details about the dynamic prop-
erties of a model [3]. A machine CM can refine another machine AM . We call AM the
abstract machine and CM the concrete machine. The state of the abstract machine is
related to the state of the concrete machine by a gluing invariant J(v, w), where v are
the variables of the abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events
ec. Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than
the guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a
simulation of ec by ea (simulation).

In the course of refinement, new events are often introduced into a model. New
events must be proved to refine the implicit abstract event SKIP, which does nothing.
Moreover, it may be proved that new events do not collectively diverge. In other words,
the new events cannot take control forever and hence one of the old events can occur.

2.1 Shared Variable Decomposition

The idea of decomposition is to split a large model into smaller sub-models which can
be handled more comfortably than the whole: one should be able to refine these sub-
models independently. More precisely, if one starts from an initial (large) model, say
M, decomposition allows us to separate this model into several sub-models M1 · · ·Mi.
These sub-models can then be refined independently yielding N1 · · ·Ni. The correctness
of the decomposition technique guarantees that the model N, obtained by re-composing
N1 · · ·Ni, is a refinement of the original model M. This process is illustrated in the
following diagram:

Decomposition Refinement Re-composition

M →

8<: M1 → N1

· · ·
Mi → Ni

9=; → N

3

Generation of sub-models using shared variable decomposition Given a certain
model M with events e1(a), e2(a, c), e3(b, c), e4(b),1 we would like to decompose M
into two separate models: M1 dealing with events e1 and e2; and M2 dealing with events
e3 and e4. By giving the above event partition, we must also perform a certain variable
distribution. This distribution can be derived directly from the information about the
partitioning of events and the set of variables that they access.

Moreover, in each sub-model, we need to have a number of external events to sim-
ulate how shared variables are handled in the non-decomposed model. These events are
abstract versions of the corresponding internal events and use only the shared variables.
In our example, M1 will have an external event corresponding to e3 (beside the internal
events e1 and e2. Symmetrically, M2 will have an external event corresponding to e2.
Similar to shared variables, external events cannot be further refined.

We also present a practical construction of the external event given its original event.
This is illustrated below for an external event (ext)e2 in sub-model M2. Intuitively, this
event is the projection of the original event, i.e. e2, on the state of the sub-model M2.

e2

any t where
G(t, a, c)

then
a, c :| Q(t, a, c, a′, c′)

end

(ext)e2

any t, a where
G(t, a, c)

then
c :| ∃a′ ·Q(t, a, c, a′, c′)

end

More detail on shared variable decomposition in Event-B can be found in [1].

3 Example. The FindP Program

Our running example is a standard problem in the literature for parallel programs. The
purpose of the FindP program is to find the first index k of an array ARRAY , if there
is one, satisfies some property P . Otherwise, if this index does not exist, i.e. none of the
array elements satisfy P , the program returns M + 1, where M is the size of the array.

The pseudo-code for the main program is given below (on the left) and for each
process (presented here process1 on the right)

index1, index2 := min(P ART1), min(P ART2);
publish1, publish2 := M + 1, M + 1;
process1 || process2;
result := min({publish1, publish2})

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = TRUE then publish1 := index1
else index1 := the-next-index-in-PART1-or-M+1 end

end

The machine-checked version of the development can be found on the web [5]. We
summarise our strategy for developing this program as follows.

Initial model specifies the result of the algorithm directly.
First refinement introduces the local indices of processes.
Decomposition step splits the model into sub-models corresponding to different pro-

cesses: main, process1, process2.

We continue with further refinement steps for process1; process2 should be devel-
oped in symmetrical fashion. Futher development of the main process is straightfor-
ward and is not of our interest here.
First sub-refinement introduces the local index of the process.
Second sub-refinement introduces the read value of the process.
Third sub-refinement introduces the address counter for scheduling of events.

1 Note that the variables appeared in brackets denote those that are accessed by these events.

4

4 Related Work

The problem of verifying the FindP program has been tackled using different methods,
e.g., Owicki/Gries’ interference-free [9] and Jones’ rely/guarantee approach [7].

The work of Owicki/Gries [9] extends Hoare’s deductive system for sequential pro-
grams [6] in order to prove the correctness of parallel programs. Their proofs of cor-
rectness for parallel statements centre around the notion of interference-free which is
defined as follows. Given a proof of Hoare’s triple {P} S {Q} and a statement T with
precondition pre(T), T does not interfere with {P} S {Q} if
InfFree1 {Q ∧ pre(T)} T {Q}, i.e. T maintains the post-condition Q, and
InfFree2 for any sub-statement S′ of S, {pre(S′) ∧ pre(T)} T {pre(S′)}.

Within our approach, the above two conditions are verified during the development
of the model at various refinement levels. At the abstract level before decomposing, S
and T are some events of the models and the post-condition Q are just some invariants.
For example, S are some events belonging to process1 and T are events belonging to
process2, Q are the invariants that state the outcome of process1, e.g. inv1 1–inv1 5.
We have to prove that these invariants are maintained by any events T and this cor-
responds to condition InfFree1. Furthermore, during the sub-refinement of a process,
sub-statements S′ of S are introduced. At the same time, new invariants are added and
these invariants correspond to the preconditions pre(S′) in the proof of {P} S {Q}
using Hoare’s deductive system. Hence the condition InfFree2 is verified by proving
that events T (now becoming external events) maintain the new invariants.

This is somewhat not surprising, since in our approach, the role of external events
is to keep the information about the possible changes on shared variables by different
processes. During the refinement of a sub-process, we need to take into account the ef-
fect of these external events so that they do not “interfere” with the development of this
sub-process. The main advantage of our approach over the work from Owicki/Gries is
that these external events are at the abstract level rather than concrete statements as de-
fined in the interference-free conditions. This reduces the complexity of the verification
process.

Comparing to the Owicki/Gries approach, our method is closer to the rely/guarantee
approach of Jones [7]. The approach extends the notion of Hoare’s triple {P} S {Q}
to encode the rely condition R and guarantee condition G. By definition, a condition
{P,R} S {G, Q} is satisfied by S if: under the assumptions that S starts in state satisfies
the precondition P , and any external transition satisfies the rely condition R; then S
ensures that any internal transition of S satisfies the guarantee condition G, and if S
terminates then the final state satisfies postcondition Q.

We focus on an example rule for parallel composition.

PAR-I

R ∨G1⇒ R2 (RG1)
R ∨G2⇒ R1 (RG2)
G1 ∨G2⇒G (RG3)
{P, R1}S1{G1, Q1} (RG4)
{P, R2}S2{G2, Q2} (RG5)

{P, R} S1 || S2 {G, Q1 ∧Q2}

The rule is interpreted as follows. Statement S1 || S2 satisfies {P,R} S1 || S2 {G, Q1∧
Q2} if the following conditions are met. Firstly, both “global” rely condition R and
the guarantee condition of one statement ensure the rely condition of the other (RG1

5

and RG2). Secondly, both guarantee conditions of the two statements ensure the global
guarantee condition G (RG3). Lastly, S1 and S2 independently satisfy their correspond-
ing rely/guarantee condition (RG4 and RG5)

Note that both rely and guarantee conditions are relations over two states. They
are indeed similar to events in Event-B which correspond to a relations over pre-/post-
states. Moreover, the implication between rely/guarantee conditions is the same as event
refinement. Within our approach, a pair of internal/external events encodes rely/guarantee
conditions where the rely condition corresponds to the external event and the guarantee
condition corresponds to the internal event. The generation of external events guar-
antees that they are the abstractions of the corresponding internal events. In fact, our
generation of sub-models as described in Section 2.1 guarantees that the resulting sub-
models satisfy the parallel composition rule. This is the advantage of our approach over
rely/guarantee method. In fact the external events are the strongest possible condition
that the other process can rely on. In practise, the rely/guarantee conditions could be
more abstract, e.g. requires that values of some variables decrease monotonically [8].

5 Conclusion

Our approach introduces the possible interaction between processes early in the de-
velopment in order to take the advantage of decomposition. This is different from the
approach where one develops processes according to the implementation of the process
with possible cheating (e.g. one process directly looks into the value of the other pro-
cess), and subsequently refines the model until there is no more cheating. This approach
has been proposed in [2] and is used in many other examples. Applying this approach
without using decomposition, the two processes are developed together, hence the de-
velopment also has higher complexity comparing to our approach.

The key point in our development using decomposition lies in the model that is
being decomposed, where we have to abstractly specify the effect of the two future
processes on shared variables. We use the overall intended result of the program to help
us to derive the requirement on the future processes.

References
1. J-R. Abrial. Event model decomposition. Technical Report 626, ETH Zurich, May 2009.
2. J-R. Abrial. Modeling in Event-B: System and Software Design. CUP, 2009. To appear.
3. J-R. Abrial and S. Hallerstede. Refinement, decomposition and instantiation of discrete mod-

els: Application to Event-B. Fundamentae Informatica, 2006.
4. W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and

J. Zwiers. Concurrency Verification: Introduction to Compositional and Noncompositional
Methods. Cambridge Tracts in Theoretical Computer Science. CUP, 2001.

5. T.S. Hoang. FindP development using decomposition. http://deploy-eprints.ecs.
soton.ac.uk/154/, 2009.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 1969.
7. C.B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst., 1983.
8. C.B. Jones. Splitting atoms safely. Theor. Comput. Sci., 2007.
9. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inf.,

1976.

http://deploy-eprints.ecs.soton.ac.uk/154/
http://deploy-eprints.ecs.soton.ac.uk/154/

Structuring Specifications with Modes
Alexei Iliasov, Alexander Romanovsky

Center for Software Reliability
Newcastle University

England, United Kingdom
Email: {alexei.iliasov, alexander.romanovsky}@newcastle.ac.uk

Fernando Luı́s Dotti
Faculty of Informatics

Pontifical Catholic University of Rio Grande do Sul
Porto Alegre - RS - Brazil

Email: fernando.dotti@pucrs.br

Abstract—The two dependability means considered in this
paper are rigorous design and fault tolerance. It can be complex
to rigorously design some classes of systems, including fault
tolerant ones, therefore appropriate abstractions are needed to
better support system modelling and analysis. The abstraction
proposed in this paper for this purpose is the notion of operation
mode. Modes are formalised and their relation to a state-based
formalism in a refinement approach is established. The use of
modes for fault tolerant systems is then discussed and a case study
presented. Using modes in state-based modelling allows us to
improve system structuring, the elicitation of system assumptions
and expected functionality, as well as requirement traceability.

Keywords-operation modes; fault-tolerance; formal specifica-
tion; Event-B.

I. INTRODUCTION

Systems are dependable if they deliver service that can be
justifiably trusted [1]. Building such systems is a challenging
task, typically conducted by employing various dependability
means. In this paper we are particularly interested in the means
of two types: rigorous design and fault tolerance.

Rigorous design (or fault prevention) is often used to justify
system trustworthiness by preventing introduction of faults
into system. This can be done by employing formal modelling
and analysis. The known problem with this approach is its
scalability. A way to improve it is through the development
of abstractions and formal techniques tailored to classes of
systems.

System dependability cannot be achieved by only trying to
build perfect systems, any critical system has to face abnormal
situations (including malfunctioning devices, wearing hard-
ware and software defects) and deal with them properly. This is
achieved by integrating appropriate fault tolerance means into
the system. Unfortunately the situation is not satisfactory here:
as reported by F. Cristian [2], field experience with telephone
switching systems showed that up to two thirds of system
failures were due to design faults in exception handling or
recovery algorithms. Other evidences of inadequate use or
construction of fault-tolerance mechanisms are reported in [3].

Several authors have investigated fault-tolerance modelling
using different specification formalisms and verification ap-
proaches (e.g. [4], [5]). However, the identification and support

This work is partially supported by the ICT DEPLOY IP and the
EPSRC/UK TrAmS platform grant. Fernando L. Dotti is supported by
CNPq/Brazil grant 200806/2008-4.

of suitable abstractions for formal design of fault tolerant
systems is still an open issue. Such abstractions have to, at
the one side, be amenable to representation using a formal
specification language, and, on the other side, offer the way
to model and reason about (i) states - the characterization
of normal and erroneous states, and state manipulation to
reach consistency are inherent to fault tolerant systems; (ii)
structure - separation of normal and abnormal (fault tolerant)
behaviour is to be supported, as well as the representation
of control structures for different fault tolerance mechanisms;
and (iii) system properties under changing conditions - the
explicit statement of possible working conditions, addressing
fault assumptions, and assured system properties under these
conditions are also to be supported.

In this paper the known concept of ’operation mode’ [6]
is revisited - we use modes to structure system specification
to facilitate rigorous design and to integrate fault tolerance.
Due to the use of modes in different types of systems, such as
real-time [6], avionic and space systems [7], [8], the approach
is useful for building wide classes of dependable systems.

We use term mode in the same sense as [6]: both as
partitions of the state space, representing different working
conditions of the system, and as a way to define control
information, imposing structure on the operation of the system.
In Section II, modes are defined to allow the modeller to
explicitly state the property that must be respected, called
guarantee, in each working system condition, called assump-
tion. In Section III, mode refinement is discussed, allowing
detalisation of the mode system. The use of modes together
with a state-based formal method is discussed in Section
V. Mode refinement is performed hand in hand with the
refinement of the respective formal model and offer a way
for layered definition and reasoning about system properties.
This helps to assure that the properties are easily traceable to
requirements. Another advantage of a refinement approach is
that it offers a strategy obtain a correct implementation from
the formal model. Moreover, theorem proving strategies and
tools sometimes offer an attractive option to model-checking
as they avoid the state-space problem.

Section IV discusses the use of modes in the design of
fault-tolerant systems. Using the model of a cruise control
system, Section VI exemplifies both mode refinement and the
use of modes to specify fault tolerant systems. Related work
and conclusions are presented in Sections VII and VIII.

II. OPERATION MODES

Operation modes help to reason about system behaviour by
focusing on the principal system properties observed under
different situations. In this approach, a system is seen as a set
of modes partitioning the system functionality over differing
operating conditions. The term assumption is used to denote
the different operating conditions and guarantee denotes the
functionality ensured by the system under the corresponding
assumption. A system may switch from one mode to another
in a number of ways characterised by mode transition. A mode
is a pair A/G where:

• A(v) is an assumption - a predicate over the current
system state;

• G(v, v′) is the guarantee, a relation over the current and
next states of the system; and

Vector v is the set of variables, characterising a system state
and constrained by an invariant I(v). The purpose of an
invariant I(v) is to limit the possible states of v by excluding
undesirable or unsafe states. It also defines types for variables
v. To limit the scope of discussion, it is assumed that a
system is only in one mode at a time. Mode overlapping and
mode interference bring a number of interesting challenges
that cannot be sufficiently addressed in this paper due to space
limitations. Formally, it is required that mode assumptions
are mutually exclusive and exhaustive in respect to a model
invariant, as below. ⊕ is a set partitioning operator.

I(v) = A1(v) ⊕ · · ·⊕ An(v) (1)

Mode switching is realised with mode transitions. A mode
transition is an atomic step switching system from one source
to one destination mode. It is convenient to characterise a
mode transition by a pair of assumptions - the assumptions
of source and of destination modes. Assuming that mode is
assigned an index, a mode transition from Ai/Gi to Aj/Gj

is a relation on mode indices i ! j.
A system starts executing one of initiating transitions " !

k. The transition switches the system on and places it into
some system mode Ak/Gk. A system terminates by executing
one of terminating transitions t ! ⊥ 1. Mode transitions i !

" and ⊥ ! j are not allowed. Also, it is required that during
its lifetime a system enters at least in one operation mode
and thus transition " ! ⊥ is not possible. There can be any
number of initiating and terminating mode transitions.

There are certain restrictions on the way mode assumptions
and guarantees are formulated. One obvious condition is that
a guarantee may not require or permit a mode to violate an
invariant, that is, the states described by a guarantee must be
wholly included into valid model states:

I(v) ∧ A(v) ∧ G(v, v′) ⇒ I(v′) (2)

1Not every system has to have this transition: a control system would be
typically designed as never aborting.

The assumption and guarantee of a mode must be non-
contradictory. I.e. a mode should permit a concrete implemen-
tation:

∃v, v′ · (I(v) ∧ A(v) ⇒ G(v, v′)) (3)

A system is characterised by a collection of modes and a
vector of mode transitions:

A1/G1

. . .
An/Gn

i ! j
. . .

(4)

The state of a system described using operation modes is
a tuple (m, v) where m is the index of a current operation
mode and v is the current system state. Mode index helps
to clarify how mode switching is done although it may be
computed from v alone due to condition 1. The evolution of
a system like above is understood as follows. While it is in
some mode m the state of model variables evolves so that
the next state is any state v′ satisfying both the corresponding
guarantee G(v, v′) and the modes assumption A(v′):

internal Am(v) ∧ Gm(v, v′) ∧ Am(v′)
〈m, v〉 → 〈m, v′〉

If there is a mode transition originating from a current mode,
the transition could be enabled to switch the system to a new
mode.

switching m ! n ∧ Am(v) ∧ An(v′)
〈m, v〉 → 〈n, v′〉

These two activities compete with each other: at each step
a non-deterministic choice is made between the two. An
initiating transition is a special case: it must find an initial
system state without being able to refer to any previous state:

start (! k ∧ Ak(v)
〈(, undef〉 → 〈k, v〉

where undef denotes a system state prior to the execution
of an initiating transition. System termination is addressed by
the switching rule above. Note that all of the three rules also
assume that an invariant holds in current and new states: I(v)∧
I(v′). This is a corrolary of conditions 1 and 2.

III. MODE REFINEMENT

Refinement is formal technique for transitioning from an ab-
stract model to a concrete one [9]. Terms abstract and concrete
are relative here: a concrete model of one step is another’s
step abstract model. There are a number of benefits in apply
refinement in model construction: it combats complexity by
splitting design process into a number of simple steps; it helps
to organise the process of modelling by allowing a modeller to
focus on one aspect of a model a time; it makes proofs easier
as for each refinement one only has to proof the correctness
of new behaviour2.

At a very general level, refinement is a partial order relation
on model universe. This relation is denoted as % and it

2Strictly speaking, this only applies to cases when refinement is monotonic.
However, all the popular formal methods enjoy this property and heavily rely
on it.

is reflexive, transitive and antisymmetric. For the operation
modes mechanism the refinement technique is used to gradu-
ally evolve a system description by adding or replacing modes
and transitions. Such evolution is completely formal in a sense
that a refined model may be used in place of its abstraction.

Refinement itself is a combination of a number of tech-
niques: data refinement, when data types are changed and data
structures are introduced; behavioural refinement, when sys-
tem behaviour becomes more deterministic and also described
in a finer level of details; and superposition refinement (or
model elaboration), when new functionality is added without
changing an existing model. All the three are applicable and
discussed for modes in the following.

a) Data Refinement: With data refinement, the vector of
model variables v is changed to some new vector u and model
invariant I(v) is replaced with new invariant J(v, u), often
called a gluing invariant. The mentioning of old variables v in
new invariant J allows modeller to expresses a linking relation
between the state of concrete and abstract models.

b) Behavioural Refinement: Behaviour refinement details
the mode view on a system. One case is changing a mode
assumption or guarantee or both. It is postulated mode as-
sumption cannot be strengthened during refinement. This is
based on understanding that an assumption is a requirement
of a mode to its environment. As a system developer cannot
assume control over the environment of a modelled system, a
stronger requirement to an environment may not be realisable.
On the other hand, a weaker requirement to an environment
means that a system is more robust as it would remain
operational in a wider range of environments. Symmetrically,
a mode guarantee cannot be weakened as a mode guarantee is
understood as a contract of a mode with the rest of a system
and the system environment. In other words, weakening a
mode guarantee could violate expectations of another system
part. The following condition summarises this refinement rule:

A(v)/G(v, v′)) A′(u)/G′(u, u′),

iff I(v) ∧ J(v, u) ∧ A(v) ⇒ A′(u)
J(v, u) ∧ G′(u, u′) ⇒ G(v, v′)

(5)

Another case is when an abstract mode is a modelling
abstraction for several concrete modes. Thus, a single mode
in an abstract model evolves into a two or more concrete
modes. The general rule for such refinement step is that the
combination of new modes must be a refinement of an abstract
mode. In more concrete terms, a disjunction of concrete mode
assumptions must be not stronger than the abstract mode
assumption and the disjunction of concrete guarantee must be
not weaker than the abstract guarantee:

A(v)/G(v, v′))
A1(u)/G1(u, u′)
A2(u)/G2(u, u′)

,

iff I(v) ∧ J(v, u) ∧ A(v) ⇒ A1(u) ∨ A2(u)
I(v) ∧ J(v, u) ∧ G1(u, u′) ∨ G2(u, u′) ⇒ G(v, v′)

(6)

c) Superposition Refinement: Sometimes it is needed to
add new modes without having to split an abstract mode.
This is accomplished using superposition refinement. With
superposition refinement, a refined model contains additional
modes. Assumptions and guarantees of these modes must

be expressed on new variables (variables for u that are not
mapped onto abstract variables v). Formally, this is possible by
refining an implicit skip mode false/true. This is the weakest
form of a mode and it can be refined into any other mode.

d) Refinement of Transitions: A refinement of a mode
or an introduction of a new mode requires changes to mode
transitions. The general rule is that a transition present in
an abstract model must have a corresponding transition in a
refined model and no new transitions may appear. Changing
mode assumptions and guarantees does not affect mode transi-
tions. Splitting a mode into sub-modes, however, leads to the
distribution of the mode transitions associated with the refined
mode among the new modes. Thus, if a mode with a transition
is split into two new modes, the transition can be associated
with any one of the new modes or both.

e) Visual Notation: To assist in application of the oper-
ation modes approach, a simple visual notation is proposed.
It is loosely based on modechards [6]. A mode is represented
by a box with mode name; a mode transition is an arrow
connecting two modes. The direction of an arrow indicates
the previous and next modes in a transition. Special modes
" and ⊥ are omitted in a diagram so that initiating and
terminating transitions appear to be connected with a single
mode. This is also how they can be distinguished from other
transitions. Refinement is expressed by nesting boxes. Figure
1(B) presents a mode M1 refined into modes M1.1 and M1.2.
The mode transitions depicted are only one possibility. A
refined diagram with an outgoing arrow from an abstract mode
is equivalent to having outgoing arrows from each of the
concrete modes (this feature is used in the case study).

M1.1 M1.2M1
M1

(A) (B)
Fig. 1. Mode Diagrams.

IV. MODES FOR FAULT TOLERANT SYSTEMS

The use of modes together with a refinement approach, as
introduced in the previous sections, offers suitable abstractions
to modelling and reasoning about fault tolerant systems, as
discussed in the following.

Due to the use of a state-based approach, state representa-
tion, manipulation and reasoning becomes natural. The support
provided by modes allows to partition the state space into
normal and erroneous: mode assumptions allow this separation
to be declared and erroneous states made explicit. Refinement
allows further definition of erroneous states into more specific
ones. Assumptions on normal and erroneous states can be
suitably associated to modes in charge of performing normal
system operation and fault tolerance measures, respectively.

Generally speaking, a recovery mode should be associated
with a particular normal mode, which it recovers, and mode
switching is in some sense reminiscent to calling an excep-
tion handler in programming languages. Error detection is

immediate, embedded in the erroneous state assumption of
a recovery mode. As soon as a state transition leads to the
characterization of an erroneous state, the recovery mode is
enabled. A more concrete view is to consider the existence of a
detection mechanism, which is active during normal operation.
In such case the detection mechanism affects the state used in
the assumptions of normal and recovery modes. By refinement
one could start with the first and reach the second, more
detailed model. Any of the possibilities allow switching to
recovery mode from any normal mode state. For reasoning
purposes, one can introduce the possibility of fault occurrences
in parallel with the model. In an event based formalism this
takes the form of an enabled event that affects the state to
satisfy the erroneous state assumption.

The recovery mode has access to the state of the respective
normal mode. Analogously to assumptions, guarantees asso-
ciated to normal or recovery modes assist to define properties
of the system in absence or presence of errors, respectively.
Depending on the severity of the detected error, the recovery
mode guarantees may assert that the recovery procedure: (i)
successfully recovers the state and thus switches back to
normal mode to proceed execution (Figure 2(B) or (C)); (ii)
provides degraded service in cases where full functionality is
not recoverable (Figure 2(D)); (iii) fails to recover, in which
case measures to stop safely may be taken (Figure 2(A) and
part of (D)). Using the graphical notation introduced in the
previous section, the following configurations exemplify some
possible use of modes for fault tolerance.

masking

Normal

Fail-safe Fault
masking

Normal2Normal1Normal

Fault

Normal 1
Degraded

Fail-safe 2
Degraded

(B) (C)(A) (D)
Fig. 2. Modes for fault tolerance.

V. OPERATION MODES FOR EVENT-B
The operation modes method is not intended to be used

as a modelling method on its own as it lacks the facilities
for expressing detailed design. The schematic nature of the
approach makes it it well suited to integration with an existing
formalism. One such case is presented in this section. A
well known formalism - Event-B - is extended with operation
modes. The rules for deriving formal conditions for reasoning
about a combination modes and Event-B models are presented.

Event-B is a state-based formalism closely related to Classi-
cal B [10] and Action Systems [11]. The step-wise refinement
approach is the corner stone of the Event-B development
method. The combination of model elaboration, atomicity re-
finement and data refinement helps to formally transition from
high-level architectural models to very detailed, executable
specifications ready for code generation.

An extensive tool support through the Rodin Platform makes
Event-B especially attractive [12]. An integrated Eclipse-
based development environment is actively developed, well-
supported, and open to third-party extensions in the form of

Eclipse plug-ins. The main verification technique is theorem
proving supported by a collection of powerful theorem provers.
The development environment is also equipped with model
checking capabilities.

An Event-B model is defined by a tuple (c, s, P, v, I, RI , E)
where c and s are constants and sets known in the model; v is
a vector of model variables; P (c, s) is a collection of axioms
constraining c and s. I is a model invariant limiting the possi-
ble states of v: I(c, s, v). The combination of P and I should
characterise a non-empty collection of suitable constants, sets
and model states: ∃c, s, v·P (c, s)∧I(c, s, v). The purpose of an
invariant is to express model safety properties (that is, unsafe
states may not be reached). In Event-B an invariant is also used
to deduce model variable types. RI is an initialisation action
computing initial values for the model variables; it is typically
given in the form of a predicate constraining next values of
model variables without, however, referring to previous values
- RI(c, s, v′). Finally, E is a set of model events. An event is
a guarded command:

H(c, s, v) → S(c, s, v, v′) (7)

where H(c, s, v) is an event guard and S(c, s, v, v′) is
a before-after predicate. An event may fire as soon as the
condition of its guard is satisfied and no other event executes
at the same time. In case there is more than one enabled event
at a certain state, the demonic choice semantics is applies.
The result of an event execution is some new model state
v′. The semantics of an Event-B model is usually given in
the form of proof semantics, based on Dijkstra’s work on
weakest precondition [13]. A collection of proof obligations is
generated from the definition of the model and these must be
discharged in order to demonstrate that the model is correct.

Putting it as a requirement that an enabled event produces a
new state v′ satisfying a model invariant, the following would
define the model consistency condition: whenever an event on
an initialisation action is attempted there exists a suitable new
state v′ such that a model invariant is maintained - I(v′). This
is usually stated as two separate proof obligations: a feasibility
obligation requiring the existence of (any) new state v′ and the
invariant satisfaction obligation showing that any new state v′

maintains an invariant. The invariant satisfaction obligation
requires that a new state produced by an event must satisfies
a model invariant:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ∧ S(c, s, v, v′) ⇒ I(c, s, v′) (8)

An event must also be feasible, in a sense that an appropriate
new state v′ must exist for some given current state v:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ⇒ ∃v′ · S(c, s, v, v′) (9)

Conceptually, operation modes and Event-B models are
related by requiring that every mode and mode transition has
a suitable implementation in an Event-B model. A mode is
related to a non-empty subset of Event-B model events and
mode transition is mapped into a single Event-B event:

A1/G1 +→ E1

. . .
An/Gn +→ En

(i ! j) +→ Ek

. . .

(10)

Event sets E1, . . . , En may overlap but may not be identical.
The latter is due to the fact that two modes Ai/Gi '→ E
and Aj/Gj '→ E are equivalent to a single mode Ai ∨
Ai/Gi ∧ Gj '→ E and thus there is no advantage in allowing
configurations where modes have identical event sets. The
mapping between transitions and events is one-to-many: a
transition is mapped into a non-empty set of events. Each
event associated with a transition must properly implement
the transition, that is, it must be proven it gets enabled in
a stated assumed by a source mode and establishes a state
corresponding to the assumption of a target mode. To establish
mapping, for some transition (i ! j) '→ Ek it is required to
demonstrate the following:

∀e · (e ∈ Ek ∧ I(c, s, v)∧He(c, s, v)∧Se(c, s, v, v′) ⇒ Ai(v)∧Aj(v
′))

(11)

The composition of modes and Event-B clarifies how a
system evolves when it is in a mode, how mode switching
is done and the way system is initialised. The old internal
rule is changed to reflect the way a new system state is
computed: assuming that a system is mode Ai/Gi '→ Ei and
the current state is valid (I(v) holds) and satisfies the mode
assumption (Ai holds) the next state is some state v′ such
that mode guarantee G(v, v′) holds along with before-after
predicate Re(v, v′) of one of enabled (He(v)) mode events
(e ∈ Ei):

internal1

I(v) ∧ Am(v) ∧ Gm(v, v′) ∧ Am(v′)
∃e · e ∈ Ei ∧ He(v) ∧ Re(v, v′)
〈m, w〉 → 〈m, w′〉

The above states that an execution cannot progress if none
of the events establishes a mode guarantee or there is no
enabled event. To ensure that in a given mode a system evolves
correctly, it is required to show for every mode event that
the event establishes mode guarantee and the event guard is
compatible with the mode assumption. Rules switching1 and start1
are analogously obtained from rules switching and start in Section
II. The rule above gives a rise to a number of conditions on
Event-B. Firstly, all the events of a mode must satisfy the
mode guarantee provided the mode assumption holds:

I(v) ∧ A(v) ∧ H(v) ∧ R(v, v′) ⇒ G(v, v′) (12)

Also, the partitioning of the events into modes must be in
an agreement with the event guards. When event is enabled
then the assumption of its mode must hold. Since an event is
potentially associated with multiple modes, the disjunction of
all the relevant assumptions must hold:

H(v) ⇒ A1(v) ∨ · · ·∨ Ak(v)
Ak+1(v) ∨ · · ·∨ An(v) ⇒ ¬H(v)

(13)

where A1, . . . , Ak are the assumptions of the modes con-
taining an event with guard H(v) and Ak+1, . . . , An are those
not containing the event.

It is required to show that a system is always able to
progress once it is in a given mode. For this, it must be shown
that there is always at least one enabled event among the events
of the mode:

I(v) ∧ A(v) ⇒ H1(v) ∨ · · ·∨ Hn(v) (14)

Provided the three conditions above are discharged, it is
guaranteed that, once in a given mode, a system would
unfailingly progress in accordance with the mode conditions
for the system lifetime or until the system transitions into a
different mode.

a) Operation Modes and Event-B Co-refinement: The
cornerstone of the Event-B development method is a gradual,
refinement-based, model detailing. To refine model M one
constructs a new model M ′ such that at a certain level of
observation new model is at least as good as the old one.
Formally, this is demonstrated by constructing a refinement
mapping between M ′ and M that would show that for any
valid state of M ′ there is a corresponding state in M . In
Event-B, this is accomplished by discharging a number of
refinement proof obligations formulated for each model event.
As refinement in Event-B is monotonic, a model refinement
could be constructed by changing only a part of a model
and demonstrating the relevant conditions for just that part.
Event-B refinement is a combination of data, superposition,
behavioural and atomicity refinement. Atomicity refinement
permits introduction of a finer level of atomic steps needed
to realise a given functionality. What would appear as an
one atomic event in an abstract model may be refined into
a complex of events with all the properties of the abstraction
retained. The Event-B notion of data refinement follows the
same generic style used for operation modes data refinement.

Event-B behavioural refinement allows a modeller to replace
an event guard and event before-after predicate. The rules link-
ing abstract and concrete guards and before-after predicates are
as follows. The guard of the concrete version of an event must
be stronger than its abstract counterpart:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u) ⇒ G(s, c, v) (15)

A new before-after predicate must be a stronger version of
its abstraction:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u)∧
S(s, c, u, u′) ⇒ v′ · (R(s, c, v, v′) ∧ J(s, c, v′, u′))

(16)

An event may be split into two or more events. In this
case, the refinement relation is proved for each new event in
the same manner for as for on-to-one event refinement. New
events may be introduced but may only update new variables.
Standard consistency conditions apply.

A composition of operation modes and Event-B models has
to be refined in such a manner that it obeys both operation
mode refinement and Event-B refinement. For rule 5, it is
required that a refined operation mode is made of events
refining events from an abstract mode and also each event

from the abstract mode is present as a copy or a refined event
in the refined mode.

A(v)/G(v, v′) +→ E) A′(u)/G′(u, u′) +→ E′,

iff

I(v) ∧ J(v, u) ∧ A(v) ⇒ A′(u)
I(v) ∧ J(v, u) ∧ G′(u, u′) ⇒ G(v, v′)
∀e · e ∈ E′ ⇒ ∃a · a ∈ E ∧ e) a
∀e · e ∈ E ⇒ ∃a · a ∈ E′ ∧ a) e

(17)

Rule 6 for refinement of modes into a collection of new
modes is changed in a similar manner.

A(v)/G(v, v′) +→ E)
A1(u)/G1(u, u′) +→ E1

A2(u)/G2(u, u′) +→ E2
,

iff

I(v) ∧ J(v, u) ∧ A(v) ⇒ A1(u) ∨ A2(u)
I(v) ∧ J(v, u) ∧ G1(u, u′) ∨ G2(u, u′) ⇒ G(v, v′)
∀e · e ∈ E1 ∪ E2 ⇒ ∃a · a ∈ E ∧ e) a
∀e · e ∈ E ⇒ ∃a · a ∈ E1 ∪ E2 ∧ a) e

(18)

Conditions 17 and 18 state how mode refinement is related
to Event-B model refinement. They are the basis for generating
proof obligations that would determine the correspondence
between an Event-B model and a modes model.

b) Tool Support for Modes Modelling: As already
mentioned, the Rodin platform supports modelling and rea-
soning with Event-B models. Extensions to the Rodin platform
can be integrated with: tool interface, modelling process and
verification infrastructure. An extension providing the support
for modelling with modes would let a designer to visually
construct a modes model and would take care of generating the
proof obligations required to demonstrate the correspondence
between the modes model and the associated Event-B model
(defined by relation (10)). Proof obligations are delegated to
the proof infrastructure of the Platform that passes them on to
one or of automated theorem provers and also an interactive
prover should a theorem prover find a problem or fail to
discharge a proof obligation.

VI. CRUISE CONTROL CASE STUDY

A simplified version of one of the DEPLOY case studies
[14] developed in cooperation with industrial partners, the case
study illustrates the application of the proposed technique to
the development of a cruise control system.

The purpose of the system is to assist a driver in reaching
and maintaining some predefined speed. Due to the nature of
the system, a lot of attention is given to the interaction of a
driver, cruise control and the controlled parts of a car. In the
current modelling we assume an idealised car and idealised
driving conditions such that the car always responds to the
commands and the actual speed is updated according to the
control system commands.

a) A Mode for the Ignition Cycle: At the most abstract
level we introduce mode IGNITION CYCLE to represent the
activity from the instant the ignition is turned on to the instant
it is turned off. The initial model includes: the state of ignition
(on/off), modelled by a boolean flag ig; the current speed of
the car (a modelling approximation of an actual car speed),
stored in variable sa; a safe speed limit speedLimit above
which the car should not be in any case; and a safe speed
variation maxSpeedV ariation. No memory is retained about
the states in the previous ignition cycle. Initially, the current
speed is zero and ignition is off: sa ∈ 0 ∧ ig ∈ FALSE.

Independently of the operation of the car - by the driver or
by the cruise control - the following has to be ensured during
an ignition cycle (we present the intuition in the first line and a
formal representation of the same assumptions and guarantees,
based on the variables introduced, in the second line).

mode assumption guarantee
IGNITION ignition is on keep speed under limit and

CYCLE (ac/de)celarate safely
ig = true (sa < speedLimit) ∧

(|sa′ − sa| <
maxSpeedV ariation)

Figure 3(A) presents the diagram of the system. At this level
of abstraction it is composed only by the IGNITION CYCLE
mode. An event happens in the system that establishes the
assumption for that mode: ignitionOn. While ignition is on,
the corresponding guarantees have to be ensured. Another
event may change the conditions of the system and the
assumptions for this mode may become false: ignitionOff .

(A)

ignitionOn ignitionOff

IGNITION CYCLE

(B)
CRUISE CONTROL

ignitionOn ignitionOff

DRIVER

IGNITION CYCLE

ccOn ccOff setSt

(C)
MAINTAIN APPROACH

DRIVER

ccOff

setSt

sa=st setSt

IGNITION CYCLE

setSt

ccOnccOn

ignitionOn

CRUISE CONTROL

ignitionOff

(D)

LING

MAINTAIN APPROACH

DRIVE DRIVE
DEGRADEDNORMAL

ERROR
HAND-

ccOn

sa=st setSt
setSt

eoIEH

faultfault

eoREH
DRIVER

ccOnccOff

IGNITION CYCLE

ignitionOffignitionOn

fault
CRUISE CONTROL

setSt

Fig. 3. Mode refinement sequence for the Cruise Control System.

b) DRIVER and CRUISE CONTROL Modes: When the
ignition is turned on, control is with the driver. While the
ignition is on, control can be passed from the driver to the
cruise control and back. It is assumed that a driver has two
buttons on a control panel: the on button switches on the cruise
control; the off button returns to the driving mode. A third
input is available to set the target speed to be achieved by
the cruise control. The system is naturally represented with
two modes: DRIVER corresponding to the activity when cruise

control is off and CRUISE CONTROL when cruise control is
active. The on/off buttons mentioned are mapped to transition
events ccOn and ccOff . The diagram in Figure 3(B) depicts
the two possible modes during an ignition cycle.

This refinement introduces: the state of cruise control
(on/off), modelled by boolean flag cc; the target speed that
a cruise control is to achieve and maintain, represented by
variable st; an allowance interval isp that determines how
much actual speed could deviate from a target speed when
cruise control tries to maintain a target speed. Initially, the
target speed is undefined and cruise control is off: st ∈
N ∧ cc ∈ FALSE. The description of the modes:

mode assumption guarantee
DRIVER ignition cycle ignition cycle

assumptions and guarantees
cruise control off
ig = true (sa < speedLimit) ∧
∧ (|sa′ − sa| <
cc = false maxSpeedV ariation)

CRUISE ignition cycle ignition cycle
CONTROL assumptions and guarantees and

cruise control on maintain target speed or
approach target speed

ig = true (sa < speedLimit) ∧
∧ (|sa′ − sa| <
cc = true maxSpeedV ariation) ∧

(|sa′ − st′| ≤ isp ∨
|sa′ − st′| < |sa − st|)

c) Refining the CRUISE CONTROL Mode: If the differ-
ence between current (sa) and target (st) speeds is within
an acceptable error interval (isp), the cruise control works to
MAINTAIN the current speed. Otherwise, it employs different
procedures to APPROACH the target speed, characterizing
two modes refining CRUISE CONTROL with assumptions and
guarantees are as follows.

mode assumption guarantee
APPROACH cruise control cruise control

assumptions and guarantees and
speed not close approach
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′ − sa| <
|sa′ − st′| > isp maxSpeedV ariation) ∧

(|sa′ − st′| < |sa − st|)
MAINTAIN cruise control cruise control

assumptions and guarantees and
speed close maintain
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′ − sa| <
|sa′ − st′| ≤ isp maxSpeedV ariation) ∧

(|sa′ − st′| ≤ isp)

Figure 3(C) depicts these modes. Switching from DRIVER
to CRUISE CONTROL may either establish the assumptions of
APPROACH or MAINTAIN, depending on the difference between
st and sa. In either of these two modes the cruise control can
be switched off and the control returned to the driver.

d) Error handling: at any time failures of the surround-
ing components (e.g. airbag activated, low energy in battery,

etc.) may happen and affect the cruise control system. These
faults are typically signaled to the cruise control system as
erroneous conditions. The conditions can be either reversible
or irreversible: the reversible errors results in the control to
be returned to the driver and handling measures to be under-
taken, so that the cruise control becomes available again; the
irreversible ones are handled but the cruise control becomes
unavailable during the ignition cycle.

When an error is detected it is registered in an error
variable. We introduce a normal (DRIVE NORMAL), a de-
graded (DRIVE DEGRADED) and an error handling mode (ER-
ROR HANDLING). If an error is signaled in any of the system
modes, the system switches to ERROR HANDLING, where con-
trol is with the driver. Eventually error handling reestablishes
DRIVE NORMAL, with full functionality available, or switches
to DRIVE DEGRADED mode where the cruise control is not
available. This exemplifies situations (C) and (D) of Figure 2.
Figure 3(D) shows these modes. An eHand variable registers
that error handling is taking place. The following table shows
the assume/guarantee conditions for the modes introduced.
Note that although these modes have same guarantees, they
have different transition possibilities. After error handling, the
system continues in degraded or normal mode. From error
handling and degraded modes it is not possible to turn the
cruise control on.

mode assumption guarantee
DRIVE driver driver

NORMAL assumptions guarantees and
and no error cruise control available
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = false maxSpeedV ariation)

ERROR driver driver guarantees and
HAND- assumptions cruise control not available and

LING and error and recovery measures
handling restore normal mode or
not finished swich to degraded mode
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = true∧ maxSpeedV ariation)
eHand = true

DRIVE driver driver
DEGRA- assumptions guarantees and

DED and error and cruise control not available
handling finished
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = true∧ maxSpeedV ariation) ∧
eHand = false

VII. RELATED WORK

Several applications, structured in modes, can be found
in the literature. Papers [7] and [8] show how to formally
model and analyse modal space and avionic systems. In [15]
the extension of an Automated Highway System to tolerate
several kinds of faults is discussed, and modes are used to
characterize degraded operation. A classic case study showing
the use of formal methods, the Steam Boiler Control [16], is
based on the notion of operation modes. More recent examples

on the extensive use of modes for the specification of airspace,
transportation and automotive systems can be found in [14].
Such contributions focus on specific applications and not on
general means to model and reason using modes.

In [17] the authors discuss characteristics of mode-driven
distributed applications and a software architecture with ex-
tensions to mode-driven fault-tolerance. An infrastructure is
proposed to support mode-driven fault tolerance in run time.
In [18], the representation of degraded service outcomes and
exceptional modes of operation using UML use cases, activity
diagrams and state charts is discussed. Formal modelling and
reasoning is not discussed in these contributions.

In [6] a specification language for real-time systems, called
Modechart, is presented. In [19] the author discusses issues
related to mode changes and scheduling for hard real-time
systems. The general notion of modes in these papers is
analogous to the one discussed here, however their focus is on
the specification and analysis of timing properties of systems.
Functional properties are not discussed.

In the context of refinement based methods, the most related
work found is by Back and von Wright [20], where guarantees
(of an action system) are introduced to reason about the par-
allel composition of action systems. Guarantees of composed
action systems have to mutually respect the invariants. Since
there is no notion of assumptions (they are embedded in the
invariants), the flexibility of changing assumptions, allowing
different modes and mode switching, is not offered.

Finally, Jones, Hayes and Jackson, in [21], address the
problem of obtaining a starting specification for systems that
interact with the physical world, like control systems. A
method is discussed that leads the designer to explicitly state
rely conditions (to be compared with assumptions) about the
physical world before deriving a first specification of the
system. The notion of ’layer’ is briefly discussed. A layer is
associated to a set of rely/guarantee predicates and could be
compared to a mode. Different layers could be used to state the
behaviour under distinct conditions. Fault tolerance is briefly
mentioned, where one could have assumptions to characterise
absence or presence of faults.

VIII. CONCLUSIONS

In this paper the notions of modes and mode refinement
are formally defined and their representations in a state-
base formalism (Event-B) are established. These notions allow
explicit characterization of various system conditions, through
expressing assumptions, and the properties of the system
working under such conditions, through the use of guarantees.
The complexity of design is reduced by structuring systems
using modes and by detailing this design using refinement.
This approach makes it easier for the developers to map re-
quirements to models and to trace requirements. More specif-
ically, the approach suits well for dealing with fault-tolerance
requirements: assumptions allow the explicit mapping of the
error coverage provided by the system, whereas guarantees and
mode switching configurations allow the explicit mapping of
requirements for different levels of fault-tolerance.

In addition to developing a tool support, in the near future
we plan to investigate mode hierarchy (nesting), to express re-
cursive structuring for fault tolerance [22], mode concurrency,
where further work is needed to support concurrent modes
acting on shared states, and state consistency during distributed
execution of modes.

REFERENCES

[1] J.-C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[2] F. Cristian, Exception handling, T. Anderson, Ed. Blackwell Scientific
Publications, 1989.

[3] A. Romanovsky, “A looming fault tolerance software crisis?” SIGSOFT
Softw. Eng. Notes, vol. 32, no. 2, pp. 1–4, 2007.

[4] J. Peleska, “Formal methods and the development of dependable systems
- habilitationsschrift,” Institut für Informatik und Praktische Mathematik
der Christian-Albrechts-Universität su Kiel, Tech. Rep. 9612, 1996.

[5] F. C. Gärtner, “Transformational approaches to the specification and ver-
ification of fault-tolerant systems: formal background and classification,”
Journal of Univ. Computer Science, vol. 5, no. 10, pp. 668–692, 1999.

[6] F. Jahanian and A. Mok, “Modechart: A specification language for real-
time systems,” IEEE Transactions on Software Engineering, vol. 20,
no. 12, pp. 933–947, 1994.

[7] R. W. Butler, “Nasa tech. memo. 110255 an introduction to requirements
capture using pvs: Specification of a simple autopilot,” p. 29, 1996.

[8] S. P. Miller, “Specifying the mode logic of a flight guidance system
in core and scr,” in FMSP ’98: Proc. of the 2nd workshop on Formal
methods in software practice. New York, USA: ACM, 1998, pp. 44–53.

[9] R.-J. J. Back and J. V. Wright, Refinement Calculus: A Systematic
Introduction. Springer-Verlag New York, Inc., 1998.

[10] J. R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[11] R.-J. Back and K. Sere, “Stepwise Refinement of Action Systems,” in
Proceedings of the International Conference on Mathematics of Program
Construction, 375th Anniv. of the Groningen Univ., J. L. A. van de
Snepscheut, Ed. London, UK: Springer-Verlag, 1989, pp. 115–138.

[12] “Event-b and the rodin platform,” http://www.event-b.org/ (last accessed
8 March 2009). Rodin Development is supported by European Union
ICT Projects DEPLOY (2008 to 2012) and RODIN (2004 to 2007).

[13] E. Dijkstra, A Discipline of Programming. Prentice-Hall Int., 1976.
[14] J.-R. Abrial, J. Bryans, M. Butler, J. Falampin, T. S. Hoang, D. Ilic,

T. Latvala, C. Rossa, A. Roth, and K. Varpaaniemi, “Report on knowl-
edge transfer - deploy deliverable d5,” p. 321, February 2009.

[15] J. Lygeros, D. N. Godbole, and M. E. Broucke, “Design of an extended
architecture for degraded modes of operation of ivhs,” in In American
Control Conference, 1995, pp. 3592–3596.

[16] J.-R. Abrial, E. Börger, and H. Langmaack, Eds., Formal Methods for
Industrial Applications, Specifying and Programming the Steam Boiler
Control (the book grow out of a Dagstuhl Seminar, June 1995), ser.
Lecture Notes in Computer Science, vol. 1165. Springer, 1996.

[17] D. Srivastava and P. Narasimhan, “Architectural support for mode-driven
fault tolerance in distributed applications,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1–7, 2005.

[18] S. Mustafiz, J. Kienzle, and A. Berlizev, “Addressing degraded service
outcomes and exceptional modes of operation in behavioural models,” in
SERENE ’08: Proceedings of the 2008 RISE/EFTS Joint International
Workshop on Software Engineering for Resilient Systems. New York,
NY, USA: ACM, 2008, pp. 19–28.

[19] G. Fohler, “Realizing changes of operational modes with a pre run-
time scheduled hard real-time system,” in In Proceedings of the Second
International Workshop on Responsive Computer Systems. Springer
Verlag, 1992, pp. 287–300.

[20] R.-J. Back and J. von Wright, “Compositional action system refinement,”
Formal Asp. Comput., vol. 15, no. 2-3, pp. 103–117, 2003.

[21] C. B. Jones, I. J. Hayes, and M. A. Jackson, “Deriving specifications for
systems that are connected to the physical world,” in Formal Methods
and Hybrid Real-Time Systems, 2007, pp. 364–390.

[22] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice,
J. C. Laprie, A. Avizienis, and H. Kopetz, Eds. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1990.

On Event-B and Control Flow

A. Iliasov

Centre for Software Reliability, Newcastle University, UK
alexei.iliasov@newcastle.ac.uk

Abstract. The paper presents an extension of the Event-B method with
a viewpoint portraying control flow properties of a model. The novelty
of the work is in relying solely on theorem proving to demonstrate the
consistency of control flow and main Event-B specification. The focus is
placed on the practicality of working with such an extension and also on
achieving proof economy. A detailed formal treatment of the method is
presented and illustrated with a case study. A proof of concept imple-
mentation for the RODIN platform is briefly discussed.

1 Introduction

Event-B [1–3] is a general-purpose specification language and is a close relative
of the popular B-Method [4](or Classical B). Its distinctive feature is relying
on the event-based specification paradigm. An Event-B model is a collection of
events where the next event is selected non-deterministically among the currently
enabled events. Event-B facilitates construction of models with a large number of
rather simple events. Theorem proving is the primary verification technique and,
crucially, almost all the correctness conditions (proof obligations) are formulated
on per-event basis. This makes Event-B very friendly to automated theorem
provers. High rate of verification automation is extremely important and it makes
Event-B one of the few practical proof-based formalisms.

However, there are some downsides in following pure event-based paradigm.
Not all systems are naturally expressed in this style. Often the information about
event ordering has to be embedded into guards and event actions. This results in
an entanglement of control flow and functional specification with an additional
downside of extra model variables.

There are a number of reasons to consider an extension of Event-B with an
event ordering mechanism:

– for some problems the information about event ordering is an essential part
of requirements; it comes as a natural expectation to be able to adequately
reproduce these in a model;

– explicit control flow may help to prove properties related to event ordering;
– sequential code generation requires some form of control flow information;
– since event ordering could restrict the non-determinism in event selection,

model checking is likely to be more efficient for a composition of a machine
with event ordering information;

– a potential for a visual presentation based on control flow information;
– bridging the gap between high-level workflow and architectural languages,

and Event-B.

In this paper we discuss an extension of Event-B with a mechanism to rea-
son about event ordering. The practical issues, like verification means, the in-
tegration with the Event-B development process and the tooling support are
given the highest priority. Unlike much of the work on combining state-based
and process-bases specification methods [5–8] our proposal is based on theorem
proving rather than model checking. We demonstrate that the proposal is re-
alistic and presents distinct practical advantages with a proof-of-concept tool
realising the technique.

2 Flow Model

The Flow View extends Event-B with a facility for defining event ordering. A flow
is an expression written in a special language resembling those used in process
algebras, such CSP [10]. The basic element of the language is an event. Events in
a flow are the same events as in an Event-B machine. Events are characterised by
an event label and may have parameters (in flow analysis these are treated as an
integral part of an event label). The following is the summary of the constructs
forming the flow language:

e.a event with label e and arguments a
p; q sequential composition
p‖Eq parallel composition synchronised on events from E
p u q choice
∗(p) terminating loop
′start,′ stop,′ skip initialisation, termination and stuttering events

where p and q are flow expressions. Events starting with ′ bear special
meaning. ′start is a shortcut for Event-B event INITIALISATION, ′stop is
an assumed termination event and ′skip corresponds to an implicit Event-B skip
event.

An essential part of the flow mechanism is the notion of a partial flow ex-
pression (or simply partial flow). There are situations when it is not necessary
to mention all the machine events in a flow. For example, one may want to state
flow for a part model corresponding to the current refinement step or simply
focus on a part where flow reasoning is required. The notion of partial flow be-
comes clear if one thinks of a flow expression as a set of conditions formulated
on a machine. A partial flow is then a more relaxed version of a complete flow.

There are some basic well-formedness requirements to a flow. Event ′start
corresponding to the initialisation event of a machine may not be composed
with other events using choice and parallel composition. Also, it may only oc-
cur on the left-hand side of a sequential composition. This restriction is due
to the fact that the initialisation event is a special case in Event-B. It has no

guard and is always a first event to run. Since flows may be partial, initialisa-
tion event may be omitted from a flow. The termination event ′stop also needs
special treatment. This event is not present explicitly in a machine and the fol-
lowing Event-B definition is implied if the event is present in a flow expression:
′stop = when ¬(G1 ∨ · · · ∨Gn) then skip end . Event ′stop is enabled when all

other events are disabled; it executes infinitely but keeps the state intact so that
a machine cannot get into a state when anything else is enabled. Since this event
diverges it is not possible to have any other event to follow ′stop. Hence, ′stop
may not occur on the right-hand side of a sequential composition. For the same
reason, a parallel composition with ′stop is disallowed. It is possible, however,
to have a choice between ′stop and another event (including ′start).

In a composition of a flow and machine, the flow loop construct ∗(p) would
correspond to a loop on machine events. It is the responsibility of the Event-B
part to demonstrate the convergence of a loop. This is a standard part of model
analysis in the RODIN Event-B environment. Later we discuss how to improve
the strategy of demonstrating convergence in Event-B by using the information
contained in a flow attached to a machine.

In the context of Event-B models, the parallel composition may only be
applied to certain kind of events. We require that for any set of parallel events
(as defined in a flow expression) there exists a well-formed Event-B event that
simulates all the possible interleavings of the parallel events. This condition
results in a number of syntactic requirements to machine events.

Let rd(e) return the set of all variables read by event e. These are the model
variables referenced in the event guard and the event actions. Likewise, wr(e)
is a set of variables updated by event e. These are the variables found on the
left-hand side of substitutions in an event body. Events that are potentially
concurrent are called independent events.

Definition 1. Independent events. Events that do not have read/write and write/write
conflict are independent. The conflicts are defined as follows:

– Read/write conflict. A pair of events have a read conflict if one updates the
variables read by another. This is denoted as rdcfl(e1, e2) = rd(e1)∩wr(e2) 6=
� ∨ rd(e2) ∩ wr(e1) 6= �.

– Write/write conflict. Events updating the same variable have a write conflict:
wrcfl(e1, e2) = wr(e1) ∩ wr(e2) 6= �.

Set E of events is independent, denoted as ind(E), if for every event pair
(a, b) from E the following holds: a 6= b =⇒ ¬rdcfl(a, b) ∧ ¬wrcfl(a, b)

The condition ind(. . .) must be established for all possible event pairs com-
posed with the parallel composition operator.

3 Semantics

This section discusses the semantics of the flow language and the way to integrate
it with Event-B. In particular we show how to reason about flow and machine

consistency in the terms of machine properties rather than flow or machine
traces. But first we use the traces semantics to formally integrate flows with
Event-B. The following defines the traces of a flow expression.

traces(′skip) b= {〈〉}
traces(′start) b= {〈′start〉}
traces(′stop) b= {s | n ∈ N ∧ s ≤ 〈′stop〉n}
traces(ei.a) b= {〈ei.a〉}
traces(p; q) b= {s_z | s_z ∈ traces(p) ∧ z = 〈′stop〉}∪

{s_t | s_z ∈ traces(p) ∧ t ∈ traces(q) ∧ z 6= 〈′stop〉}
traces(p|q) b= traces(p) ∪ traces(q)
traces(∗(p)) b= traces(p|(p; ∗(p)))

traces(p‖Eq) b= {S(s‖Et | s ∈ traces(p) ∧ t ∈ traces(q)}
Here s ≤ t states that trace s is a prefix of trace t; α(x) is an alphabet of x

(set of all events occurring in x). The parallel composition operator is defined
as a collection of possible event interleavings:
〈〉‖E〈〉 b= {〈〉}
〈a〉_p‖E〈〉 b= � a ∈ E

〈a〉_p‖E〈〉 b= {〈a〉_s|s ∈ (p‖E〈〉)} a /∈ E

〈a〉_p‖E〈b〉
_q b= � a ∈ E ∧ b ∈ E ∧ a 6= b

〈a〉_p‖E〈b〉
_q b= {〈a〉_s|s ∈ (p‖Eq)} a ∈ E ∧ b ∈ E ∧ a = b

〈a〉_p‖E〈b〉
_q b= {〈b〉_s|s ∈ (〈a〉_p‖Eq)} a ∈ E ∧ b /∈ E

〈a〉_p‖E〈b〉
_q b= {〈a〉_s|s ∈ (p‖E〈b〉

_q)}∪ a /∈ E ∧ b /∈ E

{〈b〉_s|s ∈ (〈a〉_p‖Eq)}
p‖Eq constructs all the possible interleavings of p and q while respecting the

synchronisation on common events E.

3.1 Event-B Trace Semantics

In this section we briefly present how traces of an Event-B model are constructed.
Much more detailed treatment of the subject is given in [11] and [12].

An elementary step of a machine interpretation is the computation of the
set of next states for some current event. For some event e the next states are
found by selecting a set of suitable values for the event parameters and using
them to characterise the possible next states v′. An Event-B machine may be
understood as a relation T : Event↔S↔S: T df= ∃pe · (Ge(pe, v)∧Se(pe, v, v

′)).
Here pe, Ge, Se are the event parameters, guard and before-after predicate. T is
a predicate characterising a relation on system states: it is a total function from
events to relations on states. A next event would start from a state produced by
a previous event. This is expressed with the sequential composition operator ”;”:
e1; e2 = ∀v1·T (e1)[v1/v′]∧T (e2)[v1/v]. v1 is a vector of fresh names used to record
the final state of e1 and pass it on to e2. The concept of sequential composition
can be generalised to a chain of events. Operator seq performs a sequential
composition over an event list: seq(〈〉) = id(S) and seq(〈e〉t) = T (e); seq(t).
From these definitions, the traces of a machine are formulated as all possible
traces reachable from the initial machine state Init:

traces(M) = {t | seq(t)[Init] 6= �}

In the next section we use the traces semantics of flows and Event-B to
define the consistency conditions for a model combining a flow expression and
an Event-B machine.

3.2 Flow/Machine Consistency

The minimal requirement to a given pair of a flow and machine is that the two
agree on deadlocks and divergences. To account for partial flows it is required to
consider a situation when only a part of a machine traces is specified by a flow.
A flow trace starting with ′start and eventually reaching stop would match a
complete machine trace if it matches any trace at all.

Definition 2. Flow consistency. A flow f is consistent with a given machine m
if it is possible to find a machine trace that contains some flow trace: ∃t, hd, tl·t ∈
traces(f) ∧ hd_t_tl ∈ traces(m).

One important case of a flow and machine combination is when flow event
ordering and event guards together define a concrete, implementable event order-
ing. Individually, both flow expression and machine still may have non-deterministic
event choice. Such a property is essential for code generation and sometimes is a
desired property of a model. While choice related non-determinism must be re-
solved, non-deterministic event ordering may still be present due to the parallel
composition operator. To distinguish between these two cases we use the notion
of interleaving equivalence.

Two traces are said to be interleave equivalent if one can be obtained from an-
other by swapping events in a pair of independent events. This is formulated us-
ing the following relation on traces: s Re t⇔ s = t∨∃a, b, hd, tl ·(hd_〈a, b〉_tl ∈
t∧hd_〈b, a〉_tl ∈ s∧ ind({a, b})). Traces s and t are said to be interleave equiv-
alent if s Re∗ t where Re∗ is a transitive closure of Re.

Definition 3. Concrete flow. The traces contained in the intersection of a con-
crete flow and machine traces are interleave equivalent.

Having these definitions does not lead to practical means of establishing
flow properties especially since it is our intention is to use theorem proving to
reason about a combination of a flow and machine. In the rest of the section we
discuss how to transition from statements about traces of flows and machines
to equivalent conditions on machine variables, events guards and event actions.
First, some mathematical context is presented. This gives a basis for theorems
reformulating the definitions of consistent and concrete flows in terms of machine
properties. In its turn, this gives a foundation for deriving proof obligations.

In a general case, an event may be preceded by any configuration of choice
and parallel composition. Let us consider the following example: ((a‖b)|(c‖d)); z.
Event z gets enabled as soon as both a and b or c and d terminate. One has
to show that for any possible situation (that is, the first and the second branch
of the choice) it is possible to pass control to z. Even more complex case is
demonstrated by the following expression: ((a‖b)|(c‖d)); ((e‖f)|(g‖h)). For this,

one also has to consider a multitude of options on the right-hand side. The
notions of entry and exit points are introduced to reason about events actively
involved in passing control in a sequential composition. These are defined as
follows:

EN(e) = {{e}}
EN(′skip) = {{}}
EN(′start) = {{′start}}
EN(′stop) = {{′stop}}
EN(p; q) = EN(p) p 6=′ skip
EN(′skip; q) = EN(q)
EN(p|q) = EN(p) ∪ EN(q)
EN(p‖q) = {EN(p) ∪ EN(q)}
EN(∗(p)) = EN(p)

EX(e) = {{e}}
EX(′skip) = {{}}
EX(′start) = {{′start}}
EX(′stop) = {{′stop}}
EX(p; q) = EX(q) q 6=′ skip
EX(p;′ skip) = EX(p)
EX(p|q) = EX(p) ∪ EX(q)
EX(p‖q) = {EX(p) ∪ EX(q)}
EX(∗(p)) = EX(p)

where EN(x) is a set of entry points of a flow expression x. Correspondingly,
EX(x) denotes the set of exit points. Note that entry and exits points are set of
sets. The reason is that a combination of parallel composition and choice results
in a set of event clusters. For example the set of entry points of ((a‖b)|(c‖d)); z
is {{a, b}, {c, d}}. This set contains two entry points {a, b} and {c, d} where each
entry points is set itself denoting a complex entry point of a parallel composition
construct.

Independent events may be merged into a single event1. Indeed, since inde-
pendent events are conflict free and can be executed in any order there is nothing
that prevents an existence of a single event that would have the same effect as
possible interleavings of the independent events. This is a purely abstract con-
struction. There is, of course, no need to actually introduce merged events in a
model.

Definition 4. Operator merge(a, b). The operator constructs a single event
from the definitions of events a and b. It is well-defined only when a and b
are independent. For some events a and b,

a = any p where G(p, d) then S(p, d, w′) end

b = any q where H(q, g) then R(q, g, u′) end

a merged event takes the following general form:
a = any p, q where G(p, v) ∧H(q, v) then S(p, v, v′) ∧R(q, v, v′) end

Constant c and set s are omitted but implied in guards and before-after pred-
icates.

Since only independent events may be merged, the resultant merged event
enjoys a number of properties. It is enabled when both its donor events are en-
abled and simulates the effect of interleaving the merged events. A merged event
is feasible as long as its individual donor events are feasible. It is straightforward
to see that the state observed after executing a merged event is the same state as
one would observe after executing both donor events in any order. Event merging
is a special case of event fusion [13].

1 Event-B uses event merging as a refinement technique. This has nothing to do with
our definition of merging.

Definition 5. Operator s #m t. This operator defines the consistency conditions
for a sequential composition where control is passed from a collection of exit
points s to a collection of entry points t. The operator type is

: M × P(P(Event))× P(P(Event))→ BOOL

where M is an Event-B model and Event is a set of model events; the sec-
ond and the third parameters are some exit and entry points. The strategy is to
construct an Event-B event implementing what is essentially a sequential com-
position of s and t. The feasibility conditions for the event would demonstrate
the well-formedness of a sequential composition.

Let us first consider a simple case of a composition of two events when
s = {{e1}} and t = {{e2}}. Events e1 and e2 are defined as follows (these defi-
nitions come from an Event-B machine that is supplied as the first parameter to
operator):

e1 = any p where G(p, v) then S(p, v, v′) end

e2 = any q where H(q, v) then R(q, v, v′) end

A composed event ”e1; e2” is an event with the same guard as e1 and the
after state of e2 when executed after executing e1:

”e1; e2” = any p where G(p, v) then S(p, v, v′); (∃q ·H(q, v) ∧R(q, v, v′)) end

Here we introduce operator ; for the sequential composition of event actions2.
It can be reduced to a simple action using the following definition:

S0(p, v, v′);S1(p, v, v′)=̂∃ v1 · S0(p, v, v1) ∧ S1(p, v1, v′)
Now we are ready to define the meaning of #m when, as a special case, it is

applied to a pair of events: e1#̂me2 = FIS(”e1; e2”), where FIS(e) is an Event-B
event feasibility condition (see Section ?? and also [3]).

The next step is to reduce the general form of # to the simple case above. For
this we consider all the pairs from a Cartesian product of s and t while also reduc-
ing the multiple exit and entry points introduced by the parallel composition con-
struct to a single event: s#m t = ∀d, f ·(d, f) ∈ s×t⇒ mergeall(d)̂#mmergeall(f),
where mergeall(x) is a following generalisation of merge:

mergeall(x) =

e x = {e}
merge(hd, mergeall(tl)) x = {hd} ∪ tl ∧ tl = x \ hd

Finally, we are ready to approach the problem of checking flow/machine con-
sistency. Using the # operator, the problem is reduced to a number of conditions
on Event-B machine events. Importantly, they all are expressed in first-order
logic as they are essentially various instance of the Event-B feasibility proof
obligation. The last remaining step is to lift # to the level of a model composed
of a machine and flow.

Definition 6. Predicate cons. This predicate defines the consistency conditions
for a combination of a flow and machine. Its type is cons : F ×M → BOOL
and the definition is as follows:

2 Classical B defines a similar operator to compose actions[4].

cons(ev, m) = true
cons(p; q, m) = cons(p, m) ∧ cons(q, m) ∧ (EX(p) #m EN(q))
cons(p|q, m) = cons(p, m) ∧ cons(q, m)
cons(p‖q, m) = cons(p, m) ∧ cons(q, m)
cons(∗(p), m) = cons(p, m)

where ev is either a machine event one of the predefined events (′skip, ′start or
′stop).

Now we are able to state the flow consistency as a condition on machine
elements.

Theorem 1. A flow f is consistent with a machine m provided cons(f,m)
holds.

Proof. Firstly, either a flow or machine may diverge at different points without
giving an option to continue with a non-divergent trace. For a flow this could only
happen when there is a transition into ′stop event (flow loops always agree with
machine event loops on divergences since a flow loop covers both terminating and
non-terminating machine loops). In other words, there is an instance of sequential
composition p; q such that {′stop} ∈ EN(q). For a machine, a divergence on
traces happens when an event infinitely enables itself while keeping all other
events disabled. The conditions introduced by cons guarantee that any sequential
composition is consistent and thus a divergent event may not be found in the
entry points of the right-hand side of a sequential composition. Then, assuming
that flow and machine traces agree on deadlocks, such an event may only be
′stop. Hence, the satisfaction of cons(f,m) establishes the fact that traces of f
and traces of m agree on divergences.

Secondly, there is a possibility that a combination of a flow and machine
reveals deadlocks that were not present in either flow or machine alone. The
only source of such deadlocks is a sequential composition that is not well-formed.
However, cons(f,m) states that this may not be the case.

One interpretation of an Event-B machine is that of a loop made of ma-
chine events and preceded by the initialisation event. In the flow language this
is expressed as ′start; ∗(e1| . . . |ek). This expression gives rise to a consistency
condition requiring that there is an enabled event after the initialisation event.
It is straightforward to see that machines shown to be deadlock free or refining
a deadlock free abstract machine are always consistent with this flow.

Theorem 2. A consistent flow f , containing ′start in its traces, is concrete
with the respect to machine m if for every instance of the sequential composition
p; q the following condition holds: ∀s, t · {s, t} ∈ EN(q)∧ s 6= t =⇒ ¬(EX(p) #m
s ∧ EX(p) #m t)

Proof. Let us consider two traces of f : d and g, d ∈ traces(f), g ∈ traces(f)
such that they are prefixes of some machine traces: ∃md,mg · d ≤ md∧ g ≤ mg.
d and g are necessarily prefixes since ′start is included in the flow expression f .
Should it not be possible to find two machine traces then the theorem condition

is trivially satisfied. Let us assume that d and g are not interleave equivalent:
¬(d Re∗ g). Then it is possible to find two distinct, non-independent events a
and b, a 6= b,¬ind(a, b) where ∃hd ·hd_〈a〉 ≤ d∧hd_〈b〉 ≤ g∧#hd > 0 and #x
denotes the length of trace x. The two traces record the same event occurrences
until a point when a is recorded in one and b is recorded in another. Since the
theorem condition requires that f uses ′start it is known that 〈′start〉 ≤ hd and
thus hd is not empty. Prefix hd corresponds to some flow expression fp such
that traces(fp) = hd (it is not, however, necessarily a part of f as it might be
just one possible trace of a parallel composition in f). The fact that d and g
disagree on events a and b necessarily requires that pf is followed by a choice
construct that among its entry points has a and b. Thus, machine definition
would have to satisfy the following condition: EX(fp) #m {a} ∧EX(fp) #m {b}.
Let us consider the theorem condition where let p = fp and {a, b} ∈ EX(q).
Then ¬(EX(fp) #m {a}∧EX(fp) #m {b}). The contradiction proves the theorem.

These two theorems show how to reason about flow and machine consistency
in terms of conditions o machine elements. Next we show how derive conditions
that could be used as proof obligations in the automated reasoning framework
of Rodin Platform[14].

3.3 Proof Obligations

For a combination of a flow and machine we would like to be able to demonstrate
that the flow is consistent or concrete (the latter requires the former). The general
strategy is split an overall proof into a collection of simpler conditions.

For flow consistency, a suitable way to do this is to analyse each instance of
sequential composition individually as suggested by the condition of Theorem 1
(see Definition 6 for operator cons). For an instance of a sequential composition,
from Definition 5 we have the following feasibility condition for a composed
event.

I(v) ∧G(p, v) `
∃v′ · (S(p, v, v′); (∃q ·H(q, v) ∧R(q, v, v′))) `
∃ v1 · (S(p, v, v1) ∧ ∃q ·H(q, v1) ∧R(q, v1, v

′)))
The condition is far too complex in the current form. A more compact one

could be found. Let us first assume that the composed events are feasible on
their own. This gives the following two axioms.

axm1 : I(v) ∧G(p, v) ` ∃v′ · S(p, v, v′)
axm2 : I(v) ∧H(q, v) ` ∃v′ ·R(q, v, v′)
Applying axiom axm1, the feasibility condition for a composed event is sim-

plified to the following:
I(v) ∧G(p, v) ∧ S(p, v, v1) ` ∃ q · H(q, v1) ∧R(q, v1, v

′)

With the help of the second axiom we are able to remove R(q, v1, v′) clause
from the goal:

I(v) ∧G(p, v) ∧ S(p, v, v1) ` ∃ q · H(q, v1)

Finally, extending the above with the consideration of model constants and
sets, the following proof obligation is formulated.

P (c, s) ∧ I(c, s, v) ∧G(c, s, pe, v) ∧ S(c, s, pe, v, v′) ` H(c, s, q, v)

Here G and S are the guard and before-after predicate (actions) of what is
possibly a result of merging several model events. The proof obligation demon-
strates that an event characterised by G and S is able to pass control to another
(possibly merged) event with guard H for any possible state permitted by G.

The axioms we have rely upon are sound since they are a part of model
consistency proof obligations that are to be discharge for every Event-B model[3].

With a similar procedure we are able to find a practical form of a proof obli-
gation for demonstrating that a flow is concrete. The following proof obligation
requires that for a given instance p; q of a sequential composition the choice
branches in q, if there any, are mutually exclusive.

P (c, s) ∧ I(c, s, v) ∧G(c, s, p, v) ∧ S(c, s, p, v, v′) `V
{s,t}∈EN(q)∧s6=t ¬(Hs(c, s, qs, v

′) ∧Ht(c, s, qt, v
′))

Here Hs and Ht are the guards of possibly merged events. The goal in this
proof obligation may become lengthy in some extreme case when there is a choice
on a large number of events. However, since the goal is in conjunctive form is
relatively straightforward for a prover to apply case analysis.

3.4 Example

In this section we consider a combination of a simple Event-B model and flow
expression. An emphasis is made on using sequential event composition as it is
the construct requiring the consistency proof obligations.

The example is a sluice with two doors connecting areas with dramatically
different pressures. The pressure difference makes it unsafe to open a door unless
the pressure is levelled between the areas connected by the door. The purpose
of the system is to adjust the pressure in the sluice area and control the door
locks to allow a user to get safely through the sluice.

The model has three variables: d1 ∈ DR and d2 ∈ DR are the door states;
pr ∈ PR is the current pressure in the sluice area. A door is either closed or
open: DR = {OP,CL} and pressure is low or high: PR = {HIGH,LOW}.
Initially, the doors are shut and the pressure is set to low.

A model has a number of invariants expressing the safety properties of the
system: a door may be opened only if the pressures in the locations it connects
is equalised; at most one door is open at any moment; the pressure can only be
switched on when the doors are closed. Model events control the doors and a
device regulating the sluice pressure:

open1 = when d1 = CL ∧ pr = LOW then d1 := OP end

close1 = when d1 = OP then d1 := CL end

open2 = when d2 = CL ∧ pr = HIGH then d2 := OP end

close2 = when d2 = OP then d2 := CL end

pr low = when d1 = CL ∧ d2 = CL ∧ pr = HIGH then pr := LOW end

pr high = when d1 = CL ∧ d2 = CL ∧ pr = LOW then pr := HIGH end

Finally, the following flow expression is used. It describes a sequence of steps
needed to let a user through the sluice starting from an area adjoining door 1
(d1): pr low; open1; close1; pr high; open2; close2

Let us see how we can check that this specification is consistent with the
flow expression. For each instance of sequential composition (pr low; open1,

open1; close1 and so on) it is needed to show that condition (??) holds. For
example, for pr low; open1 it is:

d1 = CL ∧ d2 = CL
pr′ = LOW ∧ d1′ = d1 ∧ d2′ = d2

` d1′ = CL ∧ pr′ = LOW

The condition is trivially true. Another proof obligation, generated from
open1; close1, also trivially holds: d1 = CL ∧ pr = LOW ∧ pr′ = pr ∧ d1′ =
OP ∧ d2′ = d2 ` d1′ = OP

The next case presents some difficulties. When trying to demonstrate that
event close1 always enables pr high we find that there is not enough information
to discharge the proof obligation:

d1 = OP ∧ pr′ = pr
d1′ = CL ∧ d2′ = d2

` d1′ = CL ∧ d2′ = CL ∧ pr′ = LOW

The problem here is that the guard of event close1, although strong enough
to satisfy safety properties, is too weak for the flow. By strengthening the guard
with the additional clauses d2 = CL ∧ pr = LOW we are able to discharge the
proof obligation.

3.5 Collecting Additional Hypothesis

There is a way to discharge proof obligations like in the example above without
strengthening event guards. Indeed, by looking at the flow expression one should
notice that close1 is always preceded by pr low and thus may only be enabled
when pr = LOW . Likewise, since close1 always follows open1 and the second
door is always closed in the after-states of open1 (due to the safety invariant of
the model requiring that at most one door is open a time) it is known that the
condition d2 = CL is always true for states when close1 is enabled. Hence all
the information that was introduced into proofs by strengthening event guards is
already present in a model. To benefit from this information it must be collected
and added in the form of hypothesis to flow proof obligations.

Let vi−1 be a model state preceding state vi and state vn be the most recent
previous state preceding the current state v. Also, let Hi(v1, . . . , vn, v) be the
current collection of hypothesis for some event a. Then for an instance of se-
quential composition a; b the collection of hypothesis available in the after-state
of b is computed as

Hi+1 = Hi(v1, . . . , vn, vn+1) ∧G(vn+1) ∧ S(vn+1, v)

where G and S are the guard and actions of b. It is straightforward to gen-
eralise this basic procedure to the complete flow language. However, there an
issue of filtering out irrelevant hypothesis as a large number of hypothesis slows
down some provers.

3.6 Flow Refinement

We use the traces refinement notion [10] to define the refinement relation for
flow expressions. To keep flow events in agreement with machine events, some
renaming is applied before comparing flow traces:

fa v fc ⇔ traces(R∗(fc \ En)) ⊆ traces(fa)

property definition description

eventually a F ∗ b after a eventually b
reachable ′start F ∗ b b is reachable
always reachable ∀e ·′ start F ∗ e⇒ e F ∗ b b is always reachable
liveness ∀e ·′ start F ∗ e⇒ ∃n · {b} = F n(e) b keeps happening

Fig. 1. Flow properties

where x\S removes all occurrences of events from S in traces of x; En is a set
of new events introduced in machine refinement (these events refine an implicit
skip event of an abstract machine); R∗ is a function mapping concrete event
labels into the labels of abstract events. Note that since a flow selects one of the
possible traces of a machine, the combination of a consistent flow and a machine
exhibits the failure-divergence refinement in respect to the pair of abstract flow
and a machine.This is due to the fact that Event-B refinement is a case of the
failure-divergence refinement [12].

3.7 Reasoning about Flows

A flow expression may be seen as a directed graph. Its vertices are model events
and edges are the transitions connecting events in a flow expression. Comput-
ing the transitive closure of such graph, one is able to check statements like
”after event a eventually event b” or ”event x is reachable”. Let F be a graph
constructed from a flow expression: F : Event↔ Event. Then ”after event a
eventually event b” is understood as a F ∗ b and ”event x is reachable” becomes
′start F ∗ x. One is also able to check that event x is always reachable by stating
that it can be reached from any event that in its turn is reachable from the
initialisation event: ∀e · e ∈ F ∗(′start) ⇒ e F ∗ x. With a similar technique it
is possible to express liveness properties to check that something good keeps
happening throughout a system lifetime (Figure 1).

Since flow properties are checked at the level of a flow and a flow may have
more traces than a machine, not all flow properties automatically hold for a com-
bination of a flow and machine. It this light, formulating flow properties may
seem a vain exercise. However, flows give a considerable advantage in model
checking by reducing a model state space. Since validating flow properties is
computationally cheap and the user gets an instant feedback, it is more effecient
to first constrain a flow expression and then apply model checking on combina-
tion of a flow and Event-B machine.

4 Conclusions

In our view, the ability to reason about event ordering is a useful addition
to the Event-B method. It helps to construct models with rich control flow
properties and it also makes such models more readable. Unlike the existing work
in this area, it relies solely on theorem proving. It uses practical and scalable

proof obligations that are handled well by automated theorem provers. The
approach benefits from the existing tool support with a proof-of-the-concept
tool implemented for the RODIN platform [14].

We attempted to solve the problem of unmanageable proofs resulting from
a sequential composition of actions. For instance, in Classical B, actions within
operations and events may be composed using operator ;, e.g., a := a + 1; b :=
a + 1. This is interpreted as applying the second action in the context of the
first one. Unfortunately, the verification of sequential action composition is not
compositional and all the composed actions must be analysed as a single logical
statement. With flows, we make use of event guards to do localised reasoning
where possible. In fact, in all the case studies attempted so far, it was possible to
show flow consistency by strengthening event guards and adding new invariants
with most of the proof obligations discharged automatically. This is despite the
fact that in some example there were rather long chains of sequentially composed
events (14 for the final refinement of the sluice control). The role of guards in
analysing flow consistency is similar to the use of assertions in VDM [16] and
refinement calculus [17]. Yet in our case, guards retain their primary role in the
analysis of event feasibility, invariant preservation and refinement.

We have presented a three-step verification approach where one first estab-
lishes independently the well-formedness of a flow and consistency (and possibly
refinement) of a machine and then checks the consistency of a machine and flow
combination. In addition to the consistency condition, there is a possibility to
generate proof obligations that would ensure that a flow is suitable for deriving
an executable program. We are investigating some additional proof obligations.

The introduction of a flow is a step towards constructing runnable sequential
code from Event-B models. The addition of a flow to a machine converts an
event-triggered, data-driven Event-B model into a a sequence of assignments
and control structures, such if and while. It is possible that flows could play the
role of B0 intermediate language [4] of Classical B for the Event-B method.

The proposed mechanism has been implemented as an extension of RODIN
platform [14]. The platform is an Eclipse-based integrated environment for con-
structing Event-B developments. It provides means for model manipulation (edit-
ing, pretty-printing, exporting, etc.) and verification. The platform is responsible
for generating proof obligations demonstrating model consistency and also the
refinement obligations if a model happens to be a refinement of another model.
Proof obligations are handed over to a collection of theorem provers. Any un-
proved obligations has to be analysed in an integrated interactive prover. We
considered it essential to make the flow extension a natural part of an Event-B
development method. The flow editing is done within the Platform’s machine
and thus appears a natural part of a model. Flow proof obligations are automat-
ically generated from a flow expression attached to a machine. Syntactic checks
and flow refinement checks are also done automatically in a background while a
user works with a model. A number of case studies carried with the tool demon-
strated that, on average, flows account for 10 % to 25 % of interactive proof
obligations.

There is a substantial amount of work based on the Morgan’s [12] failure-
divergence semantics for event-based systems discussing the integration of state-
based and process-based formalisms [19–21, 8, 22]. Their main difference from
our approach is that consistency analysis is carried out with a help of process
algebraic reasoning.

Our flow language lacks many constructs found in notations like CSP and
CCS. In particular there are no communication primitives. It would be hard
to justify a message passing mechanism for a single machine but it becomes
an interesting possibility should a flow be able to relate several machines. The
combination of CSP and Classical B has been investigated in [20] while the CSP
style message passing was used to compose Event-B machines[13].

References

1. J. R. Abrial and L. Mussat, “Introducing Dynamic Constraints in B,” in Second
International B Conference. LNCS 1393, Springer-Verlag, April 1998, pp. 83–128.

2. J.-R. Abrial, “Event Driven Sequential Program Construction,” 2000, available at
http://www.matisse.qinetiq.com.

3. C. Metayer, J. Abrial, and L. Voisin, Eds., Rodin Deliverable D7: Event B language.
Project IST-511599, School of Computing Science, Newcastle University, 2005.

4. J. R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 2005.

5. H.Treharne and S.Schneider, “How to Drive a B Machine,” 2000, pp. 188–208.
6. M.Butler and M.Leuschel, “Combining CSP and B for Specification and Property

Verification,” 2005, pp. 221–236.
7. C. Fischer and H. Wehrheim, “Model-Checking CSP-OZ Specifications with FDR,”

in IFM ’99: Proceedings of the 1st International Conference on Integrated Formal
Methods, K. Araki, A. Galloway, and K. Taguchi, Eds. London, UK: Springer-
Verlag, 1999, pp. 315–334.

8. J. Woodcock and A. Cavalcanti, “The Semantics of Circus,” in ZB ’02: Proceedings
of the 2nd International Conference of B and Z Users on Formal Specification and
Development in Z and B. London, UK: Springer-Verlag, 2002, pp. 184–203.

9. R.-J. Back and K. Sere, “Stepwise Refinement of Action Systems,” in Proceedings
of the International Conference on Mathematics of Program Construction, 375th
Anniversary of the Groningen University, J. L. A. van de Snepscheut, Ed. London,
UK: Springer-Verlag, 1989, pp. 115–138.

10. C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM, vol. 21,
no. 8, pp. 666–677, 1978.

11. M. Butler, “A CSP Approach to Action Systems. phd thesis.” 1992.
12. C. Morgan, “Of wp and CSP,” pp. 319–326, 1990.
13. M. Butler, “Decomposition Structures for Event-B,” in Integrated Formal Methods

iFM2009, Springer, LNCS 5423, vol. LNCS, no. 5423. Springer, February 2009.
14. “Event-B and RODIN Platform,” http://www.event-b.org, 2004.
15. M. Leuschel and M. Butler, “ProB: A model checker for B,” in FME 2003: Formal

Methods, ser. LNCS 2805, K. Araki, S. Gnesi, and D. Mandrioli, Eds. Springer-
Verlag, 2003, pp. 855–874.

16. C. B. Jones, Systematic software development using VDM. Prentice Hall Inter-
national (UK) Ltd., 1986.

17. R.-J. J. Back and J. V. Wright, Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, Inc., 1998.

18. M. J. Butler, “Event Ordering in Action Systems,” in Proc. Int. Refinement Work-
shop / Formal Methods Pacific’98, Springer Series in Discrete Mathematics and
Theoretical Computer Science, J. Grundy, M. Schwenke, and T. Vickers, Eds.
Springer-Verlag, Berlin, 1998, pp. 61–80.

19. M. Leuschel and M. Butler, “Combining CSP and B for Specification and Property
Verification,” A. T. John Fitzgerald, Ian Hayes, Ed. Springer-Verlag, LNCS 3582,
January 2005, pp. 221–236.

20. M. J. Butler, “An Approach to the Design of Distributed Systems with B AMN,”
in Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM),
LNCS 1212, J. Bowen, M. Hinchey, and D. Till, Eds. Springer-Verlag, Berlin,
April 1997, pp. 223–241.

21. S. Schneider, , S. Schneider, and H. Treharne, “Verifying Controlled Components,”
in In Proc. IFM. Springer, 2004, pp. 87–107.

22. C. Fischer, “CSP-OZ: a combination of object-Z and CSP,” in FMOODS ’97:
Proceedings of the IFIP TC6 WG6.1 international workshop on Formal methods
for open object-based distributed systems. London, UK, UK: Chapman & Hall,
Ltd., 1997, pp. 423–438.

Launching Formal Methods into Space

Dubravka Ilić

Space Systems Finland
02200, Espoo, Kappelitie 6, Finland

dubravka.ilic@ssf.fi

Abstract. This paper gives an overview of the experiences and so far
known challenges in applying Event-B in the space domain.

1 Rational

Formal methods are traditionally used for reasoning about software correctness.
However, they are still not widely accepted in engineering practice. One of the
goals of Deploy (Industrial deployment of system engineering methods providing
high dependability and productivity) project is deployment of formal engineering
methods within the space industries. Development of safety critical software in
the space sector aims at producing high quality software that ensures the safety
of human lives, achieves mission objectives, and correctly operates valuable in-
struments.

Space Systems Finland (SSF) is a software engineering company specialized
in high reliability embedded software. As the space industrial partner within
Deploy, SSF investigates ways of advancing engineering methods for dependable
systems by introducing formal modelling framework Event-B into an ongoing
space project, while still maintaining compliance with the existing standards and
regulations in the space sector.

2 Description of the conducted work

As an effort to promote the reuse of on-board and ground systems European
Space Agency (ESA) developed a standard for packet telemetry (TM) and
telecommand (TC) - PUS. It defines a set of standard service models with the
corresponding structures of the associated telemetry and telecommand packets.
Various missions then can choose to implement those standard PUS services
that best conform to their specific requirements. The TC/TM handling software
has been and will be an inevitable part of many space software projects. This is
the reason why it has been given the main focus of Event-B modelling activities
based on the ongoing MIXS/SIXS project of the BepiColombo satellite.

The MIXS/SIXS On-Board software (OBSW) consists of five different soft-
ware components, as shown in Fig. 1: The Core Software (CSW) and four ap-
plication software components controlling the specific instruments (SIXS and
MIXS). CSW is a common interface software for the application SW. It works

2 D. Ilić

as a TC/TM interface with the BepiColombo platform. The MIXS/SIXS instru-
ment SW receives telecommands via a dedicated hardware link. Also, similarly
as for TC reception, there is a TM delivery service.

MIXS-T

Mode management

MIXS-C

Mode management

SIXS-X

Mode management

SIXS-P

Mode management

CSW

TC/TM
Mode management

Hauskeeping

Fig. 1. High-level architecture

Specifying the TC/TM handling. All relevant concepts of TC/TM process-
ing are introduced in a number of refinement steps, where the initial focus is on
modelling generated TC/TMs and their associated statuses (with respect to their
validation and execution activities) and the ways TC validation and execution
are conducted. Naturally, these descriptions are incorporated into the specifica-
tions step-by-step, building up the more detailed TC validation/TC execution
and TM reporting chain, and leaving some other behavioural aspects underspeci-
fied. Upon specifying a very basic system behaviour regarding TC/TM handling,
further models introduce different standard TC services and some special ser-
vices responsible for commanding the instruments. This, in turn, resulted in
refining already introduced TC validation/execution while taking into account
the purpose and the functionality of a TC under validation/execution.

Described architectural division of the on-board software components be-
comes visible after introducing management of SW component modes. For every
component, mode commands (telecommands) are executed according to specified
transition diagrams. The central part in managing operating modes belongs to
CSW. Its operating modes and mode transitions triggered by dedicated telecom-
mands are governed by system level mode transition diagram, meaning that all
mode transitions made on the level of other components have to be synchro-
nized with this upper-level (system) modes, as shown in Fig. 2. The transition
diagrams give an overall picture of system behaviour and are especially suited
to be modelled in this framework. In addition, introducing mode management
seems as a reasonable step since TC/TM processing is dependant on and, at the
same time, affects the modes. In fact, TC execution is limited to certain modes
and, moreover, it is TC execution that explicitly induces mode changes. Mode
changes can also be induced by FDIR mechanisms, but that is currently not
foreseen in the scope of this study.

Introducing mode management on the level of CSW and all the other four
subcomponents requires significant attention when it comes to modelling their
dependencies. Expressing them in a model and proving them is of vast impor-
tance. This way we can guarantee the synchronization between different system
level modes and the instrument software modes.

Launching Formal Methods into Space 3

SIXS-P MIXS-C/T

Off
MIXS-
C/T
Safe

Standby
TC

Science

Diagnostic

TC

TC

FDIR/TC

FDIR/TC

TC

Annealing FDIR/TC

TC

TC

TC

TC

TC

SIXS-X

Off Standby
SIXS-P

Safe
ScienceTC TC FDIR/TC

Burst

Diagnostic

Calibration

TC

TC

TC

TC

TC

TC

FDIR/TC

FDIR/TC

FDIR/TC

TC

TC

TC

TC

Off
SIXS-X

Safe
Standby

TC

Science

Annealing

TC

TC

FDIR/TC

FDIR/TC

TC

TC

TC

TC

TC

Standby

Safe

TC

TC TC/FDIR

Operational

Fig. 2. Mode synchronization of components

3 Achieved results

Currently, the pilot models cover app. 18% of mainly functional requirements.
Even though this is only a small percentage of the original requirements, the
resulting models are quite complex. Despite this, our experience suggests that the
required modelling efforts are not very alarming. The only really time-consuming
activity in the pilot development is proofs - a considerable amount of time is
needed for producing a proof, even when it is needed only to reuse an existing
proof. Hence our interest has moved during the project from quantitative goals
such as requirements coverage to qualitative goals such as better understanding
of the Event-B proof methodology.

The resulting formal development consists of eight refinement steps, with
altogether 1000 generated proof obligations (155 POs for axioms and theorems
in the context), which have all been discharged either automatically or manually.
The proof statistics is shown in Fig. 3.

No. of events Total Auto. Manual. Undischarged
obsw_M000 10 16 16 0 0
obsw_M001 19 181 162 19 0
obsw_M001continued 19 190 49 141 0
obsw_M002 33 24 24 0 0
obsw_M003 40 127 119 8 0
obsw_M004 44 31 25 6 0
obsw_M005 44 10 10 0 0
obsw_M006 57 155 127 28 0
obsw_M007 63 111 104 7 0
Total 63 845 636 209 0

No. of events Total Auto. Manual. Undischarged
obsw_M000 10 16 16 0 0
obsw_M001 19 181 162 19 0
obsw_M001continued 19 190 49 141 0
obsw_M002 33 24 24 0 0
obsw_M003 40 127 119 8 0
obsw_M004 44 31 25 6 0
obsw_M005 44 10 10 0 0
obsw_M006 57 155 127 28 0
obsw_M007 63 111 104 7 0
Total 63 845 636 209 0

Fig. 3. Proof statistics

Work which has been carried out so far exposed several challenging tool and
methodology needs, such as a need to support: team work, modularity - which
would allow to easier manage model complexity, proof reusability. In addition,
there is an ongoing initiative within the Deploy project to provide a support for

4 D. Ilić

code generation, which, if guided according to the space standards, limits the
choice of a programming language to C and Ada and imposes more stringent
requirements such as: no recursion, no dynamic memory allocation, etc. These
are still to be investigated in the frame of the future work.

Reasoned Modelling:
Combining Proof and Modelling Patterns

to Guide Systems Design

Extended Abstract

Andrew Ireland1 and Gudmund Grov2

1 School of Mathematical & Computer Sciences, Heriot-Watt University,
Edinburgh, EH14 4AS, UK. A.Ireland@hw.ac.uk

2 School of Informatics, University of Edinburgh, Informatics Forum,
Edinburgh, EH8 9AB, UK. ggrov@inf.ed.ac.uk

1 Introduction

The proliferation of embedded software systems brings significant economic and
social benefits. But with these benefits comes risks, e.g. project over-runs and
software vulnerabilities. In older engineering disciplines, such civil, mechanical
and construction, these risks are mitigated by the use of scientific methods –
methods that support the rigorous analysis of design decisions before construc-
tion gets underway. Within software engineering, formal modelling and reasoning
provide a basis for such rigorous analysis.

Tools that support formal modelling typically require expert practitioners
that understand the close relationship that exists between proof and modelling.
They use proof intuitions to inform their modelling decisions, and their intuitions
as modellers to assist with reasoning. This reliance on expert practitioners, in
particular the need for expertise in proof, is a major barrier to increasing the
accessibility of formalism within design.

We believe this barrier can be significantly reduced by building tools that
allow practitioners to focus more on modelling, and less on proof. Our aim is to
contribute to the development of such tools. Here we propose reasoned modelling
- a technique which aims to abstract away from the complexities of low-level
proof obligations, and provide high-level modelling guidance to designers. To
illustrate, here are a couple of scenarios of what reasoned modelling is targeting:

– When verifying properties of a system model, the low-level analysis of failed-
proof attempts may suggest the need for alternative system properties, while
knowledge of a designer’s intentions may assist in ranking these alternatives –
our aim is to automate such low-level analysis and rank alternative modelling
suggestions.

– During the evolution of a system model, an incorrect refinement will give
rise to proof failures. Knowledge of common patterns of refinement combined
with an expectation as to how proof should proceed can assist in overcoming
such failures – our aim is to automate such assistance by combining common
patterns of refinement with proof-failure analysis.

2

Fig. 1. Basic proof planning architecture

As well as increasing the accessibility of formal modelling, we believe that pro-
viding automatic guidance will also lead to productivity gains. Note that our
aim is to only provide guidance, leaving the decision making to the designer.

2 Reasoning patterns and proof planning

Our starting point is proof planning, an AI technique for automating the search
for proofs through the use of high-level proof outlines, known as proof plans [3].
A proof plan is defined in terms of proof methods, where a method specifies the
applicability of a general purpose proof tactic [5]. Proof planning uses methods
to build a customized tactic for a given proof obligation (conjecture).

Central to proof planning is the proof critics mechanism. While methods
represent common patterns of reasoning, critics define patchable exceptions [6].
Both methods and critics are heuristic in nature – where the heuristics are repre-
sented within a meta-language. Proof critics provide a degree of flexibility in the
application of proof plans, and have been used successfully in automating induc-
tive conjecture generalization and lemma discovery [4, 7], as well as automatic
loop invariant discovery [10, 8]. Using abductive reasoning, proof critics have also
been developed for patching faulty conjectures [11]. The basic architecture of a
proof planning system is presented in Fig 1.

3 From proof planning to reasoned modelling

Our proposal builds directly upon the proof planning ideas. Specifically, we are
extending the proof critics mechanism with a modelling dimension to give rea-
soned modelling critics. These new style critics will have access to models as well
as proof obligations. Analogous to the meta-language used by methods and crit-
ics, we are developing a complementary meta-language for modelling. This will
enable designers to annotate models with their “design intentions”, as hinted
at in §1. Such “meta-data” is typically not directly supported by formal mod-
elling notations. Currently we are investigating concepts of priority and flexibility
within the context of design choices. In a forthcoming paper [9], we describe in

3

Fig. 2. Basic reasoned modelling architecture

detail how our concept of priority can be used to rank modelling suggestions
that arise from the analysis of failed system invariant proofs. Common patterns
of refinement are also being explored through what we call reasoned modelling
methods. In particular, we are investigating guidance based upon the use of com-
mon patterns of refinement, combined with proof-failure analysis.

With access to meta-level knowledge of design intentions and proof, our rea-
soned modelling critics and methods will generate the kind of guidance outlined
in §1. Our architecture for reasoned modelling, as given in Fig 2, can be seen as
a natural evolution of the basic proof planning architecture.

4 Future work and conclusions

While the proposal outlined above is generic, we are currently developing our
ideas using Event-B, a formal framework for modelling discrete complex systems
[1]. Event-B promotes an incremental style of formal modelling, where each step
of a development is underpinned by formal reasoning. Specifically, we are working
with the Rodin tool-set [2] which mechanizes Event-B. Our aim is to develop a
reasoned modelling plug-in for Rodin.

Acknowledgements This research is supported by EPSRC grants EP/F037058
and EP/E005713. Thanks go to Ewen Maclean, Maria Teresa Llano Rodriguez,
Alan Bundy, Michael Butler, Jean-Raymond Abrial and Cliff Jones for their
feedback and encouragement with this work.

4

References

1. J.-R. Abrial. Modelling in Event-B: System and Software Engineering. To be
published by Cambridge University Press, 2009.

2. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool
environment for Event-B. In International Conference on Formal Engineering
Methods (ICFEM), Lecture Notes in Computer Science. Springer-Verlag, 2006.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th International Conference on Automated Deduction, pages
111–120. Springer-Verlag, 1988. Longer version available from Edinburgh as DAI
Research Paper No. 349.

4. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.

5. M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF - A mechanised
logic of computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

6. A. Ireland. The use of planning critics in mechanizing inductive proofs. In
A. Voronkov, editor, International Conference on Logic Programming and Auto-
mated Reasoning (LPAR’92), St. Petersburg, Lecture Notes in Artificial Intelli-
gence No. 624, pages 178–189. Springer-Verlag, 1992. Also available from Edin-
burgh as DAI Research Paper 592.

7. A. Ireland and A. Bundy. Automatic verification of functions with accumulating
parameters. Journal of Functional Programming: Special Issue on Theorem Proving
& Functional Programming, 9(2):225–245, March 1999. A longer version is avail-
able from Dept. of Computing and Electrical Engineering, Heriot-Watt University,
Research Memo RM/97/11.

8. A. Ireland, B. J. Ellis, A. Cook, R. Chapman, and J. Barnes. An integrated
approach to high integrity software verification. Journal of Automated Reasoning:
Special Issue on Empirically Successful Automated Reasoning, 36(4):379–410, 2006.

9. A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: turning failed
proofs into modelling guidance. In Proceedings of ABZ 2010, LNCS. Springer,
2010. To appear.

10. A. Ireland and J. Stark. Proof planning for strategy development. Annals of
Mathematics and Artificial Intelligence, 29(1-4):65–97, February 2001. An earlier
version is available as Research Memo RM/00/3, Dept. of Computing and Electri-
cal Engineering, Heriot-Watt University.

11. R. Monroy, A. Bundy, and A. Ireland. Proof Plans for the Correction of False
Conjectures. In F. Pfenning, editor, 5th International Conference on Logic Pro-
gramming and Automated Reasoning, LPAR’94, Lecture Notes in Artificial Intel-
ligence, v. 822, pages 54–68, Kiev, Ukraine, 1994. Springer-Verlag. Also available
from Edinburgh as DAI Research Paper 681.

Refinement, Problems and Structures

Michael Jackson

The Open University
jacksonma@acm.org

Introduction

Refinement is a powerful reasoning tool in software development. success in its use
for program construction encourages the hope of equal success in the construction of
dependable computer-based systems, especially in safety-critical applications. These
are systems in which the computer, with the software it executes, forms only one
component of the whole system. The other components are other engineered artifacts
and systems of many kinds, parts of the natural world, and human beings who are
users or operators of the system or in any other way participate in its behaviour.

The criterion of dependability of such a system is not to be judged in the software
alone, but rather in the behaviour of the whole system. This behaviour is constrained
in two ways. First, it is constrained by the given properties, characteristics and
behaviours of the relevant parts of the world. For example: in a lift control system the
physical arrangement of the shaft prevents the lift car from travelling from the second
floor to the fourth without passing the third; in the same system the electrical and
mechanical equipment ensures that if the hoist motor is switched on, with upwards
polarity, the lift car will rise in the shaft. Second, system behaviour is constrained by
execution of the software, monitoring and controlling the relevant parts of world both
through interfaces to parts directly connected to the computer, and through the
interactions of those parts with remoter parts. The lift system is dependable if the
whole system dependably satisfies its requirements: in response to users’ requests it
carries them safely and efficiently from floor to floor.

Developing systems of this kind is different from developing programs. In program
development the goal is to achieve a certain input-output behaviour of the computer
by constructing a text in a programming language. Effectively, the programming
language and the semantics of its execution are formally defined. The input-output
behaviour to be achieved—the program specification—is also formal. In refinement-
based development the program text is developed from the formal specification, each
step justified by the known formal properties of the programming language.

In system development, by contrast, the requirement to be satisfied is a certain
behaviour of the whole system: the computer’s input-output behaviour is merely an
instrumental means to this end. Usually the requirement itself is not formally
specified, so the root of the refinement tree is not well-defined. Further, the relevant
parts of the system outside the computer—the problem world domains—are not
themselves formal. Their given behaviours and properties can be formally described,
but a formal description can never be more than an approximation: appeal to the
formal description is therefore never fully reliable. Further yet, systems are

Extended abstract: Dagstuhl Seminar 09381, 13-18 September 2009

2 Michael Jackson

increasingly expected to embody a proliferation of functional features whose mutual
interactions add another order of complexity.

Contrivances and Operational Principles

We shall regard systems of the kind we are concerned with as contrivances, in the
sense explained by the physical chemist and philosopher Michael Polanyi. One broad
class of contrivances comprises physical inventions such as clocks, telephones,
locomotives and cameras. A contrivance is characterised by its parts, interacting
according to the operational principle of the contrivance to achieve its purpose.

Figure 1 depicts the parts and purpose of the pendulum clock invented by

Christiaan Huygens in 1656 and constructed by Salomon Coster in 1657. The
rectangles represent the physical parts of the clock and the progression of time, the
solid lines connecting them representing interactions among the parts. The dashed
oval represents the purpose of the clock, which is to ensure that the positions of the
hands on the clock face correspond to the passage of time (the arrowhead indicating
that the purpose is to constrain the hands to match the time, not vice versa).

Time

Hands
Hands

 Time
Pendulum

Gear
 Train

Escape-
 ment

Weight

Fig. 1. A pendulum clock

The operational principle of the clock is readily explained. The falling weight
drives the gear train, which drives the hands and the escapement. Rotation of the
escapement shaft is constrained by the pendulum, each swing releasing one tooth of
the escapement and receiving an impulse to maintain the pendulum’s momentum.
Gear train rotation is therefore proportional to the number of swings. The swing
period is roughly constant, so the hand positions correspond to elapsed time.

Polanyi points out that the operational principle is expressed in terms of what he
calls the logic of contrivance, and that this is distinct from scientific knowledge. It
explains “how its characteristic parts—its organs—fulfil their special function in
combining to an overall operation which achieves the purpose of the machine. It
describes how each organ acts on another organ within this context.” Scientific
knowledge comes into play only within the given structure of the design of the
contrivance and its known operational principle. Science can then explain the success
or failure of a particular clock or a particular design, and calculate physical values that
will allow the contrivance to fulfil its purpose. What is the swing period of the
pendulum? Why do we expect it to be nearly constant? Are the gear ratios between
the escapement and the hands correctly calculated? Does the escapement deliver an
impulse large enough to counteract the slowing of the pendulum by friction and air
resistance? Is the weight heavy enough to overcome the gear train friction? All these

Refinement, Problems and Structures 3

are questions of science, but they are posed only in reference to the contrivance and
its operational principle. The operational principle tells us how the system is intended
to work, and science tells us whether it will actually do so, and how well.

A contrivance is designed to achieve its purpose in a specific context, and is not
expected to operate successfully outside that context. The pendulum clock must be
stably positioned, in calm air and in a vertical orientation, on the earth’s surface; it
cannot operate successfully in a moving carriage, or in a ship at sea. The constancy of
the pendulum’s period depends also on a stable ambient temperature: in summer the
clock ran slower as the pendulum period increased as its length expanded in the heat.

Systems As Contrivances and Problems

Systems of the kind we are considering can be similarly regarded as contrivances.
Figure 2 shows the configuration of a system whose purpose is to ensure orderly and
safe traffic of vehicles and pedestrians at a very complex road crossing.

Fig. 2. A traffic control system

Vehicles
 & Drivers

Vehicle
ensor S s

Light
 Units

 Traffic
 Controller

Road
 Layout

Crossing
 Buttons

Pedest-
 rians

Orderly,
Safe Traffic

Again the rectangles represent parts of the system and the oval represents the system’s
purpose. The striped rectangle represents the computer and its software, directly
connected to the light units, the pedestrian crossing buttons and the vehicle sensors
embedded in the road.

Unlike the depiction of the pendulum clock in Figure 1, this representation depicts
not only the system and its parts and purpose, but also a development problem. The
problem is to discover, invent, or specify a Traffic Controller part whose external
behaviour—by its interactions with the light units, crossing buttons and sensors—will
ensure satisfaction of the system’s purpose. To solve this problem the developer must
investigate and understand—and then respect and exploit—the given properties of the
other parts of the system. How fast do the pedestrians make their way across the
various crossings? How fast do the cars go? How do the various streams of traffic
intersect? What is the protocol for operating the light units? How reliably do drivers
stop at red lights? These given properties, like the properties of the clock parts,
depend on the specific context assumed for the system. If the junction is near an old-
age home some pedestrians may walk very slowly; if one of the feeder roads is a
motorway many vehicles can be expected to be driving above the legal speed limit; if
an industrial plant is nearby there will be an unusually high number of very large
vehicles; and so on.

Simplistically, we can imagine that the Traffic Controller specification and code
can be developed by a refinement progression that moves across the diagram from

4 Michael Jackson

right to left, from the requirement to the external behaviour of the machine. First the
required (orderly and safe) behaviour of the pedestrians and the vehicles and drivers is
refined. Relying on the given properties of pedestrians and vehicles, this behaviour is
then refined into a required behaviour of the light units, crossing buttons and sensors.
Relying on the properties of these devices, a final refinement produces a required
external behaviour of the Traffic Controller machine. At each refinement step the
problem is progressed [2,3] towards a software specification.

Problem Characteristics for Simplicity

For any particular system, feasibility of the simplistic view of a refinement process
mentioned in the preceding section depends on several factors. The most important
factor is the simplicity of the system, evidenced in a simple operational principle: the
system must exhibit certain unities of purpose and structure. Some of these unities,
with illustrative counterexamples of complexity, are:
• Unity of purpose: fails for an air traffic control system in which a certain horizontal

and vertical separation is to be maintained, but if that proves impossible some other
rule is to be applied.

• Unity of problem domain role: fails for a customer support system in which staff
perform operational tasks and are also assigned as ‘personal assistants’ to changing
groups of customers.

• Unity of problem domain properties: fails for a lift-control system in which the lift
service function depends on faultless equipment behaviour and the safety function
depends on diagnosis of equipment faults.

• Unity of system context: fails for a railway operations system in which train
scheduling must assume fixed track configuration and availability and the track
maintenance function must manage changes to track configuration.

A system exhibiting these and other unities has a simple operational principle. The
intended working of the system can be explained in a simple traversal of the system
configuration, saying at each step of the traversal how one part behaves and how it
interacts with its neighbours. Scientific—or mathematical—knowledge and reasoning
are invoked within this structure to validate the explanation in detail, both locally and
end-to-end, and to calculate the behaviour that the machine part of the system must
have if it is to ensure satisfaction of the requirement.

Decomposition and Recombination

We address complexity by decomposing a complex development problem into
subproblems. A subproblem has the form of a problem, with its own machine,
problem world, purpose and operational principle; being a problem in this sense, it
can also be viewed as a system. A successful decomposition produces simple
subproblems exhibiting the unities of the kind mentioned in the preceding section.

Subproblem decomposition produces projections of the problem. Projections may
be chosen in many different dimensions. A projection in space may separate
consideration of distinct problem domains: in the traffic control system, determining

Refinement, Problems and Structures 5

the locations of vehicles from the sensors does not involve the pedestrian crossing
buttons. A projection in time may separate distinct phases and modes of system
operation: in an avionics system, control of an aircraft while it is taxiing is separated
from control of take-off. A projection in context may separate control of the lift
equipment into assumed-healthy and potentially-faulty.

In any decomposition the complexity of the resulting parts has two sources: the
inherent complexity of the part itself, taken in isolation; and the complexity due to its
interactions with other parts. Traditional approaches to decomposition conflate these
two sources, often frustrating the goal of simplicity. For example, program
decomposition into a procedure call hierarchy is embedded decomposition, in which
the parts are embedded in the whole by precisely matched call interfaces. The
structure of a relational database schema results from jigsaw decomposition, in which
the whole consists only of its parts, which must fit together by matching key values.

For systems of the kind we are considering, a loose decomposition is preferable, in
which the task of identifying the parts is clearly separated from the task of
recombining them into a whole. This separation permits a productive
oversimplification of subproblems, in which each can be analysed in a restricted
context in which the unities are preserved. Only in the later stage of recombination are
the subproblem interactions addressed, and solutions devised for any difficulties they
may pose. For example, in the railway operations system the train scheduling and
track maintenance subproblems are first considered separately, oversimplified by their
respective contexts of constant track configuration and complete absence of trains.
Only when these subproblems are well understood is their recombination addressed.
In designing the recombination it may, of course, be necessary to modify either or
both of the oversimplified subproblems; but the need for this modification and its
design can be more reliably and confidently carried out at this later stage.

The development process can be seen to have a top-down decomposition facet, and
a bottom-up recombination facet. Locally, decomposition must logically precede
recombination, but globally the two facets may be interleaved. In this process,
structure, and human comprehension of operational principles, provides the essential
framework. Formal techniques can be effectively deployed within this framework, in
analysing and designing individual subproblem structures and their recombination.

References

[1] Michael Polanyi; Personal Knowledge: Towards a Post-Critical Philosophy; Routledge and
Kegan Paul, 1958 and U Chicago Press, 1974.

[2] Robert Seater, Daniel Jackson and Rohit Gheyi; Requirement Progression in Problem
Frames: deriving specifications from requirements; Requirements Engineering 12, 2 pages
77-102, April 2007.

[3] Zhi Li, Jon G Hall and Lucia Rapanotti; From requirements to specifications: a formal
approach; Proceedings of the 2006 International Workshop on Advances and Applications
of Problem Frames, pages 65-70, Shanghai 2006.

Abstraction is all we’ve got:
auxiliary variables considered harmful

(extended abstract)

Cliff B. Jones

School of Computing Science, University of Newcastle
cliff.jones@ncl.ac.uk

1 Introduction

In the best cases, formal proofs of programs are just writing down a designer’s
intuition in a notation that can be manipulated by a fixed set of rules. Recording
the steps of development in a layered series of design decisions can provide real
insight (to reader and writer) into why a program works and what can safely be
changed in the future.

Concurrent programs present special challenges for either informal or for-
mal justification/understanding. One approach that has had some success is to
use rely/guarantee conditions. These have the property that they are “compo-
sitional” in the sense that one can reason about one step of development at a
time and not risk having to redo the whole development later.

So called “auxiliary variables” (i) are often used in reasoning about concur-
rent programs; (ii) can be useful; but (iii) can also be undesirable in that they
undermine the hard won property of compositionality. This short paper explores
the issue of auxiliary variables and tries to set concerns about overuse in a wider
context; it concludes with an attempt to recommend constraints on their use.

2 Abstractions

The point of departure is that writing (concurrent) programs is hard. This is the
sense of the title “abstraction is all we’ve got”. Layers of abstraction can convey
intuition; and subsequently help maintenance. The role of “formality” is to help
check each step. In particular a “posit and prove” approach can significantly
reduce the “scrap and rework” which robs program development of productivity.

This section reviews (mostly well known) abstraction ideas.

2.1 Procedural abstraction

Approaches like VDM [Jon90], B [Abr96] or Event-B [Abr10] use pre and post
conditions to postpone giving details of “how” to compute some particular result.
Some form of “operation decomposition rule” can then be used to introduce
design decisions in a staged way. Such rules follow Hoare’s axiomatic approach

but it is worth noting that there are nuances especially concerning termination
and relational post conditions. For what follows, it is also pertinent to observe
that some sets of development rules deliberately forgo expressiveness to inculcate
a style of writing specifications.

2.2 Recording interference

The idea of procedural abstraction can be extended to shared variable concurrent
programs in a number of ways. Rely/guarantee conditions [Jon81,Jon96] offer
one way of preserving compositionality in the presence of interference. There is a
wide range of ways of presenting such rules and I prefer to refer to rely/guarantee
“thinking” to embrace different details. What is common is that there is likely
to be some expressive weakness in any particular form of rely/guarantee rules
and the connection of this with auxiliary variables is returned to in Section 4.

2.3 Data abstraction

The idea of using abstract objects to provide short and perspicuous specifications
of non-trivial systems is well known and I am proud of having given it prominence
in the first book on program development (as opposed to language description)
on VDM [Jon80] and have moved it ahead of procedural abstraction in later
VDM books.

The development method is also well known and is referred to as “data
reification” in VDM. There are actually two different rules used in [Jon90] but
this touches on auxiliary variables and the point is expanded in Section 4 below.

2.4 Link between rely/guarantee thinking and data reification

There is an interesting interplay between the successful use of rely/guarantee
thinking and data reification. Oddly, I did not spot this until after having done
a number of developments (it is first discussed in [Jon06]). Essentially, it is of-
ten possible to use an intermediate abstraction with rely/guarantee conditions
but for these to only be realisable in an efficient way by choosing a suitable
representation. The cited paper pinpoints how several examples employ guaran-
tee conditions which could be realised by “locking” but how a careful choice of
data representation can uncover a lock free algorithm. This point is reinforced
in Section 3.

2.5 Fiction of atomicity

Space does not permit a long explanation of this idea here but its connection
with two Dagstuhl workshops (in 2004 and 2006 — see [JLRW05,CJ07]) on
“Atomicity” justifies a brief mention. The idea of “splitting (software) atoms
safely” is discussed further in [Jon07].

3 Simpson’s “four slot” ACM implementation

Asynchronous communication mechanisms (ACMs) are non-blocking algorithms
to cope with high speed data transfer. Hugo Simpson presented [Sim97] an ex-
tremely ingenious “four-slot” implementation. Several authors have attempted
proofs of Simpson’s algorithm; our aim has been to give a rational reconstruction
that provides insight into the design.

The first attempt is published as [JP08]; this includes the essential abstrac-
tion layers:

– Σa initial abstraction: interfering sub-operations with a data abstraction of
unbounded memory

– Σi is a data reification to a finite collection of “slots” but which still uses a
“fiction of (data) atomicity”

– Σr is a representation in terms of which Simpson’s code can be understood
— here the only atomicity assumption is that single bits can be changed
atomically

Unfortunately, doing proofs in more detail showed up two flaws in [JP08]; we
have now submitted a revision to a journal (available as [JP09]). Interestingly,
I at first thought that I would have to use auxiliary variables to overcome the
problems in the earlier development. I didn’t — and the “triumph of abstraction”
is interesting.

In both the development steps from Σa to Σi and that from Σi to Σr , there
is a need to discuss all of the values of a shared variable that could occur during
execution.1 In [JP09] a notation for “possible” values has been introduced and
this is proving valuable elsewhere.

The other problem concerned mutual exclusion — but of an interesting
flavour. Classically, the term “mutual exclusion” refers to making sure that
multiple threads can’t be in particular regions at the same time. In Simpson’s
implementation, there is no locking or constraint on progress and one needs to
establish that when the two threads are in the same region they are accessing
different slots. We call this “mutual data exclusion”. My co-author Ken Pierce
and I have taken different paths to reason about this: in [Pie09], he uses auxil-
iary variables; in [JP09], I have shown how the issue of mutual data exclusion
can be handled in the Σi abstraction and inherited into the final code. Thus the
abstraction can be made to clarify what is going on with a key concept. This
leads to one of the key observations in Section 4.

4 Auxiliary variables

I’d always prefer a neat abstraction to coding something in auxiliary variables.
My aversion to coding probably dates all the way back to the earlier of my two
1 The flaw in [JP08] was to cover only initial and final values where in fact there could

be more than one change.

spells at the IBM Lab in Vienna. Peter Lucas had come up with a “twin machine”
proof of the equivalence of two formulations of the block concept of ALGOL-
like languages: his idea was all about “ghost variables”. My contribution2 was
to observe that a homomorphic “retrieve function” led to clearer arguments
providing a suitable abstract specification could be found.3

In 1977, I proposed a specific test for “implementation bias” (see [Jon90,
§9]). It is also true that there are specifications where one is forced to use what
might be considered to be “bias” once some non-determinism has been decided.
The important point is that one can nearly always find a better abstraction to
avoid bias.

Given the bias in my views against ghost variables, it should be clear why I
prefer the abstract argument about mutual data exclusion in [JP09] over the use
of an argument with auxiliary variables. There is, however, a deeper point here.
John Reynolds observed verbally at MFPS in 2005 that separation logic was for
showing the avoidance of races and rely/guarantee conditions were for reasoning
about race conditions. This appeared to be a very neat characterisation. In
Section 3 it has been shown that rely/guarantee conditions used on an abstract
level facilitate showing that data races are avoided. Clearly, there is scope for
further research here! (In general, a number of researchers are looking at the links
between separation logic and rely/guarantee thinking — a useful entry point to
this discussion is [Vaf07].)

It is worth reverting to the comment in Section 2 that rely/guarantee con-
ditions are expressively weak: the use of a single relation limits what one can
say. For a while, I wondered if this is what was forcing us to consider auxiliary
variables. Closer investigation has shown that the problem is already present in
the Owicki/Gries approach (see [Jon09]).

My current position on auxiliary variables is that their use is sometimes
justified to distinguish where in execution an assertion is true (i.e. permits sl to
make assertions specific to phases of sr) but that they should be used carefully
(lest compositionality is compromised).

Acknowledgements

Clearly, some of this work is collaborative with my co-author Ken Pierce. There
are many other collaborators mentioned in the two papers [JP09] and [Jon09].
This extended abstract summarises the talk given at the Dagstuhl event on
“Refinement Based Methods for the Construction of Dependable Systems”. A
fuller version of this paper has been submitted as [Jon09]; a technical report
version of a related joint paper is already available as [JP09].

My research is supported by the UK EPSRC Platform Grant “TrAmS” and
the EU-IP Project “DEPLOY”.

2 To save space, see [Jon01] for the history and citations.
3 The observation that early (VDL) operational semantic descriptions of languages

over used auxiliary data is much more general than this specific example.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

[Abr10] J.-R. Abrial. The Event-B Book. Cambridge University Press, 2010.
[CJ07] J.W. Coleman and C.B. Jones. Atomicity: A unifying concept in computer

science. Journal of Universal Computer Science, 13(8):1042–1043, 2007.
[JLRW05] C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum. The atomic

manifesto. Journal of Universal Computer Science, 11(5):636–650, 2005.
[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall

International, 1980.
[Jon81] C. B. Jones. Development Methods for Computer Programs including a No-

tion of Interference. PhD thesis, Oxford University, June 1981. Printed as:
Programming Research Group, Technical Monograph 25.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105–122,
March 1996.

[Jon01] C. B. Jones. The transition from VDL to VDM. Journal of Universal
Computer Science, 7(8):631–640, 2001.

[Jon06] C. B. Jones. An approach to splitting atoms safely. Electronic Notes in The-
oretical Computer Science, MFPS XXI, 21st Annual Conference of Mathe-
matical Foundations of Programming Semantics, 155:43–60, 2006.

[Jon07] C. B. Jones. Splitting atoms safely. Theoretical Computer Science, 357:109–
119, 2007.

[Jon09] Cliff B. Jones. The role of auxiliary variables in the formal development of
concurrent programs. In Cliff Jones, Bill Roscoe, and Ken Wood, editors,
Reflections on the work of C. A. R. Hoare, page submitted. Springer, 2009.

[JP08] Cliff B. Jones and Ken G. Pierce. Splitting atoms with rely/guarantee condi-
tions coupled with data reification. In ABZ2008, volume LNCS 5238, pages
360–377, 2008.

[JP09] Cliff B. Jones and Ken G. Pierce. Elucidating concurrent algorithms via
layers of abstraction and reification. Technical Report CS-TR-1166, School
of Computing Science, Newcastle University, 2009.

[Pie09] Ken Pierce. Enhancing the Useability of Rely-Guaranteee Conditions for
Atomicity Refinement. PhD thesis, University of Newcastle upon Tyne,
submitted 2009.

[Sim97] H. R. Simpson. New algorithms for asynchronous communication. IEE,
Proceedings of Computer Digital Technology, 144(4):227–231, 1997.

[Vaf07] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis,
University of Cambridge, 2007.

Verifying the Microsoft Hyper-V Hypervisor with VCC

Dirk Leinenbach1, Thomas Santen2

1 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
dirk.leinenbach@dfki.de

2 European Microsoft Innovation Center, Aachen, Germany
thomas.santen@microsoft.com

Abstract. VCC is an industrial-strength verification suite for the formal verifica-
tion of concurrent, low-level C code. It is being developed by Microsoft Research,
Redmond, and the European Microsoft Innovation Center, Aachen. The develop-
ment is driven by two applications from the Verisoft XT1 project: the Microsoft
Hyper-V Hypervisor and SYSGO’s PikeOS micro kernel [1].
This paper outlines the Hypervisor verification project. It gives a brief overview
on the Hypervisor focusing on verification related challenges this kind of low-
level software poses. It discusses how the design of VCC addresses these chal-
lenges, and highlights some specific issues of the Hypervisor verification and how
they can be solved with VCC.

Keywords. C code verification, system verification, virtualization

1 The Microsoft Hypervisor

The Hypervisor verification project aims at developing an industrially viable software
verification tool for concurrent, low-level C code – VCC [2] – and using it for the func-
tional verification of Microsoft’s Hyper-V Hypervisor. This effort is an ongoing collab-
orative research project between the European Microsoft Innovation Center (EMIC),
the German Research Center for Artificial Intelligence (DFKI), Microsoft Research,
and Saarland University in the Verisoft XT project [3].

The Hypervisor is a relatively thin layer of software (100 KLOC of C, 5 KLOC of
assembly) that runs directly on x64 hardware. It turns a single real multi-processor x64
machine with virtualization extensions into a number of virtual multi-processor x64 ma-
chines without virtualization extensions but with additional machine instructions (hy-
percalls) to create and manage other virtual machines. The Hypervisor is divided into
two strata. The lower stratum forms a small multi-processor operating system, complete
with hardware abstraction layer, kernel, memory manager, and scheduler (but no device
drivers). The higher stratum runs in each thread an “application” that simulates an x64
machine; the observable effect of a machine instruction executed by a guest operating
system on the virtualized machine basically is the same as on the real machine.

For the most part, a virtual machine is simulated by simply running the real hard-
ware. However, the virtual machines run under an additional level of memory address

1 Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft XT project under grant 01 IS 07 008.

2 D. Leinenbach, T. Santen

translation so that each of them can see its own zero-based, contiguous physical mem-
ory. This extra level of virtual address translation is accomplished by using shadow
page tables which combine the two levels of address translation. The shadow page ta-
bles, along with the hardware translation lookaside buffers (TLBs), implement virtual
TLBs. TLB simulation is the most important factor in system performance. Thus, the
Hypervisor uses a very complex and highly optimized shadow page table algorithm
which leverages the degrees of freedom given by the hardware TLB semantics. The
correctness of the concurrent shadow page table algorithm is extremely subtle because
translations in the TLB are not automatically flushed in response to edits to page tables
stored in memory and translations are gathered asynchronously and non-atomically (re-
quiring multiple reads and writes to traverse the page tables), creating races with guest
(system) code that operates on the page tables.

The verification of a piece of software like the Hypervisor – which was not written
with formal verification in mind – poses a number of challenges to a verification tool:

1. In an industrial process, developers and testers must drive the verification process
such that the annotations evolve with the code. Thus, verification should be primar-
ily driven by assertions stated at the level of code itself, rather than by guidance
provided to interactive theorem provers. Even if special verification engineers add
the annotations initially, they should eventually be maintainable by suitably trained
developers.

2. The Hypervisor is written in C, which has only a weak, easily circumvented type
system and explicit memory (de)allocation, so memory safety has to be explicitly
verified.

3. The Hypervisor is a concurrent piece of software and makes heavy use of lock-free
synchronization. Still, support for the verification of lock-free code should not add
a burden to the verification of lock-protected or thread-local code.

4. The Hypervisor explicitly manages its own virtual memory. The verification method-
ology needs a way to argue about the correct setup and maintenance of page tables
and TLBs at the lower layers of the Hypervisor whilst abstracting from these prop-
erties at the higher layers.

5. A typical way to prove properties of a concurrent data type is to show that it sim-
ulates some simpler type. To keep annotations tightly integrated with the code, a
way of proving concurrent simulation in the code itself is needed.

6. Part of the Hypervisor is written in assembly code. An integrated verification of C
and assembly code is needed, which addresses the subtle interactions between the
two and the implications on hardware resources.

7. The code base of the Hypervisor is fixed and cannot be changed just to make veri-
fication simple.

2 VCC

VCC – a comprehensive overview can be found in [2] – is geared towards sound, func-
tional verification of concurrent, low-level C code. Specifications and annotations are
embedded into the C code itself; so, they can evolve with the code – ideally maintained

Verifying the Microsoft Hyper-V Hypervisor with VCC 3

by developers – and serve as a formal documentation of the implementation. Using
conditional compilation, the annotations are hidden from standard C compilers.

VCC performs static modular analysis, in which each function is verified in iso-
lation. VCC translates annotated C programs into the Boogie language [4]. Then, the
Boogie tool generates verification conditions and passes them to the first order theorem
prover Z3 [5]. If Z3 is not able to verify the verification conditions, several diagnostic
tools are available for convenient debugging of the program and the annotations [2]. In
the last resort it is possible to prove verification conditions interactively in the theorem
prover Isabelle / HOL [6].

Although C is not typesafe, most code in a well-written C system adheres to a strict
type discipline. Taking advantage of this fact, VCC implements a Spec#-style object and
ownership model [7]; in particular, the VCC memory model [8] tracks where the “valid”
typed memory objects are. Objects may coincide with (pointers to) C structures, but
also with sub-structures and arrays. On each memory reference and pointer dereference,
there is an implicit assertion that resulting object is valid. System invariants guarantee
that valid objects of the same type with different addresses do not overlap, so they
behave like objects in a modern (typesafe) object oriented system. Type definitions can
be annotated with invariants, which are one- or two-state predicates on data, describing
the properties of “valid” instances of the type, and how they can evolve from one system
state to the next. Objects can be closed or open; initially, new objects are open, and
VCC checks the invariant of an object at the transition from open to closed. Thus, it can
ensure the system invariant that in each state all closed objects fulfill their invariants.

In addition to function contracts and invariants, VCC allows augmenting the oper-
ational code of a program with ghost (specification) code and data. Ghost code is seen
only by the static verifier, not the regular compiler; ghost code must not affect the con-
trol flow of the real code. One application of ghost code is maintaining abstractions of
operational data, e.g., representing a list as a set. If the ghost data is marked volatile
this allows for atomic update of the ghost, even if the underlying data structure is not
updated atomically. Ghost code also establishes and maintains the closedness and own-
ership relations of objects and provides existential witnesses to the first order prover.

As in some other concurrency methodologies (e.g., [9]), the ownership model of
VCC allows a thread to perform sequential writes only to data that it owns, and sequen-
tial reads only to data that it owns or can prove is not changing. VCC accommodates
concurrent access to data that is marked as volatile even if the data is not owned by
the current thread (using operations guaranteed to be atomic on the given platform),
leveraging the observation that a correct concurrent program typically can only race on
volatile data. Updates of volatile data are required to preserve invariants but are other-
wise unconstrained.

Concurrent programs implicitly deal with chunks of knowledge about the shared
state. For example, a program attempting to acquire a spin lock via an access to a volatile
state variable must “know” that the spin lock is still allocated and fulfills its invariant
(i.e., is closed) [10]. But such knowledge is ephemeral – it could be broken concurrently
by other threads – so passing knowledge to a function in the form of a precondition is
too weak. Instead, VCC provides a special kind of ghost objects called claims. A claim
is associated with a number of objects: it guarantees (via references counters) that those

4 D. Leinenbach, T. Santen

objects stay allocated and closed as long as claims to them exist. Claims can guarantee
additional properties of the claimed objects, given that these properties are fulfilled at
creation time of the claim and are stable with respect to the objects’ invariants.

3 Verifying the Hypervisor

Implementation correctness of concurrent systems is usually verified by proving a sim-
ulation theorem between the implementation and an abstract model. Often, such theo-
rems are formalized by adding an (external) universally quantified state variable which
is updated whenever the implementation state changes. This is adequate when prov-
ing simulation theorems about abstract programs, e.g., a transition system. In our case,
implementation updates are scattered throughout the code base and we want to keep an-
notations close to the code. Thus, our abstract model is implemented as C ghost code,
keeping code and annotations closely together and allowing us to establish the simu-
lation theorem within VCC without the need of external tools. The coupling relation
between the implementation and the abstract model is formalized as a single state in-
variant between the implementation and the ghost data of the top-level model. Explicit
updates of the ghost state provide existential witnesses to the prover where necessary.

For each guest (also called partition), the (volatile) ghost state for the top-level spec-
ification contains, among others, general information about the partition (privileges,
IPC state), a set of x64 processor states, and the memory content. The formal C specifi-
cation of the x64 architecture and the top-level model are being developed at Saarland
University. In addition to the top-level simulation proof, the x64 model is also used for
the low-level correctness proofs of the Hypervisor implementation, in particular for the
verification of assembly code [11].

A model of the x64 architecture cannot be specified completely with (deterministic)
C functions because components outside the processor core can change their state non-
deterministically: the TLB is allowed to cache new translations on its own initiative, the
memory might be changed by other processor cores in the same x64 multi-processor
machine, or the state of the APIC might change due to interrupt requests from devices
or other processor cores. We model such non-deterministic behavior by two-state invari-
ants which restrict the legal transitions of the model. Most of the time, these invariants
correspond to the two-state invariants of the x64 model. Additional invariants specify
the execution of Hyper-V specific instructions and hypercalls.

Eventually, verifying the coupling invariant between implementation and top-level
model in VCC will ensure that the implementation transitions are covered by corre-
sponding admissible transitions of the top-level model, i.e., that the Hypervisor imple-
mentation correctly simulates the top-level model.

As of July 2009, the Hypervisor verification is still ongoing. Data structure invari-
ants are in place and the larger part of public interfaces is specified. Several hundred
functions have been verified with VCC. We are confident that VCC is powerful enough
to successfully verify all functions. The specifications provide a detailed documentation
that is provably in sync with the code, which is an added value of the exercise in itself.
The Hypervisor is part of a released product with very low defect density. Therefore,
we did not expect to find many bugs in the code, and indeed less than a handful have

Verifying the Microsoft Hyper-V Hypervisor with VCC 5

been found during the verification process. All of them are very unlikely to let the Hy-
pervisor fail in practical operation. Applying the now available technology early in the
process of a product development could help to prevent defects and reduce the effort to
meet high quality bars.

Acknowledgment. The results and ideas described in this paper have been developed
by a lot of people. Thanks to everyone: Artem Alekhin, Eyad Alkassar, Mike Barnett,
Nikolaj Bjørner, Sebastian Bogan, Sascha Böhme, Matko Botinĉan, Vladimir Boyari-
nov, Ernie Cohen, Markus Dahlweid, Ulan Degenbaev, Lieven Desmet, Sebastian Fil-
linger, Mark Hillebrand, Tom In der Rieden, Bruno Langenstein, K. Rustan M. Leino,
Wolfgang Manousek, Stefan Maus, Michał Moskal, Leonardo de Moura, Andreas Non-
nengart, Steven Obua, Wolfgang Paul, Hristo Pentchev, Elena Petrova, Norbert Schirmer,
Sabine Schmaltz, Wolfram Schulte, Peter-Michael Seidel, Andrey Shadrin, Stephan To-
bies, Alexandra Tsyban, Sergey Tverdyshev, Herman Venter, and Burkhart Wolff.

References
1. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Better avionics software reliability by

code verification – A glance at code verification methodology in the Verisoft XT project. In:
Embedded World 2009 Conference, Franzis Verlag (2009)

2. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M., eds.: Theorem Proving in Higher Order Logics (TPHOLs
2009). Volume 5674 of LNCS., Munich, Germany, Springer (2009) 23–42 VCC is available
at http://vcc.codeplex.com.

3. Verisoft XT: The Verisoft XT project. http://www.verisoftxt.de (2007)
4. Barnett, M., Chang, B.Y.E., Deline, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular

reusable verifier for object-oriented programs. In de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.P., eds.: FMCO 2005. Volume 4111 of LNCS., Springer (2006) 364–387

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In Ramakrishnan, C.R., Rehof, J.,
eds.: TACAS 2008. Volume 4963 of LNCS., Springer (2008) 337–340

6. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie: An interactive prover-backend
for the Verifiying C Compiler. Journal of Automated Reasoning (2009)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In
Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T., eds.: CASSIS 2004. Volume
3362 of LNCS., Springer (2004) 49–69

8. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory model for C.
In: 4th International Workshop on Systems Software Verification (SSV 2009). Volume 254
of ENTCS., Elsevier Science B.V. (2009) 85–103

9. Jacobs, B., Piessens, F., Leino, K.R.M., Schulte, W.: Safe concurrency for aggregate objects
with invariants. In Aichernig, B.K., Beckert, B., eds.: SEFM 2005, IEEE (2005) 137–147

10. Hillebrand, M.A., Leinenbach, D.C.: Formal verification of a reader-writer lock implemen-
tation in C. In: 4th International Workshop on Systems Software Verification (SSV 2009).
Volume 254 of ENTCS., Elsevier Science B.V. (2009) 123–141 Source code available at
http://www.verisoftxt.de/PublicationPage.html.

11. Maus, S., Moskal, M., Schulte, W.: Vx86: x86 assembler simulated in C powered by au-
tomated theorem proving. In Meseguer, J., Roşu, G., eds.: Algebraic Methodology and
Software Technology (AMAST 2008). Volume 5140 of LNCS., Urbana, IL, USA, Springer
(2008) 284–298

http://vcc.codeplex.com
http://www.verisoftxt.de
http://www.verisoftxt.de/PublicationPage.html

Refinement-based guidelines for constructing
algorithms?

Dominique Méry1

Université Henri Poincaré Nancy 1 and LORIA
BP 239

54506 Vandœuvre-lès-Nancy, France
mery@loria.fr

1 Introduction

The correct-by-construction approach can be supported by a progressive and
incremental process controlled by the refinement of models of programs. We
explore the Event B modelling language to illustrate the expression of our
methodological proposal using proof-based patterns called guidelines. The main
objective is to facilitate the correct-by-construction approach for designing clas-
sical sequential and distributed algorithms [1–7]. We address the description
of guidelines for the design of programs and algorithms and the integration of
proof-based aspects using the RODIN platform [8]. More precisely, we introduce
several methodological steps identified during the development of case studies,
and we propose auxiliary notions, such as refinement diagrams, for guiding users
during problem analysis. A general structure characterizes the relationship be-
tween the contract, the Event B , and the developed algorithm using a specific
application of Event B models and refinement. We simplify the translation of
Event B models into algorithmic elements by promoting the use of recursive
constructs. The resulting algorithm is proved to be sound with respect to the
pre/post specification, namely, the contract. Applications rely on a dynamic pro-
gramming technique that illustrates the applicability of these patterns based on
a call-as-event relationship. Each proof-based development is validated using the
RODIN platform. Distributed algorithms are considered with respect to the local
computation model [9] based on a relabelling relation over graphs representing
distributed systems. The VISIDIA toolbox [10] provides facilities for simulating
local computation models which can be easily modelled using Event B and the
refinement.

2 The call-as-event principle for sequential algorithms

We combine concepts of the Event B method and programming paradigms by
defining a proof-based pattern based on the call-as-event principle [3]. Proof-
? This work is supported by grant No. ANR-06-SETI-015-03 awarded by the Agence

Nationale de la Recherche. The project RIMEL produces the VISIDIA system de-
veloped by the team of Mohammed Mosbah, Yves Métivier et Pierre Castéran from
the LABRI laboratory.

based development constitutes a very powerful framework for constructing pro-
cedures, programs, and systems, but it requires the use of formal techniques
and formal languages. Consequently, the introduction of patterns or general
structures for helping users to obtain correct systems with minimal effort is
a very important direction. We have proposed a pattern as a means to struc-
ture refinement-based development. We suggest the definition of the pattern as
a structure to fill with models or with actions to perform. We consider that it
is like a design calculus [11], being based on validation through logical actions.
However, the issue is to provide the basic concepts of pattern design and pattern
use.

Our main goal is to facilitate the use of the Event B modelling language by
proposing techniques and tools. Proofs were improved, even though RODIN has
unexpected features. The general structure states the link between programming
objects and modelling objects and provides a way to map an Event B model to
a sequential program. Refinement is the step that introduces control points and
guarantees the correctness of the resulting algorithm. We have formalized, gener-
alized, and illustrated the technique introduced by Cansell and Méry in [12], and
unspecified details in their paper have been made more precise [3]. The technique
of development is a top-down approach, which is clearly well known from the
earlier works of Dijkstra[13, 14] and uses refinement to control the correctness
of the resulting algorithm. It relies on a more fundamental issue related to the
notion of the problem to solve. A specific diagram is used to organize the refine-
ment, and we call it a refinement diagram [3]. It is very similar to a proof lattice
and provides a way of deriving the total correctness of the resulting algorithm.
The translation of Event B models into sequential programs has already been
proposed by Abrial, but our models correspond to acyclic refinement diagrams,
as opposed to those implicitly used by Abrial. We have an automatic transfor-
mation of the refinement model into an algorithm. The call-as-event guideline is
summarized by the following diagram:

CALL PREPOST PB

PROCEDURE M CM
?

call

-call−as−event

?
REFINEMENT

-SEES

?
EXTENDS

�mapping -SEES

– CALL is the call of the PROCEDURE
– PREPOST is the machine containing the events stating the pre- and post-

conditions of CALL and PROCEDURE, and M is the refinement machine of
PREPOST, with events including control points defined in CM.

– The call-as-event transformation produces a model PREPOST and a con-
text PB from CALL.

– The mapping transformation allows us to derive an algorithmic procedure
that can be mechanized.

– PROCEDURE is a node corresponding to a procedure derived from the refine-
ment model M. CALL is an instantiation of PROCEDURE using parameters x
and y.

– M is a refinement model of PREPOST, which is transformed into PROCEDURE
by applying structuring rules. It may contain events corresponding to calls
of other procedures.

We have used the technique in the teaching [7] of the design of algorithms.
Surprisingly, students discovered invariants using the theorem prover of the
RODIN platform. In fact, we think that it is the recursive nature of the de-
velopment that made the discovery of invariants easier. Proof obligations were
not very difficult because we inherit the recursiveness of the structure of the
problem. Floyd’s algorithm is not a trivial algorithm, but proof obligations were
not difficult to prove.

3 The local computation model for deriving
correct-by-construction distributed algorithms

ViSiDiA [10] is a tool for implementing, simulating, testing and visualizing dis-
tributed algorithms. It is based s on the use of graph relabelling systems to
encode distributed algorithms and to prove their correctness. A distributed al-
gorithm in the local computation model [15, 16] is simply given by some (possibly
infinite but always recursive) set of rules like for instance, the leader election:

–
d•−−−−−−−−1• −→ d−1• −−−−−−−−NE•

–
0• −→ E•

A run of the algorithm consists in applying the relabelling rules specified by
the algorithm until no rule is applicable, which terminates the execution. The re-
labelling rules are applied asynchronously and nondeterministically, which means
that given the initial labelling usually many different runs are possible. The dis-
tributed aspect comes from the fact that two consecutive non-overlapping steps
may be applied in any order and in particular in parallel. The local computation
model is easily expressed in the Event B framework. The methodology leads
to fill the following diagram from the problem analysis:

PROBLEM M0 C COQ-library

M1

V VM1
?

derivation

-formalization

?

REFINES

-SEES -link

?

REFINES

�mapping

– The context C states properties of graphs.

– The machine M0 expresses the problem to solve by events stating a relation
between the initial states and the final states, for instance, the election of a
leader.

– The refinement of M0 into M1 expresses that the machine M1 expresses the
inductive property allowing to express the computation in the local compu-
tation model.

– The next refinement of M1 is a refinement for producing a set of events
corresponding to the set of relabelling rules.

– V is derived from VM1; mapping checks that VM1 can be translated into
VISIDIA [10].

We have obtained an extension of the call-as-event guideline by integrating
the local computation model into the Event B modelling language.

4 Concluding Remarks

The development of programs is carried out either using bottom-up techniques,
or top-down techniques and our main goal is to develop correct programs from
specifications using refinement and proofs. More precisely, we explore the use of
proof-based patterns for aiding and assisting programmers ready to use formal
techniques in the development of programs. The development is supported by
Event B models related by semantical relationship which guarantee correctness
properties. Modeling is a very challenging task and its complexity increase when
dealing with proof obligations checking development steps or refinement steps.
Proof-based patterns intend to make easier the programmer’s life. According to
Christopher Alexander [17] dealing with architectural problems, each pattern
describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way
twice.. Gamma et all [18] introduces design patterns, which systematically name,
motivate, and explain a general design that addresses a recurring design problem
in object-oriented systems. A design pattern describes the problem, the solution,
when to apply the solution, and gives implementation hints and examples.

Considering our general problem of correct-by-construction programs (or sys-
tems), we limit our scope to problems solved by sequential and distributed al-
gorithms based on paradigms. Discovering patterns is based on practical case
studies However, we are not defining patterns in an object-oriented framework
but only reusing the idea of adding values to Event B by proof-based pat-
terns. Finally, our paper intends to list methodological guidelines for developing
Event B models and for producing programs. The current paper has summarized
two main tasks: the development of sequential algorithm using the call-as-event
guideline and the development of distributed algorithm expressed in the VI-
SIDIA environment. Further work will integrate the development of distributed
algorithms by listing new patterns for the design of correct-by-construction dis-
tributed algorithms, especially by integrating VISIDIA and Event B .

References

1. Rehm, J.: Proved development of the real-time properties of the ieee 1394 root
contention protocol with the event b method. International Journal on Software
Tools for Technology Transfer (STTT) (2009)

2. Benäıssa, N., Méry, D.: Cryptologic protocols analysis using proof-based patterns.
In Marchuk, A., ed.: Seventh International Andrei Ershov Memorial Conference
PERSPECTIVES OF SYSTEM INFORMATICS, Novosibirsk, Akademgorodok,
Russia, A.P. Ershov Institute of Informatics Systems & Novosibirsk State Univer-
sity (15-19 June 2009)

3. Méry, D.: Refinement-based guidelines for algorithmic systems. International Jour-
nal of Software and Informatics 3(2-3) (June/September 2009) 197–239

4. Benäıssa, N., Méry, D.: Cryptologic protocols analysis using Event B. In Marchuk,
A., ed.: Seventh International Andrei Ershov Memorial Conference PERSPEC-
TIVES OF SYSTEM INFORMATICS. Volume to appear of Lectures Notes in
Computer Science., Springer (15-19 June 2010)

5. Cansell, D., Méry, D.: Designing old and new distributed algorithms by replaying
an incremental proof-based development. In Abrial, J.R., Glässer, U., eds.: Rigor-
ous Methods for Software Construction and Analysis - Papers Dedicated to Egon
Börger on the Occasion of His 60th Birthday. Number 5115 in Lectures Notes in
Computer Science (2010)

6. Cansell, D., Méry, D., Proch, C.: System-on-chip design by proof-based refinement.
International Journal on Software Tools for Technology Transfer (STTT) 11 (03
2009) 217–238

7. Méry, D.: A simple refinement-based method for constructing algorithms. SIGCSE
Bull. 41(2) (2009) 51–59

8. RODIN, P.: The rodin project: Rigorous open development environment for com-
plex systems. http://rodin-b-sharp.sourceforge.net/ (2006)

9. Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed com-
putability in anonymous networks. In Taubenfeld, G., ed.: DISC. Volume 5218 of
Lecture Notes in Computer Science., Springer (2008) 47–62

10. Mosbah, M.: Visidia. http://visidia.labri.fr (2009)
11. Jaehnichen, S., Hussain, F.A., Weber, M.: Program development by transforma-

tion and refinement. In: An international workshop on Advanced programming
environments

12. Cansell, D., Méry, D.: Proved-patterns-based development for structured programs.
In Diekert, V., Volkov, M.V., Voronkov, A., eds.: CSR. Volume 4649 of Lecture
Notes in Computer Science., Springer (2007) 104–114

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
14. Morgan, C.: Programming from Specifications. Prentice Hall International Series

in Computer Science. Prentice Hall (1990)
15. Chyalopin, J., Métivier, Y.: On the power of synchronisation between adjacent

processes. Technical report, LABRI (2009)
16. Chalopin, J., Métivier, Y.: An efficient message passing algorithm based on

Mazurkiewicz s algorithm. Fundamenta Informaticae 80(1) (2007) 221–246
17. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language: towns, buildings,

construction. Oxford University Press (1977)
18. Gamma, E., Helm, R., Johnson, R., Vlissides, R., Gamma, P.: Design Patterns :

Elements of Reusable Object-Oriented Software design Patterns. Addison-Wesley
Professional Computing (1997)

Formal Methods in the Development
of Business Software

Andreas Roth

SAP Research CEC Darmstadt, Germany

Abstract. We discuss the suitability of Formal Methods for the devel-
opment of business software as well as experiences and challenges in this
area. Business software involves very different kinds of software: technical
components, business applications, analytical applications. Our focus is
on business applications which promise a good probability of a second use
of Formal Methods. We investigate service choreography models, busi-
ness object models, and business process models, as typical instances of
models in this domain. Our approach is to take existing diagrammatic
models and translate them to a formal language, e.g. Event-B. Though
the approach works well, there are a number of challenges. These are es-
pecially the provision of good user feedback on prover or model checker
results, the need for better automation, and a better usage of refinement.

Business software is any software which helps companies improve their busi-
ness. In contrast to typical areas of application of Formal Methods, this area has
little, e.g. safety critical, aspects which have been significant incentives to make
the use of formal methods attractive, as e.g. in the transportation industry. On
the other hand business software is often highly mission critical and customers
expect high qualitative software which is efficiently developed — goals Formal
Methods could be helpful to achieve. Nevertheless Formal Methods are (to our
knowledge) not used routinely in the development of business software.

In this short paper we highlight the potential usage of Formal Methods in this
area, the special challenges, and our experiences with applying Formal Methods
in the context of the Deploy project.

1 Business Software

Business software is a wide field, covering

– technical components (e.g. process integration, master data management,
etc.)

– business applications (e.g. Enterprise Resource Management (ERP), Cus-
tomer Relations Management (CRM), Supply Chain Management (SCM),
etc.)

– industry solutions (adaptations of business applications for e.g. Banking,
Automotive, Chemicals, Retail, Public Sector, etc.)

– analytical applications (tools for collecting, integrating, analysing, interpret-
ing and presenting business data)

Formal Methods could play a role in all of these areas, but business appli-
cation development is a—though so far widely ignored—promising domain of
Formal Method application. The main reason is that business application devel-
opment incorporates the routine development of hundreds of structurally similar
components. This allows us to focus on domain-specific requirements and helps
to come from one application of Formal Methods to the next one because the
method can be adapted to these specifics. There is thus a high potential of “sec-
ond usage” of Formal Methods in that area. Moreover, business applications
incorporate interesting “business logic” of processes without dealing (in general)
with complex algorithms. The reasoning on a “model-level”, without the need
to go formally down to source code, is already a welcome support to further
increase development efficiency. Applying Formal Methods in this area seems
thus to be relevant, sustainable, and feasible.

Finally, a good tradition of (informal) model-based development exists [1]
which can be built on. Especially model content which is very expensive to
collect is often already present and can be re-used via generating formal models
from existing ones. The re-use and integration of such already existing methods
seems to us a key factor to achieve deployment of Formal Methods in the presence
of successful and established development processes.

2 Applying Formal Methods to Business Applications

We are conducting1 a number of deployment studies with the help of which we
investigate the use of Formal Methods for Business Applications.

2.1 Choreography Models

The allowed ordering of messages exchanged between independent service com-
ponents is described in (diagrammatic) message choreography models [2]. These
models are similar to extended finite state machines and consist of a global
model defining the messages exchanged from a global perspective and a local
model which describes the send- and receive events of the involved components.

We have formalised these models by providing an automatic translation from
them to Event-B [3]. We have implemented the following analyses of the Event-B
model:

– Checking the local enforceability by proving a refinement relation between
the global and a (general) local model.

– Checking for the absence of inconsumable messages [4], i.e. messages which
cannot be received at all times when they are being transmitted.

– Checking the local models against consistency with component models (busi-
ness object models, see below).

1 in the context of the EC-funded Deploy project, www.deploy-project.eu

– Interactively simulating the choreography model by stepping through the
diagram.

– Deriving test cases with a certain model coverage (model-based integration
testing) which can then be executed on an implementation of the model [5].

These analyses have been efficiently implemented based on the in-house Eclipse
plugin of the choreography model editor and the open Rodin platform [6]. We
made use of the Rodin provers and the ProB model checker [7].

2.2 Business Object Models

Business objects (e.g. a purchase order, a sales order, an invoice, a delivery,
a project) are at the core of business applications. Typically these objects are
structured as a tree (e.g. a purchase order consists of a root node and a number
of (ordered) item nodes). Each of the nodes has a lifecycle where user actions
(e.g. create, approve, release) lead a path through a set of status (created, ap-
proved, released) of the business object nodes.

We are conducting experiments with modelling business objects as Event-B
models and started to automatically translate models in a proprietary in-house
notation to Event-B. Our goals are to (1) prove properties about the models
such as “if an invoice is posted all items of the invoice are released” and to
(2) prove (via refinement) that the business object conforms to a given message
choreography.

2.3 Business Process Models

Business process models are usually the starting point when designing business
applications. They model the (cross-organisational) processes which should be
supported by business applications. There are a number of notations for modeling
business processes, e.g. BPMN [8], which are mostly not backed by a formal
semantics.

We are experimenting with modelling business processes in Event-B with
the goal to (1) automatically translate from an established process modelling
language into Event-B and (2) prove properties such as timed data consistency
(i.e. consistency among distributed components that is achieved not immedi-
ately but after a certain time span) which go beyond classical properties in the
verification of business processes.

3 Experiences and Challenges

In all experiments mentioned above it was possible to model the given problem
with the help of the chosen formal modelling language Event-B. It was also
possible to analyse the model.

The analysis was based on proving the proof obligations generated by the
Event-B modelling platform Rodin with the help of the provers provided there.

Though techniques like automatically generating invariants through templates [9]
helped in closing a considerable amount of proofs automatically, the degree of
proof automation is currently not so high that Formal Methods unexperienced
users could do the verification work. We investigate whether pattern-based ap-
proaches [10] can further increase proof automation.

Analyses with the help of the model checker ProB were very helpful during
the creation of the models, especially the interactive simulation. We got most
positive feedback about the possibility to derive test suites from the models,
achieved from using ProB. Using this approach would require least overhead
in adapting quality assurance processes in the company because testing is an
established QA technique.

A major drawback of our approach to generate a formal model from exist-
ing models is that users expect that the feedback from the analysis tools are
incorporated in the source model. With the help of the open Rodin platform
we could create plugins which extract model checking results, animation snap-
shots, or even proof results, and mark-up the original diagrammatic model for
specific typical cases. However to deal with this in general is a notorious difficult
endeavour which requires further investigations.

A further issue is that the central concept of refinement intrinsic to ap-
proaches like Event-B is not present in the original diagrammatic models. There-
fore our generated Event-B models were initially flat (consisting of one or two
layers of refinement). The power of refinement-based approaches to introduce
complexity (of proofs) incrementally might thus not be fully exploited yet. Our
strategy will be to make use of modelling features (like sub-processes in BPMN)
to derive a suitable refinement structure or to introduce these into the modelling
language (like done in UML-B [11]). An important aspect to this is that Event-B
users need stronger guidelines and documentation from the Event-B community
on how to obtain a good refinement hierarchy and what the main rules are to
change a refinement hierarchy during a development – this will be a necessary
precondition to find good generic refinement strategies for our domain-specific
problems.

4 Summary

We have given a classification of Enterprise Software and investigated the us-
ability of formal development methods for enterprise applications. Our experi-
ments on choreography modelling, business object modelling, and business pro-
cess modelling use Event-B as formal specification language being the result
of an automatic model transformation from diagrammatic in-house languages.
Experiments were largely positive, but major challenges remain. These are: pro-
viding adequate user feedback on prover or model checker results, increasing
automation, and better exploiting refinement.

References

1. Kätker, S., Patig, S.: Model-driven development of serviceoriented business appli-
cation systems. In Hansen, H.R., Karagiannis, D., Fill, H.G., eds.: Wirtschaftsin-
formatik (1). Volume 246 of books@ocg.at., Österreichische Computer Gesellschaft
(2009) 171–180

2. Wieczorek, S., Roth, A., Stefanescu, A., Kozyura, V., Charfi, A., Kraft, F.M.,
Schieferdecker, I.: Viewpoints for modeling choreographies in service-oriented ar-
chitectures. In: Proceedings of the 8th IEEE/IFIP Conference on Software Archi-
tecture (WICSA’09), IEEE Computer Society (2009)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamenta Informaticae 77(1-2) (2007)
1–28

4. Kozyura, V., Roth, A., Wei, W.: Local enforceability and inconsumable messages
in choreography models. In Dranidis, D., Stamatopoulou, I., eds.: Proceedings
of 4th South-East European Workshop on Formal Methods (SEEFM’09), IEEE
(2009)

5. Wieczorek, S., Kozyura, V., Roth, A., Leuschel, M., Bendisposto, J., Plagge, D.,
Schieferdecker, I.: Applying model checking to generate model-based integration
tests from choreography models. In: Proceedings of the 21st IFIP Int. Conference
on Testing of Communicating Systems (TESTCOM’09). LNCS, Springer (2009)

6. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: A roadmap for the rodin
toolset. In Börger, E., Butler, M.J., Bowen, J.P., Boca, P., eds.: ABZ. Volume
5238 of Lecture Notes in Computer Science., Springer (2008) 347

7. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2) (2008) 185–203

8. Object Management Group: Business Process Modeling Notation (BPMN) 1.1,
Final Adopted Specification. http://www.bpmn.org/ (2008)

9. Kozyura, V., Roth, A.: Generation of gluing invariants for checking local enforce-
ability of message choreographies. In Jastram, M., Laibinis, L., Lösch, F., Mazzara,
M., eds.: Proceedings of Deploy Technical Workshop 2009, Newcastle University,
Technical Report (2009)

10. Hoang, T., Fuerst, A., Abrial, J.R.: Event-b patterns and their tool support. In:
SEFM, IEEE Computer Society (2009)

11. Said, M.Y., Butler, M.J., Snook, C.F.: Language and tool support for class and
state machine refinement in uml-b. In Cavalcanti, A., Dams, D., eds.: FM. Volume
5850 of Lecture Notes in Computer Science., Springer (2009) 579–595

The seed was spread out: The State of Practice
of Formal Methods outside europe

Aryldo G Russo Jr.

AeS Group & Research Institute of State of São Paulo (IPT),
agrj@aes.com.br

Abstract. The use of formal methods has constantly increased, al-
though with basically two constraints: their use has been concentrated
mostly in Europe, and they have been used only by big companies which
are in charge of developing some safety critical applications and in some
how are conected with academia projects. The aim of this talk is to
present how formal methods have been applied in other parts of the
world, mainly South America, and the Far East. It’s splited in four parts.
First, an introduction about the AeS Group, a small company that’s been
trying to apply Formal Methods in its projects. Second, a personal com-
parison of some formal method tools, namely: Atelier B[1], RODIN[2],
and SCADE[3]. The comparison methodology is based on three differ-
ent points of view: capability, that is, how these tools can satisfy project
constraints, usability, which is basically the difficulty the user faces when
trying to use the tool, and adequacy to the current development process.
Third, some real industrial applications and how the formal method cul-
ture can drastically help the development process. And finally, some of
the ongoing work that it’s been developend by the author and gaps iden-
tified in industry that can be fulfilled by extending the features of the
actual tools.

1 Introduction

The primary objective of this paper is to present the current State of Practice
of Formal Methods in countries outside Europe, namely, Brazil and Korea. The
general utilization of formal methods is presented focusing in how the princi-
ples that guide the formal methods usage can help in the software development
process and not specifically the use of a particular method.

Initially, a background information about the reason to start working with
Formal Methods, and the involvement of AeS group with academia is given.
Then, in section 2, a general scenario of how these methods are being used
nowadays in Brazil and Korea and particularly some industrial areas where for-
mal methods are currently applied are shown. A brief description of the methods
that support each of these tools is also presented.

In section 3, a comparison of three tools, namely, AtelierB[1], RODIN[2] and
SCADE[3] is presented. This comparison is based on three aspects, tool capabil-
ity, usability and fitting to current development process. Some real application

of these tools are also shown in section 4 as well as the work that was performed
to change the way that industry was used to think about software development,
even in safety critical areas.

At the end, in section 5 the author presents some gaps that, from his personal
point of view, can be fulfilled with some new or in phase of development, plugins
and language extensions.

1.1 The AeS Group

The AeS Group has developed railway sub-systems since 1998. Among the sys-
tems developed by the group, the door system became one of the most important
in the railway market due mainly to the architecture used (modular, and with
distributed processing) and, since this kind of system deals with human lives,
the strong concern of the group with reliability and safety.

During the development process, four versions of the main controller (called
CGP) were created and, at each iteration, additional safety features were incor-
porated, using different techniques, such as hardware redundancy where different
sources are employed to activate an output (for example, some safety outputs
have to be activated both from a software command and from an external so-
licitation). Safety and reliability studies were performed, and all the identified
potential weak points revealed were mitigated to prevent, or at least minimize,
the hazard effects. In the current version of the equipment, even after applying
all these hardware techniques, safety issues, as well as the software (firmware)
correctness, robustness and failure avoidance remain to be fulfilled.

Due to the advances in technology, many safety functions that were handled
by hardware are now responsibility of the embedded software. This fact triggered
motivation to use formal methods in standards relevant to software safety [4].
Some standards can be followed to increase the equipment safety level. One of
them is the IEC 61508 [5]. This standard presents four levels of safety, the so
called Safety Integrity Levels - SIL, and above level 2, the use of formal method
is required or suggested to achieve a certain level of completeness, robustness,
and safety, that grows as the level grows. The goal of using formal methods
is to produce an unambiguous and consistent specification that is as complete,
error-free and with less contradictions as possible, however simple to verify.

To address the group concern with safety, the AeS group decided to identify a
formal method that would best fit the current CGP SIL 3-level requirements and
railway industry standard practices and standards (as is the case of CENELEC
EN 50128[6]).

Based on these previous information, and the constraints such as, the size of
the company (at that date, AeS counted only with 15 employees, and most of
them working on administrative tasks) and the lack of deep knowledge of the
method itself, the AeS group decided, first, to study and use the B method[7]
and, second, to look for assistance from academia, which was obtained from
two Brazilian Universities (Universidade de São Paulo and Universidade do Rio
Grande do Norte).

2

From that time, and after facing several pitfalls, AeS Group has acquired a
reputation as a company that has the needed know-how to develop safety critical
applications, and, nowadays, it is in charge of several training courses around
the world teaching software development process for safety critical applications
based on a formal method mind.

Nowadays, AeS Group has also the support of DEPLOY project and some
universities like University of Southampton, and University of York, besides
companies like ClearSy and Esterel.

1.2 Technological Research Institute of the State of São Paulo
(IPT)

Anchored by previously performed studies, but with some reluctance, the author
decided to finally initiate a ”formal” dedication in the Formal Methods field,
and choose the Technological Research Institute of State of São Paulo (IPT) as
starting point. During the last years, some articles were developed at IPT but
the relationship with other research and academic centers was the main incentive
to study the application of these methods in real world systems.

In the mean time, the author joined the Software Requirements Specifica-
tion Laboratory (SoftREL). The main goal of SoftREL is to create, deploy and
disseminate a research environment for post-graduate IPT students and other
researchers, helping them to develop academic research and artifacts related to
software requirements engineering. The laboratory intends to create academic
and industrial partnerships aiming at the development of engineering techniques
and tools required to deliver more reliable computer systems.

1.3 General scenario

Some information about the current software engineering process applied to
safety-related developments is given below in order to picture out the differences
in formal method applications outside Europe.

Basicaly, the software development process presented an recomended by IEC
61508[5] (The IEC 61508 has 7 parts, and the part 3 is related to the software
development. The chapther of this part that present the software development
process, shows that the recomended process is based on the ”V model” like
the one shown in figure 1) is well known in South American companies, but
since the time to market is, usually, extremely short, those recommendations are
frequently put aside, and the ”craft” process is followed.

This ”craft” process consists basically in receiving the primary specification,
performing the coding phase relying on the personal expertise, and making as
few tests as possible. This is a good scenario to try to better the process through
the use of formal methods without changing the manual tasks.

Those processes (presented in the standard) are barely known at the Far
East, meaning Korea1. As presented in [8], the adoption of the recommendations
1 this assumption is based on the author experience and based on a population of 4

big korean companies engaged in railway field

3

Fig. 1. V Model - Software Development Model

referenced in the software development process is in its infancy phase, meaning
that even the standard understanding is not clear enough.

Based on the ”V model” reference presented in figure 1, it is possible to point
out:2

– Companies in South America
• They are aware of the whole process
• They usually rely on tests to guarantee the expected behavior
• The transition takes place directly from NL specification to the code

phases, some times, through an intermediate phase, based usually in
UML specifications.
• apparently, there is no traceability methodology

– Companies in the Far East - South Korea
• The coding phase starts right after receiving the specification
• Quality is the main concern, but no defined process is used to ensure

that
• They rely on experienced professionals to reach the desired quality level
• clearly, there are only three phases: specification, coding and integration

tests

Based on this view, it becomes clear that formal methods can not be applied
straightforward. Before, it is necessary to create a better culture on software
development process.

In order to create such culture, the advantages of using formal methods
should be shown, and the the formal thinking must be integrated in the nor-
mal development process in small doses. In this way companies will be led to

2 those points are based on author’s feelings

4

accept that the development process can be speed up, and the costs of software
development can be less than in normal process, mainly based on tests, where
problems or errors are discovered only at the end of development.

2 Where formal methods (could be) are used

Many different industrial areas, where safety and reliability issues are highly
important characteristics, have used, or at least have tried formal methods in
order to increase their confidence that those requirements are met. Those in-
dustries are, mainly, Nuclear[9], Medical devices[10], Avionics, Aerospacial and
transportation [11]. Some examples are the emergency contention measures in
nuclear power plants, health support devices in medical applications, automatic
pilot on avionics, positioning systems in aerospacial and signaling systems in
tranportation just to cite a few.

This means that there is plenty of space for the adoption of supporting tools
that could help either the development process (either system or software) in the
sense of automatizing some parts of it, and also, in some cases, for speeding up
those development tasks that are difficult to perform, while the developer uses
his efforts in other more conceptual phases.

Unfortunately, even if the referenced industrial areas exist all around the
world, the application of formal methods is not the true reality in South America
and Far East (Korean) companies that work on those fields. It is something not
easy to explain, as, in theory, the standards that should be followed by all those
companies are the same, as for example IEC 61508[5](related to general func-
tional safety, then, not field specific), DO-178b[12] for avionics and EN50128[6]
for railways. All of these standards highly recommend the use of formal methods
either in the specification phase or in the design phase in order to achieve high
levels of the so called Safety Integrity Levels[13].

In order to change this scenario, the distance between mathematical notation
and the normal procedures used so far has to be shortened, and for that some
highly desired characteristics should be included in the current tools in order to
reflect the activities that are normally performed in those industries.

Fortunately, it might not be so difficult as, at least, the development model
that has been adopted in those industries (V model, in figure 1) is not different
from the model used in a formal model development.

The focus of this paper is in the railway field, the author’s area of application.
The B formal method is the most frequently used in this field as mentioned in
several works like [11] and [14], Recently, the Esterel[15] formal method began
to be used as well, and the support tool for this method, SCADE[3] was certified
as capable to produce safety code up to SIL4.

In any field of application, formal methods, and their related tools, can help
in the development process replacing the human interaction of the phases (see
figure 1): Detailed design, coding and unit testing, by an automated process,
and consequently, can help to speed up the development process and to better
the ”quality” of the final product.

5

Moreover, with some effort, formal methods could help even during the very
early phases as a support tool to verify the specification and to guarantee the
transiction consistency to the later phases.

2.1 Formal methods

A brief description of the formal methods mentioned before is given in this
section.

B method The B method for software development [7] is based on the Ab-
stract Machine Notation (AMN) and the use of formally proved refinements up
to a specification sufficiently concrete that programming code can automatically
be generated from it. Its mathematical basis consists of first-order logic, inte-
ger arithmetic and set theory. Industrial tools for the development of B based
projects have been available for a while now.

Event B Method Event B is a formal method used to model discrete systems.
It is based on the B method[7] and has adopted some ideas from Action Systems.
As in B, the semantic of this method is also based on proof obligations, though,
the principles presented in the section 2.1 are valid in this case (with only some
small differences). More about Event B language and method can be found in
[16]

Esterel Language Esterel Language is a kind of syscronous language for re-
active systems, as other languages as Lustre [17], and Statecharts [18]. Esterel
originated from a joint INRIA-ENSMP project on the semantics of parallelism.
As a result of the formal approach applied in Esterel Language, is it possible
to generate efficient code from the models developed. More information about
Esterel language can be found in [19]

3 Tool comparison

In order to verify how the current tools can be modified to reflect the industrial
needs, a brief comparison of some existent tools is presented. This comparison
is restricted to some tools that have already been used in the author’s applica-
tion field, that is, railways application. Those tools are, Atelier B, RODIN and
SCADE.

3.1 Methodology

The tools are classified according the author’s personal feelings based on com-
ments obtained in trainings, and serveral other applications like revalidations
and system development based on B (EventB method) during the last 3 years.

6

It is prudent to establish the difference in maturity of these tools. While
SCADE and AtelierB have been in the market for a long time, RODIN is about
to be released in its first official version (version 1.0). Thus, the manufacturers
of the first two have already received many feedbacks from their industrial users
helping them to change the directions when the users were not satisfied (as
occurred with AtelierB case, where after a lot of complaints about the user
interface, its GUI was completely changed), while the last one has not have time
yet to receive or to implement completely such feedbacks.

The comparison methodology was based on three aspects, as follows:

– capability: the verification of how these tools can satisfy project constraints,
like, for example, parallel behaiviors, time treatment, etc...

– usability: basically, which is the difficulty the user faces when trying to use
the tool

– adequacy to the current development process : how the tool can better fit in
the process without causing too many changes in the way it was performed
so far

To make a classification of these aspects the author used a simple ranking
method, as follows:

– 1 Very dificult - It was not possible to achieve any intended task, meaning
that a strong knowledge of the tool or of the method is needed

– 2 Medium - Some task could be achieved, with or withoud dificulties. A basic
knowledge is needed.

– 3 easy - It was easy to achieve any task. No previous knowledge of the tool
or method is needed.

The results are presented in table 1. It’s important to cite that some points
used in the justification are related to the method supported by the tool and
not to the tool itself, meaning that there is also space for a language extansion
as well.

3.2 Chart comparison

Aspect capability usability adaptation Results
AtelierB 2 1 2 5
RODIN 2 2 1 5
SCADE 2 3 3 8

Table 1. Comparison table

Those results were obtained considering the points below:

– AtelierB

7

• the capability to solve the project constraints is not so bad, but it is
necessary to know a lot of the formal language and constructs to be able
to have easy proof obligations. Moreover, the time dependency needs to
be discretized in order to model it.
• although, the version 4 of AtelierB supplies a real better usability, all

comments received so far are based on the previous version where the
lack of a good User Interface makes its usage painful.
• since it allows to go from the specification to the code it can be considered

as a good tool for that purpose, but as the interactions during the middle
phases (refinements) are some times, painful, it can not receive the higher
grade.

– RODIN
• since it is not so different from AtelierB, similar results are shown, i.e.

the capability to solve the project constraints is not so bad, but it is
necessary to know a lot of the formal language and constructs to be able
to have easy proof obligations. Some extentions are being developed to
treat time constraints[20], but it was not incorporated in the language
yet, so the same problems about time in AtelierB should be considered
here also.
• the way that RODIN was constructed is quite helpful for a non experi-

enced person, as it is only necessary to fill down some fields to have a
basic specification, but the lack of text editor that could help more ex-
perienced person and speed up the specification process lowers its clas-
sification
• the lack of possibilities of decomposition at the moment of the evaluation

and the ability to help only in the system specification phase,make of
RODIN a difficult tool to be used in the current process.

– SCADE
• even based on a different concept, where formal methods are behind the

scene, it has a great capability to deal with project constraints, but some
formal background is still needed to construct correct models.
• as it was built from the very beginning to be an industrial tool; its

usability is its strongest point, with a good interface and a lot of fancy
features that captivate the user. A lot of things can be done based on
templates and patters, what helps a lot as well
• Besides the capability to go from the specification to the code, it has

also some other complementary tools which help in important auxiliary
tasks in the project such as requirement management, traceability, etc..

4 Experiences

With experience in formal methods both as a practitioner and as a researcher
the author has tried during the last 3 years to introduce formal methods in the
projects he has worked on. He concluded that even if formal methods can not
fulfill all industrial needs they can help a lot to better model the development
process and the resultant product (or software).

8

Three different projects that the author has been working on recently and
the achievements so far are summarized below:

4.1 Signaling system

European companies that develop signaling systems for railway applications are
known as some of a few that use formal methods during the development pro-
cess. It is also true that, not all of their branches around the world follow the
same concept. During 2008 the author participated in a revalidation process of
a signaling system using B method and its associate tool, AtelierB.

As, for this kind of system, there is always a start point, i.e., the new project
is, usually, based on a previous one, the task consisted in implementing new
functions and then revalidating all the system (the standard IEC 61508, for
systems classified as SIL4, requires that at the moment any function is, changed,
the whole system has to be revalidated).

As the system was previously developed in B, this kind of task became a
trivial one, not only because the B method was used but also because the related
tools (AtelierB in this case) are powerful enough to keep track of the changes
and reprove only what is really needed. Basically, the changes were applied in
the abstract model, and after that they were reflected in the refinements and
implementation. New proof obligations were generated and the affected older
ones were reapplied. Even though the project was big enough for a real world
comparison, where more than 4000 proof obligations were generated, but around
95% were proved automatically.

As a result of the complete process no failures where detected after the de-
ployment of the system. The associated costs in this development were less than
in a traditional process as there were no needs of maintenance changes and the
necessary time dedicated to testing was really short. But again, this job was
performed in a company that has been using formal methods for a long time.

4.2 Door system

In order to verify the consistency of a door system specification, RODIN was used
as a proof of concept, and it was possible to show the benefits of this approach
to the final customer. This job was developed based on a small portion of the
natural language specification, but at least 3 contradictions or inconsistencies
on it could be verified. The objective was to help the door system manufacturer
to rewrite the specification based on the result of the verification of the formal
model.

The natural language specification is more than 100 pages long, and the
needed information is spread out over all this specification. The following two
statements of the specification show one of the contradictions that were found:

– The train is not allowed to move while at least one door is open;
– If the emergency buttom is pressed, the respective door must open when the

train speed is under 6 km/h.

9

In this example it is easy to notice the contradiction, moreover because both
sentences were placed together, but those statements were spread out in the
specification, so the direct comparison was not so clear.

In the example, the contradiction refers to the behavior of the door, which
should not open until the train is completely stopped, but which also should
open in an emergency situation when the speed of the train is under 6 km/h.

The machine in figure 4.2, represents this specification, and the PO in figure
2 represent the contradiction.

MACHINE Open contradiction
VARIABLES

train stoped boolean. when the train is stoped it’s value is TRUE
train low speed boolean. when the train speed is below 6km/h it value

is TRUE
door authorization boolean. when the train is allowed to open doors

it’s value is TRUE
emergency buttom boolean. if the buttom is pressed, it’s value is TRUE

open comand boolean. if true, command the opening
train speed NAT. real speed

INVARIANTS
inv1 : train stoped ∈ BOOL
inv2 : door authorization ∈ BOOL
inv3 : train low speed ∈ BOOL
inv4 : emergency buttom ∈ BOOL
inv5 : train stoped = TRUE ⇒ door authorization = TRUE
inv6 : train stoped = FALSE ⇒ door authorization = FALSE
inv7 : train stoped = TRUE ⇒ train low speed = TRUE
inv9 : open comand ∈ BOOL
inv10 : train speed ∈ N
inv11 : door authorization = FALSE ⇒ open comand = FALSE

EVENTS
Initialisation

begin
act1 : door authorization := TRUE
act2 : train stoped := TRUE
act3 : train low speed := TRUE
act4 : emergency buttom := FALSE
act5 : open comand := FALSE
act6 : train speed := 0

end
Event EMERGENCY OPEN =̂

when
grd1 : train low speed = TRUE
grd3 : emergency buttom = TRUE

then

10

act1 : open comand := TRUE
end

Event LOW SPEED MONITOR =̂
when

grd1 : train speed ≤ 6
then

act1 : train low speed := TRUE
end

Event ZERO SPEED MONITOR =̂
when

grd1 : train speed = 0
then

act1 : train stoped := TRUE
act2 : train low speed := TRUE
act3 : door authorization := TRUE

end
Event AUTHORIZARION RELEASE =̂

when
grd1 : train speed > 0

then
act1 : door authorization := FALSE
act2 : train stoped := FALSE
act3 : open comand := FALSE

end
Event LOW SPEED RELEASE =̂

when
grd1 : train speed > 6

then
act1 : train low speed := FALSE
act2 : train stoped := FALSE
act3 : door authorization := FALSE
act4 : open comand := FALSE

end
END

It’s clear that to discharge this PO, (figure 2) it is not a question of correcting
the model, but the natural language specification must be changed to avoid this
kind of ambiguities or contradictions.

In this case three different approaches or options were proposed, as follows:

1. The train is not allowed to move when at least one door is open, unless in a
emergency situation;

2. The train is not allowed to move over 6 km/h when at least one door is open;
3. If the emergency buttom is pressed, the respective door must open when the

train stops

11

Fig. 2. PO to be discharged

The first option was choosen by the custumer, and the specification and
model were changed to reflect this new constraint.

This simple example helped to present the formal method benefits, stating
the impossibility to introduce ambiguities and contradictions.

The objective now is to try to represent the complete specification of one
train sub-system (probably the door system) in Event-B[21], and reformulate
the natural language specification in a better representation. At least, pointing
out the items that need to be revised to create a more consistent specification.

4.3 Platform screen doors

Platform Screen Doors, aka PSD, is a door system that is installed in the plat-
form stations to avoid people to fall down to the track. The safety related issues
are even higher than for the train door system as, people get used with it, and
a dangerous situation can lead to severe accidents[11]. For example, if the train
departures with doors in PSD open, the train can easily hit someone.

This kind of system is being installed in Metro São Paulo, Brazil, and a
company from Korea was hired to develop and install the system. The same
standards must be applied in order to guarantee that the desired safety level (in
this case SIL 3[22]) will be met.

Besides the safety constraints (that by themselves are a huge problem) there
is no room to rework as the whole system has to be in operation at the end of
2009. As the first phases of the ”V model”, take a lot of time, while in a formal
process, there will be no time for many tests at the end. The IEC 62279[23] can be

12

used as support standard to guide on the necessary documentation that should
be generated to prove that the needed care was taken during the development
process. The documentation that needs to be generated is the following:

1. System Requirements Specification
2. System Safety Requirements Specification
3. System Architecture Description
4. System Safety Plan
5. Sw Configuration Management Plan
6. Sw Verification Plan
7. Sw Integration Test Plan
8. Sw/Hw Integration Test Plan
9. Sw Requirements Specification

10. Sw Requirements Verification Report
11. Sw Architecture Specification
12. Sw Design Specification
13. Sw Arch. and Design Verification Report
14. Sw Module Design Specification
15. Sw Module Test Specification
16. Sw Module Verification Report
17. Sw Source Code Verification Report
18. Sw Module Test Report
19. Sw Integration Test Report
20. Sw/Hw Integration Test Report
21. Sw Validation Report

Moreover, it is requested that a formal method should be used from the
detailed specification to the unit tests, as mentioned in section 2.

Another problem that was faced is the lack of knowledge on formal methods
and development process by the team in charge of the project. In Korea there is
no culture of a structured process3

Based on all of these considerations, SCADE tool was selected to help on
these tasks. As mentioned in section 3, SCADE seems to be the best choice for
non-formal method people.

Items 10 to 19 from the list presented before can be performed, either auto-
matically or with the support of SCADE tool. All the formalism is performed
behind the scenes, so the user can feel comfortable in developing what is really
needed from his point of view.

Even with this simplistic view, it was possible to verify that the formalism,
and moreover, the capability to model checking and theorem proving, helped
to better the quality and consistency of the generated documentation and to
verify missing points and inconsistencies. On the other hand, for more complex
systems, or systems where the number of variables grows exponentially, or a lot
3 to not be a so strong argument, this is a fact based on the author experience and

could be noted at those 4 companies where the author has been work during the last
year

13

of arrays and matrix are used, it’s possible to note some bottle necks in it’s
usage, like poor performance from the generated code, for example.

As an example, two functions that should be modeled, based on the first
requirement specification of one of the PSD system equipments are shown.

The equipment is called, PCM, and it is in charge of control the door open
and close functions while in manual mode, what means, while PCM is enabled.

The two extractions from the Software Requirement Specification are as fol-
lows:

– open command If PCM is enabled, and the OPEN buttom is pressed longer
than 1 second, the OPEN command has to be generated.

– close command If PCM is enabled, and the CLOSE buttom is pressed longer
than 1 second, the CLOSE command has to be generated.

Using SCADE, it was modeled like figure 3

Fig. 3. SCADE model

Again, it is easy to realize that there are a lot of missing information and
contradictions. For example, it is not possible to say, based only in the specifi-
cation whether it is correct or not, to generate a close command while the open
command is present, and vice versa. There is no information to determine when
the command (doesn’t matter open or close) should be turned off. One can figure
out a lot of different needs, this is not the objective.

The main objective here was to present that a simple way to formalize the
development process, whether or not, with heavy formal methods, helps a lot to
find this kind of problems.

14

It’s an ongoing project, and the author hopes to present some strong evi-
dences to support these assumptions.

4.4 considerations

Some other points should be enhanced. Despite all odds, and as pointed in [24],
it was not necessary to have someone with strong knowledge in mathematics,
although the basic concepts were needed. Moreover, it was not necessary a big
team in none of the described projects in order to successfully carry on the
project. In the second project cited before, just one person did all the work.

In all of these projects, the most difficult task, and the one that took more
time was the requirement elicitation and analysis. Even if it is not directly related
to formal methods, the process adopted is important and the goal to build a
formal model helps during the classification and elaboration of each requirement
forcing them to be complete and non ambiguous.

At the end, the time (and money) that is spent in the earlier phases of the
development process is greater than in a normal development, but the time (and
much money) that is spent in tests and rework is definitely less. In the case of
the second example (Door system), even using the formal methodology only as
a support tool, the resulting test cases were much more effective, and the period
of tests was shortened by 2 months (from 6 months to 4 months).

Based on these experiences, some features that could be included in the
supporting tools, mainly the RODIN platform are summarized in section 5.

5 Gaps or needs

In this section some expectations about the future of supporting tools (mainly
RODIN) are summarized and some characteristics that are considered necessary
are pointed out. Most of them are being prepared, but some key points should
be enhanced.

– Requirements, It is a fact that requirement problems are responsible for more
than 40% of the total problems in a project 4. Then, this is the most impor-
tant feature that should be integrated to RODIN platform. Some character-
istics might be helpful:
• the development of a ”natural language dictionary”, that would be used

to rewrite the specification in a way it could be better understood.
• the conversion of this redefined specification directly into the abstract

model, avoiding with that the insertion of human errors
• the creation of a tool based on the formal model that could write back a

natural language specification. This is crucial when modeling the model
manually and at the end there is the need to present it to the customer
for approval.
• the development, (better than a simple ”natural language dictionary”)

of a methodology to annotate the requirement files allowing verifying the
coverage of this requirement and helping traceability.

15

Fig. 4. Requirement problems from [22]

– Traceability Also related to requirements, RODIN platform should have the
capability to:
• to be able to track forwards, that is, when something is changed in the

abstract model, it would be good if RODIN platform could point out the
possible refinements that should be verified in order to meet the changes.
• in the same way, it should be able to track backwards, and point where

to verify if changes were made (intentionally or not) in the refinement
machines.
• still more crucial, it would be good if RODIN platform allowed to track

back and forward all the requirements and any changes could be high-
lighted. Moreover, with this ability, it would be possible to verify if all
requirements were fulfilled or not.

– intermadiate languages - This has already been done by UMLB plugin, but
an interesting feature seems to be missing. Besides the ability to create state
machines, for example, the ability to execute these models would be grate-
fully appreciated. With that, it would be possible to verify if the assumptions
are correct, with no need to go inside the proof obligations.

– test case generation This seems to be one of the biggest gaps in industry
right now. All generated tests are based on specialist feelings, and usually,
what is tested is not exactly what should be. As a result, after a long time
testing the system, at the moment it is set to operate some failure occurs,
and the test generation phase has to begin again in order to address that
specific failure. This routine happens several times until the product can be
finally released.
The Proof Obligations are strongly pointed (at least by the author fellings)
as the basic source for generating test cases that are necessary and sufficient.

16

If those proofs are necessary and sufficient to validate the specification, why
not use those proofs to generate the test case scenarios?

6 Conclusion

From the data presented in this paper the author concludes that: The application
of formal methods in industry is growing, however most of the times as a result
of some projects involving academia and industry, like DEPLOY project.

It is clear that outside Europe, formal methods usage is still incipient, and
more effort in showing the benefits of that use is needed. In order to facilitate this
approach we need tools that do not scare the customer in a first sight, otherwise
the fear not to perform a good job will be always greater than the possibility of
creating better products.

If these barriers could be broken, the use of formal methods would spread
out really fast.

A great step could be done with the introduction of the features presented
above.

If the managers are open minded, and admit waiting a bit more at the be-
ginning of the development to see real results, (light or heavy) formal methods
application could be more cost-effective and could, at the end, decrease the costs
of the whole project by decreasing the costs in test and maintenance phases.

7 Aknowledgements

I’d like to thank to all univiersities and companies cited in this paper for their
support providing me recomendations and tools.

Finally I’d like to thank Mr. Hrvoje Belani, who devoted his time to review
this paper and mostly for his comments that helped me to include substantial
points in this work.

References

1. ClearSy: Atelierb 1

2. Butler, M., Hallerstede, S.: The rodin formal modelling tool. deploy-
eprints.ecs.soton.ac.uk 1

3. Esterel: Getting started with scade. (Sep 2007) 1–148 1, 5

4. Bowen, J.P., Stavridou, V.: The industrial take-up of formal methods in safety-
critical and other areas: A perspective. In: FME ’93: Industrial-Strength Formal
Methods, First International Symposium of Formal Methods Europe. Volume 670
of Lecture Notes in Computer Science., Odense, Denmark, Springer (1993) 183–195
2

5. Commission, I.E.: IEC 61508 - Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. International
Electrotechnical Commission Standards (1998) 2, 3, 5

17

6. CENELEC: Software for Railways Control and Protection Systems. EN 50128.
(1995) 2, 5

7. Abrial, J.: The b-book: Assigning programs to meanings. books.google.com (Jan
1996) 2, 6

8. Hwang, J., Jo, H., Jeong, R.: Analysis of safety properties for vital system commu-
nication protocol. Electrical Machines and Systems, 2007. ICEMS. International
Conference on (2007) 1767–1771 3

9. Abrial, J.: Formal methods: Theory becoming practice. Journal of Universal
Computer Science (Jan 2007) 5

10. Jetley, R., Iyer, S., Jones, P.: A formal methods approach to medical device review.
COMPUTER (Jan 2006) 5

11. Lecomte, T., Servat, T., Pouzancre, G.: Formal methods in safety-critical railway
systems. Proc. Brazilian Symposium on Formal Methods: SMBF (Jan 2007) 5, 12

12. RTCA, I.: DO-178B, Software Considerations in Airborne Systems and Equipment
Certification. (1992) 5

13. Squair, M.: Issues in the application of software safety standards. Proceedings of
the 10th Australian workshop on Safety critical systems and software-Volume 55
(2006) 13–26 5

14. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S.: A formal verification envi-
ronment for railway signaling system design. Formal Methods in System Design
(Jan 1998) 5

15. Boussinot, F., Simone, R.D., ENSMP-CMA, V.: The esterel language. Proceedings
of the IEEE (Jan 1991) 5

16. Abrial, C., Voisin, L.: Event-b language 6
17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow

language lustre. Proceedings of the IEEE 79(9) (1991) 1304–1320 6
18. Harel. . . , D.: Statecharts: A visual formalism for complex systems. Science of

Computer Programming (Jan 1987) 6
19. Berry, G.: The foundations of esterel. Foundations Of Computing Series (2000)

425–454 6
20. Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., Ponsard, C.: Towards modelling

obligations in event-b. ABZ2008 (May 2008) 14 8
21. Metayer, C., Voisin, L.: The event-b mathematical language 12
22. Bell, R.: Introduction to iec 61508. Proceedings of the 10th Australian workshop

on Safety . . . (Jan 2006) 12, 16
23. Commission, I.E.: IEC 62279 Railway Applications Communications, Signalling

and Processing Systems Software for Railway Control and Protection Systems.
International Electrotechnical Commission Standards (2002) 12

24. Bowen, J., Hinchey, M.: Ten commandments of formal methods ten years later.
COMPUTER (Jan 2006) 15

18

Formal Foundation to Systematic Development

of Simulink/Stateflow Models

Manoranjan Satpathy and S. Ramesh

India Science Lab, GM Technical Centre India Pvt Ltd, Bangalore-560066, INDIA
Email: {manoranjan.satpathy, s.ramesh}@gm.com

1 Introduction

Refer to Figure 1(A) which outlines the current development process of auto-
motive control systems. Design models are directly obtained from the feature
requirements but in an ad hoc manner. Simulink/Stateflow (SL/SF) is the pri-
mary modeling notation for the development of hybrid control systems; UML
based modeling is used for discrete control applications. In industry, sometimes,
C-code is directly developed from requirements. We focus here on the develop-
ment of design models from feature requirements. We also assume the SL/SF
modeling framework. The current process has limitations:

– The semantic gap between the requirements and the design models is high;
therefore, obtaining SL/SF model directly from the requirements can be
prone to errors.

– The process is primarily manual, a trial-and-error approach is used, and
often it is based on experience.

– Requirements and intermediate steps are primarily mental models having no
concrete representations.

– A lot of simulation and testing are performed a posteriori to have a confi-
dence in the design.

(B)

model model model

Simulink/

Stateflow
Model

verification verification verification

FEATURE
REQUIREMENTS

FEATURE
REQUIREMENTS

SL/SF
Model Model

UML
C−Code

Sequential or
Distributed
Implementation

(A)

Fig. 1. (A) Current Development Process, (B) Design models from VMs

2

The aim of this paper is to systematize and formalize the feature-to-design phase;
the characteristics of this process are:

– Through a chain of incremental steps requirements are guided towards the
design. Each step produces an abstract model which we term as a verification
model (VM); the primary purpose behind VMs is formal verification.

– Each VM has a clear mathematical representation.
– From a VM, we obtain the next one in the chain by applying correctness

preserving transformations.
– A VM may have non-determinism which allows multiple design choices.
– Incremental steps are manual, but rigorous verification is performed using

tool support; the technique used is theorem proving.
– Once a VM is sufficiently detailed, a design model can be derived from it.
– Design models are correct-by-construction; so, no additional validation.

We use the Event-B method for the construction of automotive control sys-
tems; Event-B models will be our VMs. We obtain a SL/SF model from a de-
tailed Event-B model. Many verification/validation (V/V) infrastructures like
Hardware-in-loop (HIL) testing, Plant-in-loop (PIL) testing and FlexRay bench
have been built around Mathwork’s SL/SF models. The SL/SF models that we
generate can get the benefit of existing V/V infrastructure. Our main contribu-
tions are: (a) use of Event-B method in obtaining SL/SF models, and (b) the
new notion of RRM diagrams play a key role in this development process (RRM
stands for Requirement, Refinement and Modeling).

2 The Method

A variant of Cruise Controller is our running example. A vehicle can be in cruise
mode only when an external switch called cc switch is on; however, during the
cruise mode, the vehicle also need to satisfy other conditions (cc cond): (a) the
throttle and the brake pedals are not disturbed, and (b) the vehicle speed is
not less than the minimum cruise speed. When the vehicle is in cruise mode
the driver can press the set button to bring the vehicle to cruise active state,
and the current vehicle speed becomes the cruise speed. When in active state,
the throttle angle for the cruise speed is computed by the controller; otherwise,
it is determined by the driver. When in cruise active state, the cruise speed
can be increased (by 1 KM/h) by tapping the accl button once, or it can be
decreased (by 1KM/h) by tapping the dccl button once. These buttons can be
tapped multiple times. When the cc cond becomes false, the cruise state becomes
inactive. When cc switch is on and cc cond is true, tapping the resume button
engages the vehicle again in cruise active state, and the last cruise speed becomes
the current cruise speed.

2.1 Development using Verification Models

In Figure 2, M0 is the initial abstract model. THETAd and THETA c are re-
spectively the throttle angles produced by the driver and the controller. When

3

THETA_c

S A D R

THETA_c

THETA_d

B

A

(M1)

THETA_occ_mode

vspeed
tspeed

A

(M0)

THETA_o

THETA_c

cc_modecc_cond

cc_switch THETA_d

vspeed

tspeed

C

B

A

(M2)

THETA_o
THETA_d

cc_mode

Fig. 2. Development steps as RRM diagrams-I

the value of cc mode (cruise control mode) is active, then THETAc is produced
as the output; otherwise THETAd is the output. This model captures a require-
ment fragment. Model M1 is a refinement of M0 which considers additional re-
quirements. When cc mode is active, THETAc computation depends on vspeed

(vehicle speed) and tspeed (target cruise speed). We have assumed a proportional
controller; therefore, increase in THETAc is proportional to (tspeed− vspeed).

The next refinement focuses on the computation of the cc mode. The inputs
are cc switch, cc cond, vspeed and tspeed. When cc mode is active, the value of
tspeed is also computed. The additional external inputs are the status of the set
(S), accl (A), dccl (D) and the resume (R) buttons. In Figure 2, block C of
M2 depicts the computation of cc mode and tspeed. M2 is next refined to obtain
M3 (Figure 3). In M2, cc cond is a free input but in reality, it is computed in
terms of environment inputs like brake pedal (brP), throttle pedal (thP) and
the vspeed; M3 makes this computation explicit.

In model M4, the plant is introduced which relates the throttle output
THETAo and the vehicle speed; refer to Figure 3. M5 is the final refinement in
which plant input of M4 is replaced with sensed value of the speed (sensed speed);
THETAo is the actuator input to the plant.

2.2 RRM Diagrams

We have explained the development process by using a chain of diagrams, which
we term as RRM Diagrams. Let us consider model M1 as a RRM diagram (Fig-
ure 2). Block A captures and model the requirement that when CC mode is
active, the throttle angle produced by the controller is the output; otherwise the
throttle angle determined by the driver is the output. This requirement descrip-
tion could be attached to block A. Block B captures and model the requirement
that when CC is active, THETAc depends on vspeed and tspeed. In summary,
requirement fragments can be partitioned across the blocks and the wires. An
informal mapping can be established between the requirements in the require-

4

D

THETA_c

THETA_occ_modecc_cond

vspeed

cc_switchbrP

thP

PLANT

(M4)

brP

thP

THETA_c

THETA_occ_cond

vspeed

cc_switch

S A D R

(M3)

S A RD

tspeed

THETA_d

cc_mode

THETA_d

tspeed

A

B

C

Fig. 3. Development steps as RRM diagrams-II

ment document and those in the RRM diagram and thus completeness issues
can be checked. Requirement fragments when distributed across blocks presents
the user with a clear understanding of the modeling activity going on. And thus
the RRM diagrams can be a mechanism for keeping the user/requirement engi-
neer in sync with the designer. This constitute the requirement viewpoint of the
RRM diagrams.

A RRM diagram has a formal presentation as an Event-B model. The model
is proved against invariant preservation and deadlock-freedom. Also, the diagram
guides us as to what is the next possible refinement. For instance, in M1, block
B identifies that none of its inputs are environmental inputs, and therefore each
input can be refined. In M1, cc mode is a free input but not an environmental
input; so, block C is created in the next refinement which computes cc mode in
terms of other environmental or intermediate inputs. In summary, RRM diagram
always can guide as to what would be the next possible refinement, and when
to stop the refinement process. Refinement amounts to addition of new blocks
and new links, or splitting a block into multiple blocks and links.

RRM diagrams have a modeling view point. A RRM diagram indicates to
what extent the design has progressed. Note also that a RRM diagram resembles
a SL/SF model; the logic and the meaning of blocks and links in a SL/SF model
is evident from the structure of the corresponding RRM diagram.

3 SL/SF model generation

A detailed Event-B model can be used to derive a SL/SF model. Figure 1(B)
shows the complete process. Our method considers both the Event-B model and

5

THETA_o

brP

cc_switch

thP

vspeed (sensed_speed)

tspeed

STATEFLOW

cc_mode

THETA_d

THETA_c

S A D R

Fig. 4. Outline of SL/SF model for CC obtained from Event-B models

the corresponding RRM diagram together to derive the SL/SF model. We now
present a set of guidelines.

– Inputs to the RRM diagram become the inputs to the SL/SF model. Input
variables receive non-deterministic values through non-deterministic events
in the Event-B model.

– There is an one-to-many mapping between the RRM diagram blocks and
the events in the Event-B specification. If a block is mapped exactly to one
event, then this event becomes a Simulink block; the internal details of the
block is guided by the computation in the event.

– A block is associated with many events in the Event-B specification and each
event is of the form f(T1, . . .) → (T1, . . .) meaning that one input and one
output share a type. If T1 is enumerated then the block is a candidate for a
Stateflow block in the Simulink model. The enumerated type(s) determine
the states and, the concerned events determine the transitions.

– A block in RRM diagram is mapped to multiple events but the event do not
satisfy the criteria just discussed, then they become Simulink blocks. The
Simulink block structures are determined by the event condition and action.

Figure 4 shows the SL/SF model which is obtained from the final refinement
of the CC in Event-B. This model is structurally similar to the corresponding
RRM diagram.

Consider the block D in M4; this block corresponds to a single event in the
Event-B model which computes brP∧thP∧vspeed ≥ 25 This computation can be
trivially translated to Simulink. Refer to block C of the RRM diagram in Figure
3. This block is mapped to 10 events in the Event-B model. Since the events sat-
isfy the Stateflow criteria – each event takes an element of {set, active, inactive}
and outputs an element of same type and in addition there are other actions –
we build a Stateflow model for these events.

6

4 Summary

1. In a SL/SF model, wires between blocks carry signals. It means that there
is no complicated data sharing between the blocks, only atomic data. The
events in the Event-B model are so refined that there is no complex data
transfer between them. The RRM diagrams are also designed keeping this
in mind.

2. The RRM diagrams play a major role in the development process. They
determine the sequencing structure, what should be the next refinement,
and furthermore, they are used in SL/SF model generation. The mapping
between the RRM diagram blocks and the Event-B events determines the
nature of the SL/SF block. We believe the Event-B method along with the
notion of RRM diagrams can solve the problem of obtaining correct SL/SF
models.

3. Up to the final refinement, the development process is correct-by-construction.
Assuming that the translation step from the final refined model to the SL/SF
model is correct, the latter model is correct with respect to the requirements.

4. The requirement capture/development steps remove any ambiguities or in-
consistencies in the requirements. The RRM diagrams also help a user in
addressing the issue of incompleteness.

5. The semantics of Stateflow in general unsafe and could be ambiguous. That
is why restricted subsets are defined [4]. Since the events in an Event-B are
unambiguous, in translating them to Stateflow, the translator is expected to
use safe features.

References

1. Abrial J.R., Hallerstede S.(2006). Refinement, Decomposition, and Instantiation
of discrete models, Fundamentae Informatica, 2006.

2. Abrial J.R., Butler M., Hallerstede S., Voisin L. (2006). An open extensible tool
environment for Event-B, Proceedings of ICFEM 2006, Macau.

3. The Mathworks, http://www.mathworks.com
4. Scaife N, Sofronis C, Caspi P, Tripakis S, Maraninchi F. 2004. Defining and trans-

lating a safe subset of Simulink/Stateflow into Lustre, ACM EMSOFT’04.

Abstract Specification of the
UBIFS File System for Flash Memory

Andreas Schierl, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang Reif

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg, Germany

{schierl,schellhorn,haneberg,reif}@informatik.uni-augsburg.de

Abstract. Today we see an increasing demand for flash memory be-
cause it has certain advantages like resistance against kinetic shock. How-
ever, reliable data storage also requires a specialized file system that can
handle the limitations of flash memory. This paper develops a formal,
abstract model for the UBIFS flash file system. We develop formal spec-
ifications for the core components of the file system: the inode-based file
store, the flash index, its cached copy in the RAM and the journal to
save the differences. We give an abstract specification of the interface
operations of UBIFS and prove some of the most important properties
using the interactive verification system KIV.

1 Introduction

Flash memory has become popular in recent years as a robust medium to store
data. It has significant advantages compared to traditional hard disks, in par-
ticular shock resistance. Therefore it is popular in digital audio players, digital
cameras and mobile phones. Flash memory is also getting more and more im-
portant in embedded systems where space restrictions rule out magnetic drives,
as well as in mass storage systems (solid state disk storage systems like the
RamSan-5000 from Texas Memory Systems) since it has shorter access times
than hard disks.

Flash memory has different characteristics when compared to a traditional
hard disk. In brief, flash memory cannot be overwritten, but only erased in
blocks whose size is typically around 64k. Erasing a block is slow and can only be
done a limited number (typically 105 to 107) of times before memory wears out.
Therefore it should be done evenly (“wear leveling”) and as seldom as possible.
In particular if memory is filled to 90% with static data, it must be ensured that
even the static data is moved around. Otherwise all writes would happen on the
remaining 10%, reducing life time significantly. These characteristics imply that
standard file systems cannot be used with flash memory directly.

Two solutions are possible: either a flash translation layer is implemented
(typically in hardware) emulating a standard hard disk. This is the standard
solution used e.g. in USB flash drives. It has the advantage that any file system
can be used on top (e.g. NTFS or ext2). On the other hand, the characteristics

of file systems (e.g. partitioning of the data into the content of files, directory
trees, or other meta data like journals etc.) cannot be effectively exploited using
this solution.

Therefore a number of flash file systems (abbreviated FFS in the following)
has been developed, that optimize the file system structure to be used with flash
memory. Many of these FFS are proprietary (see [7] for an overview). A very
recent development is UBIFS [10], which was added to the Linux kernel last
year.

Increased use of flash memory in safety-critical applications has led Joshi and
Holzmann [11] from the NASA Jet Propulsion Laboratory in 2007 to propose the
verification of a FFS as a new challenge in Hoare’s verification Grand Challenge
[9]. Their goal was a verified FFS for use in future missions. NASA already uses
flash memory in spacecraft, e.g. on the Mars Exploration Rovers. This already
had nearly disastrous consequences as the Mars Rover Spirit was almost lost due
to an anomaly in the software access to the flash store [15].

A roadmap to solving the challenge has been published in [6]. This paper
presents our first steps towards solving this challenge. There has been other
work on the formal specification in the context of the Grand Challenge. The
papers [3], [5], [14] give top-level models of tree-structured file systems with
POSIX-like operations. Butterfield and Woodcock [2] have started bottom-up
with a formal specification of the ONFI standard [4] of flash memory. The most
elaborate work we are aware of is the one by Kang and Jackson [12] using Alloy
which gives a vertical prototype and discusses high-level recovery operations.

2 An Abstract Specification of UBIFS

Our approach described in detail in [16] is middle-out, since our main goal was to
understand the critical requirements of an efficient, real implementation. There-
fore we have analyzed the code of UBIFS (ca. 35.000 loc), and developed an
abstract, formal model from it. Although the resulting model is still very ab-
stract and leaves out a lot of relevant details, it already covers some of the
important aspects of any FFS implementation. These are:

1. Updates on flash are out-of-place because overwriting is impossible.
2. Like most traditional file systems the FFS is structured as a graph of inodes.
3. For efficiency, the main index data structure is cached in RAM as well as

stored on the flash drive.
4. Due to e.g. a system crash the RAM index can always get lost. The FFS

stores a journal to recover from such a crash with a replay operation.
5. Care has been taken that the elementary assignments in the file system

operations will map to atomic updates in the final implementation, to ensure
that all intermediate states will be recoverable.

Our model is on the level of the Linux VFS (virtual file system switch) which
is the abstract interface to the UBIFS implementation as well as to the imple-
mentation of other traditional file systems under Linux (like ext3 or reiserfs). It

therefore offers the standard operations of this interface: creating inodes for files
and directories, reading and writing a page of a file, truncating and renaming
files, creating and removing hardlinks. The operations are given in an abstract
programming language using a notation similar to ASMs [8], [1].

We have verified three properties for the file system:

– Functional Correctness of the Operations. We proved that all specified
operations terminate and fulfill postconditions about their results.

– Consistency of the File System. We proved that all operations preserve
consistency of the file system. Consistency specifies several well-formedness
properties, e.g. that every entry in the RAM index always points to an
existing inode in the main store.

– Correctness of the Replay Process. We proved that the replay operation
which is called after a crash is able to restore a consistent file system, losing
as little data as possible.

The full specification and all proofs are available on the Web [13].

3 Conclusion and Outlook

The work of this paper defines a first abstract model of the essential data struc-
tures needed in a FFS. It defines the four central data structures: the file store
which stores node-structured data, the flash index, its cached copy in the RAM
and the journal. Based on these, we have specified the most relevant interface
operations and verified some core properties.

Our model should be of general interest for the development of a correct
flash file system, since variants of the data structures and operations we describe
should be relevant for every realistic, efficient implementation.

In future work we intend to use the model as an intermediate layer in the
development of a sequence of refinements, which starts with an abstract POSIX
specification and ends with an implementation based on a specification of flash
memory based on the ONFI-Standard. The development of such refinements will
offer many challenges and we finish sketching some of the most important ones.

– Concurrency. In a real implementation operations on files are often exe-
cuted concurrently. Therefore, as an example writing a file consists of several
page writes which may be interleaved with other operations (even with an-
other write operation to the same file!).

– Caching All real file systems use caching to gain efficiency. A page may still
be written in the cache only, when the write operation has already finished.

– Efficient implementation of index structures. Our model abstracts
the index structure to a simple map, while in reality a B+-tree is used.
This representation allows to optimize updating the index stored on flash by
only updating relevant branches (out of place), which makes it a “wandering
tree”.

– Quality of wear leveling. Our model has abstracted from erase blocks,
and therefore does not have code for wear leveling and garbage collection.
Lower level models will include this code, and one of the import verification
tasks is to show that wear leveling is effective. This looks possible for UBIFS,
since its wear leveling strategy is based on counting erase cycles.

References

1. E. Börger and R. F. Stärk. Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

2. A. Butterfield and J. Woodcock. Formalising flash memory: First steps. In Proc. of
the 12th IEEE Int. Conf. on Engineering Complex Computer Systems (ICECCS),
pages 251–260, Washington DC, USA, 2007. IEEE Comp. Soc.

3. K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree-
structured file system in Event-B and Rodin. In Proc. of the 10th Int. Conf. on
Formal Methods and Sw. Eng. (ICFEM), pages 25–44. Springer LNCS 5256, 2008.

4. Hynix Semiconductor et al. Open NAND Flash Interface Specification Technical
Report Revision 1.0, December 2006. URL: www.onfi.org.

5. M.A. Ferreira, S.S. Silva, and J.N. Oliveira. Verifying Intel flash file system
core specification. In Modelling and Analysis in VDM: Proceedings of the Fourth
VDM/Overture Workshop. School of Computing Science, Newcastle University,
2008. Technical Report CS-TR-1099.

6. L. Freitas, J. Woodcock, and A. Butterfield. Posix and the verification grand
challenge: A roadmap. In ICECCS ’08: Proc. of the 13th IEEE Int. Conf. on Eng.
of Complex Computer Systems, pages 153–162, Washington, DC, USA, 2008.

7. E. Gal and S. Toledo. Algorithms and data structures for flash memory. ACM
computing surveys, pages 138–163, 2005.

8. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9 – 36. Oxford Univ. Press, 1995.

9. C. A. R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, 2003.

10. A. Hunter. A brief introduction to the design of UBIFS.
URL: http://www.linux-mtd.infradead.org/doc/ubifs whitepaper.pdf, 2008.

11. R. Joshi and G. J. Holzmann. A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing, 19(2), June 2007.

12. E. Kang and D. Jackson. Formal modelling and analysis of a flash filesystem in
Alloy. In Proceedings of ABZ 2008, pages 294 – 308. Springer LNCS 5238, 2008.

13. Web presentation of the Flash File System Case Study in KIV, 2009.
URL: http://www.informatik.uni-augsburg.de/swt/projects/flash.html.

14. J.N. Oliveira. Extended Static Checking by Calculation Using the Pointfree Trans-
form. In LerNet ALFA Summer School 2008, Springer LNCS 5520, 2008.

15. G. Reeves and T. Neilson. The Mars Rover Spirit FLASH anomaly. In Aerospace
Conference, 2005 IEEE, pages 4186–4199, March 2005.

16. A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif. Abstract Specification of
the UBIFS File System for Flash Memory. In Proc. of FM, LNCS 5850, pages
190–206. Springer-Verlag, 2009.

Pattern-based Refinement of Confidentiality
Requirements

Holger Schmidt

University Duisburg-Essen, Germany, Faculty of Engineering, Department of
Computer Science and Applied Cognitive Science, Workgroup Software Engineering,

holger.schmidt@uni-duisburg-essen.de

Problem Description

The software development principle of stepwise refinement is popular in soft-
ware engineering, and is also well supported by formal notations. When per-
forming stepwise refinement, software is developed by creating intermediate lev-
els of abstraction. Starting with the requirements, an abstract specification is
constructed, which is refined by a more concrete implementation. Then, the im-
plementation must be verified against the specification, and further refinement
steps are accomplished until the desired level of abstraction is reached.

In this paper, we consider the refinement of confidentiality requirements. In
contrast to, e.g., integrity requirements, which are functional requirements on the
correctness of data and thus typically preserved under refinement, this is gen-
erally not true for confidentiality requirements (see [9] for details). According
to ISO/IEC 13335-1:2004 [1], “confidentiality is the property that information
is not made available or disclosed to unauthorized individuals, entities, or pro-
cesses”. These unauthorized subjects are considered as the malicious part of the
environment, which threatens an ICT-system. The goal of the software to be
built is to protect the ICT-system against attacks that stem from this malicious
environment.

Confidentiality requirements can be enforced using different kinds of coun-
termeasures such as security mechanisms (e.g., encryption algorithms), physical
protection mechanisms (e.g., security guards that control access to server rooms),
and organizational means (e.g., user instructions concerning password security).
In general, the adequacy of a countermeasure to establish confidentiality require-
ments depends on the confidentiality requirement and the environment in which
the ICT-system is embedded. For example, a password-based encryption mech-
anism might work properly if applied in a private environment, but it is rather
not suited for a public environment.

From the software engineering point of view, we must analyze the adequacy
of security mechanisms such as encryption and access control mechanisms at a
very early stage of software development. The goal of this analysis is to find an
answer to the question “Does the selected security mechanisms work properly in
the intended operational environment so that the confidentiality requirement is
established?”

SecurityProblemFrame

ConcretizedSecurityProblemFrame

SPFModelTemplate

CSPFModelTemplate

Functional
refinement proof

IsRefinedBy

 [1..*]

 [1]

IsSpecifiedBy [1] [1]

IsSpecifiedBy [1] [1]

IsRefinedBy

 [1..*]

 [1]

Fig. 1. Refinement on Pattern Level

Solution Approach

In earlier publications (cf. [2, 3]), we introduced a security engineering process
named SEPP that focuses on the early phases of software development. The
basic idea is to make use of special patterns defined for structuring, charac-
terizing, and analyzing problems that occur frequently in security engineering.
Similar patterns for functional requirements have been proposed by Jackson [5].
They are called problem frames. Accordingly, our patterns are named security
problem frames (SPF). Furthermore, for each of these frames, we define a set of
concretized security problem frames (CSPF) that take into account generic secu-
rity mechanisms to prepare the ground for solving a given security problem. For
example, we defined an SPF that describes the problem class of confidentially
transmitting data over an insecure network, and we specified a CSPF that uses
symmetric encryption to solve such problems.

According to [10], we consider the step from the instantiation of an SPF
to the instantiation of a corresponding CSPF as a formal refinement step that
not only preserves the functional correctness but also the confidentiality re-
quirement. This confidentiality-preserving refinement step is supported on the
level of patterns as described in Fig. 1. Since (C)SPFs are denoted rather infor-
mally as diagrams, we complement those (C)SPF that deal with confidentiality
requirements by model templates. They constitute formal CSP (Communicat-
ing Sequential Processes) [4] models of the corresponding (C)SPFs. Each of
these templates is deadlock- and livelock-free, which we proved using the model-
checker FDR2 (Failure-Divergence Refinement) [6]. For each pair consisting of
an SPF model template and a corresponding CSPF model template, we proved
a failure-divergence refinement using FDR2.

Moreover, confidentiality-preserving refinement is supported on the level of
instances as described in Fig. 2. The model templates are instantiated based on
the instances of the corresponding (C)SPFs. We refer to instantiated SPF model
templates as SPF model instances and to instantiated CSPF model templates
as CSPF model instances. To prove that a CSPF model instance refines an
SPF model instance in a confidentiality-preserving way, we must accomplish the
following steps:

1. Prove that the CSPF model instance failure-divergence refines the SPF
model instance.

2. Specify the confidentiality requirement based on the SPF model instance.

SPFModelTemplate

CSPFModelTemplate

SPFModelInstance

CSPFModelInstance

Confidentiality-
preserving
refinement

ConfidentialityRequirementIsRefinedBy

 [1..*]

 [1]

IsInstantiatedBy [1..*] [1]

IsInstantiatedBy [1..*] [1]

IsRefinedBy

 [1]

 [1..*]

Describes

 [1]

Describes

 [1]

Fig. 2. Refinement on Instance Level

3. Prove that the SPF model instance fulfills the confidentiality requirement.
4. Prove that the CSPF model instance fulfills the confidentiality requirement

initially defined for the SPF model instance.

Since the failure-divergence refinement is already proven on the pattern level,
the effort for the proof on the instance level in the first step should be remarkably
reduced. Moreover, this proof is tool-supported by FDR2.

In the second step, the SPF model instance is used to formally express the
confidentiality requirement as an information flow property. Here, we use the
framework for the specification of probabilistic and possibilistic confidentiality
requirements by Santen [8]. Since confidentiality requirements are predicates on
sets of traces, they cannot be modeled in CSP, and thus cannot be verified using
FDR2. Nevertheless, we can mathematically specify a confidentiality requirement
and prove in the third step that a given SPF model satisfies the requirement.
Note that there does not exist the information flow property that allows us to
express every informal confidentiality requirement. Instead, an adequate prop-
erty depends on the confidentiality requirement that it formalizes. Mantel [7]
gives a comprehensive overview of possibilistic information flow properties.

In step four, we must show that no leaks are introduced in the CSPF model
instance that do not exist in the SPF model. For this proof, we re-abstract the
CSPF model instance, i.e., we hide the characteristics of the used security mech-
anism. Then, we can prove that the confidentiality requirement holds following
the same procedure as for the SPF model instance.

A comprehensive description of this pattern-based approach to confidentiality-
preserving refinement can be found in [10].

Conclusions

Confidentiality requirements can be expressed based on communication defined
by instances of our model templates. Given an SPF model instance and a cor-
responding CSPF model instance, we can formally prove a refinement that pre-
serves the confidentiality requirement. The main benefits of this approach are:

– The model templates underlay the (C)SPFs with formal behavior descrip-
tions to gain an unambiguous comprehension of the frames and to clarify
their semantics.

. . .

. . .

. . .

. . .

. . .

. . .

confidentiality−
preserving
refinement

confidentiality−
preserving
refinement

confidentiality−
preserving
refinement

decompose

system specification

system implementation

?

Fig. 3. Compositionality of Confidentiality-Preserving Refinement

– Based on instances of model templates, confidentiality requirements are ex-
pressed as information flow properties in a well-defined way.

– As a prerequisite for software development based on stepwise refinement,
instances of the model templates enable us to prove that the step from SPF
instances to corresponding CSPF instances is a functionally correct refine-
ment, which preserves the confidentiality requirements. The two refinement
proofs show if an instantiated CSPF indeed solves a security problem defined
by an SPF instance in a given environment.

Following the divide & conquer concept, a software development problem
is decomposed into subproblems that are solved independently. Afterwards, the
sub-solutions must be composed to obtain a solution for the initial software
development problem. As illustrated in Fig. 3, an important question in such a
scenario is: Is confidentiality-preserving refinement compositional? In general, it
is not compositional. But, we intend to find special software architectures that
guarantee compositionality.

References

[1] Information technology – Security techniques – Management of information and
communications technology security – Part 1: Concepts and models for infor-
mation and communications technology security management (ISO/IEC 13335-
1:2004), 2004.

[2] D. Hatebur, M. Heisel, and H. Schmidt. A security engineering process based
on patterns. In Proceedings of the International Workshop on Secure Systems
Methodologies using Patterns (SPatterns), pages 734–738. IEEE Computer Soci-
ety, 2007.

[3] D. Hatebur, M. Heisel, and H. Schmidt. Analysis and component-based real-
ization of security requirements. In Proceedings of the International Conference
on Availability, Reliability and Security (AReS), pages 195–203. IEEE Computer
Society, 2008.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall PTR, 1986.
http://www.usingcsp.com.

[5] M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[6] F. S. E. Limited. Failures-divergence refinement (FDR2) 2.83, 2009.
http://www.fsel.com.

[7] H. Mantel. A Uniform Framework for the Formal Specification and Verification of
Information Flow Security. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany, Juli 2003.

[8] T. Santen. Preservation of probabilistic information flow under refinement. In-
formation and Computation, 206(2-4):213–249, April 2008.

[9] T. Santen, M. Heisel, and A. Pfitzmann. Confidentiality-preserving refinement
is compositional – sometimes. In Proceedings of the European Symposium on
Research in Computer Security (ESORICS) (LNCS 2502), LNCS 2502, pages
194–211. Springer, 2002.

[10] H. Schmidt. Pattern-based confidentiality-preserving refinement. In Proceedings
of the International Symposium on Engineering Secure Software and Systems (ES-
SoS) (LNCS 5429), LNCS 5429, pages 43–59. Springer, 2009.

Finitary Fairness in Event-B

Emil Sekerinski and Tian Zhang

Department of Computing and Software, McMaster University, Canada

{emil, zhangt26}@mcmaster.ca

1 Introduction

In the design of concurrent systems, fairness allows to abstract from scheduling poli-

cies of in multi-process systems and from processor speeds in multi-processor systems.

In Event-B, like in action systems, the choice among events is nondeterministic [1,

2]. Fairness restricts this nondeterministic. In this paper we propose a way to express

fairness in Event-B. Finitary fairness has been proposed as a way of further restricting

standard fairness [3]. It is a “more realistic” notion of fairness, it allows some systems

to be modelled for which standard fairness is not sufficient, and it is more easily used for

proving properties in Event-B than standard fairness. We give a general transformation

from an Event-B model, in which some events are marked as fair, into an equivalent

plain Event-B model. A theoretical justification is given. A similar transformation was

proposed in [3], but does not lead to “equivalent” computations. The contribution of

this paper is this new transformation.

2 Motivation

Consider the event system in Fig. 1, which is taken from [3]. Both events L and R have

no guards and are thus always enabled. Both events are specified to be fair. A schedule

of an event system is a sequence of names of events that can occur in an execution

(which is going to be made precise shortly). A schedule can be a finite or an infinite

sequence; in the example all possible schedules are infinite. For example, a schedule

could start with:

LRRLRLLLRR . . .

Fairness of L implies that a schedule cannot contain an infinite sequence of R’s. A

schedule is bounded if for some natural number k, no fair event is neglected more than

k times consecutively. Finitary fairness of an event system means that all schedules are

bounded. For the example, a schedule in which the number of consecutive R’s continues

to increase is not bounded:

LRLRRLRRRLRRRRL . . .

Suppose the events belong to different processes. A scheduler is an automaton with

event names as the alphabet. For above schedule to be generated by an automaton, the

automaton would need to count the number of R’s and would need an unboundedly

large state. Conversely, if the schedule is bounded, only finite state is needed. Thus the

invariants

x ∈ BOOL

y ∈ N
initialisation

x, y := TRUE, 0

fair event L

x := NOT x

fair event R

y := y + 1

Fig. 1. Event system with two fair events.

bounded schedules are exactly the languages of finite state schedulers. Since any prac-

tical scheduler uses a fixed amount of memory, finitary fairness is not only an adequate,

but a more precise abstraction from scheduling policies than standard fairness.

Suppose that the events are executed on different processors; the speeds of the pro-

cessors may differ and may vary. Finitary fairness implies that the speeds of the pro-

cessors may not drift apart unboundedly. Alur and Henzinger formalize this claim in

terms of timed transition systems [3]. Again, finitary fairness allows a more precise

abstraction of multiprocessor systems.

Since finitary fairness is more restrictive than standard fairness, one can expect more

properties to hold under finitary fairness. For example, the event system of Fig. 1 will

eventually reach a state in which x = TRUE ∧ ¬powerOf2(y) holds: if this property

would always be false, then L must be scheduled only when powerOf2(y) holds, for

increasing values of y, but that is impossible in a bounded schedule.

The finitary restriction can be used for modelling unknown delays of timed systems.

In a distributed consensus, processes have to agree on a common output value, but each

process may fail and not deliver a value. This can be solved using finitary fairness, as

shown in [3], but cannot be solved using standard fairness only [4].

Proof rules for the termination of events in presence of fairness can get involved:

not all events must decrease the variant. It is sufficient if events that don’t decrease the

variant keep those fair events that do decrease the variant enabled, as by fairness these

will eventually be taken. The proof rule requires that an invariant is specified for each

event, e.g. as used in [5] for the refinement of action systems. This would require the

proof rules of Event-B to be significantly expanded.

The alternative that we follow is to transform an event system by replacing fair

events with regular events and introducing an explicit scheduler [6, 2]. The standard

proof rules of Event-B can then be applied. Figure 2 illustrates this. The event system

of (a) is supposed to eventually terminate as x is set initially some natural number

and fair event R decrements x. In the transformed event system fairness is achieved by

introducing a counter c that is decremented each time the (regular) event L is taken.

This eventually forces R to be taken as L becomes disabled when c reaches zero. When

R is taken, c is set again to a new positive value. In (b) the counter can does not have an

upper bound, but still event R will eventually be taken; this ensures standard fairness. In

invariants

x ∈ N

initialisation

x :∈ N

event L

when

x > 0

then

skip

end

fair event R

when

x > 0

then

x := x − 1

end

invariants

x ∈ N
c ∈ N

initialisation

x :∈ N
c :∈ N1

event L

when

x > 0

c > 0

then

c := c − 1

end

event R

when

x > 0

then

x := x − 1

c :∈ N1

end

invariants

x ∈ N
c ∈ 0 .. b

initialisation

x :∈ N
c :∈ 1 .. B

event L

when

x > 0

c > 0

then

c := c − 1

end

event R

when

x > 0

then

x := x − 1

c :∈ 1 .. B

end

(a) (b) (c)

Fig. 2. (a) Event system with fair event R. (b) Counter c is used to ensure finitary fairness of R.

(c) Counter c is used to ensure standard fairness of R

(c) this counter be at most B, hence B gives an upper bound of how many times event R

can be ignored before it must be taken; this ensures finitary fairness.

A further reason for preferring finitary fairness is that it can simplify proofs of

termination. For a set of events to terminate, there must exist a variant, a function from

the state to a well-founded domain, and all events have to decrease the variant. For

proving the termination of the event system in Fig. 2 (c), following variant with natural

numbers as the well-founded domain is sufficient:

variant

x ∗ (B + 1) + c

Event L decreases the variant by decreasing c. Event R decreases the variant by decreas-

ing x; while c may increase, as c is at most B, the variant is still decreased. A similar

variant cannot be given for the event system in (b). Natural numbers as the well-founded

domain are not sufficient with standard fairness.

3 Fair Event Systems

A fair event system P is a structure (Q, E,T, I, F) where

– Q is a set of states,

– E is a set of events,

– T is a set of transitions, relations over Q × Q indexed by E,

– I is the set of initial states, I ⊆ Q,

– F is a set of fair events, F ⊆ E

We write T (e) for the transition relation of event e. A computation p of P is a finite or

infinite maximal sequence of states and events alternating, written

p = σ0

e0

−→ σ1

e1

−→ σ2

e2

−→ · · ·

such that σi ∈ Q, ei ∈ E, σ0 ∈ I, and σi 7→ σi+1 ∈ T (ei). That is, states σi and σi+1 must

be in relation T (ei). A computation is a finite sequence, or is terminating, if it ends with

a state sn that is not in the domain of any transition relation, ∀e ∈ E ·sn < dom(T (e)).

Otherwise it is an infinite sequence, or is nonterminating.

The schedule of a computation p is the projection of the sequence p to only the

events; the trace of p is the projection of p to only the states, i.e. for p as above:

schedule(p) = e0e1e2 . . .

trace(p) = σ0σ1σ2 . . .

We write schedulei(p) for ei, the i-th event of computation p and tracei(p) for σi, the

i-th state of computation p. The guard of an event is the domain of its relation, grd(e) =

dom(T (e)); an event is enabled in a state if the state is in its guard, otherwise disabled.

A computation p is bounded if it is finite or if for some k ∈ N, for all fair events

e ∈ F, event e cannot be enabled for more than k consecutive states without being

taken, formally:

∀i ∈ N·∃ j ∈ i .. i + k·schedule j(p) = e ∨ trace j(p) < grd(e)

When considering finitary fairness, we are interested only in the bounded computations.

This definition of fair event systems generalizes that of transitions systems in [3] by

indexing the transitions with the events and by allowing only some events to be fair.

An Event-B model defines the set of states through the variables and invariants,

the transition relations through guards and generalized substitutions, and the initial

states through the initialization. Thus fair event systems are an abstract representation

of Event-B models, in which we additionally allow some events to be specified as fair.

4 The Finitary Weakly Fair Transformation

Let P = (Q, E,T, I, F) be a fair event system. We assume that E = {e1, . . . , en} and that

F is the subset {e1, . . . , em}with m ≤ n. The finitary weakly fair transformation FWF(P)

ensures finitary fairness by introducing counter variables c1, . . . , cm, one for each fair

event. The counters indicate the priority of events. Once the counter of an event reaches

zero, that event must be tested: if it is enabled, it must be taken, otherwise it is skipped.

The counters are kept distinct, therefore only one counter can be zero. The counters

are initialized to values between 1 and B. On every transition, the guards of all fair

events must be tested: if an event is enabled, its counter must be decreased, otherwise

its counter is reset to a value between 1 and B. Formally, FWF(P) = (Q′, E,T ′, I′,∅)

where for some B ≥ m:

– Q′ = Q × Nm

– For every event ei ∈ E, (σ, c1, . . . , cm) 7→ (σ′, c′
1
, . . . , c′m) ∈ T ′(ei) if:

1. if ei is a regular event, ei ∈ E − F, then

σ 7→ σ′ ∈ T (ei) ∧

(∧ j ∈ 1 ..m · c j > 0∧ ((σ ∈ grd(e j)∧ c′
j
= c j − 1)∨ (σ < grd(e j)∧ c′

j
∈ 1 .. B)))

2. if ei is a fair event, ei ∈ F, then

σ 7→ σ′ ∈ T (ei) ∧

(∧ j ∈ 1..m−{i}·c j > 0∧((σ ∈ grd(e j)∧c′
j
= c j−1)∨(σ < grd(e j)∧c′

j
∈ 1..B)))

∨

(ci = 0 ∧ σ < grd(ei) ∧ σ
′ = σ ∧ c′

i
∈ 1 .. B)

3. distinct(c′
1
, . . . , c′n)

– I′ is such that (σ, c1, . . . , cn) ∈ I′ if
1. σ ∈ I ∧ (∧ j ∈ 1 .. m · c j ∈ 1 .. B)
2. distinct(c1, . . . , cn)

All counters of the finitary fair transformation are between 0 and B and are distinct,

i.e. for all computations p of FWF(P) and for all natural numbers i with 0 ≤ i <
|trace(p)|:

tracei(p) = (σ, c1, . . . , cn)⇒ c1 ∈ 0 .. B ∧ . . . ∧ cn ∈ 0 .. B ∧ distinct(c1, . . . , cn) (1)

This property follows by induction over i: with FWF(P) = (Q′, E,T ′, I′,∅) the initial

states I′ satisfy (1) and transitions T ′ preserve (1). In the transformation of fair events a

case analysis is needed: when the counter of an event reaches zero, the event’s transition

is take if enabled, otherwise not. This case analysis leads to splitting a fair event E into

E and E′ in the transformed system. For a fair event system P, we call the schedules

of the computations of P simply the schedules of P and the traces of computations of

P simply the traces of P. The schedules of P and FWF(P) are necessarily different, as

FWF(P) contains the auxiliary primed events. The restriction of a sequence s onto a set

S is the subsequence of s containing only elements of S . Following theorem justifies

the finitary fair transformation.

Theorem 1. For a fair event system P, the schedules of FWF(P) restricted to the events

of P are exactly the bounded schedules of P.

References

1. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language, in RODIN Project Deliverable 3.2.

(2005)

2. Back, R.J.R.: Refinement calculus, part ii: Parallel and reactive programs. In deBakker, J.W.,

deRoever, W.P., Rozenberg, G., eds.: REX Workshop on Stepwise Refinement of Distributed

Systems - Models, Formalisms, Correctness. Lecture Notes in Computer Science 430, Mook,

The Netherlands, Springer Verlag (1989) 67–93

3. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6) (1998)

1171–1194

4. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty

process. Journal of the ACM 32 (1985) 374–382

5. Back, R., Xu, Q.: Refinement of fair action systems. Acta Informatica 35(2) (1998) 131–165

6. Apt, K.R., Olderog, E.R.: Proof rules and transformations dealing with fairness. Sci. Comput.

Program. 3(1) (1983) 65–100

Specifying Safety Requirements for a Railway
Interlocking System1

Colin Snook,

University of Southampton,

Southampton,
U.K.

cfs@ecs.soton.ac.uk

Abstract. We illustrate the use of UML-B to specify safety requirements in a
railway interlocking system. Starting from a list of documented hazards, the
example uses three refinement levels to concisely specify what is meant by a
safe interlocking system. The refinements firstly introduce the basic domain
concepts involved in an unsafe railway system, then document assumptions
about the system that are relied upon to mitigate hazards, and finally specify the
safety requirements that the proposed system must meet in order to avoid
hazards. Hence, the model is progressively constrained from an unsafe one to a
safe one.

Keywords: Safety Requirements, Refinement, UML-B, Event-B.

1 Introduction

Train Interlocking systems control railway signals and points so that trains
travelling upon a rail network are controlled to reach their destinations without
collision. The fact that the interlocking system has the responsibility for avoiding
collisions means it is a safety-critical control component. It is usual for a hazard
analysis to be performed when a safety-critical control component is about to be
designed. The purpose of a hazard analysis is to examine all the possible kinds of
accidents that could result in injury to humans, analyse the scenarios that could lead to
those accidents and thereby identify hazards which must be avoided.

It is possible that some of the identified hazards may be outside the scope of the
proposed control component. Others are hazards that the control component must
avoid and lead to ‘safety requirements’. In the first case it is important to precisely
define the limitations, assumptions and scope of the control component and in the
second it is important to identify the safety requirements.

In this paper we illustrate how a hazard analysis could be used to drive abstract
formal modelling that segregates these two important goals. The model could then be

1 This work is derived from a deliverable of the EU framework 7 project, INESS (INegrated

European Signalling System) [No: 218575]. It uses notations and tools developed in the EU
framework 7 project, Deploy.

used via refinement to elaborate a specification and design of the control component
that is proven to be safe according to the safety requirements.

The model uses the UML-B [1] notation which is a graphical front-end for the
Event-B [2] language and tools. The Rodin tool set [2] includes a prover which
automatically attempts to prove properties about a model whenever it is saved. The
properties that are proved include invariant preservation (which may include the
safety invariants we are interested in here as well as simple typing properties) and that
a refinement behaves in a way that was permitted by the model it refines. Proofs
might not succeed either because the model is incorrect or because the proof is too
difficult for the automatic prover. The Rodin toolset includes an interactive prover
where the user can attempt to guide the automatic prover.

2 Formal Model of a Safe System

In this section we introduce an example formal model to formalise the top level safety
requirements for railway interlocking systems. The formalisation process starts from
an existing hazard analysis [3] developed for an interlocking system.

The model consists of the following 3 refinement steps:
• Introduce domain concepts required to describe the 6 hazards above. The idea of

this first stage is to describe what would happen if the system was not made to
behave safely. If we animated this model we would observe trains crashing and
being derailed. The point of this stage is just to introduce the minimal ‘vocabulary’
that will be used in later models;

• Introduce assumptions relating to domain concepts not controlled by the
interlocking systems and limitations of the interlocking system. The point of this
stage is to explicitly describe the safety properties that won’t be dealt with by the
interlocking system. This can include assumptions we make about things outside
the control of the interlocking system, for example, the actions of a driver or
hazards that the interlocking system cannot address and therefore have to be risked.
By modelling these things explicitly we are forced to consider them and allow
domain experts the chance to object to them;

• Introduce safety requirements of the interlocking system. This final stage addresses
the safety requirements that the interlocking system must satisfy. They are
expressed as invariant properties that must always hold and a behavioural model
that satisfies these invariants. This behavioural model could be further refined until
an interlocking system is represented. The Rodin proof tools will ensure that this
interlocking system is a safe system.

Fig. 1. The components in the model: three refinement steps and a context.

This model is deliberately at a high level of abstraction. It does not describe the
functionality of an interlocking system. The intention is to describe just enough detail
in order to express the safety hazards that must be avoided. This is done using some
abstract state variables and some events that alter those variables. These events are
then given guards (conditions which are necessary before the event can occur). In this
way, constraints on the behaviour are modelled in a way that is expected to satisfy the
safety requirements. The safety requirements are expressed as invariants (properties
of the state variables that should hold at all times). It is then automatically proven2,
using the Rodin verification tools, that no sequence of events can reach a state that
violates the invariants.

2.1 Domain Concepts

At the first level we model the domain in (only just) sufficient detail to be able to
express the hazards. In this level we just introduce the domain concepts (state-space)
and do not constrain the system to behave safely.

For H1, we need a set of trains, a set of track segments and a relationship occupies
between them. Since implicitly, trains move about on the track, we allow trains to
change their occupies value to the next track (next is introduced in H2 below).

For H2, we need the concept of changing points. We model this by giving track a
‘next’ relationship to another track and allowing it to change. I.e. all track segments
are potentially points although, in reality, most never change.

For H3, we give track a Boolean attribute, ‘obstructed’ and allow this to be altered
non-deterministically.

For H4, we give ‘train’ a Natural attribute, ‘speed’ and allow this to change non-
deterministically. Although not made explicit in the hazard, the concept ‘safe speed’

2 One proof obligation of the feasibility of an initialisation required a small amount of

interactive assistance.

depends on the occupied track segment, so we also introduced a constant attribute
‘safeSpeed’ for the track. This is done in the associated context.

Fig. 2. Specification for the event 'setOccupies'. The value of the parameter trackVal is non-
deterministically chosen from its type (here ‘track’) but this choice is further constrained by the
guards to be the ‘next’ track from the one the train currently occupies. [n.b. EventKind is
discussed in a later example. Witness and Convergence concern refinement of parameters and
new events, neither of which are used in this document].

Fig. 3. Domain Context. In UML-B, any explicitly defined sets and constants are specified in a
separate component called a context. Here, we just need to specify that there is a set of track
sections called ‘TRACK’ and each one has a constant which represents the safe speed for that
track section. For modelling convenience we also define special instance of TRACK called
‘nullTrack’ to represent non-existent track.

For H5, we give track a Boolean attribute ‘failed’ and allow this to change non-
deterministically.

For H6, we give track a Boolean attribute ‘incorrect’ and allow this to change non-
deterministically. Note that we take a slightly different interpretation of ‘incorrect’
than in the hazard analysis. The hazard analysis seems to treat incorrect as a general
term including track that is occupied, obstructed or is in use by people or cars. The
first two meanings are already covered by H1 and H3 respectively. Since people or
cars using the track are either treated as obstructions (H3) or are using a track device
that is controlled by the interlocking system. Therefore, we reduce incorrect to mean
track sections that have an associated device that is in a state where it cannot be safely
occupied. This may be an incorrect interpretation but through discussion with domain

experts this could be clarified and fixed if necessary. An important outcome of
formalising the safety requirements is that it forces us to confront these ambiguities
and encourages them to be clarified.

Note that, for modelling convenience, we treat track as a fixed set of instances with
a configuration whereas we treat trains as a variable set of instances so that the train’s
attributes can be easily initialised to a valid and consistent state, which is refined in
later steps.

For this domain model, seventeen proof obligations were generated by the Rodin
tools. Of these sixteen were discharged automatically and one required some
interactive assistance.

Fig. 4. Specification of the newTrain event which adds a train to the system. The EventKind is
set to ‘constructor’ to represent this behaviour. A parameter trackVal picks any track segment
(other than nullTrack) and this is used to initialise the train’s track position.

Fig. 5. The Domain model shows the main features needed to consider the given hazards. This
consists of the two classes, train and track and their attributes, associations and events. Note
that the instances of class track are linked to the set TRACK that was defined in the context.

2.2 Excluded from Scope of Interlocking System

In the next level we introduce assumptions about the things that are not covered by
our interlocking system. This includes things that are outside of the scope of
interlocking and cannot be influenced by it, as well as limitations of the interlocking
system.

2.2.1 Assumptions
For H3, obstacles are not detected by the interlocking system. Therefore we assume
that no obstacles will ever be present by introducing a guard into the ‘setObstructed’
event so that ‘obstructed’ is only ever set to FALSE. (In the previous level, boolVal
was the non-deterministically selected Boolean parameter representing the new value
of obstructed).

Fig. 6. Specification for the event setObstructed. The guards force the new boolean value of
obstructed to always be false.

For H4, speed is outside of the scope of the interlocking system. There is nothing
in the interlocking system that can influence the speed of the train and we therefore
make the assumption that the driver only selects safe speeds. We implement this
assumption by introducing a guard into the setSpeed event that restricts the new speed
(natVal) to be less than the safe speed of the currently occupied track.

natVal < thisTrain・occupies・safeSpeed

We also assume the driver will slow down before moving the train into a new track
that has a safe speed limit that is lower than the current train speed. We implement
this assumption by introducing a guard into the setOccupies event that prevents the
new track segment being occupied unless the train’s current speed is lower than the
new track segment’s safe speed.

thisTrain・speed < thisTrain・occupies・next・safeSpeed

2.2.1 Limitations
For H5, although the interlocking system can prevent a train from moving to a track
section that is failed, it cannot prevent failures from occurring. Therefore, it is a
limitation of the system that it cannot prevent a track from failing when it is already
occupied. It is assumed that this is so unlikely that it can be assumed not to occur. (If
necessary, it could be made more unlikely by providing redundant systems). To
represent this assumption we introduce a guard into the setFailed event so that track
sections cannot fail while they are occupied. Note that the guard only prevents
occupied track from failing, it does not prevent failures from being fixed (boolVal =
FALSE)3.

thisTrack ∉ ran(occupies) ∨ boolVal = FALSE

2.2.2 Invariants
We can now introduce the safety conditions for these hazards as invariants on the
properties of a train. (Since they are placed within the class train, they apply to all
instances of trains, i.e. universal quantification is implicit for all thisTrain belonging
to train).

For H3, we introduce an invariant to say that an occupied track is never obstructed.

thisTrain・occupies・obstructed = FALSE

For H4, we introduce an invariant to say that a train’s speed is always less than the
safe speed of the track it occupies.

thisTrain・speed < thisTrain・occupies・safeSpeed

Initially the Rodin tools generated twelve proof obligations for this stage of the
model. At the first attempt, the automatic prover, failed to prove two proof
obligations. Examining these two proof obligations (e.g.
obstructed(next(occupies(thisTrain)))=FALSE) we observed that
they both concern the invariant associated with H3. We are fairly confident that this
invariant is satisfied since we added a guard to ensure that all track segments are
always unobstructed. However, the prover doesn’t know this information. We could
attempt to assist the prover interactively but in this case it is easier to add an invariant
to the model to give the prover the additional information it needs so that it can break
the proof in to smaller steps. The prover will first prove that this new invariant is true
and then use it to prove H3. After adding this invariant fifteen proof obligations were
generated by the Rodin tools but all were discharged automatically.

thisTrack・obstructed = FALSE

3 Range (ran) of a function is the set of all target instances that are currently mapped to by the

function. Hence ran(occupies) is the set of track segments that are occupied by trains.

Fig. 7. The refined model consists of the two refined classes with all their previous attributes
and associations inherited (i.e. retained) and some new invariants added.

By omission we assume that the remaining events are fully controlled by the
interlocking system that is yet to be introduced. More explicitly, the interlocking
system has full control over when trains can change their occupancy of track sections,
when points can change (the value of next) and when a track section becomes
‘incorrect’.

2.3 Safety Requirements

In this level we introduce the safety requirements for the interlocking system as
invariants and then constrain our model with additional guards needed to satisfy them.

For H1, we introduce an invariant to say that occupies is injective. (An injective
function is one where at most one element of the domain maps to each element in the
range. I.e. only one train occupies a particular track element).

occupies ∈ train ↣ track

For H2, we introduce an invariant to say that the track occupied by a train has the
same value for next as it did when the train first occupied the track. Note that, since
this is a temporal property, we need to introduce some extra history data,
nextWhenOccupies in order to express this as an invariant.

thisTrain・nextWhenOccupies = thisTrain・occupies・next

For H5, we introduce an invariant to say that the track occupied by a train is not
failed.

thisTrain・occupies・failed = FALSE

For H6, we introduce an invariant to say that the track occupied by a train is not
incorrect.

thisTrain・occupies・incorrect = FALSE

We now need to constrain the behaviour of our model so that it satisfies these
invariants.

For H1, we introduce a guard to setOccupies that represents the requirement that
the interlocking system will prevent a train from moving to a track section that is
already occupied.

thisTrain・occupies・next ∉ ran(occupies)

For H2, we introduce a guard to setNext that represents the requirement that a
point cannot change while it is occupied.

thisTrack ∉ ran(occupies)

For H5, we introduce a guard to setOccupies that represents the requirement that
the interlocking system will prevent a train from moving to a track section that is
failed.

thisTrain・occupies・next・failed = FALSE

For H6, we introduce a guard to setOccupies that represents the requirement that
the interlocking system will prevent a train from moving to a track section that is
‘incorrect’.

thisTrain・occupies・next・incorrect = FALSE

For H6, we also introduce a guard to setIncorrect that represents the requirement
that the interlocking system will prevent a track section from becoming incorrect
while it is occupied.

thisTrack ∉ ran(occupies) ∨ boolVal = FALSE

For this stage of the model the Rodin tools generated twenty eight proof
obligations, all of which were discharged automatically.

The hazards make no mention of trains failing to stop at the end of a line. Hence
we assumed in our model that this is not a safety requirement. Of course, this could be
an omission from the hazards but because our model faithfully recreates the given
hazards in this respect, none of the verification tools detect that there is a problem.
Although the verification tools can detect many internal consistency problems, they
cannot decide whether the model is what the users want. Validation of the model
could be addressed by animating the model in the presence of domain experts using
the Rodin animation tools. (There are two animation plug-ins for Rodin, ProB and
AnimB). If the animation reveals that trains are supposed to stop when there is no
next track to go to, suitable guards and invariants could be added to prevent this
hazard.

Fig. 8. The final refinement consists of the two refined classes with an additional association to
represent the value of next when a track is first occupied by a train. The four safety invariants
have been added to the class train.

3 Summary

We briefly summarise what has been achieved with this model.
The model is intended as an illustration and may require revision to make it more

realistic. For example the model does not consider the possibility of track being bi-
directional. The model illustrates how some example hazards can be used to derive
safety requirements. To derive safety requirements it was first necessary to introduce
some concepts that are present in the domain. We also made explicit which hazards
are not covered by an interlocking system. The four invariants given in Figure 8 are a
formalisation of the relevant safety requirements in terms of these domain concepts.

In addition, we introduced some very abstract behaviour and proved that this
behaviour satisfies the formalized safety requirements. By modelling the safety
requirements and a behaviour that is safe, and proving this to be true, we gain
confidence that the safety requirements are consistent. By keeping the model simple
and abstract we gain confidence that the safety requirements are correct. We should
also validate the model by animation.

Using refinement (according to the Rodin tools upon which UML-B is based) it
would be possible to make this abstract model more detailed until it describes an
interlocking system. The Rodin tools force us to prove that the more detailed model is
a proper refinement of this abstract one and hence that the interlocking system also
satisfies these safety requirements.

Acknowledgments. We would like to thank our colleagues in the INESS project who
provided valuable feedback on the models and overall approach during its
development.

References

1. Snook, C. and Butler, M. : UML-B and Event-B: an integration of languages and tools. In:
The IASTED International Conference on Software Engineering - SE2008, 12-14th
February 2008, innsbruck, Austria.(2008)

2. Event-B and the Rodin Platform, http://www.event-b.org/index.html Date Last Accessed:
22/09/2009

3. Schacher, M. (2008). Mini-interlocking system - hazard's model and safety requirements.
UIC extranet.

Formal Development and Assessment of
Dependable Control Systems

Elena Troubitsyna1

Åbo Akademi University, Turku, Finland

1 Introduction

Dependability is degree of reliance that can be justifiably placed on a computer-
based system [1]. It is a multi-facet system characteristic that encompasses safety,
reliability, availability, maintainability and security. Dependability is impaired
by faults that might propagate to a system level and result in a system failure.
If a failure occurs then the system might cease to provide its services or provide
them incorrectly. A set of techniques known as means for dependability aims
at mitigating consequences of fault occurrence as well as avoiding and removing
faults during the system design. Means for dependability include fault avoidance,
fault tolerance, fault removal and fault forecasting. We argue that by interfacing
refinement process with these techniques we would significantly enhance system
development process. Next we present several examples to support our argument.

2 Fault Avoidance and Fault Tolerance via Formal
Modelling

Fault avoidance is achieved via an application of rigorous design and verification
methods usually called formal methods. Formal methods provide us with power-
ful mathematical foundations for establishing functional correctness of complex
systems. The advances in expressiveness, usability and automation of these tech-
niques enable their use in the design of wide range of complex dependable sys-
tems. For instance, the B Method [2] and its extension Event-B [3] have proven
their worth in several large industrial projects [4, 5].

Application of formal methods helps us to gain confidence in building correct
systems. On the other hand, to guarantee dependability we need to build not
only correct but also fault tolerant systems, i.e., systems that also are able to
cope with faults of their components. Obviously, this goal is attainable only
if fault tolerance mechanisms constitute an intrinsic part of system behaviour.
In [6] we have proposed a refinement-based approach to development of fault
tolerant control systems.

Essentially our approach allows us to express and prove two important facts
about system behaviour. We ensure that controlling software, called a controller,
1) does not contribute to failure of the system by forcing it from a safe to an
unsafe state and 2) prevents a critical system failure by forcing the system from

an unsafe to a safe (but probably non-operational) state. The first goal essentially
means that the controller should ensure safety of a fault-free system and not
introduce failures into it. The second goal states that the controller should be
able to detect failures of other components and cope with them by returning the
system to a safe state.

We demonstrated that the development of systems by stepwise refinement
in B facilitates achieving these goals. Indeed, since the development starts at a
high level of abstraction, the reasoning about safety at such an abstract level
allows us to formulate safety properties in a clear and succinct way. The formal
development by refinement ensures that the final implementation adheres to the
initial abstract specification. This gives us means to guarantee that safety is also
preserved at the implementation level. To ensure that safety is not jeopardised
in the presence of faults we need to ensure correctness of fault tolerance mecha-
nisms. Although fault tolerance mechanisms usually constitute a significant part
of controller (sometimes up to 60% of program code), fault tolerance mecha-
nisms are often introduced only at the implementation stage and in a rather
ad-hoc fashion. However, ad-hoc approaches do not guarantee that the system
would detect all possible errors and implement adequate error recovery. Hence
behaviour in present of faults, error detection and recovery should be considered
already at the abstract specification level.

In [7, 8] we demonstrated how to use safety analysis techniques to extract
the requirements for error detection and recovery as well as to formulate safety
invariant. We proposed an integral approach for incorporating results of Fault
Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA) into the
formal specification. In our approach statecharts facilitate construction of the
control system and serve as a basis for structuring and integrating results of
FTA and FMEA. The use of statecharts as a communication media between
safety and software engineers assists the process of requirements discovery and
supports requirements traceability.

Refinement can be seen as a formalized model-driven development approach
that allows us to build systems correct and dependable by construction. It can
be described as a process of model evolution as follows:

1. Abstract specification of entire system: the initial specification captures re-
quirements for routine control, models failure occurrence and defines safety
property as a part of its invariant

2. Specification with refined error detection mechanism: the abstract specifi-
cation is augmented with the representation of failures of the components,
more elaborated description of plant’s dynamics and detailed description of
error detection.

3. Specification of the system supplemented with redundancy: the specification
is refined to describe behaviour of redundant components and control over
them. The error detection mechanism is enhanced to distinguish between
criticality of failures.

4. Decomposition: the specification of overall system is split into specifications
of the controller and the plant.

5. Implementation: executable code of controller is produced.

Every evolution step of our development is a refinement of the initial formal
specification in B. We argue that the system developed by an application of the
proposed approach have a high degree of dependability because of the underlying
complete formal verification within a logically sound framework.

3 Reliability Assessment for Fault Forecasting

While developing system by refinement, we start from a specification that ab-
stracts away from low-level design decisions yet defines the most essential be-
haviour and properties of the system. While refining the abstract specification,
we gradually introduce the desired implementation decisions that initially were
modelled non-deterministically. In general, there are might be several ways to
resolve non-determinism, i.e., there are might be several possible implementa-
tion decisions that adhere to the abstract specification. These alternatives are
equivalent from the correctness point of view, i.e., they faithfully implement
functional requirements. Yet they might be different from the point of view of
non-functional requirements, e.g., reliability, performance etc. Early quantitative
assessment of various design alternatives is certainly useful and desirable. How-
ever, within the current refinement frameworks there are no scalable solutions
for that [9].

In [10] we proposed to integrate probabilistic model checking [11] into step-
wise development in Event-B to enable reliability assessment already at the de-
velopment stage. Reliability is a probability of system to function correctly over
a given period of time under a given set of operating conditions [12–14]. Obvi-
ously, to assess reliability of various design alternatives, we need to model their
behaviour stochastically. We demonstrated how to augment (non-deterministic)
Event-B models with probabilistic information and then convert them into the
form amenable to probabilistic verification. Reliability is expressed as a prop-
erty of converted specification that we verify by probabilistic model checking.
For instance, reliability assessment can guides a refinement step that aims at
introducing a fault tolerance mechanism into the system specification.

To demonstrate validity of our approach, we performed several experiments
that aimed at comparing results obtained via model checking with the analyt-
ical solutions. Since the obtained results matched, we argue that the proposed
approach to assessing reliability can be safely applied in practice.

Our approach can also be used to demonstrate that the system adheres to the
desired dependability levels, for instance, by proving statistically that the prob-
ability of a catastrophic failure is acceptably low. This application is especially
useful for certifying safety-critical systems. Furthermore, reliability assessment
allows us to predict time when the system should be automatically or manually
reconfigured to ensure that the predefined reliability level is maintained.

Essentially our approach to development and assessment of periodic depend-
able system can be described by the following guidelines:

1. Abstractly specify system behaviour. To achieve this create an abstract
model of system behaviour during a single iteration and then define logi-
cal criterion that distinguishes correct system behaviour from incorrect one.
Strengthen the guards of events to ensure that then criterion is not satisfied
then system deadlocks

2. Refine system to introduce the required implementation details. If a refine-
ment step introduces representation of unreliable component into the system
specification then explicitly model fault-free behaviour as well as faults. At
each refinement step reformulate criterion in terms of newly introduced vari-
ables and functionality. In the invariant explicitly define connection between
more abstract and more concrete representation of criterion and prove refine-
ment to ensure that refined system does not introduce additional deadlocks.

3. To evaluate various refinement alternatives or impact of unreliable compo-
nents on the system reliability convert Event-B specification into its PRISM
counterpart. Explicitly define synchronising events. Replace non-deterministic
representation of behaviour of unreliable components by their probabilistic
counterpart. Use component reliability to define the corresponding probabil-
ity. Evaluate property

P=?[G ≤ T criterion]

to evaluate reliability.
4. Continue refinement process until the desired implementation level is achieved.

4 Conclusions

We see the main benefit of integrating refinement process with the means for
dependability in merging reasoning about functional correctness with the explicit
reasoning about dependability. It is widely accepted that only dependability-
explicit development process can ensure high degree of system dependability
and its robustness. We believe that refinement constitutes a suitable basis for
conducting system construction hand-in-hand with dependability analysis.

References

1. J.-C. Laprie. “Dependability: Basic Concepts and Terminology,” Springer-Verlag,
Vienna, 1991.

2. J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 2005.

3. J.-R. Abrial, “Extending B without changing it (for developing distributed sys-
tems),” in First Conference on the B method, H. Habiras, Ed. IRIN Institut de
recherche en informatique de Nantes, 1996, pp. 169–190.

4. Rigorous Open Development Environment for Complex Systems (RODIN), iST
FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

5. D. Craigen, S. Gerhart, and T.Ralson, “Case study: Paris metro signaling system,”
in IEEE Software, 1994, pp. 32–35.

6. L. Laibinis and E. Troubitsyna. “Refinement of fault tolerant control systems in B. ,
” in In Proc. of SAFECOMP’2004 – International conference on Computer Safety,
Reliability, and Security, LNCS 3219, M. Heisel, P. Liggesmeyer, S. Wittmann
Eds., Springer-Verlag, pp.254-268, Potsdam, Germany, September 2004.

7. E. Troubitsyna. “From System Safety Analysis to Software Specification.,” in In
Proc. of International Workshop on Requirements for High Assurance Systems
RHAS’04. Kyoto, Japan, IEEE Computer Society, pp.41-49, September 2004.

8. E. Troubitsyna. “Elicitation and Specification of Safety Requirements., ” in Proc.
of The Third International Conference on Systems - ICONS’08. IEEE Computer
press. April 2008.

9. A. K. McIver, C. C. Morgan, and E. Troubitsyna, “The probabilistic steam boiler:
a case study in probabilistic data refinement,” in Proc. International Refine-
ment Workshop, ANU, Canberra, J. Grundy, M. Schwenke, and T. Vickers, Eds.
Springer-Verlag, 1998.

10. A. Tarasyuk, E. Troubitsyna, and L. Laibinis, “Reliability assessment in Event-B,”
Turku Centre for Computer Science, Tech. Rep. 932, 2009.

11. M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability analysis
by probabilistic model checking,” in Control Engineering Practice, 2007, pp. 1427–
1434.

12. N. Storey, Safety-Critical Computer Systems. Addison-Wesley, 1996.
13. A. Villemeur, Reliability, Availability, Maintainability and Safety Assessment.

John Wiley & Sons, 1995.
14. P. D. T. O’Connor, Practical Reliability Engineering, 3rd ed. John Wiley & Sons,

1995.

Practical Experiences Constructing Working Virtual

Machines

 Stephen Wright

Department of Computer Science, University of Bristol, UK

stephen.wright@bris.ac.uk

1. Introduction

The Instruction Set Architecture (ISA) of a computing machine is the definition of

the binary instructions, registers, and memory space visible to an executing program.

MIDAS (Microprocessor Instruction and Data Abstraction System) is an example

ISA, intended for formal construction using the Event-B method [4] through to a

working Virtual Machine (VM) implemented in software [6,8].

Construction of an ISA capable of executing compiled C programs necessitates an

ISA of sufficient size and complexity to provide a useful test article for the tools and

techniques needed for formal construction of practical industrial applications. The

MIDAS project can therefore inform future development of the Event-B notation and

Rodin toolset [1].

2. Motivation and Objectives

The motivation for the use of Formal Methods for construction of the MIDAS ISA

was a desire to systematically derive the exact behavior (i.e. modification of machine

state) for all possible operations during program execution. As well as identification

of state transitions during normal operation, identification of all possible error

conditions is of particular importance, as these are rarely explicitly specified in

conventional (i.e. informal) specification documents. Explicit specification of all

conditions and their resulting behaviors is needed for deterministic behavior in safety-

critical systems, defending against program errors introduced by causes such as

coding errors, compiler bugs or corruption of hardware at run time.

The MIDAS ISA was developed specifically to be representative of typical

microprocessor ISAs, but using a minimal number of defined instructions in order to

make a complete refinement practical. Therefore, a goal of creating an ISA capable of

executing C programs generated by a suitable compiler was established.

The ISA was also intended as a test article for a wider objective: the construction

of a generic model capable of application to multiple ISAs, and its demonstration by

the construction of two variants of MIDAS. A final objective was the refinement to a

level capable of auto-generation to C source code, for compilation to a working

Virtual Machine.

3. The MIDAS ISA

In order to achieve a simple but representative ISA capable of executing compiled

programs, the MIDAS ISA has thirty-four instructions falling into eight categories.

No-operation (one instruction) performs no function except incrementing the Program

Counter (PC). Fetch (six instructions) moves data from the memory system to the

register file. Store (four instructions) moves data from the register file to the memory

system. Single-operand operations (two instructions) perform transformations of

single data elements within the register file. Dual-operand operations (thirteen

instructions) perform combinations of two data elements within the register file.

Comparisons (five instructions) perform comparisons of two data elements within the

register file. Jumps (two instructions) perform conditional modification of the PC.

Halt (one instruction) stops machine execution without error.

ISAs with register files implemented as randomly accessible register array

machines are now the most common form of hardware-implemented microprocessors,

but stack machines are still used, particularly in the field of VMs not intended for

hardware implementation. Therefore, in order to provide ISAs representative of both

mechanisms and demonstrate the flexibility of the methodology, two variants of the

MIDAS ISA exist. In order to simplify development of decoding mechanisms, both

MIDAS variants employ the same instruction codes to identify comparable

instructions.

4. The MIDAS Model

The Event-B model may be considered to consist of two parts: the generic

description of properties common to most ISAs, and a further refinement to an

example ISA. The generic part is incrementally constructed from an initial

abstraction, sufficiently simple to be trivially understandable and capable of multiple

refinements even at an abstract level. The second part constructs the example ISA

from this. In order to demonstrate the principle of multiple refinements of a common

abstraction within resource limits, the two variants of MIDAS are constructed within

the specific part, rather than entirely different ISAs being constructed from the end of

the generic path.

The final objective of automatic generation of VM source code was achieved by

the specific development of an extension to the Rodin development environment,

B2C [7]. All MIDAS source code is available for download at http://deploy-

eprints.ecs.soton.ac.uk/84/. This includes Event-B model and refinements, C-coded

prototypes, GCC compilers (and their source code) for both MIDAS variants. B2C

source code and additional source code for execution of the VMs is also included, as

well as installation and build instructions.

The scale of the MIDAS model is worthy of comment. As described, the MIDAS

ISAs have thirty four instructions. The construction of the register variant uses 32

steps to construct 109 events in the final refinement, resulting in 4444 lines of

automatically generated C. The stack variant uses 33 steps to construct 113 events in

the final refinement, resulting in 4092 lines of C. Construction of the generic and

variant-specific parts of the model involves the discharging of 4916 proof obligations,

approximately half of which required some manual intervention by the developer.

5. The Development Process

Conventional programming techniques were found to provide greater development

productivity at the cost of lower development rigor. Therefore, in order to achieve

both rapid and robust development, ISAs and their accompanying compilers were

prototyped and tested using conventional C programming techniques before formal

construction was attempted. This introduced duplication of effort in the ISA

implementation, but gave overall improvements to productivity, due to the greater

speed of development and retest in the informal environment.

Host C compilation tools were used to compile three separate items: the target

compilation tools, the conventionally coded VM prototype code, and the formally

derived VM source code. The target compilation tools were then used to compile the

VM test executables. The Rodin environment with the B2C translation extension is

used to create the formal model and generate the VM source code. The Eclipse Java

development environment was used to create the B2C translation extension.

6. Scaling Issues

Development of an Event-B model of this scale revealed scaling limitations within

the Rodin tool, falling into three categories: platform, editing and proving. The Rodin

tool is an Eclipse [2] based platform, ultimately relying on the Java Virtual Machine

for it execution: this was found to have memory limitations when running on the

Windows operating system. The form-based editing tool available within the Rodin

version used (0.8.2) became unwieldy for large numbers of events, lacking features

such as folding, cut-and-paste, and search-and-replace.

Finally, the automatic proving mechanisms were found to break down as the model

became large, due to large numbers of hypotheses becoming visible in the proof

context, leading to tool timeout during undirected searches for valid proofs. Some

timeout failures can be avoided by crude extension of the tool timeout combined with

execution of long batch-runs (i.e. approximately ten hours), although timeout

extension also serves to further lengthen total batch time due to unsuccessful proof

attempts taking longer to abort. Automatic proof is greatly improved by manual

inclusion of appropriate hypotheses as theorems in the machine context.

Thus, towards the end of the development process, more time was spent editing

and trivial proving than thinking about the model and the discharge of functionally

useful proof obligations.

7. Relative Productivity

The simultaneous development of both conventionally coded and formal-derived VM

source code suggests that (using available tools) development in a formal

environment takes considerably more effort (approximately ten times). This is due to

a combination of a superior product being developed by the inclusion of correctness

proof, and the available tools for formal development being less mature. This is not to

say that formal development is not cost effective, as a payoff realized when a whole

production and deployment cycle considered, which includes costly rework and

repair. Thus formal development is particularly suitable for safety-critical and high-

value applications, in which the cost of these back-end issues is very high, and may be

regarded alongside other quantity assurance methods such as reusable libraries,

configuration control, static analysis and test suite development.

8. Recommendations

Construction of Event-B models of the scale described can be greatly enhanced by

a number of feasible additions to Event-B and Rodin, many of which have been

proposed or are already in development.

Editing of models will be greatly enhanced by the Camille editor [3], which

emulates the “look and feel” of a text editor, allowing the efficient manipulation of

large models. Higher-level tools such as UML-B [5] will provide superior developer

interaction with Event-B models, providing efficient visualization of constructs such

as state machines. Development of other features is recommended, such as automated

refinement, improved differential refinement techniques, syntactic sugar and

decomposition of models.

Improvements to current proof discharge techniques will be needed for large

models: possible enhancements being provision of programmable proving tactics and

thus automatic tactic generation, and Event-B syntax allowing the inclusion of more

proof assistance within models.

Finally, establishing good programming practices is a relevant to Event-B as to

conventional programming languages, such as planning of refinement structures

before the construction of models, grouping of related events, and inclusion of

meaningful comments and tags.

9. Conclusions

The formal construction of the MIDAS ISAs demonstrates that Event-B and Rodin

can support the refinement of practically useful software, from a trivially simple high-

level abstraction to automatically generated source code. However, the model

developed probably represents the upper size limit achievable for current Rodin

versions, the main issues being concerned with editing and discharge of proofs.

However, the project uncovered no conceptual problems, and the flexible architecture

of Event-B/Rodin should support a roadmap of solutions for addressing the

construction of large formal models and their proofs.

References

1. Abrial,J-R Butler,M Hallerstede,S Voisin,L “An Open Extensible Tool Environment for

Event-B”, Formal Methods and Software Engineering, SpringerLink, 2006

2. Eclipse. Eclipse platform homepage. http://www.eclipse.org/, 2009

3. Event-B.org “Camille Editor” http://wiki.event-b.org/index.php/Text_Editor, 2009

4. Metayer, C Abrial, J-R, Voisin, L “RODIN Deliverable 3.2 Event-B Language”,

http//Rodin.cs.ncl.ac.uk, 2005

5. Snook,C Butler,M “UML-B: Formal modeling and design aided by UML”, ACM

Transactions on Software Engineering and Methodology, 2006

6. Wright,S “Using EventB to Create a Virtual Machine Instruction Set Architecture”,

Abstract State Machines, B and Z, SpringerLink, 2008

7. Wright,S “Automatic Generation of C from Event-B”, Workshop on Integration of Model-

based Formal Methods and Tools, 2009

8. Wright,S “Using Event-B to Create Instruction Set Architectures”, [to appear in] Formal

Aspects of Computing: Applicable Formal Methods, SpringerLink, 2010

	09381-abstracts-collection
	09381 Extended Abstract Collection Refinement Based Methods for the Construction of Dependable Systems — Dagstuhl Seminar —
	 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna and Jim C. P. Woodcock

	Seiten23-175
	Dagstuhl09381Fin.pdf
	09381.BoitenEerke.Paper!.pdf
	09381.ButlerMichael2.Paper!.pdf
	09381.ClabautMathieu.ExtAbstract!.pdf
	09381.FreitasLeo.ExtAbstract!.pdf
	09381.GrovGudmund1.ExtAbstract!.pdf
	09381.HallerstedeStefan.ExtAbstract!.pdf
	A (Small) Improvement of Event-B?

	09381.HoangThaiSon1.ExtAbstract!.pdf
	Qualitative Reasoning for the Dining Philosophers --- Extended Abstract ---
	Hallerstede and Hoang

	09381.HoangThaiSon.ExtAbstract!.pdf
	Event-B Decomposition for Parallel Programs --- Extended Abstract ---
	Hoang and Abrial

	09381.IliasovAlexei1.Paper1!.pdf
	09381.IliasovAlexei1.Paper!.pdf
	09381.IlicDubravka.ExtAbstract!.pdf
	09381.IrelandAndrew.ExtAbstract!.pdf
	09381.JacksonMichael1.ExtAbstract!.pdf
	09381.JonesClifford1.ExtAbstract!.pdf
	09381.LeinenbachDirk.ExtAbstract!.pdf
	Verifying the Microsoft Hyper-V Hypervisor with VCC
	Dirk Leinenbach, Thomas Santen

	09381.MeryDominique1.ExtAbstract!.pdf
	09381.RothAndreas1.ExtAbstract!.pdf
	09381.RussoJrAryldoG.Paper!.pdf
	The seed was spread out: The State of Practice of Formal Methods outside europe
	Aryldo G Russo Jr.

	09381.SatpathyManoranjan1.ExtAbstract!.pdf
	09381.SchellhornGerhard1.ExtAbstract!.pdf
	09381.SchmidtHolger.ExtAbstract!.pdf
	09381.SekerinskiEmil.Paper!.pdf
	09381.SnookColin.Paper!.pdf
	09381.TroubitsynaElena.ExtAbstract!.pdf
	09381.WrightStephen.ExtAbstract!.pdf

