36 research outputs found

    From Linear to Additive Cellular Automata

    Get PDF
    This paper proves the decidability of several important properties of additive cellular automata over finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular automata over \u207f, where is the ring \u2124/m\u2124. The proof of this last result has required to prove a general result on the powers of matrices over a commutative ring which is of interest in its own. Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole class of additive cellular automata over a finite abelian group and for such a class we also prove the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an associated linear cellular automata over \u207f

    Decidability in Group Shifts and Group Cellular Automata

    Get PDF
    Many undecidable questions concerning cellular automata are known to be decidable when the cellular automaton has a suitable algebraic structure. Typical situations include linear cellular automata where the states come from a finite field or a finite commutative ring, and so-called additive cellular automata in the case the states come from a finite commutative group and the cellular automaton is a group homomorphism. In this paper we generalize the setup and consider so-called group cellular automata whose state set is any (possibly non-commutative) finite group and the cellular automaton is a group homomorphism. The configuration space may be any subshift that is a subgroup of the full shift and still many properties are decidable in any dimension of the cellular space. Decidable properties include injectivity, surjectivity, equicontinuity, sensitivity and nilpotency. Non-transitivity is semi-decidable. It also turns out that the the trace shift and the limit set can be effectively constructed, that injectivity always implies surjectivity, and that jointly periodic points are dense in the limit set. Our decidability proofs are based on developing algorithms to manipulate arbitrary group shifts, and viewing the set of space-time diagrams of group cellular automata as multidimensional group shifts

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata

    Non-Uniform Cellular Automata: classes, dynamics, and decidability

    Get PDF
    The dynamical behavior of non-uniform cellular automata is compared with the one of classical cellular automata. Several differences and similarities are pointed out by a series of examples. Decidability of basic properties like surjectivity and injectivity is also established. The final part studies a strong form of equicontinuity property specially suited for non-uniform cellular automata.Comment: Paper submitted to an international journal on June 9, 2011. This is an extended and improved version of the conference paper: G. Cattaneo, A. Dennunzio, E. Formenti, and J. Provillard. "Non-uniform cellular automata". In Proceedings of LATA 2009, volume 5457 of Lecture Notes in Computer Science, pages 302-313. Springe

    On Undecidable Dynamical Properties of Reversible One-Dimensional Cellular Automata

    Get PDF
    Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.Siirretty Doriast

    A Full Computation-relevant Topological Dynamics Classification of Elementary Cellular Automata

    Full text link
    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos"

    A Topological Classification of D-Dimensional Cellular Automata

    Get PDF
    We give a classification of cellular automata in arbitrary dimensions and on arbitrary subshift spaces from the point of view of symbolic and topological dynamics. A cellular automaton is a continuous, shift-commuting map on a subshift space; these objects were first investigated from a purely mathematical point of view by Hedlund in 1969. In the 1980's, Wolfram categorized one-dimensional cellular automata based on features of their asymptotic behavior which could be seen on a computer screen. Gilman's work in 1987 and 1988 was the first attempt to mathematically formalize these characterizations of Wolfram's, using notions of equicontinuity, expansiveness, and measure-theoretic analogs of each. We introduce a topological classification of cellular automata in dimensions two and higher based on the one-dimensional classification given by Kurka. We characterize equicontinuous cellular automata in terms of periodicity, investigate the occurrence of blocking patterns as related to points of equicontinuity, demonstrate that topologically transitive cellular automata are both surjective and have sensitive dependence on initial conditions, and construct subshift spaces in all dimensions on which there exists an expansive cellular automaton. We provide numerous examples throughout and conclude with two diagrams illustrating the interaction of topological properties in all dimensions for the cases of an underlying full shift space and of an underlying subshift space with dense shift-periodic points

    Topological Dynamics of Cellular Automata: Dimension Matters

    Get PDF
    Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on higher dimensional CA and aims at showing that the situation is different and more complex starting from dimension 2. The main results are the existence of non sensitive CA without equicontinuous points, the non-recursivity of sensitivity constants, the existence of CA having only non-recursive equicontinuous points and the existence of CA having only countably many equicontinuous points. They all show a difference between dimension 1 and higher dimensions. Thanks to these new constructions, we also extend undecidability results concerning topological classification previously obtained in the 1D case. Finally, we show that the set of sensitive CA is only Pi_2 in dimension 1, but becomes Sigma_3-hard for dimension 3.Comment: to appear in Theory of Computing Systems (2009
    corecore