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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. Topological dynamics of cellular automata (CA), inherited
from classical dynamical systems theory, has been essentially studied in
dimension 1. This paper focuses on higher dimensional CA and aims at
showing that the situation is different and more complex starting from
dimension 2. The main results are the existence of non sensitive CA with-
out equicontinuous points, the non-recursivity of sensitivity constants,
the existence of CA having only non-recursive equicontinuous points and
the existence of CA having only countably many equicontinuous points.
They all show a difference between dimension 1 and higher dimensions.
Thanks to these new constructions, we also extend undecidability results
concerning topological classification previously obtained in the 1D case.
Finally, we show that the set of sensitive CA is only Π0

2 in dimension 1,
but becomes Σ0

3-hard for dimension 3.

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
of cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells, which evolve uniformly and synchronously according to a
local rule depending only on a finite number of neighbouring cells. A snapshot of
the states of the cells at some time of the evolution is called a configuration, and
a cellular automaton can be view as a global action on the set of configurations.

Despite the apparent simplicity of their definition, cellular automata can
have very complex behaviours. One way to try to understand this complexity
is to endow the space of configurations with a topology and consider cellular
automata as classical dynamical systems. With such a point of view, one can
use well-tried tools from dynamical system theory like the notion of sensitivity
to initial condition or the notion of equicontinuous point.

This approach has been followed essentially in the case of one-dimensional
cellular automata. P. Kůrka has shown in [2] that 1D cellular automata are
partitioned into two classes:

⋆
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– Equ, the set of cellular automata with equicontinuous points,
– Sens, the set of sensitive cellular automata.

We stress that this partition result is false in general for classical (continuous)
dynamical systems. Thus, it is natural to ask whether this result holds for the
model of CA in any dimension, or if it is a “miracle” or an “anomaly” of the
one-dimensional case due to the strong constraints on information propagation
in this particular setting. One of the main contributions of this paper is to show
that this is an anomaly of the 1D case (Section 3): there exist a class N of 2D
CA which are neither in Equ nor in Sens.

Each of the sets Equ and Sens has an extremal sub-class: equicontinous and
expansive cellular automata (respectively). This allows to classify cellular au-
tomata in four classes according to the degree of sensitivity to initial conditions.
The dynamical properties involved in this classification have been intensively
studied in the literature for 1D cellular automata (see for instance [2,3,4,5]).
Moreover, in [6], the undecidability of this classification is proved, except for the
expansivity class whose decidability remains an open problem.

In this paper, we focus on 2D CA and we are particularly interested in dif-
ferences from the 1D case. As said above, we will prove in Section 3 that there is
a fundamental difference with respect to the topological dynamics classification,
but we will also adopt a computational complexity point of view and show that
some properties or parameters which are computable in 1D are non recursive in
2D (Proposition 8 and 9 of Section 5). To our knowledge, only few dimension-
sensitive undecidability results are known for CA ([7,8]). However, we believe
that such subtle differences are of great importance in a field where the common
belief is that everything interesting is undecidable.

Moreover, we establish in Section 5 several complexity lower bounds on the
classes defined above and extend the undecidability result of [6] to dimension 2.
Notably, we show that each of the class Equ, Sens and N is neither recursively
enumerable, nor co-recursively enumerable. This gives new examples of “natural”
properties of CA that are harder than the classical problems like reversibility,
surjectivity or nilpotency (which are all r.e. or co-r.e.).

Finally, we show two additional results advocating the importance of dimen-
sion in topological dynamics: first, there are 2D CA having only a countable set
of equicontinuous points and, second, the set of sensitive CA raises from Π0

2 in
dimension 1 to Σ0

3 -complete in dimension 3.

2 Definitions

Let A be a finite set and M = Z
d (for the d-dimensional case). We consider AM,

the configuration space of M-indexed sequences in A.
IfA is endowed with the discrete topology,AM is compact, perfect and totally

disconnected in the product topology. Moreover one can define a metric on AM

compatible with this topology:

∀x, y ∈ AM, dC(x, y) = 2−min{‖i‖∞:xi 6=yi i∈M}.



Let U ⊂ M. For x ∈ AM, denote xU ∈ AU the restriction of x to U. Let
U ⊂M be a finite subset, Σ is a subshift of finite type of order U if there exists
F ⊂ AU such that x ∈ Σ ⇐⇒ xm+U ∈ F ∀m ∈ M. In other word, Σ can be
viewed as a tiling where the allowed patterns are in F .

In this paper, we will consider tile sets and ask whether they can tile the plane
or not. In our formalism, a tile set is a subshift of finite type: a set of states (the
tiles) given together with a set of allowed patterns (the tiling constraints).

A cellular automaton (CA) is a pair (AM, F ) where F : AM → AM is defined
by F (x)(m) = f((x(m + u))u∈U) for all x ∈ AM and m ∈ M where U ⊂ Z is a
finite set named neighbourhood and f : AU → A is a local rule. The radius of F
is r(F ) = max{‖u‖∞ : u ∈ U}. By Hedlund’s theorem [9], it is equivalent to say
that F is a continuous function which commutes with the shift (i.e. σm ◦ F =
F ◦ σm for all m ∈M).

We recall here general definitions of topological dynamics used all along the
article. Let (X, d) be a metric space and F : X → X be a continuous function.
• x ∈ X is an equicontinuous point if for all ε > 0, there exists δ > 0, such

that for all y ∈ X , if d(x, y) < δ then d(Fn(x), Fn(y)) < ε for all n ∈ N.
• (X, F ) is sensitive if there exists ε > 0 such that for all δ > 0 and x ∈ X ,

there exists y ∈ X and n ∈ N such that d(x, y) < δ and d(Fn(x), Fn(y)) > ε.
In the definition above about properties of topological dynamics, the dimen-

sion of the cellular automaton considered do not appear explicitly. Whereas
essentially studied in dimension 1 in the literature, the present paper consider
those properties in any dimension. A first (trivial) approach to study topological
dynamics properties according to dimension is given by the following proposition
through the notion of canonical lift from dimension d to dimension d + 1. The
canonical lift of a CA of dimension d with neighbourhood U and local rule f is
the CA of dimension d + 1, of local rule f and of neighbourhood U

′ obtained by
adding a coordinate equal to 0 to each vector of U.

Proposition 1. Let F be a CA of dimension d and let F ↑ be its canonical lift
to dimension d + 1. Then we have the following:

– F has equicontinuous points if and only if F ↑ has equicontinuous points;
– F is sensitive to initial conditions if and only if F ↑ is sensitive to initial

conditions.

Proof. Straightforward. ⊓⊔

This proposition essentially says that what can be “seen” in dimension d
(concerning some topological dynamics properties) can also be “seen” in dimen-
sion d+1. One of the main point of the present paper is to show that the converse
is false: some behaviours cannot be “seen” in low-dimensional cellular automata.

3 The Core Construction

In this section, we will construct a 2D CA which has no equicontinuous point
and is not sensitive to initial conditions. This is in contrast with dimension 1



where any non-sensitive CA must have equicontinuous points as shown in [2]
(such differences according to dimension will be further discussed in Section 5).

The CA (denoted by F in the following) is made of two components:

– a solid component (almost static) for which only finite type conditions are
checked and corrections are made locally ;

– a liquid component whose overall behaviour is to infiltrate the solid compo-
nent and allow some particles to move left and to bypass solid obstacles.

The general behaviour of this cellular automaton can be seen as an ero-
sion/infiltration process. States from the solid component can be turned into
liquid state according to certain local conditions but the converse is impossi-
ble. Therefore the set of solid states is decreasing (erosion process) until some
particular kind of configuration is reached (erosion result). Then, in such config-
urations, the particles can bypass any sequence of obstacles and reach any liquid
position (infiltration).

3.1 Definition

Formally, F has a Moore’s neighbourhood of radius 2 (25 neighbours) and a
state set A with 12 elements : A =

{

U, D, 0, 1, ↓, ↑,←,→,ւ,ց,տ,ր
}

where
the subset S = {1, ↓, ↑,←,→,ւ,ց,տ,ր} corresponds to the solid component
and L = {U, D, 0} to the liquid component where 0 should be thought as the
substratum where particles made of elementary constituents U and D can move.

Let ΣS be the subshift of finite type of AZ
2

defined by the set of allowed
patterns constituted by all the 3 × 3 patterns appearing in the following set of
finite configurations:

L L L L L L L L L L
L L L L L L L L L L
L L L ց ↓ ↓ ↓ ւ L L
L L L → 1 1 1 ← L L
L L L → 1 1 1 ← L L
L L L → 1 1 1 ← L L
L L L ր ↑ ↑ ↑ տ L L
L L L L L L L L L L
L L L L L L L L L L

Intuitively, ΣS defines the ’admissible’ solid obstacles, i.e. solid shapes that
are stable and no longer eroded in a liquid environment.

The local transition function of F can be sketched as follows:

– states from S are turned into 0’s if finite type conditions defining ΣS are
violated locally and left unchanged in any other case ;

– states U and D behave like a left-moving particle when U is just above D in a
background of 0’s, and they separate to bypass solid obstacles, U going over
and D going under, until they meet at the opposite position and recompose
a left-moving particle (see Figure 1).
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Fig. 1. A particle separating into two parts (U and D) to bypass a solid obstacle
(the black region).

A precise definition of the local transition function of F is the following:

1. if the neighbourhood (5×5 cells) forms a pattern forbidden in ΣS , then turn
into state 0 ;

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighbourhood detailed in Figure 2;

3. in any other case, turn into state 0.

Note for instance, that any solid state surrounded by a valid neighbourhood
is left unchanged by F (second case of the definition above apply since the 3
first transitions of Figure 2 include all possible valid 3× 3 neighbourhoods seen
by a solid state).

3.2 Erosion and Infiltration

A configuration x is said to be finite if the set
{

z : x(z) 6= 0
}

is finite. The next
lemma shows that ΣS attracts any finite configuration under the action of F .
Moreover, after some time, all particles are on the left of the finite solid part.

Lemma 1 (erosion process). For any finite configuration x, there exists t0
such that ∀t ≥ t0 : F t(x) ∈ ΣS and, in F t(x), any occurrence of U or D is on
the left of any occurrence of any state from S.

Proof. First, the set
{

z : x(z) ∈ S} is finite and decreasing under the action of
F . Moreover, U and D states can only move left, or move vertically or disappear.
Since the total amount of vertical moves for U and D states is bounded by the
cardinal of

{

z : x(z) ∈ S}, there is a time t after which all U or D state are
on the left of all occurrences of states from S, and each U is above a D in a
0 background (the UD particle is on the left of the finite non-0 region). From
this time on, the evolution of cells in a state of S is governed only by the first
case of the definition of F . Therefore, after a certain time, finite type conditions
defining ΣS are verified everywhere. To conclude, it is easy to check that ΣS is
stable under the action of F . ⊓⊔
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Fig. 2. Part of the transition rule of F (curved arrows mean that the transition
is the same for any rotation of the neighbourhood pattern by an angle multiple
of π/2).



The following lemma states that finite configurations from ΣS consist of
rectangle obstacles inside a liquid background. Moreover, obstacles are spaced
enough to ensure that any position “sees” at most one obstacle in its 3 × 3
neighbourhood.

In the sequel we use notation South (·), East (·), West (·), North (·) for the
elementary translations in Z

2.

Lemma 2 (erosion result). Let x ∈ ΣS be a finite configuration. Then the
set X = {z ∈ Z

2 : x(z) ∈ S} is a union of disjoint rectangles which are pairwise
spaced by at least 2 cells.

Proof. Straightforward from definition of ΣS . ⊓⊔

An obstacle is a (finite) rectangular region of states from S surrounded by
liquid states.

The following lemma establishes the key property of the dynamics of F :
particles can reach any liquid position inside a finite field of obstacles from
arbitrarily far away from the field.

Lemma 3 (infiltration). Let x ∈ ΣS be a finite configuration. For any z0 ∈ Z
2

such that x(z0) = 0 there exists a path (zn) such that:

1. ‖zn‖∞ →∞
2. ∃n0, ∀n ≥ n0, if xn is the configuration obtained from x by adding a par-

ticle at position zn (precisely, xn(zn) = U and xn

(

South (zn)
)

= D) then
(

Fn(xn)
)

(z0) ∈ {U, D}.

Proof. First, we suppose that x ∈ ΣS ∩
(

{0} ∪ S
)Z

2

. Since x ∈ ΣS and x(z0) =

0, then either x
(

South (z0)
)

= 0 or x
(

North (z0)
)

= 0 by Lemma 2. We will
consider only the first case since the proof for the second one is similar. Let (zn)
be the path starting from z0 defined as follows:

– If x
(

East (zn)
)

= 0 and x
(

South (East (zn))
)

= 0 then zn+1 = East (zn).
– Else, position East (zn) and/or position South (East (zn)) belongs to an ob-

stacle P . Let a, b and c be the positions of the upper-left, upper-right and
lower-right outside corners of P and let p be its half perimeter. Then define
zn+1, . . . , zn+p+1 to be the sequence of positions made of (see Figure 3):

• a (possibly empty) vertical segment from zn to a,
• the segment [a; b],
• a (possibly empty) vertical segment from b to zn+p+1 where zn+p+1 is

the point on [b; c] such that zna + bzn+p+1 = bc.

We claim that the path (zn) constructed above has the properties of the lemma.
Indeed, one can check that for each case of the inductive construction of a point
zm from a point zn we have:

– ‖zm‖∞ > ‖zn‖∞,
– Fm−n(xm)(zn) = U and Fm−n(xm)(South (zn)) = D.



P

b
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a

zn+1

zn+p+1

zn

Fig. 3. Definition of the path (zn)n in the presence of obstacles.

The lemma is thus proved for x ∈ ΣS ∩
(

{0} ∪ S
)Z

2

. It extends to any finite
x ∈ ΣS because in such a configuration Lemma 1 ensures that after some time
t0 all occurrences of U and D are on the left of z0, whereas the path constructed
above is on the right of z0. More precisely, if x′ is the configuration obtained
from x by replacing any liquid state by 0, and if (zn)n is the path constructed
for x′, then the path (zt0+n)n fulfils the requirements of the lemma for x. ⊓⊔

3.3 Topological Dynamics Properties

The possibility to form arbitrarily large obstacles prevents F from being sensitive
to initial conditions.

Proposition 2. F is not sensitive to initial conditions.

Proof. Let ε > 0. Let cε be the configuration everywhere equal to 0 except in the
square region of side 2

⌈

− log ε
⌉

around the center where there is a valid obstacle.

∀y ∈ AZ
2

, if d(y, cε) ≤ ε/4 then ∀t ≥ 0, d
(

F t(cε), F
t(y)

)

≤ ε since a well-formed
obstacle (precisely, a partial configuration that would form a valid obstacle when
completed by 0 everywhere) is unalterable for F provided it is surrounded by
states in L (see the 3 first transition rules of case 2 in the definition of the local
rule): this is guarantied for y by the condition d(y, cε) ≤ ε/4. ⊓⊔

The erosion and infiltration process described above ensures that particles
can circulate everywhere in the liquid part of finite configurations. This is the
key ingredient of the following proposition.



Proposition 3. F has no equicontinuous points.

Proof. Assume F has an equicontinuous point, precisely a point x which verifies
∀ε > 0, ∃δ : ∀y, d(x, y) ≤ δ ⇒ ∀t, d

(

F t(x), F t(y)
)

≤ ε.

Suppose that there is z0 such that x(z0) = 0 and let ε = 2−‖z0‖∞−1. We will
show that the hypothesis of x being an equicontinuous point is violated for this
particular choice of ε. Consider any δ > 0 and let y be the configuration ev-
erywhere equal to 0 except in the central region of radius − log ⌈δ⌉ where it
is identical to x. Since y is finite, there exists t0 such that y+ = F t0(y) ∈ ΣS

(by Lemma 1). Moreover, Lemma 1 guaranties that for any positive integer
t, F t(y+)(z0) = x(z0) = 0. Applying Lemma 3 on y+ and position z0, we get
the existence of a path (zn) allowing particles placed arbitrarily far away from
z0 to reach the position z0 after a certain time. For any sufficiently large n,
we construct a configuration y′ obtained from y by adding a particle at posi-
tion zn. By the property of (zn), we have: Fn(y)(z0) 6= Fn(y′)(z0) and therefore
d
(

Fn(y), Fn(y′)
)

> ε. Since, if n > − log ⌈δ⌉, both y and y′ are in the ball of
center x and radius δ, we have the desired contradiction.

Assume now that ∀z, x(z) ∈ S. There must exist some position z0 such that
x(z0) ∈ S \ {1} (it is straightforward to check that the uniform configuration ev-
erywhere equal to 1 is not an equicontinuous point). It follows from the definition
of ΣS that z0 belongs to a forbidden pattern for ΣS (any solid state different
from 1 must have a liquid state in its neighbourhood). Therefore F (x)(z0) = 0
and we can use the reasoning of the previous case of this proof on configuration
F (x).

Finally, if ∀z, x(z) 6= 0 and ∃z0, x(z0) ∈ {U, D} then necessarily F (x)(z0) = 0
and the first reasoning of the proof can be applied. ⊓⊔

4 Variations

4.1 Adding Wang Tile Constraints

The first variation on F we consider is to add some tiling constraints to the solid
component.

More precisely, for any tile set τ, we define a 2D CA Fτ which is identical to
F except for the following modifications:

– the solid state 1 is replaced by the set τ so that the state set of Fτ is
Aτ =

{

U, D, 0, ↓, ↑,←,→,ւ,ց,տ,ր
}

∪ τ where the solid component is the
subset Sτ = {↓, ↑,←,→,ւ,ց,տ,ր}∪ τ and the liquid component is also
L = {U, D, 0};

– the sub-shift of ’admissible’ obstacles now becomes ΣF,τ defined by the set
of allowed patterns constituted by all the 3 × 3 patterns appearing in the
following set of finite configurations:



L L L L L L L L L L
L L L L L L L L L L
L L L ց ↓ ↓ ↓ ւ L L
L L L → τ τ τ ← L L
L L L → τ τ τ ← L L
L L L → τ τ τ ← L L
L L L ր ↑ ↑ ↑ տ L L
L L L L L L L L L L
L L L L L L L L L L

with the additional condition that two adjacent cells in a state from τ must
fulfils the tiling constraints involved in the tile set τ.

The behaviour of Fτ is similar to that of F replacing ΣS by ΣF,τ . More
precisely:

1. if the neighbourhood (5 × 5 cells) forms a pattern forbidden in ΣF,τ , then
turn into state 0;

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighbourhood detailed in Figure 2 (replacing S by Sτ);

3. in any other case, turn into state 0.

As for F , the erosion/infiltration mechanism prevents from any equicontin-
uous point. Moreover the sensitivity to initial conditions of Fτ is controlled by
the tile set τ as shown by the following proposition.

Proposition 4. Let τ be any tile set. Then we have the following:

– Fτ has no equicontinuous point;
– Fτ is sensitive to initial conditions if and only if τ does not tile the plane.

Moreover, in this case, the maximal sensitivity constant is an exponential
function of n, where n× n is the size of the largest admissible square tiling.

Proof. Firstly, it follows from definition of Fτ that Lemmas 1, 2 and 3 as well as
Proposition 3 remain true. Indeed, considering any configuration x of Fτ , and
any t ≥ 0, then we have

{z : F t
τ (x)(z) ∈ Sτ} ⊆ {z : F t(x′)(z) ∈ S}

where x′ is the configuration of F obtained from x be replacing any occurrence
of states from τ by 1.

Moreover, if τ can tile the plane then it is possible to form arbitrarily large
valid obstacles, so Fτ is not sensitive to initial conditions (same reasoning as
in Proposition 2). Conversely, if τ cannot tile the plane, then there is n such
that no valid tiling of a (2n + 1)× (2n + 1) square exists. This implies that, in
any configuration x of Fτ , there is some z0 with ‖z0‖∞ ≤ n such that either
x(z0) ∈ L, or Fτ(x)(z0) ∈ L (z0 corresponds to some error for ΣF,τ). Then,
applying Lemma 3 to position z0 as in the proof of Proposition 3, we have:

∀δ > 0, ∃y, ∃t ≥ 0 : d(x, y) ≤ δ and d
(

F t
τ (x), F t

τ (y)
)

≥ 2−n.



Since the constant n is independent of the choice of the initial configuration x,
we have shown that Fτ is sensitive to initial conditions with sensitivity constant
2−n. ⊓⊔

4.2 Controlling Erosion

In this section, we define Gτ , another variant of F , which has an overall similar
behaviour but uses a different kind of obstacles and a different kind of erosion
process depending on a tile set τ. Obstacles are protected from liquid component
by a boundary as the classical obstacles of F , but they are made only of successive
boundaries like onion skins. Moreover, invalid patterns in the solid component
do not provoke the complete destruction of obstacles as in F .

The solid component of Gτ is the set Rτ = τ ×X where

X = {↓, ↑,←,→,ւ,ց,տ,ր,⊥}.

The liquid component is identical to that of F , precisely L = {U, D, 0}.
The obstacle sub-shift ΣG,τ of Gτ is defined by the set of allowed patterns

constituted by all 3× 3 patterns appearing in the following set of partial config-
urations:

L L L L L L L L
L L L RτRτRτ L L
L L L RτRτRτ L L
L L L RτRτRτ L L
L L L L L L L L

with the additional conditions that the τ component is a valid tiling and the X
component is made exclusively from the set of 2× 2 patterns appearing in the
following partial configuration:

↓ ↓
ց ↓ ↓ ↓ ւ

→ → ց ↓ ւ ← ←
→ → → ⊥ ← ← ←
→ ր ↑ տ ←

ր ↑ ↑ ↑ տ
↑ ↑

The X component is used to give to any cell inside a solid region a local notion
of inside and outside as depicted by Figure 4 (up to π/2 rotations): arrows point
to the inside region.

� � �

↓

� � �

� ց

�

⊥

Fig. 4. Inside (white) and outside (black) positions for states of X .



The behaviour of Gτ is precisely the following:

1. if the neighbourhood (5 × 5 cells) forms a pattern forbidden in ΣG,τ , then
the state is left unchanged except for the following cases where it turns into
state 0:
– if the cell is in a liquid state;
– if the inside region of the cell forms a forbidden pattern,
– the cell together with one of its neighbour forms a forbidden pattern

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighbourhood detailed in Figure 2 (replacing S by Rτ);

3. in any other case, leave the state unchanged if it is solid and turn into 0 if
it is liquid.

As for F , a configuration is said finite if it contains only a finite number of
cells in a solid state.

Lemma 4 (erosion result). Let τ be any tile set. Let x ∈ ΣG,τ be a finite con-
figuration. Then the set X = {z ∈ Z

2 : x(z) ∈ Rτ} is a union of disjoint squares
with sides of odd length containing the state ’⊥’ at the center, and which are
pairwise spaced by at least 2 cells.

Proof. By definition of ΣG,τ , x is necessarily made of rectangular obstacles which
are pairwise spaced by at least 2 cells.

Moreover, the X component ensures that the border of any rectangular ob-
stacle is made as follows:

– only state → (resp. ←, ↓ and ↑) on the left (resp. right, top and bottom)
side;

– only state ց (resp. ւ, տ and ր) on the top-left (resp. top-right, bottom-
right and bottom-left) corner.

Remark that the X component requires that the sequence of state obtained by
starting from a corner and advancing in the corresponding diagonal direction is
a succession of identical diagonal arrows, then the state ’⊥’ and then a sequence
of opposite diagonal arrows. This implies that the obstacle is a square of odd
side length and that the state ’⊥’ is in the center. ⊓⊔

From now on, we call valid obstacle for Gτ a n× n square (n odd) of solid
states with state ’⊥’ in the center and forming a valid pattern of ΣG,τ .

Lemma 5 (conservative erosion process). Let τ be any tile set. For any
finite configuration x we have the following:

1. there exists t0 such that, ∀t ≥ t0, Gt
τ(x) ∈ ΣG,τ and, in Gt

τ(x), any occur-
rence of U or D is on the left of any occurrence of any state from Rτ ;

2. if z0 and n ≥ 7, n odd, are such that x contains a valid n× n obstacle
centered on z0 then ∀t ≥ 0 Gt

τ(x) contains the same valid (n− 4)× (n− 4)
square obstacle centered on z0



Proof. The first part of this lemma follows by applying arguments of the proof of
Lemma 1 to Gτ . The only point to check is that given any forbidden pattern for
ΣG,τ we have (straightforward from the definition of ΣG,τ and interior regions):

– either a pair of cells at distance at most 2, both in a solid state, and which
form a forbidden pattern by themselves,

– or a cell in a solid state whose inside region forms a forbidden pattern.

Thus, the number of cells in a solid state is guaranteed to decrease while the
current configuration is not in ΣG,τ . Therefore ΣG,τ is reached in finite time
(any configuration without solid states belongs to ΣG,τ).

For the second part of the lemma, consider all cells z of the lattice such that
‖z − z0‖∞ ≤

n−5

2
(i.e. cells belonging to the (n− 4)× (n− 4) square centered

on z0). Initially, those cells have a valid neighbourhood so after one step, they all
stay in the same state. Therefore, by definition of a valid square obstacle, they
all have a valid interior region after one step. Moreover, in their exterior region,
they all have either valid solid states as in the initial step, or liquid states (if some
cell at the boundary of the n× n square has turned into state 0): in any case,
by definition of exterior regions, no such cell z has a cell in its neighbourhood
to form a forbidden pattern with. Therefore, all cells z stay unchanged after two
step, and the reasoning can be iterated forever. ⊓⊔

The infiltration lemma (Lemma 3 for F ) remains true here, simply replacing
ΣS by ΣG,τ . Combined with the above lemmas, it implies the following propo-
sition.

Proposition 5. Let τ be any tile set. Then Gτ is sensitive to initial conditions
if τ does not tile the plane, and it admits equicontinuous points if τ tiles the
plane. Moreover, in the latter case, any equicontinuous point has the following
properties:

– it is made only of solid states;

– it contains exactly one occurrence of state ’⊥’;

– its τ component forms a valid tiling.

Proof. First, suppose that τ cannot tile the plane. Then there exists n such
that there is no valid square tiling of size n× n. Using the same reasoning as in
Proposition 4, we deduce that Gτ is sensitive to initial conditions (because, by
Lemma 5, after some time a liquid state must appear at some position z with
‖z‖∞ ≤ n and the infiltration can be applied to that position).

Now suppose that τ can tile the plane. Consider the configuration x made
only of solid states and such that:

– the τ component is a valid tiling;

– the X component is made of state ⊥ is at position (0, 0) and completed
everywhere in a valid way.



Since any n× n square centered on position (0, 0) is a valid square obstacle,
Lemma 5 shows that x is an equicontinuous point. Indeed, for any n and for any
configuration y having a valid n× n square obstacle centered on position (0, 0),
we have that the orbits of x and y under the action of Gτ coincide on the central
(n− 4)× (n− 4) part.

Finally, consider any equicontinuous point x of Gτ . Using the reasoning of
the first part of this proof, we show that x contains only solid states and that
its τ component forms a valid tiling. Moreover, suppose that the X component
contain at least 2 occurrences of state ’⊥’ and let n be such that 2 occurrences
of ’⊥’ are contained in the n× n central square of x. By Lemmas 5 and 4,
for any finite configuration y identical to x on the central n× n region, there
is some time after which some cell in the central n× n region is in a liquid
state (because no valid obstacle can contain two occurrences of ’⊥’). From that
point, the infiltration argument can be applied, contradicting the fact that x is
an equicontinuous point. To conclude the proposition, it remains the case where
the configuration x considered contains no occurrence of ’⊥’. This case is treated
as above, since valid square obstacles must contain an occurrence of ’⊥’ as stated
by Lemma 4. ⊓⊔

4.3 Combining two solid components

Our last variation, called Hτ , is a simple combination of F and Gτ (for any given
tile set τ). More precisely, it is the CA defined over state set S ∪ Rτ ∪ L with
the following behaviour:

– if the neighbour contains only states from S ∪ L then behave like F ;
– if the neighbour contains only states from Rτ ∪ L then behave like Gτ ;
– in any other case, turn into state 0.

Using what was previously established for F and Gτ , we have the following
proposition for Hτ .

Proposition 6. Let τ be any tile set. Then Hτ is not sensitive to initial condi-
tions and it admits equicontinuous points if and only if τ tiles the plane.

Proof. Since arbitrarily large obstacles of type S can be formed, the reasoning of
the proof of Proposition 2 can be applied here showing that Hτ is not sensitive
to initial conditions.

Moreover, any equicontinuous point of x of Gτ is an equicontinuous point of
Hτ . Indeed, for any n, any configuration y identical to x is the central n× n
region verifies that at any time t, the central n× n region of Ht

τ(y) is made
only of states from Rτ ∪ L and is therefore governed by Gτ . Thus, the reasoning
of Proposition 5 applies here. Hence, if τ can tile the plane, then Hτ admits
equicontinuous points.

Conversely, suppose that τ cannot tile the plane. So Hτ has no equicontinuous

points in (Rτ ∪ L)Z
2

because it would be an equicontinuous point for Gτ , thus
contradicting Proposition 5. Similarly, there cannot be equicontinuous point in



(S ∪ L)Z
2

because it would contradict Proposition 3. Finally, a configuration x
containing states from both sets S and Rτ cannot be an equicontinuous point
either because x or Hτ(x) necessarily contains a liquid state and in such a case
the infiltration argument can be applied as in Proposition 3 (Lemmas 2, 1 and
3 are true for Hτ). ⊓⊔

Automaton Solid component Behaviour

F S N
Fτ Sτ Sens if τ tiles, N else
Gτ Rτ Equ if τ tiles, Sens else
Hτ Rτ ∪ S Equ if τ tiles, N else

Fig. 5. Summary of constructions

5 Topological Classification Revisited

Equipped with the various constructions detailed above (see Figure 5), we study
in this section the topological classification of P. Kůrka (put aside expansivity)
for higher dimensional cellular automata.

In [6], the authors give a recursive construction which produce either a 1D
CA with equicontinuous points or a 1D sensitive CA according to whether a
Turing machine halts on the empty input or not. By Proposition 1, we get the
following result.

Proposition 7. For any dimension, the classes Sens and Equ are recursively
inseparable. Moreover, Sens is not recursively enumerable and Equ is not co-
recursively enumerable.

However, this is not enough to establish the overall undecidability of the topo-
logical classification of 2D CA. The main concern of this section is to complete
Proposition 7 in order to prove a stronger and more complete undecidability
result summarised in the following theorem.

Theorem 1. For any dimension strictly greater than 1, we have the following:

– each of the classes Equ, Sens and N is neither recursively enumerable nor
co-recursively enumerable;

– any pair of them is recursively inseparable.

Proof. The proof of this theorem is made of 3 similar parts: each one gives the
inseparability of two classes A and B among Sens, Equ and N , as well as the non
enumerability of A and the non co-enumerability of B. The propositions focus
on 2D cellular automata but, by Proposition 1, results remain true for higher
dimensions (because the canonical lift from some CA F to F ↑ is recursive). The
3 parts are proved in the following way:



A = Sens and B = Equ: this is Proposition 7 (our construction Gτ gives an
alternative proof by Berger’s theorem).

A = N and B = Sens: this follows by Berger’s theorem [10] (the set of tile sets
which can tile the plane is not recursively enumerable) and Proposition 4
since Fτ can be recursively constructed from τ.

A = Equ and B = N : again since the set of tile sets that can tile the plane is
not recursively enumerable, this follows by Proposition 6. ⊓⊔

Besides complexity of decision problems, other differences appears between
dimension 1 and higher dimensions. Let us first stress the dynamical consequence
of the construction of CA Fτ . It is well-known that for any 1D sensitive CA of
radius r, 2−2r is always the maximal admissible sensitivity constant (see for
instance [2]). Thanks to the above construction it is easy to construct CA with
tiny sensitivity constants as shown by the following proposition.

Proposition 8. The (maximal admissible) sensitivity constant of sensitive 2D
CA cannot be recursively (lower-)bounded in the number of states and the neigh-
bourhood size.

Proof. This follows directly from Proposition 4 since the size n of the largest
n× n valid tiling for a given tile set is not a recursive function of the tile set. ⊓⊔

To finish this section, we will discuss another difference between 1D and
2D concerning the complexity of equicontinuous points. Let us first recall that
equicontinuous point in 1D CA can be generated by finite words often called
“blocking” words. A finite word u is blocking for some CA F if for any pair of
configurations x and y both having pattern u in their center, we have3:

∀t ≥ 0, ∀z : ‖z‖∞ ≤ r⇒ F t(x)(z) = F t(y)(z)

where r is the radius of F .

For any F with equicontinuous points, there exists a finite word u such that
∞u∞ is an equicontinuous point for F (proof in [2]). The construction Gτ can be
used with the tile set of Myers [11] which can produce only non-recursive tilings
of the plane. Therefore the situation is more complex in 2D, and we have the
following proposition.

Proposition 9. For any dimension strictly greater than 1, there exists a CA
having equicontinuous points, but only non-recursive ones.

3 To simplify the definition, we require that the blocking word fixes the 2r + 1 central
columns of the space-time diagrams of any configuration having u in its center. In
fact 2r columns would be enough (and it is the standard definition) but it doesn’t
change anything for our purpose since with our definition of blocking word, we still
have the property that a 1D CA admits equicontinuous points if and only if it has
a blocking word.



Proof. By Proposition 5, any equicontinuous point of Gτ is made solely of solid
states and its τ component forms a valid tiling. Now consider the tile set τ0 of
Myers [11]: it can tile the plane but only with non-recursive tilings. Therefore,
by Proposition 5, Gτ0

admits equicontinuous points, but only non recursive ones
⊓⊔

Remark 1. Since the construction Gτ enforces the apparition of a particular state
(⊥) in any equicontinuous point, we could have proved Proposition 9 using the
simpler tile set of Hanf [12], which produces only non-recursive tilings provided
some fixed tile is placed at the origin.

Any 1D CA with equicontinuous points, admits in fact uncountably many
equicontinuous points. Indeed, if u is a blocking word and if c is any bi-infinite
sequence of 0 or 1, then the configuration:

· · · c(−n) · u · · · c(−1) · u · c(0) · u · · · c(n) · · ·

is always an equicontinuous point. The next proposition shows that it is no longer
the case for higher dimensional CA.

Proposition 10. For any dimension strictly greater than 1, there exists a CA
having a countably infinite set of equicontinuous points.

Proof. Let τ0 be a trivial tile set (a single tile and no constraint). By Proposi-
tion 5, Gτ0

admits equicontinuous points which are all identical on their tiling
component. Moreover, it follows from definition of ΣG,τ0

that if two equicontinu-
ous points have the state ’⊥’ in the same position, then they are identical. Thus
Gτ0

possesses only a countable set of equicontinuous points and the proposition
follows for dimension 2.

For dimension 3 we will use a lifted version G+ of Gτ0
: G+ is essentially a

canonical lift of Gτ0
with the additional condition that 2 cells whose coordinates

differ by 1 only on the third dimension must be in the same state, otherwise they
turn into state 0 whatever the 2D dynamics of Gτ0

says. By a straightforward
adaptation of the reasoning of Proposition 5 we have the following: for any
equicontinuous point of G+, the set of occurrences of states ’⊥’ is exactly a line
co-linear to the third dimension. Therefore, by the same reasoning as above, we
deduce that G+ has only a countable set of equicontinuous points.

The lift arguments can be iterated and thus the proposition follows for any
dimension. ⊓⊔

6 Complexity of Sensitivity According to Dimension

In this section, we study the complexity of the set of Sens from the point of view
of the arithmetical hierarchy. More precisely, we establish an upper bound in the
1D case and a lower bound in the 3D case showing that the complexity of Sens

does vary with dimension.



Proposition 11. For 1D cellular automata, the set Sens is Π0
2 .

Proof. As said above, a 1D CA is sensitive if and only if it does not possess
any blocking word [2]. Let F be a CA of radius r. Following the definition of
blocking words given in Section 5, the fact that F possesses a blocking word can
be expressed as follows:

∃u ∀t R(u, t)

where R(u, t) is true if and only if for all t′ ≤ t and all pair of configurations x
and y having u in their center, we have:

∀z : ‖z‖∞ ≤ r ⇒ F t′(x)(z) = F t′(y)(z).

R(u, t) is recursive since the checking involve only a finite part of the initial
configuration (precisely the 2r(t + 1) central cells). Hence, the set Sens is char-
acterised by the Π0

2 predicate ∀u ∃t ¬R(u, t). ⊓⊔

We will now give a hardness result for the set Sens in dimension 3. We will
reduce cofin, the set of Turing machines halting on a co-finite set of inputs, to
Sens thus proving that Sens is Σ0

3 -hard (see [13] for the proof of Σ0
3 -completeness

of cofin).
We will use simulations of Turing machines by tile sets in the classical way

(originally suggested by Wang [14]): the tiling represents the space-time diagram
of the computation and the transition rule of the Turing machine are converted
into tiling constraints. For technical reasons which will appear clearly in the proof
of Lemma 6, we slow down the computation (what can be done by a recursive
modification of the machine): the head takes 2 time steps to move 1 cell left
or right. Moreover, the tile sets we consider always contain some blank tile β
(corresponding to a blank tape symbol of the Turing machine) and some special
tile α used to initiate the computation, but no tile corresponding to a final state
of the Turing machine. More precisely, each tile set enforces the following:

– if some row contains α, it is of the form ∞βαwβ∞ where w is a sequence of
non-blank symbols which will be treated as input (at this point we can not
enforce by tiling constraint that w is finite);

– the tile on the right of α must represent the Turing head in its initial state
reading the first letter of the input.

Thus, each time a valid tiling contains α, we are guaranteed that it contains a
valid non-halting computation starting on some (potentially infinite) input.

The ith Turing machine in a standard enumeration is denoted byMi and to
eachMi we associate a tile set τi whose constraints ensure the simulation ofMi

as mentioned above, and which contains the special tiles αi and βi as described
above.

We now describe the construction, for any Turing machineMi, of a cellular
automaton Ii which is sensitive to initial conditions if and only if Mi ∈ cofin.
It will essentially consist in a lift to dimension 3 of a modified version of Gτi

.
We first describe this modified version, denoted G<i>, which is a 2D CA.



The intuition is the following: we want that any equicontinuous point of G<i>

contains a valid non-halting computation ofMi starting from a finite input. More
precisely, we will define G<i> in such a way that any equicontinuous point has
a valid τi-tiling on some of its components, which contains an occurrence of the
special state αi, and which contains only a finite sequence of non blank symbols
on the right of αi.

The definition of G<i> differ from that of Gτi
only by the definition of the

subshift ΣG,τi
: for G<i> this subshift becomes Σ<i> defined as follows. A con-

figuration x is in Σ<i> exactly when:

– x ∈ ΣG,τi
;

– αi is the only tile allowed in the tiling component of a state having its X
component equal to ⊥;

– a solid state having a tile different from βi in its tiling component is not
allowed to be on the immediate left of a liquid state.

G<i> is built upon Σ<i> exactly as Gτi
is built upon ΣG,τi

. Precisely, any
cell of G<i> behave like this:

1. if the neighbourhood (5 × 5 cells) forms a pattern forbidden in Σ<i>, then
the state is left unchanged except in the following cases where it turns into
state 0:
– if the cell is in a liquid state;
– if the inside region of the cell forms a forbidden pattern,
– the cell together with one of its neighbour forms a forbidden pattern

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighbourhood detailed in Figure 2 (replacing S by Rτi

);
3. in any other case, leave the state unchanged if it is solid and turn into 0 if

it is liquid.

From this definition and the result already established for Gτi
we easily get

the following lemma.

Lemma 6. G<i> is sensitive to initial conditions if Mi halts on any input.
Moreover, if Mi doesn’t halt on all inputs, then G<i> admits equicontinuous
points and each equicontinuous point verifies the following:

– its tiling component forms a valid tiling for τi;
– it contains exactly one occurrence of the special tile αi;
– there is a finite sequence w of consecutive non-blank symbols on the right of

αi, therefore the tiling component simulates a valid non-halting computation
of Mi starting on a finite input w.

Proof. The modifications introduced in G<i> (compared to Gτi
) concern only

new cases in which a solid state is turned into 0. Therefore, all necessary condi-
tions about equicontinuous points of Gτi

(Proposition 5) apply here. Besides, if
Mi possesses a non-halting input, it is easy to construct an equicontinuous point
x which contains a valid space-time diagram of a non-halting computation. The



fact that the computation is slow ensures that that we can find arbitrarily large
squares centered on the tile αi (and the state ⊥) without any non-blank on the
right boundary of the square. With such precautions, the conservative erosion
apply here exactly as in the proof of Proposition 5.

Finally, since the definition of G<i> implies that occurrences of ⊥ coincide
with occurrences of αi, the lemma follows from the following property: if a con-
figuration x of G<i> contains a cell having an infinite sequence of non-blank
symbols on its right, then it is not an equicontinuous point. This property fol-
lows from the definition of Σ<i> since, for any finite configuration sufficiently
close to x, the non-blank symbols allow liquid states to infiltrate towards a fixed
position (after some time) and therefore the usual technique of particle infiltra-
tion shows that x cannot be an equicontinuous point. ⊓⊔

The 3-dimensional cellular automaton Ii. The idea is that on each horizontal
plane Pc = {(a, b, c) : a, b ∈ Z

2} of the space, Ii generally behaves like G<i>.
However, Ii contains an additional 3D mechanism, whose role is to ensure that
the non-halting simulations done on successive planes start from different inputs
ofMi. Ii contains an additional component of states, called Z, that can take 3
values ’+’, ’−’ and ’=’ (the state set of Ii is Qi × Z where Qi is the state set
of G<i>). To describe the local constraints on Z, we use notations South (·),
North (·), East (·), West (.) to describe relation between positions in the same
horizontal plane, and Top (·) and Bot (·) for the 3rd dimension:

– if the Z-component of a cell z ∈ Z
3 is ’=’ then it is also the case for cells

East (z), West (z), Top (z) and Bot (z);
– if the Z-component of a cell z ∈ Z

3 is ’+’ then it is also the case for cells
East (z), West (z) and Top (z), whereas North (z) and South (z) must have
a Z-component equal to ’=’;

– if the Z-component of a cell z ∈ Z
3 is ’−’ then it is also the case for cells

East (z), West (z) and Bot (z), whereas North (z) and South (z) must have
a Z-component equal to ’=’;

– if the tiling component of a cell z (in a solid state) is αi then its Z-component
must be either ’+’ or ’−’; moreover Top (z) and Bot (z) must also be in a
solid state with a tiling component equal to ’αi’;

– if a cell z in a solid state has its Z-component equal to ’+’ and its tiling
component is βi, then, if West (Bot (z)) has also its Z-component equal to
’+’ and is also solid, it must have its tiling component also equal to βi;

– if a cell z in a solid state has its Z-component equal to ’−’ and its tiling
component is βi, then, if West (Top (z)) has also its Z-component equal to
’+’ and is also solid, it must have its tiling component also equal to βi.

The global result of those local conditions is illustrated by the following
lemma.

Lemma 7. Let x be a purely solid configuration of Ii such that, each horizontal
plane contains one occurrence of αi and a valid tiling, and all the previous local
conditions are verified. Then x has the following form:



North

East

’=’

’=’

’+’ or ’−’

αi

βi zone

βi zone

’+’

’−’

Top

East

αi column

Fig. 6. Two planar (simplified) views of a valid solid configuration.

– on each plane, all Z components are ’=′ except on an east/west line which
contains αi;

– all the occurrences of αi are aligned in a top/bottom column;
– the space is made of a top half corresponding to planes Pc having some state

with Z-component ’+’ and a bottom half corresponding to planes Pc having
some state with Z-component ’−’;

– if a plane Pc is in the top half and simulates Mi on an input of length
n, then for any a > 0, the plane Pc+a simulates Mi on an input of length
strictly greater than n;

– similarly for the bottom half, the input length is strictly greater for plane
Pc−a than for plane Pc.

Proof. Straightforward. ⊓⊔

Ii is then defined as follows: if one of the previous local conditions is violated
in the neighbourhood of a cell in a solid state surrounded only by cells in a solid
state, then the cell turns into state (0, =), else it behaves according to G<i>

depending only on cells in the same plane.

Proposition 12. For dimension 3, the set Sens is Σ0
3-hard.

Proof. We show that Ii is sensitive to initial conditions if and only ifMi admits
an infinite set of non-halting inputs, which yields a reduction from cofin to
Sens.

First, it is easy to see that if Mi has an infinite set of non-halting inputs,
then an equicontinuous point for Ii can be build: given an infinite sequence of
non-halting inputs of different lengths, one can build a purely solid configuration,
made of two halves, each one corresponding to the sequence of valid simulations
on each plane for successive inputs, and respecting all the conditions on the
Z component. It is straightforward to check that such a configuration is an
equicontinuous point.

Conversely, if x is an equicontinuous point for Ii then each plane Pc must
be an equicontinuous point for G<i> when we forget the Z component. Indeed,
the additional 3D conditions of Ii never affect liquid states and can only turn
a solid state into state 0. Now, adding 3D constraints, we deduce by Lemmas 6
and 7 thatMi must have an infinite set of non-halting inputs. ⊓⊔



7 Future Work

In this paper, we adopted the classical framework of topological dynamics (which
does not explicitly refer to dimension) and studied how its application to cellular
automata may vary with dimension.

The first research direction opened by this paper is the study of new dynam-
ical behaviour appearing in dimension 2 and more. Indeed, the mechanisms of
information propagation can no longer be explained by the presence of partic-
ular finite words (blocking words in dimension 1). In this general direction, the
following questions seems particularly relevant to us:

– what kind of dynamics can be found in the class N ?
– what kind of 2D cellular automata can be built which are in Equ and have a

set of equicontinuous points of full measure? can we characterise such CA?
– what happens when we restrict to reversible cellular automata? more gener-

ally to surjective ones?

The second part of the paper concerns complexity of decision problems re-
lated to topological dynamics properties. Our construction techniques allow to
prove several complexity lower bounds. However, upper bounds seems harder to
establish. We think the following questions are worth being investigated:

– what is the exact complexity of Sens in 1D? is it Π2-complete or only at
level 1 of the arithmetical hierarchy?

– we believe that the set Sens is in the arithmetical hierarchy for any dimension,
but we have no proof yet starting from dimension 2.

– can we generally implement “Turing-jumps” in the complexity of the problem
we consider when we increase dimension? or is there limitation coming from
the nature of the problem?

Finally, the various kind of sensitivity to dimension change we encountered,
suggest to consider those problems from of more general point of view by allowing
the lattice of cells to be any Cayley graph. Can we then characterise graphs
for which Sens and Equ are complementary classes? What can be said on the
complexity of the different classes of topological dynamics?
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