
From Linear to Additive Cellular Automata
Alberto Dennunzio1

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Milano, Italy
dennunzio@disco.unimib.it

Enrico Formenti
Université Côte d’Azur, CNRS, I3S, Nice, France
enrico.formenti@univ-cotedazur.fr

Darij Grinberg
Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach-Walke, Germany
darijgrinberg@gmail.com

Luciano Margara
Department of Computer Science and Engineering, University of Bologna, Cesena, Italy
luciano.margara@unibo.it

Abstract
This paper proves the decidability of several important properties of additive cellular automata over
finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions
are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular
automata over Kn, where K is the ring Z/mZ. The proof of this last result has required to prove a
general result on the powers of matrices over a commutative ring which is of interest in its own.

Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole
class of additive cellular automata over a finite abelian group and for such a class we also prove
the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that
are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive
cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an
associated linear cellular automata over Kn.
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1 Introduction

Cellular automata (CA) are widely known formal models for studying and simulating complex
systems (for recent results, an up-to date bibliography on CA, and simulations of complex
systems, see for instance [18, 1, 8, 9, 22, 5]). They are used in many disciplines ranging from
physics to biology, stepping through sociology, ecology and many others. In computer science
they are used for designing security schemes, random number generation, image processing,
etc. This extensive use is essentially due to three main ingredients: the huge variety of
distinct dynamical behaviors; the emergence of complex behaviors from local interactions;
the ease of implementation (even at a hardware level). In practical applications one needs
to know if the CA used for modelling a system has or not some specific property and this
can be an issue. Indeed, Jarkko Kari proved a strong result stating (roughly speaking) that
all non-trivial dynamical behaviors are undecidable [27]. From this seminal result, a long
sequence followed (see [2, 21, 25], just to cite some of them).
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The undecidability issue can be tackled by adding more constraints on the model.
These constraints may consist of conservation laws over the evolutions [24, 20, 23, 3, 34]
or superposition principles induced by imposing a rich algebraic structure over the CA
alphabet [26, 31, 30, 28, 7, 6, 19] (in both cases the literature is huge and only a very small
excerpt is cited here).

In this paper we follow the latter trend: the alphabet of the CA is a finite abelian group
G and its global update map is an additive function, i.e., an endomorphism of GZ. This
pretty broad requirement provides a class of CA generalizing those with linear local rule
defined by n× n matrices (see the previous citations for n = 1 and [28, 4] for n > 1).

Even if the superposition principle still allows us to prove deep and interesting results
on the asymptotic behavior of linear CA over (Z/mZ)n (for some integers m,n > 1), their
dynamics is definitely more interesting and expressive than that of linear CA over Z/mZ
(the classical linear CA setting) and exhibits much more complex features.

In [13, 10], we proved that ergodicity coincides with topological transitivity (and many
other properties) for additive CA over finite abelian groups and in [12] we proved the
decidability of those properties for the restricted case of linear CA over (Z/mZ)n.

The present paper adds the following important results to the panorama of the existing
ones for additive CA over finite abelian groups:

a lifting of the decidability of topological transitivity, ergodicity, and all the related
properties from linear CA to the general case of additive CA over finite abelian groups;
a decidable characterization of sensitivity to initial conditions for linear CA over (Z/mZ)n

which is then lifted to additive CA over finite abelian groups;
a dichotomy property of sensitivity to initial conditions vs. equicontinuity;
a characterization of surjectivity and injectivity properties extending the known results
for linear CA given in [28, 4].

The above results are important features of the dynamics of additive CA over finite
abelian groups which are involved in the most complex CA behaviors. Two main tools were
used in the proofs:

an embedding of an additive CA over a finite abelian group into a linear CA over a
commutative ring;
a deep result about commutative algebras defined over a commutative ring which is of
interest in its own;

The paper is structured as follows. The next section introduces all the necessary back-
ground and formal definitions. Section 3 recalls the known results about linear CA over
(Z/mZ)n and proves the new ones, including the non trivial algebra result about powers of
matrix over commutative rings. Section 4 explains the embedding allowing to lift results
from linear CA over (Z/mZ)n to generic additive CA over abelian groups. It also contains all
the main results. In the last section we draw our conclusion and provide some perspectives.

2 Background on DTDS and Cellular Automata

We begin by reviewing some general notions about discrete time dynamical systems and
cellular automata.

A discrete time dynamical system (DTDS) is a pair (X ,F), where X is any set equipped
with a distance function d (i.e., (X , d) is a metric space) and F : X → X is a map that is
continuous on X according to the topology induced by d.
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Let (X ,F) be a DTDS. We say that it is surjective, resp., injective, if F is surjective,
resp., injective. The DTDS (X ,F) is sensitive to the initial conditions (or simply sensitive)
if there exists ε > 0 such that for any x ∈ X and any δ > 0 there is an element y ∈ X such
that 0 < d(y, x) < δ and d(Fk(y),Fk(x)) > ε for some k ∈ N. The system (X ,F) is said to
be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X , d(x, y) < δ implies
that ∀k ∈ N, d(Fk(x),Fk(y)) < ε. As dynamical properties, sensitivity and equicontinuity
represent the main features of unstable and stable dynamical systems, respectively. The
former is the well-known basic component and essence of the chaotic behavior of discrete
time dynamical systems, while the latter is a strong form of stability.

The DTDS (X ,F) is topologically transitive (or, simply, transitive) if for all nonempty
open subsets U and V of X there exists a natural number h such that Fh(U) ∩ V 6= ∅, while
it is said to be topologically mixing if for all nonempty open subsets U and V of X there exists
a natural number h0 such that the previous intersection condition holds for every h ≥ h0.
Clearly, topological mixing is a stronger condition than transitivity. Moreover, (X ,F) is
topologically weakly mixing if the DTDS (X × X ,F × F) is topologically transitive, while it
is totally transitive if (X ,Fh) is topologically transitive for all h ∈ N.

Let (X ,M, µ) be a probability space and let (X ,F) be a DTDS where F is a measurable
map which preserves µ, i.e., µ(E) = µ(F−1(E)) for every E ∈ M. The DTDS (X ,F), or,
the map F , is ergodic with respect to µ if for every E ∈M(

E = F−1(E)
)
⇒ µ(E)(1− µ(E)) = 0

It is well known that F is ergodic iff for any pair of sets A,B ∈M it holds that

lim
h→∞

1
h

h−1∑
i=0

µ(F−i(A) ∩B) = µ(A)µ(B)

The DTDS (X ,F) is (ergodic) mixing, if for any pair of sets A,B ∈M it holds that

lim
h→∞

µ(F−h(A) ∩B) = µ(A)µ(B) ,

while it is (ergodic) weak mixing, if for any pair of sets A,B ∈M it holds that

lim
h→∞

1
h

h−1∑
i=0
|µ(F−i(A) ∩B)− µ(A)µ(B)| = 0

We now recall some general notions about cellular automata.

Let S be a finite set. A configuration over S is a map from Z to S. We consider the
following space of configurations SZ = {c| c : Z→ S} . Each element c ∈ SZ can be visualized
as an infinite one-dimensional cell lattice in which each cell i ∈ Z contains the element ci ∈ S.

Let r ∈ N and δ : S2r+1 → S be any map. We say that r is the radius of δ.

I Definition 1 (Cellular Automaton). A one-dimensional CA based on a radius r local rule δ
is a pair (SZ, F ), where F : SZ → SZ is the global transition map defined as follows:

∀c ∈ SZ, ∀i ∈ Z, F (c)i = δ (ci−r, . . . , ci+r) . (1)

We stress that the local rule δ completely determines the global rule F of a CA.

ICALP 2020
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In order to study the dynamical properties of one-dimensional CA, we introduce a distance
over the space of the configurations. Namely, SZ is equipped with the Tychonoff distance d
defined as follows

∀c, c′ ∈ SZ, d(c, c′) =
{

0, if c = c′,

2−min{i∈N : ci 6=c′i or c−i 6=c′−i} otherwise .

It is easy to verify that metric topology induced by d coincides with the product topology
induced by the discrete topology on SZ. With this topology, SZ is a compact and totally
disconnected space and the global transition map F of any CA (SZ, F ) turns out to be
(uniformly) continuous. Therefore, any CA itself is also a discrete time dynamical system.
Moreover, any map F : SZ → SZ is the global transition rule of a CA if and only if F is
(uniformly) continuous and F ◦ σ = σ ◦ F , where σ : SZ → SZ is the shift map defined as
∀c ∈ SZ, ∀i ∈ Z, σ(c)i = ci+1. From now, when no misunderstanding is possible, we identify
a CA with its global rule. Moreover, whenever an ergodic property is considered for CA, µ is
the well-known Haar measure over the collectionM of measurable subsets of SZ, i.e., the
one defined as the product measure induced by the uniform probability distribution over S.

2.1 Additive and Linear Cellular Automata
Let us introduce the background of additive CA. The alphabet S will be a finite abelian
group G, with group operation +, neutral element 0, and inverse operation −. In this way,
the configuration space GZ turns out to be a finite abelian group, too, where the group
operation of GZ is the componentwise extension of + to GZ. With an abuse of notation, we
denote by the same symbols +, 0, and − the group operation, the neutral element, and the
inverse operation, respectively, both of G and GZ. Observe that + and − are continuous
functions in the topology induced by the metric d. A configuration c ∈ GZ is said to be finite
if the number of positions i ∈ Z with ci 6= 0 is finite.

I Definition 2 (Additive Cellular Automata). An additive CA over a abelian finite group G
is a CA (GZ, F ) where the global transition map F : GZ → GZ is an endomorphism of GZ.

The sum of two additive CA F1 and F2 over G is naturally defined as the map on GZ denoted
by F1 + F2 and such that

∀c ∈ GZ, (F1 + F2)(c) = F1(c) + F2(c)

Clearly, F1 + F2 is an additive CA over G.

We now recall the notion of linear CA, an important subclass of additive CA. We stress
that, whenever the term linear is involved, the alphabet S is Kn, where K = Z/mZ for some
positive integer m. Both Kn and (Kn)Z become K-modules in the obvious (i.e., entrywise)
way.

A local rule δ : (Kn)2r+1 → Kn of radius r is said to be linear if it is defined by 2r + 1
matrices A−r, . . . , A0, . . . , Ar ∈ Kn×n as follows:

∀(x−r, . . . , x0, . . . , xr) ∈ (Kn)2r+1, δ(x−r, . . . , x0, . . . , xr) =
r∑

i=−r

Ai · xi .

I Definition 3 (Linear Cellular Automata (LCA)). A linear CA (LCA) over Kn is a CA based
on a linear local rule.
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Let Kn[X,X−1] and Kn[[X,X−1]] denote the set of Laurent polynomials and the set of
Laurent series, respectively, with coefficients in Kn. Before proceeding, let us recall that
such formalisms have been successfully used to study the dynamical behaviour of LCA in
the case n = 1 [26, 31]. Indeed, global rules and configurations are represented by Laurent
polynomials and Laurent series, respectively, and the application of a global rule turns into a
polynomial-series multiplication. In the more general case of LCA over Kn, a configuration
c ∈ (Kn)Z can be associated with the Laurent series

P c(X) =
∑
i∈Z

ciX
i =

c
1(X)
...

cn(X)

 =


∑

i∈Z c
1
iX

i

...∑
i∈Z c

n
i X

i

 ∈ (K[[X,X−1]]
)n ∼= Kn[[X,X−1]] .

Then, if F is the global rule of a LCA defined by A−r, . . . , A0, . . . , Ar, one finds

P F (c)(X) = A · P c(X)

where

A =
r∑

i=−r

AiX
−i ∈ K[X,X−1]n×n

is the the matrix associated with the LCA F . In this way, for any integer k > 0 the matrix
associated with F k is Ak, and then P F k(c)(X) = Ak · P c(X) .

A matrix A ∈ K[X,X−1]n×n is in Frobenius normal form if

A =



0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 . . . 0 1

a0 a1 a2 . . . an−2 an−1


(2)

where each ai ∈ K[X,X−1]. Recall that the coefficients of the characteristic polynomial of A
are just the elements ai of the n-th row of A (up to sign).

I Definition 4 (Frobenius LCA). A LCA ((Kn)Z, F ) is said to be a Frobenius LCA if the
matrix A ∈ K[X,X−1]n×n associated with F is in Frobenius normal form.

3 Decidability Results about Linear CA

We now deal with sensitivity and equicontinuity for LCA over Kn. First of all, we remind
that a dichotomy between sensitivity and equicontinuity holds for LCA. Moreover, these
properties are characterized by the behavior of the powers of the matrix associated with
a LCA.

I Proposition 5 ([14]). Let
(

(Kn)Z , F
)
be a LCA over Kn and let A be the matrix associated

with F . The following statements are equivalent:
1. F is sensitive to the initial conditions;
2. F is not equicontinuous;
3.
∣∣{A1, A2, A3, . . .}

∣∣ =∞.

ICALP 2020
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An immediate consequence of Proposition 5 is that any decidable characterization of sensitivity
to the initial conditions in terms of the matrices defining LCA over Kn would also provide
a characterization of equicontinuity. In the sequel, we are going to show that such a
characterization actually exists. First of all, we remind that a decidable characterization
of sensitivity and equicontinuity was provided for the class of Frobenius LCA in [14]. In
particular, the following result holds.

I Theorem 6 (Theorem 31 in [14]). Sensitivity and equicontinuity are decidable for Frobenius
LCA over Kn.

In order to prove that equicontinuity and sensitivity are decidable for the whole class of LCA
over Kn, we need to prove the following result whose proof is strongly far from trivial and,
for a lack of space, is omitted (the proof can be found in [11]).

Notation. Let K be a commutative ring. Let n ∈ N. Let A be an n × n-matrix over
K. We denote by χA the characteristic polynomial of A which is as usual defined as the
polynomial det (tIn −A) ∈ K [t], where In stands for the n× n identity matrix and tIn −A
is considered as an n× n-matrix over the polynomial ring K [t].

I Theorem 7. Let K be a finite commutative ring. Let L be a commutative K-algebra. Let
n ∈ N. Let A and B be two n × n-matrices over L such that χA = χB. Then, the set{
A0, A1, A2, . . .

}
is finite if and only if the set

{
B0, B1, B2, . . .

}
is finite.

We are now able to prove the following

I Theorem 8. Sensitivity and equicontinuity are decidable for LCA over Kn.

Proof. Let
(

(Kn)Z , G
)
be any LCA over Kn and let A be the matrix associated with G.

Consider the Frobenius LCA
(

(Kn)Z , F
)
such that χA = χB, where B is the matrix (in

Frobenius normal form) associated with F . By Theorem 7 and Proposition 5 the former
LCA is equicontinuous if and only if the latter is. Theorem 6 concludes the proof. J

For a sake of completeness, we recall that injectivity and surjectivity are decidable for LCA
over Kn. This result follows from a characterization of these properties in terms of the
determinant of the matrix associated with a LCA and from the fact that injectivity and
surjectivity are decidable for LCA over K (for the latter, see [26]).

I Theorem 9 ([4, 28]). Injectivity and surjectivity are decidable for LCA over Kn. In
particular, a LCA over Kn is injective (resp., surjective) if and only if the determinant of the
matrix associated with it is the Laurent series associated with an injective (resp., surjective)
LCA over K.

The decidability of topologically transitivity, ergodicity, and other mixing and ergodic
properties for LCA over Kn has been recently proved in [13]. In particular, authors showed
the equivalence of all the mixing and ergodic properties for additive CA over a finite abelian
group and the decidability for LCA over Kn (see also [10]).

I Theorem 10 ([13, 10]). Let F be any additive CA over a finite abelian group. The
following statements are equivalent: (1) F is topologically transitive; (2) F is ergodic; (3)
F is surjective and for every k ∈ N it holds that F k − I is surjective; (4) F is topologically
mixing; (5) F is weak topologically transitive; (6) F is totally transitive; (7) F is weakly
ergodic mixing; (8) F is ergodic mixing. Moreover, all the previously mentioned properties
are decidable for LCA over Kn.
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4 From Linear to Additive CA

In this section we are going to prove that sensitivity, equicontinuity, topological transitivity,
and all the properties equivalent to the latter are decidable also for additive CA over a
finite abelian group. For each of them we will reach the decidability result by extending the
analogous one obtained for LCA to the wide class of additive CA over a finite abelian group.
In a similar way, we provide a decidable characterization of injectivity and surjectivity for
additive CA over a finite abelian group.

We recall that the local rule δ : G2r+1 → G of an additive CA of radius r over a finite
abelian group G can be written as

∀(x−r, . . . , xr) ∈ G2r+1, δ(x−r, . . . , xr) =
r∑

i=−r

δi(xi) (3)

where the functions δi are endomorphisms of G.
The fundamental theorem of finite abelian groups states that every finite abelian group

G is isomorphic to
⊕h

i=1 Z/kiZ where the numbers k1, . . . , kh are powers of (not necessarily
distinct) primes and ⊕ is the direct sum operation. Hence, the global rule F of an additive
CA over G splits into the direct sum of a suitable number h′ of additive CA over subgroups
G1, . . . , Gh′ with h′ ≤ h and such that gcd(|Gi|, |Gj |) = 1 for each pair of distinct i, j ∈
{1, . . . , h′}. Each of them can be studied separately and then the analysis of the dynamical
behavior of F can be carried out by combining together the results obtained for each
component.

In order to make things clearer, consider the following example. If F is an additive
CA over G ∼= Z/4Z × Z/8Z × Z/3Z × Z/3Z × Z/25Z then F splits into the direct sum of
3 additive CA F1, F2, and F3 over Z/4Z × Z/8Z, Z/3Z × Z/3Z and Z/25Z, respectively.
Therefore, F will be sensitive to initial conditions iff at least one Fi is sensitive to the initial
conditions, while F will be topological transitive iff every Fi is topological transitive.

The above considerations lead us to three distinct scenarios:
1) G ∼= Z/pkZ. Then, G is cyclic and we can define each δi simply assigning the value

of δi applied to the unique generator of G. Moreover, every pair δi, δj commutes, i.e.,
δi ◦ δj = δj ◦ δi, and this makes it possible a detailed analysis of the global behavior of
F . Indeed, additive cellular automata over Z/pkZ are nothing but LCA over Z/pkZ and
almost all dynamical properties, including sensitivity to the initial conditions, equicon-
tinutity, injectivity, surjectivity, topological transitivity and so on are well understood
and characterized (see [31]).

2) G ∼= (Z/pkZ)n. In this case, G is not cyclic anymore and has n generators. We can
define each δi assigning the value of δi for each generator of G. This gives rise to the class
of linear CA over (Z/pkZ)n. Now, δi and δj do not commute in general and this makes
the analysis of the dynamical behavior much harder. Nevertheless, in Section 3 we have
proved that sensitivity and equicontinuity are decidable by exploiting Theorem 7. As
pointed out in [14], we also recall that linear CA over (Z/pkZ)n allow the investigation
of some classes of non-uniform CA over Z/pkZ ( (for these latter see [15, 16, 17] ).

3) G ∼=
⊕n

i=1 Z/pkiZ. In this case (Z/4Z × Z/8Z in the example), G is again not cyclic
and F turns out to be a subsystem of a suitable LCA. Then, the analysis of the dynamical
behavior of F is even more complex than in 2). We do not even know easy checkable
characterizations of basic properties like surjectivity or injectivity so far. We will provide
them in the sequel as we stated at the beginning of this section.

Therefore, without loss of generality, in the sequel we can assume that G = Z/pk1Z× . . .×
Z/pknZ with k1 ≥ k2 ≥ . . . ≥ kn in order to reach our goal.

ICALP 2020
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For any i ∈ {1, . . . , n} let us denote by e(i) ∈ GZ the bi-infinite configuration such that
e

(i)
0 = ei and e

(i)
j = 0 for every integer j 6= 0.

I Definition 11. Let (GZ, F ) be an additive CA over G. We say that e(i) ∈ GZ spreads
under F if for every ` ∈ N there exists k ∈ N such that F k(e(i))j 6= 0 for some integer j with
|j| > `.

I Remark 12. Whenever we consider P e(i)(X) ∈ G[X,X−1], we will say that P e(i)(X)
spreads under F if for every ` ∈ N there exists k ∈ N such that P F k(e(i))(X) has at least
one component with a non null monomial of degree which is greater than ` in absolute value.
Clearly, P e(i)(X) spreads under F if and only if e(i) spreads under F .

Let Ĝ = (Z/pk1Z)n. Define the map ψ : G→ Ĝ as follows

∀h ∈ G, ∀i = 1, . . . , n, ψ(h)i = hi pk1−ki ,

where, for a sake of clarity, we stress that hi denotes the i-th component of h, while pk1−ki

is just the (k1 − ki)-th power of p.

I Definition 13. We define the function Ψ : GZ → ĜZ as the componentwise extension of ψ,
i.e.,

∀c ∈ GZ, ∀j ∈ Z, Ψ(c)j = ψ(cj) .

It is easy to check that Ψ is continuous and injective. Since every configuration c ∈ GZ (or
ĜZ) is associated with the Laurent series P c(X) ∈ G[[X,X−1]] (or Ĝ[[X,X−1]]), with an
abuse of notation we will sometimes consider Ψ as map from G[[X,X−1]] to Ĝ[[X,X−1]]
with the obvious meaning.

For any additive CA over G, we are now going to define a LCA over (Z/pk1Z)n associated
to it. With a further abuse of notation, in the sequel we will write p−m with m ∈ N even if
this quantity might not exist in Z/pkZ. However, we will use it only when it multiplies pm′

for some integer m′ > m. In such a way pm′−m is well-defined in Z/pkZ and we will note it
as product p−m · pm′ .

I Definition 14. Let (GZ, F ) be any additive CA and let δ : G2r+1 → G be its local rule
defined, according to (3), by 2r+1 endomorphisms δ−r, . . . , δr of G . For each z ∈ {−r, . . . , r},
we define the matrix Az = (a(z)

i,j )1≤i≤n, 1≤j≤n ∈ (Z/pk1Z)n×n as

∀i, j ∈ {1, . . . , n}, a
(z)
i,j = pkj−ki · δz(ej)i

The LCA associated with the additive CA (GZ, F ) is (ĜZ, L), where L is defined by
A−r, . . . , Ar or, equivalently, by A =

∑r
z=−r AzX

−z ∈ Ĝ[X,X−1]n×n.

I Remark 15. Since every δz is an endomorphism of G, by construction A turns out to be
well-defined.
I Remark 16. The following diagram commutes

GZ F−−−−→ GZ

Ψ
y yΨ

ĜZ −−−−→
L

ĜZ

,

i.e., L ◦Ψ = Ψ ◦ F . Therefore we say that (ĜZ, L) is the LCA associated with (GZ, F ) via
the embedding Ψ.
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4.1 Sensitivity and Equicontinuity for Additive Cellular Automata
Let us start with the decidability of sensitivity and equicontinuity.

I Lemma 17. Let (GZ, F ) be any additive CA. If for some i ∈ {1, . . . , n} the configuration
e(i) ∈ GZ spreads under F then (GZ, F ) is sensitive to the initial conditions.

Proof. We prove that F is sensitive with constant ε = 1. Let e(i) ∈ GZ be the configuration
spreading under F . Choose arbitrarily an integer ` ∈ N and a configuration c ∈ GZ. Let
t ∈ N and j /∈ {−`, . . . , `} be the integers such that F t(e(i))j 6= 0. Consider the configuration
c′ = c + σj(e(i)). Clearly, it holds that d(c, c′) < 2−` and F t(c′) = F t(c) + F t(σj(e(i))) =
F t(c) + σj(F t(e(i))). So, we get d(F t(c′), F t(c)) = 1 and this concludes the proof. J

In order to prove the decidability of sensitivity, we need to deal with the following notions
about Laurent polynomials.

I Definition 18. Given any polynomial p(X) ∈ Z/pk1Z
[
X,X−1], the positive (resp., nega-

tive) degree of p(X), denoted by deg+[p(X)] (resp., deg−[p(X)]) is the maximum (resp.,
minimum) degree among those of the monomials having both positive (resp., negative) degree
and coefficient which is not multiple of p. If there is no monomial satisfying both the required
conditions, then deg+[p(X)] = 0 (resp., deg−[p(X)]=0).

I Lemma 19. Let (ĜZ, L) be a LCA and let A ∈ Z/pk1Z
[
X,X−1]n×n be the matrix

associated to it. If (ĜZ, L) is sensitive then for every integer m ≥ 1 there exists an integer
k ≥ 1 such that at least one entry of Ak has either positive or negative degree with absolute
value which is greater than m.

Proof. We can write A = B + p · C for some B,C ∈ Z/pk1Z
[
X,X−1]n×n, where the

monomials of all entries of B have coefficient which is not multiple of p. Assume that there
exists a bound b ≥ 1 such that for every k ≥ 1 all entries of Ak have degree less than b in
absolute value. Therefore, it holds that

∣∣{Ak, k ≥ 1}
∣∣ <∞ and so, by Proposition 5, (ĜZ, L)

is not sensitive. J

We are now able to prove the following important result.

I Theorem 20. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
to it via the embedding Ψ. Then, the CA (GZ, F ) is sensitive to the initial conditions if and
only if (ĜZ, L) is. Moreover, the CA (GZ, F ) is equicontinuous if and only if (ĜZ, L) is.

Proof. Let us start with the equivalence between sensitivity of (GZ, F ) and sensitivity of
(ĜZ, L).
=⇒: Assume that (ĜZ, L) is not sensitive. Then, by Proposition 5, there exist two integers
k ∈ N and m > 0 such that Lk+m = Lk. Therefore, we get Ψ◦F k+m = Lk+m ◦Ψ = Lk ◦Ψ =
Ψ ◦ F k. Since Ψ is injective, it holds that F k+m = F k and so (GZ, F ) is not sensitive.
⇐=: Assume that (ĜZ, L) is sensitive and for any natural k let Ak = (a(k)

i,j )1≤i≤n, 1≤j≤n be
the k-th power of A ∈ Z/pk1Z

[
X,X−1]n×n, where A is the matrix associated to (ĜZ, L).

We are going to show that at least one configuration among e(1), . . . , e(n) spreads under
F . Choose arbitrarily ` ∈ N. By Lemma 19, there exist an integer m ≥ 1 and one entry
(i, j) such that either deg−[a(m)

i,j ] < −` or deg+[a(m)
i,j ] > `. Without loss of generality suppose

that deg+[a(m)
i,j ] > `. The i–th component of P F m(e(j))(X) is the well defined polynomial

pki−k1 · pk1−kj · a(m)
i,j . Since deg+[a(m)

i,j ] > `, we can state that e(j) spreads under F . By
Lemma 17, it follows that (GZ, F ) is sensitive.
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As to the equicontinuity equivalence, the above first implication also proves that if (ĜZ, L)
is equicontinuous (i.e., by Proposition 5, it is not sensitive) then F k+m = F k, i.e., by [29],
(GZ, F ) is equicontinuous. Conversely, if (GZ, F ) is equicontinuous then it trivially follows
that it is not sensitive, i.e., by the above second implication, (ĜZ, L) is not sensitive, i.e., by
Proposition 5, (ĜZ, L) is equicontinuous. J

As immediate consequence of Theorem 20 we can state that the dichotomy between sensitivity
and equicontinuity also holds for additive CA.

I Corollary 21. Any additive CA over a finite abelian group is sensitive to the initial
conditions if and only if it is not equicontinuous.

The following decidability result follows from Theorem 20 and the decidability of sensitivity
for LCA.

I Corollary 22. Equicontinuity and sensitivity to the initial conditions are decidable for
additive CA over a finite abelian group.

Proof. Use Theorem 8 and 20. J

4.2 Surjectivity and Injectivity for Additive Cellular Automata
We now study injectivity and surjectivity for additive CA.

I Lemma 23. Let (ĜZ, L) be any LCA over Ĝ. If there exists a configuration b ∈ ĜZ with
b 6= 0 and L(b) = 0, then there exists a configuration b′ ∈ Ψ(GZ) such that b′ 6= 0 and
L(b′) = 0. In particular, if b is finite then b′ is finite too.

Proof. Let b ∈ ĜZ any configuration with b 6= 0 and L(b) = 0. Set b(1) = p · b. If b(1) = 0
then for every i ∈ Z each component of bi has pk1−1 as factor. So, b ∈ Ψ(GZ) and b′ = b is
just one possible configuration the thesis requires to exhibit. Otherwise, by repeating the
same argument, set b(2) = p · b(1). If b(2) = 0 then, for every i ∈ Z, each component of b

(1)
i

has pk1−1 as factor and so b(1) ∈ Ψ(GZ). Since L(b(1)) = 0, a configuration we are looking for
is b′ = b(1). After k1 − 1 iterations, i.e., once we get b(k1−1) = p · b(k−2) (with b(k−2) 6= 0), if
b(k1−1) = 0 holds we conclude that b′ = b(k1−2) by using the same argument of the previous
steps. Otherwise, by definition, for every i ∈ Z each component of b

(k1−1)
i itself certainly

contains pk1−1 as factor. Therefore, b(k1−1) ∈ Ψ(GZ). Moreover, L(b(k1−1)) = 0. Hence, we
can set b′ = b(k1−1) and this concludes the proof. J

The following lemma will be useful for studying both surjectivity and other properties.

I Lemma 24. Let (GZ, F ) and (ĜZ, L) be any additive CA over G and any LCA over Ĝ,
respectively, such that L ◦ Ψ = Ψ ◦ F . Then, the CA (GZ, F ) is surjective if and only if
(ĜZ, L) is.

Proof. ⇐=: Assume that F is not surjective. Then, by the Garden of Eden theorem [32, 33], F
is not injective on the finite configurations, i.e., there exist two distinct and finite configurations
c′, c′′ ∈ GZ with F (c′) = F (c′′). Therefore, the element c = c′ − c′′ ∈ GZ is a finite
configuration such that c 6= 0 and F (c) = 0. So, we get both Ψ(c) 6= 0 and L(Ψ(c)) =
Ψ(F (c)) = 0. Since Ψ(c) 6= 0, it follows that L is not surjective.
=⇒: Assume that L is not surjective. Then it is not injective on the finite configurations.
Thus, there exist a finite configuration b 6= 0 with L(b) = 0. By Lemma 23, there exists a
finite configuration b′ ∈ Ψ(GZ) such that b′ 6= 0 and L(b′) = 0. Let c ∈ GZ be the finite
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configuration such that Ψ(c) = b′. Clearly, it holds that c 6= 0. We get Ψ(F (c)) = L(Ψ(c)) =
0. Since Ψ is injective, it follows that F (c) = 0. Therefore, we conclude that F is not
surjective. J

Next two theorems state that surjectivity and injectivity behave as sensitivity when looking
at an additive CA over G and the associated LCA via the embedding Ψ.

I Theorem 25. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
with it via the embedding Ψ. Then, the CA (GZ, F ) is surjective if and only if (ĜZ, L) is.

Proof. Use Lemma 24. J

I Theorem 26. Let (GZ, F ) be any additive CA and let (ĜZ, L) be the LCA associated with
it via the embedding Ψ. Then, the CA (GZ, F ) is injective if and only if (ĜZ, L) is.

Proof. ⇐=: Assume that F is not injective. Then, there exist two distinct configurations
c, c′ ∈ GZ with F (c) = F (c′). We get L(Ψ(c)) = Ψ(F (c)) = Ψ(F (c′)) = L(Ψ(c′)) and, since
Ψ is injective, it follows that L is not injective.
=⇒: Assume that L is not injective. Then, there exists a configuration b ∈ ĜZ such that
b 6= 0 and L(b) = 0. By Lemma 23, there exists a configuration b′ ∈ Ψ(GZ) such that b′ 6= 0
and L(b′) = 0. Let c ∈ GZ be the configuration such that Ψ(c) = b′. Clearly, it holds that
c 6= 0. We get Ψ(F (c)) = L(Ψ(c)) = 0. Since Ψ is injective, it follows that F (c) = 0. Since
F (0) = 0, we conclude that F is not injective. J

4.3 Topological transitivity and ergodicity
We start by proving that the embedding Ψ also preserves topological transitivity between an
additive CA over G and the associated LCA.

I Theorem 27. Let (GZ, F ) be any additive CA over G and let (ĜZ, L) be the LCA associated
with it via the embedding Ψ. Then, the CA (GZ, F ) is topologically transitive if and only if
(ĜZ, L) is.

Proof. Since Ψ ◦ F = L ◦ Ψ, for every k ∈ N it holds that Ψ ◦ (F k − I) = Ψ ◦ F k − Ψ =
Lk ◦Ψ−Ψ = (Lk − I) ◦Ψ. By Lemma 24 , F k − I is surjective iff Lk − I is. Theorem 25
and 10 conclude the proof. J

As a final result, we get the decidability of many mixing and ergodic properties for additive
CA over any finite abelian group, including topological transitivity and ergodicity.

I Corollary 28. All the following properties are decidable for additive CA over any finite
abelian group: (1) topological transitivity; (2) ergodicity; (3) topological mixing; (4) weak
topological transitivity; (5) total transitivity; (6) weak ergodic mixing; (7) ergodic mixing.

Proof. It is an immediate consequence of Theorem 10 and 27. J

5 Conclusions

In this paper we have provided many decidability and characterization results about the
dynamical behavior of additive CA over finite abelian groups. These results were obtained
using an embedding of linear CA over (Z/mZ)n to additive CA over finite abelian groups
and a deep algebra result about powers of matrices over commutative rings.
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The are at least three main research directions that are worth investigating. First, one
might ask which results and characterizations are still true when considering non-abelian
groups. Second, it would be very interesting to find characterizations or decidability results
about positive expansivity and strong transitivity for the case of additive CA over finite
abelian groups. Finally, an important research direction consists in generalizing our results
to higher dimensions (see [18] for recent results about D-dimensional CA).

References
1 Luigi Acerbi, Alberto Dennunzio, and Enrico Formenti. Conservation of some dynamical

properties for operations on cellular automata. Theoretical Computer Science, 410(38-40):3685–
3693, 2009.

2 Vincent Bernardi, Bruno Durand, Enrico Formenti, and Jarkko Kari. A new dimension
sensitive property for cellular automata. In Jirí Fiala, Václav Koubek, and Jan Kratochvíl,
editors, Mathematical Foundations of Computer Science 2004, 29th International Symposium,
MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, volume 3153 of Lecture
Notes in Computer Science, pages 416–426. Springer, 2004.

3 Nino Boccara and Henryk Fuks. Number-conserving cellular automaton rules. Fundam.
Inform., 52(1-3):1–13, 2002.

4 Lieven Le Bruyn and Michel Van den Bergh. Algebraic properties of linear cellular automata.
Linear algebra and its applications, 157:217–234, 1991.

5 Gianpiero Cattaneo, Alberto Dennunzio, and Fabio Farina. A full cellular automaton to
simulate predator-prey systems. In Samira El Yacoubi, Bastien Chopard, and Stefania Bandini,
editors, Cellular Automata, 7th International Conference on Cellular Automata, for Research
and Industry, ACRI 2006, Perpignan, France, September 20-23, 2006, Proceedings, volume
4173 of Lecture Notes in Computer Science, pages 446–451. Springer, 2006.

6 Gianpiero Cattaneo, Alberto Dennunzio, and Luciano Margara. Solution of some conjectures
about topological properties of linear cellular automata. Theoretical Computer Science,
325(2):249–271, 2004.

7 Gianpiero Cattaneo, Enrico Formenti, Giovanni Manzini, and Luciano Margara. Ergodicity,
transitivity, and regularity for linear cellular automata over Zm. Theoretical Computer Science,
233(1-2):147–164, 2000.

8 Alberto Dennunzio. From one-dimensional to two-dimensional cellular automata. Fundamenta
Informaticae, 115(1):87–105, 2012.

9 Alberto Dennunzio, Pietro Di Lena, Enrico Formenti, and Luciano Margara. Periodic orbits
and dynamical complexity in cellular automata. Fundamenta Informaticae, 126(2-3):183–199,
2013.

10 Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. Additive cellular
automata over finite abelian groups: Topological and measure theoretic properties. In 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 68:1–68:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.68.

11 Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. Integrality
of matrices, finiteness of matrix semigroups, and dynamics of linear and additive cellular
automata. Preprint available on arXiv, 2019. arXiv:1907.08565.

12 Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. Chaos and
ergodicity are decidable for linear cellular automata over (Z/mZ)n. Information Sciences,
2020. doi:10.1016/j.ins.2020.05.123.

13 Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. Dynamical
behavior of additive cellular automata over finite abelian groups. Theoretical Computer
Science, 2020. doi:10.1016/j.tcs.2020.06.021.

https://doi.org/10.4230/LIPIcs.MFCS.2019.68
http://arxiv.org/abs/1907.08565
https://doi.org/10.1016/j.ins.2020.05.123
https://doi.org/10.1016/j.tcs.2020.06.021


A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 125:13

14 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Luciano Margara, and Antonio E. Porreca.
On the dynamical behaviour of linear higher-order cellular automata and its decidability.
Information Sciences, 486:73–87, 2019.

15 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Non-uniform cellular automata:
Classes, dynamics, and decidability. Information and Computation, 215:32–46, 2012.

16 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Local rule distributions, language
complexity and non-uniform cellular automata. Theoretical Computer Science, 504:38–51,
2013.

17 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Three research directions in
non-uniform cellular automata. Theoretical Computer Science, 559:73–90, 2014.

18 Alberto Dennunzio, Enrico Formenti, and Michael Weiss. Multidimensional cellular automata:
closing property, quasi-expansivity, and (un)decidability issues. Theoretical Computer Science,
516:40–59, 2014.

19 Alberto Dennunzio, Pietro Di Lena, Enrico Formenti, and Luciano Margara. On the directional
dynamics of additive cellular automata. Theoretical Computer Science, 410(47-49):4823–4833,
2009.

20 Bruno Durand, Enrico Formenti, and Zsuzsanna Róka. Number-conserving cellular automata
I: decidability. Theoretical Computer Science, 299(1-3):523–535, 2003.

21 Bruno Durand, Enrico Formenti, and Georges Varouchas. On undecidability of equicontinuity
classification for cellular automata. In Discrete Models for Complex Systems, DMCS’03, Lyon,
France, June 16-19, 2003, volume AB of Discrete Mathematics and Theoretical Computer
Science Proceedings, pages 117–128. DMTCS, 2003.

22 Fabio Farina and Alberto Dennunzio. A predator-prey cellular automaton with parasitic
interactions and environmental effects. Fundamenta Informaticae, 83(4):337–353, 2008.

23 Enrico Formenti and Aristide Grange. Number conserving cellular automata II: dynamics.
Theoretical Compututer Science, 304(1-3):269–290, 2003.

24 Enrico Formenti, Jarkko Kari, and Siamak Taati. On the hierarchy of conservation laws in a
cellular automaton. Natural Computing, 10(4):1275–1294, 2011.

25 Pierre Guillon and Gaétan Richard. Revisiting the Rice theorem of cellular automata. In Jean-
Yves Marion and Thomas Schwentick, editors, 27th International Symposium on Theoretical
Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France, volume 5 of
LIPIcs, pages 441–452. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

26 Masanobu Ito, Nobuyasu Osato, and Masakazu Nasu. Linear cellular automata over Zm.
Journal of Computer and Systems Sciences, 27:125–140, 1983.

27 Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Computer
Science, 127(2):229–254, 1994.

28 Jarkko Kari. Linear cellular automata with multiple state variables. In Horst Reichel and
Sophie Tison, editors, STACS 2000, volume 1770 of LNCS, pages 110–121. Springer-Verlag,
2000.

29 Petr Kůrka. Languages, equicontinuity and attractors in cellular automata. Ergodic Theory
and Dynamical Systems, 17(2):417–433, 1997.

30 Giovanni Manzini and Luciano Margara. Attractors of linear cellular automata. Journal of
Computer & System Sciences, 58(3):597–610, 1999.

31 Giovanni Manzini and Luciano Margara. A complete and efficiently computable topological
classification of d-dimensional linear cellular automata over Zm. Theoretical Computer Science,
221(1-2):157–177, 1999.

32 Edward Forrest Moore. Machine models of self-reproduction. Proceedings of Symposia in
Applied Mathematics, 14:13–33, 1962.

33 John Myhill. The converse to Moore’s garden-of-eden theorem. Proceedings of the American
Mathematical Society, 14:685–686, 1963.

34 Shinji Takesue. Staggered invariants in cellular automata. Complex Systems, 9:149–168, 1995.

ICALP 2020


	Introduction
	Background on DTDS and Cellular Automata
	Additive and Linear Cellular Automata

	Decidability Results about Linear CA
	From Linear to Additive CA
	Sensitivity and Equicontinuity for Additive Cellular Automata
	Surjectivity and Injectivity for Additive Cellular Automata
	Topological transitivity and ergodicity

	Conclusions

