468 research outputs found

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    A Survey of Decentralized Adaptive Control

    Get PDF

    A Survey of Decentralized Adaptive Control

    Get PDF
    Systems with multi inputs and multi outputs are in common controlled by centralized controllers, multivariable controllers or by a set of single input and single output controllers. The decentralized systems dominated in industry and can be found in a broad spectrum of applications ranging from robotics to civil engineering. Approaches to decentralized control design differ from each other in the assumptions ? kind of interaction, the model of the system, the model of information exchange and the control design. One of the useful approaches to decentralized control problems was the parametrization. During last years it was proven that it seems to be perspective to combine predictive and decentralized control, for example unconstrained decentralized model predictive control or adaptive decentralized control using recurrent fuzzy neural networks. Another task is to use automatic decentralized control structure selection. Adaptive control enlarges the area of usage at decentralized controllers. AdaptiveZ(MSM7088352101

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades

    Anti-Disturbance Compensation-Based Nonlinear Control for a Class of MIMO Uncertain Nonlinear Systems

    Get PDF
    Multi-Inputs-Multi-Outputs (MIMO) systems are recognized mainly in industrial applications with both input and state couplings, and uncertainties. The essential principle to deal with such difficulties is to eliminate the input couplings, then estimate the remaining issues in real-time, followed by an elimination process from the input channels. These difficulties are resolved in this research paper, where a decentralized control scheme is suggested using an Improved Active Disturbance Rejection Control (IADRC) configuration. A theoretical analysis using a state-space eigenvalue test followed by numerical simulations on a general uncertain nonlinear highly coupled MIMO system validated the effectiveness of the proposed control scheme in controlling such MIMO systems. Time-domain comparisons with the Conventional Active Disturbance Rejection Control (CADRC)-based decentralizing control scheme are also included

    Dynamic output feedback sliding mode control for uncertain linear systems

    Get PDF
    In this paper, a class of uncertain linear systems with unmatched disturbances is considered, where the nominal system representation is allowed to be non-minimum phase. A sliding surface is designed which is dependent on the system output, observed state, and estimated uncertain parameters. A linear coordinate transformation is introduced so that the stability analysis of the reduced-order sliding mode dynamics can be conveniently performed. A robust output feedback sliding mode control (OFSMC) is then designed to drive the considered system state to reach the sliding surface in finite time and maintain a sliding motion thereafter. A simulation example for a high incidence research model (HIRM) aircraft is used to demonstrate the effectiveness of the proposed method

    Decentralised State Feedback Tracking Control for Large-Scale Interconnected Systems Using Sliding Mode Techniques

    Get PDF
    A class of large-scale interconnected systems with matched and unmatched uncertainties is studied in this thesis, with the objective of proposing a controller based on diffeomorphisms and some techniques to deal with the tracking problem of the system. The main research developed in this thesis includes: 1. Large-scale interconnected system is a complex system consisting of several semi-independent subsystems, which are typically located in distinct geographic or logical locations. In this situation, decentralised control which only collects the local information is the practical method to deal with large-scale interconnected systems. The decentralised methodology is utilised throughout this thesis, guaranteeing that systems exhibit essential robustness against uncertainty. 2. Sliding mode technique is involved in the process of controller design. By introducing a nonsingular local diffeomorphism, the large-scale system can be transformed into a system with a specific regular form, where the matched uncertainty is completely absent from the subspace spanned by the sliding mode dynamics. The sliding mode based controller is proposed in this thesis to successfully achieve high robustness of the closed-loop interconnected systems with some particular uncertainties. 3. The considered large-scale interconnected systems can always track the smooth desired signals in a finite time. Each subsystem can track its own ideal signal or all subsystems can track the same ideal signal. Both situations are discussed in this thesis and the results are mathematically proven by introducing the Lyapunov theory, even when operating under the presence of disturbances. At the end of each chapter, some simulation examples, like a coupled inverted pendulums system, a river pollution system and a high-speed train system, are presented to verify the correctness of the proposed theory. At the conclusion of this thesis, a brief summary of the research findings has been provided, along with a mention of potential future research directions in tracking control of large-scale systems, like more general boundedness of interconnections, possibilities of distributed control, collaboration with intelligent control and so on. Some mathematical theories involved and simulation code are included in the appendix section

    Tracking control of a marine surface vessel with full-state constraints

    Get PDF

    Event-triggered near optimal adaptive control of interconnected systems

    Get PDF
    Increased interest in complex interconnected systems like smart-grid, cyber manufacturing have attracted researchers to develop optimal adaptive control schemes to elicit a desired performance when the complex system dynamics are uncertain. In this dissertation, motivated by the fact that aperiodic event sampling saves network resources while ensuring system stability, a suite of novel event-sampled distributed near-optimal adaptive control schemes are introduced for uncertain linear and affine nonlinear interconnected systems in a forward-in-time and online manner. First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal adaptive control law and to accelerate the learning process in the presence of random delays and packet losses resulting from the communication network for an uncertain linear interconnected system. Subsequently, a novel online reinforcement learning (RL) approach is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks (NNs) for generating distributed optimal control of nonlinear interconnected systems using state and output feedback. To relax the state vector measurements, distributed observers are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB equation for uncertain nonlinear interconnected systems with event-triggered feedback. Distributed NN identifiers are introduced both for approximating the uncertain nonlinear dynamics and to serve as a model for online exploration. Next, the control policy and the event-sampling errors are considered as non-cooperative players and a min-max optimization problem is formulated for linear and affine nonlinear systems by using zero-sum game approach for simultaneous optimization of both the control policy and the event based sampling instants. The net result is the development of optimal adaptive event-triggered control of uncertain dynamic systems --Abstract, page iv
    • …
    corecore