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In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in
the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF)
based control is employed to prevent states from violating the constraints. Neural networks are used to
approximate the system uncertainties in the control design, and the control law is designed by using the
Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints.
Meanwhile, the signals in the closed loop system are guaranteed to be semiglobally uniformly bounded
(SGUB), with the asymptotic tracking being achieved. Finally, the performance of the proposed control
has been tested and verified by simulation studies.

Keywords: Learning Control; State Constraints; Marine Surface Vessel; Barrier Lyapunov Function;
Adaptive Control; Neural Networks.

1. Introduction

In recent years, the marine surface vessel has been broadly applied in ocean engineering. There have
been numerous research in the control design for marine surface vessels Chen et al. (2013); Cui et al.
(2010); He et al. (2011, 2016, In Press, DOI: 10.1109/TCYB.2016.2554621); Wang et al. (2016, In
Press, DOI: 10.1109/TCYB.2015.2451116); Yin et al. (2015). Therefore, in order to enable the ma-
rine vessel to track the desired trajectory accurately, extensive research work has been carried out to
investigate the control problem Wang and Er (2016, In Press, DOI: 10.1109/TCST.2015.2510587);
Yin et al. (2014).

Ensuring stability is a challenging problem for nonlinear control design of marine vessels in
the harsh oceanic environment. In addition, the vessel dynamics contain unknown parameters
and is also affected by external disturbances. Thus, it is necessary to design robust controllers
for marine surface vessels. Neglecting this problem may lead to performance degradation or even
destabilization. On the other hand, state constraint is also a problem that needs to be solved in
the tracking of a marine surface vessel. In practice, constraints on system inputs and states are
ubiquitous and always manifest themselves when there are specific requirement of performance
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and specifications of safety He et al. (2016a,b); Hou et al. (2010); Hu and Lin (2001); Li et al. (In
Press, 2016, In Press, DOI: 10.1109/TIE.2016.2538741); Liu and Tong (2015b); Zhou et al. (DOI:
10.1109/TSMC.2016.2557222, 2016, 2015). Violation of the state constraint may cause hazards,
system damage or environment pollution. For example, a marine vessel needs to avoid running
against the rock when it sails in the see. And a vessel’s running speed should not go beyond the
appropriate speed limit set in the navigation manual, to avoid engine damage and even accidents.
Designing a controller without taking into account these constraints can lead to failure of control.
Therefore, it is important to take into consideration of these problems in the control design.

To solve the problem associated with system uncertainties, numerous control approaches have
been proposed for marine surface vessels. For example, in Ashrafiuon et al. (2008); Rong et al.
(2012), sliding-mode based control laws are developed. A first-order sliding surface in terms of
surge tracking errors and a second-order surface in terms of lateral motion tracking errors are
introduced by Ashrafiuon in the control design. In Tee and Ge (2006), the authors considered
the problem of tracking a desired trajectory for fully actuated ocean vessels, in the presence of
uncertainties and unknown disturbances. In Du et al. (2010), the author designed a ship trajectory
tracking control law based on the nonlinear ship surface movement mathematical model including
the Coriolis and centripetal matrix and nonlinear damp terms. In Ghommam et al. (2006), the
authors employed the backstepping technique, to design a discontinuous feedback controller for
underactuated surface vessels. In Dai et al. (2012), the authors presented the problems of accurate
identification and learning control of ocean surface vessel with uncertain dynamical environments.
In this paper, we consider employ neural networks to approximate the uncertainties in the vessel
dynamics.

In Yang et al. (2014), the optimized adaptive control for a class of wheeled inverted pendulum
(WIP) systems was investigated, employing neural networks to handle the internal and external
uncertainties. In practice, we also need to consider position and velocity constraints which is not
practical in the actual life. In the distributed system, the constraint is also widespread He and Zhang
(2016, In Press, DOI: 10.1109/TCST.2016.2536708); He and Ge (2015, 2016). To avoid the violation
of constraints, many methods for dealing with constrained nonlinear systems have been proposed
such as constrained model predictive control Mayne et al. (2000), reference governor Alberto (1998),
command governor Gilbert and Chong-Jin (2009), adaptive control He et al. (2014); Hu and Zheng
(2014); Liu and Tong (2016); Wang et al. (2016, In Press, DOI: 10.1109/TCST.2015.2496585),
fuzzy control Xie et al. (2014, 2016), fault-tolerant control Peng et al. (2016, 2015) extremum
seeking control DeHaan and Guay (2005), robust control Guo et al. (2015a,b) and neural network
control Cheng et al. (2010); He et al. (2016, In Press, DOI: 10.1109/TSMC.2015.2466194); Liu et al.
(2015a); Sun et al. (2016, In Press, DOI: 10.1109/TSMC.2016.2557223); Yang et al. (2013). Among
them, the barrier Lyapunov function (BLF) is a kind of control Lyapunov functions which have
been developed to guarantee the constraints are not violation Ren et al. (2010); Tee et al. (2009).
Inspired by the BLF’s property, BLF based methods have been used in constrained nonlinear
systems in Brunovsky form Ngo et al. (2005) and output feedback form Ren et al. (2010). In Li et
al. (2012), the authors propose robust adaptive control strategies for Remotely Operated Vehicles
(ROVs) with velocity constraints in the presence of uncertainties and disturbances. Nonetheless, all
of the aforementioned achievements using BLFs require the system dynamics to be at least partially
known. In this paper, the tracking control of state constrained vessel systems with unknown system
dynamics is investigated, which are approximated by the neural networks.

Recently, the NN control of the nonlinear systems with uncertainties and constraints has been
proposed in Chen et al. (2011); Dai et al. (2014); Li et al. (DOI: 10.1109/TAC.2015.2503566, 2016,
2014); Liu et al. (2014a,b); Liu and Tong (2015a); Liu et al. (2015b); Sun and Xia (2009); Xu et
al. (2014); Yang et al. (2015). A framework for synchronised tracking control of a general class of
high-order single-input-single-output (SISO) systems with unknown dynamics is also proposed in
Cui et al. (2012). In Li and Su (2013), adaptive neural network control is investigated for single-
master-multiple-slaves teleoperation considering time delays and input dead zone nonlinearities for
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multiple mobile manipulators carrying a common object in a cooperative manner. A neural network
controller for a general serial-link robot arm is developed in Lewis et al. (1995), and a multilayer
neural network-based controller for a class of single-input single-output continuous-time nonlinear
system is designed in Yeşildirek and Lewis (1995). A barrier Lyapunov function increases to infinity
whenever its arguments closes to some specified values. Therefore, keeping the BLF bounded could
ensure that the constraints are never violated in the closed-loop system. In Tee et al. (2011), the
authors address the problem of control design for a class of strict-feedback systems with constraints
on the partial states. In addition, the authors present control of state constrained nonlinear systems
in strict feedback form to achieve output tracking Tee and Ge (2009). In Huusom et al. (2010),
the authors present a state feedback control system with a state observer. In Tee et al. (2011), the
authors address the problem of control design for strict-feedback systems with constraints on the
partial states. In this paper, we extend the aforementioned work to a more challenging problem
wherein constraints in all the states and the system dynamics are a three degree-of-freedom marine
surface vessel with multiple-input-multiple-output. The greatest challenge of this problem comes
from that the system is a multiple-input-multiple-output, such that all the states and controller
need to use the vector. Therefore, in this paper the Moore-Penrose inverse term is applied to design
the controller.

The rest of this paper is organized as follows. Section 2 covers the preliminaries and the dynamics
of a 3 degree-of-freedom marine surface vessel with multiple-input-multiple-output. In Section 3,
we design an adaptive neural networks control by employing a BLF and neural networks. In Section
4, simulation studies are carried out to illustrate the feasibility of the proposed control. The last
section concludes the work in our paper.

2. Problem Formulation

2.1. Problem Formulation

The motions and state variables of the single point mooring systems are defined and measured with
respect to two important reference frames: earth-fixed frame, body-fixed frame. Fig. 1 shows the
earth-fixed frame is denoted as (xe, ye) with its origin located at the connection of the mooring line
and the mooring terminal. The body-fixed frame, denoted as (xb, yb), is fixed to the vessel body,
that is, the origin coincides with the center of gravity of the moored vessel. The xb axis is directed
from poop to fore along the longitudinal axis of the vessel and the yb axis is directed to starboard.

ex

ey

o

bx
by

o

xh

yh

yh

Figure 1. The diagram of the marine surface vessel system

The dynamics of a 3 degree-of-freedom (DOF) marine surface vessel with multiple-input-multiple-
output (MIMO) Tee and Ge (2006) are described as follow

3
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η̇ = J(η)υ

Mυ̇ + C(υ)υ +D(υ)υ + g(η) = τ (1)

where the output η = [ηx, ηy, ηψ] ∈ R3 represents the Earth-frame positions and heading, re-
spectively, τ ∈ R3 is the control input, υ = [υx, υy, υψ] ∈ R3 denotes the velocities of vessel in the
vessel-frame system. M ∈ R3×3 is a symmetric positive definite inertia matrix, C(υ) ∈ R3×3 is
the Centripetal and Coriolis torques, and D(υ) ∈ R3×3 is the damping matrix, g(η) represents the
restoring forces caused by force of gravity, ocean currents and floatage, J(η) is the transformation
matrix which is assumed to be nonsingular, and it is defined as

J(η) =

 cos ηψ − sin ηψ 0
sin ηψ cos ηψ 0

0 0 1


Let x1 = η, x2 = υ, then the vessel system can be described as

ẋ1 = J(x1)x2

ẋ2 = M−1[τ − C(x2)x2 −D(x2)x2 − g(x1)] = a (2)

The control objective is to track a desired trajectory of the earth-frame positions xd(t) = [xd1(t),
xd2(t), xd3(t)]

T , and desired trajectory of the velocities x2d = [x2d1(t), x2d2(t), x2d3(t)]
T . While

ensuring that all signals are bounded and that the full-state constraints are not violated, i.e.,
|x1| ≤ kc1, |x2| ≤ kc2,∀t ≥ 0, where kc1 = [kc11, kc12, kc13]

T , kc2 = [kc21, kc22, kc23]
T are positive

constant vectors.

Assumption 1: For any kc1 > 0, there exist positive vectors Y0 = [Y01, Y02, Y03]
T ,Y1 =

[Y11, Y12, Y13]
T ,A0 = [A01, A02, A03]

T , satisfying Y0 ≤ A0 ≤ kc1, such that, ∀t ≥ 0, the desired
trajectory xd(t) and its time derivatives satisfy −Y0 ≤ xd(t) ≤ Y0, |ẋd(t)| ≤ Y1.

Assumption 1 implies that the desired trajectory xd(t)(∀t ≥ 0) and its first order derivatives are
continuous, and bounded.

3. Control Design

3.1. Model Based Control

In case that the parameters M , C(υ), D(υ) and g(η) are known, we denote z1 = [z11, z12, z13]
T =

x1 − xd, and z2 = [z21, z22, z23]
T = x2 − α. Choosing the asymmetric barrier Lyapunov function as

V1 =
1

2

3∑
i=1

log
k2ai

k2ai − z21i
(3)

where ka = kc1 −X0 = [ka1, ka2, ka3]
T , then differentiating of V1 with respect to time we have

V̇1 =

3∑
i=1

z1iż1i
k2ai − z21i

(4)

4
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Differentiating of z1 with respect to time, we have

ż1 = ẋ1 − ẋd = J(x1)x2 − ẋd = J(x1)(z2 + α)− ẋd (5)

ż1i = Ji(x1)(z2 + α)− ẋdi (6)

where Ji(x1) is the ith line of J(x1). We propose α as

α = JT (ẋd −A1) (7)

where

A1 =

 (k2a1 − z211)k11z11
(k2a2 − z212)k12z12
(k2a3 − z213)k13z13

 (8)

k1i, i = 1, 2, 3 are positive constants.

Assumption 2: The matrix J(x1) is known, and there exists a boundary. From assumption
1, we can further assume that there exist positive vectors B0 = [B01, B02, B03]

T and X0 =
[X01, X02, X03]

T , satisfying X0 ≤ B0 ≤ kc2, such that, ∀t ≥ 0, α(t) satisfies −X0 ≤ α(t) ≤ X0.

Assumption 2 implies that α is continuous, and bounded.
Substituting (6), (7) and (8) into (4) we can obtain

V̇1 = −
3∑
i=1

k1iz
2
1i +

3∑
i=1

z1iJiz2
k2ai − z21i

(9)

Then we consider a barrier Lyapunov function candidate as

V2 = V1 +
1

2

3∑
i=1

log
k2bi

k2bi − z22i
+

1

2
zT2 Mz2 (10)

where kb = kc2 −Y0 = [kb1, kb2, kb3]
T , then differentiating (10) with respect to time leads to

V̇2 = V̇1 +
3∑
i=1

z2iż2i
k2bi − z22i

+ zT2 Mż2 (11)

= −
3∑
i=1

k1iz
2
1i +

3∑
i=1

(
z1iJiz2
k2ai − z21i

+
z2iż2i
k2bi − z22i

) + zT2 Mż2

Differentiating z2 with respect to time, we have

ż2 = M−1[τ − C(x2)x2 −D(x2)x2 − g(x1)]− α̇ (12)

According to the Moore-Penrose inverse, we can obtain

zT2 (zT2 )+ =

{
0, z2 = [0, 0, 0]T

1, Otherwise
(13)

5
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When z2 = [0, 0, 0]T , V̇2 = −
3∑
i=1

k1iz
2
1i ≤ 0. Then asymptotic stability of the system can still be

drawn by the Barbalat’s lemma Slotine and Weiping (1991). Otherwise in case of z2 6= [0, 0, 0]T ,
we designed the model-based control as

τ = C(x2)x2 +D(x2)x2 + g(x1) +Mα̇−
3∑
i=1

z1iJ
T
i

k2ai − z21i
− (zT2 )+

3∑
i=1

z2i(ai − α̇i)
k2bi − z22i

−K2z2 (14)

where K2 is a control gain. Then substituting (12) and (14) into (11), we can get

V̇2 = −
3∑
i=1

k1iz
2
1i − zT2 K2z2 < 0 (15)

According to Lemma 1, we know the signal z1 remains in the interval −ka ≤ z1 ≤ ka,∀t > 0,
similarly, the signal z2 remains in the interval −kb ≤ z2 ≤ kb, ∀t > 0.

3.2. Adaptive Neural Network Control with Full-State Feedback

The parameters of the marine vessel system M,C(x2), D(x2), g(x1) may be unknown in practise,
and in this case the control law above can be implementable. To handle this problem we use a
approximator based on neural networks to approximate the unknown parameters. In the following
we will design an adaptive neural network control.
The adaptive law is proposed as follows

˙̂
Wi = Γi[Si(Zi)z2,i − σi|z2i|Ŵi], i = 1, 2, 3 (16)

where Ŵ = [Ŵ1, Ŵ2, Ŵ3]
T are the weights of the neural networks, S(Z) = [S(Z)1, S(Z)2, S(Z)3]

is the basis functions, and Z = [xT1 , x
T
2 , α

T , α̇T ] are the inputs of the neural networks, and Γi =
ΓTi > 0 (i = 1, 2, 3) is the constant gain matrix, σi > 0, i = 1, 2, 3 are small constants.

Lemma 3.1: Meng et al. (2012) For adaptive law (16), there exits a compact set

Ωω1 =

{
Ŵi|‖Ŵi‖ ≤

si
σi

}
where ‖Si(Z)‖ ≤ si with φi > 0, such that Ŵi(t) ∈ Ωω1, ∀t ≥ 0 provided that Ŵi(0) ∈ Ωω1.

Proof: Let Vω1 = 1
2Ŵ

T
i Γ−1

i Ŵi, its time derivative is

V̇ω1 = Ŵ T
i (Si(Z)z2,i − σi|z2i|Ŵi)

≤ −|z2i|‖Ŵi‖(σi‖Ŵi‖ − si)

V̇ω1 will become negative as long as ‖Ŵi‖ > si
σi

. Therefore, Ŵi ∈ Ωω1 if Ŵi(0) ∈ Ωω1 for t ≥ 0. �

The neural network Ŵ TS(Z) is used to approximate W ∗TS(Z).

W ∗TS(Z) = Ŵ TS(Z)− ε(Z) = −(C(x2)x2 +D(x2)x2 + g(x1) +Mα̇)− ε(Z) (17)

6
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where W̃i = Ŵi − W ∗
i and W̃i, Ŵi, W

∗
i are the NN weight errors, estimate and actual value

respectively.
Then, we propose the following control as

τ = −(zT2 )+
3∑
i=1

[
z2i(ai − α̇i)
k2bi − z22i

+
k1iz

2
1i

k2ai − z21i
+

k2iz
2
2i

k2bi − z22i
]−

3∑
i=1

z1i(Ji)
T

k2ai − z21i
− Ŵ TS(Z)−K3z2 (18)

where K3 is the control gain. In the following part, we are ready to present the stability theorem
of the closed-loop system.

Theorem 3.2: Consider the marine surface vessel dynamics (1), under Assumption 1, with the
state feedback control law (18) together with adaption law (16), for initial conditions satisfy z1(0) ∈
Ω0 := {z1 ∈ R3 : −ka < z1 < ka}, and z2(0) ∈ Ω0 := {z2 ∈ R3 : −kb < z2 < kb}, i.e., the initial
conditions are bounded. The signals of the closed loop system are semiglobally uniformly bounded
(SGUB). And the asymptotic tracking is achieved, i.e., x1(t)→ xd(t), and x2(t)→ α(t) as t→∞.
The multiple full-state constraints are never violated, i.e., |x1| < kc1, |x2| < kc2,∀t > 0, and the
closed-loop error signals z1 and z2 will remain within the compact sets Ωz1,Ωz2, respectively, defined
by

Ωz1 : = {z1 ∈ R3| ‖z1i‖ ≤
√
k2ai(1− e−D), i = 1, 2, 3} (19)

Ωz2 : = {z2 ∈ R3| ‖z2i‖ ≤

√
D

λmin(M)
, i = 1, 2, 3}

⋂
{z2i ∈ R3| ‖z2‖ ≤

√
k2bi(1− e−D), i = 1, 2, 3}

(20)

where D = 2(V3(0) + C/ρ), ρ and C are two positive constants.

Proof: Consider the following Lyapunov candidate function

V3 = V2 +
1

2

3∑
i=1

W̃ T
i Γ−1

i W̃i (21)

Taking ż2 = ẋ2 − α̇ = a− α̇ and differentiating V3 with respect to time, we have

V̇3 =−
3∑
i=1

k1iz
2
1i +

3∑
i=1

z1iJiz2
k2ai − z21i

+

3∑
i=1

z1i(ai − α̇i)
k2bi − z22i

+

3∑
i=1

W̃ T
i Γ−1

i
˙̃Wi

+ zT2 [τ − C(x2)x2 −D(x2)x2 − g(x1)−Mα̇] (22)

Substituting (16), (17) and (18) into (22), we can obtain

V̇3 =−
3∑
i=1

k1iz
2
1i +

3∑
i=1

z2i(ai − α̇i)− zT2 (zT2 )+z2i(ai − α̇i)
k2bi − z22i

+

3∑
i=1

W̃ T
i Si(Z)z2,i −

3∑
i=1

W̃ T
i |z2i|Ŵi

+ zT2 (W ∗TS(Z)− Ŵ TS(Z) + ε(Z))− zT2 K3z2 −
3∑
i=1

zT2 (zT2 )+k1iz
2
1i

k2ai − z21i
−

3∑
i=1

zT2 (zT2 )+k2iz
2
2i

k2bi − z22i
(23)

7
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When z2 = [0, 0, 0]T , V̇2 = −
3∑
i=1

k1iz
2
1i, according to the Barbalat’s lemma, we can still be drawn a

conclusion on the asymptotic stability of the system. Otherwise, in case of z2 6= [0, 0, 0]T , we have

V̇3 ≤ −zT2 (K3 − I)z2 −
3∑
i=1

k1iz
2
1i

k2ai − z21i
−

3∑
i=1

k2iz
2
2i

k2bi − z22i

+
3∑
i=1

σ2i
8

(‖W ∗
i ‖4 + ‖W̃i‖4 − 2‖W ∗

i ‖2‖W̃i‖2) +
1

2
‖ε̄(Z)‖2 (24)

From lemma 3.1, we can obtain

‖W̃i‖ = ‖Ŵi −W ∗
i ‖ ≤

si
σi

+ ‖W ∗
i ‖ = ϑi (25)

Therefore, we have

V̇3 ≤ −ρV3 + C (26)

where

ρ = min

(
min(2k1i),min(2k2i),

2λmin(K3 − I)

λmax(M)
,min

(
σ2i ‖W ∗

i ‖2

2λmax(Γ−1
i )

))
(27)

C =
1

2
‖ε̄(Z)‖2 +

3∑
i=1

σ2i
8

(‖W ∗
i ‖4 + ϑ4i ) (28)

where λmin(•) and λmax(•) denote the minimum and maximum eigenvalues of matrix •, where
λ(A) are real, respectively. To ensure ρ > 0, the control gain K3 is chosen to satisfy the following
condition:

λmin(K3 − I) > 0 (29)

According to Lemma 1, z1(t) remains in the open set z1 ∈ (−ka, ka), ∀t ∈ [0,+∞), provided that
z1(0) ∈ (−ka, ka). As we know x1(t) = z1(t) + xd(t), −X0 ≤ xd(t) ≤ X0, ka = kc1 −X0, and we
known z2(t) remains in the open set z2 ∈ (−kb, kb),∀t ∈ [0,+∞), provided that z2(0) ∈ (−kb, kb),
and x2(t) = z2(t) + α(t), −Y0 ≤ α(t) ≤ Y0, kb = kc2 −Y0 similarly. Hence, the constraints are
not violated, i.e., |x1| ≤ kc1, |x2| ≤ kc2,∀t ≥ 0. Multiplying (26) by eρt, we can obtain

d

dt
(V3e

ρt) ≤ Ceρt (30)

Integrating the above inequality, we obtain

V3 ≤ V3(0) +
C

ρ
(31)

According to (21), we have

1

2
‖z2‖2 ≤

V3(0) + C
ρ

λmin(M)
(32)

8
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and, we have

1

2
log

k2bi
k2biz

2
2i

≤ V3(0) +
C

ρ

‖z2i‖ ≤
√
k2bi(1− e

2(V3(0)+
C

ρ
)) (33)

For z1, we obtain

1

2
log

k2ai
k2aiz

2
1i

≤ V3(0) +
C

ρ

‖z1i‖ ≤
√
k2ai(1− e

2(V3(0)+
C

ρ
)) (34)

�
Therefore, we can conclude that the signals z1 and z2 are semiglobally uniformly bounded.

4. Simulation

Consider the vessel with model of Cybership II, which is a 1:70 scale supply vessel replica built in
a marine control laboratory in the Norwegian University of Science and Technology Skjetne et al.
(2005). We choose the desired trajectories as follows:

x1d(t) = [x1xd(t), x1yd(t), x1ψd(t)] (35)


x1xd(t) = 40 sin 0.5t

x1yd(t) = 14 cos 2t

x1ψd(t) = tan−1( ˙x1yd

˙x1xd
)

(36)

J−1x1d = x2d (37)

The symmetric positive definite inertia matrix M , the Centripetal and Coriolis torques C(υ),
and the damping matrix D(υ) are given as

M =

 m−Xdu 0 0
0 m− Ydv mxg − Ydr
0 mxg − Ydr Iz −Ndr


C(υ) =

 0 0 (−m− Ydv)vy − (mxg − Ydr)vψ
0 0 (m−Xdu)vx

(m− Ydv)vy + (mxg − Ydr)vψ (m−Xdu)vx 0


D(υ) =

 −Xu −Xuu|vx| −Xuuuv
2
x 0 0

0 −Yv − Yvv|vy| − Yrv|vψ| −Yr − Yvr|vy| − Yrr|vψ|
0 −Nv −Nvv|vy| −Nrv|vψ| −Nr −Nvr|vy| −Nrr|vψ|


where

D11 = −Xu −Xuu|vx| −Xuuuv
2
x, D22 = −Yv − Yvv|vy| − Yrv|vψ|, D23 = −Yr − Yvr|vy| − Yrr|vψ|,

D32 = −Nv −Nvv|vy| −Nrv|vψ|, D33 = −Nr −Nvr|vy| −Nrr|vψ|

9
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In this paper, the parameters are chosen as m = 23.8, Iz = 1.76, xg = 0.046, Xu = −0.7225,
Xuu = −1.3274, Xuuu = −5.8664, Yv = −0.8612, Yvv = −36.2823, Yr = 0.1079, Nv = 0.1052,
Nvv = 5.0437, Xdu = −2.0, Ydv = −10.0, Ydr = −0, Ndv = 0, Ndr = −1.0, Yrv = 2, Yvr = 1,
Yrr = 3, Nrv = 5, Nr = 4, Nvr = 0.5, Nrr = 0.8.

We have proposed three cases for the simulation studies. Firstly, we give the mode-based control
(14). Subsequently, the adaptive neural network control (18) with the state feedback is evaluated.
Finally, we conduct the simulation carrying on the comparison of PD controller.

4.1. Model Based Control

For the model based control, the initial conditions and the control parameters are chosen as η(0) =
[3.4, 15, 0.08], υ(0) = [20,−1.6,−2.9], K1 = diag[1, 50, 0.1], K2 = diag[40, 400, 10], Γ1 = 50I,
Γ2 = 100I, Γ3 = 200I, σ1 = 0.01, σ2 = 0.01, σ3 = 0.01. To guarantee the state constraints
|x1| < kc1 = [44.6, 15.7, 1.564]T , we can choose the constraints of z1 will be ka = kc1 − X0 =
[4.6, 1.7, 0.17]T . In the same reason, we can proposed |x2| and kb = [5.8, 0.5, 0.2] as above.

The tracking performance of the closed-loop system for the vessel are given in Figs. 2 and 4. From
the two figures, we can obtain that all the x1 and x2 can successfully track the desired trajectory.
According the Figs. 3 and 5 we can state the system errors are converging to a small value close
to zero. The corresponding control inputs are given in Fig. 6.

Figs. 7-11 show the results without the constraints in the same conditions. Fig. 7 is the comparison
between the ideal trajectory and actual trajectory. The tracking error z1 is shown in Fig. 8, and
the tracking error z2 is shown in Fig. 10. The control input τ is proposed in Fig. 11. Comparison
the Fig. 8 and Fig. 3, we can obtain that our control design is effective.

4.2. Adaptive Neural Network Control

For adaptive neural network control with the state feedback. according to controller 18. The control
objectives are to make the state of the system x1 and x2 track the ideal trajectory x1d and x2d,
then guaranteeing the state constraints |x1| < kc1 = [44.6, 15.7, 1.564]T .

The reference trajectories satisfy −X0 ≤ x1d ≤ X0 and −Y0 ≤ x2d ≤ Y0. we can let X0 =
[44.6, 15.7, 1.564]T , then we can obtain the constraints of z1 will be ka = kc1−X0 = [4.6, 1.7, 0.17]T .
Similarly, we can obtain |x2| and kb in the same method as above.

We choose the parameters as K1 = diag[50, 20, 0.1], K2 = diag[40, 400, 10], K3 =
diag[100, 400, 800], Γ1 = 50I, Γ2 = 100I, Γ3 = 200I.

The simulation results are shown in Figs. 12-16. The Fig. 12 shows that the state x1 can successful
track the desired trajectory. From Fig. 13. we can know the tracking error is converging to a small
value that close to zero. In Fig. 14, we can see that the x2 tracks the desired trajectory with a high
accuracy. The tracking error z2 is proposed in Fig. 15, and the control input τ is shown in Fig. 16.

Figs. 17-21 show the results without the constraints in the same initial conditions. Fig. 17 is the
comparison between the ideal trajectory and actual trajectory. The tracking error z1 is shown in
Fig. 18, and the tracking error z2 is shown in Fig. 20. The control input τ is proposed in Fig. 21.

4.3. PD Control

The PD control law is designed as: τ = −Kpz1−Kdż1. With all parameters are the same as the NN
control, the terms of PD are added to the simulation: Kp = diag[10, 20, 10], Kd = diag[20, 50, 45].

The results of the simulation are shown in Figs. 24-26. It can be seen that, the errors of the PD
control are larger than the NN control when the parameters of the system are unknown, because
of the neural network learning ability. From Figs. 23 and 25, we can also obtain that the tracking
efficiency are not as good as NN control, and the constraints are violated.

10
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From above three cases. The performance of the proposed control (NN control) has been
illustrated through the results of the simulation, which show the tracking of the trajectory is
achieved without transgression of the constrained space.

5. Conclusion

In this paper, we consider the control design for a general class of marine surface vessels with
full-state constraints and unknown parameters using the barrier Lyapunov function and neural
networks. We have theoretically established that under the proposed control laws, the signals of
the closed loop system are semiglobally uniformly bounded (SGUB), the asymptotic tracking is
achieved, and the multiple state constraints would never be violated. Simulation results confirmed
the effectiveness of the proposed design techniques.
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Figure 5. Tracking error z2 of model based control.
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Figure 6. Control input τ of model based control.
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Figure 8. Tracking error z1 without constraints of model based.
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Figure 11. Control input τ without constraints of model based.
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Figure 12. Comparison between x1 and xd of NN control.
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Figure 13. Tracking error z1 of NN control.
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Figure 14. Comparison between x2 and x2d of NN control.
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Figure 15. Tracking error z2 of NN control.
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Figure 16. Control input τ of NN control.

0 5 10 15 20 25 30
−50

0

50

x 11
[m

]

t[s]

 

 
x

11

x
d1

0 5 10 15 20 25 30
−20

0

20

x 12
[m

]

t[s]

 

 
x

12

x
d2

0 5 10 15 20 25 30
−2

0

2

x 13
[r

ad
]

t[s]

 

 
x

13

x
d3

Figure 17. Comparison between x1 and xd without constraints

of NN control.
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Figure 18. Tracking error z1 without constraints of NN control.
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Figure 19. Comparison between x2 and x2d without con-

straints of NN control.
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Figure 20. Tracking error z2 without constraints of NN control.
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Figure 21. Control input τ without constraints of NN control.
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Figure 22. Comparison between x1 and x1d without con-

straints of PD control.
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Figure 23. Tracking error z1 of PD control.

0 5 10 15 20 25 30
−50

0

50

x 21
[m

]

t[s]

 

 
x

21

x
2d1

0 5 10 15 20 25 30
−2

0

2

x 22
[m

]

t[s]

 

 
x

22

x
2d2

0 5 10 15 20 25 30
−5

0

5

x 23
[r

ad
]

t[s]

 

 
x

23

x
2d3

Figure 24. Comparison between x2 and x2d without con-

straints of PD control.
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Figure 25. Tracking error z12 of PD control.
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Figure 26. Control input τ without constraints of PD control.
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