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Abstract
In this paper, a class of uncertain linear systems with unmatched disturbances
is considered, where the nominal system representation is allowed to be non-
minimum phase. A sliding surface is designed which is dependent on the system
output, observed state and estimated uncertain parameters. A linear coordinate
transformation is introduced so that the stability analysis of the reduced-order sliding
mode dynamics can be conveniently performed. A robust output feedback sliding
mode control (OFSMC) is then designed to drive the considered system state to
reach the sliding surface in finite time and maintain a sliding motion thereafter. A
simulation example for a high incidence research model (HIRM) aircraft is used to
demonstrate the effectiveness of the proposed method.
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Introduction
Physical systems are unavoidably affected by external disturbances and plant
uncertainties which may in turn influence the system performance. Sliding mode control
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(Jiang et al., (2021b)) has been widely studied as an effective method to tackle this
problem and has been employed in some industrial settings due to its conceptual
simplicity and strong robustness properties. Much of the early work on sliding mode
control assumed that all system states can be measured (Utkin (1977, 1992)). However,
in actual engineering systems, this assumption may be unreasonable. This has motivated
the current emphasis on the development of output feedback sliding mode control
(OFSMC).

Many OFSMC algorithms have been proposed to stabilize uncertain systems. A
static output feedback variable structure control has been investigated for linear systems
without disturbances in Elkhazali and Decarlo (1995). A further static OFSMC has
been designed for uncertain linear systems with matched disturbances in Edwards and
Spurgeon (1995, 1998), where a convenient coordinate transformation has been given
to obtain the regular form. However, unmatched disturbances act on many practical
systems. These unmatched disturbances directly affect the dynamics of the system when
the state moves on the sliding surface and exhibits a sliding mode. The well-known
Constrained Lyapunov Problem (CLP) has been widely discussed in the literature and
some effective methods have been proposed in Galimidi and Barmish (1986); Edwards et
al., (2007) to constructively solve this problem. This work facilitated the development of
static OFSMC schemes which tackle the problem of unmatched disturbances Yan et al.,
(2009a, 2013). However, the literature above requires that the plant under consideration is
minimum phase. In practice, non-minimum phase systems may be encountered, such as
flexible manipulators (Benosman and Vey (2003)) and the underactuated ship (Consolini
and Tosques (2012)).

The study of OFSMC for non-minimum phase systems has recently received great
attention. A dynamic OFSMC with a dynamic compensator has been proposed to
stabilize a class of uncertain linear systems in Yan et al., (2004), where the nominal
system may be non-minimum phase. The results have also been extended to time-
delay systems in Yan et al., (2009b, 2010). Furthermore, based on the method
proposed in Yan et al., (2004) and a reduced-order compensator, a class of large-scale
interconnected systems has been stabilized in Yan et al., (2006). Although the case
of more general unmatched disturbances with nonlinear bounds has been considered
in the above literature, the unmatched disturbances are required to have zero steady-
state values or bounded H2 norms. In addition, some classic control tools, such as the
Riccati approach (Kim et al., (2000)), the LMI-based approach (Park et al., (2007))
and an adaptive approach (Wen and Cheng (2008); Jiang et al., (2021a)) have been
used to extend the sliding mode control approach to deal with unmatched disturbances.
However, these methods also require that the unmatched disturbances must belong to
somewhat restrictive classes of vanishing disturbance, which may be unreasonable in
practice (Yang et al., (2013)).

By adding integral action to the sliding surface, integral sliding mode control has
become well established and regarded as an effective method to counteract unmatched
disturbances with nonzero steady-state value (Zhang and Yan (2019); Cao and Xu
(2004)). However, the integral action may cause a large overshoot in the controlled
system. More recently, based on the nonlinear disturbance observer proposed in Chen
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(2003); Chen et al., (2000), the observed disturbances have been added to the sliding
surface to counteract their effects in Yang et al., (2013). This method has attracted a lot
of attention due to its simplicity and effectiveness but can only handle a class of second-
order systems and lacks a strict stability proof of the sliding mode dynamics. The result
has been extended for a nominal system representation that is a series of integrators
in Ginoya et al., (2013), where a modified sliding surface has been presented to
guarantee the practical stability of the overall system. An extended state observer-based
sliding mode control has been designed for pulse-width modulation-based DC-DC buck
converter systems in Wang et al., (2015). A disturbance observer-based continuous finite-
time sliding mode control has been designed for input affine nonlinear systems in Nguyen
et al., (2020), where a nonlinear sliding surface and supertwisting algorithm have
been used to guarantee finite-time convergence of the considered system. In addition,
disturbance observer-based control methods have also been designed for some uncertain
nonlinear systems with unmatched disturbances (Yang et al., (2012); Zhang et al.,
(2017)). However, the literature mentioned above all requires that the considered system
states are accessible. These solutions are frequently motivated by engineering practice
and using a disturbance observer in dynamic OFSMC may be effective for uncertain
non-minimum phase systems but it should be noted that the theoretical analysis may be
challenging.

When the system states cannot be measured and the considered system is non-
minimum phase, disturbance observer-based sliding mode control design will face new
challenges which include: how to observe the system states and unmatched disturbances
simultaneously and how to prove the stability of the associated extended system when the
system is restricted on the designed sliding surface. For these challenges, a disturbance
observer-based dynamic OFSMC strategy is proposed for a class of uncertain linear
systems, where the nominal system representation is allowed to be non-minimum phase.
Inspired by Yang et al., (2013), a novel sliding surface which is a function of an
augmented space formed by the system output, the observed state and the estimated
uncertain parameters, is designed. Furthermore, a new linear coordinate transformation
has been derived so that the stability analysis of the reduced-order sliding mode dynamics
can be conveniently performed. In comparison with existing static OFSMC methods
(Gao et al., (2019); Ji et al., (2019)), the nominal part of the system considered in
this paper is allowed to be non-minimum phase. In comparison with most of the existing
dynamics OFSMC methods (Consolini and Tosques (2012); Yan et al., (2004, 2009b,
2010, 2006)), the system considered in this paper is allowed to have the unmatched
disturbances with nonzero steady-state value. In comparison with most of the existing
disturbance observer-based sliding mode control methods (Yang et al., (2013); Nguyen
et al., (2020); Ginoya et al., (2013); Wang et al., (2015)), the system state in this
paper is not required to be measurable while the unmatched disturbances have more
general forms. The main theoretical contributions of this paper include: (i) a novel
sliding surface is proposed to counteract the unmatched disturbances when only the
system output information is available; (ii) a sufficient condition is given to guarantee
the considered system exhibits an exponentially stable sliding motion while the state
observed error and parameter estimation error converge to zero exponentially; (iii) a
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new linear coordinate transformation is proposed to facilitate the stability analysis of
the sliding motion dynamics.

The remainder of the paper is organized as follows. Section II formulates the problem
and gives some assumptions that will be used in the following sections. In Section III, a
novel sliding surface and the stability analysis of the sliding motion is given. A sliding
mode control is designed in Section IV. A simulation example of a HIRM aircraft is
presented to validate the proposed approach in Section V while the conclusions are given
in Section VI.

Notation: For a square matrixA, λ− (A) and λ̄ (A) denote the minimum and maximum
eigenvalue respectively.

System description and problem formulation
Consider an uncertain linear system

˙̃x = Ãx̃+ B̃u+ Ψ̃ (t) θ

y = C̃x̃
(1)

where x̃ ∈ Rn, y ∈ Rp, u ∈ Rm are the system state, output and input vectors
respectively with m ≤ p < n, Ã, B̃, C̃ are constant matrices with appropriate
dimensions, Ψ̃ ∈ Rn×q is a known matrix, and θ ∈ Rq is an unknown constant parameter
vector.

Remark 1. It should be noted that although the considered nominal system is linear,
most existing sliding mode control methods for nonlinear systems cannot be directly
applied to system (1). For instance, a novel second-order sliding mode control has been
proposed for a class of nonlinear systems to handle the unmatched disturbances in Ding
and Li (2017), but it is difficult to verify the sufficient conditions proposed to guarantee
the stability of the sliding mode dynamics. Moreover, some control parameters in the
sliding mode control of nonlinear systems may be difficult to obtain (Plestan et al.,
(2010); Mu et al., (2017)).

The following Assumptions are imposed on system (1).
Assumption 1. System (1) is controllable and observable.
Assumption 2. B̃ and C̃ are both full rank, rank(C̃B̃) = m.
Under Assumption 2, it follows from Lemma 5.3 in Edwards and Spurgeon (1998)

that there exists a nonsingular coordinate transformation x = T̃ x̃ such that the system
(1) can be described as:

ẋ = Ax+Bu+ Ψ (t) θ

y = Cx
(2)

where A =

[
A11 A12

A21 A22

]
= T̃ ÃT̃−1 with A22 ∈ Rm×m, B =

[
0
B2

]
= T̃ B̃ with

nonsingular matrix B2 ∈ Rm×m, C = C̃T̃−1 and Ψ (t) = T̃ Ψ̃ (t).
The following Assumptions are imposed on system (2).
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Assumption 3. Ψ (t) is a known continuous differentiable function and Ψ (t) is
bounded with ‖Ψ (t)‖ 6 ρ1.

Assumption 4. A12 is full row rank i.e. rank(A12) = n−m.
Remark 2. It should be pointed out that the disturbances considered in this paper

are nonzero time-varying and independent of the system states. The derivative of the
unmatched disturbances d(t) considered in Yang et al., (2013) is required to satisfy
lim
t→∞

ḋ (t) = 0 while this condition is not required in this study.
Remark 3. It should be noted that Assumptions 1-3 are common and reasonable.

Assumption 4 is not conservative and may be satisfied by many linear systems.
It follows from Assumption 1 that (A,C) is also observable. Thus there exists a matrix

L ∈ Rn×p such that A− LC is stable. Therefore for any symmetric matrix Q1 > 0, the
Lyapunov equation

(A− LC)TP1 + P1(A− LC) = −Q1 (3)

has a unique symmetric solution P1 > 0.
It follows from Proposition 3.3 in Edwards and Spurgeon (1998) that the pair

(A11, A12) is controllable. Thus there exists a matrix K ∈ Rm×(n−m) such that A11 −
A12K is stable. Then for any symmetric matrix Q2 > 0, the Lyapunov equation

(A11 −A12K)TP2 + P2(A11 −A12K) = −Q2 (4)

has a unique symmetric solution P2 > 0.
The objective is to design a composite sliding surface formed by the system output,

the observed state and the estimated parameters such that the reduced-order sliding mode
is exponentially stable. For system (2), a dynamic output feedback control is defined of
the following form

u = u
(
t, x̂, θ̂, y

)
(5)

where the joint state-parameter adaptive observers are described by

˙̂x = x̂
(
t, u, x̂, θ̂, y

)
(6)

˙̂
θ = θ̂ (t, u, x̂, y) (7)

The system will be designed such that the associated closed-loop system formed by (2)
and (5)-(7) can be driven to the pre-designed sliding surface in finite time and a sliding
motion can be maintained thereafter.

Sliding surface design and stability analysis of the sliding motion

Sliding surface design based on joint state-parameter adaptive
observers
The following state-parameter adaptive observers have been introduced as in Zhang
(2002); Zhang and Clavel (2001)

˙̂x = Ax̂+Bu+
(
ΥΓ−1ΥTCT + L

)
(y − Cx̂) + Ψ (t) θ̂ (8)
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˙̂
θ = Γ−1ΥTCT (y − Cx̂) (9)

where L satisfies (3). The parameter gain Γ is designed by

Γ̇ = −ρ2Γ + ΥTCTCΥ (10)

where the forgetting factor ρ2 is a sufficiently large positive constant, the initial value
Γ(t0) is symmetric positive definite, and Υ is generated by the following dynamical
system

Υ̇ = (A− LC) Υ + Ψ (t) (11)

For (11), it is obvious that Υ is bounded since (A− LC) is stable and Ψ (t) is bounded
(Zhang (2002)). It follows that there exists a constant ρ3 such that ‖Υ‖ 6 ρ3.

Define e = x− x̂, θ̃ = θ − θ̂ and notice that θ̇ = 0, then

ė =
(
A− LC −ΥΓ−1ΥTCTC

)
e+ Ψ (t) θ̃ (12)

˙̃
θ = −Γ−1ΥTCTCe (13)

Lemma 1. (Zhang and Clavel (2001)) If the forgetting factor ρ2 > 0 and the initial
gain matrix Γ(t0) is symmetric positive definite, then the gain matrix Γ generated by
(10) is positive definite and uniformly bounded, i.e. there exists a positive constant ρ4

such that ‖Γ‖ 6 ρ4. Moreover, if the state-parameter adaptive observers are designed

as (8)-(9), then there exist two positive constants χ1, χ2 such that ‖e‖ 6 χ1,
∥∥∥θ̃∥∥∥ 6 χ2,

where χ1, χ2 are determined by ρ2, L and the initial values of e and θ̃.

In order to facilitate the subsequent proof of convergence, the following definition
linear combination of e and θ̃ is defined

η = e−Υθ̃ (14)

where Υ has been defined in (11).
From (12)-(14), it follows that

η̇ = (A− LC) η (15)

In the (x, θ̃, η) coordinate system, the following extended system can be described ẋ
˙̃
θ
η̇

 =

 A 0 0
0 −Γ−1ΥTCTCΥ −Γ−1ΥTCTC
0 0 A− LC

 x

θ̃
η

+

 B
0
0

u+

 Ψ (t) θ
0
0


(16)

Remark 4. It should be noted that the information obtained from the observer design
has not been used for control design in Zhang (2002); Zhang and Clavel (2001) and no
strict Lyapunov proof has been provided.
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Remark 5. The extended system (16) contains all the necessary information on the
variables and forms the basis for the subsequent design and stability analysis of the
sliding mode control.

In order to design a stable sliding mode dynamics, a further transformation z = Tx

will be given, where T =

[
In−m 0
K Im

]
and K satisfies (4). In the new coordinates,

system (2) can be described by:

ż =

[
Ā11 Ā12

Ā21 Ā22

] [
z1

z2

]
+

[
0
B2

]
u+

[
T1Ψ (t) θ
T2Ψ (t) θ

]
(17)

where z := col
(
z1 z2

)
, z1 ∈ Rn−m, z2 ∈ Rm, Ā11 = A11 −A12K, Ā12 = A12,

T1 :=
[
In−m 0

]
∈ R(n−m)×n, T2 :=

[
K Im

]
∈ Rm×n.

For system (2), design the sliding function as

σ (y, x̂) = S1y + S2x̂+ Āright12 T1Ψ (t) θ̂ (18)

where Āright12 := ĀT12

(
Ā12Ā

T
12

)−1 ∈ Rm×(n−m) is the right inverse of Ā12, S1 ∈ Rm×p
is a design parameter, and S2 = S − S1C with S =

[
0 Im

]
T .

Remark 6. Note that Ā11 is stable which can make the stability analysis of the sliding
mode dynamics more straightforward than with the traditional dynamic OFSMC design,
such as Yan et al., (2004, 2009b, 2010, 2006). Furthermore, an additional advantage is
that an explicit expression can be given for S, S1, S2.

Stability analysis of the sliding motion
From (18), it follows that

σ
(
y, x̂, θ̂

)
= S1y + S2x̂+ Āright12 T1Ψ (t) θ̂

= S1Cx+ S2 (x− e) + Āright12 T1Ψ (t) θ̂

= Sx− S2e+ Āright12 T1Ψ (t) θ̂

= ST−1z − S2e+ Āright12 T1Ψ (t) θ̂

= z2 − S2e+ Āright12 T1Ψ (t) θ̂

(19)

In the new coordinates, the sliding surface is given by:

z2 = S2e− Āright12 T1Ψ (t) θ̂ (20)

When system (16) is restricted to the sliding surface (20), the corresponding extended
system dynamics are described by ż1

˙̃
θ
η̇

 =

 Ā11 Ā12S2Υ + T1Ψ (t) Ā12S2

0 −Γ−1ΥTCTCΥ −Γ−1ΥTCTC
0 0 A− LC

 z1

θ̃
η

 (21)
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Theorem 1. Suppose Assumptions 1-4 are satisfied. Then, the extended system (21) is
exponentially stable if M > 0 with M defined by

M =

 λ− (Q2) −
∥∥P2Ā12S2

∥∥ −ρ3
∥∥P2Ā12S2

∥∥− ρ1 ‖P2T1‖
−
∥∥P2Ā12S2

∥∥ λ− (Q1)− λ̄
(
CTC

)
0

−ρ3
∥∥P2Ā12S2

∥∥− ρ1 ‖P2T1‖ 0 ρ2ρ4


(22)

Proof :
For system (21), consider the Lyapunov function candidate

V
(
z1, η, θ̃, t

)
= zT1 P2z1 + ηTP1η + θ̃TΓθ̃ (23)

The time derivative of V along the trajectories of system (21) is given as

V̇ = −zT1 Q2z1 + 2zT1 P2Ā12S2

(
η + Υθ̃

)
+ 2zT1 P2T1Ψ (t) θ̃

− ηTQ1η − 2θ̃TΓΓ−1ΥTCTC
(
η + Υθ̃

)
+ θ̃T

(
−ρ2Γ + ΥTCTCΥ

)
θ̃

= −zT1 Q2z1 + 2zT1 P2Ā12S2

(
η + Υθ̃

)
+ 2zT1 P2T1Ψ (t) θ̃

− ηTQ1η − ρ2θ̃
TΓθ̃ − 2θ̃TΥTCTCη − θ̃TΥTCTCΥθ̃

(24)

Noted that there exists the following relationship

−2θ̃TΥTCTCη − θ̃TΥTCTCΥθ̃ = −
(
η + Υθ̃

)T
CTC

(
η + Υθ̃

)
+ ηTCTCη

6 ηTCTCη
(25)

Then (24) can be further described by

V̇ 6 −zT1 Q2z1 + 2zT1 P2Ā12S2

(
η + Υθ̃

)
+ 2zT1 P2T1Ψ (t) θ̃ − ηTQ1η − ρ2θ̃T Γθ̃ + ηTCTCη

6 −λ− (Q2) ‖z1‖2 + 2
∥∥P2Ā12S2

∥∥ ‖z1‖ ‖η‖+ 2
(
ρ3
∥∥P2Ā12S2

∥∥+ ρ1 ‖P2T1‖
)
‖z1‖

∥∥∥θ̃∥∥∥
+
{
λ̄
(
CTC

)
− λ− (Q1)

}
‖η‖2 − ρ2ρ4

∥∥∥θ̃∥∥∥2
= −XTMX

(26)

where X =
[
‖z1‖ ‖η‖

∥∥∥θ̃∥∥∥ ]T .

It follows that

V̇ 6 −λ− (M) ‖X‖2 (27)
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It should be pointed that although the gain matrix Γ is positive define, it may be not
symmetric. Hence,

θ̃TΓθ̃ = θ̃T
(

Γ + ΓT

2
+

Γ− ΓT

2

)
θ̃

= θ̃T
(

Γ + ΓT

2

)
θ̃

> λ−

(
Γ + ΓT

2

)∥∥∥θ̃∥∥∥2

(28)

It follows from (23) and (28) that

k1

(
‖z1‖2 + ‖η‖2 +

∥∥∥θ̃∥∥∥2
)

6 V
(
z1, η, θ̃, t

)
6 k2

(
‖z1‖2 + ‖η‖2 +

∥∥∥θ̃∥∥∥2
)

(29)

where k1 = min
{
λ− (P2) , λ− (P1) , λ−

(
Γ+ΓT

2

)}
, k2 = max

{
λ̄ (P2) , λ̄ (P1) , ρ4

}
.

It follows from (27) and (29) that

V̇ 6 −
λ− (M)

k2
V (30)

Then,
V 6 V (t0) exp{2k3 (t− t0)} (31)

where k3 = −
λ−(M)

2k2
and V (t0) represents the initial value.

From (14), it is obvious that

‖e‖ 6 ‖η‖+ ρ3

∥∥∥θ̃∥∥∥ (32)

Furthermore, it follows from (29), (31) and (32) that

‖e‖ 6 (1 + ρ3)

√
V (t0)

k1
exp{k3 (t− t0)} (33)

Hence, the extended system (21) is exponentially stable while the observation error
and parameter estimation error converge to zero exponentially.

Sliding mode control design
Based on the observed state, the estimated parameters given by (8)-(9) and the system
output, the following sliding mode control is proposed

u = −(SB)−1
{
SAx̂+

(
S2L+ S2ΥΓ−1ΥTCT + Āright

12 T1Ψ (t) Γ−1ΥTCT
)

(y − Cx̂)

+
(
Āright

12 T1Ψ̇ (t) + S2Ψ (t)
)
θ̂ + ω

σ

‖σ‖

}
(34)
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where ω is defined by

ω = µ+ χ1 ‖S1CA‖+ χ2 ‖S1C‖ ‖Ψ (t)‖+ ‖S1C‖ ‖Ψ (t)‖
∥∥∥θ̂∥∥∥ (35)

with µ a positive constant.

Theorem 2. Suppose Assumptions 1-4 are satisfied. The control (34) with ω defined in
(35) will drive the system (16) to the sliding surface in finite time and maintain a sliding
motion thereafter.

Proof :
It follows from (16) and (18) that

σ̇ = SBu+ SAx+ SΨ (t) θ − S2

(
A− LC −ΥΓ−1ΥTCTC

)
e

− S2Ψ (t) θ̃ + Āright12 T1Ψ̇ (t) θ̂ + Āright12 T1Ψ (t) Γ−1ΥTCT (y − Cx̂)

= SBu+ SAx+ SΨ (t) θ − S2Ae+ S2LCe+ S2ΥΓ−1ΥTCTCe

− S2Ψ (t) θ̃ + Āright12 T1Ψ̇ (t) θ̂ + Āright12 T1Ψ (t) Γ−1ΥTCT (y − Cx̂)

= SBu+ SAx̂+ S1CAe+ S1CΨ (t) θ + S2Ψ (t) θ̂ + S2L (y − Cx̂)

+ S2ΥΓ−1ΥTCT (y − Cx̂) + Āright12 T1Ψ̇ (t) θ̂ + Āright12 T1Ψ (t) Γ−1ΥTCT (y − Cx̂)
(36)

By applying the control (34) to (36),

σT σ̇ = σT
{
SBu+ SAx̂+ S1CAe+ S1CΨ (t) θ + S2Ψ (t) θ̂ + S2L (y − Cx̂)

+S2ΥΓ−1ΥTCT (y − Cx̂) + Āright
12 T1Ψ̇ (t) θ̂ + Āright

12 T1Ψ (t) Γ−1ΥTCT (y − Cx̂)
}

= σT

{
S1CAe+ S1CΨ (t) θ − ω σ

‖σ‖

}
6 −‖σ‖ {ω − ‖S1CA‖ ‖e‖ − ‖S1C‖ ‖Ψ (t)‖ ‖θ‖}

6 −‖σ‖
{
ω − ‖S1CA‖ ‖e‖ − ‖S1C‖ ‖Ψ (t)‖

(∥∥∥θ̃∥∥∥+
∥∥∥θ̂∥∥∥)}

6 −‖σ‖
{
µ+ χ1 ‖S1CA‖+ χ2 ‖S1C‖ ‖Ψ (t)‖+ ‖S1C‖ ‖Ψ (t)‖

∥∥∥θ̂∥∥∥
−‖S1CA‖ ‖e‖ −

∥∥∥θ̃∥∥∥ ‖S1C‖ ‖Ψ (t)‖ − ‖S1C‖ ‖Ψ (t)‖
∥∥∥θ̂∥∥∥}

6 −µ ‖σ‖
(37)

According to the so-called η reachability condition (Edwards and Spurgeon (1998)),
Theorem 2 is proved.

Remark 7. According to the principles of state transformation, Theorems 1 and 2 are
appropriate for the original system (1). One can use ˆ̃x = T̃−1x̂ and x̃ = T̃−1x directly
in the controller implementation.
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Simulation example
The proposed approach will now be validated by a practically oriented example. Consider
the lateral dynamics of the HIRM aircraft at the trim values of Mach 0.2 and height 5000
ft taken from Kureemun (2002). The system matrices are given by (see Yan et al.,
(2004))

Ã =


−0.0080 0.4100 −0.9047 0.1334
−7.3235 −0.4278 2.6462 0
−0.1460 −0.0247 −0.1544 0

0 1.0000 0.4558 0

 , B̃ =


0.0181 −0.0094
−3.1026 0.4024
−0.4096 −0.0833

0 0


C̃ =

[
1 0 0 0
0 0 1 0

]
(38)

For the lateral dynamics of the HIRM aircraft, the system states
x̃ := col(x̃1, x̃2, x̃3, x̃4) represent sideslip angle (rad), roll rate (rad/s), yaw rate
(rad/s) and bank angle (rad) respectively, the system inputs u := col(u1, u2) represent
differential tailplane deflection (rad) and differential canard deflection (rad) respectively,
the system outputs y := col(y1, y2) represent sideslip angle (rad) and yaw rate (rad/s)
respectively. The system zeros are 32.3877 and −0.3254 and thus it is a non-minimum
phase system. Suppose that the system suffers from the disturbances Ψ̃ (t) θ where Ψ̃ (t)
is given by

Ψ̃ (t) =


0.0053 sin t
−0.0130 sin t
0.0990 sin t

0.1 cos t


T

(39)

and θ = 0.3.
The coordinate transformation x = T̃ x̃ is given by

T̃ =


0.9986 0.0126 −0.0516 0

0 0 0 1
−0.0058 0.9914 0.1309 0
0.0528 −0.1304 0.9901 0

 (40)

Then in the new coordinates x, the system can be rewritten as

A =


−0.0433 0.1332 0.2895 −0.9112
−0.0109 0 1.0510 0.3209
−7.4092 −0.0008 −0.0425 2.2539
0.8377 0.0070 −0.0236 −0.5044

 , B =


0 0
0 0

−3.1296 0.3881
0 −0.1354


C =

[
0.9986 0 −0.0058 0.0528
−0.0516 0 0.1309 0.9901

]
(41)

and Ψ (t) = 0.1
[

0 cos t 0 sin t
]T

.
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Since (A,C) is observable, design

L =


1.4049 0.7594
3.7481 19.2627
−7.2881 1.0807
0.8892 0.8237

 (42)

such that the eigenvalues of A− LC are
[
−1 −1 −0.5 −0.5

]T
. Then choosing

Q1 = 2I4, the solution of the Lyapunov equation (3) is

P1 =


0.1084 −0.0550 0.0523 0.6934
−0.0550 0.0369 −0.0286 −0.3821
0.0523 −0.0286 0.0570 0.3878
0.6934 −0.3821 0.3878 4.8671

 (43)

Since (A11, A12) is controllable, design

K =

[
1.1990 1.7753
−3.9614 0.4179

]
(44)

Choosing Q2 = I2, the solution of the Lyapunov equation (4) is

P2 =

[
0.1250 0

0 0.2500

]
(45)

The further transformation z = Tx is given by

T =


1 0 0 0
0 1 0 0

1.1990 1.7753 1 0
−3.9614 0.4179 0 1

 (46)

The main parameters of the sliding function (18) are given as:

S =

[
1.1990 1.7753 1.00 0
−3.9614 0.4179 0 1.00

]
, S1 =

[
0.1 0.2
−0.1 0.2

]
Āright12 =

[
0.3054 0.8673
−1.0004 0.2756

] (47)

Based on the above analysis, Assumptions 1-4 and Lemma 1 are all satisfied with
ρ1 = 0.1, ρ2 = 5.

Meanwhile, by direct computation, it follows that ρ3 = 2, ρ4 = 2 and

M =

 1 −0.5620 −1.1491
−0.5620 1 0
−1.1491 0 10

 (48)

Prepared using sagej.cls



Smith and Wittkopf 13

Thus the conditions of Theorem 1 are satisfied. The parameters of the control (34) are
given as:

µ = 0.5, χ1 = 0.6, χ2 = 0.4 (49)

which guarantee that Theorem 2 holds.
For simulation purposes, σ/ (‖σ‖+ β) is used to replace σ/‖σ‖ to reduce the

chattering with β = 0.01.
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(a) The response of the sideslip angle and its
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(b) The response of the roll rate and its estimate
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(c) The response of the yaw rate and its estimate
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(d) The response of bank angle and its estimate

Figure 1. The time responses of the system states and their estimates

The time responses of the system states and their estimates are shown in Fig.1. The
time responses of the sliding functions σ and the system control signal u are shown in
Fig.2. The parameter estimate is shown in Fig.3. From Figs.1-3, it can be seen that the
proposed joint state-parameter adaptive observer can estimate the system states and the
uncertain parameter effectively. The HIRM aircraft is stabilized despite the presence of
unmatched disturbances with nonzero steady-state value. The simulation results show
that the proposed disturbance observer-based dynamic OFSMC is effective.

To further test the proposed disturbance observer-based dynamic OFSMC, the results
obtained in Yan et al., (2004) will be compared with the results in this paper. The
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(b) The time response of the system control signal

Figure 2. The time responses of the sliding function and system control signal
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Figure 3. Estimate of the parameter and its actual value

selection of the control parameters is the same as those in Yan et al., (2004). The time
responses of the system states and their estimates using the dynamic OFSMC proposed in
Yan et al., (2004) are shown in Fig.4. The time responses of the sliding functions σ and
the system control signal u are shown in Fig.5. Compared with Figs.1-5, the proposed
dynamic OFSMC has a faster response speed and better system performance due to its
direct consideration of the unmatched disturbances with nonzero steady-state value.

It should be noted that µ, χ1 and χ2 are important factors to ensure that the considered
system can reach the sliding surface in finite time and the method of determining χ1

and χ2 has been given in Zhang (2002); Zhang and Clavel (2001). In addition, the state
observer gain L in (3) and the forgetting factor ρ2 in (10) determine the convergence rate
of the state observation error and parameter estimation error respectively. The following
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(a) The response of the sideslip angle and its
estimate

0 10 20 30 40 50 60 70 80 90 100

time(s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ro
ll 

ra
te

 (
ra

d
/s

)

(b) The response of the roll rate and its estimate
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(c) The response of the yaw rate and its estimate
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(d) The response of bank angle and its estimate

Figure 4. The time responses of the system states and their estimates using the dynamics
OFSMC proposed in Yan et al., (2004)

simulation results will further show the influence of µ on the time for the system to reach
the sliding surface and the influence of L and ρ2 on system performance. Without loss
of generality, only the time response of the system state x̃1, the sliding function σ, the
system control signal u and the estimate of the parameter are given. All simulation times
are selected as 100s.

i. Keeping the other parameters in (42)-(49) unchanged, the values of µ are chosen as
0.005, 0.05, 0.5, 5, 50 respectively. The time for the system to reach the sliding surface
and the maximum of the norm of u are shown in Table 1. The time response of the system
under the condition µ = 50 is shown in Fig.6. The time response of the system under the
condition µ = 0.005 is shown in Fig.7. By comparing Figs.1-3 with Figs.6-7 and Table 1,
with the increase of µ, the time for the system to reach the sliding surface will be shorter
while the system input will gradually increase. In applications, the trial and error method
can be used to find an appropriate µ.

ii. Keeping the other parameters in (42)-(49) unchanged, the value of L only
is changed. Choose L = L1, L2, L3, L4, L5 by pole placement so that the
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(b) The time response of the system control signal

Figure 5. The time responses of the sliding function and system control signal using the
dynamics OFSMC proposed in Yan et al., (2004).

Table 1. The test for µ

µ The time for the system to reach the sliding surface (s) ‖u‖max

0.005 14.3 1.52
0.05 13.1 1.77
0.5 10.2 1.95
5 2.5 2.86

50 0.2 15.08

Table 2. The test for L

L J1 J2 J3 ‖u‖max

L1 7397.1260 5.5873 6.9203 2
L2 5875.9461 4.3763 4.8650 1.98
L3 17.5799 1.3640 2.4049 1.95
L4 41.2148 7.6724 3.1824 568
L5 1173.1036 16.7710 6.0929 1438

eigenvalues of A− LC are 0.01Ω, 0.1Ω, Ω, 10Ω, 100Ω respectively, with Ω =[
−1 −1 −0.5 −0.5

]T
. The integral time multiplied square error (ITSE) indexes

J1 =
∫∞

0
tθ̃2dt, J2 =

∫∞
0
teT edt and J3 =

∫∞
0
tx̃T x̃dt are introduced to analyze the

system performance. The ITSE results and the maximum of the norm of u are shown
in Table 2. The time response of the system under the condition L = L1 is shown in
Fig.8. The time response of the system under the condition L = L5 is shown in Fig.9.
By comparing Figs.1-3 with Figs.8-9 and Table 2, with the decrease in the eigenvalues
of A− LC, the convergence time of the state observation error reduces, but the system
performance will first improve and then worsen, especially when the eigenvalue is very
small, the system input will become very large.
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(a) The response of the sideslip angle and its
estimate
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(b) The time response of the sliding function
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(c) The time response of the system control signal
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(d) Estimate of the parameter and its actual value

Figure 6. The time response of the system under the condition µ = 50

iii. Keeping the other parameters in (42)-(49) unchanged, the values of ρ2 are chosen
as 0.05, 0.5, 5, 50, 500 respectively. The ITSE results and the maximum of the norm of u
are shown in Table 3. The time response of the system under the condition ρ2 = 0.05 is
shown in Fig.10. The time response of the system under the condition ρ2 = 500 is shown
in Fig.11. By comparing Figs.1-3 with Figs.10-11 and Table 3, with the increase of ρ2,
the convergence time of the parameter estimation error will be shorter, but the system
performance will initially improve and then worsen, especially when ρ2 is very large,
the system input will become very large. It should be noted that if ρ2 is too small, the
parameter estimate will not converge to the actual value.

Conclusion

A dynamical OFSMC method has been proposed for a class of uncertain linear non-
minimum phase systems. The unmatched disturbances can be allowed to have nonzero
steady-state value. A sliding mode control has been designed to ensure that the system
states reach the designed sliding surface in finite time. Simulation test results are given
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(a) The response of the sideslip angle and its
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(b) The time response of the sliding function
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(c) The time response of the system control signal
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(d) Estimate of the parameter and its actual value

Figure 7. The time response of the system under the condition µ = 0.005

Table 3. The test for ρ2
ρ2 J1 J2 J3 ‖u‖max

0.05 26.7828 9.5900 11.8311 1.6082
0.5 20.3254 8.5410 11.2451 1.7392
5 17.5799 1.3640 2.4049 1.95
50 110.6306 15.5977 20.2541 14.3216
500 3463.8769 21.1690 27.5700 136.2214

to show the effectiveness of the proposed control scheme. Future work will focus on the
application of the proposed method to interconnected systems.
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(a) The response of the sideslip angle and its
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(c) The time response of the system control signal
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Figure 8. The time response of the system under the condition L = L1
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Figure 11. The time response of the system under the condition ρ2 = 500
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