1,751 research outputs found

    Decentralized Planning of Energy Demand for the Management of Robustness and Discomfort

    Get PDF
    The robustness of smart grids is challenged by unpredictable power peaks or temporal demand oscillations that can cause blackouts and increase supply costs. Planning of demand can mitigate these effects and increase robustness. However, the impact on consumers in regards to the discomfort they experience as a result of improving robustness is usually neglected. This paper introduces a decentralized agent-based approach that quantifies and manages the tradeoff between robustness and discomfort under demand planning. Eight selection functions of plans are experimentally evaluated using real data from two operational smart grids. These functions can provide different quality of service levels for demand-side energy self-management that capture both robustness and discomfort criteria

    Appliance-Level Flexible Scheduling for Socio-Technical Smart Grid Optimization

    Get PDF
    Participation in residential energy demand response programs requires an active role by consumers. They contribute flexibility in how they use their appliances as the means to adjust energy consumption, and reduce demand peaks, possibly at the expense of their own comfort (e.g., thermal). Understanding the collective potential of appliance-level flexibility for reducing demand peaks is challenging and complex. For instance, physical characteristics of appliances, usage preferences, and comfort requirements all influence consumer flexibility, adoption, and effectiveness of demand response programs. To capture and study such socio-technical factors and trade-offs, this paper contributes a novel appliance-level flexible scheduling framework based on consumers' self-determined flexibility and comfort requirements. By utilizing this framework, this paper studies (i) consumers' usage preferences across various appliances, as well as their voluntary contribution of flexibility and willingness to sacrifice comfort for improving grid stability, (ii) impact of individual appliances on the collective goal of reducing demand peaks, and (iii) the effect of variable levels of flexibility, cooperation, and participation on the outcome of coordinated appliance scheduling. Experimental evaluation using a novel dataset collected via a smartphone app shows that higher consumer flexibility can significantly reduce demand peaks, with the oven having the highest system-wide potential for this. Overall, the cooperative approach allows for higher peak-shaving compared to non-cooperative schemes that focus entirely on the efficiency of individual appliances. The findings of this study can be used to design more cost-effective and granular (appliance-level) demand response programs in participatory and decentralized Smart Grids

    ДЕЦЕНТРАЛИЗАЦИЯ В ЦИФРОВОМ ОБЩЕСТВЕ: ПАРАДОКС ДИЗАЙНА

    Get PDF
    Digital societies come with a design paradox: On the one hand, technologies, such as Internet of Things, pervasive and ubiquitous systems, allow a distributed local intelligence in interconnected devices of our everyday life such as smart phones, smart thermostats, self-driving cars, etc. On the other hand, Big Data collection and storage is managed in a highly centralized fashion, resulting in privacy-intrusion, surveillance actions, discriminatory and segregation social phenomena. What is the difference between a distributed and a decentralized system design? How “decentralized” is the processing of our data nowadays? Does centralized design undermine autonomy? Can the level of decentralization in the implemented technologies influence ethical and social dimensions, such as social justice? Can decentralization convey sustainability? Are there parallelisms between the decentralization of digital technology and the decentralization of urban development?Цифровая трансформация основывается на автоматизированных процессах и инвестициях в новые технологии: искусственный интеллект, блокчейн, анализ данных и интернет вещей. Но в центре успешной стратегии цифровой трансформации все равно находится человек. Цифровая трансформация порождает парадоксы новых моделей: с одной стороны, распространяются повсеместно технологии, такие, как интернет вещей, большие данные позволяют улучшить продукты и услуги для потребителей, предложить им новую ценность и т. д. Но, с другой стороны, аналитика данных и их хранение управляются высокоцентрализованным способом, приводящим к вторжению в частную жизнь людей, контролю за их действиями, к дискриминационным и сегрегационным социальным явлениям. В статье рассматриваются вопросы: каково различие между распределенным и децентрализованным системным проектированием? Как возможна организация «децентрализованной» обработки персональных  данных в наше время? Подрывают ли централизованный сбор и обработка данных автономию? Может ли децентрализация во внедренных технологиях влиять на этические и социальные параметры, такие, как социальная справедливость? Ведет ли децентрализация к  устойчивости функционирования систем? Есть ли взаимосвязь между децентрализацией цифровых технологий и децентрализацией городского развития?В статье делается вывод о том, что децентрализаванные системы имеют гораздо большую эффективность в современных условиях и являются альтернативой или естественной адаптацией к сложившимся условиям. Например, децентрализованное производство электроэнергии делает людей одновременно производителями и потребителями, что приводит к повышению энергоэффективности. Точно так же аналитика данных не является монополией систем больших данных. Анализ может также быть выполнен полностью децентрализованным способом как общественное благо с использованием коллективного разума

    Measuring and Controlling Unfairness in Decentralized Planning of Energy Demand

    Get PDF
    Demand-side energy management improves robustness and efficiency in Smart Grids. Load-adjustment and load-shifting are performed to match demand to available supply. These operations come at a discomfort cost for consumers as their lifestyle is influenced when they adjust or shift in time their demand. Performance of demand-side energy management mainly concerns how robustness is maximized or discomfort is minimized. However, measuring and controlling the distribution of discomfort as perceived between different consumers provides an enriched notion of fairness in demand-side energy management that is missing in current approaches. This paper defines unfairness in demand-side energy management and shows how unfairness is measurable and controllable by software agents that plan energy demand in a decentralized fashion. Experimental evaluation using real demand and survey data from two operational Smart Grid projects confirms these findings. © 2014 IEEE

    A self-integration testbed for decentralized socio-technical systems

    Get PDF
    The Internet of Things (IoT) comes along with new challenges for experimenting, testing, and operating decentralized socio-technical systems at large-scale. In such systems, autonomous agents interact locally with their users, and remotely with other agents to make intelligent collective choices. Via these interactions they self-regulate the consumption and production of distributed (common) resources, e.g., self-management of traffic flows and power demand in Smart Cities. While such complex systems are often deployed and operated using centralized computing infrastructures, the socio-technical nature of these decentralized systems requires new value-sensitive design paradigms; empowering trust, transparency, and alignment with citizens’ social values, such as privacy preservation, autonomy, and fairness among citizens’ choices. Currently, instruments and tools to study such systems and guide the prototyping process from simulation, to live deployment, and ultimately to a robust operation of a high Technology Readiness Level (TRL) are missing, or not practical in this distributed socio-technical context. This paper bridges this gap by introducing a novel testbed architecture for decentralized socio-technical systems running on IoT. This new architecture is designed for a seamless reusability of (i) application-independent decentralized services by an IoT application, and (ii) different IoT applications by the same decentralized service. This dual self-integration promises IoT applications that are simpler to prototype, and can interoperate with decentralized services during runtime to self-integrate more complex functionality, e.g., data analytics, distributed artificial intelligence. Additionally, such integration provides stronger validation of IoT applications, and improves resource utilization, as computational resources are shared, thus cutting down deployment and operational costs. Pressure and crash tests during continuous operations of several weeks, with more than 80K network joining and leaving of agents, 2.4M parameter changes, and 100M communicated messages, confirm the robustness and practicality of the testbed architecture. This work promises new pathways for managing the prototyping and deployment complexity of decentralized socio-technical systems running on IoT, whose complexity has so far hindered the adoption of value-sensitive self-management approaches in Smart Cities

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio
    corecore