Measuring and Controlling Unfairness in Decentralized Planning of Energy Demand

Abstract

Demand-side energy management improves robustness and efficiency in Smart Grids. Load-adjustment and load-shifting are performed to match demand to available supply. These operations come at a discomfort cost for consumers as their lifestyle is influenced when they adjust or shift in time their demand. Performance of demand-side energy management mainly concerns how robustness is maximized or discomfort is minimized. However, measuring and controlling the distribution of discomfort as perceived between different consumers provides an enriched notion of fairness in demand-side energy management that is missing in current approaches. This paper defines unfairness in demand-side energy management and shows how unfairness is measurable and controllable by software agents that plan energy demand in a decentralized fashion. Experimental evaluation using real demand and survey data from two operational Smart Grid projects confirms these findings. © 2014 IEEE

    Similar works