261 research outputs found

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Minimising conflicts among run-time non-functional requirements within DevOps

    Get PDF
    Significant contributions in the existing literature highlight the potential of softgoal interdependency graphs towards analyzing conflicting non-functional requirements (NFRs). However, such analysis is often at a very abstract level and does not quite consider the run-time performance statistics of NFR operationalizations. On the contrary, some initial empirical evaluations demonstrate the importance of the run-time statistics. In this paper, a framework is proposed that uses these statistics and combines the same with NFR priorities for computing the impact of NFR conflicts. The proposed framework is capable of identifying the best possible set of NFR operationalizations that minimizes the impact of conflicting NFRs. A detailed space analysis of the solution framework helps proving the efficiency of the proposed pruning mechanism in terms of better space management. Furthermore, a Dynamic Bayesian Network (DBN) - based system behavioral model that works on top of the proposed framework, is defined and analyzed. An appropriate tool prototype for the framework is implemented as part of this research

    Designing Controllable Accountabilities of Future Internet of Things Applications

    Get PDF
    Within work environments, the emergence of Internet of Things applications creates radically new scenarios of use involving the enrichment of everyday objects with seamlessly integrated communication, sensing and computing capabilities and their integration into information systems. These changes can profoundly alter transparency of work processes, prescribe and prohibit actions, and change stakeholders’ overall accountability and control capabilities. Actors’ difficulties in meeting changed accountabilities due to an Internet of Things application may trigger severe disturbances in organizations. What actors are in control of and what they are held accountable for is partially prescribed by designers and involved stakeholders in the early stages of technology development. Therefore, this paper presents an approach for prospectively designing controllable accountabilities into envisaged Internet of Things applications. Three dimensions of accountability will be distinguished: visibility, responsibility and liability. Each dimension affects control requirements differently. The narrative network approach has been adopted to study envisioned organizational work processes along with the involved actors and their accountabilities and control capabilities. A description of how the approach can be used to prospectively align accountabilities and control capabilities is provided based on a case study of an Internet of Things application in product authentication. Advantages and limitations of the approach are discussed

    Survey of context provisioning middleware

    Get PDF
    In the scope of ubiquitous computing, one of the key issues is the awareness of context, which includes diverse aspects of the user's situation including his activities, physical surroundings, location, emotions and social relations, device and network characteristics and their interaction with each other. This contextual knowledge is typically acquired from physical, virtual or logical sensors. To overcome problems of heterogeneity and hide complexity, a significant number of middleware approaches have been proposed for systematic and coherent access to manifold context parameters. These frameworks deal particularly with context representation, context management and reasoning, i.e. deriving abstract knowledge from raw sensor data. This article surveys not only related work in these three categories but also the required evaluation principles. © 2009-2012 IEEE

    Proceedings of the 4th Workshop on Interacting with Smart Objects 2015

    Get PDF
    These are the Proceedings of the 4th IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Correlating contexts and NFR conflicts from event logs

    Get PDF
    In the design of autonomous systems, it is important to consider the preferences of the interested parties to improve the user experience. These preferences are often associated with the contexts in which each system is likely to operate. The operational behavior of a system must also meet various non-functional requirements (NFRs), which can present different levels of conflict depending on the operational context. This work aims to model correlations between the individual contexts and the consequent conflicts between NFRs. The proposed approach is based on analyzing the system event logs, tracing them back to the leaf elements at the specification level and providing a contextual explanation of the system’s behavior. The traced contexts and NFR conflicts are then mined to produce Context-Context and Context-NFR conflict sequential rules. The proposed Contextual Explainability (ConE) framework uses BERT-based pre-trained language models and sequential rule mining libraries for deriving the above correlations. Extensive evaluations are performed to compare the existing state-of-the-art approaches. The best-fit solutions are chosen to integrate within the ConE framework. Based on experiments, an accuracy of 80%, a precision of 90%, a recall of 97%, and an F1-score of 88% are recorded for the ConE framework on the sequential rules that were mined

    Pervasive computing reference architecture from a software engineering perspective (PervCompRA-SE)

    Get PDF
    Pervasive computing (PervComp) is one of the most challenging research topics nowadays. Its complexity exceeds the outdated main frame and client-server computation models. Its systems are highly volatile, mobile, and resource-limited ones that stream a lot of data from different sensors. In spite of these challenges, it entails, by default, a lengthy list of desired quality features like context sensitivity, adaptable behavior, concurrency, service omnipresence, and invisibility. Fortunately, the device manufacturers improved the enabling technology, such as sensors, network bandwidth, and batteries to pave the road for pervasive systems with high capabilities. On the other hand, this domain area has gained an enormous amount of attention from researchers ever since it was first introduced in the early 90s of the last century. Yet, they are still classified as visionary systems that are expected to be woven into people’s daily lives. At present, PervComp systems still have no unified architecture, have limited scope of context-sensitivity and adaptability, and many essential quality features are insufficiently addressed in PervComp architectures. The reference architecture (RA) that we called (PervCompRA-SE) in this research, provides solutions for these problems by providing a comprehensive and innovative pair of business and technical architectural reference models. Both models were based on deep analytical activities and were evaluated using different qualitative and quantitative methods. In this thesis we surveyed a wide range of research projects in PervComp in various subdomain areas to specify our methodological approach and identify the quality features in the PervComp domain that are most commonly found in these areas. It presented a novice approach that utilizes theories from sociology, psychology, and process engineering. The thesis analyzed the business and architectural problems in two separate chapters covering the business reference architecture (BRA) and the technical reference architecture (TRA). The solutions for these problems were introduced also in the BRA and TRA chapters. We devised an associated comprehensive ontology with semantic meanings and measurement scales. Both the BRA and TRA were validated throughout the course of research work and evaluated as whole using traceability, benchmark, survey, and simulation methods. The thesis introduces a new reference architecture in the PervComp domain which was developed using a novel requirements engineering method. It also introduces a novel statistical method for tradeoff analysis and conflict resolution between the requirements. The adaptation of the activity theory, human perception theory and process re-engineering methods to develop the BRA and the TRA proved to be very successful. Our approach to reuse the ontological dictionary to monitor the system performance was also innovative. Finally, the thesis evaluation methods represent a role model for researchers on how to use both qualitative and quantitative methods to evaluate a reference architecture. Our results show that the requirements engineering process along with the trade-off analysis were very important to deliver the PervCompRA-SE. We discovered that the invisibility feature, which was one of the envisioned quality features for the PervComp, is demolished and that the qualitative evaluation methods were just as important as the quantitative evaluation methods in order to recognize the overall quality of the RA by machines as well as by human beings
    • …
    corecore