
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

6-1-2017

Pervasive computing reference architecture from a software Pervasive computing reference architecture from a software

engineering perspective (PervCompRA-SE) engineering perspective (PervCompRA-SE)

Osama Mabrouk Khaled

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Khaled, O. (2017).Pervasive computing reference architecture from a software engineering perspective
(PervCompRA-SE) [Master’s thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/25

MLA Citation
Khaled, Osama Mabrouk. Pervasive computing reference architecture from a software engineering
perspective (PervCompRA-SE). 2017. American University in Cairo, Master's thesis. AUC Knowledge
Fountain.
https://fount.aucegypt.edu/etds/25

This Dissertation is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/25?utm_source=fount.aucegypt.edu%2Fetds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/25?utm_source=fount.aucegypt.edu%2Fetds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

2017

Pervasive Computing Reference Architecture from a
Software Engineering Perspective

(PervCompRA-SE)

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctoral of Philosophy in Applied Sciences

To

The American University in Cairo (AUC)

Department of Computer Science and Engineering

By

Osama Mabrouk Khaled

Masters of Science (Computer Science)

Supervisors

Dr. Hoda Mohamed Hosny

Professor - Software Engineering

Dr. Mohamed Shalan

Associate Professor – Pervasive Computing

II

Acknowledgement

I would like to thank Allah for providing me with patience that helped me in completing

this thesis dissertation. I am very thankful and grateful to all those who supported me

during this journey. I want to thank Dr. Neamat El Shafeay, My mother and Eng.

Mabrouk Khaled, my father, for their prayers and encouragement during my whole life

to succeed, learn and provide people with worthy knowledge. I also want to thank

Naglaa Yehia, my wife, for the love that she brought to our family and helping me to go

beyond my limits. I cannot forget my Children (Farida, Youssef, Mohamed, and Karim)

who brought the happiness and joy I always felt after coming home late.

I sometimes deviated from the road, but I felt safe with my supervisors and advisors

who always adjusted my path. I would like to thank Dr. Hoda M. Hosny (AUC) and Dr.

Mohamed Shalan (AUC) for supervising and guiding my research work. Their

participation and technical knowledge were very helpful to me. Special appreciation

goes to Dr. Hoda for mentoring my research activities since the Master’s degree. I also

want to thank Dr. Sherif El Kassas (AUC) and Dr. Sherif Gamal Aly (AUC), the members

of my advisory committee, for their valuable advice during our regular follow-up

meetings. They were always supportive and cooperative.

Many people have assisted me during the research journey. I would like to thank

Ahmed Ibrahim, Executive Architect (IBM Egypt) and Hany Ouda, IT Enterprise

Architecture Manager (Etisalat Egypt Telecommunications) for their participation in the

workshop and the benchmarking exercise, and their technical advices. I also want to

thank Hassan Ali, Senior Architect (IBM Egypt) and Mohamed Hassan Abdelrahman,

Business Analyst (Vodafone Egypt) for their participation in the workshop. I would like

to thank Ahmed El-Maadawy, Senior Architect (IBM Egypt), and Marwa Tayseer, Former

Software Architect in (IBM Egypt), Amr Yassin, Senior Architect (IBM Egypt), for

participating in the benchmark exercise. A special gratitude goes to professor Veronica

Bogado (
1
) for providing me with the necessary material that helped me start the

1 Centro de Investigaciones y Transferencia Villa María (CIT Villa María), CONICET-UNVM, Carlos

Pellegrini 211, Villa María, Córdoba, Argentina.

III

simulation project, although we got to know each other over the email only. I would

like also to thank Emad Shafik, Vice President IT Systems Engineering (Du UAE

Telecommunications), Tamer Mazen, IoT Technical Expert (Etisalat Egypt

Telecommunications), and Kassem Tawfik, Sales Application Manager (Etisalat Egypt

Telecommunications) for their valuable feedback about the PervCompRA-SE during the

evaluation phase.

I am greatly indebted to many people in the early stage of the research. I want to thank

Soumaya ElAyat, Senior Application Development Manager (AUC) for her support to invite

respondents for one of the surveys. I also want to thank Eslam Abbas, Internet

Applications Manager (Etisalat Egypt Telecommunications), Mohamed Imam, Deputy IT

Director (Smart Card Applications), Waleed El Sonbaty, an independent Technical

Consultant in the USA and previous Chief Information Technology at Orascom Algeria, and

Amr Khalifa, Head of BSS (Etisalat Egypt Telecommunications) for their support. Finally, I

want to thank the anonymous Users who participated in the survey to evaluate the

importance of the business quality features.

Departamento Ingeniería en Sistemas de Información, UTN FRVM, Av. Universidad 450, X5900 HLR Villa

María, Córdoba, Argentina.

IV

Abstract

Pervasive computing (PervComp) is one of the most challenging research topics nowadays. Its complexity

exceeds the outdated main frame and client-server computation models. Its systems are highly volatile,

mobile, and resource-limited ones that stream a lot of data from different sensors. In spite of these

challenges, it entails, by default, a lengthy list of desired quality features like context sensitivity, adaptable

behavior, concurrency, service omnipresence, and invisibility. Fortunately, the device manufacturers

improved the enabling technology, such as sensors, network bandwidth, and batteries to pave the road for

pervasive systems with high capabilities. On the other hand, this domain area has gained an enormous

amount of attention from researchers ever since it was first introduced in the early 90s of the last century.

Yet, they are still classified as visionary systems that are expected to be woven into people’s daily lives.

At present, PervComp systems still have no unified architecture, have limited scope of context-sensitivity

and adaptability, and many essential quality features are insufficiently addressed in PervComp

architectures. The reference architecture (RA) that we called (PervCompRA-SE) in this research, provides

solutions for these problems by providing a comprehensive and innovative pair of business and technical

architectural reference models. Both models were based on deep analytical activities and were evaluated

using different qualitative and quantitative methods.

In this thesis we surveyed a wide range of research projects in PervComp in various subdomain areas to

specify our methodological approach and identify the quality features in the PervComp domain that are

most commonly found in these areas. It presented a novice approach that utilizes theories from sociology,

psychology, and process engineering. The thesis analyzed the business and architectural problems in two

separate chapters covering the business reference architecture (BRA) and the technical reference

architecture (TRA). The solutions for these problems were introduced also in the BRA and TRA chapters.

We devised an associated comprehensive ontology with semantic meanings and measurement scales.

Both the BRA and TRA were validated throughout the course of research work and evaluated as whole

using traceability, benchmark, survey, and simulation methods.

The thesis introduces a new reference architecture in the PervComp domain which was developed using a

novel requirements engineering method. It also introduces a novel statistical method for tradeoff analysis

and conflict resolution between the requirements. The adaptation of the activity theory, human

perception theory and process re-engineering methods to develop the BRA and the TRA proved to be very

successful. Our approach to reuse the ontological dictionary to monitor the system performance was also

innovative. Finally, the thesis evaluation methods represent a role model for researchers on how to use

both qualitative and quantitative methods to evaluate a reference architecture.

Our results show that the requirements engineering process along with the trade-off analysis were very

important to deliver the PervCompRA-SE. We discovered that the invisibility feature, which was one of the

envisioned quality features for the PervComp, is demolished and that the qualitative evaluation methods

were just as important as the quantitative evaluation methods in order to recognize the overall quality of

the RA by machines as well as by human beings.

V

Abbreviations

ALMA Architecture Level Modifiability Analysis

AOSD Aspect-Oriented Software Development AOSD

ATAM Architecture Tradeoff Analysis Method

BRA Business Reference Architecture

CI-Nets Conditional Importance Network

CIA Confidentiality-Integrity-Availability

DES Discrete Event Simulation

DEVS Discrete Event System Specification

DMZ Demilitarized Zone

FRA Futuristic Reference Architecture

IaaS Infrastructure-as-a-Service

IIBA The International Institute of Business Analysis

IoT Internet of Things

MEMS Micro-Electro-Mechanical System

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

NFC Near Field Communication

OOD Object-Oriented Design

P2P Peer to Peer

PervComp Pervasive Computing

PaaS Platform-as-a-Service

PRA Practice Reference Architecture

RA Reference Architecture

RE Requirements Engineering

RFID Radio Frequency Identification

QoS Quality of Service

SA Software Architecture

SAAM Software Architecture Analysis Method

SaaS Software-as-a-Service

SLDC Software Life Development Cycle

SOA Service Oriented Architecture

TRA Technical Reference Architecture

UbiComp Ubiquitous Computing

UML Unified Modeling Language

UPC Universal Product Code

UPnP Universal Plug and Play

VI

Table of Contents

1. Introduction ... 20

1.1 Essential Background .. 21

1.2 Problem Statement .. 24

1.3 Thesis Statement .. 26

1.4 Contributions ... 26

1.5 Scope ... 27

1.6 Outline ... 28

2. The Research Approach .. 30

2.1 The Business Reference Architecture ... 33

2.2 The Technical Reference Architecture ... 37

2.3 The Evaluation Approach .. 40

3. Related Work – State of the Art .. 44

3.1 Reference Architectures.. 46

3.2 The Evaluation Approaches ... 67

4. The Business Reference Architecture .. 74

4.1 Business Domains ... 74

4.2 Quality Features ... 84

4.3 Trade-off Analysis ... 104

4.4 Quality Features Requirements Conflict Resolution 114

5. The Technical Reference Architecture ... 119

5.1 The Architectural Requirements Model ... 119

5.2 Technology Enablers ... 132

5.3 Network Challenges .. 133

5.4 Patterns ... 135

5.5 The Baseline Technical Architecture Model ... 145

6. Evaluation.. 172

6.1 Validation... 172

6.2 Metrics ... 177

6.3 Benchmarking .. 182

6.4 Survey .. 186

VII

6.5 Discrete Event Simulation ... 189

6.6 Insights from the Evaluation Exercises ... 210

7. Conclusion ... 211

7.1 Contributions ... 212

7.2 Findings .. 215

7.3 Future Research Work .. 217

Appendix A : SysML Overview ... 219

Appendix B : The Business Reference Architecture (Extra Details)............... 221

B.1 Requirements Gathering Session (Focus Group) ... 221

B.2 Business Requirements Relationships Analysis ... 222

B.3 Use Cases .. 231

B.4 State Machines .. 258

B.5 Conflict Resolution .. 268

B.6 Business Quality features requirements Survey Result 298

Appendix C : Technical Reference Architecture (Extra Details) 301

C.1 Architecture Requirements Relationships ... 301

C.2 Review of the Technology Enablers .. 303

C.3 Pattern Relationships .. 309

C.4 Baseline architecture detailed diagram .. 310

Appendix D : Evaluation (Extra Details) ... 311

D.1 Baseline Architecture Modules Satisfaction Relationships 311

D.2 Survey... 315

D.3 Benchmarking ... 316

D.4 The Simulation Project .. 341

Appendix E : Ontology ... 348

E.1 Business Ontology ... 348

E.2 Architectural-Driven Ontology ... 353

Appendix F : Additional Readings .. 356

F.1 Requirements Engineering ... 356

F.2 Pervasive Computing Frameworks .. 359

F.3 Pervasive Computing Patterns .. 362

F.4 Aspect-Oriented Software Development for Pervasive Computing 364

VIII

F.5 Development Methodologies for Pervasive Computing 367

F.6 IoT Frameworks ... 371

Appendix G : Publications .. 375

References ... 377

Index ... 389

IX

Table of Figures
Figure 1-1 FRA maturity cycle ___ 26

Figure 2-1 High-level Research Approach from a Software Engineering Perspective __________ 32

Figure 2-2 Decoupling the Business Reference Architecture from the Technical Reference
Architecture ___ 32
Figure 2-3 The Pervasive Computing Analysis Approach ________________________________ 33

Figure 2-4 Activities to generate a business reference architecture _______________________ 34
Figure 2-5 Activity Theory perspective [4] __ 34

Figure 2-6 The perception process __ 35

Figure 2-7 requirements custom relationship ___ 36

Figure 2-8 Technical Reference Architecture Point of Views _____________________________ 38

Figure 2-9 Activities to generate a technical reference architecture _______________________ 40

Figure 2-10 The suggested reference Architecture Evaluation Cycle _______________________ 41

Figure 2-11 Activities to complete the Evaluation Activities ______________________________ 43

Figure 3-1 Component Diagram of RA-Ubi [46] _______________________________________ 48
Figure 3-2 PCA (Pervasive Computing Architecture) [47] ________________________________ 50

Figure 3-3 PSC-RM User's Generic Activity Model [48] __________________________________ 51

Figure 3-4 PSC-RM Reference Model [48] __ 52

Figure 3-5 Tasks of the Perception Process [49] _______________________________________ 53

Figure 3-6 Nodes and their dependencies in an application deployed on CIPS [50] ___________ 55

3.1.7 Figure 3-7 Proposed components and their links in the CIPS reference architecture

[50]Next Generation Service Overlay Network (NGSON) Multiplane Framework (2012) _______ 56
Figure 3-8 Multiplane Framework of NGSON [51] _____________________________________ 57

Figure 3-9 Pervasive Self Care as a Multi-Sphere Reference Model [52] ____________________ 58

Figure 3-10 Conceptual Reference Architecture for IoT [53] _____________________________ 60

Figure 3-11 Reference Model for I-Centric Communications [54] _________________________ 61

Figure 3-12 Reference Architecture derivation relationship between reference model,
architectural patterns, reference architectures, and software architectures. (The arrows indicates
that subsequent concepts contain more design elements) [55] ___________________________ 62
Figure 3-13 Component-based reference architecture for Self-adaptive Systems [55] _________ 63

Figure 3-14 IoT-A Functional Model [6] __ 64

Figure 3-15 Evaluating User-Centric Adaptation with Goal Models – adopted from [60] _______ 70

Figure 3-16 SOA Reliability Evaluation Framework – adopted from [61] ____________________ 71

Figure 3-17 The Evaluation Hierarchy Process of the Software Quality using Fuzzy Logic - adopted
from [62] __ 72
Figure 4-1 Standard Emergency Workflow Process ____________________________________ 75

Figure 4-2 Emergency Business Domain Requirements Diagram __________________________ 77

Figure 4-3 Standard Learning Model __ 78
Figure 4-4 Learning Business Domain Requirements Diagram ____________________________ 79

Figure 4-5 A simple Shopping Process ___ 81

Figure 4-6 Standard Retail Actors Interactions __ 82

Figure 4-7 Retail Business Domain Requirements Diagram ______________________________ 83

Figure 4-8 Adaptable Behavior Requirements Diagram _________________________________ 86

Figure 4-9 Context Sensitivity Feature Requirements Diagram ___________________________ 87

Figure 4-10 Experience Capture Feature Requirements Diagram _________________________ 88

X

Figure 4-11 Fault Tolerance Feature Requirements Diagram _____________________________ 90

Figure 4-12 Heterogeneity of Devices Feature Requirements Diagram _____________________ 92
Figure 4-13 Invisibility Feature Requirements Diagram _________________________________ 93

Figure 4-14 Privacy and Trust Feature Requirements Diagram ___________________________ 95

Figure 4-15 Quality of Service Feature Requirements Diagram ___________________________ 96

Figure 4-16 Safety Feature Requirements Diagram ____________________________________ 97
Figure 4-17 Security Feature Requirements Diagram ___________________________________ 99

Figure 4-18 Service Omnipresence Feature Requirements Diagram ______________________ 101

Figure 4-19 Pervasive system business ontology abstraction diagram ____________________ 103

Figure 4-20 Quality Features Relationships Diagram __________________________________ 104

Figure 4-21 Quality Features Conflict Resolution Priority Diagram _______________________ 106

Figure 4-22 Enabler-Constraint Quality Features Categories Diagram ____________________ 107

Figure 4-23 Quality Features Priority based on conflict Resolution Decisions _______________ 108

Figure 4-24 Quality Features Incoming/Outgoing total Pareto Chart _____________________ 110
Figure 4-25 Quality Features vs Business Domain Relationships diagram __________________ 111

Figure 4-26 Conflict resolution approaches __ 114

Figure 4-27 Probability Plot of conflict solutions’ scores _______________________________ 118

Figure 5-1 HTTP Traffic Queueing [98] ___ 120
Figure 5-2 Function Composition Example __ 121

Figure 5-3 The Openness Quality Feature Requirements Diagram _______________________ 123

Figure 5-4 Scalability Quality Feature Requirements Diagram ___________________________ 124

Figure 5-5 SOA conceptual components [16] __ 125

Figure 5-6 Jini Discovery Architecture Model [110]____________________________________ 126

Figure 5-7 Spontaneous Interoperability Quality Feature Requirements Diagram ___________ 127

Figure 5-8 Architectural Ontology ___ 129
Figure 5-9 Architectural Quality Features Relationships _______________________________ 129

Figure 5-10 Architecture Quality Features Priority ____________________________________ 131

Figure 5-11 Technology Enablers Framework __ 132

Figure 5-20 Overlay network vs Physical network [114] ________________________________ 134
Figure 5-21 Interference of networks based on the spatial distribution ___________________ 134

Figure 5-22 Patterns Complete the whole picture of the architecture _____________________ 136

Figure 5-23 Event Handling Delegation design pattern ________________________________ 137

Figure 5-24 Interaction models ___ 137

Figure 5-25 Fully-connected vs middleware-connected system __________________________ 138

Figure 5-26 Profile Extension design pattern __ 141

Figure 5-27 Quality Feature Runtime Performance design pattern _______________________ 142

Figure 5-28 Sense-Synthesize design pattern __ 143
Figure 5-29 Feedback Cycle design pattern __ 143

Figure 5-30 Community Advice design pattern _______________________________________ 144

Figure 5-31 Policy-driven Execution design pattern ___________________________________ 145

Figure 5-32 Smart Object types according to the degree of smartness [127] _______________ 146
Figure 5-33 Smart Environment Abstract Model _____________________________________ 147

Figure 5-34 Smart Object Standard Handlers __ 148

Figure 5-35 Open Development Framework for Pervasive Systems _______________________ 150

Figure 5-36 Cooker Handler Class Example __ 150

XI

Figure 5-37 Smart Object Handlers Diagram __ 154

Figure 5-38 Basic pervasive system operations workflow ______________________________ 156
Figure 5-39 Pervasive System Input Categories ______________________________________ 156

Figure 5-40 Pervasive System Baseline Architecture Model _____________________________ 159

Figure 5-41 Event Handling Delegation Scenario _____________________________________ 160

Figure 5-42 Pervasive System Optimization ___ 165
Figure 5-43 Pervasive System Deployment Main Pillars ________________________________ 166

Figure 5-44 Pervasive System demilitarized Zone (DMZ) _______________________________ 167

Figure 5-45 Smart Environment Replication ___ 168

Figure 5-46 Pervasive System Temporary Coordination ________________________________ 169

Figure 5-47 Pervasive System Upgrade Steps __ 169

Figure 5-48 Pervasive System Upgrade High Level Architecture _________________________ 170

Figure 6-1 Main and Support Modules satisfying needs ________________________________ 173

Figure 6-2 Main and Support Modules combination categories _________________________ 175
Figure 6-3 Module Satisfaction Relationship Categories _______________________________ 176

Figure 6-4 Module satisfaction relationship categories weight __________________________ 177

Figure 6-5 Benchmarking metric comparison __ 184

Figure 6-6 Survey results __ 189
Figure 6-7 Simulation Experiment (High level) _______________________________________ 190

Figure 6-8 Bus Trip Emergency Study Simulation Story ________________________________ 192

Figure 6-9 Simulation Conceptual Model ___ 192

Figure 6-10 Simulation Module Phases ___ 193

Figure 6-11 Normal distribution bell curve __ 194

Figure 6-12 Speed normal probability function _______________________________________ 200

Figure 6-13 Smart Objects behavior during the simulation _____________________________ 201
Figure 6-14 Best and Worst extreme probabilities for the runtime mode __________________ 203

Figure 6-15 Simulation Experimentation Scenarios ___________________________________ 204

Figure 6-16 Reliability and Availability for the simulation scenarios ______________________ 207

Figure 6-17 The processing time overhead for the simulation scenarios compared to the perfect
scenario ___ 208
Figure A-1 SysML Package Structure [162] __ 219

Figure B-1 Emergency Business Domain basic use cases _______________________________ 231

Figure B-2 Follow up rescue mission interaction diagram ______________________________ 232

Figure B-3 Mobilize Rescue Team Interaction Diagram ________________________________ 232

Figure B-4 Make a rescue call Interaction Diagram ___________________________________ 233

Figure B-5 Rescue Interaction Diagram ___ 234

Figure B-6 Learning Business Domain basic use cases Diagram__________________________ 234
Figure B-7 Enroll in Course Interaction Diagram ______________________________________ 236

Figure B-8 Learn use case interaction diagram _______________________________________ 237

Figure B-9 Take exam use case interaction diagram __________________________________ 238

Figure B-10 Teach use case interaction diagram _____________________________________ 239
Figure B-11 Retail business domain basic use cases ___________________________________ 240

Figure B-12 Browse Product Catalogue Interaction Diagram ____________________________ 241

Figure B-13 Deliver Product/Service Interaction Diagram ______________________________ 242

Figure B-14 Purchase Product/Service Interaction Diagram ____________________________ 243

XII

Figure B-15 Return Product/Service Interaction ______________________________________ 244

Figure B-16 Select Product/Service Interaction Diagram _______________________________ 245
Figure B-17 Product/Service Support Interaction _____________________________________ 246

Figure B-18 Survey Product/Service Interaction ______________________________________ 247

Figure B-19 Visit Retail Store Interaction Diagram ____________________________________ 247

Figure B-20 Smart Environment basic use cases Diagram ______________________________ 248
Figure B-21 Access Service Interaction Diagram ______________________________________ 251

Figure B-22 Adapt to Change Interaction ___ 252

Figure B-23 Certify Trusted Object Interaction Diagram _______________________________ 252

Figure B-24 Check for Change Interaction Diagram ___________________________________ 253

Figure B-25 Handle fault Interaction Diagram _______________________________________ 254

Figure B-26 Join Environment Interaction Diagram ___________________________________ 255

Figure B-27 Leave Environment Interaction Diagram __________________________________ 256

Figure B-28 Profile Object Interaction __ 256
Figure B-29 Share Object Profile Interaction ___ 257

Figure B-30 Person at risk state machine diagram ____________________________________ 258

Figure B-31 Rescue Mission state machine diagram __________________________________ 259

Figure B-32 course state machine diagram __ 259
Figure B-33 exam state machine diagram __ 260

Figure B-34 learner state machine diagram ___ 260

Figure B-35 teacher state machine diagram ___ 261

Figure B-36 product/service state machine diagram __________________________________ 262

Figure B-37 shopper state machine diagram __ 263

Figure B-38 Fault state machine diagram ___ 264

Figure B-39 Joining object state machine diagram ____________________________________ 265
Figure B-40 Part object state machine diagram ______________________________________ 266

Figure B-41 Shared resource state machine diagram __________________________________ 266

Figure B-42 smart environment health state machine diagram _________________________ 267

Figure B-43 trust certificate state machine diagram __________________________________ 268
Figure B-44 Conflict 3 resolution decision ___ 268

Figure B-45 Conflict 6 resolution decision ___ 269

Figure B-46 Conflict 11 resolution decision __ 269

Figure B-47 Conflict 1 alternative solutions ___ 270

Figure B-48 Conflict 4 alternative solutions ___ 271

Figure B-49 Conflict 9 alternative solutions ___ 272

Figure B-50 Conflict 2 alternative solutions ___ 273

Figure B-51 Conflict 5 alternative resolutions __ 275
Figure B-52 Conflict 7 alternative solutions ___ 276

Figure B-53 Conflict 8 alternative solutions ___ 278

Figure B-54 Conflict 10’s alternative solutions _______________________________________ 279

Figure B-55 Conflict 12 alternative solutions __ 281
Figure 5-12 Intel Edison microprocessor module [171] _________________________________ 304

Figure 5-13 Samsung ARTIK 5 microprocessor module [172] ____________________________ 305

Figure 5-14 Raspberry PI 3 Model B [173] ___ 305

Figure 5-15 Sensor as an Input ___ 306

XIII

Figure 5-16 UPC Tag __ 307

Figure 5-17 QR code tag___ 307
Figure 5-18 RFID tag label samples [176] ___ 308

Figure 5-19 NFC Tag [178] ___ 308

Figure C-1: Reference Architecture baseline architecture detailed diagram ________________ 310

Figure D-1 Benchmarking: experiment #1 baseline architecture _________________________ 317
Figure D-2 Benchmarking: experiment #2 baseline architecture _________________________ 321

Figure D-3 Benchmarking: experiment #3 baseline architecture _________________________ 326

Figure D-4 Benchmarking: experiment #4 baseline architecture _________________________ 330

Figure D-5 Benchmarking: experiment #5 baseline architecture _________________________ 337

Figure D-6 Emergency Environment Simulation Project High Level Design _________________ 342

Figure D-7 Execution flow of the simulation scenario __________________________________ 342

Figure D-8 Simulation Project Database Design ______________________________________ 344

Figure D-9 Simulation Project Package Diagram _____________________________________ 345
Figure D-10 PRAEnvironment Class Diagram __ 345

Figure D-11 PRAExperiment Class Diagram ___ 346

Figure D-12 PRASystemCore Class Diagram ___ 346

Figure D-13 PRASystem Class Diagram ___ 346
Figure D-14 PRAUtil Class Diagram __ 347

Figure F-1: Example of causal graphs representing two different behaviors of a user in doing an

activity. (a) and (b) represent behaviors of a person doing 'Use bathroom', while (c) and (d)
represent behaviors of a person doing 'Get drink'. Nodes represent events. [187] ___________ 356
Figure F-2 Publicness spectrum. The vertical axis represents the degree of publicness, while the

horizontal axis describes three main features of pervasive systems and the relationship between
them [89] __ 358
Figure F-3 The Runtime Architecture of the JCAF Framework [194] ______________________ 359

Figure F-4 CMF Context Ontology Main Elements [195] _______________________________ 360

Figure F-5 Some Elements of a Bindings Providers Model [39] __________________________ 361

Figure F-6 In this example, services with the takeaway-attribute are connected to a metro plan
and a TV screen. The coffee-machine and speakers providing playback services but only allow
direct interaction [199]. ___ 362
Figure F-7 The pattern for applications with external user interface elements [202] ________ 364

Figure F-8 Executable AO Design (AOEM UML 2.0 Profile) [204] _________________________ 365

Figure F-9 A-MUSE reference architecture for context-aware mobile applications [205] _____ 366

Figure F-10 Aspect-Oriented Model-Driven Development for Mobile Context-Aware Computing

Process Overview [206] ___ 366
Figure F-11 UML diagram for pervasive environment [207] ____________________________ 367
Figure F-12 Flowchart of the development activities of the DiaSuite tool-based methodology

[208] __ 368
Figure F-13 Development support provided by the DiaSuite tool [208] ___________________ 369
Figure F-14 (a) An example context model, constructed for the context-aware communication

application (b) Relational mapping of the model shown in (a). Note that the Located Near
relation, which represents derived context information, would be implemented as a view rather
than an ordinary relation. [209] __ 370
Figure F-15 Component-Service meta-model [210] ___________________________________ 371

Figure F-16 Ecosystem of IoT services [212] ___ 372

XIV

Figure F-17 Open Service framework for IoT services [212]_____________________________ 372

Figure F-18 a technical view of the cognitive management framework for the Internet of Things
[213] __ 373
Figure F-19 CADDOT Model for Sensor Configuration [214] _____________________________ 374

Figure F-20 MobilityFirst Core Network Architecture [215] _____________________________ 374

XV

Table of Tables

Table 2-1 Pervasive System Quality Features ... 31

Table 3-1 Reference Architecture Related Work Evaluation Summary ... 66
Table 3-2 Reference Architecture Related Work Quality Features Evaluation Summary 67

Table 3-3 Metrics for Evaluating Pervasive Middleware [58] ... 69

Table 3-4 Summary of quantitative and qualitative parameters of system and user [59] 70

Table 4-1 Emergency Mobilization Process ... 74
Table 4-2 Emergency Business Domain Requirements ... 77

Table 4-3 Learning Business Domain Requirements ... 80

Table 4-4 Retail Business Domain Requirements .. 84

Table 4-5 Adaptable behavior Feature Requirements .. 86
Table 4-6 Context Sensitivity Feature Requirements .. 87

Table 4-7 Experience Capture Feature Requirements ... 88

Table 4-8 Fault Tolerance Feature Requirements ... 90

Table 4-9 Heterogeneity of Devices Feature Requirements .. 92
Table 4-10 Invisibility Feature Requirements .. 93

Table 4-11 Privacy and Trust Feature Requirements .. 95

Table 4-12 Quality of Service Feature Requirements .. 96

Table 4-13 Safety Feature Requirements .. 98

Table 4-14 Security Feature Requirements ... 100

Table 4-15 Service Omnipresence Feature Requirements .. 101

Table 4-16 Quality Features Minimize Relationships Statistics ... 104
Table 4-17 Quality Features Maximize Relationships Statistics .. 105

Table 4-18 Quality Features Conflict Relationships Statistics ... 105

Table 4-19 Quality Features Conflict Resolution Decision Table ... 106

Table 4-20 Quality Feature percentage as source and destination in the maximize and minimize
relationships .. 107
Table 4-21 Quality Features requirements complexity weights .. 109

Table 4-22 Comparison between our priority results and Spínola and Travassos priority results

with respect to the business quality features ... 110
Table 4-23 Quality Features vs Business Domains relationships statistics 112

Table 4-24 Quality feature relative weight within learning, retail, and emergency business

domains... 113
Table 4-25 Comparison between the Survey score and the Complexity Score 114
Table 4-26 Scores of the conflict solutions .. 117

Table 5-1 Concurrency Quality Feature Requirements.. 120

Table 5-2 Function Composition Quality Feature Requirements ... 121
Table 5-3 Openness Quality Feature Requirements .. 123

Table 5-4 Scalability Quality Feature Requirements ... 124

Table 5-5 Service Discovery Quality Feature Requirements .. 126

Table 5-6 Spontaneous Interoperability Quality Feature Requirements 127

Table 5-7 Architecural Quality Features Relationships Matrix .. 130

Table 5-8 Architectural Quality Features Conflict Superseding Relationships 130

Table 5-9 Architectural Quality Features percentage as source and destination 131

Table 5-10 Architectural Quality Features Complexity Score .. 132

XVI

Table 5-11 Smart Object basic handler ... 155

Table 5-12 Baseline architecture modules dependency .. 164
Table 5-13 Objects in the smart environment and their expected roles 167

Table 6-1 Capture Knowledge about users’ requirement satisfaction modules............................ 174

Table 6-2 Module-Features Relationships Summary... 176

Table 6-3 Basic baseline architecture model statistics .. 178
Table 6-4 The evaluation metrics for the baseline architecture [136] [34] 178

Table 6-5 Baseline Architecture Module Cohesion Score .. 180

Table 6-6 Average Module Output Size for the baseline architecture .. 181

Table 6-7 Average Module Input Size for the baseline architecture ... 182

Table 6-8 Benchmarking experimentation metric comparison ... 183

Table 6-9 Benchmarking satisfaction relationship comparison .. 185

Table 6-10 Benchmark exercise similarity comparison ... 185

Table 6-11 Best, average, and worst assumptions for control variables in the simulation project
 .. 202
Table 6-12 Extreme best, worst values for variables in the simulation project 203

Table 6-13 Setting details of simulation experimentation Scenarios .. 205

Table 6-14 Reliability and Availability for the simulation scenarios ... 206
Table 6-15 Entities reliability measurements .. 208

Table 6-16 The processing time overhead for the simulation scenarios compared to the perfect

scenario ... 209
Table 6-17 Optimization and Resource Allocation in the Simulation Project 209

Table 7-1 Artifact Deliverables from different research phases .. 215

Table B-1 Focus Group #1 Requirements .. 221

Table B-2 Revised/Approved requirements from the Focus Group .. 222

Table B-3 Quality Features Conflict Relationships .. 222

Table B-4 Quality Features Maximization Relationship .. 225

Table B-5 Quality Features Minimization Relationships ... 227

Table B-6 Quality Features Requirements vs Business Domains Requirements 228

Table B-7 Emergency use cases vs emergency requirements refinement relationship matrix...... 231

Table B-8 Learning use cases vs learning requirements refine relationship matrix 235

Table B-9 Retail use cases vs retail requirements refine relationship matrix 241

Table B-10 Smart Environment use cases vs quality features requirements refine relationship
matrix .. 249
Table B-11 conflict 1 solutions-features scores ... 270

Table B-12 Conflict 4 solutions-features scores .. 272

Table B-13 Conflict 9 solutions-features scores .. 273
Table B-14 Conflict 2 solutions-features scores .. 274

Table B-15 Conflict 5 solutions-features scores .. 276

Table B-16 Conflict 7 solutions-features scores .. 277

Table B-17 Conflict 8 solutions-features scores .. 279
Table B-18 Conflict 10 solutions features score .. 280

Table B-19 Conflict 12 solutions-features scores .. 282

Table B-20 Solution SO-001 reltionships with quality features’ requirements 283

Table B-21 Solution SO-002 relationships with quality features’ requirements 284

XVII

Table B-22 Solution SO-003 relationships with quality features' requirements 285

Table B-23 Solution SO-004 relationships with quality features' requirements 286
Table B-24 Solution SO-005 relationships with quality features’ requirements 286

Table B-25 Solution SO-006 relationships with quality features’ requirements 287

Table B-26 Solution SO-007 relationships with quality features’ requirements 288

Table B-27 Solution SO-008 relationships with quality features’ requirements 289
Table B-28 Solution SO-009 relationships with quality features’ requirements 290

Table B-29 Solution SO-010 relationships with quality features’ requirements 291

Table B-30 Solution SO-011 relationships with quality features’ requirements 292

Table B-31 Solution SO-012 relationships with quality features’ requirements 293

Table B-32 Solution SO-013 relationships with quality features’ requirements 293

Table B-33 Solution SO-014 relationships with quality features' requirements 294

Table B-34 Solution SO-015 relationships with quality features’ requirements 294

Table B-35 Solution SO-016 relationships with quality features’ requirements 295
Table B-36 Solution SO-017 relationships with quality features’ requirements 296

Table B-37 Solution SO-018 relationships with quality features' requirements 296

Table B-38 Solution SO-021 relationships with quality features requirements 297

Table B-39 Details of the quality features’ requirements evaluation survey 298
Table B-40 Survey respondents years of experience ... 300

Table B-41 Domains of experience for the survey respondents .. 300

Table C-1 Architectural Requirements conflict relationships .. 301

Table C-2 Architecture Requirements Maximization and Minimization relationships 302

Table C-3 Pattern Relationships with business and architectural requirements 309

Table D-1 Baseline architecture modules satisfying relationships with requirements 311

Table D-2 Module Description for benchmarking experiment 1 ... 317
Table D-3 Benchmarking experiment #1 module relationships matrix ... 318

Table D-4 Benchmarking experiment #1 module satisfaction relationships with requirements ... 319

Table D-5 Ignored requirements from benchmarking experiment #1 ... 319

Table D-6 Experiment 1 summarized statistics ... 320
Table D-7 Module dependency relationships (benchmarking experiment #2) 322

Table D-8 Module description (benchmarking experiment #2) ... 323

Table D-9 model satisfaction relationships (benchmarking experiment #2) 324

Table D-10 Experiment 2 summarized statistics ... 325

Table D-11 Module dependency relationships (benchmarking experiment #3) 327

Table D-12 Benchmarking: experiment #3 modules’ descriptions .. 327

Table D-13 Benchmarking exercise #3 satisfaction relationships ... 328

Table D-14 Experiment #3 summarized statistics ... 329
Table D-15 Module dependency relationships (benchmarking experiment #4) 331

Table D-16 Benchmarking exercise #4 satisfaction relationships ... 334

Table D-17 Experiment #4 summarized statistics ... 336

Table D-18 Benchmark experiment #5 module description .. 338
Table D-19 Module dependency relationships (benchmarking experiment #5) 339

Table D-20 Benchmarking exercise #5 satisfaction relationships ... 340

Table D-21 Experiment #5 summarized statistics ... 341

Table F-1 Comparative overview of AO and OO implementations [207] 367

XVIII

Table of Equations

Equation 4-1 Complexity score for the quality features .. 108

Equation 4-2 Solution score .. 115
Equation 4-3 positive and negative relationships percentage formulas 115

Equation 4-4 weighted average for solution relationships ... 115

Equation 6-1 Cyclomatic Complexity ... 179

Equation 6-2 Baseline Architecture Module Cohesion .. 179
Equation 6-3 Average Output Interface size of a module .. 180

Equation 6-4 Average Input Interface size of a module ... 181

Equation 6-5 Simulation Synthesizer formula ... 195

Equation 6-6 Module complexity weight formula ... 196
Equation 6-7 Speed probability algorithm .. 200

Equation 6-8 New Smart Objects Join and Disjoin generator Algorithm 201

Equation 6-9 System Reliability and Availability Calculations... 206

Equation 6-10 k-out-of-n reliability formula ... 207
Equation 6-11 decomposed k-out-of-n reliability formula .. 207

XIX

Table of Examples

Example 4-1 Emergency Scenario ... 75

Example 4-2 Learning scenario ... 79
Example 4-3 Retail scenario .. 82

Example 5-1 Context awareness ... 158

Example 5-2 Event Handler Delegation... 160

20 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

C h a p t e r 1

1. Introduction

The Pervasive Computing concept was first introduced by Mark Weiser [1] in 1991 as if he was reading the

future of computers in the 21st century. Weiser was convinced that personal computers will not be

satisfactory enough for integration into humans’ lives in a smooth way. He was convinced that

computation will converge to become ubiquitous. In other words, he predicted that computation will

become present "everywhere" and will be featured by its invisibility to the human eyes, yet will be

available for people to use unconsciously. This vision may have been impossible to achieve during the 90s

of the last century, but we do nowadays have all the technologies that we need to achieve Weiser’s vision.

We have advanced wireless networks distributed in many areas, GSM/LTE networks across all countries,

hand-held and mobile devices with integrated sensors, appliances with embedded computers and wireless

controllers, and more importantly industry and universities are more willing than ever to spend more on

research in these areas. MIT Oxygen, IBM, and AT&T researches have pioneering examples of such

enormous research investments [2].

The idea is attractive for many researches and has proven its success in many forms. Mobile technology is

considered one type of PervComp, although not fully ubiquitous, but is considered a very successful

model. People are getting so much attached to their cell phones and to their applications. Moreover,

people who experience the luxury of modern new cars that sense their owners, warn drivers on parking

actions, or take preventive actions to avoid accidents will really appreciate this futuristic technology.

People need this kind of technology that facilitates their life without losing the main goal or purpose that

they want to achieve. It is only natural, psychologically, to focus on goals and utilize activities to achieve

the purpose as described in the activity theory [3] [4]. It is not just luxurious, but it frees the user’s mind for

the main goal to be achieved.

Great benefits usually come with great challenges, however. PervComp is a descendant of other

computing fields, like distributed systems, and mobile technologies along with their existing challenges. It

is characterized by the common appearance of factors like context-awareness, system adaptability, and

volatility. In addition to the above, researchers are concerned with privacy, security, safety, and limited

resources as main issues that must be resolved. As understood from the term ubiquitous, personal

information may be collected and distributed without permission from its owner. This can raise

legalization issues that must be resolved within the information distribution laws. In addition, if security

can be breached for devices, appliances, or cars, this can cause high risks to their users, which results into

safety concerns that must be handled as well [5]. The challenge of limited resources is inherited from the

embedded technology with respect to processing power and memory size and from mobile applications in

terms of energy sources, but it will be more apparent with PervComp since the processing requirements

will constantly increase. This can lead also to higher consumption of device resources like batteries.

21 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

In PervComp, there are many smart objects that have computation capabilities and that can interact with

each other using different network channels and sense the changes in their surrounding world using their

sensors and this is called context-awareness. A pervasive application can be stimulated with many things

like light, sound, movement, gravity, temperature, or system changes. If the smart object reacts to the

change, then this feature is called adaptability. For example, a PervComp solution can detect the existence

of a teacher in a classroom and based on the saved teacher’s profile, makes the classroom switch on the

light and start the smart board, then starts up the class computer.

On the other hand, the software architecture is one of the fundamental steps towards building a robust

software system. It establishes the skeleton which covers the main software and hardware components.

It is not an easy task as it requires that the architect would have a wealth of knowledge covering different

domains including best practices in software engineering, technology, deployment topology, software

standards, and business analysis. Amongst these practices, architectural best practices remain the most

important factor to guide the architect with this work. These best practices are either found as

architectural patterns, or as RAs.

The RA is considered a pool of knowledge which contains the best practices in architecture for a specific

domain. This pool of knowledge ideally includes architectural models, architectural patterns, architecture

specification guidelines, and a dictionary of terminologies. It helps minimize the architecture task and

provides the architect with proven successful solutions for specific architectural problems. It provides a

common ground of understanding, which could be a very challenging task in every project [6]. These

solutions were ideally tried in other systems more than once and consequently are expected to be

successful again for the same architectural problem.

1.1 Essential Background

The following sections provide brief fundamental information on the most significant software engineering

concepts. They summarize the different interest topics that our audience are acquainted with. They

ideally cover the business analysis, key architecture frameworks, and classical evaluation methods.

1.1.1 Requirements Engineering

Requirements Engineering (RE) is one of the most important and difficult tasks in software engineering. It

is the step during which one realizes the needs for building a new system. The analyst studies the

technical, economic, and cost-benefit aspects of system needs. The job of the analyst is to come up with a

clear analysis model of the stakeholders’ needs that can be easily answered in the design phase. As some

researchers say [7] [8] “business analysis is the cornerstone of any project’s success.”

The International Institute of Business Analysis (IIBA) defines the business analyst’s role as “a liaison

among stakeholders in order to elicit, analyze, communicate and validate requirements for changes to

business processes, policies and information systems. The business analyst understands business problems

and opportunities in the context of the requirements and recommends solutions that enable the

organization to achieve its goals [9].”

22 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

Analysts can approach PervComp systems using the traditional requirements engineering methods.

However, according to the IIBA, the business analyst must improve the process continuously and provide

high quality systems and products [9].

1.1.2 Distributed Systems

PervComp is not new in terms of technology, but is considered an innovative paradigm. It inherits its

design issues from distributed systems, and mobile computing [2]. These characterize the fields that

architects should deal with and provide suitable design. We will focus on the distributed system design

issues as they are also major design issues in PervComp which must be addressed. The following are the

common design issues that need to be considered when dealing with any distributed system [10]:

1. Heterogeneity: the system should be designed to work through different types of computers,

networks, operating systems, programming languages, and applications implemented by

different developers

2. Openness: characterized by the number of published key service interfaces, which are possibly

built over heterogeneous hardware and software resources

3. Security: is concerned with protecting data from being leaked to unauthorized individuals,

protecting data from corruption and alternation, and ensuring accessibility to data whenever

requested

4. Scalability: this issue describes the degree of the system’s efficiency whenever the number of

resources or users increases

5. Failure Handling: is concerned with detecting failure points of the distributed system and the

ability of the system to handle them either by masking them or tolerating their failure; and on

how efficient the system is when it recovers from failure.

6. Concurrency: the system design must ensure proper performance and correct behavior of

shared resources under concurrent access from different clients.

7. Transparency: the user should not be aware of the system details and should deal with it as one

unit. For example, the user should not worry about the location of services, and their failure.

The user should not also worry about replication of services.

8. Quality of Service (QoS): it is a very important design issue which provides constraints on the

provided services in order to get the required quality. For example, there could be deadlines for

system response time. There could also be boundaries for system availability and security.

The question now is what are the key design issues that are critical for pervasive systems? There are two

major design constraints in pervasive systems, namely i) context-awareness and ii) quality of service. The

main characteristic of the pervasive system is to adapt to context changes. This means that a pervasive

system must have the capability to detect its surrounding environment (context) according to the scope of

the system, and adapt itself to changes that may occur. Context-awareness covers design issues related to

device location, motion, network availability, information access, and device energy [2].

The quality of service is an inherited design issue from distributed systems. However, QoS is more obvious

in pervasive systems such as when processor, memory, and disk space should be adequate for the mobile

23 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

device to operate. Client applications may be hosted on mobile devices and appliances that in many cases

change their context, e.g. change location, which leads to disturbance of the services as communication

may be lost. In addition, mobile devices use batteries that run out of power according to the device

utilization and processing activities that lead also to service disconnection [2]. Hence, limitation,

instability, and degradation of resources are all reasons that impact the quality of service.

1.1.3 Design Patterns

Design Patterns were first introduced in architecture engineering. Alexender [11] in 1979 introduced

the concept in his book, The Timeless Way of Building. He defines a pattern as “’a problem which occurs

over and over again in our environment, and then describes the core of the solution to that problem, in

such a way that you can use this solution a million times over, without even doing it the same way

twice” [11]. Although he wrote his book for architecture engineering, yet it became clearer that its

effect was found useful in software engineering as well [11].

Later, in 1987, Kent Beck and Ward Cunningham published a technical paper describing how they used

Alexender’s concepts of patterns to accelerate the development of user interface in one of their projects

[12]. Patterns became more popular when the “Design Patterns Elements of Reusable Object-Oriented

Software” book was published by the four Gangs [13].

It is really difficult to capture a design pattern. Although, novel designs could be created from scratch, a

design pattern has to come from experiencing a design and proving that it is worth using with other

projects. A novel piece of design could be very successful in one application but it may fail in another.

Hence, a design pattern will not be captured unless it is used in more than one project inside the same

domain or other domains. These patterns need to be documented for future use [11].

1.1.4 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) is a software engineering approach that aims to find

crosscutting concerns within different system modules and group them in a modular form. Gregor

Kiczales and his team at Palo Alto Research Center were the first to introduce the term aspect-oriented

and his team also first developed the explicit concept of AOP and the AOP language called AspectJ [14].

 AspectJ has gained considerable acceptance and popularity within the Java development community

and major companies like IBM and SUN used it to simplify and modularize their software architectures

[15]. AOSD has some concepts which are defined as follows [16]:

1. An Aspect: is a new module of crosscutting concerns like security, logging, caching, and data

validation

2. A Joinpoint: is an allowed point by the software for the aspect to join in. For example, the

software can allow aspects to inject with methods or variables during execution

3. A Pointcut: this is the pattern of join specified by the software for some of the joinpoints.

4. A Weaving Process: is a process to inject aspects into joinpoints specified by the pointcuts.

The initial implementation of the weaving process used a pre-processing approach to modify the system

source code and inject an aspect. This approach was used in the initial development of AspectJ. The

24 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

current acceptable approaches are either to execute weaving during system compilation or during

program execution. The latter is preferred since it is flexible and dynamic while the first approach is

faster, but static [16].

1.1.5 Architecture Evaluation

There are a number of established evaluation methods for software architecture and design [17](
2
). The

most significant are:

1. SAAM: Software Architecture Analysis Method

2. ATAM: Architecture Trade-off Analysis Method

3. ALMA: Architecture Level Modifiability Analysis

SAAM was originally devised to evaluate the modifiability quality attribute against the System

Architecture. However, architects adopted it to assess other quality attributes as well. The evaluation

process is ideally started after the Software Architecture (SA) high level design and before implementation.

It involves different stakeholders like the architect, developer, maintainer, and product manager. The core

idea of this method is to develop scenarios and evaluate them with respect to quality attributes and link

the evaluated scenario with the SA [17].

ATAM is a superseding version of SAAM that tries to model the SA with respect to competing quality

attributes. The model consists of two phases, where the first phase embraces technical members only and

the second phase involves both technical and non-technical members. The process starts by taking the

business goals, software specification, and SA description and generates a list of scenarios, sensitivity

points, trade-off points, risks, etc. [17].

ALMA was designed to evaluate the modifiability attribute of the SA. The method is centered on the goal

of the evaluation exercise. The specific goal here is to evaluate SA modifiability with respect to

maintenance cost prediction, and risk assessment, then selecting the best SA. The ALMA process engages

a few number of stakeholders usually developers and software architects and they build scenarios either

top-down, from categories of scenarios, or bottom-up, from a concrete list of scenarios [17].

1.2 Problem Statement

PervComp is still a hot research area that keeps gaining attention from motivated researchers across the

world. There are some fundamental research challenges for PervComp systems. They can be listed briefly

as follows [18]:

1. Adaptive control: where ubiquitous devices may need to make decisions using uncertain data

2. Reliability and accuracy: where future work needs to address the accuracy of the recognition

algorithms and the possibility of making use of cloud computing resources.

2 All these methods are subjective evaluation methods that depend on people with different experiences who discuss the
architectures in different workshops.

25 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

3. Security and Privacy: the coverage of the means by which a device can recognize other sensing

devices and apply proper security and privacy strategies.

4. Hybrid Intelligence: a mixture of non-deterministic and deterministic intelligence mechanisms to

reason about context types.

5. Unified architecture: where a rapid and common architecture is required.

6. Tool Support: the need is still there to have tools to support the rapid development of context-

aware Systems.

Ashraf and Khan [19] reported on open challenges from a software engineering perspective. They

reported 26 challenges that were either not addressed at all or partially addressed. Some key

architectural challenges namely Software Structuring, Integration, and conceptual modeling are among the

top challenges that they found. In a recent research paper surveying systems in USA, Europe and China,

Gazis [20] highlighted four architectural challenges in the IoT domain as well. They listed Reliability,

Privacy and Security, interoperability, and device heterogeneity as the key challenges for a successful

development of an IoT system.

The initiatives to provide a unified architecture are still very limited and primarily focus on the IoT

domain(3). It is worth mentioning that there is already an existing RA for the IoT called IoT-A [6] since 2013

but the IEEE Standards Association admitted that there is a need for a unified architecture and started to

set architectural framework standards for the IoT domain. The project [21] is active and has not been

finalized until the writing of this document. These initiatives focus mainly on IoT, which mandates that

objects should be Internet-enabled by definition, while PervComp, which is more generic, can accept

objects whether they are Internet-enabled or not.

Moreover, the purpose of the unified architecture is not only to speed up the development process of a

new software product, but most importantly is to bring all the software engineers into a common ground

of understanding. The unified architecture helps the software engineers to use the same terminologies

with predefined meanings in order to avoid misunderstanding and confusion. Failing to interpret the

different terminologies into a common meaning can lead projects to complete failures [6].

The software development community still lacks a unified architecture that can serve as a starting point for

architects as they start to build new pervasive systems [18]. This is despite the fact that there are many

ongoing projects to generate reference models for PervComp and Internet of Things (IoT), if we assume

that IoT computing is the same as pervasive computing, as will be mentioned later in this chapter.

Hence, we can state the problem we are trying to address as follows:

3 Some researchers label IoT as a branch from the pervasive computing systems and some others use the terminology to refer
to the pervasive computing domain.

26 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

There is currently no standard, reliable, efficient and widely accepted unified reference architecture

in the PervComp domain that addresses most, if not all, the business and architectural challenges

and provides most, if not all, the desired business and architectural quality features.

1.3 Thesis Statement

The literature includes definitions for a Practice Reference Architecture (PRA) and a Futuristic Reference

Architecture (FRA) [22]. A PRA tries to capture best practices from existing architectures along with

architectural patterns in order to facilitate the implementation of concrete architectures. Its intent is to

resolve time-to-market and standardization problems. On the other hand, a FRA is built to become the

first type. It must be based on research and it has to introduce innovative ideas [22]. Once an FRA is

implemented as a concrete architecture it becomes an immature PRA, which encourages others to adopt it

in more implementations to transform it finally into a PRA (see Figure 1-1).

FRA
Immature

PRA

transforms

Keep using

PRA
transforms

Figure 1-1 FRA maturity cycle

In this research work, our aim is to create an FRA that captures best practices and that introduces

innovative features as well. The RA that we intend to build will be visionary about its architecture. Hence,

the focal point that this thesis addresses may be summarized as follows:

With the fast spread of pervasive systems, it is essential to generate a futuristic reference

architecture for pervasive computing systems that encompasses most, if not all, architectural

challenges and that can be applied/adopted in different business contexts

The FRA seeks to introduce a new RA with new concepts. And by stating that we will study PervComp

systems, it means that we will generalize as much as possible our study in this domain to the current state

of the art. The architectural challenges are those quality features that are envisioned to exist in a

pervasive system (e.g. context sensitivity, adaptability, or concurrency). We identified and explored most

of the challenges in the PervComp domain. We explored the relationship between the architectural

challenges, or the quality features, and the success to build the FRA. Moreover, we explored the

correlation between the business contexts and the PervComp domain. In order to investigate this thesis

statement, we had to adopt one hypothesis:

Hypothesis : There is a significant correlation between the needs of the quality features and a FRA

for pervasive computing.

1.4 Contributions

The major contributions of our research can be summarized as follows:

27 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

1. Our main contribution is the PervCompRA-SE which captures all the essential business and

architectural knowledge in the PervComp domain as diagrammatic models and associated

guidelines.

2. A new requirements engineering approach that uses process re-engineering concepts (section

2.1.4).

3. An innovative statistical analysis methodology to prioritize groups of requirements, represented as

quality features, and to resolve conflicts among the requirements.

4. We explored basic and essential knowledge from the human perception theory to derive some of

the requirements and the core behavioral model of the baseline architectural model.

5. We presented a new approach to utilize the ontological dictionary in the PervCompRA-SE

optimization engine.

6. We introduced a 360-degree methodology to evaluate the PervCompRA-SE using different

quantitative and qualitative methods.

1.5 Scope

The scope of this research can best be described by the following dimensions:

1. Exploring 17 Quality Features for the pervasive systems.

2. Exploring 3 Business domains.

3. Devising 3 Major phases (a business reference architecture, a technical reference architecture, and

an evaluation phase).

The activities for the aforementioned scope were as follows, given that the tasks with (*) are additional

tasks that were not proposed in the thesis proposal:

1. Completed the business reference architecture

a. Completed business modeling for the selected business domains (literature survey,

requirements elicitation, use cases, and state charts).

b. Completed modeling for the selected cross-cutting features (literature survey, requirements

elicitation, use cases, and state charts).

c. Built common ontological dictionary for the BRA.

d. Completed the trade-off analysis study.

e. Surveyed the priority of business requirements *.

f. Conducted a requirements conflict resolution research activities *.

2. Completed the technical reference architecture

a. Completed the modeling of the 6 architecture requirements *.

28 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

b. Researched the technology standards by different manufacturers

c. Identified the needed architectural and design patterns and modeled them.

d. Built abstraction models for the smart environment, the smart object, and the pervasive

system.

e. Identified the deployment topologies, basics for optimization, and architectural variability

for the PervCompRA-SE.

f. Amended the common dictionary with ontological terminologies from the TRA.

3. Evaluated the PervCompRA-SE:

a. Validated the baseline architecture model through a traceability analysis against all the

business and architectural requirements.

b. Identified a set of metrics and measured the baseline architectural model using these

metrics.

c. Contacted different technical experts asking them to build a baseline architectural model

using the same set of the business and architectural requirements.

d. Prepared a simplified document of the BRA and TRA and distributed them among a number

of experts to make quantitative assessment of the document.

e. Conducted the quantitative analysis study for the baseline architecture and for the

developed ones by the experts.

f. Built the simulation model to predict the behavior of the technical model under different

circumstances.

1.6 Outline

The thesis is organized as follows:

Chapter 2: In this chapter, we discuss our software engineering approach to build a BRA and a TRA and

present our evaluation approach.

Chapter 3: In this chapter, we discuss some of the related RAs in the domain of PervComp. For the sake of

completeness, we include RAs from close domains like IoT and embedded systems. Our objective is to

analyze the existing approaches, compare them and highlight the gaps in which this research aims to make

a contribution.

Chapter 4: in this chapter, we elicit the requirements that derive the quality features. We start the

elicitation process by the main categories, which are the business domains or the quality features, then

studied the requirements which brought them. Requirements were elicited from the literature and derived

29 - CHAPTER 1 ● INTRODUCTION

PervCompRA-SE

from expert knowledge. They were reviewed in a focus group to refine them. The chapter describes our

trade-off analysis with respect to the quality features and the business domains. It shows also our conflict

resolution approach for the identified conflicts among the requirements. It provides a dictionary of

terminologies (ontology) with recommended metering scales to measure the quality features at runtime.

Chapter 5: in this chapter, we provide a set of models, best practices, guidelines, and different design

decisions. There we provide a requirements’ model, define the set of ontological terms, provide key

technology enablers, review essential network challenges, highlight essential architecture and design

patterns. At the end, we present our baseline architecture as derived from the concepts presented in that

chapter as well as the concepts in the BRA.

Chapter 6: this chapter introduces the evaluation tracks that we adopted in order to ensure the quality of

our work and provide evidence that it can be used in real life projects. We used qualitative and

quantitative methods in order to provide a full picture about the quality of the RA. The chapter shows a

traceability matrix between the modules of the baseline architecture and the business and architectural

requirements. It measures values for the complexity of the baseline architecture, module cohesion,

module testability, module maintainability, module complexity, and module coupling. We then compare

these metrics to experts’ baseline architecture models. At the end, we provide a simulation project in

order to predict the reliability and availability of a system adopting our architecture model during runtime.

Chapter 7: in this chapter we conclude our research work by listing our contributions, findings, and

pinpoint directions for future work.

Appendix A: shows an overview of the SysML modeling language.

Appendix B: includes extra details about the BRA as explained in chapter 4.

Appendix C: includes extra details about the TRA as explained in chapter 5.

Appendix D: includes extra details about the Evaluation exercise as explained in chapter 6.

Appendix E: includes the details of the ontological terminologies and their metering scales as explained in

chapters 4 and 5.

Appendix F: contains additional readings about different research areas in PervComp. They formed, along

with the related topics in chapter 3, our knowledgebase about the PervComp domain.

Appendix G: shows our list of publications and their abstractions. It includes 4 conference papers and 1

journal paper.

30 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

C h a p t e r 2

2. The Research Approach

In this chapter, we discuss our software engineering approach to build a BRA and a TRA and present our

evaluation approach. We believe that a usable RA should provide a complete picture for the business

issues it tries to solve, the technical solutions for these issues, and supportive evidence. The primary

quality characteristics of the RA that we aim to achieve in our research are [23] [24]:

1. Capturing the Essence of Existing Architectures: The RA has to capture the commonalities

among existing architectures. It should ignore those variable characteristics that are very

specific to customer needs and do not provide the required usability.

2. Having an Architectural Baseline: there has to be a starting point for the architect where by the

architect can find basic components that he/she can use to build his/her architecture.

3. Providing Guidance: the RA must provide guidance to architects through best practices and

design patterns, and architectural patterns, if possible.

4. Considering Business Needs: the RA has to be linked with actual business needs and

requirements; otherwise, it will be providing a solution for an unspecified problem.

5. Considering Business Context: variations according to business context are important in RAs

given that such variations are not context specific.

6. Providing a Common Dictionary: the RA has to provide proper definition for the terminologies

used during the architecture process in order to minimize confusion.

7. Capturing and Sharing Architectural Patterns: the RA should be easily transformed into

architecture patterns in order to improve reusability.

8. Having the Architectural Vision: this vision is based on future business needs.

9. Having a Prototype: a case study is implemented as a proof for the validity of the RA.

A PervComp system exhibits features, as mentioned by Spínola and Travassos [25], that are very common

in the PervComp systems. Spínola and Travassos cited 14 features that characterize pervasive systems

and we added three other features namely: Safety, Openness, and Concurrency. Safety is added to the list

of the examined quality features because pervasive systems are cyber-physical applications that interact

with humans. Hence, safety of the environment is of utmost importance [26]. Concurrency is a

fundamental classical quality feature in distributed systems. Openness is an essential quality feature for a

pervasive system that needs to be accessed by external entities or to be available on the Internet.

Moreover, system openness has become a favorable quality feature for products produced by many giant

companies like Google, Microsoft, and Facebook [27]. These are domain independent quality features that

we classified into business (B) and architectural (A) quality features (Table 2-1). The purpose of the

classification is to separate both sets of quality features in two somehow independent list of references as

will be explained later in this section. Our classification criteria are to answer the following questions:

1. Who can classify this quality feature? A business analyst or an architect?

31 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

2. Does the quality feature request a change in the system design or in the architecture?

3. Is it that easy for a normal user to recognize this quality feature?

If the first question is better answered by an architect, the second one is “YES”, or the third is “No”, then it

is an architectural quality feature, else it is a business quality feature.

 Table 2-1 Pervasive System Quality Features

Feature Description Type

Adaptable Behavior The system must be capable of dynamically responding to changes in the
environment as needed [25].

B

Context Sensitivity The system must have the ability to sense and retrieve data from its environment
[25].

B

Experience Capture The system must be able to capture and register experiences for later use [25]. B

Fault Tolerance The system must be able to detect errors and take the appropriate recovery actions
[25].

B

Heterogeneity of
Devices

The system must be able to use different device technologies seamlessly [25]. B

Invisibility The system must integrate computing resources and guarantee that the user has
the minimum awareness of them [25].

B

Privacy and Trust The system must ensure that personal operations confidentiality is protected and
accessed only by trusted entities [25].

B

Quality of Service The system must set expectation for its services by setting constraints on the
provided services. For example, system response may be considered invalid if it is
received after a certain period of time [25].

B

Safety The system must ensure highest healthiness of its hardware and provide immunity
for its users and interacting devices from harm and damage.

B

Security It is concerned with protecting data from being leaked to unauthorized individuals,
protecting data from corruption and alternation, and ensuring accessibility to data
whenever requested.

B

Service
Omnipresence

The system should give its users the feeling that they carry computer services
wherever they move [25].

B

Concurrency the system design must ensure proper performance and correct behavior of shared
resources under concurrent access from different clients [10].

A

Function
Composition

The system must be able to produce new services from existing ones based on their
specifications [25].

A

Openness It is a characteristic of a system which is measured by the number of published key
services [10].

A

Scalability A system is scalable when it keeps operating, at an acceptable degree of efficiency,
regardless of the increase in resources and users [25] [10].

A

Service Discovery The system should be able to allocate new services, register them, and facilitate
access to them according to the environment [25].

A

Spontaneous
Interoperability

The system should be able to associate itself with new partners (e.g. sensors,
actuators, or peer systems) normally during operation [25].

A

We followed the normal software engineering lifecycle in order to collect the requirements, and generate

the rest of the Artifacts as will be shown in the next section. We analyzed these requirements to generate

additional Artifacts (e.g. business ontology, and quality features weights). We then moved to the next

phase (design) in order to generate a TRA. We generated the baseline architecture model using the

32 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

Artifacts from the business analysis phase, and the Artifacts generated from the design phase. The

evaluation phase utilized Artifacts generated from the business analysis and design phases in order to

generate quantitative and qualitative measurements for the baseline architecture model (Figure 2-1).

A
pp

ro
ac

h
fr

om
 a

 S
of

tw
ar

e
En

gi
ne

er
in

g
Pe

rs
pe

ct
iv

e

Bu
si

ne
ss

 A
na

ly
si

s
(B

)
Ev

al
ua

tio
n

(E
)

D
es

ig
n

(D
)

Generate
Business

Reference
Architecture

Business Artifacts

Generate the
technical
reference

architecture

Architecture
Artifacts

Evaluate the
baseline

architecture
model

Evaluation artifacts

Figure 2-1 High-level Research Approach from a Software Engineering Perspective

The three-phase approach represents an intuitive cycle for software engineering to gather details from

different sources about the behavior of the pervasive systems. We extracted commonalities from the first

two phases to generate a baseline architecture model that can fit different domains. Finally, we evaluated

the RA to make sure that it can really be applied in different domains.

We organized the PervCompRA-SE so that the architect or the business analyst can use the BRA then

proceed with the normal activities to generate a concrete architecture. On the other hand, the architect

or the business analyst may proceed to review the TRA then proceed to generate the concrete

architecture (Figure 2-2). However, it is highly recommended to get acquainted with the concepts and

terminologies in the PervCompRA-SE in order to generate a consistent and concrete architecture.

Figure 2-2 Decoupling the Business Reference Architecture from the Technical Reference Architecture

Review Business
Reference Architecture

Architect
Or

Business Analyst

Review Technical
Reference Architecture

Generate a concrete
architecture

33 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

2.1 The Business Reference Architecture

We give special attention to the BRA because it represents the basis of our analysis and it simplifies our

understanding about the PervComp domain.

2.1.1 The Analysis Approach

Figure 2-3 The Pervasive Computing Analysis Approach

In order to define a useful BRA for PervComp, we analyzed the domain from more than one aspect. As

shown in Figure 2-3, we define the business architecture as a pool of quality features (Table 2-1) that

contains some requirements. On the other hand, we explored the requirements of PervComp for some

business domains (Retail, Emergency, and Learning). We refined our understanding about the

requirements by studying some possible use cases and state machines.

This study helped us provide a generic requirements model that abstracts the PervComp domain. We then

derived useful ontological terms categorized as values and issues. Every ontological term has a

measurement scale. The requirements model is studied further to identify conflicts and provide suitable

solutions for them. Then, we made a trade-off analysis for the quality features supported by a qualitative

survey, the business domains, and identified solutions for the conflicts. Figure 2-4 shows the activities of

this phase along with the Artifact deliverables from each step and their usage in the subsequent steps.

The BRA is guided through the study of sociology (activity theory), psychology (Perception), and process

engineering which will be discussed in the upcoming sections. These theories and concepts were chosen

because they are descriptive frameworks for our lives with all its complex interactions. Moreover, we will

note that Weiser’s vision about pervasive systems can also be best explained through them.

34 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

Survey
literature

No

Review
and

modify
Yes

Review
requirements
in a workshop

Business Requirements
Model Categorized
per quality feature

and per business domain

Initial draft

Updated draft

Generate
values and

issues ontology

Ontology

Study relationships
among

requirements

Business
Requirements

Relationship Matrix

Analyze Trade-off
between business

quality features

Quality features
Categorization & weights

Resolve
Conflicts
between

requirements

Solutions
Quality features

Weights In business
domains

Solutions
Capability

Framework

Requirements
Complete?

Figure 2-4 Activities to generate a business reference architecture

2.1.2 Activity Theory

Automation is intended to reduce efforts that humans exert to achieve tasks. It reduces efforts and

papers, speeds up activities, connects remote areas, transfers information, and reduces human mistakes. It

is designed to simplify our lives and make it more comfortable.

In the PervComp world, automation should do the same thing. However, a PervComp system is different

from normal computer systems as human beings and devices tend to make more movements and

activities. It is a system of, usually, small devices distributed in different locations.

People move around to achieve specific goals (objects) within processes. The goal is a desired objective

that someone (subject) wants to achieve. The process is an organized set of activities that should be

completed in order to achieve the goal (object). People use tools, physical or mental tools, and abide by

rules to perform tasks [4] [3]. Moreover, responsibilities are distributed among the people (community)

who share the activity according to the (Division of labor) rules (Figure 2-5). A human being who wants to

achieve the goal for the first time will usually concentrate on the process activities in order to reach the

required goal. In other words, his/her mind will be highly alerted not to make any mistake that may spoil

the required goal and consequently result into undesired outcomes. For a person who gets used to

performing the activities of the process, he/she finds no problem to perform the activities with minimal or

no mistakes and he/she usually achieves the goal quite easily [28].

Tools

Subject Object

Rules Community Division of
labour

Outcome

Figure 2-5 Activity Theory perspective [4]

35 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

2.1.3 Perception

Perception represents a natural process that allows human beings to sense the environment and detect its

changes through stimuli and interpret them into useful meanings. We use these meanings to make the

proper recognition and devise a suitable response [29] [30]. For example, the environment contains

contextual stimuli (e.g. a person that one knows) that send signals to our sensory system (e.g. eyes or ears)

where we use our experience and knowledge to interpret them into a useful meaning (e.g. your friend),

recognize it (e.g. your friend Kathrin) and take the proper response (e.g. shake hands) (Figure 2-6).

Figure 2-6 The perception process

The process adds to our accumulated knowledge and experience which we use again and again through

our daily lives within several other perception activities. Our interpretation system mainly depends on

detecting specific features about the stimuli [28]. Our neural system then reviews these features with the

stored knowledge and makes the proper match to recognize the stimuli. There are sets of actions or

responses that are also reviewed based on the knowledge about the stimuli, and one or more responses

are taken accordingly.

It is very interesting to note that the perception process describes the main activities in PervComp in its

simple format (context awareness and adaptability). PervComp is similar to the perception process in the

sense that it should be invisible and transparent to the users. The perception process is also natural and

invisible to the people.

2.1.4 Process Engineering/Re-Engineering

Process engineering specifies how to describe a specific process as a set of activities in order to achieve a

specific goal. The process may have different decision conditions, inputs, and outputs. The decision

conditions decide on the path that the process will go through which may end up not achieving the main

goal of the process.

In normal practices, people tend to perform the process as designed, whether this process describes

industrial or business activities. At some point in time, people may find out that the process is no longer

efficient and it needs to be revisited. So, they initiate a reengineering project that aims to study the

process and recommend solutions.

In process re-engineering, there are 3 major objectives that the engineer must do [31] [32]:

Outside World Inside World

C
o

n
te

xt
u

al

St
im

u
li

Sensors

Perception Meaning Cognition Response

Signals

36 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

1. Maximize the value added tasks that the customer is willing to pay for.

2. Minimize the non-value added tasks which are essential for the process but the customer will not

be willing to pay for.

3. Eliminate tasks that are considered a clear waste in the process.

From the perspective of the activity theory, it means that:

1. The pervasive system will optimize the usage of tools and signs.

2. The rules will be changed to optimize the process.

3. Responsibilities could be redistributed in the division of labor.

4. New members could be introduced to the community to fill in a gap in the process, or removed

from the community to remove a waste.

2.1.5 The Modeling Approach

A PervComp system should automate tasks that people do in their lives. Accordingly, a business

requirement that derives functional or architectural requirements should be considered from a process-

engineering point of view.

We defined some stereotype notations to understand the relationship among the business requirements

as shown in Figure 2-7 which is read from left to right:

1. Minimize: it is a relationship in which one requirement works on minimizing a non-desired issue

from another piece of requirement.

2. Maximize: it is a relationship in which one requirement works on maximizing a desired value from

another piece of requirement

3. Conflict: it shows that two requirements could have conflicting values. If this happens, then one

of them must supersede the other in order to resolve this conflict. The relation could be uni-

directional or bi-directional.

<<minimize>>

<<maximize>>

<<conflict>>

Requirement 1 Requirement 2

Requirement 1 Requirement 2

Requirement 1 Requirement 2
+Superseding

Figure 2-7 requirements custom relationship

37 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

The minimize and maximizes relationship link requirements that do not have conflict but their values help

each other to achieve the objective of the business goal.

These relations are used also to show the dependency between a business requirement derived from the

studied business domains and the desired quality features. So, there could be a quality feature

requirement that maximizes a requirement value derived from the retail business domain, or that

minimizes a value of a specific feature.

In order to build a robust business model, we used the SysML modeling language (Appendix A:). The

following SysML diagram types were used:

1. Requirements Diagram: a diagram that visualizes the requirements and shows relationships

among them. The requirement specifies “a capability or condition that must (or should) be

satisfied.

2. Use Case Diagram: a simple modeling diagram that shows a high level interaction model between

the system actors and a specific high level scenario.

3. Interaction diagram: a diagram that shows a specific aspect of behavior to clarify, e.g., successful

scenarios and failure scenarios.

4. State machine diagram: a diagram that describes different states for a specific entity.

Note: SysML
vs. UML

The Unified Modeling Language (UML) proved itself for Object-Oriented Design (OOD) for the

past decade. It is suitable mainly for software engineering design. SysML is a modelling

language that extends UML and helps more in tracking requirements, see : . It is more useful

for complex architectures that contain software, hardware, information, people, deployment,

and installations [33]. The extra additions of SysML which allow requirements modeling,

helped us in building the robust business architecture with a semi-formal language, and

facilitate the quantitative evaluation of the RA as well. Hence, we used the SysML modeling

language to represent our models. UML is still a candidate modeling language for the

software architecture part where SysML is not appropriate.

2.2 The Technical Reference Architecture

Our main aim in this work is to generate a practical TRA that can be used by architects. Hence, we derived

a baseline architecture model that is built on robust understanding about the business requirements. In

addition, the baseline architecture model was driven from other architectural requirements, network

challenges, technology, and design and architectural patterns (Figure 2-8).

38 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

Figure 2-8 Technical Reference Architecture Point of Views

We used abstract concepts from the following topics to build the reference model (Figure 2-9):

1. Architecture Requirements: we studied the most essential requirements for the important

architectural quality features using the same modeling approach as described in section 2.1.5. We

generated other by-products from this step which are:

a. Ontological Terms: these are basic concepts derived from the architectural requirements

and linked to the selected quality features.

b. Trade-off Analysis: it is a deep study for the relationships among the architectural

requirements to understand their priorities and complexity which reflects on the priorities

of the quality features as well.

2. Technology Enablers: it was only natural to touch on different technologies since they enable and

also constraint pervasive system architectural design decisions. Moreover, they were useful in

exploring concepts that we used in the baseline abstraction. These technologies include smart

objects, passive objects, communication media, microcontrollers, and power technologies.

3. Network Challenges: a pervasive system is composed of scattered devices connected through a

network. We studied the most important network challenges and proposed solutions to mitigate

them.

4. Patterns: these are the important design and architectural patterns that the problem and a the

solution. We excluded all other sections of the pattern documentation like context and forces.

a. Architectural Patterns: a collection of high-level architectural patterns that can help

system engineers or software engineers build a robust pervasive system architecture.

b. Design Patterns: design patterns are more useful for the software model part. They

capture important knowledge that should be useful for the software design.

39 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

Hence, we propose a base-line architecture that contains basic design blocks which are essential for

building PervComp systems. This architecture may be adopted for the different business domains

mentioned above. It should also be a good starting point for any architect willing to build a new concrete

architecture for specific business problems. The model provides essential details about:

1. The Smart Environment: A conceptual view of the smart environment and classification of the

objects.

2. The Smart Object: an abstracted view of the smart object and the essential handlers that it should

include to interact with the smart environment.

3. The Pervasive System: The essential modules that should exist in a pervasive system with high

level linkage among them.

4. The System Optimization: a reference for the basic optimization parameters in the system.

5. The System Deployment: The essential deployment strategies that could be implemented for a

pervasive system in order to increase its reliability.

6. The Architecture Variability: the essential configurations of the RA to generate different

architectures based on the changing rules.

Figure 2-9 show that this phase uses deliverables from the BRA phase (on the left). Moreover, the

ontological terminologies were amended to the master ontology. The essential diagrams that we used are

the Requirements Diagram, the Block Diagram, the Interaction Diagram, and UML class diagram.

However, we were not restricted in this phase to specific diagram notations as we may need to explain

some details in free art notations.

40 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

PervCompRA-SE Approach from a Software Engineering Perspective

Business Analysis Design

P
h

as
e

Business Requirements Model
Categorized per quality feature

and per business domain

Ontology

Quality features weights

Solutions

Solutions Capability
Framework

Survey
literatureNo

Review and
modify

Yes

Architectural Requirements
Model Categorized per

quality feature

Initial draft

Generate values
and issues
ontology

Study
relationships

among
requirements

Architectural
Requirements

Relationship Matrix

Analyze Trade-off
between

architectural
quality features

Architectural Quality
features weights

Architectural
Requirements

Complete?

Study
Technology

Enablers

Study Network
Challenges

List of Key Enabler
Technologies

Key Network Challenges
And design decisions

To overcome challenges

Study Patterns

Essential Patterns for
The baseline architecture

Generate
baseline

architecture

Smart Object
Essential Handlers

Smart Environment
Conceptual Model

Pervasive System
Abstraction

System Optimization

Architecture
Variability

System Deployment

Figure 2-9 Activities to generate a technical reference architecture

2.3 The Evaluation Approach

There are different approaches to evaluate an RA or a concrete architecture. Since we had to produce

documents and technical architectural models then we need to adopt a hybrid approach that

combines between qualitative and quantitative techniques. The evaluation cycle, as shown in Figure

2-10, should answer the following questions:

41 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

Figure 2-10 The suggested reference Architecture Evaluation Cycle

1. Is it a complete RA?

Modules will be traced to the requirements to assess the completeness of the design within the scope

of the defined business architecture. In other words, we traced design elements to the requirements

to ensure that what is required is satisfied by the technical architecture.

2. Is it an acceptable RA by the software development community?

To answer this question, some of the development community from different backgrounds and

different experience levels were involved in a subjective evaluation cycle for the RA. They answered a

survey that assesses the different sections of the RA in addition to some other quality attributes. The

questions were in positive formats and every question will be given a rating score from (strongly

disagree) 1 to 5 (strongly agree). The responder gave a single answer only for every question. Finally,

the answers were summed up for every responder, and then an average score taken across all the

answers as a percentage

3. Is it a good RA?

To answer this question, a quantitative evaluation for the baseline architecture was conducted to

evaluate the architecture’s quality metrics. We used the following metrics (Complexity, Cohesion,

Maintainability, Testability, and Coupling).

4. How good is the technical architecture compared to similar ones generated by experts?

We adopted the approach followed by Hamza [34]. Five architects with different experience levels

were invited to generate architectural baseline models based on the business and architectural

requirements. The generated architectures were evaluated quantitatively using the same metrics

explained in the above paragraph.

5. Will it be a good technical architecture as expected during the runtime trials?

•Does the
technical model
satisfy all
requirements?

Validation

•How good is
it?

Quantitative
Evaluation

•It is an
acceptable
architecture?

Survey

•Compare it
with other
models?

Benchmarking

• What is the
expectation
during
runtime?

Simulation

Lead measure Lag measure

42 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

The architecture may be accepted theoretically before implementation to minimize the risk of failure;

however, its behavior could be different during run-time. Hence, we assessed the reliability and

availability of the architecture during runtime by running simulation experiments. We built a

conceptual model and captured state details similar to the ones mentioned in [35]. The results of the

simulation were studied to propose enhancements for the baseline architecture, whenever required.

Note: Simulation
vs. Prototype

Many of the researchers implemented prototypes to prove the quality of their RAs. Their

intentions were mainly to instantiate concrete architectures, and then evaluate them. It is

a systematic approach and follows the Software Life Development Cycle (SLDC). However,

this evaluation mechanism has the risk of introducing other variables that may impact the

final decision. For example, if one wants to measure the Quality of Service (QoS) based on

a specific architectural model, hardware machines, programming language and the

implementation technique will definitely impact the final results. Moreover, it can

consume a lot of time as well.

On the other hand, simulation tools can give better results and at the same time exclude all

other external factors that impact the acceptability of the evaluation exercise. The

simulation model can clarify the requirements of the user in a virtual space that considers

all constraints and quality requirements [36]. An architectural model could be fed into the

simulator along with input parameters to measure some quality features. These quality

features could be related to the architecture itself like availability, and maintainability or

other system features like QoS, and security. We believe that the simulation approach is

better for a RA, and at the same time experiments can run in a more controlled

environment.

Figure 2-11 shows the activities that were executed to evaluate the PervCompRA-SE along with all the

Artefact deliverables from the previous phases (Business Analysis and Design).

43 - CHAPTER 2 ● RESEARCH APPROACH

PervCompRA-SE

PervCompRA-SE Approach from a software engineering perspective

Business Analysis (B) Design (D) Evaluation (E)

P
h

as
e

Business Requirements Model
Categorized per quality feature

and per business domain

Architectural Requirements
Model Categorized per

quality feature

Smart Object
Essential Handlers

Smart Environment
Conceptual Model

Pervasive System
Abstraction

Trace architecture
baseline model to

requirements

Traceability Matrix

Generate
metrics

measurements
Measurements

For architecture static
Quality features

Run survey to collect
feedback about the quality

of the business and the
architecture reference

architectures

Measurements for
Quantitative quality

 features

Benchmark
architecture with
experts’ models

Comparison Results

Build a
simulation

project

Prediction for runtime
Reliability and availability

Recommend
Enhancements for

the reference
architecture

Figure 2-11 Activities to complete the Evaluation Activities

44 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

C h a p t e r 3

3. Related Work – State of the Art

In this chapter, we discuss some of the related RAs in the domain of PervComp. For the sake of

completeness, we included RAs from close domains like IoT and embedded systems. Our objective is to

analyze the existing approaches, compare them and highlight the gaps in which our research aims to make

a contribution. Supplementary readings about other topics in PervComp are provided in Appendix F.

Requirements Engineering and Conflict Identification and Resolution

Requirements engineering in PervComp was studied intensively by many researchers. Different

techniques for eliciting requirements have been introduced by a number of researchers. Research efforts

by Kolos-Mazuryk et al. [37], Afridi and Gul [38], Muñoz and Pelechano [39], and Pérez and Valderas [40]

are examples of such approaches.

Kolos-mazuryk et al. [37] claim that existing requirements engineering techniques are not mature enough

to capture requirements for pervasive systems. They propose procedures to help the analyst in eliciting

and analyzing requirements more appropriately. The following 3 steps represent their approach

1. Identify system stakeholders and engage with them to capture their required needs.

2. Build a detailed business model for the environment derived from the information captured

from stakeholders.

3. Hold workshops with stakeholders which are close to brainstorming sessions where

stakeholders set their perceptions on the pervasive system.

The authors used a set of pervasive system contextual properties to serve as guidelines in the different

engagement sessions with stakeholders. These contextual properties are:

1. The spatio-temporal context: it describes properties like time, location, direction, and

speed.

2. The environment context: it describes objects around the user like services, persons, and

noise.

3. The personal context: it describes the user’s physiological and mental state.

4. The task context: it reveals the user’s explicit goals, tasks, and actions.

5. The social context: it describes the user’s relations with others and his/her role at work.

6. The information context: it describes the global and personal space available.

On the other hand, Afridi and Gul [38]followed a similar elicitation practice, but on a completely different

theoretical background. They adopted the activity theory in the field of psychology. The activity theory

says that when individuals engage and interact with their environment, new tools are produced. These

tools are considered forms of mental processes, and as these mental processes are manifested in tools,

they become more readily accessible and communicable to other people, thereafter becoming useful for

social interaction [4].

45 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Afridi and Gul [38] argue that elicitation techniques such as group-driven elicitation or model-driven

elicitation have some drawbacks in context-aware systems as they do not address the emergent time-

model, the priorities of context-aware scenarios nor the scenarios' constraints. Their research proposed

specific procedures that help in eliciting requirements:

1. Enlist all the tasks in operations.

2. Define the primary and secondary activities for the system domain.

3. Develop an activity chart to complete the activity life cycle.

4. Identify where to enable, the technology or activity. And enlist the key activities for which

context should to be used.

5. Define how context benefits the productivity and efficiency in terms of resources (time, HR,

equipment, labor, physical activity, computation).

6. Establish the context variables required for the context awareness i.e. time, location,

bandwidth etc.

The above procedure uses the same classical elicitation techniques, but with special focus on context as

the main driver. It addresses also the cost-benefit of using context to automate a mobile computing

system.

Munoz and Pelechano [39] rather preferred to adopt the existing UML analysis model and customize it for

PervComp systems. They introduced some interesting approaches in the software development life cycle.

They proposed an analysis model approach based on UML where the analyst has to build the services

model, the structural model, and the interaction model. The services model is based on the UML class

diagram, and they model the behavior by using the state-transition diagram. They went deeper and

described the acting component inside each service using the UML component diagram. They also used

the UML sequence diagram to describe the interaction among services, and they recommended designing

a single diagram for every interaction. They link this approach with other steps towards the required

system architecture.

Francisca et al. [40] introduced a different model for requirements engineering which requires active user

interaction during the elicitation phase. The authors introduced this approach through a visualization tool

which helps the user view the location of the devices in the smart space. They help the user set his/her

requirements through an elicitation process which the user would have to specify as follows:

1. Define the scope of the context

2. Define system specifications using a predefined list of characteristics in the system catalogue.

3. Refine system specification for those characteristics which are not found in the catalogue.

4. Validate the gathered requirements

Salado and Nilchiani [41] focus their research work on conflict identification among the requirements.

They present a “tension matrix” mechanism to organize a set of heuristics that they proposed in order to

identify conflicts. Their approach to resolve a conflict is simply done by removing the conflicting

requirement based on specific criteria. Sadana and Liu [42] have a similar approach that shows a hierarchy

of conflicts among requirements and plots potential conflicts among quality attributes. They augment

functional and quality requirements to identify conflicts. Oster et al. [43] introduced an analysis model to

46 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

identify and resolve conflicts using a conditional importance network (CI-Nets). Stakeholder requirements

are organized as preferences that are valid if certain conditions are satisfied. Preferences are checked for

consistency with no conflicts. If conflicts are detected, then the least preferred item that causes conflict is

removed from the entire set of stakeholder preferences.

All the surveyed research efforts assert the need for extensive research to properly elicit the requirements

and identify conflicts. However, they suggest simple approaches to resolve conflicts without going deeper

to propose solutions that can achieve an acceptable balance among conflicting requirements. Researchers

in [42] trace back the conflicts to quality attributes which is similar to what we do as will be explained

below. In this research, we do not only offer a statistical approach to resolve conflicts; but we also offer

practical guidance to the architects who work in the PervComp domain.

There are numerous research works in requirements engineering. However, there are limited research

efforts that study conflict identification and analysis. Few of these research studies provide a framework

for resolving requirements conflicts. And to our best knowledge, the resolution of conflicts in PervComp

using statistical analysis has not been attempted yet (see section 4.4). This can be very useful during the

architecture phase as some architecture decisions can be defined more accurately for system optimization

during runtime.

3.1 Reference Architectures

We selected some research projects for building RA models to study them and identify gaps and potentials

in their characteristics and coverage of the quality features. All of the research projects position

themselves as RAs not as middleware applications similar to AURA, Gaia, SOCAM, CARISMA, CORTEX, and

RCSM [44] [45].

3.1.1 Analysis and Evaluation Methodology

Our first step is to analyze the related RAs in order to discover their gaps and capitalize upon their real

potentials. The completeness of a proposed RA is one aspect, and the quality of the RA is another. By

completeness of RA, we mean that it covers all the characteristics of a RA as listed in chapter 2. On the

other hand, these characteristics have to be acceptable and technically applicable. We inspected every RA

research work for the quality features as mentioned in our approach (Table 2-1).

Some of these characteristics are not necessarily required for an RA, but robust and useful RAs should

have them. Accordingly, we are going to weigh them in order to evaluate the reviewed PervComp RAs

quantitatively and provide what we will call a maturity score.

The proposed weights are 20% for characteristic (1. Capturing the Essence of Existing Architectures), 15%

for (2. Having an Architectural Baseline), 15% for (3. Providing Guidance), 10% for (4. Considering Business

Needs), 10% for (5. Considering Business Context), 10% for (6. Providing a Common Dictionary), 10% for (7.

Capturing and Sharing Architectural Patterns), 5% for (8. Having the Architectural Vision), and 5% for (9.

Having a Prototype). We justify our scoring as follows:

47 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

1. The first 3 characteristics are considered the core of any RA in software. That is why we assigned

them higher weights.

2. Characteristics 4 and 5 are important and somehow essential; so, they are assigned moderate

weights.

3. Characteristics 6 and 7 are useful for the RA and make it more reusable; so, they are assigned low

to moderate weights.

4. Although having an architectural vision in a RA is important, it is really difficult to judge. That is

why we assign characteristic 8 a small weight.

5. Characteristic 9 is assigned a small percentage because the prototype may be debatable within the

scope of the RA and there is more than one approach to apply it. Moreover, the experienced

software engineers can recognize the validity of the RA based on the first eight characteristics.

Every characteristic will be evaluated as True (T) or False (F). It means the RA either touched this

characteristic or not then multiplied with the weight to get the characteristic score. All characteristic

scores will be summed up to get the maturity score. On the other hand, a RA in PervComp should address

specific design and architectural challenges (Table 2-1) that are very common in the domain (4).

We analyzed the technical architecture of the reviewed RAs to measure proximity of their design from the

quality features using a simple evaluation matrix with True if the quality feature is considered or False in

case it is not clear from the referenced publication or when the quality feature is completely ignored. A

score based on the existence of the quality feature will then be assigned to the studied RA.

3.1.2 RA-Ubi (2014)

Machado et al [46] present an RA for ubiquitous computing (UbiComp) which they called RA-Ubi (
5
). The

authors built their RA by following a process in which they had i) to identify information sources ii) elicit

requirements iii) design the RA and iv) evaluate the RA. They considered nearly all the quality features

mentioned in Table 2-1 in their process. Then they provided their technical architecture which is

composed of four views:

1. Components view: this view shows the components and their interfaces and their interactions

as shown in Figure 3-1

2. Deployment view: this view shows a UML-based deployment view of the components in the

running operating context

3. Process View: this view is empowered by activity diagrams to show how a single task can be

fulfilled at runtime.

4 Safety is excluded from this critical survey for the sake of fairness since it is not mentioned by Spínola and Travassos [25] as
one of the surveyed quality features in pervasive systems.

5 The authors were somewhat inaccurate in criticizing others’ work. They criticized the PSC-RM reference architecture, which
will be mentioned later, that it did not handle service discovery although the PSC-RM researchers based their work on the SOA-
oriented architecture which includes service discovery by definition. They also criticized PCA-RA, which will be mentioned later,
that it did not handle mobility issues, but the PCA-RA researchers had already addressed it in their work.

48 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

4. Implementation View: this view organizes components into packages to show dependencies

and relationships among them

In the highlighted components diagram (Figure 3-1), the authors show four layers in their architecture.

The first layer contains sensors and actuators. The second layer is composed of the services which access

the lower layer of sensors and actuators. The third layer contains the core logic of UbiComp to process

context information, handle events, reason about events, adapt system’s behavior according to events,

and handle mobility and security.

Figure 3-1 Component Diagram of RA-Ubi [46]

Critical Analysis

49 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

1. The authors mentioned that the Adaptation Module can change the system architecture, but

they did not mention how this could happen given that it is understood from the context that

the architecture will change at runtime.

2. The authors claimed that their RA can be implemented in different ways according to the type of

application but they did not show how this could happen and they did not give examples for

such implementation.

3. The authors mentioned that a single context service can handle more than one sensor and the

same for the actuation service, but the components diagram does not show this piece of

information

4. The authors did not give enough guidance on how to use their RA, and they gave only a

description for the high-level components.

5. The authors did not show how the UbiComp requirements guided their design decisions and

how the technical architecture can fulfill these requirements.

6. The authors mentioned that their architecture could be tailored for different contexts, but they

did not show how it could happen.

7. There is no guidance on how to use the RA, just description of its high-level architecture.

8. The authors provided in their website a matrix table that connects between requirements and

their architecture layers which is useful for architects.

3.1.3 PCA (2006)

Liu and Li [47] (6) provided an RA for PervComp which is composed of four main layers as shown in Figure

3-2:

1. Application: this layer contains applications built over the services provided by the middleware

layer

2. Middleware and Security interface: this layer is responsible for handling different challenges

such as heterogeneity of devices, scalability, providing common APIs, service discovery, and user

authentication

3. Intelligent Computing Layer: this module is further decomposed into sub layers

a. Mobile Computing: which is responsible for tracking mobile users, maintaining proper

addressing and handling heterogeneous networks

b. Context-Aware: which is responsible for getting context information, relating them,

making proper judgments, and then adapting its actions accordingly

c. Affective Computing: this layer is responsible for understanding emotions, behaviors,

and movements and taking proper actions accordingly.

4. Embedded Operating System and Hardware: this layer includes hardware devices empowered

by processing capabilities (processor, memory, storage, network interfaces, etc …) and it

includes also embedded real-time devices.

6 There are clear typographic mistakes in this paper such as in the first paragraph of section 2.2 and Figure 4

50 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Application

Middleware and Security Interface

Intelligent Com
puting Layer

Mobile Computing

Context-Aware

Affective Computing

Embedded Operating System

Network-Oriented Pervasive Computing Services

Personality-O
riented Pervasive Com

puting ServiceHardware

Figure 3-2 PCA (Pervasive Computing Architecture) [47]

The authors then described what is called “Network-oriented pervasive computing Services” which

contains the middleware, network services, security mechanism, and system and hardware layers. The

authors stressed also on having two types of security protection mechanisms:

1. The Personality-oriented Security Mechanism: This mechanism handles Entity authentication,

Authorization of Users, information confidentiality, and data integrity

2. The Network-oriented Security Mechanism: The PervComp network should be protected

through different protection precautions like anti-virus, ensuring data integrity and

confidentiality across different networks, establishing an invasion detection with the context-

aware function, and protecting the system in a dynamic environment.

Critical Analysis

1. The authors assumed that devices have to be small in size in order to achieve pervasiveness,

which may not be the case all the time. For example, there could be PCs, printers, and/or

screens with large sizes empowered by processing powers to interact with the environment in a

pervasive way.

2. The authors proposed to have two sub-layers, Context-Aware and Affective Computing, although

the Affective Computing layer could be embedded normally in the Context-Aware layer. Their

design decision was not clear given that both sub-layers have very close functionalities. It was

not clear also how both sub-layers can interact with each other.

3. The authors embedded the adaptability feature inside the Context-Aware layer, which could

have been separated to increase modularity of the architecture.

4. The authors should have given a different view for hardware and software in their RA for the

sake of clear understanding. For example, they propose a hardware layer, and then they

propose a middleware layer which is typically hosted on a separate hardware.

5. The authors presented two services, the “Personality-oriented Pervasive Computing Services”

and the “Network-oriented Pervasive Computing Services” and both have some common layer

51 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

names which increased the level of confusion without enough description on how they both

interact nor the main differences between them.

6. The authors should not be bound by middleware options because of the heterogeneity of

technology and they should have considered other options like peer-to-peer.

7. The authors labelled their RA as goal-oriented without giving details on business needs

3.1.4 PSC-RM (2009)

Zhou et al. [48] introduced their RA for Pervasive Service Composition which they considered crucial for

the success of PervComp solutions. Their RA is dependent mainly on Web Services and Peer-to-Peer

coordination. They derived their RA from what they called the activity model as shown in Figure 3-3.

This model shows normal human activity as goal-oriented tasks which could be decomposed into

multiple sub-tasks that required coordination with one or more service peers. Once coordination is

established, the services are scheduled to run on their peers according to the service collaboration logic.

1- Goal Planning
2- Task

Composition
Is it composed

within one party?

3- Peer
Coordination

No

4- Service
Collaboration

Yes
5- Logic-
excution

Figure 3-3 PSC-RM User's Generic Activity Model [48]

The proposed RA in Figure 3-4 portrays their three main layers:

1. The Application Layer: this layer contains the categories of applications that can be developed

using the authors’ RA

2. The PSC System Layer: this is the actual abstraction for architecture components that handles

context, multimodal HCI, peer coordination, and service provisioning with the ability to compose

services from the enabling layer

3. The PSC enabling and enhancing layer: this layer contains standalone services that can be used

by the system layer. In addition to the wireless networked sensors, it contains service-

orientation, context awareness, p2p, context-awareness, mobility, and multi-modal aware

services

52 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Figure 3-4 PSC-RM Reference Model [48]

Critical Analysis

1. It would have been more clear if the authors had explained the interaction between layers in

terms of their internal components. Such interactions could guide the architects into building

more concrete architectures.

2. Although the authors avoided any reference to specific implementations of Web Services. The

Web Services approach still entails a burden on the network, and processors due to its

structured format which increases the message size. It is understood that there is a trade-off for

simplicity of development, but this side-effect had to be clarified and an architectural solution

for it should have been proposed, especially that PervComp solutions depend mostly on battery-

based devices with limited processing powers.

3. The authors stayed away from decisions that may have touched on specific implementations like

middleware and hence, they cornered themselves in the categories of web service enabled-

devices in order to make their own peer-to-peer RA. It simply means that their RA is not

suitable for those devices that can interact with different protocols.

53 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

4. It would have been more useful if the authors had abstracted social information to the level of

sensor’s data

3.1.5 The Smart Environment Software Reference Architecture (2009)

Fernandez-Montes et al. [49] described a RA for a smart environment as logical events to be handled by

specific tasks in the smart environment namely as circular integration between perception, reasoning

and acting starting by the perception event. Perception is achieved through physical sensors in the

environment. Reasoning is carried out to decide about the possible responses. Finally, acting has to be

triggered based on reasoning.

The authors decomposed the perception into Collector, Verifier, Repairer, Filter, and Ontologizer. These

tasks are modelled sequentially as shown in Figure 3-5. The Collector’s task is to retrieve data from the

physical devices. The Verifier is responsible for validating data received from the Collector. The Repairer

is responsible for repairing incorrect data received from the Verifier. The Ontologizer is responsible for

adding data to the knowledge base to represent the real world

Perception

Collector Verifier Repairer Filter Ontologizer

Figure 3-5 Tasks of the Perception Process [49]

The authors explained their reasoning technique in that it should serve three main goals a) learning b)

reasoning and c) prediction. They divided their learning task into a) data mining task b) situation

recognition task c) prediction task and d) error detection task. These tasks should cooperate in order to

learn and improve experience in case the predicted decisions were wrong.

The final main task which is acting is broken down into a) policy manager b) task scheduler and c) task

runner. The policy manager is designed to control the acting process based on pre-defined preferences

or policies. The task scheduler will then schedule the task according to its time limit and priority and the

task runner will then have to take the task and interact directly with the devices responsible for fulfilling

this task.

Critical Analysis

1. The authors implemented a case-study to validate their architecture covering only the

perception part.

2. The contribution of this research work covers only Context Awareness and Adaptability for the

smart environment and does not cover any other challenge for PervComp.

3. The authors discussed their RA in terms of design components and algorithms not architectural

components.

4. In the perception phase, the authors modeled the internal tasks in a sequential way, although it

is possible that these tasks could interact in a non-sequential way.

54 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

5. The authors mentioned that the Verifier task checks data and if there is something wrong it

sends it to the Repairer then to the Ontologizer. However, they did not mention what the

Verifier will do if the data is correct, should it be sent to the Ontologizer.

6. They modeled another task called Filter as shown in Figure 3-5 but they did not mention its job

in their research paper.

7. The authors should have explained their design decision for putting the Policy Manager sub-task

in the Acting task, although it could be part of the reasoning part or even a bigger scope so that

a clear policy could be applied on perception, reasoning, and acting.

8. The RA focused mainly on Context-Awareness and Adaptability.

3.1.6 CIPS: An Architecture-Based Approach for Compute-Intensive
Pervasive Systems in Dynamic Environments (2014)

Al Ali et al. [50] presented an RA for Compute-Intensive (
7
) Pervasive Systems (CIPS). Their RA merges

PervComp with cloud computing in order to overcome the resource limitations found in pervasive

devices. For example, if the PervComp solution requires big data analysis, or data aggregation and the

existing devices have limited battery or processing powers, then devices can delegate computing tasks

to cloud nodes that are more powerful and more stable.

The authors presented four types of nodes as shown in Figure 3-6 which could be captured in the early

requirements’ phase:

1. Low-power nodes: these are typically sensor-based or actuator-based devices that have limited

power capabilities, e.g. wearable devices with sensors. Device limitation is relative to the

complexity of the environment.

2. Resource-poor nodes: they are nodes, such as PDAs or mobile devices, responsible for

aggregating data from the low-power nodes. Aggregated data are sent to the resource-rich

nodes for intensive analysis

3. Resource-rich nodes: these are nodes, e.g. servers, responsible for processing data online. They

are not constrained by power and they can make temporary processing for data but delegate

long-term data and offline processing to the cloud nodes

4. Cloud nodes: Cloud nodes are responsible for processing data characterized by being massive in

size and required to be kept as history for a long time. They are scalable and can be changed

dynamically.

7 A characteristic of a system that needs intensive data computation which could last for a long period of time and requires
powerful processors and usually associated with a large size memory [10]

55 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Cloud
node

Cloud
node

Cloud
node

…
.

O
ffline data
analysis

Resource-
rich node

O
nline data
analysis

Resource-
poor node

Sensor Data

Low-
power
nodes

Low-
power
nodes

Low-
power
nodes

Actor Dependency Resource Task

…
.

Figure 3-6 Nodes and their dependencies in an application deployed on CIPS [50]

In their RA (shown in Figure 3-7), the authors described the type of connectivity among the

aforementioned nodes as:

1. Low-power resource-poor nodes: where this type of connectivity is not robust and is

applicable to frequent disconnections. Accordingly, there has to be fault-tolerant solutions that

can handle this problem.

2. Resource-poor resource-rich nodes: where connectivity has to be with low-latency and the

resource-rich nodes also have soft-real time response in order not to spoil the users’ experience.

3. Resource-rich cloud nodes: where it is required to have a larger bandwidth to handle the

high volume of data transferred upstream to cloud nodes.

The authors then described some architecture instantiations for their RA. They discussed Kevoree and the

DEECo models to recognize their proposed RA. Both models are based on the dynamic-modeling at

runtime concept. They also developed an implementation to validate their architecture.

Critical Analysis

1. The authors described their RA in a very clear way and provided clear explanations for their

design decisions.

2. The authors focused their discussion primarily on the hardware and network perspectives but

gave a shallow discussion about software issues.

3. They did not discuss the trade-off design decisions related to performance from a software

engineering perspective. For example, they should have discussed the implication of applying

security rules on the real-time processing expected from the resource-rich nodes.

56 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

3.1.7 Figure 3-7 Proposed components and their links in the CIPS reference
architecture [50]Next Generation Service Overlay Network (NGSON)
Multiplane Framework (2012)

Liao et al. [51] proposed an open multiplane framework (MPF) for the next generation service overlay

network (NGSON) based on a holistic view of its necessary functions including service composition,

signaling, and delivery control, which is a high-level abstraction of the current functional architecture for

NGSON. The authors described their framework as a collection of service overlay networks (SONs), with

each overlay addressing a specific service requirement or functionality. Therefore, the NGSON

infrastructure layer is separated into three functional planes horizontally, which are the component

integration plane, signaling control plane, and delivery control plane, respectively as shown in Figure 3-8.

Their architecture is divided into three layers:

 The Services layer: which is responsible for the service representation and user friendly

interface

57 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

 The Infrastructure layer: which contains simple to complex services

a. The Component integration plane: contains SOA services or web services and can

compose services statically or dynamically at runtime

b. The Signaling control plane: a control layer for the network providers in order to

enforce their policies on the content delivery for the sake of gaining more benefit for

themselves

c. The Delivery control plane: it is a separate layer responsible for controlling the delivery

of media in separation from the normal data flow and can act as a universal

communication layer

 The Network layer: the traditional network layer to transfer data packets.

The architecture has crossing features namely

1. Quality of Service: it is a mixture of network quality of service, quality of experience, and quality

of application features. It is imposed top down from the user’s perspective until the lower layer

of the network

2. Mobility: it manages handover and roaming devices

3. Security: it is a mixture of security rules including authentication, data protection, data

confidentiality, data integrity as well as privacy and availability

4. Operation and Management: it is responsible for the development of network and application

services and monitoring the network for a healthy status

Figure 3-8 Multiplane Framework of NGSON [51]

Critical Analysis

1. The authors highlighted the impact of propagating security rules across all planes and how that

could drain the network resources which is a major drawback.

58 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

2. The authors justified one of their layers the “signaling layer” based on the benefit that network

providers can gain and not on the best for the architecture although they confirmed that this

piece of design proved to be a failure and not usable. For example, if the network provider

should control the delivery of services, then the service provider must coordinate it worldwide,

e.g. if it is a global service that should be introduced across all countries. In a normal situation a

network provider should be serving as a network carrier to transmit data packets (3rd layer)

3. This RA can be regarded as an eco-system RA rather than a technical RA

3.1.8 A Blueprint for Pervasive Self-Care Infrastructures (2006)

Roussos and Marsh [52] introduced a generic reference model for self-care pervasive systems. They

explained the rationale behind this approach that there are numerous solutions that integrate health care

systems which will lead to the spread of pervasive solutions in future health care systems. Their

architecture is composed of three levels as shown in Figure 3-9:

1. Body Area Network: it consists of a wearable router that interacts with body sensors and the

router is the gateway to the next level (Home Sphere)

2. The Home Sphere: the home sphere integrates the body area network, the medical cabinet and

the environment sensing network. The home server can interact with all of them and interacts

with the next level (Global Self Care Sphere)

3. The Global Self Care Sphere: it is a data grid service that collects data from participating homes

and makes post-processing for future diagnosis and tracking based on specific conditions

NHS NetNHS Net

BAN
Server

Environment

Home Server

Medicine
Cabinet

Web Portal

Figure 3-9 Pervasive Self Care as a Multi-Sphere Reference Model [52]

The authors utilize the power of Service Oriented Architecture (SOA) by using a messaging bus to

facilitate communication among the architecture layers. Messages are encoded in XML format.

Critical Analysis

1. The authors chose to build a RA using SOA with web services to transport messages. Although

their choice covers interoperability, they should have explained the trade-off of their design

decision to implement a heavy protocol based on web services that can impact the lifetime of

battery-based devices with respect to other simpler binary protocols.

2. The authors’ choice to use ADSL rather than GPRS is justified. However, it was possible to use

both ADSL and GPRS if they used a simpler protocol.

59 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

3. This research work describes, in the first degree, an architecture for a specific implementation

and not a generic RA per se as defined earlier in this section.

4. This RA is based on authors experience with a specific project in the first degree.

5. The authors provide specific business scenarios where their model can serve.

3.1.9 A Reference Architecture for Improving Security and Privacy in Internet
of Things Applications (2014)

Addo et al. [53] introduced a RA to improve security and privacy in IoT applications. They aimed to prompt

their work with software engineers and boost both quality features as a standard in any IoT

implementation. The authors tried to clarify their RA by staging some business scenarios where such

quality features should be considered namely a) home automation monitoring service b) Online Social

Networking c) a movie recommendation service. They identified some basic architecture components that

have to consider privacy and trust, namely:

1. End-user Preferences

2. Cloud Computing

3. UbiComp represented in the sensors and smart devices

4. Service Oriented Architecture

5. Network communication

The authors also identified some of the security, privacy and trust requirements that they considered in

their RA. These requirements could be summarized as:

1. User identification and validation

2. Tamper resistance of the physical and logical devices

3. Content Security

4. Data privacy

5. Data communication and storage security

6. Privacy in ubiquitous devices

The authors depicted their RA, shown in Figure 3-10, as three main layers (8). The first layer shows the

stakeholders collaborating in a standard IoT system. The second layer shows the ubiquitous smart

environment. The third layer shows the external environment including cloud services.

One of the important stakeholders in the RA is the governance body that audits and regulates the

platforms of the device provider, the IoT service provider, and the cloud service provider. They ensure

audits for standardization and make sure that regulations are applied and proper certifications are in

place.

The authors also explained their perception about the smart environment. The architecture and design

decisions proposed by the authors included light weight cryptography to support limited-resources

ubiquitous devices, physical security for devices, a privacy controllable user-preferences interface,

8 The capabilities layer in Figure 3-10 shows the three main quality features of the reference architecture.

60 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

standardization of communication protocols among devices and services, and security measurements for

device storage and operating systems.

The authors discussed the security and privacy measurements in a public deployment cloud model. They

explained the services provided by this model like Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), and Software-as-a-Service (SaaS) and showed that there are trust models that can be used

according to the sensitivity of the data:

1. Full Trust: where insensitive data can be transmitted and stored without encryption

2. Compliance-based-Trust: where sensitive data must be encrypted and may be anonymized

3. No Trust: where highly confidential sensitive data must be encrypted and hidden even from the

cloud service provider

The authors developed a case study for their work, and evaluated their RA by implementing this case study

and surveyed their work among some end-users.

Figure 3-10 Conceptual Reference Architecture for IoT [53]

Critical Analysis

1. The authors used SOA as a component, although it is an architecture paradigm which could be

represented in different components

61 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

2. The authors recommended a separate governance entity that audits IoT service providers to

ensure that they abide by standards. In this context they mixed their technical RA with an eco-

system RA. In the eco-system, the scope is expanded to discuss big market players along with

their roles and responsibilities

3.1.10 I-Centric (2004)

Popescu-Zeletin [54] introduced a pervasive communication reference model which is derived from

human beings communication. They assured that an individual always has his/her own space where

he/she interacts with other individuals for different subjects. Accordingly, they discussed some of the

normal challenges that they considered in their reference model where smart objects appear and

disappear normally and are based on the Individual’s space (expand or shrink).

They considered the concept of a context and specifically active context, where the interaction of the

individual with the surrounding objects activates a specific context (adapts to it) and deactivates another

one. The authors said that there was a need to have an information model that handles newly added

devices and services to the individual space. A context is tailored to the individual based on implicit or

explicit preferences for the objects. Inferred preferences are collected from the environment through

sensors.

Figure 3-11 shows the authors’ RA which has three features namely Ambient Awareness, Personalization,

and Adaptability which they called the individual communication space. The service layer is responsible

for customizing the communication layer based on individual preferences. The other layers are related to

the network and hardware.

Figure 3-11 Reference Model for I-Centric Communications [54]

62 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Critical Analysis

1. The concept of being centric of an individual and adapting to its context is widely acceptable and

provides a solid business perspective on what is essential for humans in pervasive

environments.

2. The authors depicted a top-down RA which includes software, network, and hardware in one

bundle. They included the network low-level layers which are considered standard in IP

communication and do not add value to their RA.

3. Although their RA is an individually-centered model, the authors did not discuss privacy and

security challenges and hence did not provide solutions for them.

3.1.11 A Reference Architecture for Component-Based Self-Adaptive
Software Systems (2012)

Bueno [55] introduced a component-based RA for adaptive systems which considered four main tasks:

monitoring, analysis, planning, and execution. The implemented RA considered sensors and actuators. The

author then implemented the architecture as a Java application and evaluated the application using test

cases.

The author perceived the RA as a merge between a reference model and architectural patterns as shown

in Figure 3-12. As discussed by the author, the reference model is a “decomposition of a well know type of

problem in several parts that work together to solve the problem.” The architectural pattern is “a set of

elements in component types and the relationships among them.” The RA implements (totally or

partially), functions identified in the reference model by mapping software elements to the reference

model with predefined data flows among them.

Reference Model

Architectural Pattern

Reference Architecure Software Architecture

Figure 3-12 Reference Architecture derivation relationship between reference model, architectural patterns, reference
architectures, and software architectures. (The arrows indicates that subsequent concepts contain more design elements)

[55]

The author described a video-conference case study upon which she built the RA. The author used 3

architectural patterns:

1. Pipes and Filters: the filter takes a stream of data, transforms it, then sends it through the pipe

which is responsible for transporting it to the next receiver

2. Event-based: this pattern allows a component to bind one or more of its procedures with

system events. Procedures are triggered upon the occurrence of the events to fulfill a specific

job

63 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

3. Blackboard: this pattern is a kind of data storage that has a data structure to store an element

with a piece of knowledge. This element is alerted through a control element whenever a

change occurs in the blackboard structure

The proposed RA, as shown in Figure 3-13, is classified by the author into:

1. Context Interaction Components: this category includes Context-Entities and Target System

components. The Target System adapts some changes based on the changes that happened in

Context-Entities

2. Human Interaction Components: this category includes the Administration Management

Console (AMC) which is designed to capture rules and policies provided by human beings so that

the system can be self-adaptive

3. Adaptation Mechanism Components: this category includes all other components Sensor,

Monitor, Effector, Analyzer, Planner, Executer, and Knowledge Base. These components

comprise the core of the RA. The Knowledge Base component is linked with the other

components in this category and is responsible for storing data

Analyzer
Monitor

Administration Management Consol

Planner

Excuter

Effecter

Sensor Context Entities

Target System
Invoke Event

Effect
Action

Executer
Adaptation Plan

Do Adaptation
Plan

Get SL Contrast

Report Context
InformationFeed Sensed

Context

Get Planning Policies

Get Analyzer
Policies

Find Context
Changes

Knowledge Base

Get Monitor
Policies

Get Sensed
Context

Figure 3-13 Component-based reference architecture for Self-adaptive Systems [55]

Critical Analysis

1. The evaluation methodology adopted by the author is not indicative of the quality of the RA.

Other factors related to technology, programming language, and accuracy of implementation

may impact the final results captured at run-time. The specific quality attributes tested by the

author, Quality of Service (QoS), are impacted directly by the run-time environment.

2. The author packaged the Context-Entities and Target System components as Context interaction

components. It was expected to have a stronger cohesion between them to justify this design

decision but Figure 3-13 shows that there’s no direct relation between them.

64 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

3.1.12 IoT-A (2013)

The IoT-A project [56] introduced an RA for IoT systems as well. Its authors stated clearly a list of

requirements that they used to support and validate their technical model. They gave details about each

piece of requirement to understand its scope of implementation. They did not however provide priorities

for the requirements since they considered this practice inappropriate for a RA and could be applied only

for concrete architectures.

The authors classified their requirements into functional and non-functional ones. They further classified

the requirements into views (functional, information, deployment, and operation). They classified the

non-functional requirements into (Security and Privacy, Performance and Scalability, Availability and

Resilience, Evolution and Interoperability). They listed around 50 requirements (functional and non-

functional).

They introduced different abstraction models [6]:

1. The IoT Domain Model: It describes the generic structure of the IoT world.

2. The IoT Information Model: It is a meta-model that describes the information being processed in

an IoT system.

3. The Functional Model: it describes the main functionalities of the IoT system classified into 9

basic module groups (Figure 3-14).

Figure 3-14 IoT-A Functional Model [6]

Critical Analysis

1. Their requirements insisted on the anonymity of the users in order to protect their privacy

although privacy of the users is only meaningful if they are identified. Moreover, anonymity can

create security threats from different unknown sources. However, the authors treated this

requirement by generating pseudonym IDs for the users.

65 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

2. The authors used the term “non-functional” to refer to requirements not classified as functional.

This definition implies the non-importance of the requirements and can mislead the audience

about the actual requirements.

3. The authors did not provide a trade-off study for the requirements nor the design choices that

they offered for every non-functional requirement as if they all have the same impact.

3.1.13 Analyzing the results

All the aforementioned RA’s focused on different perspectives of PervComp architectures and

architectures from related domains. Some of them tried to give generic views that could fit for any

solution like RA-Ubi , IoT-A, PCA and I-Centric, and some others just focused on one architecture layer or

component. For example, the Self-Care Infrastructures RA showed a RA suitable for a pervasive health

environment. CIPS showed a RA for highly intensive data processing systems. NGSON highlighted a RA

that network operators could adapt in order to provide PervComp solutions.

As shown in Table 3-1, all the surveyed RAs that were developed in the domain of PervComp did not fulfill

100% of the standards listed in chapter 2, except for IoT-A. These standards are the characteristics of the

RA that show a clear methodological approach in order to provide a high quality product called a

Reference Architecture. We note the following about the surveyed RA’s:-

1. All of them captured the essence of the existing architectures and were able to provide a

common dictionary. It may imply that the authors were more concerned with explaining their

concepts and making them clear for the readers.

2. Nine of the RAs (I-Centric, Self-Care Infrastructures, PSC-RM, Smart Environment Software RA,

NGSON Multiplane Framework, IoT-A, CIPS, IoT Security and Privacy, and RA-Ubi) attributed

their technical decisions to specific business challenges, and five RAs (I-Centric, PCA_A, NGSON

Multiplane Framework, Component-based Self-Adaptive, and RA-Ubi) did not explain the impact

of the business context on their decisions.

3. Nine of them (I-Centric, PCA_A, PSC-RM, NGSON Multiplane Framework, Component-based Self-

Adaptive, IoT-A, CIPS, IoT Security and Privacy, RA-Ubi) captured architectural patterns, eight

RAs (PCA_A, Self-Care Infrastructures, PSC-RM, NGSON Multiplane Framework, Component-

based Self-Adaptive, IoT-A, CIPS, and RA-Ubi) have architecture base lines that an architect can

rely on to initiate the architecture and seven RAs (I-Centric, PCA_A, PSC-RM, NGSON Multiplane

Framework, IoT-A, IoT Security and Privacy, and RA-Ubi) have a vision for their architectures

4. Seven of the RAs (I-Centric, PCA_A, Self-Care Infrastructures, PSC-RM, NGSON Multiplane

Framework, IoT Security and Privacy, and RA-Ubi) did not provide guidance on how to

instantiate an architecture.

5. Based on our weighted scoring scheme, the IoT-A and CIPS RAs received the highest scores and

I-Centric RA received the lowest score.

6. The recent RA publications starting from 2009 scored 70% and above, which means they

followed a robust methodology to bring quality into their work. However, there are still some

points that those RAs did not sufficiently cover.

66 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Table 3-1 Reference Architecture Related Work Evaluation Summary

ID

 Feature

 Reference Architecture

P
u

b
lic

at
io

n
 D

at
e

C
ap

tu
re

s
Es

se
n

ce
 o

f

Ex
is

ti
n

g
A

rc
h

it
ec

tu
re

s

H
as

 A
rc

h
it

ec
tu

ra
l

b
as

el
in

e

P
ro

vi
d

es
 G

u
id

an
ce

B
u

si
n

e
ss

 N
e

ed
s

co
n

si
d

er
ed

B
u

si
n

e
ss

 C
o

n
te

xt

co
n

si
d

er
ed

P
ro

vi
d

es
 C

o
m

m
o

n

D
ic

ti
o

n
ar

y

C
ap

tu
re

s
an

d
 S

h
ar

es

A
rc

h
it

ec
tu

ra
l P

at
te

rn
s

H
as

 A
rc

h
it

ec
tu

ra
l V

is
io

n

P
ro

to
ty

p
in

g

M
at

u
ri

ty
 S

co
re

Reference Score 20 15 15 10 10 10 10 5 5 100

9 I-Centric 2004 Y N N Y N Y Y Y N 55

2 PCA_A 2006 Y Y N N N Y Y Y N 60

7 Self-Care Infrastructures 2006 Y Y N Y Y Y N N Y 70

3 PSC-RM 2009 Y Y N Y Y Y Y Y N 80

4 Smart Environment Software RA 2009 Y N Y Y Y Y N N Y 70

6 NGSON Multiplane Framework 2012 Y Y N Y N Y Y Y Y 75

10 Component-based Self-Adaptive 2012 Y Y Y N N Y Y N Y 75

11 IoT-A 2013 Y Y Y Y Y Y Y Y Y 100

5 CIPS 2014 Y Y Y Y Y Y Y N Y 95

8 IoT Security and Privacy 2014 Y N N Y Y Y Y Y Y 70

1 RA-Ubi 2104 Y Y N Y N Y Y Y N 70

RA Standard Score 11 8 4 9 6 11 9 7 7

Aside from the methodology, there are quality features that were tracked in the surveyed RAs and flagged

as to whether the authors provided solutions for them or not. The results are summarized in Table 3-2. It

is important to note that some RAs had a specific focus like the RA in (Security and Privacy in IoT) which

focused mainly on security and privacy. Other RAs focused on Environment Intelligence, and some others

focused on the pervasive services infrastructure. The traced features show the following:-

1. The IoT-A, PSC-RM and RA-Ubi cared about most of the quality features essential for PervComp

systems but the IoT Security and Privacy RA was the least to consider these features.

2. The quality feature that the RAs cared about most is context-Sensitivity followed by Service

Security, adaptable behavior, and fault tolerance.

3. Function Composition and Openness were the least considered quality features.

67 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Table 3-2 Reference Architecture Related Work Quality Features Evaluation Summary

Ref. Architecture
 Feature

Se
rv

ic
e

O
m

n
ip

re
se

n
ce

In
vi

si
b

ili
ty

C
o

n
te

xt

Se
n

si
ti

vi
ty

A
d

ap
ta

b
le

B
e

h
av

io
r

Ex
p

e
ri

e
n

ce

C
ap

tu
re

Se
rv

ic
e

 D
is

co
ve

ry

Fu
n

ct
io

n

C
o

m
p

o
si

ti
o

n

Sp
o

n
ta

n
e

o
u

s

In
te

ro
p

e
ra

b
ili

ty

H
e

te
ro

ge
n

e
it

y
o

f

D
e

vi
ce

s

Fa
u

lt
 T

o
le

ra
n

ce

Se
cu

ri
ty

O
p

e
n

n
e

ss

C
o

n
cu

rr
e

n
cy

Q

u
al

it
y

o
f

Se
rv

ic
e

Sc
al

ab
ili

ty

P
ri

va
cy

 a
n

d
 T

ru
st

R
A

 S
co

re

I-Centric T T T T T T T T T T F F T F T F 12

PCA_A T T T T F T F T T T T T F F T T 12

Self-Care Infrastructures T F T F T T F T T F T F F F F T 8

PSC-RM T T T T T T T T T F T T T T T T 15

Smart Environment
Software Reference

Architecture
F F T T T F F F F T T F F T F F 6

NGSON Multiplane
Framework

T T T T F T T T T F T F T T T T 13

CIPS T F F F F F F F F T F T T T T F 6

IoT Security and Privacy F F T F F F F F F T T F F F F T 4

RA-Ubi T T T T T T T T T T T T T T T F 15

Component-based self-
adaptive

F F T T F F F F F T F F T T F F 5

IoT-A F F T T F T T T T T T T T T T T 14

Feature Score 7 5 10 8 5 7 5 7 7 8 8 5 7 7 7 6

The number of RAs focusing on PervComp is still limited and very few of them follow the best practices

guidelines, as mentioned in [23] and [24], to build a robust RA and to cover most of the business

challenges (9). Most of these RAs are not mature enough to provide enough guidance for software

engineers and did not consider the impact of providing specific quality features on other features.

3.2 The Evaluation Approaches

This section surveys some of the existing evaluation approaches for software architectures in general and

pervasive systems in particular. We present some of the approaches to evaluate RAs, concrete

architectures, as well as software systems. The following paragraphs will give a briefing on the existing

approaches for evaluating pervasive systems.

Angelov et al. [22] reported on an evaluation methodology for a referece architecture that they developed

for a B2B e-contracting solution which aims to improve the contracting process between companies. The

Researchers adopted the ATAM [17] method with some variations. The authors concluded that in order

to maximize the benefit from the ATAM process, then they first need to adapt the step of identifying the

stakeholders properly based on the maturity level of the RA, whether it is a practical or a visionary RA.

9 We are aware that there could be other RAs that may not have been covered in this survey. However, we spent a lot of time
searching for relevant RAs and we hardly found any other than those listed in this chapter.

68 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Second, they recommended to select a number of scenarios from different contexts, merge them, then

prioritize them in a general format.

The authors recommended the extension of the ATAM by evaluating three architectural quality attributes

as follows:

1. Completeness: they recommended to compare the RA with an existing “best practice” arhtiecture

model. In case this RA is a visionary model, then it is recommended to compare it with a close

reference model different from the one selected to build the RA on hand.

2. Applicability: they recommended to instantiate a number of concerete architectures for specific

contexts then evaluate their applicability in these contexts.

3. Buildability: specific contexts where an instantiated architecture could be applied and considers

research results from other researchers.

Nakagawa et al. [33] proposed an evaluation technique for RAs within a process that they recommended

to design and represent an RA. They checked the RA with a list of questionaires that contained 93

questions whose answers varied from “fully satisfactory” to “totally unsatisfactory”. The questions

targetted the quality of their work in terms of completeness and correctness of documents, viewpoints,

and design decisions. They assumed that feedback generated from this evaluation would have been useful

for the RA design.

Bueno [55] presented a RA for component-based self-adaptive software systems. They adopted a more

concerete approach to evaluate their RA by instantiating a concerete architecture and implementing a

software based on it. They ran some test cases with an assumption that the quality of the application at

run-time was an indication of the quality of the architecture which was instantiated from the RA.

Graff et al. [57] proposed a variant from the SAAM [17] to evaluate a RA for embedded software. Their

approach is based on real-life projects in one of the leading copier manufacturers. One of the main

challenges for their research work was that they needed to evaluate their RA based on concrete scenarios

that can hardly attribute their design decisions to their RA which they called RACE. They decided to

resolve this issue by asking a simple question while executing each scenario “What is the impact on the

reference architecture?”

69 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Table 3-3 Metrics for Evaluating Pervasive Middleware [58]

From another perspective, the evaluation of system architectures is seen as a straightforward task that can

be achieved using quantitative figures. Madhusudanan and Prasanna [58] used metrics for pervasive

systems that cover key-design aspects in pervasive systems and middleware in specific. For example, the

authors evaluate context-awareness for pervasive systems with respect to the number of locations,

environment, user activities, time, and physical objects. They evaluate scenarios with respect to location

according to the number of used locations in the selected scenario against the total number of locations in

the environment. They do the same evaluation for other attributes like no. of devices, and activities

(Table 3-3) then build an evaluation graph.

Malik et al. [59] proposed an evaluation framework that differentiates between quantifiable and non-

quantifiable characteristics of pervasive systems. Their approach considers different factors from system,

users, context, and environment. Table 3-4 shows a list of quantitative and qualitative evaluation

parameters from the system and user. Maintainability, security and privacy, infrastructure, and

integration Design factors are considered crucial. However, according to their evaluation, a pervasive

system will not be successful if it does not meet user needs and considers user-related factors such as

demographics, health, and comfort.

70 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Table 3-4 Summary of quantitative and qualitative parameters of system and user [59]

Another approach to evaluate pervasive system design is to compare the system design against user

expectations according to the goal of the system. Mei and Easterbrook [60] introduced a user-centric

approach evaluation framework which assesses a system design from a user point of view. Their

evaluation is linked with the system goals, which represent the rationale behind the system requirements.

Model
Comparison

User Goal Model
System Goal

Model

User
Expectations

System
Design

Interview
Transcripts

Scenarios Use Cases Expertise
Software
artifacts

Figure 3-15 Evaluating User-Centric Adaptation with Goal Models – adopted from [60]

Their research work is focused mainly on evaluating user-centric adaptation with Goal models.

Accordingly, they adopted techniques that are simple for the users to understand. The interviewed users

were asked to give expectations as scenarios in the system or use cases as shown in Figure 3-15. The

authors evaluated this model using two metrics: Coverage and Demand. Coverage measures the rate of

goals in the user goal model that are achieved by an existing system, and Demand measures the rate of

goals in the system goal model that are demanded by the users [60].

Other researchers tried to introduce more robust and quantitative evaluation models. Liu et al. [61]

present a mathematical evaluation model for the reliability quality attribute in the service-oriented

architecture. They define reliability as a factor of availability and accessibility. Availability is the attribute

of whether a requested service is present or ready to use. Accessibility is the probability measure for

71 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

success rates for service instantiation in time. The authors provide an evaluation framework as shown in

Figure 3-16 that helps in capturing requests, gets their response details, and puts them in a repository for

analysis.

Service-oriented architecture

Web Service Web Service Web Service

Provider
Agent

Data
Collector

Repository

Analysis

Adaptor

Service Provider

Figure 3-16 SOA Reliability Evaluation Framework – adopted from [61]

Challa et al. [62] introduced a fuzzy multi-criteria approach as a modification to the ISO/IEC 9126 quality

evaluation model. The ISO/IEC 9126 evaluation model is based on six characteristics namely: functionality,

efficiency, portability, maintainability, usability and reliability. There are sub-characteristics as well that

are used to evaluate the main characteristic. For example, efficiency is evaluated using time behavior,

resource behavior and efficiency compliance while maintainability is evaluated using analyzability,

changeability, testability, stability, and maintainability compliance.

They divided the model into three perspectives the developer’s perspective, the user’s perspective, and the

project manager’s perspective. They further developed the model by providing four new sub-

characteristics namely customizability under functionality, scalability under efficiency, track-ability under

maintainability, and reusability under usability. The authors’ new sub-characteristics are allocated under

every perspective and then evaluated using fuzzy logic.

The process is simply described (Figure 3-17) as the allocation of a fuzzy rating for every metric and a fuzzy

weight for every sub-characteristic. The authors then used the weights to evaluate the fuzzy ratings of the

sub-characteristics. They proceeded to use the weighted average for the sub-characteristics to evaluate

the characteristics. They used the characteristics weighted averages to evaluate the fuzzy ratings of the

perspectives. At the end, the weighted averages for perspectives obtained in Level 1 are used to evaluate

the overall software quality in Level 0.

72 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

Figure 3-17 The Evaluation Hierarchy Process of the Software Quality using Fuzzy Logic - adopted from [62]

Hamza [34] presented a product-line architecture which was built over an RA for pervasive systems. The

RA developed in that scope derived its features from a basic set of requirements that a pervasive system

has to fulfill. Hamza generated an architecture baseline then he used quantitative methods to evaluate

the architecture. Hamza studied the architecture in terms of complexity, modifiability, coupling, cohesion,

modularity, and reusability. He generated metrics and applied measurements on the generated

architecture and also invited experts from different backgrounds to generate the same architectures that

the tool generated. He applied the same metrics and measurement evaluation methodology then

compared results to benchmark the quality of his architecture.

IoT-A [6] also reported some prototype examples to evaluate their reference model for the IoT

architecture through normal prototype applications. Bogado et al. [35] introduced an evaluation

framework for software architecture runtime quality attributes. The authors worked on building a discrete-

event simulation model that evaluates quality attributes for a software architecture. They built a

specification model using Discrete Event System Specification (DEVS) to formalize their model which was

then fed into a simulator. The authors claimed that this method was useful to help in evaluating an

architecture in the early stages of the software development lifecycle.

They described a conceptual model for evaluation. This model captures the generic behavior of the

architecture elements. It has a high level element called ArchitecuralElement which is specialized into a

ConnectionMechanism and Component. The Component is further specialized into SimpleComponent and

73 - CHAPTER 3 ● RELATED WORK – STATE OF THE ART

PervCompRA-SE

CompositeComponent. The component is the one that carries responsibilities and has a representation at

runtime. The CompositeComponent is composed of SimpleCompnent and CompositeComponent elements

and its behavior is determined by the simple components. Quality attribute values (QualityAttributeValue)

are identified for responsibilities and measurements (Measure) are taken for them.

As shown in the above discussion, there are different approaches for “evaluation” in general that cover

reference and concrete architectures. Every method covers a specific dimension that the researcher is

interested in. We can summarize these approaches as:

1. Subjective methods: these methods depend mainly on the human factor and transform its

subjective evaluation to numbers in order to collect feedback about the RA deficiencies in order to

enhance the quality of the proposed RA.

2. Traceability and experimental methods: these methods try to link the system requirements with

the design decisions taken in the RA. These methods may instantiate concrete architectures,

generate use cases, develop prototypes, or even develop complete applications to measure the

system architecture coverage against the system requirements.

3. Quantitative methods: these methods give clear figures about specific quality attributes of the

architecture like cohesion, reusability, and maintainability. Other quantitative measures such as

context awareness measures could be studied as well during runtime or through a simulation.

Almost every project chose a single evaluation approach to work with. We can rarely find a research

project that combined different methods to evaluate a concrete architecture or an RA; although the

combined view can provide useful insights for the quality of the RA which contains model with modules

that could be evaluated quantifiably and documentations that could be evaluated subjectively.

74 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

C h a p t e r 4

4. The Business Reference Architecture

The business architecture embodies all the standard components collected from our study about different

business domain contexts, from the multiple cross- cutting quality features, and from an analytical study

on how to tune features based on context. By business architecture we mean the business concepts,

definitions, requirements and processes that form the understanding of a specific domain.

In this chapter, we show how we elicit the requirements that derive the quality features. We started the

elicitation process by the main categories, which are the business domains or the quality features, then

studied the requirements from which they were drawn. They were elicited from the literature and derived

from our knowledge. They were reviewed in a focus group to refine them. This chapter also shows a

trade-off analysis with respect to the quality features and the business domains and a conflict resolution

approach for the identified conflicts among the requirements. It provides a dictionary of terminologies

(ontology) with recommended metering scales to measure the quality features at runtime.

4.1 Business Domains

The business domains are selected based on previous research work conducted by Hamza and Aly [63] to

extract basic domain features. Moreover, these domains can employ different ubiquitous technologies

like user identification, sensors, localization, and notification. Although it was impossible to study all

business domains, yet it was quite likely that different business domains can inspire functionalities from

each other. : shows a list domain use cases and state machines for the selected business domains.

4.1.1 Emergency

Emergency domains include these situations where there is a sudden crisis, disaster, fire, accident, or

something similar that requires a very fast response from rescue teams in order to minimize loss in human

lives, living creatures, and then in physical assets. The business workflow of this business model as shown

in Figure 4-1 and Table 4-1 requires a communication from someone, could be the person that will be

rescued, or a witness nearby with a central user team through an announced communication method.

The central user takes the request and searches for the nearest rescue team from the incident location

and mobilizes it with proper instructions according to the situation’s context [64].

Table 4-1 Emergency Mobilization Process

Suppliers Inputs Process Outputs Customers

- Volunteer
- People in

emergency

A notification of
emergency incident

Call emergency number Call acknowledgment Central User

Central User A call Mobilize nearest rescue
team

Rescue instructions Rescue Team

75 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Rescue
team 1

Incident

Central User

Emergency call

Rescue
team 2

Mobilize

Rescue
team 3

* Rescue Team empowered with multi-purpose communication devices
* There are sensors in the incident location
* Central User mobilizes the nearest suitable rescue team

20
KM

40
KM

Figure 4-1 Standard Emergency Workflow Process

The following business scenario (Example 4-1) describes an ideal emergency situation which includes some

hypothetical details:

Example 4-1
Emergency Scenario

Mr. Ahmed, who lives in 6
th

 of October, wake up at 7:00 am to catch up an important meeting

at 9:00 am in New Cairo. Ahmed checked his calendar on his smart phone to ensure that the

meeting is not cancelled, and he sent an email to the meeting organizer reconfirming his

attendance. Ahmed took his smart car, entered his destination on the car navigation system

in order to check traffic. Ahmed drove safely for about 30 minutes, then he started to feel

dizzy. Ahmed lost control on his car and the car drifted from the road hitting a tree on the

Maadi ring road. The accident was somehow severe and caused some injuries to Ahmed. As

he was falling in a complete comma, his smart car sent an emergency alarm with location

details. Ahmed set an accidental status on his phone, and accordingly his phone made a call

to the emergency center.

The responsible staff in the emergency center received the alarm from Ahmed’s car as well as

the call from Ahmed’s phone. The staff member raised an accident red alarm on the Maadi

ring road, which automatically notified the nearest ambulance to move to the accident

location, notified the police traffic patrol who were near the accident to attend to the

accident location and facilitate the traffic.

The traffic patrol arrived in 5 minutes, then the ambulance after 10 minutes. The patrol

officer took the team leader’s role by default and checked the accident location, followed up

on the ambulance staff activities, and assigned other police members to organize the traffic.

Other emergency situations require taking an immediate action in the incident field. For

example, it may be necessary to evacuate a building or transport injured people. These

sensitive situations may need some sort of readings about the location, level of hazards,

number of injuries, weather, etc.

76 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

The main actors and components, automated or not, that could be found based on research results from

[63], [64], [65] and [66] are:

1. Person at risk: a person who is in danger or imminent risk. This person may have access to some

smart devices that allow him/her to request immediate help

2. Rescue Team: a specialized staff of people who are trained to rescue people that are in

dangerous situations. The staff are supported by advanced tools that may have different sensors

for temperature, location, blood pressure, motions, pressure, etc

3. Rescue Team Leader: a person who has the responsibility of field duties and directs his rescue

team to their tasks. The team leader can interact with his/her team through advanced

communication devices

4. Central User: The user who receives emergency calls and is responsible for mobilizing the best

suitable rescue team near the incident location. This user can monitor the location of the rescue

teams through tracking devices

5. Emergency situation: is an incident characterized by high risk on human lives, living creatures,

and assets

6. Volunteer: is a person who gives help to the persons in the emergency situation. This person

may have an advanced smart device that allows him to request immediate assistance

7. Location-based services: Is used to calculate the distance between the sensors and the neighbors

as well as the distance between the nearest emergency team and the situation place. It is used

also to give proper directions for the best route to take based on the user’s location, incident

location, and status of the routes

8. Workflow Manager: Is responsible for assigning tasks to the emergency team according to the

different predefined models:

9. Workflow Execution Engine: Is used to assign tasks to the emergency team.

10. Workflow Reviewer: Is used to review the tasks given and report on whether they are done

correctly or not.

11. Situation Context Information Management Service: Is responsible for saving the context data

related to a situation in a database for providing support for the emergency teams and for post-

situation analysis.

12. Task Monitor: is responsible for providing monitoring facilities for the rescue team, team leader,

and central user. The task monitor helps users in visualizing the tasks and takes decisions

accordingly

13. Communication Manager: is responsible for delivering requests and messages for the interacting

users using the best available channel

77 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

14. Logger: is responsible for logging events and activities using identity, time and location of the

user. This user can be the rescuer, a volunteer, a rescue team member, or a central user

Figure 4-2 Emergency Business Domain Requirements Diagram

The main requirements for a pervasive emergency solution are shown in Table 4-2 and represented in

Figure 4-2.

Table 4-2 Emergency Business Domain Requirements

Alias Name Note

BR0001 Avail Information in
whatever means

people want to know information about an emergency situation in order to
stay connected with people or take decisions. So, delivering information is an
essential task during such situations [67].

BR0002 Collect/disseminate
information about
emergency events quickly

in emergency situations, network connectivity may tend to collapse very
quickly. So, it is very important to collect and disseminate information to
others very quickly with minimal human intervention

BR0003 Ensure reachability of the
rescue call

the system must ensure that the rescue call reaches the central user. By call,
we mean any kind of help request whether it is through a normal voice call,
sms, chat, etc ... [68].

BR0004 Locate impacted locations
easily and quickly

during disaster events, it may be a challenge for people to know which areas
are impacted by a disaster [67], severity of that impact, and ways to reach
them or establish an evacuation plan to rescue people.

BR0005 Provide timely and localized
information

people may come from different geographic areas. It means that they may
need to get acquainted to the emergency/evacuation systems at each place.
As many people may not bother in getting such information, the system
should provide enough timely alerts and information about the local situation
and guide people to the proper evacuation routes [69].

BR0088 Protect volunteer's privacy Many people may receive messages to support requesters in emergency
situations. People who volunteer may need to ensure that they are not
tracked for any reason and that their privacy is protected [70].

The basic use cases of the emergency domain driven from the above discussion are in section: B.3 Use

Cases. They refine all the requirements in a balanced way. : Section B.4 State Machines shows possible

state machines in the emergency business domain as well.

78 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.1.2 Learning

The learning process is one of the fundamental activities in human lives. People learn all the time in one

way or another. However, we will focus on the classical learning process model that requires institutional

learning. This model is defined as a learning paradigm which takes place in a UbiComp environment that

enables learning the right thing at the right place and time in the right way” [71]. This model, Figure 4-3,

contains basic blocks inspired from [63], [72] and [71] and stated as follows:

1. Teacher: a person knowledgeable in a specific domain who is responsible for transferring this

knowledge to recipients (students). The teacher in this context may be empowered with smart

tools that helps him/her communicate with students and efficiently deliver the knowledge to the

students

2. Student: is a passive or active recipient of knowledge. He/she may have the option of interacting

with the teacher through audio or visual methods. The student may have the flexibility of taking

the knowledge at different locations in different times

3. Class: It is an area equipped with proper facilities and tools and suitable for teaching students.

The teachers and students use the class for interaction

4. Institution: the educational institution is responsible for facilitating the learning process and is

responsible for building and maintaining the smart classes. It is a bigger smart space

5. Knowledge: knowledge takes different digital formats (audio, video, pictures, etc …). It is

transferred from a teacher to the students using smart tools

6. Educational Tools: these are smart tools like smart boards, wireless data show devices, smart

devices, laptops, and wearable devices

Professor
Students

Knowledge

has

teaches

Smart
Educational

Tools

uses

uses

Classroom

attends

attends

Educational
Institution

prepares
provides

Provides material

Student at

’

Figure 4-3 Standard Learning Model

79 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

A narrative use-case in this process is shown in Example 4-2.

Example 4-2
Learning scenario

A student starts his/her first year in a university applies through his smart phone on the

university android application. The university uses the student national ID, which he/she

used to register in the university, to get information about the student’s learning profile. The

university’s smart application proposes specific educational programs to the student based

on his/her school study preferences and grades. The student may apply for a specific

program and adds a note that he/she has recently got a physical problem in his eyes and ears

which causes a big trouble for him acquiring knowledge in a class.

The university notifies the student through SMS with acceptance and sends him/her a

digitally signed approved letter on his/her email. The university arranges first year advice

with a professor through a video conference. The student applies for the selected courses

and downloads the digital course material to use offline. She/he downloads the course

schedule on his/her smart phone. The student would later connect to the course session

based on the course schedule from his/her tablet to attend the lecture and listen through the

headphones. The professor is able to know who is online and interact freely with him/her.

The professor adds a quarterly exam to the university portal. The portal notifies the student

via SMS, email and Facebook and the time of the exam is automatically added to the

student’s reminders. The exam is in auto-correct format where by the student can answer

the questions and the system can correct them automatically.

The student visited a physician who allowed the student to stay at home for 2 days. The

university got notified through the integrated systems with the status of the student and

managed to reschedule the exam for a later time.

Figure 4-4 Learning Business Domain Requirements Diagram

80 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

The requirements shown in Table 4-3 and clarified in Figure 4-4 are assumed to be adopted by a pervasive

learning system:

Table 4-3 Learning Business Domain Requirements

Alias Name Note

BR0006 Allow self-regulation
for the learning process

the student should be able to organize his/her learning process using different
tools such as calendar or task list [73].

BR0007 Auto-Save material the system must auto save material made by teachers and students without
waiting for their final decision in order not to waste their efforts [74].

BR0008 Empower emotional
and social bond

the system must empower the emotional and social bond between the teacher
and the student. The technology should add an additional level of collaboration
which builds trust among student and teacher [75].

BR0009 Enrich learning process
with multimedia

the multimedia material should be enriched with video, audio, and images to
deliver the required educational message in a simple and intuitive way [74].

BR0010 Ensure Information
Accessibility

The information is always available whenever the learners need to use it or not
[71].

BR0011 Ensure Information
Immediacy

The information can be retrieved immediately by the learners [71].

BR0012 Ensure Information
Permanency

The information remains unless the learners purposely removes it [71].

BR0013 Facilitate interaction
between teacher and
student

the system must coordinate the interaction between the teacher and the students
to regulate the learning activities within different contexts [71] [76] [73].

BR0014 Highlight new topics stimulate learner’s mind by highlighting new topics through visual and audio signs
before starting the new learning experience in order to awake his/her senses to
absorb the maximum amount of knowledge [28].

BR0015 Provide auto-correction
for exams

the teacher should be able to correct answered exams in a simple manner [74].

BR0016 Provide community
with online learning

the system should allow learners to share their knowledge and experience via
different forums like social media, blogs, messengers or chat rooms [73].

BR0017 Provide instant
feedback when
recording multimedia

the system must warn the teacher or the student about expected quality
degradations that may occur. For example, if the teacher is recording inside the
class with a high noise, then the system should provide the proper warning. If the
student is filming with a poor camera, then the system should give a warning as
well [74].

BR0018 Provide intuitive help
facilities

the system should provide intuitive help facilities to educate students and
teachers on how to use the system, especially for the first time [74].

BR0019 Provide urgent learning
mechanisms

the system must provide the user with fast and quick support for urgent learning
matters such as keyword searching or problem diagnosis [73].

BR0020 Reward high scores the system must reward learners who get high scores in the exams. The reward
could be in clear congratulation messages or even attainable rewards.

BR0089 Detect Classroom mode the system should be able to detect the classroom structure and attendees and
organization and take proper measurements to sustain the proper education
process without interruption [74] [73].

BR0090 Provide Personalized
learning

the system should adapt itself to each learner's personalized needs in order to
facilitate the learning process [73].

The most effective use cases are Learn and Teach use cases. They refine most of the requirements. More

details about all the use cases can be found in section: B.3 Use Cases. Section: B.4 State Machines shows

possible state machines in the learning business domain as well.

81 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.1.3 Retail

Retail, according to the English dictionary, means “the sales of goods to ultimate consumers, usually in

small quantity”. There are other types of sales activities:

1. Wholesale: which is the sale of goods in quantity for resale

2. Telesales: sale of goods to consumers via a salesman through the phone

3. E-Shop: where the consumers browse a catalogue of products online, then purchase the selected

products

The retail process is selected for this research because it embodies a lot of processes and activities which

can be handled through a pervasive system. A standard shopping cycle, as shown in Figure 4-5, goes as

follows:

1. A consumer visits a retailer to buy a product.

2. The consumer may browse the available products to evaluate them.

3. Then picks his final list of products.

4. The consumer goes to the cashier to pay for the selected products.

Figure 4-5 A simple Shopping Process

There are some other activities that could be described as pre or post sales cycle activities. For example, a

consumer may have watched an advertisement, which is normal with a large portion of people [77], for

the product then researched the product to grasp more knowledge. After that the consumer decided to

visit the retailer to purchase the product. Most retailers provide their customers with after-sales support.

For example:

1. The retailer may provide delivery services to the customer after the purchase is completed.

2. The customer should be able to return the purchased products in its normal status within X

days from the purchase day.

3. The retailer may provide consultancy services as well for the product to help its customers

through call center agents or product experts in its retail shops.

A pervasive solution for retailing aims to enhance the customer experience and make him/her focus on the

shopping activities as much as possible. The following business scenario (Example 4-3) describes a

shopping journey for a customer in a retail shop empowered with pervasive and ubiquitous solutions:

82 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Example 4-3
Retail scenario

A customer sees an ad for a product in a poster which looks very interesting. The customer puts

his/her RFID-enabled smart phone on the poster, which has an RFID stamp with the product

identifier to get the product ID and search on the internet for the shops that sell it. The phone

locates the nearest shops that have stock from this product and shows them on a map. The

customer selects one shop and the mobile phone guides the customer to it through location-

based services.

The customer enters the store and the shopping application on his/her phone guides him/her to

the lane and shelf for the product based on his/her interest in the product. During his/her move

inside the retail shop, the digital screens, equipped with RFID readers, identify the customer and

show relevant products based on his/her recent selection
(10)

. The customer decides to purchase

one of these interesting products. He scans the barcode from the product shelf through his

smart phone, and requests home delivery. The shopping application uses the visa card

information stored on the phone to collect the payment and sends the order to the warehouse in

order to package the product and deliver it the soonest.

The customer finishes his/her shopping trip and goes to pay for the original product that he/she

chose. The cashier asks the customer to put his phone, which has NFC capability and contains a

copy of the visa in a digital format on a visa reader. The payment is made in 2 seconds, an SMS

gets sent to the customer and a receipt printed and handed to him

The above scenario is one of many scenarios that could be implemented to enhance the customer

experience, facilitate shopping procedures, and increase retail revenue. Other retail logistics regarding the

product supply, the payment process, and the product shelf-refill could be enlisted with tremendous

experience. Advanced analytical models can be obtained as well to help retailers understand customer-

product interactions using RFID technology [78].

Retail Store

Shopper

Shopping Cart
Product

visits

Adds products

selects

provides

Internet

surveys

contains

E-
payment

Figure 4-6 Standard Retail Actors Interactions

10 There are existing products like NEC leafengine that extends the digital signage capabilities beyond normal iterations of

content towards customization content in real time based on multiple inputs from different sensors like gender, age,
proximity, NFC, QR-codes, touches.

83 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

The main actors, whether automated or not, according to the previous narration and based on [63] , [79],

[78] and [80], as shown in Figure 4-6 are:

1. Retailer: provides locations that contain products. The locations are usually equipped with

different sensors and readers. The retailer provides facilities to increase the probabilities of

purchasing transactions and tries to improve the shopping experience by providing different

pervasive technologies like smart screens, RFID tags, and e-payment.

2. Shopper: visits the retailer in order to purchase one or more products. The shopper in our scope

will always visit the retail physically and may have smart devices to enhance his/her shopping

experience

3. Shopping Cart: is used by the shopper to record one or more product items that may be

purchased during the shopper’s visit. The shopping cart may be a piece of paper or a software in

an electronic device like a smart phone

4. Product/Service: is the main item that a shopper may purchase. This product/service may be

tagged for use by the retailer and the shopper

5. E-Payment Collector: an electronic method to collect payment in a fast and secure way without

the need for physical cash. The payment could be through mobile, credit card, e-cash, or any

other electronic method

Figure 4-7 Retail Business Domain Requirements Diagram

84 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

The requirements shown in Table 4-4 and clarified in Figure 4-7 are essential for a system to provide

pervasive solutions for the retail process:

Table 4-4 Retail Business Domain Requirements

Alias Name Note

BR0021 Create a store view
automatically

the solution must present the products and their location within the retail shop
automatically to the customers as soon as they are updated in the inventory [81].

BR0022 Enable Multiple
delivery methods

the system should help the customer to choose the most suitable delivery method
from different ones.

BR0023 Enable Multiple
payment methods

the system should provide multiple smart payment methods that facilitate the
purchasing cycle for both the shopper and the retailer.

BR0024 Enable Multiple-
channel browsing

the customer should be able to browse the products/services from more than one
channel. For example, the customer should access the product catalogue from a PC,
notebook, tablet, or mobile phone.

BR0025 Facilitate support and
consultancy

the system should facilitate the support and consultancy requests from the
customer. For example, a customer may be able to approach the support service
through a voice call, chat, website, or a mobile application.

BR0026 Guarantee An up-to-
date inventory

the solution must guarantee an up-to-date inventory in order to ensure the best
customer experience [81].

BR0027 Ignore irrelevant
product information
intelligently

the system must not show irrelevant information about the product for the
customer in order not to confuse the customer’s decision. The system should be
able to identify customer's needs in order to direct him/her to the best
product/service [80].

BR0028 Provide complete
information about the
product

the system should provide the user with up-to-date information about the product
in addition to comparative information with similar products [82].

BR0029 Provide product
information in real-
time

information about the product may be collected beforehand to save the shopper’s
time [82]. It may be spontaneously delivered to the user if the shopper shows
interest during the shopping time.

BR0086 Increase transparency
with customers

As customer feels that the sales representative is transparent with him, this makes
the customer trust the retail service. For example, the customer should be able to
compare among different products freely and should be able to know the one that
fits his/her needs most [80]. Another example, the system should reveal non-
confidential information about the retail status and if there is a problem that may
make the customer wait longer.

BR0087 Do not impose on
customer to reveal
his/her personal
knowledge

the system must not mandate the customer to enter his/her private information on
any system. For example, if the customer is not willing to share his/her mobile
number, then the system must complete the transaction normally

More detailed analysis for the retail domain could be found in : section B.3 Use Cases which discuss the

basic use cases of the domain and their linkage to the addressed requirements are in this section. Section :

B.4 State Machines shows possible state machines in the retail business domain as well.

4.2 Quality Features

The following sections provide a deep analysis for the business quality features as mentioned in chapter 2

Table 2-1.

85 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.2.1 Basic Requirements

The following sections discuss every one of these business quality features in more details as well as its

essential initiating requirements. : : B.3 Use Cases gives extra analysis for the basic use cases in a smart

environment and shows their possible linkage to every quality feature. : : B.4 State Machines shows

possible state machines in the smart environment as well.

From the perspective of the activity theory, it means that

1. The pervasive system will optimize the usage of tools and signs as will be detailed in the Quality of

Service section.

2. The rules will be changed to optimize the process as will be shown in the Adaptive behavior and

Context sensitivity sections

3. Responsibilities could be redistributed in the division of labor. The coming sections will show that

there are different categories of users with different activities.

4. New members could be introduced to the community to fill in a gap in the process, or removed

from the community to eliminate a waste. Heterogeneity of Devices and Service Omnipresence

describes some rules that govern the mobility of the users.

4 . 2 .1 . 1 ADAPTABLE BEHAVIOR (AB)

The pervasive system must react dynamically to the changes of the context. In other words, it should

adapt itself in a logical way based on specific decision rules. For example, if the pervasive system discussed

in the Context-Awareness feature detected that there is an accident for a specific bus, then it will take a

decision that it needs to mobilize a rescue team. The pervasive system in the bus may in this case use its

actuators, which are physical or virtual tools that can respond/change the context, to send an SMS to an

emergency rescue team, switch on alarming lights, and activate a protection shield for the fuel tank. An

adaptable pervasive system may cause further changes to the context and it may need subsequently to

adapt as well to these changes causing further implications.

The adaptive pervasive system tries to behave in response to changes to mainly facilitate people’s

interaction with the environment with minimal explicit interference from them. It can adapt itself to other

creatures or even computer systems. Accordingly, a generalized concept of the adaptive behavior may be

applied on autonomic systems as well where the system adapts itself to system changes in a way that

guarantees self-management to its functions and hide intrinsic complexity from users [83].

86 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 4-8 Adaptable Behavior Requirements Diagram

In summary, a system with an adaptable behavior should fulfill the requirements shown in Table 4-5 and

depicted in Figure 4-8.

Table 4-5 Adaptable behavior Feature Requirements

Alias Name Note

BR0030 Evaluate/Improve
Adaptive actions

the system must review the adaptive actions continuously and make the
proper improvements to ensure they satisfy the majority of the users

BR0031 Has smart decision rules such decisions are dependent on the interpretations as sensed from the
environment. The decision rules must be taken smartly in favor of a high
priority goal maintained by the system

BR0032 Notify users with changes the user must be aware of the changes that the system made through its
adaptive actions. This will allow the users to take counter measurements in
case the system took a wrong decision

BR0033 Possess actuation
capabilities

these are the actuators that the system uses to respond to the changes of the
environment. These actuators can be virtual or physical.

4 . 2 .1 . 2 CONTEXT SENSITIVITY (CS)

A context is a collection of one or more variables to indicate specific changes in the physical or virtual

world. Sensitivity means that the system has the ability to detect a context and interpret it to a specific

meaning. For example, a school may have context for buses that contains location, time, and emergency

alarm. These three parameters determine the context of the school. Each of these parameters takes

specific values:

- Location: Far from school, nearby the school, in garage.

- Time: morning, noon, after noon, night.

- Bus Status: normal, accident, disaster.

There are 27 possible combinations of these variables that produce 27 contexts. One or more context may

have the same interpretation. So, a context C1= (Garage, night, accident) can be interpreted as a bus that

has a problem but it is not severe since it is in garage and at night. Another context that may contain C2=

(nearby the school, morning, disaster) can be interpreted as an emergency situation that requires

immediate reaction to save students’ lives.

87 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

There should be sensors in order to detect each value of the mentioned 3 parameters. So, there should be

a GPS sensor to detect the bus location, a digital clock to read the time, and a car status sensor to detect

the bus status. A sensor can be a physical device that reads a stream of data from the real world, or

software that reads a stream of data from the virtual world. It is designed primarily to read data not to

interpret them.

If one or more parameters do not change the context interpretation as their values change, then it is

better to remove them from the context parameters if interpretations will not be changed. In this case,

they will not help in any decision and they will just add an extra complexity of unnecessary data. For

example, the emergency context interpretation may be identified with the location and bus status only

regardless of the time.

Figure 4-9 Context Sensitivity Feature Requirements Diagram

The following context-sensitivity requirements, as shown in Table 4-6 and depicted in Figure 4-9, are

required for a pervasive system as referenced in [10], from the focus group requirements shown in : , and

our from research effort.

Table 4-6 Context Sensitivity Feature Requirements

Alias Name Note

BR0034 Equip system with
sensors

the sensors are essential for the system in order to collect as much data as possible
for analysis.

BR0035 Locate interacting
objects

at any point of time, the system should locate the objects (smart or dummy). These
objects could be interacting with the system, or part of it

BR0036 Provide analytical
capability

the system is able to analyze the data collected by the sensors and generate useful
information and correct errors if possible and if needed.

BR0037 Provide interpretation
rules

the system should be able to interpret information using predefined interpretation
rules

BR0038 Record object lifetime the system must register the lifetime trip of the objects that are considered part of
the system. Statistical records should be available whenever needed.

88 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4 . 2 .1 . 3 EXPERIEN CE CAPTURE (EC)

According to [25], experience capture is concerned with finding common patterns of the user behavior or

activities and capturing them for later use. For example, a user may have a repeated pattern to enter a

room on a specific time, switch on lights, and then switch on the TV. The system can simplify these

activities and automate these actions later on. Such a feature needs to be regulated by system policy and

clear guidelines.

Moreover, the system should be able to capture knowledge about system users and use it as input to

improved pattern capturing [56]. By correlating information and knowledge about users, the system will

be able to gain forecast even about future use behaviors. If the system is designed for a specific goal that

will be used by a specific group of people, then the habits and behaviors of those people could be studied,

analyzed and fed into the system similar to what is practiced in ethnography (11)[84].

As explained, this feature is not an event logger. The aim is to find semantic meaning for these events and

link them rationally in a way that benefits the main goal of the system.

Figure 4-10 Experience Capture Feature Requirements Diagram

Experience Capture requirements are summarized in Table 4-7 and Figure 4-10.

Table 4-7 Experience Capture Feature Requirements

Alias Name Note

BR0042 Capture Knowledge
about users

use the personal knowledge smartly to convey to the user that the system is
there and recognizes his/her work. For example, capture the birth date, email,
and sex, job type so that you can tailor a better experience and communication
with the user on different occasions

BR0043 Correlate information
and knowledge

Correlate information and knowledge to forecast events and anticipate user or
object behavior [56].

BR0044 Capture/change
behavioral patterns

the system should be able to capture pattern(s) that users or objects repeat
when they interact with the system [25]. The system should be able to change
invalid patterns as well if the user/object stopped them

4 . 2 .1 . 4 FAULT TOLERANCE (FT)

Faults are naturally expected in software systems. A system that is developed without expecting faults is a

failing system indeed. A fault can occur in a system mainly due to software, hardware, or network

problems. A bug in a system can hinder a certain scenario or make the system unstable. Hardware faults

11

 A branch of anthropology which aims to study daily human lives in details for a specific community

req [Feature] Experience Capture [Experience Capture]

Experience Capture

«requirement»

Capture/change

behav ioral patterns

Capture Knowledge about

users

«requirement»

Correlate information

and knowledge

«deriveReqt» «deriveReqt»

«maximize»
«maximize»

«deriveReqt»

89 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

can cause the software not to respond or respond improperly. For example, limited memory, or a faulty

processor can make the software behave unexpectedly or may get the whole machine out of service.

Communication faults including congestion and data packet loss can also corrupt the behavior of the

system.

Faults are expected even more in a pervasive computing system due to its complex nature which includes

multiple devices with high level of communications among several software components. There are even

other reasons in pervasive systems that can cause faults to happen. For example, a smart device may be

processing something but moves unexpectedly which causes its process to fail. The device battery may

run out of charge and immediately gets out of service [85].

A fault is a problem that needs to be resolved and the decision of resolution differs with cases. First let’s

classify the faults as Severe, high, medium, and low based on their consequences:

1. Severe: This category includes fatal errors that may result in complete outage of the system,

severe financial loss, or total corruption of data and there are no instant resolutions of the

problem

2. High: This category of problems does not suffer from complete outage of the system, but may

have complete outage in some functions, noticeable financial problems, or impacts a large

number of users. There are no instant resolutions for the problem

3. Medium: Such a category has a moderate failure in terms of functions and impacted users and

has no financial loss. There could be alternative approaches for the system to complete the

required service

4. Low: this category usually includes cosmetic, textual, and partial issues with specific functions.

They do not impact the validity of data neither hinder the completion of the user’s full scenario.

But resolving them can enhance the user’s experience

One may notice in the above classification that we used fault, error, and failure terms interchangeably.

Another classification that could be found in the literature [16] gives a different view and makes a crystal

classification among these terms:

1. Human error or mistake: a human behavior that results in system faults

2. System Fault: a characteristic of a software system that can lead to system error

3. System error: an erroneous system state that can lead to unexpected behavior by the users

4. System Failure: an event that can occur at a point of time leading the system to deliver

unexpected results to the users

Under both classifications, there has to be techniques to resolve faulty behaviors. These approaches are

classified as [16]:

1. Fault Avoidance: this approach depends on the development of best practice techniques, tools,

programming languages and techniques to minimize error-prone problems caused by humans.

90 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

2. Fault Detection and Removal: by using validation and verification techniques to increase the

probability of detecting faults before the system is used

3. Fault Tolerance: these are techniques that ensure that faults in the system will not cause errors

and if there are errors they will not cause failure

An example of a fault tolerance solution is when the user downloads a file from the mobile and the user

moves away from the WiFi hotspot. The classical resolution for this issue is to notify the user that the

application cannot download the file. But a fault tolerant solution can wait for a few minutes until the

mobile is connected again through the WiFi to resume the file download, or notify the user that the mobile

will use the 3G connectivity to continue the download process.

Figure 4-11 Fault Tolerance Feature Requirements Diagram

The requirements for fault tolerance are summarized in Table 4-8 and Figure 4-11.

Table 4-8 Fault Tolerance Feature Requirements

Alias Name Note

BR0045 Detect faults quickly the system must detect faults very quickly

BR0046 Minimize Faults the system must adopt all possible techniques to avoid or minimize faults.
BR0047 Minimize the probability of an

object to be offline

the system must ensure the longest number of hours for its object(s) in
order to keep providing the automation service for its interacting devices
and users

BR0048 Reduce Error consequences if an error occurred, then the system must reduce its impact
BR0049 Show proper error message the system must show a friendly, descriptive, and directive error message

BR0050 Take the proper corrective
action

the system must take the proper corrective action to rectify the error and
reduce its impact. The corrective action could be
1. logging the error incident
2. Notifying concerned entities
3. Taking a counter action to fix the error or minimize its impact

91 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4 . 2 .1 . 5 HETEROGENEITY OF DEV ICES (HD)

Integration projects cost a lot of money and they usually exceed their timelines with a very high

investment worldwide [86]. The factors that increase the risks of the integration projects include the

following:

1. As the number of heterogeneous devices increase, the risks and development time increase as

well

2. The number of integration points. Risks and development time increase as integration points

increase

3. The availability of documentation that describes the device interface. This issue is considered a

real problem with legacy systems that depend on developers who do not value the importance of

documentation

4. The availability of good architects who can understand the whole picture of systems and build a

robust integration architectural model

5. The learning curve for the developers who should learn the new interfaces and consume the

knowledge to understand the integration problems

6. The availability of a development environment that covers all different integration interfaces. This

will minimize the risk of faulty functions during run-time after deploying the developed software

Device manufacturers have their own development methodologies, tools, and strategies which end up

with a wide range of devices with different capabilities even within the manufacturer’s product line.

Diversification is welcomed by many users because it makes the manufacturers more creative and

produces competitive devices.

A modern device is no longer a simple one that serves only its core functionality. It is now empowered by

processing, memory, communication, and programmable capabilities. It is built to interact with the

surrounding environment. A washing machine can send an SMS to the manufacturer’s support teams

notifying them about a faulty component. A person can wave his hand to switch on/off a TV equipped

with a video camera that detects motion.

This is very interesting indeed; such interesting features are best functioning within the manufacturer’s

devices. This is due, as explained before, to the heterogeneity of devices in many aspects. Only the

developers of the manufacturer can make the best solution out of their devices. There are of course

architectural approaches to resolve this dilemma which will be discussed later on; however, it is still a

dilemma with incomplete and sufficient solutions.

Let’s take a single famous example, smart mobile phones. There are different key players in the market

like Samsung, Apple, HTC, and Nokia. Every manufacturer has its own OS. For example, Samsung uses

Google Android, Apple uses iOS, HTC uses Android and Windows, and Nokia uses Symbian OS [87]. There

92 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

are different sizes for the phones, and they come now with bigger sizes that range from handy-small

phones to large tablets. Rendering a video on these different devices varies noticeably.

Regarding the development track, a single requirement that will be applied on different mobile phones to

introduce the same functionality, is considered a separate development track. The cost is duplicated along

the architecture, design, development, testing, and deployment phases. It is worth mentioning that the

support effort increases as well and the probability of run-time problems also increases. This may impact

the quality of the service and the user satisfaction.

Figure 4-12 Heterogeneity of Devices Feature Requirements Diagram

The requirements for the Heterogeneity of Devices quality feature are shown in Table 4-9 and Figure 4-12.

Table 4-9 Heterogeneity of Devices Feature Requirements

Alias Name Note

BR0039 Maximize the number of
device technologies

allow different devices that use different technologies to join/leave the
pervasive system with minimal human involvement.

BR0040 Provide a unique
identifier for every
object

every object should have a unique identifier that does not conflict with other
objects. For example, the system can use a static IP address or a MAC address to
identify devices and facilitate communication with them.

BR0041 Render content on the
maximum number of
devices

allow different devices to render the same content according to their screen
dimensions, network bandwidth capacity, and processing capabilities. The
content should be visible, readable, and interactive.

4 . 2 .1 . 6 INVISIBILITY (IN)

A classical automation system is recognized by the users through the recognition of its hardware and

software assets. The user cannot complete its tasks without using the computer explicitly to achieve

his/her goal. This classical experience includes the following basic activities:

1. Switch on the computer.

93 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

2. Login to the operating system.

3. Go to the software location.

4. Run an executable file of the software.

5. Navigate inside the software and supply it with the required inputs.

6. Apply the changes and wait for the output.

The invisibility feature should ideally eliminate almost all the above activities and replace them with

implicit input [84] and invisible automation of activities. For example, the system may use user

movements, activities, writings, and gestures as input that guides the system to achieve the goal of the

customer. On the other hand, the user may need to interact with the system in some situations, but they

should be as minimal as possible.

Figure 4-13 Invisibility Feature Requirements Diagram

The invisibility Requirements are summarized in Table 4-10 and Figure 4-13.

Table 4-10 Invisibility Feature Requirements

Alias Name Note

BR0051 Minimize unneeded
interactions with the system

The system must request minimal explicit input from the users who
interact with it.

BR0052 Remove unnecessary
motions

A pervasive system should reduce the time and effort people usually
exert to complete their tasks. Accordingly, unnecessary motions should
be reduced to the degree that makes the user tasks simple and intuitive.

BR0053 Conceal the part object(s) of
the pervasive system

By concealing the system part object(s) in the smart environment
fabrications as much as possible.

BR0054 Minimize the use of explicit
input

the system should detect inputs implicitly and minimize the use of
traditional keyboard and pointing devices [84]. For example, the
existence of a user in a certain location is enough to get the user identity
and get its exact address.

4 . 2 .1 . 7 PRIVACY AND TRUST (PT)

We all have private information about ourselves. Humans reveal private information about themselves for

those whom they trust, even those well known to media. The issue of privacy and trust is crucial for

PervComp systems. There are always sensors in such systems that collect data about different objects like

94 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

temperature, images, sounds, locations, etc… We decided to merge privacy and trust as a one quality

attribute because they are interrelated. As shown by studies and experiments [88], high trust

compensates for low privacy and vice versa.

We see the issue of privacy and trust as a three dimensional model. The dimensions are:

1. Information: this information may be classified as public, social or private. Information is also

captured through direct input from users or detected from their activities, or sensed from the

environment

2. Trusted entities: these trusted entities may be classified as highly-trusted, medium-trusted, or

low-trusted entities which could be humans or technology. For example, a family computer may

be medium-trusted versus the personal computer which is highly-trusted. While, a public-shared

computer is low-trusted.

3. Situations: such situations are two-dimensional variables including time and location [89]. For

example, people may be willing to reveal private information about themselves with parents or

doctors. People may reveal information also whenever they use their personal notebooks or cell

phones. However, a person may not use his/her notebook with private information in public

transportations. This person may not check his/her pay slip from his private computer within a

group of people

In order to crystalize the concept, let’s discuss some information terminologies and address their privacy

concerns according to the aforementioned model:

1. Password: the password is considered a private piece of data that belongs to a specific person to

be used in combination with another identifier, mostly user name. A user usually does not reveal

his/her personal password and this does not change according to situations. However, there are

some cases where there is a password that could be created for a group, but the data and services

accessed through this password are not that sensitive.

2. Electronic Pay slip: the pay slip is sometimes delivered to company employees in an electronic

version. It is a private piece of information by default and should be delivered through a secure

medium and viewed from a secured channel. It should not be checked while there are people

surrounding the employee. It is also not this kind of information that could be shared with

anyone. However, there are situations that require the user to share this info through trusted

entities in the company like finance and HR. It may be required to share this piece of information

with external entities like taxation authorities, or embassies to issue a travel visa

3. Bank Account: the bank account is considered one of the top confidential properties for a person.

It is the ownership of money inside a bank. The access process to the money is validated through

different procedures. Moreover, the bank account number by itself could be shared in a limited

scope, socially, and should be available publicly so that hackers do not use it illegally

4. Resume: a resume is a document that records personal qualifications in a way that convinces

others. The document can be used in a public manner in a secured or a non-secured media.

95 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

5. Company’s market plan: it is usually a yearly plan that shows a roadmap of products and services.

The roadmap gives estimate release times and gives a high level description of these items. It is a

confidential document, private for the company, which can be accessed only by the authorized

staff. It cannot be shared with externals as well.

6. Health Record: this is a chronological record of health hazards and treatments for a person. This

information may be collected through different channels like hospitals, private doctors, and

devices connected to a body. The health record should be accessible for the patient, treating

doctors, and authorities. The user may willingly share his/her health record with close friends, but

for sure will not announce it for public use. The confidentiality of the health record may be

decided according to the nature of the person. For example, if the person is a celebrity or a

politician, then revealing the health record may be considered improper.

As shown above, information is not always classified as private, social, or public. Moreover trusted entities

are not always on the same level. There are some entities, human or devices, that are classified as highly-

trusted by a person, but those entities may not be trusted by others. Devices may also be classified as

personal, which means they are highly-trusted. For example, headphones are devices that could be used

in a private manner [89].

Figure 4-14 Privacy and Trust Feature Requirements Diagram

We summarize the requirements for privacy and trust in a pervasive system in Table 4-11 and Figure 4-14.

Table 4-11 Privacy and Trust Feature Requirements

Alias Name Note

BR0055 Certify trusted
entities

entities that manipulate information should be certified. For example, a system
may require registration with details, then an admin reviews in order to grant the
right authority level.

BR0056 Classify Information the system must be able to differentiate between private, social, and public
information.

BR0057 Reveal Information
controllably

the system must reveal information to authorized entities only based on its
classification, and trust level of the authorized entities.

BR0058 Track Information the system should trace private information to other entities. Traceability may be
used later on by the user who owns this information if it is miss used.

96 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4 . 2 .1 . 8 QUALITY OF SE RVICE (QOS)

Quality of service (QoS), in our scope, refers to the agreement protocol that the pervasive system signs

with users and other systems about its service boundaries. For example, the system may declare that it

can serve a user within 0.01 seconds for the requested data and the time can increase by a maximum of 1

second for a number of users that does not exceed 1000 at the same time. In other words, it is the ability

of the system to meet deadlines [10]. We can classify a deadline into [90]:

1. Hard deadline: if the system does not meet its deadline, then the operation is considered failed.

This is obviously found in a car embedded system, as it is not acceptable that the brake sensor

delays its response and causes accidents.

2. Soft deadline: the system may exceed the deadline. The result in this case is controversial, since it

could be considered failed, succeeded with a lower percentage or the deadline is just there for

reporting and future improvement considerations. For example, if a movie encoder slips its

deadline causing a slight pause, it only degrades the QoS and it could be acceptable or rejected

according to the situation.

Figure 4-15 Quality of Service Feature Requirements Diagram

QoS boundaries can be applied across all the system quality features like security, context awareness, and

fault tolerance. QoS requirements are summarized in Figure 4-15 and Table 4-12.

Table 4-12 Quality of Service Feature Requirements

Alias Name Note

BR0059 Declare service/quality
feature boundaries

the system should specify its acceptable boundaries for each quality feature
or service by which the users can acknowledge the failure of the service if the
deadline is breached.

BR0060 Minimize average
processing time

The system should process tasks very quickly and on time.

BR0061 Monitor and improve QoS
boundaries

the system must continuously monitors its QoS for the different services and
work on improving them whenever possible

BR0062 Specify hard/soft deadline The system must flag each response deadline as being a hard or a soft
deadline

97 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4 . 2 .1 . 9 SAFETY (SY)

The safety characteristic addresses two aspects of the pervasive system. The first is the system safety,

which is concerned with its hardware healthiness. The second is concerned with the environment safety

where interacting users and machines are kept safe from physical harm or damage [85]. In both cases,

safety is very important as it makes no sense to have a system that damages itself or harms its

environment.

When it comes to organizing priorities, then a pervasive system must sustain its hardware healthiness

unless this could cause harm to its users. Yang and Helal [91] advise that any solution must cover the four

main components of the system which are: device, service, user, and space.

Figure 4-16 Safety Feature Requirements Diagram

Requirements of the Safety feature are referenced from [91] and were gathered in the focus group

(Appendix B:) as shown in Table 4-13 and Figure 4-16:

98 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-13 Safety Feature Requirements

Alias Name Note

BR0063 Alert if safety is about/or
compromised

the system should show proper alerts for the users if safety is about/or
compromised. These alerts should be in multiple forms accordingly. For
example, an alert could appear on a screen, or give a high sound.

BR0064 Allow the user to
override/cancel system
decisions

if the systems takes a wrong action that can cause potential risk for
users, then allow the user to override its action or cancel it.

BR0065 Avoid conflicting side effects the system must take proper actions that do not cause side effects on
people or devices which may reflect wrongly on other devices and
generate a chain of side effects as well

BR0066 Avoid invalid operational
directives

the system must provide safety limits for critical operations in order
not to cause damage based on wrong user input

BR0067 Ensure that generated rules
do not conflict with system
policy

the system may generate new rules driven from its knowledge base.
The new rules must not conflict with the system policy that governs the
usage of the system

BR0068 Minimize conflicting usage of
shared resources

the system must be able to resolve conflict over shared hardware
resources

BR0069 Override system rules by the
regulator

(12)

the regulator should have the authority to override system rules in
critical situations in order to apply its rules on all the users.

BR0070 Provide maximum protection
for the environment

interacting users and devices should be protected from injury and
damage

BR0071 Resolve conflicts among
objects by an administrator

there should be a way that the administrator uses to resolve conflicting
situations among objects

BR0072 Respect societal ethics the system must abide by the societal ethical standards

4 . 2 .1 . 10 SECURITY (ST)

This is a classical and a critical aspect for any pervasive system. It becomes even more important in

pervasive systems due to its nature that requires high flexibility, openness, mobility, and interaction with

new devices which may not be trusted [10]. The eternal goal for this characteristic is to provide data

protection and fight system attacks. The term “Data” here refers to any kind of data that the system

stores or transmits. For example, if a user tries to access the system, it implicitly means that he/she will

transmit data (login credentials) to access his/her profile (stored data). The system must ensure the

integrity of the user profiles so that they can access the system later on.

The system attacks are made to control the system in different ways. The most important goal of the

attacker is to take control of the system and manipulate it as required. If not possible, then he/she may

make use of system vulnerabilities to spoil the system’s behavior. For example, an attacker may be able to

run a process that consumes CPU heavily in order to drain the system battery and cause the system to get

out of service. The risk of security attacks in the pervasive systems is that it may impact the safety of the

users. Security risks are handled using three approaches [92]:

12

 The regulator is someone that has the authority to set/change the rules the govern the systems behavior. This person can
belong to the corporate organization that owns the system or can be an authorized entity in a society that governs the system
rules.

99 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

a) Eliminate the threat: during the design of the system, the risks are identified and the solution is

designed in a way that prevents them from the beginning.

b) Mitigate the risk: it is not possible to eliminate the risks but the system can take counter-

measures to eliminate harm or remove it.

c) Accepted the risk: this approach can be adopted if risks cannot be eliminated or mitigated.

However, users of the system must understand such risks before using the system

Note Although, some approaches treat privacy, confidentiality, as a supportive part in the triad of information

assurance called Confidentiality-Integrity-Availability (CIA) [93], there are differences between Security and

Privacy and Trust:

1. Security is concerned with the policies that govern the data manipulation, and availability while privacy

is concerned with the appropriate use of the data.

2. Security rules are embedded in the system, while privacy and trust is about corporate and personal

responsibilities.

3. Strong security policies minimize the risk of violating the privacy of information. However, there is no

guarantee that responsible people will not reveal private data to unauthorized entities (e.g. selling data

to third-party agencies for digital advertisements).

For security reasons, we do not adhere to allowing anonymous usage of the system services and resources

similar to what was proposed in [56]. Instead, the privacy of the users should be protected and must be

revealed only for authorized entities.

Figure 4-17 Security Feature Requirements Diagram

100 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Security feature Requirements are shown in Table 4-14 and Figure 4-17.

Table 4-14 Security Feature Requirements

Alias Name Note

BR0073 Disallow anonymous
usage of the system

the system must not allow anonymous usage of system resources and services

BR0074 Enforce Security rules on
all objects

the system must ensure that the security policy is applied on all devices that
join the system and devices that fail to fulfill the security requirements must
disconnect immediately. Rules are enforced as well on any activity made by
users.

BR0075 Ensure secure data
transmission

data transmission among devices must be secured and protected against
intruders [53].

BR0076 Maintain data integrity the system must ensure corruption-free and alteration-free data.
BR0077 Prevent data leakage provide maximum protection for data in order to avoid leakage for

unauthorized persons [53].
BR0078 Provide data access rules data should be accessed whenever requested by different entities, whether

persons or machines, according to the data security access rules.
BR0079 Take counter-measures to

mitigate security threats

the system must take counter-measures to ensure that risks generated from
security threats do not cause any harm for system users

BR0080 Announce malfunctioning
smart objects

The system must publish information about smart object(s) that do not
function or misbehave in the system. In other words, some objects may harm
the environment, and the community must be aware of such objects in order
to put them in the black list

4 . 2 .1 . 11 SERVICE OMNIPRESENCE (SO)

Omnipresence means “present everywhere at the same time”. As per the definition in Table 2-1. Service

Omnipresence means that the user must get the feeling that he/she is carrying computer services

whenever he/she wants and wherever he/she goes. In other words, the user should be able to use his/her

computing services whenever he/she wants them and in almost any place. Given that it is almost

impossible to facilitate computing services everywhere and at any time, it is important that the user gets

that feeling.

There is a big difference between “feeling” and “ability.” There are many factors that can formulate our

feelings and we may not be aware of such a change in our feelings. On the other hand, a person who is

aware of his/her ability to do something, will know very well how and when to use this ability. In our

research, we want to study “Service Omnipresence” based on feelings of users that the pervasive system

can formulate.

We will discuss here how to transfer such a feeling to users given that a PervComp system cannot achieve

100% omnipresence especially in big systems. Actually, even if a system can achieve 100% full distribution

of computing resources in the system, the user may not get the feeling of service omnipresence. The

pervasive system has to convey the feeling of omnipresence regardless of whether it is complete or not.

We will use the term perception instead of feeling in order to provide a better understanding for this

quality feature. Perception is the ability to recognize something based on its form. The perception process

is dependent on the features of the object and the organization of these features [28]. One can perceive a

101 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

cat from its main features (head, legs, tail, and sound) but these features have to be allocated correctly in

order to call this object a cat. The same happens in PervComp systems, the basic features of the pervasive

system have to exist, e.g. sensors, context awareness, and actuators. If the pervasive system is spread

across a large space, then the sensors should be spread all over the environment professionally and in a

way that serves the user needs.

Figure 4-18 Service Omnipresence Feature Requirements Diagram

We have some recommendations and techniques that can give the perception of service omnipresence

which could be considered a user experience enhancement as shown in Table 4-15 and Figure 4-18:

Table 4-15 Service Omnipresence Feature Requirements

Alias Name Note

BR0081 Distribute computing
power

if possible and if budget allows, then it is highly recommended to distribute
computing capabilities in the environment where a pervasive system operates.
This will give an actual perception about service omnipresence

BR0082 Enrich the experience of
the highly used scenarios

such scenarios must get the highest attention and enrichment with the
pervasive features (sensors, awareness, actuators, intelligence)

BR0083 Provide Informative
messages

make sure to guide the user and build up his/her experience through his/her
interactions with the system. For example, if it is the first time for the user to
interact with the system, then provide welcome messages, hints and tips on
how to proceed

BR0084 Use a unique user
identifier

a unique user identifier that used to access different devices in the
environment can give the user the feeling that the system knows him/her
anywhere and is ready to serve him/her at his/her convenience

BR0085 Utilize the user mobile
phone

users depend heavily on their mobile phones. Smart phones are now
considered a small computer with multiple capabilities. Hence allow the user’s
mobile phone to be part of the system

102 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.2.2 The Business Ontology

The aim of this model is to capture the main ontological terms of the pervasive system. The ontology term

is classified as a value or issue in a pervasive system as gathered from the requirements of the quality

features. The value is a benefit that system users need to gain from the system. The issue is a problem or

a non-desired aspect that the system users are not willing to have. Accordingly, we can visualize a

pervasive system as composed of a set of features with basic ontological terms which are linked to the

features as shown in Figure 4-19.

We analyzed every value and issue in order to realize their classifications and the best measurement scale

[94]. The scale attribute gives a guidance hint to the architect on how to measure the feature. The

ontological term may have different types which are used as well in the scale measurement.

For example, the device heterogeneity feature has two main ontological terms: Content Rendering and

Device Identifier

1. Content Rendering: The ability of the system to show the same content on different devices with

different specifications.

a. Scale: The percentage of devices connected to the system aggregated by type at a certain

period of time.

b. Types: mobile, PC, Tablet, TV, others.

2. Device Identifier: A unique identifier for a device.

a. Scale:

i. The average number of bindings for a specific device identifier during a certain

period of time.

ii. The average binding time for a specific device identifier during a certain period of

time.

: gives full details about each ontological term.

103 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 4-19 Pervasive system business ontology abstraction diagram

Pervasive
Computing
System

Adaptable Behavior Actuator

Decision Rule

Context Sensitivity Analysis

Interpretation rule

Sensor

Experience Capture Knowledge Mining

Object profiling

Pattern Recognition

Fault Tolerance

Corrective action

Error message

Error risk
Error outcome

Fault

Heterogeneity of
Devices

Content Rendering

Device Identifier

Invisibility Object invisibility

Unnecessary motions

Explicit Input

Privacy and Trust Information Classification

Information Control

Information Tracking
Trust Certificate

Quality of Service QoS Improvement

QoS deadline type

Quality Average Measure
Quality boundaries

Safety Environment protection

Invalid Operational Directive

Safety Alert
Safety compromise
Shared resource conflict
Side effect

Security
Anonymity
Data access rule

Data Integrity
Data Transmission security

Data leakage

Malfunctioning smart object
Security rule

Threat counter-measure

Service Omnipresence Computer Distribution
Experience improvement
Informative message

Mobile phone utilization

Unique user identifier

104 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.3 Trade-off Analysis

4.3.1 Quality Features Relationships Analysis

Figure 4-20 Quality Features Relationships Diagram

In order to analyze the relationships among the quality features, we studied the relationships among the

requirements of the quality features as detailed in : . We modeled the requirements relationships as

explained in Chapter 2 using conflict, maximize, and minimize stereotypes. : , shows 44 relationships for

39 requirements, which resulted into a full representation of the relationships among the quality features

within the research scope (Figure 4-20) and statistically summarizing them in Figure 4-20, and Table

4-16,Table 4-17, Table 4-18, and Table 4-20.

Table 4-16 Quality Features Minimize Relationships Statistics

Source (row) vs Fault Tolerance Invisibility Quality of Service Safety Security
Total

Destination (Column)

Adaptable Behavior 3 3

Context Sensitivity 2 2

Fault Tolerance 1 1 2

Heterogeneity of Devices 1 1 2

Service Omnipresence 1 1 1 3

Grand Total 4 1 1 4 2 12

The relationships in Table 4-16 go from the source (rows) to the destination (columns). The number in the

table cell represents the number of relationships. We can deduce the following facts regarding the

minimization relationships:

105 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

1. Service Omnipresence and Adaptable Behavior features have the highest number of relationships

as sources and they minimize 3 and 1 quality features, respectively.

2. Fault Tolerance and Safety have the highest number of relationships as destinations which are

minimized by 3 and 2 quality features, respectively.

Table 4-17 Quality Features Maximize Relationships Statistics

 Destination
Source

EC HD PT QoS SY ST SO Total

Adaptable Behavior 1 2 3

Context Sensitivity 1 1 1 3

Experience Capture 2 2

Heterogeneity of Devices 1 1 1 3

Invisibility 1 1

Security 2 1 3

Service Omnipresence 1 1 2 1 5

Grand Total 4 1 5 2 5 2 1 20

Table 4-17 shows the following facts:

1. The Service Omnipresence feature has the highest number of relationships and it maximizes 4

quality features.

2. Safety and Privacy and Trust features have the highest number of relationships and they are

maximized by 4 and 3 quality features, respectively.

Table 4-18 Quality Features Conflict Relationships Statistics

Source (row) vs
Destination (column)

Adaptable
Behavior

Fault
Tolerance

Heterogeneity
of Devices

Privacy
and
Trust

Quality
of
Service

Safety Security Total

Context Sensitivity 1 1

Experience Capture 1 1

Heterogeneity of
Devices

 1 2 1 4

Invisibility 1 1

Security 3 3

Service Omnipresence 1 1 2

Grand Total 1 1 1 3 3 2 1 12

Table 4-18 shows conflicting relationships among quality features, and the figure in the cells represents a

pair of requirements that have conflicts. For example, the security feature conflicts with quality of service

3 times. There are 3 requirements that belong to the security feature and may reduce the quality of

service average processing capability. We can read also that Context Sensitivity does not conflict with

Adaptable Behavior nor Fault Tolerance. Another fact that we can realize from this table is that Device

Heterogeneity and Security features have the highest percentage of conflict relationships.

106 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-19 Quality Features Conflict Resolution Decision Table

Source No. of conflicting
Requirements

Destination Supersedes

Heterogeneity of Devices 1 Fault Tolerance Heterogeneity of Devices

Heterogeneity of Devices 1 Service Omnipresence Service Omnipresence

Heterogeneity of Devices 2 Safety Safety

Heterogeneity of Devices 1 Security Security

Security 3 Quality of Service Security

Service Omnipresence 1 Privacy and Trust Privacy and Trust

Context Sensitivity 1 Privacy and Trust Privacy and Trust

Experience Capture 1 Privacy and Trust Privacy and Trust

Invisibility 1 Adaptable Behavior Adaptable Behavior

Table 4-19 highlights the superiority of quality features whose requirements may have conflicts. Figure

4-21 models this superiority in a visual way which shows that the overall superiority of quality features

cannot be detected from the conflict relationship only since the Adaptable behavior and Invisibility quality

features are not linked to the other quality features.

Figure 4-21 Quality Features Conflict Resolution Priority Diagram

In order to figure out the overall superiority levels, we analyzed the minimize and maximize relationships

in Table 4-16 and Table 4-17, respectively, which lead to another statistical summary as shown in Table

4-20. The following facts could be stated:

1. There are enabler features: these are the features that appear as a source with a percentage

higher than 50%. Those features are namely Adaptable Behavior, Context Sensitivity,

Heterogeneity of Devices, and Service Omnipresence. The fulfillment of the requirements of these

features will help other features achieve their requirements. So, we can define the enabler

feature as “the feature that has the requirements that minimize or maximize the value of other

requirements.”

2. There are constraining features: these are the features that appear as a destination with a

percentage higher than 50%. The requirements that belong to these quality features are

empowered by the enabler features and are enforced in the system mainly as constraints.

These features are namely Privacy and Trust, Quality of Service, Safety, Security Fault

107 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Tolerance, and Experience Capture. So, we can define the constraint quality feature as “the

feature that has ruling requirements that must be fulfilled by other quality features.”

3. The Invisibility Feature role is unclear: it is not possible, from the given requirements and

relationships, to decide if the Invisibility feature is an enabler or a constraint feature since it

appears 50% as source and 50% as destination.

Table 4-20 Quality Feature percentage as source and destination in the maximize and minimize relationships

Feature Source % Destination %

Adaptable Behavior 100% 0%

Context Sensitivity 100% 0%

Experience Capture 33% 67%

Fault Tolerance 33% 67%

Heterogeneity of Devices 83% 17%

Invisibility 50% 50%

Security 43% 57%

Service Omnipresence 89% 11%

Safety 0% 100%

Privacy and Trust 0% 100%

Quality of Service 0% 100%

Figure 4-22 shows a graphical classification as enabler and constraint categories with their relative

proximity from the Enabler and Constraint categories.

Figure 4-22 Enabler-Constraint Quality Features Categories Diagram

108 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

If we follow the chain of superiority depth in Figure 4-21, and based on the finding about the Invisibility

feature which has no clear role, and given that the Adaptable behavior feature supersedes Invisibility, we

can conclude the following priority pyramid layers (Figure 4-23). The rules are that:

1. Features that have no incoming arrow have higher priority.

2. The next layer includes features that are nested with one incoming arrow, and so on.

3. The Adaptable Behavior and Invisibility are at the bottom-most layers.

Figure 4-23 Quality Features Priority based on conflict Resolution Decisions

We can further explain the relative weight of every quality feature in terms of complexity and its impact on

other features by analyzing Table 4-16, Table 4-17, and Table 4-18.

𝑄𝐹𝑠 = ∑ 𝑄𝐹𝑟𝑞
𝑛

𝑟𝑞=1
∗ ∑ 𝑄𝐹𝑟𝑙

𝑧
𝑟𝑙=0 ∗ ∑ 𝑄𝐹𝑓𝑡

𝑦
𝑓𝑡=1 Equation 4-1 Complexity score for

the quality features

We counted the requirements for every quality feature (∑ 𝑄𝐹𝑟𝑞
𝑛

𝑟𝑞=1
), multiplied it by the sum of the

number of relations for the requirements in the quality feature (∑ 𝑄𝐹𝑟𝑙
𝑧
𝑟𝑙=0) and then multiplied the result

by the number of covered quality features (∑ 𝑄𝐹𝑓𝑡
𝑦
𝑓𝑡=1). We then normalized the score by dividing it by

the sum of all the scores to get the Weight as shown in Equation 4-1. The results, as shown in Table 4-21,

are sorted by weight from highest to lowest. It is important to note that the relations and the features

cover self-reference. Hence, if there is a maximize relationship, for example, between two requirements in

one quality feature, it gets counted.

We can further explain the complexity equation as follows:

1. The requirements in a feature represent its size.

2. The number of covered features represents the feature coupling.

3. The relationships of the requirements in a feature represent the density of the feature coupling.

Safety,

Security,

Privacy and Trust

Service Omnipresence, Quality of
Service, Context Sensitivity,

Experience Capture

Heterogeneity of devices

Fault Tolerance

Adaptable Behavior

Invisibility

109 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-21 Quality Features requirements complexity weights

Feature # Requirements

∑ 𝑸𝑭𝒓𝒒

𝒏

𝒓𝒒=𝟏

Relations

∑ 𝑸𝑭𝒓𝒍

𝒛

𝒓𝒍=𝟎

Features

∑ 𝑸𝑭𝒇𝒕

𝒚

𝒇𝒕=𝟏

Score

𝑸𝑭𝒔

Weight

𝑸𝑭𝒔/ Total Score

Safety 10 11 4 440 0.209524

Security 8 11 5 440 0.209524

Service Omnipresence 5 11 6 330 0.157143

Fault Tolerance 6 7 5 210 0.1

Heterogeneity of
Devices

3 11 4 132 0.062857

Privacy and Trust 4 8 4 128 0.060952

Context Sensitivity 5 6 4 120 0.057143

Quality of Service 4 6 4 96 0.045714
Adaptable behavior 4 7 3 84 0.04
Experience Capture 3 7 4 84 0.04

Invisibility 4 3 3 36 0.017143
Grand Total 56 88 46 2100 1

The Pareto chart (13) in Figure 4-24, which is based on the total scores of the quality features, shows that 4

quality features (Security, Safety, Service Omnipresence and Fault Tolerance) represent 67.6% of the

overall weight for the quality features. In other words, the requirements of these features will need

deeper analysis to ensure that the system is implemented on a solid basis. It does not mean that the other

features are less important. However, in a real project, for example, a decision may be to assign more

experienced analysts and architects to study these 4 features, or give more time to analyze their

requirements. Section 4.3.2 shows our approach to evaluate the functional requirements of a specific

domain area in light of the studied quality features.

13

 Pareto charts are a type of bar chart in which the horizontal axis represents attributes of interest, rather than a
continuous scale. By ordering the bars from largest to smallest, a Pareto chart can help the audience determine which of
the categories comprise the "vital few" and which are the "trivial many." A cumulative percentage line helps you judge
the added contribution of each category. Pareto charts can help us focus improvement efforts on areas where the largest
gains can be made.

110 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 4-24 Quality Features Incoming/Outgoing total Pareto Chart

It was interesting to compare our results for the ranking of the quality features (Table 4-22) with the

results reported by Spínola and Travassos [25], the research work from which we derived most of the

quality features that we studied. Spínola and Travassos’s approach was to review the literature and run

surveys and workshops with users to reach for the outcome conclusion. On the other side, we made our

trade-off analysis using pure technical analysis and statistical approaches after we collected the

requirements for the quality features. The comparison focuses only on the 11 quality features studied in

this section. We cannot make a full comparison between all the quality features because Spínola and

Travassos included other features that we studied as architectural quality features. Moreover, we also

included quality features (Safety and Security) that were not covered by Spínola and Travassos.

Table 4-22 Comparison between our priority results and Spínola and Travassos priority results with respect to the business
quality features

Key Comparison Our Research work Spínola and Travassos’s research work

Service omnipresence
Service omnipresent is ranked as one of the
top priority features (Figure 4-23) and (Figure
4-24)

Service Omnipresence is a key
characteristic that is found in all
ubiquitous projects.

Classification of the
Business Quality
Features

We classified quality features as enablers and
constraint

Classified quality features as functional

and restrictive.

Enabler vs. Functional
Categories

Enabler features are Adaptable Behavior,
Context Sensitivity, Heterogeneity of Devices,
and Service Omnipresence

Functional characteristics are context
sensitivity, adaptable behavior, service
omnipresence, heterogeneity of devices,
and experience capture.

Constraint vs.
Restrictive Categories

Constraint features are Privacy and Trust,
Quality of Service, Safety, Security, Fault
Tolerance, and Experience Capture

Restrictive characteristics are privacy
and trust, fault tolerance, quality of
service, and universal usability.

Invisibility Quality
Feature

Invisibility cannot be classified as enabler or
constraint feature and it is ranked as the
lowest in priority

Invisibility was ranked the lowest with
respect to pertinence level.

111 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.3.2 Quality Features vs Business Domains

Figure 4-25 Quality Features vs Business Domain Relationships diagram

It was important to study business domains in light of their desired quality features. Looking for the

possible relationships guides the business analyst as he/she identifies the correct needs and helps the

architect in taking the proper architectural decision. : gives a detailed analysis of the possible

relationships among the quality features and the business domains from the requirements level. Figure

4-25 and Table 4-23 show this information. We can infer the following facts from Table 4-23:

1. There is only one conflict relationship between Experience Capture and the Retail business

domain. The rest of the relationships are maximization from the quality feature to the business

domains.

2. All of the quality features are enabler features and Context Sensitivity and Quality of Service are

the most effective ones.

112 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-23 Quality Features vs Business Domains relationships statistics

 Business Domain

Feature

conflict conflict
Total

Maximize maximize
Total

Grand
Total

Retail Emergency Learning Retail

Adaptable Behavior 0 2 1 3 3

Context Sensitivity 0 3 2 1 6 6

Experience Capture 1 1 2 2 3

Fault Tolerance 0 1 1 1

Heterogeneity of Devices 0 2 2 2

Privacy and Trust 0 2 2 2

Quality of Service 0 3 1 2 6 6

Safety 0 1 1 1

Service Omnipresence 0 0 0

Security 0 0 0

Invisibility 0 0 0

Grand Total 1 1 8 8 7 23 24

There are quality features that have no relationships with the business domains. It does not mean that

they cannot be related to the business domains’ requirements. It just means that one of the following is

taking place:

1. The scope of business domain requirements is not big enough to capture such relations.

2. The weight of these relations is very low to highlight in the model.

3. There are no clear relationships and there is also no conflict. This means that both quality feature

requirements and the business domain requirements could be implemented without

contradiction.

For example, it goes without saying that Safety as a quality is important within the Emergency business

domain. Although there is no clear linkage among the requirements of the business quality features and

the gathered requirements of the Emergency business domain, from our point of view, safety

requirements can be applied for any Emergency pervasive system in this case.

By summing up the number of relations for every quality feature per domain and multiplying it by the

weight of the quality feature in Table 4-21, it was possible to identify the relative weight of every quality

feature within the business domain. It is important to confirm that the resulting score is valid within the

scope of the domain given a specific set of requirements. We cannot apply it as a general rule, however,

as requirements do change all the time.

Within the scope of the research, the relative weight for every quality feature in the business domains is

calculated as shown in Table 4-24. We can interpret the data in this table as follows:

1. All quality feature requirements for the business domain that have values greater than 0 will be

implemented.

113 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

2. Quality features with value equal to zero may be implemented. Accordingly, the business analyst

must revise the requirements with the stakeholders to confirm them. In other words, it is not

clear from the given requirements in the business domain and the quality features whether there

are relationships among them or not. It is possible that the requirements are not complete or are

not as documented.

Table 4-24 Quality feature relative weight within learning, retail, and emergency business domains

Feature Total score Learning Retail Emergency

Service Omnipresence 0.157143 0 0 0

Heterogeneity of Devices 0.062857 0 0.125714 0

Security 0.209524 0 0 0

Safety 0.209524 0 0.209524 0

Privacy and Trust 0.060952 0 0 0.121905

Fault Tolerance 0.1 0.1 0 0

Experience Capture 0.04 0.08 0 0

Context Sensitivity 0.057143 0.114286 0.057143 0.171429

Adaptable Behavior 0.04 0.08 0.04 0

Quality of Service 0.045714 0.045714 0.091429 0.137143

Invisibility 0.017143 0 0 0

4.3.3 Quality Features Evaluation Survey

In order to validate our priority scale of features, we ran a survey with 17 field professionals asking them to

give a score of importance from 1 to 5 for every requirement where 1 means (not important at all) and 5

means (extremely important) as shown in Appendix B: . The survey was conducted as a blind study where

all the knowledge was given in the survey with no examples or detailed explanations. The respondents had

different years of experiences in software engineering in general and in different business domains like

Telecommunication, mobile applications, web applications, UbiComp, and Human Computer Interaction.

Nine of them have over 15 years of experience. Some of the respondents are in management positions

and the others are involved in technical activities.

We averaged the score for every requirement and we then took the average of the requirements that

belong to a specific quality feature. We compiled a list of 11 quality features ordered according to the

given average score.

The results that we got were very interesting. We found that respondents have very close points of views

that are quite close to our statistical analysis result (shown in Figure 4-24). Although the features were not

in exactly the same order, the results were segmented with almost the same priority as the pyramid in

Figure 4-23. The standard deviation (SD) of the difference of ranking between the survey order and the

complexity order, as shown in Table 4-25, is 2.3741 which is relatively small. If we divide the number of

features by the SD, the result is 4.8, which indicates that we can segment the ranking of the features into 5

segments.

114 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-25 Comparison between the Survey score and the Complexity Score

Feature Survey Order
(SUO)

Complexity order
(CXO)

Difference
CXO - SUO

FT 1 4 3

PT 2 6 4

ST 3 2 -1

SY 4 1 -3

SO 5 3 -2

QoS 6 8 2

CS 7 7 0

AB 8 9 1

HD 9 5 -4

IN 10 11 1

EC 11 10 -1

4.4 Quality Features Requirements Conflict Resolution

The requirements model revealed 12 possible conflicts among the quality features’ requirements as shown

in Table B-3- : . As a prime decision, we resolve the conflict for one of the requirements and we give

rationale for this decision. A good practice is to find a solution for the conflicting requirements to fulfill

both of them for the sake of achieving an acceptable balance. The solution could be a functional or

architectural. This kind of variation is very healthy for the architectures that will be generated from the

PervCompRA-SE and will make them more practical [95].

We reviewed all the conflicts and proposed alternative solutions that could be applied. We also proposed

to merge some solutions to achieve a higher balance. In some other conflicts, we proposed only a single

solution or decided to apply the superseding requirement (Figure 4-26).

They are not the sole solutions for all the encountered problems and must not limit the architect’s

thoughts about other options. They are presented in our research to show a practical elicitation technique

that could be used by the architect. The solutions remain valid meanwhile if considered for system

implementation.

Requirement
A

Requirement
B<<Conflict>>

+Superseding

<<Problem>>

Solution 1 Solution 2 Solution n

Requirement
A

Requirement
B<<Conflict>>

+Superseding

<<Problem>>

Solution 1 Solution 2 Solution n

Requirement
A

Requirement
B<<Conflict>>

+Superseding

<<Problem>>

Requirement A
supersedes

trace

(a) Select one of many (b) Merge solutions (c) Resolve for the superseding
requirement

 Figure 4-26 Conflict resolution approaches

We provide a detailed analysis for the alternative solutions for every conflict. We analyzed every solution

against all other quality features requirements within the scope of conflict, maximize, and minimize

115 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

relationships as discussed earlier since these relations may now be considered a cross-cutting concern

[95]. In the merged solution, the positive relationships (maximize or minimize) shadow any conflict

relationship found in any other solution. In other words, it is assumed that the merged solution will

eliminate the negative impact in one solution by using the positive relationship in other solutions within

the same feature, if found. We then calculate a score for every solution using the feature weight as shown

in Table 4-21. The formula estimates the positive impact of the solution given the negative impact and as

shown in the following formula (Equation 4-2). The rules we followed in order to devise the formula was

that:

1. The score formula must give a single number derived from the number of positive relationships as

well as the number of negative relationships with requirements.

2. The positive relationships increase the solution score, while the negative relationships decrease

the solution score.

3. The score must be normalized in order to analyze the solutions on the same scale.

4. The weights of the quality features impact the weights of the solutions, and the solutions impact

the requirements which belong to the quality features.

𝑆𝑐𝑜𝑟𝑒 = 𝑅+ ∗ 𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡
+ − 𝑅− ∗ 𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡

− Equation 4-2 Solution score

R+ is the percentage of the minimize and maximize relationships (positive relationships) from all the

relationships of the solution with the other requirements. R- is the percentage of the conflict relationships

(negative relationships) of the solution with the other requirements. They are calculated using the

following formulas respectively (Equation 4-3).

𝑅+ =
∑ 𝑚𝑖𝑓+𝑚𝑥𝑓

11
𝑓=1

∑ 𝑚𝑖𝑓+𝑚𝑥𝑓+𝑐𝑓𝑓
11
𝑓=1

 , 𝑅− =
∑ 𝑐𝑓𝑓

11
𝑓=1

∑ 𝑚𝑖𝑓+𝑚𝑥𝑓+𝑐𝑓𝑓
11
𝑓=1

Equation 4-3 positive and
negative relationships percentage

formulas

𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡
+ is the weighted average (14) of the minimize and maximize relationships of the solution with the

requirements belonging to a single feature multiplied by the weight of this feature as shown in Table 4-21.

𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡
− is the weighted average of the number of conflict relationships of the solution with the

requirements belonging to a single feature multiplied by the weight of the feature as shown in Table 4-21.

They are calculated using the following formulas (Equation 4-4).

𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡
+ = ∑ (𝑚𝑥𝑓 + 𝑚𝑖𝑓) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑓

11

𝑓=1
 , 𝐹𝑅𝑤𝑒𝑖𝑔ℎ𝑡

− = ∑ (𝑐𝑓𝑓) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑓
11

𝑓=1

Equation 4-4 weighted
average for solution

relationships

The solution score tables in the sub-sections below show only the number of relations for every feature

and then we apply the formula to give a weighted score.

14 A weighted average is an average multiplied by its probability.

116 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

4.4.1 One-solution conflicts

We decided to resolve conflicts 3 and 11 for the superseding requirement. The justification of our decision

is that the superseding requirements should not be partially resolved since they may impact the existence

of the whole pervasive system. Conflict 6 is resolved using solution 21. It is clear that a score in this scope

is meaningless. However, it will be shown that solution 21 is used to resolve other conflicts in the

upcoming sub-sections. More details about every conflict resolution are provided in Appendix B: .

4.4.2 Alternative Solutions

Our approach for this analysis is to give a description for every solution and then list the number of

relationships between every solution and the requirements that belong to the associated quality feature.

We then applied the score equation for every solution. The architect should choose one solution only.

More details about every conflict resolution are provided in Appendix B: .

4.4.3 Merged Alternative Solutions

We followed the same approach for defining alternative solutions that resolve the same conflict as shown

in section 4.4.2. However, we found that we can provide a better solution if we merged the alternatives

after eliminating their negative impact. A negative impact (conflict) is eliminated only if there is one or

more maximize or minimize relationship provided from one solution that shadows the conflict relationship

from an alternative solution for the same quality feature.

The procedure that we adopted to decide if a business requirement is satisfied by a merged solution is as

follows:

1. Build a matrix of the solutions as columns and the requirements as rows.

2. Go over every piece of requirements and if there are positive and negative relationships, then

ignore the negative relationship and inherit the positive one. Hence, the merged solution will

have a single positive relationship with that requirement.

3. If all the relationships of the alternative solutions are negative, then the merged solution will have

a single negative relationship with that requirement.

4. We repeat this activity for all the requirements that are impacted by the alternative solutions.

5. We ignore the requirements that are not addressed by the alternative solutions.

More details about every conflict resolution are provided in Appendix B: .

4.4.4 Statistical Model for Solutions between Conflicting Requirements

We presented the alternative solutions in order to reach a balance between the conflicting requirements.

These solutions are considered the driver for the basic business architecture building blocks. One

important point to note is that a solution that has a lower score does not mean that it is a bad solution. It

means that the solution, in general, has a lower positive impact within the scope of the requirements

model. Table 4-26 shows the scores of the solutions and the parameters needed to calculate the score.

117 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

Table 4-26 Scores of the conflict solutions

Solution 𝑭𝑹𝒘𝒆𝒊𝒈𝒉𝒕
+ 𝑭𝑹𝒘𝒆𝒊𝒈𝒉𝒕

− 𝑹+ 𝑹− 𝑺𝒄𝒐𝒓𝒆

SO-001 1.122857 0 1 0 1.1229

SO-002 1.058095 0.28 0.545455 0.454545 0.4499

SO-003 0.562857 0.329524 0.636364 0.363636 0.2384

SO-004 0.178095 0.346667 0.428571 0.571429 -0.1218

SO-005 0.729524 0 1 0 0.7295

SO-006 0.741905 0 1 0 0.7419

SO-007 1.415238 0.145714 0.833333 0.166667 1.1551

SO-008 0.674286 0.309524 0.818182 0.181818 0.4954

SO-009 0.830476 0.034286 0.777778 0.222222 0.6383

SO-010 0.93619 0 1 0 0.9362

SO-011 0.948571 0 1 0 0.9486

SO-012 1.210476 0.045714 0.875 0.125 1.0535

SO-013 0.355238 0.419048 0.6 0.4 0.0455

SO-014 0.355238 0.209524 0.75 0.25 0.2140

SO-015 0.20381 0 1 0 0.2038

SO-016 0.118095 0.209524 0.75 0.25 0.0362

SO-017 0.801905 0.464762 0.7 0.3 0.4219

SO-018 0.82 0 1 0 0.8200

SO-021 0.581905 0.157143 0.8 0.2 0.4341

SO-022 1.753333 0.017143 0.944444 0.055556 1.6550

SO-023 0.93619 0 1 0 0.9362

SO-024 1.577143 0.045714 0.9 0.1 1.4149

SO-025 0.355238 0.419048 0.6 0.4 0.0455

SO-026 0.264762 0.209524 0.857143 0.142857 0.1970

SO-027 1.266667 0 1 0 1.2667

By analyzing the scores in Table 4-26, we find that the highest score is 1.6550 for solution SO-022 (merged

solution) for conflict 2 and the lowest score is -0.1218 for solution SO-004 (Disable sensors if not needed)

for conflict 9. The mean of all the scores μ is 0.6431 and the standard deviation σ is 0.4805. Hence, the

solutions that have scores higher than the mean have a higher positive impact and vice versa. We tested

the normality of the solution scores according to [96] and we found it normal (15) with a P-value of 0.536

and confidence level 95% (Figure 4-27). We conclude from the distribution of the above scores that the

presented solutions are capable of resolving the conflicts at a model capability index of Cpk = 1.17 which is

greater than 1 (where the upper bound is 2.23 and lower bound is -0.8).

By being normally distributed, this gives an edge for the architects who may now take advantage of the

following:

1. They can predict the impact of their solutions that were studied the same way and addressed

through the business requirements model.

2. The weight of the quality features given in our business architecture model can be used with other

architectures since it normalizes the scores.

15 In probability plot, if the P-Value is greater than 0.5, then it is an indication that the population is normally distributed

118 - CHAPTER 4 ● THE BUSINESS REFERENCE ARCHITECTURE

PervCompRA-SE

3. The architect can standardize the solution scores as z values and use the standard z-table [96]. Z

values simplify the interpretation of the scores as the z-value equal to zero or greater has more

positive impact than the negative z-values. Z-values could be obtained by using the following

equation [95] z =
𝑠𝑐𝑜𝑟𝑒 −μ

σ
.

4. Allow the solutions to follow the system goal which may be controlled by the weights of the

quality features.

Figure 4-27 Probability Plot of conflict solutions’ scores

The positive impact can also be maximized if the solutions with the higher positive scores are selected.

These solutions introduce only 10 conflicts out of 33 as real architectural challenges. However, the other

non-selected solutions could still be good candidates in different contexts.

Moreover, if we allow the system to change the weight of the quality features dynamically at run time to

suit specific contexts, the system may adopt a different solution. The system may choose to adopt one or

more solutions or even neglect them and adopt itself to the superseding requirement. Additionally, the

architect should further study the rippled effect of the solution variations on the different architecture

components [97].

Given that the statistical approach may entail a percentage of error, we consulted two experts in software

engineering to give us their feedback about the correctness of the conflict identification and about the top

ranked solutions for every conflict. The experts were asked to rate our decisions as (Strongly agree, Agree,

Neutral, Slightly disagree, and Totally disagree). We gave an ordinal scale for every choice starting from 5

and going down to 1. The result was that both surveys gave us an average score of 3.9 and 3.8

respectively. This result is in the Agree scale, which was quite acceptable.

119 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

c h a p t e r 5

5. The Technical Reference Architecture

In this chapter, we provide a set of models, best practices, guidelines, and different design decisions. We

also provide a requirements’ model, define a set of ontological terms, provide key technology enablers,

review essential network challenges, and highlight essential architectural and design patterns. At the end,

we present our baseline architecture derived from the concepts presented in this chapter as well as the

concepts that we established in the BRA.

5.1 The Architectural Requirements Model

There are some basic architectural quality features that should be satisfied by the TRA in order to have a

real pervasive system (Table 2-1). Some of these quality features are considered an integral part of any

distributed system, and some others are necessary if this distributed system will turn into a pervasive one.

Concurrency and Scalability are fundamental architectural quality features in any distributed system, while

Function Composition, Openness, Service Discovery, and Spontaneous Interoperability are important for a

pervasive system.

We surveyed these quality features and listed their key requirements which helped us to build the

technical baseline architectural model as will be shown later in this chapter. We also conducted a detailed

study on all these requirements based on the maximize, minimize, and conflict relationships among them

(Appendix C:). A detailed trade-off analysis is presented as well in this section which will give an in-depth

understanding about the priorities of the architecture features.

5.1.1 Basic Architectural Requirements

5 . 1 .1 . 1 CONCURRENCY (CON)

The concept of concurrency is found in almost any modern distributed system as a fundamental

characteristic. You cannot find a website that requires its clients to wait because there is another user

who did not finish his/her request. On the other hand, systems do have capacity limitations and they

cannot accept an infinite number of requests.

The scale of concurrency depends on the expected number of requests during the analysis exercise of the

system. Hence, designing a concurrent system that will be used by 5 users is totally different from a

system that will be used by 100,000 users. In both cases, the system must define its maximum concurrent

requests for each shared resource after which it will not be able to commit on performance nor on

required functionality (see Table 5-1).

120 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

UserUser HTTP ServerHTTP Server

submit

HTML

Application ServerApplication Server

Wait Queue Wait Queue

Host

Figure 5-1 HTTP Traffic Queueing [98]

The system must also provide a solution for the congestion problem that may appear due to improper

configuration for concurrent requests over shared resources. The congestion can lead to instability system

and may get the system down in some severe cases [99]. The congestion problem usually appears because

the system might queue the client requests through different pools of shared resources similar to what

happen in websites that are built on application servers. A java-based website application, for example,

built using the IBM WebSphere Application Server, may use a thread pool, and a database connection

pool. It may have an Apache HTTP server in the backend as well with another configuration for the client

requests (Figure 5-1). The proper tuning for these shared resources will improve the application

performance and reduce the probability of congested traffic [98].

In pervasive systems, the situation is not any different; actually, it can be more challenging since shared

resources are not only software components, but they can be hardware devices like sensors and actuators.

Congestion may lead to malfunctioning of the device, or it may even increase its temperature. Moreover,

the complexity of the queuing structure of the shared resources in a pervasive system may cause

unpredictable congestion points that are very difficult to trace and resolve.

The key architectural requirements are summarized in Table 5-1.

Table 5-1 Concurrency Quality Feature Requirements

Alias Name Note

BR0099 Shared resource must keep
acceptable performance under
increased clients' requests

As the demand on shared resources increases, the system should
maintain an acceptable performance level for all clients in terms of

connection time, processing time, and response time [25] [10].
BR0097 Shared resource must keep

functioning as designed under
increased client requests

The shared resource must provide the same designed functions by the
system regardless of the number of client requests and regardless of the

performance problems that it may encounter [25] [10].

5 . 1 .1 . 2 COMPOSING FUNCTIONS (CFN)

The pervasive system is built to satisfy some business requirements that are satisfied by system functions.

These functions (16), if designed correctly, should have specific input and output parameters. Based on the

logical design of the function, the system may be able to reuse it in order to compose new functions that

did not exist before.

16 We use the term function or service interchangeably.

121 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

For example, if the system has one service that takes a text file and generates an XML file (Function A) and

another service that takes an XML file and generates an MS word file (Function B), then the system can

compose a new service that takes a text file and generates an MS word file (Function C). The system can

later on use the new composite function to compose a new composite function if required. Moreover, if

the system needs to convert a text file into a PDF file, and there is no basic function that satisfies this need,

then it can make a composite function out of Function C and another function that takes an MS word file

and generates a PDF file (Function D). The new composite function (Function E) will take a text file,

generate an XML file, generate an MS word file, and finally generate a PDF file (Figure 5-2).

Figure 5-2 Function Composition Example

As shown from the above example, the new composite function will have a slower performance since its

processing time will increase. Hence, every function, whether it is basic or composite should declare its

best, average, and worst case efficiency processing time based on the size of the input [100] beforehand in

order to enable the system to give the proper feedback for the requester.

This feature is considered very challenging in PervComp since it may lead the system to a severe

degradation if new functions are not composed correctly. It requires a high level of intelligence especially

that some of the quality gateways, like testing, may not be conducted if the system will compose a new

function at runtime.

Table 5-2 summarizes the essential set of requirements in order to implement this feature.

Table 5-2 Function Composition Quality Feature Requirements

Alias Name Note

BR0111 The system should be
able to compose
functions dynamically at
runtime

Since the input and output of every function or service is known at
runtime, the system should be able to compose new functions at runtime
as well whether it is requested by the user explicitly or required by the
system to achieve a specific goal implicitly [101].

BR0110 The system should be
able to compose new
functions from simple or
composite functions

The system should link different functions or services together to build new
functions or services with new results [101].

BR0119 The system should satisfy
the requirements of the
service requester while
composing new functions

The system should consider the functional and quality requirements of the
service requester. Quality requirements such as cost, availability, latency, and
reliability are considered very important for an optimum service composition
[102].

Funtion E

txt-to-pdf

Function C

txt-to-word

Function A

txt-to-xml

Function B

xml-to-word Function D

word-to-pdf

122 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

5 . 1 .1 . 3 OPENNESS (OPS)

We can refer to a system as an open system if it shares some or all of its services. The degree of openness

depends on the number of published services. The service can be called “published” if it is accessible for

external objects that are not part of the system. The external objects will reuse the service to implement

their specific logic.

The developer of the application in the external object will need to have guidance from the service

provider in order to develop the application correctly. The documentation must describe the service in

terms of:

1. Input parameters: The list of parameters essential for the service to operate. The parameters

may be in different formats, and may be mandatory or optional.

2. Output parameters: The expected results that the service will return to the service caller. In

some cases, the service may not return a clear result, and having no errors can be enough to

realize the success of the service.

3. Service Description: it is a textual description that describes the service behavior.

4. Exceptional scenarios: These are expected scenarios that the service will apply in case of errors.

On the other hand, the provider of the published service must ensure that the system will not be harmed

because of the improper use of the service. For example, a published service may request to have a list of

items in order to process them and return a result for each item. If the service does not validate on the

length and types of the input list, then it may have problems with its memory consumption and allow

hackers to overload the system with invalid traffic. However, if the published service is designed to have a

capping for the list of items, then the system will not be harmed and will keep processing efficiently as

designed.

There are two types of published services:

1. Public Service: the service is open for anyone to use.

2. Protected Service: the service is open for developers based on a certificate issued from the

service provider.

Under the first type, the system must provide a Public Software Copyright License that grants access for

any developer without restriction similar to what GNU (17) offers [103]. The second type of access allows

the developer to use the service if he/she is certified by the service provider. Accordingly, the developer

has to provide a valid, un-expired certificate, when he/she accesses the service. A certificate is very

important for both the developer and the service provider in order to avoid any risk associated with the

illegal use of the published services. On the other hand, the license allows the developer to trust the

service which will consequently make his/her application trusted as well.

17 GNU is a free UNIX-compatible operating system [103].

123 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The requirements are summarized in Table 5-3.

Table 5-3 Openness Quality Feature Requirements

Alias Name Note

BR0114 The published service
should be accessed by an
authorization certificate

The published services may be used by service requesters under some

authorization conditions. These conditions are satisfied by authorization

certificates for the sake of the environment’s safety [104] or security.

Accordingly, there could be two major types of certification 1) public: where the

service is accessed by anyone 2) protected: where the access is granted to some

people who have an issued certificate by the service provider.

BR0113 The published services
must have documentation
for developers

There must be documentation for every published service that the integration

developers can access and read [10]. Documentation may have a machine-

readable format version as well e.g. annotations [105].

BR0112 The system should
publish some/all of its
services for external
usage

As the openness concept implies, the system should make as many as possible

of its services available for other systems or for developers. A system that does

not publish any service is a private system. A system that publishes all its

services is a public system [10].

BR0115 The system should report
about the performance of
its objects to interested
communities

The system should report to other interested communities about the

performance of the devices. For example, the system may report about the

response time of a smart object in a context that has 1000 requests, 500

requests, or 100 requests. It can report on at the same time on the memory size,

network bandwidth, and CPU utilization [85].

Figure 5-3 shows the relationships among these requirements in order to understand their relevant

priorities within this feature.

Figure 5-3 The Openness Quality Feature Requirements Diagram

5 . 1 .1 . 4 SCALABILITY (SCL)

A system is scalable if it stays effective whenever there is an increased demand for its resources [10]. A

resource is a data, software, or hardware resource. The system can stay effective if it keeps functioning as

designed, but not necessarily at the same performance level when there was no high demand. The

demand is either external from the users or internal from the system.

An example of a data resource is what is found in Telecommunications where the dial number is not

attached with the physical SIM that we put in the phone handset. In this case, the customer buys a new

line, but he/she chooses his preferred dial. In some situations, the dials are over-consumed and the

company has to add more dial resources to its database in order to satisfy the needs of the customers. An

example of a software resource is the database connection. The administrator can manage the

124 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

connections to the database through a pool of connections. If it is required to be scalable to support more

demand on the database, then the administrator may increase the size of the pool. A hardware resource

is any piece of hardware that the system uses with a demand from the users. If there is a high demand on

a system and memory is insufficient, then the administrator can increase the memory size, either by

replacing the chip with a high capacity chip or adding more chips. The administrator may decide also to

add more hardware nodes, servers or PCs.

In many situations, the demand can be forecasted over time. This could be achieved through surveys,

simulation, or by studying the historic activities of the system. The users of the system are expected to use

its resources in a predictable manner. It is easy for the users to expect their demand. They take specific

actions which consequently consume resources. It may also be easy for the software components to

forecast their demand for resources if they are profiled. However, a wrong forecast can either lead to a

drop in the system performance due to unexpected traffic, or increased cost if resources are over-

estimated.

Scalability can be either horizontal or vertical. A vertical scalability targets the resource itself in order to

increase its capacity. For example, replacing a processor with another one with better performance or

tunneling a piece of software to improve its performance and making it accept more traffic. The horizontal

scalability’s target is to add more resources, e.g. adding an additional processor besides the existing one.

Both approaches are essential; however, it is recommended to start scaling vertically first, since it could be

cheaper and does not require major changes in software design.

Table 5-4 lists the essential requirements for the scalability feature.

Table 5-4 Scalability Quality Feature Requirements

Alias Name Note

BR0117 The system must be
scalable within the
boundary of the available
resources

Any system has a limited number of resources. These resources set boundaries

for the number of users that they can serve. As the number of users increases

towards its maximum, the system should be able to satisfy their needs without

problems [10].

BR0116 The system should add
extra resources
transparently

The system should attach new resources to its structure transparently with

minimal interruption of the system functions. These resources should start

operating once detected by the system.

BR0118 The system should be
able to forecast the
required resources

The system should build statistics that show the trend of demand for its

resources. These statistics give indications for the system or the system

administrator about its real demand for resources according to different

contexts. It shows also an accurate number of needed resources based on the

increased requests from the users.

Figure 5-4 shows that there are maximization relationships among the requirements in the scalability

feature. More details about the relationships of this feature can be found in Appendix C: .

Figure 5-4 Scalability Quality Feature Requirements Diagram

125 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

5 . 1 .1 . 5 SERVICE DISCOVERY (SDV)

It is important to mention that the SOA is considered a well-established architectural paradigm that

provides solutions for this quality features in distributed systems. SOA is an architectural approach in

which the system functionality is represented as a service and separated from the service consumers. The

main characteristics of the SOA architecture are [106]:

1. Services have well-defined interfaces and policies.

2. Services usually represent business functions.

3. Services have a modular design.

4. Services are loosely coupled.

5. Services can be discovered.

6. Services’ location is transparent to service consumers.

7. Services are independent from the transportation mechanism.

8. Services are independent from the platform.

Figure 5-5 shows the conceptual components of the SOA architecture

Service
Registry

Service
Requester

Service
Provider

Service
(WSDL)

Find Publish

Bind (SOAP)

Figure 5-5 SOA conceptual components [16]

Many researchers used the web-service technology to implement pervasive systems. The Web Service

technology is considered a standard XML-realization for the SOA architecture as it provides useful

techniques that fulfill SOA guidelines [16]. For example, Liu et al [107] used the agent-based web services

with web applications and mobile devices in a client-server model so that the server-based web-services

can recover if a client disconnects at any time. In another example, Ranganathan and McFaddin [108] used

workflows to coordinate the execution of the web services in a pervasive system. On the other hand,

some researchers like Gray [109]observe that web-services incur an extra overhead of communication

due to using XML in its messages which requires additional processing power to parse its content, and

hence consume more network bandwidth than binary remote procedure calls.

There are other technologies that are designed specifically for embedded systems and that adopt the SOA

architecture guidelines. These technologies use native or binary procedure calls. Harihar [110] surveyed

Jini as an existing Sun Java-based technology which is already designed for embedded systems. As they

explained, Jini can satisfy all pervasive system’s characteristics such as ubiquitous access, context-

awareness, natural interaction, intelligence, security, and reliability. Architects designed Jini so that it fits

in any hardware that has processing, memory, and network connectivity. The technology is portable in

126 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

such a way that it does not require a hardware driver, nor a special protocol, and is not designed for a

specific operating system.

The goal of the Jini technology is to turn the network into a flexible and easily administrated environment

with respect to its resources, which are acquired by users. Resources can be either software programs,

hardware devices, or a combination of both [10]. For example, the architecture of the Jini technology is

based primarily on the lookup service which links both the client and the service provider to allow for

service discovery. It adopts a leasing policy in order to free unused resources, or services, and to make

them available for other clients (Figure 5-6) [110].

Figure 5-6 Jini Discovery Architecture Model [110]

There are other technologies provided by Microsoft and HP that are designed to implement pervasive

systems. Microsoft implemented UPnP (Universal Plug and Play) as an open platform based on HTTP,

XML, and SOAP [10]. HP implemented JetSend which provides peer-to-peer capability between devices to

allow information exchange [10]. It is important to note that every technology has its pros and cons and

the selection of the technology to use, must be done very carefully.

The main requirements for the Service Discovery feature are summarized in Table 5-5.

Table 5-5 Service Discovery Quality Feature Requirements

Alias Name Note

BR0105 The service
communication protocol
must be light with respect
to system resources

The service offered by the system should provide a suitable communication

protocol that does not impact the system’s overall performance and does not

deplete the system’s energy quickly.

BR0104 The service must declare
its contract interface

The service must declare its contract including its parameters, expected output,

and the communication protocol. The service declaration should have enough

description for its contract.

BR0102 The system must register
new services

As new objects join the system, they may offer new services. The system should

be able to register the new services and make them available for public, protect,

or private access according to the system and the service privacy policy.

5 . 1 .1 . 6 SPONTANEOUS INTEROPERABILITY (S IP)

A classical client-server application is built over the concept that clients interact only with a specific server

or servers. It is a model that has its benefits since the client has to get some benefits from the server, e.g.

127 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

an email client connecting to the SMTP server. The email client binds first with the server by configuring it,

then the email client sends and receives emails. The client disconnects from the server. Later interactions

with the server will not require the initial binding and the client will be able to resume interactions

immediately.

In pervasive systems, this scenario is more complicated. The client may not know the server before joining

the environment, and the system may not know its clients who send binding requests. Moreover, the

client may be on the move, which requires quick release if the client needs to continue his/her operations

but with another system. It is a very complex requirement that requires a high response time with great

knowledge of the interaction protocols in order to make the automated binding. Brainstorming,

presentation, and panel discussion are examples of business scenarios that need spontaneous

interoperability inside a smart meeting room equipped with smart devices [111].

One of the main and important challenges for this feature is the heterogeneity of devices and interaction

protocols. It is very difficult to find different manufacturers agreeing on the same standards especially

that PervComp systems express their interactions in different aspects like requesting information about

services, accessing other systems’ resources, or requesting information about devices [112].

The SIP Requirements are summarized in Table 5-6.

Table 5-6 Spontaneous Interoperability Quality Feature Requirements

Alias Name Note

BR0106 The smart object should
bind to the system quickly

The smart object requesting a service from a system must bind to the system

very quickly.

BR0107 The system should
support smooth and quick
service handover

A smart object on the move and still wants to continue its operations with

specific services associated with the system, should leave the service and bind to

another accessible one. This is called a handover process, which should be

smooth and quick. The system must release the resources of the first service

and allocate other resources for the handed over service.

BR0108 The system should
support the maximum
number of
communication protocols

The system should consider the maximum number of protocols that can be used

among the different objects. This will simplify the binding/association process

and will increase the spontaneous interoperability of the system.

BR0109 The system should use
standard interoperable
protocols

The system must not change its technical model (information and architecture)

dramatically to become interoperable with other systems; instead, it should use

standardized protocols like ontology-driven communication [113] or standard

annotations [105].

As shown in Figure 5-7, there are maximization relationships among the requirements. More details about

these relationships are included in : .

Figure 5-7 Spontaneous Interoperability Quality Feature Requirements Diagram

128 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

5.1.2 Architectural Ontology

We studied the architectural requirements and derived 18 ontological terminologies similar to what we did

with the business requirements. We provided a Scale for every term with a full definition on how to

measure that ontology during the runtime of the system. Every ontological term is associated with one or

more architectural feature (Figure 5-8). For example, we identified the term Authorization Certificate as

follows:

<<value>> Authorization Certificate: A certificate issued by an authorized entity from the system.

The certificate authorizes access to some restricted system features. For example, the certificate

may allow accessing some protected or private services. It may allow accessing some handlers in a

smart object or a dummy object.

 Scale: The percentage of objects that have authorization certificates during a certain period of time

 quality features: Openness

The definition says that Authorization Certificate is a desired value in the system, which should be

maximized. It could be measured as shown in the scale and the measurement is an indicator of the degree

of the system Openness.

The ontological term could be an indicator for more than one quality feature as well. For example,

Composite Service is defined as follows and its scale meter gives an indication for the degree of Service

Discovery and the Composing Functions quality features.

<value>> Composite Service: It is a normal service with a specific contract interface but composed

from other services that exist in the system.

 Scale: The percentage of used composite services during a certain period of time.

 Quality features: Service Discovery, Composing Functions

We identified a single issue, which is Congestion. The issue is something, e.g. feature, process, function,

etc …, that is undesired in the system and is better eliminated. Congestion is defined as follows:

<<issue>> Congestion: It is the problem of delaying or dropping requests due to high traffic of

requests that the shared resource cannot handle efficiently.

 Scale: The percentage of failed requests due to time-out problem during a certain period of time.

 Quality features: Concurrency

Although the aforementioned architectural requirements are in positive forms, our approach to classify

terminologies as values and issues proved to be very successful. The combined ontological terms of the

business and architectural quality features can give, not just a common dictionary for the development

team, but a semi-complete picture about the weights of the quality features in real systems if the scale

meters are used as well. The details about all the terms are included in : .

129 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 5-8 Architectural Ontology

5.1.3 Trade-off Analysis

The relationships among the architectural quality features (18) (Figure 5-9) (Table 5-7) were studied in order

to understand their relevant priorities.

Figure 5-9 Architectural Quality Features Relationships

The numbers inside the table represent the number of requirements relationships. We can hence read the

relationship matrix in Table 5-7, for example, the Concurrency feature contains one or two requirements

that maximize two requirements in the Composing Functions feature. The following facts are deduced:

18 We use simple abbreviations for the quality features: Concurrency = CON, Composing Functions = CFN, Openness = OPS,
Scalability = SCL, Service Discovery = SDV, and Spontaneous Interoperability = SIP. The relationship stereotypes are simplified
also Maximize = mx, Minimize = mi, Conflict = cf.

130 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

1. There are 8 conflicts, 22 maximize, and 2 minimize relationships among all the requirements.

2. The Openness feature has the highest relationships with all other features (11 relationships).

3. The Composing Function feature and Concurrency has the least number of relationships (1

relationship).

4. The Openness and the Spontaneous Interoperability features have the highest number of conflict

relationships (4 relationships). However, the Openness feature conflicts with 2 features and the

Spontaneous Interoperability conflicts with 3 features.

5. The Openness and the Service Discovery features have the highest maximize relationships (7

relationships). However, the Openness has relations with 4 quality features while the Service

Discovery has relations with 3 quality features.

6. The Service Discovery is the only quality feature that has minimize relationships with the Scalability

and the Concurrency quality features.

Table 5-7 Architecural Quality Features Relationships Matrix

 Destination

Source

CON CFN OPS SCL SDV SIP
Grand Total
 Mi cf mx total mx cf mx mi total mx cf mx Total

CON

2 2 1 1 1

2

 5

CFN

1

1 1

OPS

2 1 3 3

1

1 2 2

2 11

SCL

2

2

 2

SDV 1

4 4 1

1 1

1 2 3 10

SIP

1

1

2 2 3

Grand Total 1 2 7 9 5 2 4 1 7 2 4 4 8 32

By analyzing the conflict relationships among the architectural requirements in : - Table C-1, we deduced

the conflict relationships among the quality features as shown in Table 5-8. The table shows also the

quality feature that supersedes in case it is required to resolve the conflict marked with (*).

Table 5-8 Architectural Quality Features Conflict Superseding Relationships

Source No. of conflicting
Requirements

Destination

Concurrency 1 Scalability *

Service Discovery 1 Spontaneous Interoperability *

Spontaneous Interoperability 1 Scalability *

Composing Functions * 1 Spontaneous Interoperability

Openness * 2 Spontaneous Interoperability

Openness * 2 Composing Functions

Figure 5-10 depicts the above priority relationships where the features that have no incoming arrows have

the highest priority (Openness and Scalability) and priority decreases if the quality feature is superseded.

Following that chain we can set the priority scheme of the quality features to be:

1. Openness and Scalability (1st)

131 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

2. Concurrency and Composing Functions (2nd)

3. Spontaneous Interoperability (3rd)

4. Service Discovery (4th)

Figure 5-10 Architecture Quality Features Priority

 Table 5-9 shows the appearance of the quality features as source or destination based on the maximize

and minimize relationships. The table excluded self-relationships that appeared in Figure 5-9. The

architectural quality features can be classified as:

1. Enablers: these are the quality features whose source role overwhelms the destination’s role.

They are Service Discovery, Concurrency, and Openness.

2. Constraints: these are the quality features whose destination role overwhelms the source’s role.

They are Composing Functions, Scalability, and Spontaneous Interoperability.

We can infer from this analysis that the architectural enabler quality features still have constraint roles

when they appear as destination with a small percentage. On the other hand, the constraints features are

purely constraints with zero percent appearance as source.

Table 5-9 Architectural Quality Features percentage as source and destination

Feature Enabler Constraint

Service Discovery 82% 18%

Concurrency 80% 20%

Openness 67% 33%

Composing Functions 0% 100%

Scalability 0% 100%

Spontaneous Interoperability 0% 100%

Another perspective for analyzing priorities of the quality features is to calculate the complexity score for

every quality feature. The complexity score is calculated by equation (Equation 4-1) to get the value in the

Score column.

132 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Table 5-10 Architectural Quality Features Complexity Score

Feature # Requirements

∑ 𝑸𝑭𝒓𝒒

𝒏

𝒓𝒒=𝟏

Relations

∑ 𝑸𝑭𝒓𝒍

𝒛

𝒓𝒍=𝟎

Features

∑ 𝑸𝑭𝒇𝒕

𝒚

𝒇𝒕=𝟏

Score

𝑸𝑭𝒔

Weight

𝑸𝑭𝒔/ Total Score

Openness 4 13 6 312 0.3180

Service Discovery 3 12 6 216 0.2202

Spontaneous Interoperability 4 9 5 180 0.1835

Composing Functions 3 10 4 120 0.1223

Scalability 3 7 5 105 0.1070

Concurrency 2 6 4 48 0.0489

Total 19 57 30 981 1.0000

We can deduct from Table 5-10 that Openness and Service Discovery weigh more than 50% of the six

quality features. Both features are Enabler quality features. However, Openness has higher priority and

Service Discovery is the lowest in priority, based on the conflict resolution analysis shown in Figure 5-10.

The priority based on conflict resolution is significantly different than the one based on complexity. It is

considered the responsibility of the architect in that case to sort out the priority of the features. However,

we recommend using the complexity score as a reference during the development activities which may

implement a conflict resolution priority at runtime.

5.2 Technology Enablers

The technology enablers are considered very important elements for a software or a system architect

while building a robust pervasive system. In this section, we do not introduce innovative concepts but we

rather review the basic facts about different areas of the technology that interweave themselves with new

devices to become part of a pervasive system. We will derive concepts and design decisions from this

review. Moreover, it is not our goal to direct the architect to use a specific technology as such a decision

depends on many factors including time, cost, resources, and more importantly the nature of the business

domain. It is more of a framework that the architect needs to recognize in order to understand his/her

boundaries (Figure 5-11).

Figure 5-11 Technology Enablers Framework

Technology Enablers

High-Speed network

Microcontrollers

Smart Sensors

Smart Phones

Contactless Tags

Effecient Power Tehcnology

Business Domain

System Architecture

133 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The technology enablers in Figure 5-11 are selected due to the following reasons :

1. Noticeable advancements have been introduced in these technologies which allow the architect to

build systems with high capabilities.

2. They can be managed programmatically which facilitates the development and maintenance

activities.

3. Many architectural challenges are associated with these technologies. For example, the volatility

of the system is directly impacted by the efficiency of the power technology that the system uses

for its devices. The mobility of the users are recognized by the smart phones, smart sensors, and

contactless tags. Moreover, the quality of the microcontrollers and the high-speed networks

greatly impact the concurrency, scalability, and reliability of the system.

4. Microcontrollers and Smart Phones can be independently programmed to provide a countless

number of applications.

More details on the technology enablers are provided in Appendix C.

5.3 Network Challenges

A PervComp system has a special nature whereby objects tend to be small in size, use wireless

connectivity, (although wired connectivity is still an option), and change their locations all the time. It is

still a normal distributed system, but with more challenges. There are three main challenges that must be

addressed in the deployment topology:

1. Message routing: Objects in the system interact with each other all the time. Some of the objects

are close enough and some others are far away. Objects may not know the location of other

objects as objects may be located by name. Accordingly, the system may choose a short route

based on the logical relationship among objects ignoring the physical network layer. This may lead

to taking a longer physical route which will lead of course to increased latency of the response

time. This problem is notable in the overlay networks where the objects are not aware of the

physical layer [114].

If object B wants to send information to node A, Figure 5-12-a, which is directly connected to it

according to the overlay network, then the actual path through the physical network has to

traverse node D and node C. So, the actual path is BDCA (Figure 5-12-b). Even worse, if

object B sends information to node C, then the logical path through the overlay network goes

through A first then C (BAC); however, the physical path will be BDCAC where

object C is traversed twice [114].

134 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

A B

DC
A C D B

(a) Overlay Network Topology (b) Physical network toplogy

Figure 5-12 Overlay network vs Physical network [114]

The problem gets more complicated given that pervasive systems tend to change their network

topology frequently due to the mobility of the objects [115]. The change may happen for both the

overlay and the physical network.

A clear solution that may be applied is to make the system aware of its topology and solve the

routing problems based on the knowledge about the physical network setup.

2. Network interference: It is important to design the network of the pervasive system using the

most suitable topology and choose the location of the interferers with the minimal network

interference. Network interference occurs due to the proximity of the different networks which

leads to collision of the packets. Consequently, the system suffers from errors in packets and

increased power consumption [115]. One of the most important reasons for interference

problems is the spatial distribution of the interferers (Figure 5-13), characteristics of the

transmission, and propagation characteristics of the carrier medium [116].

(a) High Interference networks (b) Moderate Interference networks (c) Low Interference networks

Figure 5-13 Interference of networks based on the spatial distribution

It is possible to change the topology of the network in order to minimize interference [117].

Regardless of the technology advancements that may minimize interference, this solution can be

one of the best choices for an architect since it solves the problem from an architectural point of

view.

3. Seamless Handover: the mobile object requires to carryover the service along the way while

changing its location. A seamless handover mechanism is very challenging for pervasive systems.

The object does not only move, but the new network may act differently. For example, the object

may use a service while connected to a WiFi network inside a building and as the user changes

location to get outdoor, it will need to connect to a 3G/4G network in order to continue the

ongoing operation. The problem is that changing the network will mean dropping some packets

and the service may be interrupted accordingly [118].

135 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

An architectural solution for this problem is to facilitate the handover through a Handover

Coordinator component that can realize the network of the previous location and the network of

the next location (whether vertically or horizontally), and ensures that the mobile object remains

connected with minimal packet drops [118] [119].

According to the above discussion and the discussion about the high speed networks in section C.2.1 we

can propose some essential network design guidelines whenever deploying a new pervasive system:

1. Wired if possible: it is known that wired connectivity has higher speeds, smaller latency and less

interference than the wireless connectivity [120]. So, it is recommended to wire objects if possible

especially if a higher speed is required. This can apply to the objects that are part of the system if

they will not be relocated during the whole lifetime. The system may offer wired connectivity

ports as well for objects that join the system. However, it does not mean that the system will be

fully dependent on wires, as wireless is considered an important enabler for the PervComp.

2. Use Hybrid network topologies: there is no need to choose a single topology to work with. The

system may be composed of different topologies connected with each other. The star network

could be the underlying network for a middleware-based architecture, while the mesh network

could be the underlying network for the P2P architecture.

3. Switch to 3G/4G only if needed: it is preferred to use low-energy network technologies as

mentioned in section C.2.1 in indoor locations, and switch to the 3G/4G only if outdoor and

connectivity to the Internet is required. The 4G network is proven to have higher power

consumption than WiFi [121] [122]. However, the system may choose to optimize for other goals,

e.g. upload speed, in some situations depending on the goal with the cost of more power

consumption.

4. Study space first: It is very important for the system architect to study the area where the devices

will be installed. The purpose is to understand:

a. Where to wire devices.

b. Locations where walls will be found and wireless signal should be stronger.

c. Areas that have higher data traffic (download or upload).

5. Utilize Smart Objects: Smart objects may have the capability of resending traffic from one object

to another. It could be a useful solution for some network problems that require sending data for

an object whose path can be identified only through a different object. It is similar to a Peer to

Peer architecture, but it is more flexible as the smart object may change its location and connect

to another object.

5.4 Patterns

In this section, we define a list of important architectural and design patterns that can be used to build the

baseline architecture. Patterns are not a plug-and-play solutions and the architect needs to know that

they represent some solutions for some problems in a certain context. One may imagine patterns as

solutions for very specific problems which can together contribute in solving the big problem of the system

136 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

architecture (Figure 5-14). We revised the business, architectural, technology enablers and network

challenges in order to come out with a list of patterns that satisfy their needs. Appendix C : shows the

“satisfaction” relationship of the patterns with the business and architectural requirements.

Incomplete baseline architecture

Architecture and
Design Patterns

Figure 5-14 Patterns Complete the whole picture of the architecture

5.4.1 Architecture Patterns

It is not unusual for any software architecture to have architectural problems that need wise decisions.

The problems arise from the nature of the system based on the business and architectural requirements.

Architectural patterns provide high-level design points of view for architectural problems and their

solutions. The following sections identify the key architectural problems and our decisions to resolve them

5 . 4 .1 . 1 EVENT HANDLING DELEG ATION

Problem

A system that receives a lot of events will need a special event handling mechanism. It is a system under

constant processing and cannot be easily taken offline for maintenance purpose, for example, or else the

system can lose track of the events. Even if the system will handle events as historical backlog, the action

itself may be unnecessary after a certain amount of time, especially with real time systems.

For example, the automotive embedded system that receives events from the car all the time should

handle almost all events, especially while driving, in real time. Delaying the actions in response for the

events may lead to a disaster.

Solution

A solution for this problem from a software design point of view is to distribute event handling among the

different components of the system. The system should definitely have an Event Handler that can

respond to events. However, the nature of the handler could be different based on the type of event. For

example, there could be a Brake Event Handler, Engine Starter Event Handling, or Wheel Event Handling.

The solution does not guarantee 100% accurate processing for events, but at least it is possible to maintain

every event handler away from the other components with minimal impact on the rest of the system.

Moreover, the failure of one event handler does not fail the whole event handling mechanism. In brief,

the system can receive an event, check its type, then delegate the handling to the responsible handler,

which in turn will analyze and take the necessary action (Figure 5-15). The delegation pattern is already

137 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

defined in the literature [102] as two objects engaged in handling a request and the receiving object

delegates the operation to the second object.

Figure 5-15 Event Handling Delegation design pattern

5 . 4 .1 . 2 SYNC -ASYNCHRONOUS INTERACTION

Problem

Asynchronous and Synchronous modes are two interaction models that most of the objects will use to

pass messages [123]. When object A calls a service that belongs to object B directly with the required

parameters and waits until the called object replies back, then we can call this interaction a synchronous

interaction mode (Figure 5-16 - a). When object A calls a service that belongs to object B directly without

waiting for the reply, then object B calls back object A to inform it about the result, then it is called

asynchronous interaction mode (Figure 5-16 - b).

Object A Object B

send

acknowledge

Call back

Object A Object B

send

return

(a) Synchronous Interaction (b) Asynchronous Interaction

Figure 5-16 Interaction models

In the synchronous mode, the interaction is not successful until the called object replies back. It is faster

than the asynchronous interaction mode in general when an atomic (19) transaction is required. However,

the failure of one module may cause the operation to freeze and ultimately fail the entire operation.

The asynchronous interaction model is considered faster in the first interaction when object A delivers a

message to object B. Object B confirms the receipt of the message but does not confirm the success of the

operation that object B will do.

Messaging in pervasive systems gets complicated as the interacting objects increase. The system needs to

moderate the messages very carefully to deliver the messages successfully with no delay and with minimal

loss of communication among objects.

Solution

We adopt a hybrid interaction model that captures the benefits of both modes according to the situation

(Figure 5-16):

19 An atomic transaction is a transaction that must succeed for all its steps, or fail if one step fails.

sd Event Handling Delegation

Recieve Event System Send to Responsible

Handler

Event Handler
Takes Action

138 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

1. In time-critical systems, the system interacts asynchronously with the sensors and actuators.

However, the internal communication among system modules should be made synchronously.

2. If the network is very stable and rarely loses messages, then a synchronous mode can be

preferred, given that interactions among objects is characterized as fast. The system should

switch to asynchronous mode otherwise.

3. In normal systems, the asynchronous interaction model is highly recommended. This model has

higher loosely-coupled modules that allow the system administrator to maintain consumer

modules without rejecting requests from producers if the system affords to wait a longer time

than its service level.

5 . 4 .1 . 3 PEER-TO-PEER SMART OBJECT

Problem

Imagine a system with 5 objects such that all of them want to interact with each other. Then, there will be

25 communication channels among all the objects. If the system increased to have 100 objects, then there

will be 10,000 communication channels. Architects recognized this complexity and they introduced the

concept of middleware to solve this problem.

(b) A middleware-connected
system (star toplogy)

(a) Fully-connected system
(Mesh topology)

Figure 5-17 Fully-connected vs middleware-connected system

The middleware layer is intended to solve many architectural problems. The following are some of them:

1. It simplifies the development of interaction with other objects of the system [124]. For example,

instead of developing 10000 interaction points for a system that has 100 objects, it is enough to

develop a single interaction point with the middleware. The middleware will be responsible for

cascading the message to the rest of the objects (Figure 5-17).

2. It hides the complexity of the object interaction interfaces [124]. Since there are numerous

manufacturers that have different standards, it becomes difficult to ask a developer to learn and

develop an interaction interface for an object every time a new object is introduced. A single

manufacturer can have even different standards for its objects. The middleware provides a

standard interface that hides the complexity for the application developers to simplify their

development effort.

139 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

3. It provides additional interaction values. There are some problems in normal interactions that

may occur. The middleware layer can efficiently provide a solution for all of them. An example of

such problems are:

a. Timeout: The application wants to fail the message if it does not receive a response

within x seconds.

b. Scheduling: The application wants to send the message based on a pre-planned schedule.

c. Retrial: The application wants to retry sending the message for x number of trials.

d. Logging: The application wants to log all interaction activities with other objects.

e. Analysis & Tuning: The application wants to analyze interaction activities with other

objects. The application may then tune its activities for better performance.

f. Broadcasting: The application wants to deliver the message for a group of objects or all

objects of the system.

There are some deficiencies that a middleware brings up as a cost:

1. It introduces an additional latency to the interaction among layers which may be a non-efficient

solution for time-critical systems.

2. It could be a point of failure for the whole system although hardware and software replication can

partially solve this problem with additional cost.

On the other hand, a Peer to Peer (P2P) architecture adopts a mesh topology (Figure 5-17 (a)) that allows

objects to communicate directly with each other given that all of them should have the same capabilities.

Every peer acts as a client and as a server and all of them have the same standard interaction protocol.

Thus, we can find that a P2P system is powerful in terms of faster communication and flexibility of the role

that the peer can choose to play.

Solution

We cannot assume that all objects in the system will have the same capabilities to act as client and servers.

However, smart objects can be assumed to act as client/server peers similar to the assumption in a P2P

system. The role of the smart object may oscillate between a client and a server according to the number

of services they request or they offer.

5 . 4 .1 . 4 HYBRID MESSAGING PROTOCOLS

Problem

A protocol is defined as a set of send and a receive commands in a specific sequence to execute a specific

operation that embodies more than one cooperating party. There are two types of protocols as far as we

are concerned when we discuss the interaction among hybrid objects in a pervasive system:

1. A lightweight protocol: the syntax of the protocol is simple and needs a reference document to

understand it. For example, FTP, TELNET, and MQTT [125] are types of lightweight protocols.

140 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

There are other tuple-based protocols that use 3-parameters to handle communication among

objects through what is called tuple spaces.

2. A heavyweight protocol: the syntax of the protocol is more into natural-understanding language

which is by default descriptive and self-explanatory, although documentation is still needed. SOAP

is a type of a heavyweight protocol, which uses XML formatted messages to handle

communication among objects.

A system would benefit a lot from a heavyweight protocol since it is possible to add many details in the

message. However, in pervasive systems a heavyweight protocol may drain system resources very quickly,

especially if the system has limited resources. On the other hand, the lightweight protocol is energy-

friendly but with the cost of minimal details in the message.

Solution

We do recommend an optimum usage of protocols in the pervasive system to handle messaging among

objects:

1. Use a standard protocol: In theory, a protocol could be developed as needed to achieve the

required operations. However, in practice, it is better to use standardized protocols to save

learning time, avoid conflict with devices with limited capabilities, and increase spontaneous

interoperability and openness.

2. Use a heavyweight protocol for binding negotiation: negotiation is usually a one-time operation

that the object needs to do in order to bind with another object. A standard descriptive protocol

like SOAP could be useful to understand the real needs of the object which can put a lot of

requirements details in the binding negotiation messages. However, it should not embody a

severe burden on the system resource.

3. Use a lightweight protocol for interaction: use a lightweight protocol to carry out messages

among bound objects as it is a long-term communication and puts a minimal burden over the

system resources. Objects that re-visit the system will not bind again and they can interact

directly with the system using the lightweight protocol.

5.4.2 Design Patterns

Design patterns target detailed solutions for specific design problems. In the coming sections we provide

some of the important patterns that drive the baseline architecture.

5 . 4 .2 . 1 PROFILE EXTENSION

Problem

Since the technology improves all the time while the size of knowledge increases, it will be impractical to

profile users, devices, or any other objects in a software system using a rigid set of attributes. A profile

should provide a room of expansion to capture new attributes. Accordingly, it should be possible to create

rules and associate them with the new attributes.

141 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

For example, the pervasive system may monitor the user of the system and capture his/her profile in

terms of Name, age, job. Future enhancements of the system may necessitate having a mobile number as

well in order to notify the user with an SMS message. Another example is when there is a need to replace

an outdated sensor with a new one that has the capability of measuring its own temperature and

communicating it through predefined APIs. The system in this case will need to modify the device profile

to attach a Temperature Attribute with the device profile to measure the average temperature of the

device.

Solution

The proposed solution for this problem is to detach the profile entity from the attributes and propagate

the profile attributes according to the profile design. New rules, for example, UI rendering, input

validation or behavioral control, are added to the system and linked to the attributes. In this case the

system administrator will be able to define new attributes, link them with the profiles and define the new

rules. Rules may have inputs from other sources. The rules themselves may be programmed according to

the flexibility of the system (Figure 5-18).

Figure 5-18 Profile Extension design pattern

5 . 4 .2 . 2 QUALITY FEATURE RUNTIME PERFORMANCE

Problem

There is a number of quality features that any pervasive system is willing to have. It is crucial to

understand the performance of the system at runtime through its embedded quality features. The quality

feature performance may also drive the priority of the feature within the system.

For example, the system may monitor the performance of the Context Sensitivity quality feature by

checking the Sensor, Interpretation rule, and Analysis values frequently (see Appendix E). The accumulated

score of these values gives a reference about the performance of the feature. The score of the feature

alongside the score of the other features determine the overall performance of the system.

Solution

The solution is to embed the values and issues derived during the analysis phase of the project, which can

be found in the business and architecture ontologies, in the system. The system should implement the

measurement scale and execute it frequently based on the system monitoring rules. The system designers

should define the performance rules that satisfy their needs. The priority of the quality feature should be

class Profile Extension

Profile Attribute

Rule Other Inputs

0..*1

1

0..*

1..*1

1

1..*

142 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

part of the performance equations and the quality feature priority may be modified as well based on the

runtime performance of the quality feature (Figure 5-19). It is very important to use a well-defined scale of

measurement in order not to give misleading indications about the performance of the system.

Figure 5-19 Quality Feature Runtime Performance design pattern

5 . 4 .2 . 3 SENSE AND SYNTHESIZE

Driven From

The concepts in section (C.2.3: Smart Sensors) derived this pattern in addition to the business or

architectural requirements as stated in Appendix C.

Problem

The pervasive system environment based on wireless communication of its sensors may have problems in

its sensed data due to interference, due to the degradation of the sensors’ hardware by time (see section

5.3), or because their environmental conditions, e.g. minimum temperature and maximum temperature,

are not satisfied. The system that receives inaccurate signals will definitely give invalid results. For

example, the system may eliminate all odd values of temperature values that are not in pace with the

stream of temperature values received so far.

Solution

The solution for this problem is to add a Synthesizer component in the pipeline of the sensor in order to

detect faulty values and correct/remove them if required. The hardware sensor will send the digital data

to the Sensor interface which in turn will send it to the Synthesizer and then store the data in the database

(Figure 5-20). It is recommended not to store sensor data directly in the database before filtering them in

order not to waste system storage resources. Moreover, the system may take decisions based on wrong

data before the synthesizer acts on them. Another approach can be introduced to split the Synthesizer

into a Verifier and a Repairer [28].

class Quality Feature Runtime Performance

Quality Feature

+ Priority: int

Value Issue

Scale Performance Rule

0..*

1..*

1..*

1

1..*

1

1..*

1..*

11..*

143 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 5-20 Sense-Synthesize design pattern

5 . 4 .2 . 4 ACTUATOR FEEDBACK CYCLE

Problem

A smart system needs to learn in order to improve its techniques. As pervasive systems tend to adapt the

change in the environment, it is always necessary to learn from the actions that the system made in order

to improve future behaviors. The pervasive system takes its action which changes the environment

through actuators. Actuators are hardware devices that control the behavior of these devices. Moreover,

it will be useful to forecast the lifetime of the device itself before getting it replaced.

For example, a system that is based on batteries and very much concerned about its availability needs to

calculate power consumption from its devices in order to give an accurate estimate for its operation

lifetime. The users may overestimate the system capabilities and continue their work but they may

suddenly lose their work with or without a very short warning from the system.

Solution

The solution for this problem is to allow the actuators to send the results of the actions to the system

whether these actions are successful or not. The feedback may include information about the operation

result, time taken to complete it, power consumed, and the remaining power of the actuator. The

operation simply starts with a change that the system is notified with and sent to the adaptor, which in

turn takes a decision based on some rules. The decision may require some actions by the actuators of the

system, which in turn sends its feedback to the system. The system uses the feedback information to

improve its rules (Figure 5-21).

Figure 5-21 Feedback Cycle design pattern

class Sense-Synthesize

Sensor Synthesizer

«signal»

Hardware Sensor
Database

«use»

«use»

«use»

sd Feedback Cycle

Change System Adaptor Actuator

Rules

Action feedback

Improves

Fetch

144 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

5 . 4 .2 . 5 COMMUNITY ADVICE

Problem

A pervasive system can encompass a large number of devices. These devices may be used by other

systems. The device type could be used in multiple systems as well. The architect can acquire knowledge

about the device from its manual, but practical knowledge can be acquired only from real environments.

The problem here is how to avail such practical information for the interested experts alongside its

relevant context?

For example, a motion sensor installed in an indoor environment may behave differently if it is installed in

an outdoor environment. An indoor environment may have ideal conditions that make the sensor work

longer. The outdoor environment may cause the sensor to consume more power and cause internal

hardware to misbehave in very high temperatures.

Solution

The solution for this problem is to provide a facility for the system to capture information about its devices

periodically and submit it to other interested communities. The interested communities could be any

system that is interested in collecting behavioral information about different devices, analyzes them, and

generates conclusions that are useful for the pervasive systems architects (Figure 5-22). The architect can

consult the interested communities as well for information about specific devices.

Figure 5-22 Community Advice design pattern

5 . 4 .2 . 6 POLICY-DRIVEN EXECUTION

Problem

The behavior of the pervasive system changes from one context to another. On the other hand, the

system administrator can change the behavior of the system within the same context. The problem is how

to govern the behavior of the system if there are changes in the context and by the system administrator?

For example, the context of execution may have security threats that impact the system performance

while the administrator runs the system in maintenance mode. This complex combination of settings may

impose a specific behavior on the system (different from the settings), where there are security threats

while the system is running in its normal execution mode.

Solution

class Community Adv ice

Community Dev ice

System

1..*

consult

«use»

0..*

1..* collects statistics

«use»

1..*

1..*

Share
«use»

0..*

145 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The solution for this problem is to control the behavior of the system through a Policy configuration. The

Policy configuration will be applied based on the Mode and on the Context. There could be different

policies for every combination (Figure 5-23). This pattern is defined as a variation from the Strategy

Pattern [126] with the addition of the Mode concept.

Figure 5-23 Policy-driven Execution design pattern

5.5 The Baseline Technical Architecture Model

The baseline technical architecture model explains key concepts and modules that are necessary to

implement an architecture for the system. It includes detailed explanation for the smart environment, the

smart object, and the system baseline architecture model. The details in the coming sections are derived

from the vast discussion about the requirements of the business and architecture requirements,

technology enablers, technology challenges, and patterns.

5.5.1 Smart Environment

A smart environment is a model of the PervComp system where objects show a high degree of

intelligence. Ideal smart objects possess processing powers (memory & processor), a communication

interface, sensors and actuators. According to Kortuem et. al. the degrees of smartness could be there

among objects based on the manufacturers’ designs. Such degrees are categorized into three types

(Figure 5-24) [127]. Each type has its associated set of functions, rules, and workflows:

1. Activity-aware object: this is an object that can record information about the surrounding

activities, aggregates them, but does not respond to these activities.

2. Policy-aware object: this is an object that can recognize surrounding activities according to pre-

defined policies and devises proper actions and hence can respond by a warning or an alert.

3. Process–aware object: this is an object that recognizes surrounding activities in the light of

organizational processes and provides proper directions for users about tasks, deadlines, and

decisions.

class MODE-CONTEXT-POLICY EXECUTION

ContextPolicyMode

Configuration
«use» «use»

146 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 5-24 Smart Object types according to the degree of smartness [127]

It is important to note here that a smart environment can be composed of other passive objects that are

not smart by design. Objects such as RFID-tagged devices can be identified only by other sensor-enabled

objects, which could be smart objects as defined earlier. From a business architecture perspective, passive

objects play an important role since there are objects in our world that do not require to have any sort of

intelligence in addition to the consideration of cost of course. For example, tracking boxes of products

coming in/out of a specific warehouse does not require intelligence in these boxes. They just need a

reader and RFID stamp-tags per box. In another situation, it may be necessary to add some processing

capabilities for boxes, and in this case we call them active objects. However, as usual cost/benefit trade-

offs are important to study.

Another perception of the objects will model objects as resource-based nodes [50] where objects are

classified as i) objects with limited resources, that are responsible for collecting data from the surrounding

environment ii) poor-resource nodes that receive data from the limited-resource nodes and make some

processing iii) rich-resource nodes that receive data from the poor-resource nodes and make intensive

data analysis.

Hence, we reached a generic model for a smart environment, which is ideally represented through a

pervasive system as shown in Figure 5-24.

The smart environment is structured as follows:

1. The smart environment can have a nested smart environment. Every smart environment is

composed of objects.

2. An object could be a smart object or a dummy object. The details of the smart object are derived

from section C.2.2: Microcontrollers and section C.2.4: Smart Phones.

3. A smart object is classified as shown in Figure 5-25 and as defined above in this section, and can

contain dummy objects.

147 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

4. A dummy object is an object that lacks one of the properties of the smart object. It has a specific

job responsibility with no intelligence or logic. A dummy object is either an active object or a

passive object as explained earlier in this section.

Figure 5-25 Smart Environment Abstract Model

As shown also in the model, a smart object must possess some properties, or capabilities, namely

processor, memory, network interface, and some sensing or actuating capabilities. We defined some

types for the object and the smart environment, which helps the architect to take better decisions. A

smart environment is an environment that exhibits intelligence behavior through smart object(s) that are

part object(s) or resident object(s). The smart environment can be classified, from a privacy point of view,

into [89]:

1. Public: where most of its services and resources are accessible to its objects with no access rules.

2. Social: it is an environment that grants access to its resources and services based on group

association.

3. Private: the resources and services are accessible to objects that have the proper permissions for

themselves.

An object is anything in the world which can be represented in a smart environment. A classification of the

objects based on their interaction model with the smart environment could be addressed in the following

way:

1. Part Object: it is an object which cannot be removed from the system, else the system will not

function as designed.

148 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

2. Resident Object: it is an object which is important as it accomplishes one or more tasks of the

system, but removing it will not hinder the system design.

3. Trusted Object: it is an object that the system trusts and joins the environment frequently.

4. Visitor Object: it is a non-trusted object that joins the environment in ad-hoc situations.

More details about the smart environment and object states are available in : .

All types of objects that join the smart environment need to interact with the environment in the most

optimum way. There are two types of configuration approaches that can be adopted [10]:

1. Preconfigured: the object is bound to the environment through a configuration that aims to

establish a long-term relationship between the object and the environment. It applies mostly to

the part objects and may be applied to the resident objects.

2. Spontaneous: the object is bound to the environment through spontaneous configuration. This

type of configuration applies to the visitor, resident, and trusted objects. The spontaneous binding

requires from the system that it negotiates first with the device using a standard protocol, then

the system binds it, then the object starts interaction using the proper protocol which was agreed

upon during the negotiation step.

5.5.2 Smart Object

The smart object is an important part of a successful pervasive system. It can be programmed to provide

the required behavior and can carry out different roles in the smart environment. Hence, we recommend

standardizing the smart object with handlers that can address key issues as shown in Figure 5-26. These

handlers can add more controls on the pervasive system.

Figure 5-26 Smart Object Standard Handlers

Smart Object

Safety

Processing
Power Status

Community
Statistics

Programming
Permissions

Volatility Status

Security &

Privacy

149 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The developer need not only know how to program the smart object, in case its interface is available for

any programmer, but needs to know also extra details that are considered essential for robust and safe

pervasive systems. Moreover, the final architecture mainly depends on the capabilities of the devices that

compose the skeleton of the system. Some usage scenarios of smart objects may put some living

creatures’ lives at risk [91]. Hence, we recommend the following standards for smart objects:

1. Programming Permissions: as they are objects in a physical world, they will have unique

identifiers, and as they may risk lives if not used properly, as well as expose privacy and security of

people, the object will have three levels of protections for its programmable interface :

a. Public interface: it can be used by designers without permission from the manufacturer.

b. Protected Interface: it can be used by designers who are certified by the manufacturer.

c. Private Interface: it can be used only by the manufacturer’s engineers.

2. Safety procedures: as smart objects co-exist with living creatures including humans, it is essential

to know all safety procedures associated with their use. This is not only some documents to read,

but it may have an interface to access as well.

3. Security and privacy procedures: are rules to follow in order to secure data processing by that

object and at the same time protect the user’s privacy

4. Volatility status: it should be able to determine the volatility expectations during design and later

during run-time. Otherwise, the entire system may fail unexpectedly.

5. Processing Power status: Every smart object should reveal its processing status (processing

availability and memory status.

6. Process Hosting: A smart object should have an easy access to its processing power (processor and

memory) if there is enough room and if its operating system allows it.

7. Community statistics: these are statistics that the smart object collects about itself and makes

available for interested communities. This should not reveal any personal information. It will help

software engineers understand how to deal with different smart objects in different

environments.

A development framework emerges from the above mentioned elements where different stakeholders

work together to create a truly smart environment as shown in Figure 5-27. Manufacturers produce the

smart object and facilitate its usage. The developer builds pervasive systems where he/she can use a

protected object handler only if he/she is certified for that through trusted organizations. Then smart

objects share their run-time business and technical statistics for the benefit of the developers’ community.

150 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Figure 5-27 Open Development Framework for Pervasive Systems

5 . 5 .2 . 1 SMART OBJECT HANDLER S

A smart cooker can have different programming methods to allow others to

control it. Figure 5-28 shows a hypothetical cooker class that has some

attributes and some methods. The (+) is for public, (-) for private, and (#) is

for protected. The semantics here is different from the normal OOP approach, although the same

terminologies are used. Accordingly, Height, Width, and IsOvenDoorOpen are public attributes/methods

for any developer to use without getting permission from the manufacturer.

Figure 5-28 Cooker Handler Class Example

The main purpose of certifying a software engineer for using the Cooker interface, is not because of the

complexity of the object handlers, it is to ensure that the software engineer is capable of designing robust

solutions that will not endanger lives. Certification could be standardized by international organizations

that provide recognized certificates world-wide. Certificates can then be implemented as digital

certificates signed from one of these trusted organizations and validated by the smart object at run-time.

However, the software engineer can still use any of the public and protected handlers during the

development phase.

It is important to differentiate between what the designer should do in order to

protect the smart object’s internal hardware components from damage, and

what he/she should do in order to keep the surrounding environment safe. In

the first case, the designer is constrained with hardware limitations and he/she should be aware of these

before providing any method that can be used by external programmers. In the second case, the designer

5.5.2.1.1 Programming

Permissions

5.5.2.1.2 Safety

Procedures

151 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

must assume hypothetical scenarios from real life and modify its design accordingly so that the safety of

the smart object is achieved to the best level.

The certified programmer should be able to use protected handlers within the safety procedures provided

by the manufacturer. For example, if the door of the smart Cooker is open and will risk the safety of close

humans while the room temperature is below -20° and there is no temperature sensor attached, then the

designer must force the programmer to provide the room temperature before calling the method

OpenOvenDoor(int: Temprature). The handler will then give the proper warning in order to check for the

proximity of humans before executing the called handler.

It is always safer to equip smart objects with the needed hardware capabilities that allow it to take proper

decisions rather than leaving it for the external programmers. However, the cost trade-off is always a

factor in the production equation which may require the designer to design for safety procedures as if

there are insufficient resources.

Security and Privacy is one of the most researched topics in PervComp.

Security and Privacy of users are combined together as the probability

that they affect each other is very high. If system security is breached,

then it is possible to release private information about users. On the other hand, if user privacy is

violated, it is possible to breach the system using real data which can then be used by the wrong hands

and violate the system security.

Smart Object designers should adopt the proper solution to protect customer information and maintain

system security. For example, information transferred among smart objects can be encrypted if they

release confidential information. Users may need to authenticate their identity during various activities

according to the required security level.

Solutions are there and they are straightforward. However, the designer must take his/her decisions

wisely since enforcing security rules like encryption may impact the smart object’s battery, and hence

impact the availability of the environment. Moreover, requiring the users to authenticate constantly may

degrade the usability of the solution.

A smart object is volatile if it disappears from the environment without prior

alarm. In ubiquitous computation, such behavior is common rather than

exceptional [10]. A smart object can disappear for different reasons, for example:

1. It is on the move and its existence in the environment is transient.

2. Its battery runs out of charge.

3. There is hardware failure.

4. One of the smart object’s accessible services fails although the smart objet remains functional with

other services.

5. A communication failure impacts the data transformation.

6. Network communication bandwidth congestion.

5.5.2.1.3 Security and privacy

Procedures

5.5.2.1.4 Volatility

Status

152 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Some of the major issues that may be caused by the sudden disappearance of the smart object are data

corruption and incomplete operations. Technical solutions that deal with hazards like frequent retrials and

data hashing can consume substantial traffic and negatively impact the availability of the environment.

One of the essential smart object handlers is to inquire about the charging lifetime of the battery. It is

important to know this information at run-time since factors like rate of data processing and network

communication may change the battery’s ideal time-to-charge value. Software-enabled batteries proved

to be more reliable [128].

Such information can greatly help the solution designers with decisions taken during run-time. For

example, the designer may take quick decisions like warning system administrators to charge the smart

object devices, or switch traffic to standby smart objects.

However, the solution designer should set expectations based on the maximum threshold for battery time-

to-charge and use smart object battery handler as well to change environmental rules dynamically.

Accordingly, designers can set time constraints rules on some objects, or ensure a higher data protection

mode for objects that are about to disappear in order to mitigate the volatility risk.

It is important to mention here that the World Wide Web Consortium is drafting a new API document to

inquire about the hosting device battery [129]. This feature is available also on Andriod platforms for

smart phones developers to use as well [130].

The purpose is to take informed decisions before the device disappears from the smart environment. A

battery is only one reason that can make the Smart Object disappear. The other listed points are also

crucial and can greatly affect the availability of the smart object. Accordingly, monitoring the congestion

of the network packets can give better expectations. The rate of hardware failure, if recorded, can also

give a good indication. The proximity of the device from the WiFi hotspot can show real expectations as

well. A software bug is another reason that impacts the device volatility status.

One of the basic operating system functions is to know the processing power

(processor and memory) status. Such knowledge helps in anticipating the

environment’s availability and time-to-finish for processes. As explained

above, an increased processing cycle consumes more power and consequently battery-dependent devices

deplete quickly.

The device must give priority for this handler to run as it should normally be called upon to take a decision

based on the device processing power status. However, software engineers should be very careful about

the frequency of using this method in order not to cause frequent interruption for processes and deplete

the smart object battery.

Some processes may fail in a smart space if they do not fulfill their tasks. A process

may be considered failed if it falls in one of the following categories during run-

time:

1. The process fulfilled part of its tasks, and failed to complete the remaining tasks.

5.5.2.1.5 Processing

Power Status

5.5.2.1.6 Process

Hosting

153 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

2. The process completed its tasks beyond its service level.

3. The process failed to accomplish all its assigned tasks.

One of the main reasons for failure, if faults due to wrong design are ignored, is that the device cannot

provide the required resources for the process as needed and on time. In other words, a process may

need to have 50% of the CPU processing power to complete its tasks in 1 second as a hard limit for its

service level, but because the CPU has other running processes, it succeeds in 1.5 seconds. The failure

could also be because the available memory does not satisfy the needs of the process.

The point here is to make use of the environment’s ideal resources to support processes that are about to

fail in order to sustain a robust smart space. It means that smart objects may host processes to support

them until they complete their tasks successfully. The idea of hosting is to help processes recover instead

of leaving them fail, if possible, by providing them with needed resources as long as these resources are

device-independent and will not harm the smart object in any way other than taking more processing

power.

The development community needs to have more helpful information about

different smart objects and their behaviour in different contexts. Context may

be understood differently by different people. The business analyst may be

more interested in the business context of the Smart Object. The solution architect needs to know the

technical context including information about processor, memory, disk storage, sensors, actuators,

operating system, network interfaces, temperature, battery, and any other relevant information as shown

in Figure 5-27 and discussed earlier in the Community Advice design pattern (section 5.4.2.5).

Having information about the business context of the smart object will help in gaining knowledge about

the expected performance of the smart object in similar environments. For example, a camera may be

working round the clock in a prison recording videos and taking snapshots continuously. On the other

hand, it may be switched on and off in a school according to school operation times.

Similarly, understanding the technical context of the smart object during runtime can help the solution

architect decide on the best configuration and design for the Smart Object. For example, if it is reported in

the community that the smart object’s temperature increases exponentially when network packets

increase by a certain factor, then this causes the device to halt. The designer can then enforce throttling (20)

on the network bandwidth traffic in order to increase the availability of the device.

Private and confidential information should not be shared by all members of the interested community,

and the manufacturers should take care of that. The device programmer should configure the reporting

feature properly and take into consideration the type of network, e.g. whether it is LAN, WAN, or Internet.

If there is a single database about different smart objects showing their performance, then data can be

analyzed easily and a rich set of statistics can be made available for software engineers upon need. Good

20 It is the process of slowing down the speed of incoming/outgoing network traffic.

5.5.2.1.7 Community

Statistics

154 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

solutions can be built over a database to avail useful reports which manufacturers and other software

engineers worldwide can benefit from.

5 . 5 .2 . 2 SMART OBJECT REFEREN CE APIS

Figure 5-29 Smart Object Handlers Diagram

The smart object can run in different modes as shown in Figure 5-29:

1. Runtime: where all handlers run with full capacity and with minimal overhead.

2. Diagnostics: the smart object adds extra overhead to its handlers, like logging, memory dump, etc.

3. Maintenance: the smart object is in maintenance mode, which means that some of its functions

may not be available. For example, its network interface may be disabled, or the handlers that

will be disabled will notify the callers that it is in maintenance mode.

The methods listed in Table 5-11 represent the standard operations for a smart object based on the

analysis in the above sections. DumpDeviceState(), HostTask() and TagData() have protected access since

they may impact the device, the environment, and the users negatively if not used wisely.

155 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Table 5-11 Smart Object basic handler

Handler Description

 Authenticate () : Public

Check if passed credentials are allowed to access the smart object or

not. Credentials could be a combination of parameters that may

contain a user name, password, IP address or MAC address.

 DumpDeviceState () : Protected

Write the state of the device which should contain at least the

following information:

Timestamp, time zone, OS version, device manufacturer, device name,

device MAC address, device IP address, device temperature, CPU

status, Memory status, Network status, Power status (Connected or

Battery), Battery Status (if available), Storage Status, Sensors Status

(loop over them), Current connected devices (loop over them).

This handler satisfies the need of pattern (Community Advice) section

5.4.2.5

 GetHealthStatus () : Public
This handler gives an overall score out of 100 that indicates the health

status of all the smart object’s components. The score could be

compared to a pre-defined threshold, for example, to give gradual

warnings about the object’s remaining useful lifetime [131].

 GetProcessingPowerStatus () : Public
Get the status of the Processing power as a percentage of 100

 GetVolatilityStatus () : Public
Get the volatility status of the object based on factors related to the:

1. remaining power in battery.

2. availability of the object in the network

3. location of the object from the wireless hotspot

4. short-term health score that indicates that the object is about

to fail and get out of service.

5. maintenance status

 HostTask () : Protected
The smart object has the capability to host a task, run it, and return its

results to the caller. It is a capability that allows for sharing resources

 TagData () : Protected
Add a tag to a piece of information to track it if required.

 VerifyCertificate () : Public
Verify the certificate and ensure that it is issued from a certified entity.

5.5.3 Pervasive System Abstraction

There are some important concepts that can be understood from the BRA (Chapter 4) and the Perception

theory (Section 2.1.3). They represent the core mechanisms of the pervasive system by which it can

represent context awareness and adaptability.

156 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Input Data

Event
Event

Event
Context

Context
Context

Context
Context

Interpretation

%

ContextContext
Decision

%

Context
Context

Action

%

Zero or more One or more % Probability attached

Output feedback

Figure 5-30 Basic pervasive system operations workflow

Figure 5-30 abstracts these concepts and shows basic relationships among them:

1. Input: the input is any device capable of sending data to the system. So, a heat sensor is an input

device, a keyboard is an input device, and a mouse is an input device. The input devices can be

classified into two main categories (Figure 5-31):

a. Explicit: Any input device that feeds the system with external data and requires direct

interaction with the system is considered an explicit input. For example, the keyboard,

mouse, and microphone are considered explicit input devices.

b. Implicit: Any input device that feeds the system with external data by detecting the data

from the environment is considered an implicit input. For example, sensors that keep

fetching data from the environment are considered implicit input. The sensor could be a

physical or a virtual sensor. It could be a dummy object or a part object in a smart object.

i. Virtual Sensor: A virtual sensor is a software sensor that reads data from other

software systems. An example of a virtual sensor is the social network sensor,

which reads the status of the user all the time and sends it as input to the system.

ii. Physical Sensor: this is a physical device that reads environmental conditions like

heat, pressure, and light sensors.

Figure 5-31 Pervasive System Input Categories

bdd [Block] Input [Input]

«block»

Input

«block»

Implicit
«block»

Explicit

«block»

Physical

«block»

Virtual

157 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

2. Event: is the basic incident that stimulates the system. An event is identified based on sensed data

from different physical and virtual sensors.

3. Context: is a specific status of the system identified by a set of parameters, a sequence of one or

more events. The event can indicate for one or more contexts, each one may have a different

occurrence weight. It is described as c = (e1, e2, …, en) as the system determines the context by

detecting a finite sequence of events from 1 to n. It is important to note that the actions of the

system may trigger new events which may subsequently lead to new changes in the context.

4. Interpretation: is the logical meaning of the context. One or more contexts could have the same

interpretation, or the context could have more than one possible interpretation. The events and

the context determine the right interpretation. Different interpretations can have different

weights as well.

5. Decision: is the decision that can be taken based on a specific interpretation. There may be more

than one decision, each one with a different weight.

6. Action: is the response that results from the decision of the system. The decision could have 0 or

more actions. An action is classified as invisible and visible:

a. Invisible: it is an action that the system takes within its components and does not require

direct attention from the users. For example, self-maintenance action to reallocate

resources or free memory is considered an invisible action. The user may review this

action later on from the system logs.

b. Visible: it is an action that requires direct attention from the user. For example, a warning

message displayed on a screen is considered a visible action. Opening a door as the user

steps forward is considered a visible action. A visible action can be further classified as

silent and interactive:

i. Silent: a silent action does not require a reaction from the user, e.g. the message

or video displayed on a screen.

ii. Interactive: it requires a reaction from the user. For example, switching the light

due to opening the room door is an interactive action. Acknowledgment of

receiving a warning message is an interactive action.

7. Output feedback: is the result that comes out of the output device and is sent back to the system

as input data.

8. Output: is the mechanism of the system to make actions. The intelligence of the system should

reason about the appropriate selection of items based on the probability associated with the item

(context, interpretation, and decision). The example mentioned in section 4.2.1.2, and detailed

further in Example 5-1, explains an environment where there is a tracking solution for a bus.

158 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Example 5-1
Context awareness

The bus status is identified by Time, Location, and accident status. In order to implement a

tracking solution we will need to install sensors, which are our input devices, to read the time, a

GPS location, and bus crash status. The input devices will give digital data that are understood

only by machines. The pervasive system should translate these data into information, which we

will call in our model events as well. So, if the time is read as 21-08-2016 09:08:00.01, then it

means early morning. A GPS location like 30.083388, 31.470063 will mean an event Cairo-Suez

road. A numeric value from 0 to 10 will indicate the crash status of the car where 0 means no

accident, and 10 means total crash. So, a value like 4 indicates a moderate accident. The triple

values are identified as a context, e.g. G1 = (early morning, Cairo-Suez road, moderate

accident). The interpretation associated with G1 could be a simple accident near school.

This interpretation may have different decisions a) Request maintenance b) ignore accident. In

the first decision, the system can make different actions i) notify headquarter ii) analyze

damage. The second action will request from the computer to make some analysis, and the

computer may send its feedback about the accident, which may contain additional information

about the damaged parts of the bus, to be entered as a new input to the system.

The whole system may run in different modes. A mode is a special status of the system where operations

may have different inputs, execution scenarios, and different outputs. However, modes, in general, will

run the same as in its basic operations. The pervasive system should have the following basic modes

1. Runtime: the system runs all its operations in the optimum way.

2. Assertion: this is an administrative mode, where details of the system activities are revealed only

to the administrator and logged for further analysis.

3. Out of Service: this mode should be used if the system should not be shut down and at the same

time receives requests but without processing them.

4. Upgrade: the system is under upgrade operation which makes one or more modules as

unavailable until the upgrade process is complete.

Advanced modes could be added to the system to test the results of specific inputs, and outputs or to

teach the system and let it improve its rules:

5. Simulation [132]: this mode imitates the real world by running hypothetical scenarios over time as

if it is running in the real world [133].

6. Teaching [132]: The system will be in this mode if a lot of details are required in order to feedback

the system to improve its artificial intelligence rules.

159 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Baseline Architectural Model

Synthesizer

Interested
Community

Feedin Feedback

A
n

al
yt

ic
s

M
an

ag
er

Application

So
lu

ti
o

n

n

So
lu

ti
o

n

n
-1………………..

So
lu

ti
o

n

n
-2

So
lu

ti
o

n

1

So
lu

ti
o

n

2

Intelligence and
Reasoning

Ev
en

t
H

an
d

le
r

In
te

rp
re

ta
ti

o
n

 M
an

ag
er

D
ec

is
io

n
 M

an
ag

er

Environment Care

Profile
Manager

Risk
Handler

System Organization

O
p

ti
m

iz
at

io
n

M

an
ag

er

D
ev

ic
e

M
an

ag
er

R
es

o
u

rc
e

M
an

ag
er

Se
rv

ic
e

M
an

ag
er

 Common Infrastructure

Repository Manager

LoggerFault Handler Policy Manager

Input
Device

Implict
ExplicitPhysical Virtual

Output
Device Visible Invisible

Figure 5-32 Pervasive System Baseline Architecture Model

Figure 5-32 shows the structure of the baseline architectural model that satisfies the needs for the

business requirements and architectural requirements. The dependency relationships among the modules

of the system are outlined later in Table 5-12:

1. Application: is the application that implements the functional and quality requirements of the

system. Some of these functional requirements are implemented as solutions.

2. Solution (1 …n): these are different solutions for specific problems installed in the system as

plugins. They can be installed/uninstalled in a systematic way. The solution may interact with the

core modules of the systems.

Note Solutions may finally be designed as services. However, we use the term solution to refer to this

type of services that the system employs to implement its intelligence rather than the services that

the system offers for its visitors. There could be more than one solution for the same problem.

The system should choose the best solution based on its weight, system policy, and context.

There is the Intelligence and Reasoning unit which is responsible for fulfilling the behavior of the system

(Figure 5-30):

1. Event Handler: The Event Handler is responsible for detecting the events and transforming them

into contexts, or linking them with decisions. The Event Handler can be part of a middleware. The

system can assign all middleware responsibilities to it since it is the main interaction point with the

rest of the modules. The Event Handler may delegate the event to one of the system modules to

160 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

handle or ignore it if is already defined to be handled by other modules. It uses the Fault Handler

and the Logger in its normal operations.

Input and Output interact asynchronously with the Synthesizer which interacts synchronously

with the Event Handler which in turn interacts synchronously with the event-delegated module or

handles the event directly. The Event Handler has the capability of delegation whereby, it

delegates to one or more modules the responsibility of handling some of the events. Accordingly,

the Event Handler will process all types of events except those that are delegated to other

modules. This design allows the system to start with some basic operations of a small size and in a

small implementation time. Example 5-2 gives a more detailed explanation for our argument.

Example 5-2
Event Handler
Delegation

The Event Handler can handle binding requests from visiting objects as long as they do not

exceed 10 devices per day. If the system started to receive increased binding requests, then

it would be better in that case to have a specialized module with more logical tasks. So, the

request of binding from a visiting device can be delegated from the Event Handler to the

Device Manager. The Device Manager will process the binding request with extra operations

and validations before processing the binding action. Even if the Device Manager was not

able to handle the binding request, the Event Manager can still handle it with its basic

functionality. Figure 5-33 shows the event delegation process in synchronous and

asynchronous configurations. The asynchronous interaction mode may have a different

mechanism of interaction as shown in Figure 5-33. The synthesizer pushes input to the

repository and the event handler and other delegated modules pull the input from the

repository which is a kind of producer-consumer interaction.

Figure 5-33 Event Handling Delegation Scenario

161 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

2. Interpretation Manager: The Interpretation Manager is responsible for analyzing the

interpretation rules and finds new correlations that lead it to enhancing its reasoning. It can

impact the set of interpretation rules or any other useful data that the system possesses. It works

within the boundaries of the current policy and uses the Fault Handler and the Logger in its normal

operations.

3. Decision Manager: The Decision Manager is responsible for analyzing the set of decision rules and

adds/modifies/deletes rules as needed. The decision rule is a combination between a context and

a decision with a specific weight. It works within the boundaries of the selected policy and uses

the Fault Handler and the Logger in its normal operations.

There is another unit for the Environment Care which contains the following modules

1. Risk Handler: The Risk Handler is responsible for handling all events concerning highly protected

zones (Security, Safety, and Privacy & Trust issues). The Risk Handler analyzes events to identify if

there is a threat in one of the protected zones and adds the proper interpretation rules and the

counter-measure actions. It records all types of certificates as well whether they are granted for

users, or devices.

2. Profile Manager: The Profile Manager is responsible for:

a. Maintaining users' profiles including their preferences.

b. Tracking users' activities and recording their behavioral trends.

Note A user preference is what the user sets by himself/herself or what the system detected from

his/her interactions with the system.

Another important unit which is the System Organization responsible for device and service registry, and

resource management and optimization:

1. Device Manager: The device manager is responsible for:

a. Registering all the devices that interact with the system with enough details like (device

name, version, manufacturer, manufacturing date, OS version, binding date, last

interaction date, unbinding date, display dimension, battery lifetime, etc ...)

b. Registering information about the manufacturers of the devices.

c. Providing a reference for the device at the manufacturer's repository (if found) for further

details.

d. Providing information about the negotiation and interaction protocol that the device uses.

e. Registering the device resources using the Resource Manager.

f. Cooperate with the Risk Handler to handle privacy, security, or safety risks that may come

out from the devices.

g. Addressing the appearance and disappearance of the mobile objects.

162 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

It uses the Fault Handler and the Logger in its normal operations.

2. Service Manager: The Service Manager, which can be part of a middleware, is responsible for

a. Registering new services identified by the Device Manager when objects bind to the

system, or directly by the system administrator.

b. Managing service binding/unbinding.

c. Managing service handover for mobile users.

d. Producing new composite services.

It works within the boundaries of the selected system policy and cooperates with the Risk

Handler to mitigate different threats. It uses the Fault Handler and the Logger in its normal

operations.

3. Resource Manager: This module is responsible for

a. Registering the system resources, their locations, and their availability per time unit.

b. Tracking and managing their allocation with different system objects, whether they are

part, visiting, or resident objects.

4. Optimization Manager: The Optimization Manager is responsible for optimizing different system

components for the best utilization of services and resources. It is concerned with the

optimization of quality attributes like processing time, availability, scalability, responsiveness with

respect to the functionalities of the system.

There is a Common Infrastructure unit that contains the following modules:

1. Logger: The Logger (driven from section 4.1.1: Emergency) is used by the whole system to log

events in log files. Logs can be in different formats. They can be in text files, database, excel sheet,

emails, SMS, etc. Since Logger is considered a cross-cutting functionality, it is recommended that

other modules interact with it asynchronously so that the overall performance is not degraded.

It is responsible also for capturing data about system performance measurements as submitted by

each module.

2. Fault Handler: The Fault Handler is responsible for handling all types of faults and taking the

proper actions based on system design as described in section 4.2.1.4. The Fault Handler adds the

proper interpretation rules that recognize faults and the proper decisions that should be taken

accordingly. Since the Fault Handler is considered a cross-cutting functionality, it is recommended

that other modules interact with it asynchronously so that the overall performance is not

degraded.

163 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Note In systems that adopt the concept of Soft deadline, the Optimization Manager will be responsible

for optimizing the deviation from the specified deadlines. The Fault Handler will handle the events

that violate the Hard deadline. For example, the designer may assign a one second to switch on a

radio. If it took 2 seconds, then it is not a severe issue, and the Optimization Manager can work on

it to improve the response time. On the other hand, when the designer specifies the hard

deadline for the response of the car brake as 1 msc, then it is expected to handle the violation of

the hard deadline firmly by letting the Fault Handler make, for example, an immediate

investigation in the response issue and send an error notification to the driver about the faulty

break. The Fault Handler may need to request from the Resource Manager to allocate extra

processing resources for this critical task.

3. Policy Manager: The policy manager is responsible for

a. Managing the system policies which are usually defined by an administrator.

b. Managing pre-defined configuration parameters of the system. The parameter could be

statically or dynamically defined.

It uses the Fault Handler and the Logger in its normal operations.

The Repository Manager is the place where data, information, knowledge, and wisdom are stored. The

Repository Manager is responsible for coordinating the repository operations. It is highly recommended

that other modules interact with the Repository Manager asynchronously to avoid delays since it is a cross-

cutting module.

The intelligence of the system cannot be recognized without data from the input and feedback from the

output devices. The Synthesizer is responsible for receiving the input from input devices and feedback

from the output devices, validate them, correct them if required, and then save them in the repository.

The Synthesizer can be part of a middleware and it could be a service provided by the manufacturer of the

input or output devices.

The Analytics Manager is responsible for preparing the required statistics about the system. For example,

it can aggregate data collected by the Logger to show the system performance with different static quality

features, like Context Sensitivity or Scalability, or runtime quality features, such as network throughput or

reliability. It is responsible also for generating information and knowledge about the system. Some of

these statistics will be shared with the interested communities through services published by the Service

Manager.

The Interested Community is a cloud or a system with details about the usage of devices in different

environments. The cloud may belong to the manufacturer of the device or to an interested community

that records and analyzes the devices. The system could share its knowledge with the interested

communities as well.

Note The keyword Manager is appended to the modules that manage data resident in the system by nature. The

keyword Handler is appended to the modules that handle data that is new to the system by nature.

164 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The dependency details of the core modules on each other are depicted in table (Table 5-12) where a

module defined as (source) depends on a module defined as (destination).

Table 5-12 Baseline architecture modules dependency

 Destination

Source

A
n

al
yt

ic
s

M
an

ag
e

r

D
e

ci
si

o
n

 M
an

ag
e

r

D
e

vi
ce

 M
an

ag
e

r

Ev
e

n
t

H
an

d
le

r

Fa
u

lt
 H

an
d

le
r

In
p

u
t

In
te

rp
re

ta
ti

o
n

 M
an

ag
e

r

In
te

re
st

e
d

 C
o

m
m

u
n

it
y

Lo
gg

e
r

O
p

ti
m

iz
at

io
n

 M
an

ag
e

r

O
u

tp
u

t

P
o

lic
y

M
an

a
ge

r

P
ro

fi
le

 M
an

ag
e

r

R
e

p
o

si
to

ry
 M

an
ag

e
r

R
e

so
u

rc
e

 M
an

ag
e

r

R
is

k
H

an
d

le
r

Se
rv

ic
e

 M
an

ag
e

r

Sy
n

th
e

si
ze

r

Analytics Manager ● ● ● ● ●

Decision Manager ● ● ● ● ●

Device Manager ● ● ● ● ● ●

Event Handler ● ● ●

Fault Handler ● ●

Input ●

Interpretation Manager ● ● ● ●

Interested Community ●

Logger ●

Optimization Manager ● ● ●

Output ●

Policy Manager ● ● ●

Profile Manager ● ● ● ● ●

Repository Manager

Resource Manager ● ● ● ●

Risk Handler ● ● ● ●

Service Manager ● ● ● ● ●

Synthesizer ● ●

5.5.4 System Optimization

The pervasive system’s behavior is in continuous change. The behavior may not be 100% accurate all the

time and hence, it needs to be continuously optimized. The optimization process is conducted to assign

proper weights for different factors inside the system (Figure 5-34). These factors control the behavior of

the system and make its choices more accurate. It can be described as a 5-tuple function (Q, C, I, D, S)

where:

1. Q = {qi | i =1,2,…,n} is a finite set of weights for quality features; qi is the weight of one unique

quality feature (business or architectural). The number of quality features is n = 17 in our scope of

research (11 business quality features, and 6 architectural features). The summation of the 17

quality features weights should always be 1.

2. C = {ci | i = 1,2, …, m} is a finite set of weights for the different contexts that the system may be in;

ci is the weight of a context that the system may choose to be in. The number of contexts (m)

165 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

should represent a small set of options. As the choices decrease, the system becomes more

decisive.

3. I= {ij | j = 1,2, …, r} is a finite set of weights for different interpretations that the system may use to

interpret its current situation. The number (r) should be as small as possible in order to make the

system more decisive.

4. D= {di | i = 1,2, …, k} is a finite set of weights for different decisions that the system may take to

adapt to the change in the context. The number (k) should be as small as possible in order to

make the system more decisive.

5. S = {si | i = 1,2, …, h} is a finite set of weights for different solutions that the system may use to

implement the adaptation decision. The number (h) should be as small as possible in order to

make the system more decisive. The solution can represent a specific behavior intended to solve a

specific problem. The system may enable/disable the solution according to the dynamic and static

rules of the system which are derived from the events, context, interpretation rules, and decision

rules.

The optimization of the weight is based on the current weight and a degree of freedom values:

1. Current Weight: is a value given to the item between 0 and 1. This value could be initialized based

on calculations during the analysis phase, similar to what we made with quality features to provide

a weight derived from the complexity score of the feature and the score of the solution. The initial

value of the weight can be set also by putting the system into a teaching mode in a real

environment or through a simulation.

2. Degree of Freedom: is the acceptable variation of the weight. The variation could be in negative

or positive. For example, an item could have a weight of 0.23 and the degree of freedom is 0.05

which means that the weight of the item could oscillate between 0.18 as a lower bound and 0.28

as an upper bound.

Figure 5-34 Pervasive System Optimization

The optimized weights of the quality features and solutions should determine the optimal usage of

services and resources of the system. There is more than one benefit for optimizing these weights:

bdd [Package] Quality Features Optimization [Quality_Feature_Optimization]

«block»

Quality Feature

+ current weight

+ free_degree: double

«block»

Business Quality

Feature

«block»

Architectural

Quality Feature

«block»

Solution

+ current weight

+ free_degree: double

«constraint»

Optimizer

+ Adjust_weight(): int

«block»

Context

+ current weight: double

+ free_degree: double

«block»

Interpretation

+ current weight: double

+ free_degree: double

«block»

Decision

+ current weight

+ free_degree: double

«weight»

«weight»

«weight»

«weight»

«weight»

166 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

1. Understand deviation from expectations: A healthy environment will reveal balanced weights

very close from the pre-calculated weights during the analysis and design phase, similar to what

we calculated using the statistical relations and the surveys from the users. However, the system

may reveal different behaviors which may deviate from the expectations which will be useful to

consider in future projects.

2. Share with interested communities: is anonymous information that reveals details about the

system without revealing private information. It should be useful for other architects as a

benchmark.

3. Direct the general behavior of the system: For example, the system optimization algorithms may

consider the increasing traffic of smart objects in the environment as an impacting event on the

weight of the Service Discovery quality feature, and accordingly the system redistributes its

services and resources so that it guarantees more stability and service availability.

5.5.5 System Deployment

The system deployment depends in the first degree on the goal of the pervasive system, its technical

requirements, and the available resources (hardware and network devices) to achieve them. Since we are

building an RA, we will ignore the hardware and network capabilities, and focus only on how to guide the

architects on how to make efficient deployments.

5 . 5 .5 . 1 ROLES AND RESPONSIBI LITIES

The deployment reference model depends on our vision about the smart environment, the smart object,

and the pervasive system (Figure 5-35). Collaboratively, all of them will provide basic deployment

guidelines.

Figure 5-35 Pervasive System Deployment Main Pillars

There are 3 basic alternative roles that any module in the system should play:

1. Client: the component requests services from other components

2. Server: the component offers services to other components

3. Peer: the component requests and offers services

Smart
Environment

Smart Object
Pervasive

System

167 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

Table 5-13 gives a high-level summary of the descriptive classification of roles and responsibilities for the

objects in the smart environment. The classification of the objects in the smart environment (Figure 5-25)

imposes standard preference. An object which is part of the pervasive system should ideally cooperate

with other objects in the system to provide the required services for their clients which are usually trusted

or visitor objects. However, the system may include some resident objects that can offer services as well,

although they can request services from the system as clients. The trusted or visitor objects can act as

peers and request/offer services from/for each other if the system is a P2P. The sensor offers services for

the system since it collects data from the environment. Clients can pull sensor’s data upon need. The

actuator is similar to the sensor, but it offers actions. In summary, the level of responsibility of the object

to produce or consume a service controls the role of the object as client, server, or peer.

Table 5-13 Objects in the smart environment and their expected roles

 Definition
Role

Part Resident Trusted Visitor Sensor Actuator

Client Low Med High High Low Low

Server High High Low Low High High

Peer Med Med High High Low Low

5 . 5 .5 . 2 DEMILITARIZED ZONE

Based on the baseline model of the pervasive system, there are some components or modules that may

need to access the Internet to submit analytical data for the Interested Communities, which may reside

outside the smart environment network. Accordingly, the Analytics Manager may reside in a Demilitarized

Zone (DMZ) which is accessible by the system and has the freedom of accessing the Internet without

risking the whole system (Figure 5-36).

Interested
Community

Interested
Community

Militarized Zone (MZ) Demilitarized Zone (DMZ)

Analytics Manager

Pervasive System main components

Figure 5-36 Pervasive System demilitarized Zone (DMZ)

5 . 5 .5 . 3 FAULT TOLERANCE

There are some possible points of failure in the software architecture, which could be mitigated by making

the system deployment fault-tolerant. There is a high dependency on the Repository Manager and the

Event Handler as the first is the repository of the system, which is read by all the system’s components,

and the second is the main engine that controls the system behavior although some other components

like the Interpretation Manager and the Decision Manager which could be delegated by the Event Handler

to handle specific events.

168 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

The Repository Manager should be hosted on a Smart Object with large enough storage, according to the

actual system design, in order to record the huge traffic from the sensors, log events, and aggregate

information. It is not recommended to use a Mobile Smart Object for the Repository Manager unless it is a

replica. It is important to notice that the Repository Manager’s structure includes, by default, the storage

part as well which could be clustered.

The replica of the Repository Manager may not be a complete replica. This decision depends on the

capabilities of the used smart objects. However, it is recommended that the system replicates at least the

Service Directory in order to let the different objects find each other without the need for the Repository

Manager in case of failure. Moreover, it will be very useful to connect different objects, smart or dummy,

through intermediate smart objects if they are located in different smart environments. The Profile

Manager should be replicated as well, as a roaming profile, without revealing private information, in order

to cater for the mobility of the user through different smart environments. The smart environments may

cooperate with each other to replicate data, including the Service Directory and the Users’ Profiles through

Replication Services (Figure 5-37).

Smart
Object

Smart
ObjectReplication

Server

Replication
Server

replicate

Request Service

replicate

Figure 5-37 Smart Environment Replication

We can go for another level of fault-tolerance and let the smart objects share the responsibility of

moderating the interactions among objects if the pervasive system’s middleware failed. As described

before the middleware will host the core components of the system. We can add a small mechanism for

the smart objects to play the role of the middleware temporarily until it is fixed. Accordingly, the system

will always keep a record of a nominee to handle events and all the objects will be aware of that nominee.

If the objects failed to contact the middleware, then they will switch to the nominee. The nominee is

elected based on some factors mainly its CPU utilization, available memory, storage, network stability,

volatility status, and power status. The elected one will be the winner that shows the best performance

based on an election function. The system should target the part objects first, and then the resident, then

the trusted objects. A visitor object may be elected in the worst case. After that temp operation, the

system may switch to a stand-by middleware to take control of the operations and relief the nominee from

this task or the main middleware gets fixed (Figure 5-38).

169 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

MainMain

StandbyStandby

Load
Balancer

Load
Balancer

nomineenominee

Temp
coordination

Figure 5-38 Pervasive System Temporary Coordination

5 . 5 .5 . 4 UPGRADING

Complex environments like pervasive systems should be available most of the time with minimal

unavailability to the users. However, as the number of objects increase, along with the number of

services, it is expected to have frequent releases for different system modules. The worst case scenario to

upgrade the system for a limited change is to take the whole system down. The best case scenario is to

make a seamless upgrade without interrupting the system activities. Although a full seamless upgrade

may be inapplicable for some systems, we recommend a simple and an efficient approach for that activity

(Figure 5-39). This mechanism assumes that the upgradable module has a configuration that allows the

administrator to stop further requests and handles only existing ones.

Figure 5-39 Pervasive System Upgrade Steps

The operation could be automated using an upgrade server that can push all new versions to its

destinations without the need for human intervention (Figure 5-40).

Ensure that there is one or
more replica from every

upgradable module in the
system.

Stop processing requests for
the main module.

After the main module
finishes processing all the

requests, switch the traffic to
the replica module.

Upgrade the main module

Restore traffic to the main
module.

Stop processing requests for
the replica module.

Upgrade replica module

Restore traffic to the replica
module

Repeat these steps for all
other replica modules.

170 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

UpgradeServer

Pervasive System

Module

0: Upgrade

Replica
Module

Configuration
Processing = On/

Off

Configuration
Processing = On/

Off

Host

1: Reject Further Requests

2: Handle Requests

Figure 5-40 Pervasive System Upgrade High Level Architecture

5 . 5 .5 . 5 DIAGONISTICS

If the system is set in the assertion mode, then it is required to have details about the system which were

not captured during the runtime mode. There are two possible approaches to capture extra details about

the system:

1. By Configuration: It is a simple approach whereby the system administrator sets a specific system

parameter that alarms the system to capture the required details. According to the details of the

design, it may be required to restart the whole system in order to switch to the assertive mode.

2. Assertive Mode Version: The system could be prepared with more than one version. Every

version captures a specific level of detail. The administrator may deploy the required version and

put the system in the assertion mode. The approach shown in Figure 5-40 to upgrade the system

can be used in this case.

The first approach is simple and requires minimal effort. Its drawback is that the size of the system is

bigger, since the code that captures diagnostic details is there in the system, but is not enabled.

Moreover, It does not achieve the optimum processing time as there could be hundreds or thousands of

“IF-statements” that check if the assertion mode is enabled or not. On the other hand, the second

approach maintains the optimum processing time for the system without unnecessary IF statements and

the size of the code is smaller as well. However, the lead time to start the assertion mode is longer than

the first approach.

Both approaches are acceptable according to the nature of the system. For example, real-time systems

will favor the second approach in order to have the best possible performance given that such systems

pass through extensive quality gateways. Standard enterprise systems may favor the first approach since

they may be subject to frequent changes and problems may occur during runtime.

171 - CHAPTER 5 ● THE TECHNICAL REFERENCE ARCHITECTURE

PervCompRA-SE

5.5.6 Architecture Variability

The Policy Manager is responsible for enforcing guiding behaviors on the system. It encompasses the

variable behavior of the system during runtime. It is possible to provide different preplanned settings for

the Policy Manager. The setting may enable/disable some components or features in the system to

provide a required behavior. This is not an Adaptable behavior, as the adaptability of system will work

within the guidelines of the selected policy. We can have what is called a Dynamic Architecture of the

system. The Dynamic Architecture may be defined by some configuration settings in the Policy Manager.

All these settings manage the component behavior or its relationships with other components [134] as

follows:

1. Enable/Disable Solutions: solutions could be installed in the system as plugins. There could be

different plugins providing similar services but with different functionalities. The Policy Manager

may choose a policy with a specific set of solutions based on the mode and the context.

2. Roles and Responsibilities: a policy may be to define a different role and responsibility for a

specific object, which is ideally a smart device or a server.

3. Service product line workflow: organize the services or functions, as requested by the Compose

Functions architectural quality feature (see section 5.1.1.2).

We showed that a solution is designed to resolve a specific problem and that there could be more than

one solution for the same problem (section 4.4). We showed also that a solution could impact quality

features positively or negatively. However, as discussed before there is no absolute good or bad solution.

An architect willing to produce an architecture in a Product Line Architecture model may follow the

following approach:

1. The architect may set the weight for every quality feature or use the default ones produced by our

research.

2. Design all possible solutions to resolve the functional and quality problems.

3. Set a weighted score for the solutions based on their positive and negative impacts on quality

features (see section 4.4).

4. Choose the solutions with the highest scores to produce the design.

The Product Line Architecture may change the weights of the quality features and subsequently the

solution weights may change, which could lead to the selection of other solutions.

172 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

C h a p t e r 6

6. Evaluation

In this chapter, we explain the evaluation methods that we adopted in order to ensure the quality of our

work and provide evidence that it can be used in real life projects. We used qualitative and quantitative

methods in order to provide a fair coverage about the quality of the PervCompRA-SE. We devised a

traceability matrix between the modules of the baseline architecture and the business and architectural

requirements. It measures metrics for the complexity of the baseline architecture: module cohesion,

module testability, module maintainability, module complexity, and module coupling. We then compared

these metrics to experts’ baseline architecture models. Finally, we developed a simulation project in order

to predict the reliability and availability of a pervasive system which adopts our architecture model during

runtime.

6.1 Validation

6.1.1 Check Points

Through the whole cycle to develop a BRA and a TRA, we applied some validation check points to ensure

the correctness of the results. Our approach is similar to a large degree to the ATAM evaluation method

[17]. The ATAM method analyzes the business drivers (which are the quality features in our scope) and

the software architecture to identify the risks and make trade-off analysis for the different architectural

decisions:

1. We conducted a workshop with experts to validate the requirements model (Appendix B:).

2. We made a trade-off analysis to highlight the weights of the quality features and subsequently

understanding the risks that may be associated with them (section 4.3.1, 4.3.2, and 5.1.3).

3. We conducted a survey with software engineering specialists to validate the priority of the quality

features (section 4.3.3).

4. The conflict resolution exercise is in itself a method to mitigate the risk generated from the

conflicting requirements by introducing balanced solutions.

5. The discussion of the major network challenges (section 5.3) is a type of analysis to identify the

risks related to the network and the mitigation actions to overcome them.

6. The discussion about the architectural patterns (section 5.4.1) include trade-off analysis as well

with architectural decisions.

7. The traceability analysis (section 6.1.2) is a validation check point for the baseline architectural

model to make sure that it satisfies all the business requirements.

173 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6.1.2 Traceability

The main objective of the traceability matrix is to ensure that every single requirement is satisfied by one

or more modules from the baseline architecture [135]. In other words, the modules of the baseline

architecture are assigned responsibilities to implement the needs of the business and architectural

requirements. We conducted a detailed traceability matrix between the modules on one side against the

requirements of the quality features (business and architectural) on the other side. We derived the

satisfaction relationships as shown in Table D-1. We provisioned the responsibility of every module

towards the requirement as either Main or Support. The main module plays a major role to fulfill the

needs of the requirement in cooperation with the support module (Figure 6-1).

Note The traceability exercise does not reveal any sort of correctness about the choices of the satisfied

requirements. However, we can have a certain degree of confidence regarding the satisfied requirements

for every module by comparing it to the benchmark exercises (section 6.3). Similar modules in

responsibilities for every benchmark model can be identified and their satisfaction relationships compared

to the PervCompRA-SE baseline architecture satisfaction relationships. For example, by comparing the

Interpretation Manager satisfaction relationships with the similar modules in responsibilities in the

benchmark model, we find that 72% of the requirements are satisfied as well by the similar module. The

72% is considered a confidence level which may indicate that the satisfied relationships should be

reconsidered for the Interpretation Manager module.

Main
Module

Support
Module

Requirement
Needs

+

Figure 6-1 Main and Support Modules satisfying needs

Since it is a logical exercise, we had to define some clear criteria by which we choose a relationship as

either main, support, or no non-existent. We set some questions to determine each module’s

relationships:

1. Will the module play a noticeable role in satisfying the revised solution?

a. If no, then there is no possible relationship.

b. If yes, then how possible can the module satisfy the needs of the requirement?

i. Will the tasks assigned to the module satisfy most or all the requirement needs?

1. If yes, then it is a main module

2. Else, it is a support module.

For example, requirement (BR0042 - Capture Knowledge about users) that belongs to the quality feature

(Experience Capture) may be satisfied by the modules shown in Table 6-1. The main module (Profile

174 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Manager) owns the responsibility of capturing knowledge about the system users while the rest of the

modules support it to achieve this responsibility. The Profile Manager can have an operation called

captureKnowledge()that interacts with the rest of the modules as follows:

a. Analytics Manager: it calls a method that retrieves a summary of the user activities during a

defined period of time called getActivitiesSummary(userID, dateFrom, dateTo).

b. Decision Manager: it calls a method that gets the decisions related to a specific user for a specific

period of time called getRelatedDecisions(userID, dateFrom, dateTo).

c. Device Manager: it calls a method that retrieves the details of the devices related to a specific user

called getRelatedDevices(userID).

d. Event Handler: it calls a method that retrieves the latest events related to a specific user

getRelatedEvents(userID).

e. Interpretation Manager: it calls a method that retrieves the different contexts related to a specific

user getRelatedContext(userID).

f. Logger: searches for log details that show the user id during a specific period of time

searchLog(userID, dateFrom, dateTo).

g. Repository Manager: it calls a basic method that helps the Profile Manager to store generated

knowledge about the user called storeKnowledge(userID).

h. Service Manager: it calls a method that retrieves all the called services by a specific user id during

a specific period of time called getCalledServices(userID, dateFrom, dateTo).

Table 6-1 Capture Knowledge about users’ requirement satisfaction modules

Module Analytics
Manager

Decision
Manager

Device
Manager

Event
Handler

Interpretation
Manager

Logger Profile
Manager

Repository
Manager

Service
Manager

Role Support Support support support Support support main support support

The traceability exercise shows the following facts derived from : , Table D-1:

1. All requirements are satisfied by the baseline architecture modules.

2. Most of the requirements have a main module and one or more support modules except for two

requirements (BR0040 and BR0043) which have two main modules.

3. There are requirements that have no main modules (BR0082 and BR0083).

4. There is a single requirement that is satisfied by only one main module (BR0037) and no support

modules.

5. There are requirements which are satisfied by exactly one main module and one support module

which are (BR0031, BR0033, BR0034, BR0035, BR0039, BR0053, BR0076, BR0081, BR0084,

BR0108, BR0109, BR0110, and BR0111).

175 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6. The maximum number of modules that may cooperate to achieve the needs of a single

requirement is 13 and it is for requirement BR0070.

7. There is an average number of 5 modules that may cooperate to satisfy the needs of a single

requirement.

The above summary shows that we have five main categories. Figure 6-2 shows the number of satisfied

requirements in each category:

1. 1 (Main) 1+ (Support): there is a main module and one or more modules satisfying a single

requirement and this is the dominant category of the total satisfaction relationships (87.2%).

2. 1 (Main) 0-(Support): there is a main module only satisfying a single requirement.

3. 0 (Main) 1+ (Support): there is no main module but there is one or more modules satisfying a

single requirement.

4. 1+ (Main) 1+ (Support): there is multiple main modules and multiple support modules satisfying a

single requirement.

5. 1 (Main) 1 (Support): there is exactly two modules that play the roles of the main and the support

modules, respectively and they cooperate together to satisfy the needs of a single requirement.

Figure 6-2 Main and Support Modules combination categories

Table 6-2 shows a summary of the “satisfy” relationships among the baseline architecture modules and the

requirements of the business and architectural quality features requirements grouped by the quality

features derived from : Table D-1, section 4.2.1, and section 5.1.1. The cells show the number of

requirements that the module satisfies for every quality feature. The table is colored to indicate the

different categories of satisfaction impact based on the number of satisfaction relationships:

176 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-2 Module-Features Relationships Summary

 Quality Feature
Module

SY ST FT PT SCL OPS QoS SO EC CON CS IN SIP AB SDV CFN HD
total

Device Manager 7 6 6 4 3 2 2 4 2 2 3 4 4 2 1

3 55

Risk Handler 10 8 4 3 3 2

2

2

1

35

Resource Manager 5 3 3

3 1 4 2

2 4 1 1 1 1

3 34

Decision Manager 9 3 3 3 2 1

1 2

1 1 1 3

30

Profile Manager 6 5 1 4

1

4 3

1 3

1 1 30

Service Manager 4 4 3 1

3 3 2 1

1

3 3

28

Interpretation
Manager

6 2 4 1 1

1 1 2 2 3 3

1

27

Fault Handler 6 2 6

2 1 1 1

2

2

1 2

26

Event Handler 2 1 3

1

1 1 1 2

1 2 2 1 1

19

Repository Manager 1 4

2 1 1 1

3 2 2

2

19

Optimization
Manager

1

2 1 4

2 1 2 2 1

2

18

Logger 2 1 2 1 1 2 2

2

2

1

16

Policy Manager 5 2

1 4

2

1 15

Synthesizer 2

4

1 1

2

2

12

Analytics Manager

1

2 1 1

1 3

1

10

Grand Total 66 42 39 21 21 20 20 20 19 18 18 15 15 12 11 9 8 374

The satisfaction impact is based on the number of impacted features (Figure 6-3) where the total number

of satisfaction relationships between the modules and the features equals to 255, which is the product of

the number of modules and the number of features (# Modules X # Features) in Table 6-2.

Figure 6-3 Module Satisfaction Relationship Categories

We can deduce some facts about the baseline architecture model from Table 6-2:

1. Modules engage in 62% of the expected satisfaction relationships with the quality features and

this includes all high, medium, and low satisfaction relationships (Figure 6-4).

2. There is an average of 10.5 features that a module satisfies (completely or partially).

High

it includes all the
cells with a number

of requirements
greater than or

equal 4

Medium

it includes all the
cells with 2 or 3
requirements

Low

it includes all the
cells with only one

requirement.

None

the module has no
impact and the cell

is empty

177 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

3. The maximum number of satisfied features is 16 and belongs to the Device Manager while the

smallest is 6 and belongs to the Policy Manager and the Synthesizer.

Figure 6-4 Module satisfaction relationship categories weight

6.2 Metrics

We derived some facts about the baseline architecture by analyzing Table 5-12 (Modules’ dependencies)

and Table 6-2 (Module satisfaction relationships) as shown in Table 6-3:

1. There is no direct dependency on modules Device Manager, Event Handler, Optimization

Manager, and Profile Manager.

2. The average number of relationships for every module is almost split equally (3 and 3.1) for the

Fan-in and Fan-out relationships. However, the mode of the Fan-in relationships is one

relationship, and for Fan-out is 5 relationships.

3. The Modules Repository Manager, Logger, and Fault Handler have the highest Fan-in

relationships.

4. Input, Output, and Interested Community (highlighted in green) are not considered part of the core

modules, but they are shown in the table because they are part of the model.

178 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-3 Basic baseline architecture model statistics

Module Fan-in Fan-out Total Relations # Requirements

Analytics Manager 1 5 6 10

Decision Manager 1 5 6 30

Device Manager 0 6 6 55

Event Handler 0 3 3 19

Fault Handler 11 2 13 26

Interpretation Manager 0 4 4 27

Logger 12 1 13 16

Optimization Manager 0 3 3 18

Policy Manager 5 3 8 15

Profile Manager 0 5 5 15

Repository Manager 13 0 13 19

Resource Manager 1 4 5 34

Risk Handler 4 4 8 35

Service Manager 3 5 8 28

Synthesizer 2 2 4 12

Input 0 1 1 N/A

Output 1 1 2 N/A

Interested Community 1 1 2 N/A

Total 55 55 110 374

Average 3.056 3.056 6.111 24.93

Mode 0 5 6 30

The quality metrics in Table 6-4 are the basic metrics for the baseline architecture. They can be applied on

a high-level architecture which is linked to a requirements model and at the same time missing the details

of the methods in its modules.

Table 6-4 The evaluation metrics for the baseline architecture [136] [34]

Metric Definition

Complexity It is used as a metric to evaluate how complex the system or module is.

Cohesion It evaluates the tightness between the linked features composing a system or module.

Maintainability It evaluate the degree of effectiveness and efficiency by which a system could be maintained

Testability It evaluates if the components in the system can be used in another system without major
changes.

Coupling It is used to evaluate how intense is the dependency between two modules

6.2.1 Architecture Complexity

Measuring software architecture complexity is an excellent indication for other quality features. It is well

known that as complexity increases, the probability of bugs in the system increases. Moreover, as the

complexity increases, the maintainability decreases. There is also a link between software complexity and

security. As complexity increases, the system becomes more vulnerable to security threats [137].

A straight forward technique to measure the complexity of a baseline architecture, which contains only

some modules and relationships among them, is to treat it as a directed graph. Cyclomatic Complexity

179 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

(Equation 6-1) provides a simple measure for the complexity of the high-level architecture by depicting

modules as Nodes and relationships as Edges [138].

Complexity = E - N + 2

Where

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

Equation 6-1 Cyclomatic Complexity

Accordingly, the complexity measure of the baseline architecture is 39 based on the data provided in Table

6-3 where E = 53 and N = 18.

6.2.2 Module Cohesion

Cohesion, i.e. the degree of a module concentration on a single concern (e.g. requirement, property,

feature, etc …) [139], characterizes the relationship of the modules with its elements. It is the degree of

which elements in a module belong together [136]. The average interaction among elements with respect

to the number of elements should give an indication about the cohesion degree for every module and

hence gives a direction for the architect to reconsider the satisfaction between the modules and the

requirements if required (Equation 6-2). If the average interaction among the elements is high, then it is

an indication that elements should stay together [136].

Average Function Interaction =
∑ 𝑅(𝑟𝑒𝑞𝑖,𝑟𝑒𝑞𝑗)𝑛

𝑖=0,𝑗=1

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞

Where:

 𝑅(𝑟𝑒𝑞𝑖,𝑟𝑒𝑞𝑗) = refers to a relationship between two requirements from

the total satisfied requirements where i j.

 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞 = the total number of requirements satisfied by the module.

Equation 6-2 Baseline Architecture
Module Cohesion

In our scope, and in the early stage of the RA, the elements will be the business and the architectural

requirements. We assume that every requirement will be satisfied by a single method. The relationships

among the requirements will give an indication about the interaction among the methods. We then

calculate the cohesion score for every module as shown in (Table 6-5). Table 6-5 shows a summary of the

satisfaction relationships among the baseline architecture modules and the business and architectural

requirements derived in : . The average function interaction for the whole system is 0.455.

180 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-5 Baseline Architecture Module Cohesion Score

Module Satisfied Requirements # Requirement Relations Cohesion

Analytics Manager 10 2 0.200

Decision Manager 30 10 0.333

Device Manager 55 41 0.745

Event Handler 19 7 0.368

Fault Handler 26 12 0.462

Interpretation Manager 27 6 0.222

Logger 16 4 0.250

Optimization Manager 18 8 0.444

Policy Manager 15 3 0.200

Profile Manager 30 14 0.467

Repository Manager 19 5 0.263

Resource Manager 34 21 0.618

Risk Handler 35 16 0.457

Service Manager 28 19 0.679

Synthesizer 12 2 0.167

Average 24.933 11.333 0.455

6.2.3 Module Complexity and Maintainability

Maintainability is a key factor in the overall success of a system. There is almost no system that survives

without changes. A change in the system, whether a correction or improvement, will require assessing the

impact of the change on other modules. The average output size for a module gives an indication for the

degree of maintainability [136]. It is the number of module outputs with respect to the number of

modules in the system (Equation 6-3). A smaller number is an indication of good maintainability.

 AvgOutInterfaceSize =
𝑛𝑜

𝑁⁄

Where

 𝑛𝑜 = the size of the module outputs (Fan-out)

 𝑁 = the number of modules in the baseline architecture

Equation 6-3 Average Output
Interface size of a module

Accordingly, we can derive the following statistics (Table 6-6) about every module and the whole baseline

architecture given the data in Table 6-3 where the number of the core modules in the system is 15. We

find that the average module output size for the whole system is 0.170 (Average of averages). Moreover,

the Fan-out for a module is an indication of its complexity because it depends on the logic of organizing

these Fan-out relationships. As the number of Fan-out relationship increases, the complexity of the

module increases [16]. The average Fan-out value for a module is 3.056.

181 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-6 Average Module Output Size for the baseline architecture

Module Fan-out Average Module Output Size

Analytics Manager 5 0.278

Decision Manager 5 0.278

Device Manager 6 0.333

Event Handler 3 0.167

Fault Handler 2 0.111

Interpretation Manager 4 0.222

Logger 1 0.056

Optimization Manager 3 0.167

Policy Manager 3 0.167

Profile Manager 5 0.278

Repository Manager 0 0.000

Resource Manager 4 0.222

Risk Handler 4 0.222

Service Manager 5 0.278

Synthesizer 2 0.111

Input 1 0.056

Output 1 0.056

Interested Community 1 0.056

Total 55 N/A

Average 3.056 0.170

Mode 5 0.278

6.2.4 Module Coupling and Testability

Testability is one of the most important quality features for a software system. It is the gateway to verify

the functional and quality requirements for a system. A module that cannot be tested during the

development process, has higher probability of revealing faults [136]. A testable module is characterized

by the number of input interfaces for that module [136]. The average input interface size with respect to

the number of the modules in the system is an indication of the module testability (Equation 6-4). A lower

average input interface size is an indication of higher testability. We note from Table 6-7 that the average

module input size for the whole system is 0.170 (Average of averages). It is notable that the average input

size of the system could be the same as the average output size of the system. This is because an input of

one module is an output from another module and if we take the average of the inputs and outputs in a

closed system with no external inputs and outputs, then both the numbers will almost be the same.

 AvgInputInterfaceSize =
𝑛𝑖

𝑁⁄

Where

 𝑛𝑖 = the size of the module inputs

 𝑁 = the number of modules in the baseline architecture

Equation 6-4 Average Input
Interface size of a module

182 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Moreover, as the number of Fan-in increases, the coupling of the module with the rest of the system

increases. Hence, making a change in the module may require changes in other modules [16]. According

to Table 6-7, the average Fan-in value for the module in the system is 3.056

Table 6-7 Average Module Input Size for the baseline architecture

Module Fan-in Average Module Input Size

Analytics Manager 1 0.056

Decision Manager 1 0.056

Device Manager 0 0.000

Event Handler 0 0.000

Fault Handler 11 0.611

Interpretation Manager 0 0.000

Logger 12 0.667

Optimization Manager 0 0.000

Policy Manager 5 0.278

Profile Manager 0 0.000

Repository Manager 13 0.722

Resource Manager 1 0.056

Risk Handler 4 0.222

Service Manager 3 0.167

Synthesizer 2 0.111

Input 0 0.000

Output 1 0.056

Interested Community 1 0.056

Total 55 N/A

Average 3.056 0.170

Mode 0 0

6.3 Benchmarking

This evaluation exercise is intended to make a comparison between the generated baseline architecture

and other architectures generated by experts. The comparison will show if the PervCompRA-SE baseline

architectural model is comparable to experts’ models or not. Moreover, we will check if the experts

arrived at the same or similar modules as we did or not. On the other hand, the quality of the experts’

models is considered an indication for the quality and the clarity of the business and architectural

requirements.

In this experiment, five experienced architects were given the business and architectural quality features

requirements as described in section 4.2 and section 5.1.1 and were asked to generate a high-level model

and satisfaction relationships between the components in the model and the requirements. All experts

worked in isolation from each other and they all took enough time, two weeks to one month, to read the

183 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

requirements and generate their models. They were given the chance to ask for clarifications about the

requirements if needed.

Expert #1 generated a model composed of 11 modules. These modules are classified into four groups.

Expert #2 generated a high level model diagram. It is designed in a way where the horizontal modules

depend on the modules directly below them or on vertical modules to their right side. Expert #3 organized

the model in groups where there are external modules, which are classified as part of the system, and they

interact with the system through APIs. There are modules that respond spontaneously and others that

make offline processing. Expert #4 built a layered model based on SOA concepts and it is notable that it is

concerned about the context data and its aggregation to a large degree. Expert #5 built a model in a

network form and combined software modules with hardware modules (load balance). He also introduced

additional modules to provide help for the users and added a user interface as well. We report the details

of the experiments in : .

The analysis of our baseline architecture against the generated experiments (Table 6-8) using the standard

deviation values shows that all the models are very close across all the metrics except for the architectural

complexity . The standard deviations of the six metrics show a close proximity of all the models except for

the architectural complexity which shows a high variance among all the models. The next significant

difference is that of the Module Complexity and Module Coupling, followed by Module Cohesion, and the

least difference is for Module Testability and Module Maintainability. Visual comparisons are shown as

well for the six architecture metrics in Figure 6-5.

Table 6-8 Benchmarking experimentation metric comparison

 Metric

Model

Architecture
Complexity

Module
Cohesion

Module
Maintainability

Module
Testability

Module
Coupling

Module
Complexity

PervCompRA-SE basic
architecture model

37 0.455 0.170 0.170 3.056 3.056

Experiment 1 20 0.139 0.24 0.215 2.63 2.972

Experiment 2 38 0.092 0.199 0.195 3.125 3.188

Experiment 3 22 0.197 0.133 0.133 2.429 2.429

Experiment 4 14 0.219 0.109 0.109 1.75 1.75

Experiment 5 14 0.103 0.105 0.098 1.5 1.5

Standard Deviation 11.121 0.162 0.045 0.035 0.335 0.334

184 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Figure 6-5 Benchmarking metric comparison

185 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

It is interesting to note that although PervCompRA-SE has the worst architectural complexity score

measurement yet it has a better maintainability and testability measurement. A simple explanation for

this is that the maintainability and testability metrics are designed for the module not the system level.

Hence, the maintainability and testability of the whole system may get worse when we consider the

number of modules and relationships among them.

Table 6-9 shows the statistical information about the satisfaction relationships for every experiment which

highlights the diversity of every work.

Table 6-9 Benchmarking satisfaction relationship comparison

Satisfaction Relationship Comparisons Original Work Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Satisfied Requirements 75 65 75 75 75 75

#satisfied requirements with modules playing
main roles

73 47 75 74 69 75

satisfied requirements with modules
playing supportive roles

74 35 42 59 30 74

#requirements with no main modules 2 28 0 1 6 0

requirements with no supportive modules 1 40 33 16 45 1

#requirements supported by exactly one
main module and one supportive module

13 14 8 30 1 73

the maximum number of modules that satisfy
a single requirement

13 3 9 6 15 2

The average number of modules satisfying a
single requirement

5 1 3 2.4

4.45 2

More importantly, we compared our model to the experiment’s models to ensure that every generated

module in the PrevCompRA-SE has a reference in at least one of the models. This gives an indication that

the list of the business and architectural requirements lead to similar decisions. Moreover, It may be

recommended that modules with a low similarity score (below 0.6) can be merged with other modules

(Table 6-10). The threshold is set to 0.6 because it means that only one or two experts adopted the

concepts, which are the minority.

Table 6-10 Benchmark exercise similarity comparison

PRACompRA-SE Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 Similarity Score

Interpretation Manager 1 1 1 1 1 1

Device Manager 1 1 1 0 1 0.8

Service Manager 0 1 1 1 1 0.8

Event Handler 1 1 1 1 0 0.8

Decision Manager 1 0 1 0 1 0.6

Optimization Manager 1 1 0 0 1 0.6

Profile Manager 1 0 1 0 1 0.6

Repository Manager 0 1 0 1 1 0.6

Risk Handler 1 0 1 0 1 0.6

Fault Handler 1 0 0 1 1 0.6

Analytics Manager 0 1 0 0 1 0.4

Logger 1 0 0 0 1 0.4

Policy Manager 1 0 1 0 0 0.4

Resource Manager 0 0 0 0 1 0.2

Synthesizer 0 0 0 1 0 0.2

186 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6.4 Survey

Even though we evaluated the model quantitatively, there were still other areas in the RA that should be

assessed qualitatively. It is argued that running an empirical study is preferred because it is difficult to run

a formal experiment [137]. The RA, as stated before, is not just some diagrams and associated

descriptions for them. It is more into practical guidelines written for professionals. One of the factors that

help people evaluate the system reliability is the quality of its documentation [140]. Hence, if the quality

of the PervCompRA-SE documentation is high, then the probability of building a reliable system driven

from the PervCompRA-SE architecture will be high as well. The approach was used before to evaluate

architecture concepts through questions that assess architectural content and documentation as

suggested by Hämäläinen et al. [141].

We prepared a survey (Appendix D:) to assess the quality of the BRA and the TRA. The survey addresses

the approach, the BRA, and the TRA in one part, and the quality of the whole documentation in another

part. These quality attributes were selected because they cover the critical aspects of the RA content in

terms of documentation and concepts. They also represent the minimum quality attributes that can be

subjectively evaluated from the reviewer’s point of view. The quality attributes that we included in this

survey are:

1. Clarity: it measures the clarity of the concepts that the research is discussing throughout the

documentation. This quality attribute is selected because the architect may not be willing to

implement the architecture if the documentation is not clear.

2. Consistency: the document treats the same concepts using the same terminologies across all its

sections. This quality attribute is selected because It is useless for an architect to read a document

that gives guidelines for inconsistent ideas.

3. Novelty: the document presents new concepts that reviewers did not experience before. This

quality attribute is selected since the whole concept of the research is to present something novel.

Moreover, the PervCompRA-SE should present futuristic concepts [23].

4. Applicability: the concepts in the documentation can be applied to successfully build new systems.

This quality attribute is selected in order to assess if the PervCompRA-SE could be used to build

real applications or not. The selected reviewers have a wealth of knowledge about similar

implementations and they judged on this point using their experience.

We gave the reviewers a summarized version of a stable document that describes the approach, both the

BRA and the TRA. In order to ensure that the reviewers were unbiased, they were given enough time, at

least 1 month, to read the document and respond to the survey. The whole exercise was done on a

voluntary basis. We also gave it to a different group of experts other than those who participated in the

benchmark exercise. The reviewers had one of 5 choices a) Totally disagree b) Slightly disagree c) neutral

d) agree e) strongly agree f) not applicable (N/A). The answers were measured on a scale of 0 to 4. The

overall average of the answers was 3 out of 4. The results of the survey are graphically represented in

Figure 6-6.

187 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Approach Average Score = 3.0

Business Reference Architecture Average Score = 3.17

Technical Reference Architecture Average Score = 2.93

188 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Clarity Average Score = 2.67

Consistency Average Score = 3.11

Novelty Average Score = 3.22

189 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Applicability Average Score = 2.88

Figure 6-6 Survey results

6.5 Discrete Event Simulation

Simulation is an artificial activity that tries to imitate an operation in the real world across a period of time

[133]. It could be done manually or automated depending on the complexity of the simulation operation

scenario. Discrete Event Simulation (DES) is a simulation approach that can simulate operations that can

have different states across discrete points in time. On the other hand, continuous event simulation is a

simulation approach that can best fit operations whose states change continuously over time. Martensson

and Jonsson [142] suggested that an architecture can be better simulated using a DES.

As pervasive systems are considered complex, they cannot follow the traditional development cycle. Brink

[143] recommends testing them first using simulation approaches. The simulation experiment is designed

in order to predict the reliability of the baseline architecture at runtime. It increases the confidence in the

design and gives an early indication for the expected behavior of the system.

We can state the objectives of our simulation project to be as follows:

1. The simulation scenario is designed to simulate the behavior of the proposed technical model. It is

useful to track the possible interactions among the entities as they achieve the mission of the

system.

2. It isolates the internal details of the technical model from the external factors like network,

hardware, and programming language through controlled assumptions.

3. The simulation model gives insights about additional design decisions that could be made to

enhance the technical model at various stages.

4. The architect can pinpoint the risk factors in the system’s runtime quality attributes. The architect

can mitigate these risks through additional design decisions with respect to the concrete

190 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

architecture. For example, the architect may decide to use a load balancer to improve the

reliability of a specific entity or adopt a specific deployment topology to enhance performance.

5. It is important to predict the system’s behavior under the best, average, and worse conditions

(values for the variables) before the implementation phase.

6. It is essential to understand the entities that satisfy the fault tolerance quality feature.

7. It guides the architect on how to generate statistics about the reliability and the availability of the

system modules.

8. Finally, It is one of the standard methods in our research whereby the PervCompRA-SE can have a

prototype implementation [23].

Control
Variables

Part Object
Complexity

score

Scenario

Simulate
Behavioral
Prediction

ScenarioDifferent
Scenarios

Control
Variables

General
Behavioral

Assumptions

Figure 6-7 Simulation Experiment (High level)

The real challenge for running simulation experiments to predict the behavior of a pervasive system, or

even a software system in general, is that there is insufficient historical data about similar systems in order

to build a robust simulation model [35]. Usually, developers will go for assumptions and opinions from

domain experts. Researchers like Roshandel et al. [144] introduced a software reliability prediction model

before implementation based on the reliability of the architecture components. However, their approach

requires deep knowledge about the components’ design during the design phase. In our approach we ran

the experiments based on technical specifications for sensors and statistics gathered and produced by

earlier researchers and based on our scientific calculations for the complexity of the modules. We

executed different scenarios in order to provide a prediction model with a high degree of confidence

(Figure 6-7). The following sections describe a simulation experiment to study the behavior of the baseline

architecture model as explained in the TRA chapter. The simulation model implements some of the

responsibilities given to the model in a specific business scenario.

6.5.1 Bus Trip Emergency Study Simulation Story

The simulation scenario that we investigate is a system that studies the quality of the sensors in a bus.

There is a bus starting its trip from point A towards point B for a complete 20-hours trip. There is a

location and a speed sensor installed on the bus to help the control room detect if the bus has a problem

during its trip or not. The system will device its intelligence to make sense of the received data and

transform them into meaningful contexts, then interpretations, then decisions, and finally actions. The

bus driver will take different maneuvers to simulate the sensors. For example, he will drive normally then

191 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

stop suddenly. He can drive normally then slows down suddenly. In other words, he will drive in different

speeds with no alarm on when he will speed up or slow down starting from point A to point B.

The data generated from the sensors are classified into specific events:

a. Location Event: is categorized based on the proximity of the bus from point A and B (At

point A, Far away from point B, Midway to point B, Very close from point B, At point B).

b. Speed Event: is categorized from an accident status point of view (Normal speed, Slowing

down, Moving very slowly, Slowed down suddenly, stopped suddenly).

c. Time Event: is categorized as (early morning, midday, and night).

The different combinations of these events generate a 3-tuple context which derives a specific

interpretation as shown below.

interpretation

1. a maintenance problem 2. a maintenance problem faraway from destination
during traffic off-peak hours

3. a maintenance problem midway from destination
during traffic off-peak hours

4. a maintenance problem midway from destination
during traffic peak hours

5. a maintenance problem nearby destination 6. accident at beginning of trip during traffic congestion

7. The accident is far away from the destination during
traffic off-peak hours

8. accident midway to the destination during traffic off-
peak hours

9. The accident is midway to the destination during
traffic peak hours

10. accident nearby destination

11. the bus arrived at the destination 12. breakdown at beginning of trip during traffic peak
hours

13. The bus drifted from its planned route 14. no accident

15. There is a possible breakdown or traffic congestion 16. starting trip

The interpretation leads the system to take a specific decision (Raise White flag alarm, Raise Yellow flag

alarm, Raise orange flag alarm, Raise red flag alarm, Ignore). Every decision triggers a specific set of

actions with the system actuators as shown below.

action

1. Send SMS to emergency bus driver to mobilize to
incident location

2. Send SMS to maintenance car driver to mobilize to
incident location

3. Send alarm to nearest hospital to mobilize an
ambulance car

4. Notify Police Traffic department to attend at the
accident location

5. send SMS to school management 6. fetch maintenance driver profile

7. fetch staff profile 8. fetch emergency bus driver profile

9. No action

On the other hand, the system receives visitors who request services from the system. The entities of the

system may fail to achieve their duties at some time, but the autonomous error recovery of the system will

work on fixing them. Moreover, the system optimization service will monitor the lifetime of the sensors to

prolong their lifetime and the rest of the entities to reduce their failure rates. The whole system will be

running at different modes by which there are some policies that will be applied (Figure 6-8).

192 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

A

B

accident

breakdown

Normal

Baseline Architecture

Early Morning Midday Night

Visitors

Hospital
Alarm Board

Police Alarm
Board

SMS Engine

Figure 6-8 Bus Trip Emergency Study Simulation Story

6.5.2 The Conceptual Model

The conceptual model is an important step towards the complete implementation. Our model is derived

from the PervCompRA-SE smart environment conceptual model as described in section 5.5.1. The model

is composed of Entities classified as part objects, resident objects, and visitor objects. The part objects are

those modules that define the baseline architecture in section 5.5.3. The sensors and actuators are

resident objects that the part modules interact with to receive data and output data. The smart objects

are visitors that request services from the system on regular basis (Figure 6-9).

Figure 6-9 Simulation Conceptual Model

Entities interact with each other via their input and output ports. Every simulation module has two basic

attributes phase and tick. Phase represents the status of the entity and tick is the logical time by which the

entity can accept inputs and generate outputs. All the entities are working on tick = 10, which is

equivalent to one minute, and all the entities have 4 basic phases as shown in Figure 6-10:

1. Inactive: the entity is not working and not responsive to any input other than an activation input.

The entity goes into this phase if it receives a stop input.

Entity

Part Object

Active Object

Sensor

Actuator

Visitor Object

Smart Object

193 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

2. Active: The entity is responsive and carries out its duties. The entity goes into this phase if it

receives a start input. The entity can go into the Inactive phase if it receives a stop input, or into

the Failed phase if it receives a fail input.

3. Failed: The entity is not responsive due to a failure. It is not responsive during this phase. The

entity goes into this phase if it receives a fail input. The entity stays in the Failed phase until it

receives a fix input to switch to Resumed phase, or stop to switch to Inactive phase.

4. Resumed: The entity is responsive after recovering from a Failed phase. The entity goes into this

phase if it receives a fix input and it stays in this phase for one tick then becomes Active

automatically. It can go to the Failed phase if it receives a fail input.

Figure 6-10 Simulation Module Phases

The whole simulation model can be working in one of the following modes:

1. Runtime: It is the normal execution scenario without changes in the settings of the entities

2. Assertion: It is a normal execution scenario but with additional logging activities from these

entities. They send to the Logger to log a specific event.

Note It is a virtual activity that has nothing to do with the actual implementation of logging in the

project to collect statistics during the execution of the simulation scenario.

3. Security Threat: In this mode, the whole system is threatened and needs to take some

measurements to protect it. It rejects visits from new smart objects recognized as visitors and

accepts visits from the trusted smart objects only. It disables the Synthesizers so that no data can

be collected from the sensors.

4. Out of Service: During this mode the system will not be processing sensor signals, will not accept

visits, and will not fetch user profiles from the Repository Manager. The system will still keep

recording sensor data and when the system returns to one of the other three modes, then it can

fetch the data and work on it.

The state of an entity at any point of time is defined using the 6-tuple (P, AI, AO, L, F, M):

1. Phase (P): it is the phase of the entity where P is one of the phases in the set {Active, Inactive,

Failed, Resumed}.

stm Module Phase

Inactiv e

Initial

Activ e

FailedResumed

[stop]

[1 sigma][stop] [fail]

[start]

[fail]

[fix]

194 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

2. Accumulated Inputs (AI): it is the number of received input requests for all the input ports

𝐴𝐼 = ∑ 𝑐𝑜𝑢𝑛𝑡 (𝑖𝑛𝑝𝑢𝑡
𝑛

𝑖=0 𝑖
).

3. Accumulated Outputs (AO): it is the number of submitted outputs for all the output ports

𝐴𝑂 = ∑ 𝑐𝑜𝑢𝑛𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡
𝑛

𝑖=0 𝑖
).

4. Lifetime (L): is the lifetime indicator of the entity which takes a value from 0-100. 100 indicates

that it is healthy and fully powered, and 0 indicates that it is dead. It is an optional state attribute

for part objects.

5. Failures (F): it is the counter of non-accumulated failures. It is ceiled by a maximum threshold.

The counter will reset to 0 after reaching the threshold. It is an optional state attribute for active

objects.

6. Mode (M): It is the mode of the system where M is one of the modes in the set {Runtime,

Assertion, Out of Service, Security Threat}.

6.5.3 Simulation Model Specifications

The following entities are the building components in the simulation project:

1. Simulation Starter: It is responsible for starting, stopping, changing executing, and dumping statistics
about the simulation runs.

a. The simulation scenario starts by setting a start input for this entity. After 1 tick, it broadcasts
a start message for all the modules.

b. The module will be responsible for switching the system into one of the 4 modes every 10
ticks. It is started on the Runtime mode. It generates a random Gaussian number and if it is

outside the range of (-Y, Y), e.g. (-0.99, 0.99), then it is a decision to switch randomly to one

of the other 3 modes else switches to the Runtime mode or stays in it without any change.

Note The random Gaussian function generates a number that is normally distributed around 0 with

a standard deviation (σ) equal to 1 either on positive or negative sides. The probability of

generating other values decreases in a bell curve shape as shown in Figure 6-11. As shown in

the graph, the function will produce a value within 1σ with a probability 64.1%, and between

1σ and 2σ with a probability of 13.6%, and so on.

Figure 6-11 Normal distribution bell curve

195 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

c. It can accept a different input during the manual simulation to dump the statistics that the
system collected. These are summarized statistics about the inputs and outputs for all the
modules in their different phases in addition to other customized statistics for different
modules.

2. Speed Sensor: The speed sensor generates a random value, normally distributed, from 0 to 21. If the

target distance of the trip is completed, then the sensor stops sending data. The Speed Sensor
module sends its data to the Speed Sensor Synthesizer along with an error standard deviation.

3. Location Sensor: It starts on point A which is 10 KM far away from point B. The location sensor keeps
decreasing the distance by 1 meter every one tick. The Location Sensor sends its data to the Crash
Sensor Synthesizer along with an error standard deviation. If the distance is equal to 0, at point B,
then it stops sending data.

4. Location Sensor Synthesizer: This entity receives the input from the Location Sensor and generates a
synthesized value based on the input value and the error standard deviation using Equation 6-5.

Synthesized data = data + Gaussian Random number * error deviation Equation 6-5 Simulation
Synthesizer formula

5. Crash Sensor Synthesizer: This entity receives the input from the Speed Sensor and generates a
synthesized value based on the input value and the error deviation using Equation 6-5.

Note It is assumed that the sensors act as one unit and synthesizers act as one unit.

6. Repository Manager: The main responsibility of the Repository Manager is to record data coming
from the synthesizers and saves them in a 3-tuple format. It saves the time of the data as recorded
from the synthesizer, the synthesized location, and the synthesized speed. It serves other entities
namely the Event Handler and the Profile Manager that probe the Repository Manager with respect
to sensor data and the profiles of the system users respectively. It stores also the visits of the smart
objects.

7. Event Handler: The Event Handler is responsible for fetching the 3-tuple raw data, converts them into
a readable 3-tuple context and sends it to the Interpretation Manager. For example, the 3-tuple raw
data could be <20, 998, 0> where the first parameter 20 refers to the time during the trip, the second
parameter 998 refers to the distance remaining till point B, and the third parameter refers to the
value of the speed sensor. The 3-tuple context would mean <Early Morning, At point A, Accident>. It
will send the 3-tuple context to the Interpretation Manager and will flag the 3-tuple raw data as
fetched and save the update time via the Repository Manager. The entity is decisive with no possible
alternative contexts.

8. Interpretation Manager: The Interpretation Manager is responsible for converting the 3-tuple
context into a meaningful interpretation. It gets the 3-tuple context in one step, and in the second
step, it fetches the meaning and sends the interpretation to the Decision Manager. The interpretation
is decisive with no possible alternatives.

9. Decision Manager: the Decision Manager is responsible for making rationale understanding of the
interpretation in order to take the right decision. The entity will get a list of actions that should be
triggered based on the decision and sends them to their actuators in order to fulfill them. It probes
the Repository Manager to prepare the required user profile, in case there is an SMS message to be

196 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

sent. The entity is decisive with no possible alternatives. There may be no actions if the decision is to
ignore the interpreted context.

10. SMS Engine: The SMS Engine is responsible for delivering SMS messages for an individual cell phone.
The individual is either a bus driver or a school administration staff. It is one of the actuators that the
Decision Manager needs to fulfill its actions.

11. Hospital Alarm Board: The Hospital Alarm Board is a virtual digital screen that shows alarm messages
in case of accidents. It receives the alarm message from the Decision Manager.

12. Police Alarm Board: The Police Alarm Board is a virtual digital screen that shows alarm messages to
the Police department in case of bus breakdown or accidents. It receives the alarm message from the
Decision Manager.

13. Profile Manager: The Profile Manager is responsible for fetching the user profiles from the Repository
Manager and sending them to the SMS Engine. It queries the Repository Manager at every tick and
fetches the ready profile to send it in the next tick to the SMS Engine.

14. Fault Handler: the Fault Manager is responsible for handling faults that cause part objects to be out
of service. For sake of consistency and better tracking in the simulation model, the Fault Handler is
responsible also for failing the modules. It is important to note that the probability of part object
failure increases based on its complexity calculated from Table 6-3 as shown in Equation 6-6:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑜𝑢𝑛𝑑(
𝑟 ∗ 𝑑

∑ 𝑟𝑖 ∗ 𝑑𝑖
15
𝑖=0

∗ 100)

where

 r = the number of satisfied requirements by the part object.

 d = the number of input and output dependency relationships for the part object.

Equation 6-6 Module
complexity weight
formula

The equation derives the faults from the satisfied requirements, which could be translated as

internal part object capabilities and the dependency relationships with other part objects. It is

then divided by all the weights of the modules and multiplied by 100 to get a percentage. The

weight is rounded after that (21).

The rules of failing a part object and fixing it at every tick works as follows:

a. The Fault Handler generates a Gaussian random number = a (average = 0, σ = 1).

b. If a is outside the range (-Y, Y), e.g. a ≥ 0.98 and a ≤ -0.98, then it is a failure

i. The Fault Handler selects one of the part objects randomly where the selection
probability increases if the part object complexity is high.

ii. The Fault Handler sends a fail message to that part object.

iii. The failed part object increases its failure counter by 1.

c. The part object generates another Gaussian random number = b

i. If b is between (-X, X), e.g. b ≤ 0.98 and b ≥ -0.98, then it is a fix

21 We could have added the weights of the quality features (business and architecture) as calculated in section 4.3.1 and section

5.1.3 to the formula if there is a unified ranking for all the quality features.

197 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

1. The Fault Handler selects one of the part objects randomly. The probability
of selection decreases if the module complexity is high.

2. The Fault Handler sends a resume message to the failed part object.

Note The Fault Handler fails and repairs only part objects that are shown in the detailed diagram of the

baseline architecture model (Appendix C:) that depend on it. The modules that are not handled

by the Fault Handler are, the Repository Manager, Logger, LocationSensorSynthesizer,
CrashSensorSynthesizer.

15. Optimization Manager: The Optimization Manager is responsible for monitoring some health
performance indicators for the sensors, actuators, and the part objects and takes decisions to recover
their performance. The algorithm works as follows:

a. If the part object failure counter exceeds the failure threshold, then it sends a message to the
Resource Manager to allocate a resource in order to give some immunity of failures.

b. If the sensor lifetime threshold is reached, then the Optimization Manager sends to the
Resource Manager a message to allocate a power resource for the monitored sensor.

16. Resource Manager: The Resource Manager receives a request from the Optimization Manager to
allocate a resource for a nominated part object, or sensor.

a. If the request is to reduce failures, then the Resource Manager will select a resource, which
could be a hardware or a software, randomly from a set of resources reserved for the part
objects only, if not already allocated. The part object receives the resource which gives a
limited protection from failure through a pre-defined period of time, e.g. 100 ticks.
Accordingly, if the Fault Handler decides to fail a part object that has a resource allocated for
it, the part object will ignore this fail message.

b. If the request is to recover the lifetime of the sensor, then the Resource Manager will select a
resource randomly from a set of resources reserved for the sensors only, if not already
allocated. The battery resources increase the lifetime of the hardware instantly by a specified
lifetime value [128].

17. Service Manager: The Service Manager is responsible for handling requests from the smart objects to
get some services from the system. The service is built to do some actions or get information from
some part objects or active objects. Accordingly, the Service Manager loads the service and sends
messages to the linked part or active objects to fulfill the smart object request.

Every service has an authorization level based on the smart object type, visitor or trusted smart object.
If the smart object requests a service that has an authorization level not suitable for its type, then the
Service Manager rejects the request.

18. Device Manager: The Device Manager is responsible for handling the smart object’s join request. It
sends the request for the Risk Handler if the smart object can join the system or not, then sends the
reply to the smart object and registers the visit request status with the Repository Manager.

19. Risk Handler: The Risk Handler is responsible for studying the requests from the smart objects to join
the system and puts it on the proper status (visiting, trusted, prohibited, or rejected). It is responsible
as well of handling the certificate requests sent from the joining smart objects. The certificate request
is treated (as shown in B.4.4.6 The Trust Certificate Status section :)

198 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

a. The Risk Handler decides randomly whether to accept or reject the smart object join request.
It passes through different states as shown in Figure B-39 Joining object state machine
diagram).

i. If accepted

1. If the smart object did not exceed a specific number of repeated visits, then
it is visiting.

2. If it reached the visiting trusted threshold, then it is trusted.

3. If the mode of the system is Security Threat, then the new visiting objects
are prohibited.

20. Policy Manager: The Policy Manager is responsible for enforcing the system policy according to the

mode of the system (explained earlier). It receives the decision of the Simulation Starter every X ticks,

e.g. 10 ticks, and cascades the actions to the entities according to the policy of the mode.

21. Analytics Manager: The Analytics Manager sends details of the 3-tuple context events to the

Interested Community if the number of records reached a specific analytics threshold, e.g. (multiple

of 20 events).

22. Logger: The Logger receives requests from part objects, as shown in Appendix C: , to keep the logging.
It is a passive part object that serves other part objects only.

23. Interested Community: The Interested Community is a representation of a cloud or external system
where the Analytics Manager sends it statistics about the system. It is an external object from the
system.

24. Smart Object: The Smart Object module generates random visits to the system. Every visitor is given

a number, and the number of visitors is confined by a maximum visitors threshold, e.g. (100). It can

send some visitors to the system at every tick by sending a message to the Device Manager. The
Smart Object selects some random smart objects to leave the system as well. During the lifetime of
the objects, they may randomly request a service or an authorization certificate from the system:

a. If it is a visit, (Gaussian random decision) between (-Y, Y), e.g. (-0.9, 0.9), then it

i. Generates a random ID, equal probabilities, between 1 and maximum visitors threshold.

ii. Sends the visit request to the Device Manager.

b. If it is a leave decision (Gaussian random decision) between (-0.9, 0.9), then it

i. Selects a random visitor, equal probabilities, and makes it leave the system.

ii. Sends the disjoin request to the Device Manager.

6.5.4 Simulation Assumptions and Settings

The sensors are assumed to be running on batteries that deplete gradually according to the rate of

generated sensor data. They start with initial capacity 100%, and decrease gradually by X % (e.g. 0.5%)

with every activity. On the other hand, part objects and actuators are running on permanent power, but

they may experience random failures every now and then.

199 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

In order to make the simulation scenario very close to reality, we made some assumptions derived from

actual statistics:

1. We investigated the technical settings of some sensors (battery lifetime, and accuracy for the time

pulse signal). The ideal settings (22) for the sensors will be as follows:

a. Speed Sensor: It is assumed to have a 15 hours battery lifetime in normal conditions

[145]. We assume the minimum hours for the battery is 7h12m and maximum is 18h42m

[146] and the probability of failure between 10-7 and <= 10-8 per hour [147]. Our settings

are derived from two speed sensor products.

b. Location Sensor: The same battery lifetime of the speed sensor is assumed here as well

for the location sensor [146]. The horizontal position accuracy has a standard deviation of

0.35 meters [148]. The assumptions are derived from one product.

2. We assume that the probability of failure for the SMS Engine is 0.05 as per the research on the

reliability of short messaging [149]. The failure rate of the SMS Engine as an active object is

independent from the part objects of the system.

3. We assume that the failure rate for the digital screens installed in the Police department and the

Hospital is 0.03 due to product defects as per Shaw [150]. Given other external factors like

scheduled maintenance, power supply cut-off, and software failure, then we can safely increase

the failure probability to 0.05. The digital screen failure rate is independent from the failures of

the part objects.

4. Part objects are assumed to be running on different servers from the same manufacturer and the

same manufacturing year. We assume that the best probability of total failure for the part object

at any minute is 0.05 based on estimates from [151] [152]. On the other hand, another interesting

research, by YAN [153], shows that the reliability of a pervasive system can be less than 0.5. So,

we assign 0.5 as the worse probability. The average in this case will be 0.275

5. Pervasive systems, or IoT systems, are highly vulnerable to security threats [154]. Moreover,

systems usually go out of service due to planned maintenance or unplanned outages. It is noticed

that the cost of maintaining a system is in continuous increase since the end of the last century.

This is basically due to the increased number of developed software applications and their

increased complexity [155]. Moreover, administrators dump logs from the system for monitoring

purposes all the time. Accordingly, we assume that the system will be running in normal mode

most of the time (64-70%) and there is 30-36% probability that it will be running in one of the

other abnormal modes (Assertion, Out of Service, or Security Threat).

6. The Optimization Manager checks the status of the battery if it reaches 40% of its capacity [156]

on average.

7. We assume that the mean time of repair for the part object is shorter than the mean time

between failures [157].

8. We assume that the more complex is the part object, the higher the probability of failure, and the

less complex is the part object the faster we can get a repair [137] [158].

22 We will change the settings in our experimentation in order to put the system in different conditions.

200 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

9. We will assume that the probability of having a normal trip is normally distributed around normal

driving and the accidents are rare (bell curve shape) with very low probability as per some studies

around accidents in the USA [159] [160].

We executed different runs to generate values by the Gaussian function, and optimized the

standard deviation σ in order to get a bell curve that fits the probability distribution model for

normal driving and accidents. We used average = 21 and σ = 7. Anything greater than 3σ and less

than -3σ is set to 0, else values between average and 3σ are mirrored to be in the range of (0,

average) as shown in Equation 6-7.

 𝑅𝑁 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝜎 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑅𝑁 = {

𝟎, 𝑅𝑁 > 3𝜎 𝑜𝑟 𝑅𝑁 < −3𝜎

𝑹𝑵 − 𝟐 ∗ (𝑹𝑵 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆), 𝑅𝑁 > 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑹𝑵

 𝑎𝑛𝑑 𝑅𝑁 < 3𝜎

Equation 6-7 Speed
probability algorithm

The function generates a semi-bell probability shape as shown in Figure 6-12 where 0 is an

indication for an accident and 21 is an indication for a normal driving speed.

Figure 6-12 Speed normal probability function

10. We assume that the visits of the smart objects are highly coupled with the visitors’ behavior to the

school. It is assumed that the human visitors’ trend has peak visits during the early morning and

decreases along the day. Accordingly, the smart objet disjoins the system across the day but there

is a peak at the end of the day when visitors start to leave the school. During this time, visitors can

request services in a normal distribution where the most aggressive period is at midday (Figure

6-13).

201 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Figure 6-13 Smart Objects behavior during the simulation

The simulation model will generate new join requests from smart objects as shown in Equation

6-8. We will assume an average of 6 visits at a time and σ = 3. It will generate a large number of

visits, not exceeding 7000, if the simulation model will execute for 1500 ticks. The same algorithm

will generate disjoin requests but at very small rates in the early day time and increasing by the

end of the day.

Loop from tick = 1 to N

𝑉 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝜎 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑉 = {

𝟎, 𝑉 > 3𝜎 𝑜𝑟 𝑉 < −3𝜎

𝑽 – 𝟐 ∗ (𝑽 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆), 𝑉 > 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑽

 𝑎𝑛𝑑 𝑉 < 3𝜎

𝑗𝑜𝑖𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 𝑟𝑜𝑢𝑛𝑑(𝑉 ∗ (1 −
𝑡𝑖𝑐𝑘

𝑁
))

𝑑𝑖𝑠𝑗𝑜𝑖𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 𝑟𝑜𝑢𝑛𝑑(𝑉 ∗ (
𝑡𝑖𝑐𝑘

𝑁
))

End Loop

Equation 6-8 New Smart
Objects Join and Disjoin

generator Algorithm

The assumptions that we presented are accurate to our best knowledge and based on credible references.

We evaluated the best and worst values in order to use them in our simulation experiments. They are all

derived from the same sources as summarized in Table 6-11, given that the average may not represent a

calculation from the best and worst values.

202 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-11 Best, average, and worst assumptions for control variables in the simulation project

Notation Value Boundary
Control Variable

Average
(A)

Best
(B)

Worse
(W)

Comment

SSfr Speed Sensor signal failure rate 9.167E-09 1.67E-10

1.67E-09 This is a very negligible
error

SSbl Speed Sensor battery lifetime
degradation /minute

(
23

)

0.001 0.0009 0.002

LSsa Location Sensor signal accuracy (per
meter)

2.25 2 2.5 Estimate based on the
horizontal position
accuracy of the sensor

LSbl Location Sensor battery lifetime
degradation (per minute)

0.003 0.0009 0.002

BRthr Battery Recharge Threshold (%) 0.4 0.5 0.2 Used by the
Optimization Manager

POthr Part Object Failure Optimization
Threshold

(
24

)

2 1 3 Used by the
Optimization Manager
to minimize failures of
part objects

SMSfr SMS Engine Failure rate 0.05 0.1 0.16

SMSrr SMS Engine Repair rate 0.95 0.9 0.84 It is the complement of
the SMS Engine failure
rate.

HABfr Hospital Alarm Board Failure rate 0.05 0.025 0.075

HABrr Hospital Alarm Board Repair rate 0.95 0.975 0.925 It is the complement of
the Hospital Alarm
Failure rate

PABfr Police Alarm Board Failure rate 0.05 0.025 0.075

PABrr Police Alarm Board Repair rate 0.95 0.975 0.925 It is the complement of
the Police Alarm Failure
rate

RMr Runtime Mode Rate 0.67 0.7 0.64

POfr Part Object Failure Rate 0.275 0.05 0.5

POrr Part Object Repair Rate 0.725 0.95 0.5

ACr Accident Rate
(
25

)
 0.004 0 0.03 The range is estimated

from the fatality rates
starting from 2012 till
2015 [159] [161]

The best and worst values in Table 6-11 can be considered as the standard lower and upper boundaries.

We can build a simple capability model to stretch the best and worst boundaries [96]. Accordingly, we

provide other extreme estimates as shown in Table 6-12 calculated as follows (26):

23 Best and worse battery lifetime for the speed sensor is assumed from the average battery lifetime of the mobile phones in
the market [146].
24 The values for this control variable are based on experience with IT support unit in the Telecom industry.
25 It includes all types of accidents that stop the bus.
26 The more samples we have, the more accurate are results we can get.

203 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

1. We calculate the average from the lower and upper bounds.

2. Then calculate the standard deviation (σ).

3. We calculate the minimum value, whether it is best or worst, as (𝑚𝑖𝑛 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 3 ∗ 𝜎).

4. We calculate the maximum value, whether it is best or worst, as (𝑚𝑎𝑥 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + 3 ∗ 𝜎).

5. If the value exceeds the logical or physical limits, then it is set to the maximum possible vale.

Figure 6-14 Best and Worst extreme probabilities for the runtime mode

For example, the extreme best and extreme worst for the runtime mode rate with worst value (lower

bound) = 0.64 and best value (upper bound = 0.7) are 0.797 and 0.543, respectively. Figure 6-14 shows a

capability model for the runtime mode.

Table 6-12 Extreme best, worst values for variables in the simulation project

Notation Control Variable Ext. Best (EB) Ext. Worse (EW)

SSfr Speed Sensor signal failure rate 0 4.10684E-09

SSbl Speed Sensor battery lifetime degradation /minute 0 0.004

LSsa Location Sensor signal accuracy (per meter) 1.2 3.3

LSbl Location Sensor battery lifetime degradation (per minute) 0 0.004

BRthr Battery Recharge Threshold (%) 0.98 0
POthr Part Object Failure Optimization Threshold 1 6
SMSfr SMS Engine Failure rate 0 0.403

SMSrr SMS Engine Repair rate 0.997 0.743
HABfr Hospital Alarm Board Failure rate 0 0.156

HABrr Hospital Alarm Board Repair rate 1 0.844
PABfr Police Alarm Board Failure rate 0 0.156

PABrr Police Alarm Board Repair rate 1 0.844
RMr Runtime Mode Rate 0.78 0.543

POfr Part Object Failure Rate 0.001 0.999

POrr Part Object Repair Rate
(
27

)
 0.999 0.001

ACr Accident Rate 0 0.079

27 The calculated values for POfr and POrr exceeded the boundary of 0 and 1, which would have led the system into a
complete failure with no repair. So, we relaxed them a little bit to continue experimentation and they will give the
same extreme result.

204 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6.5.5 Experimentation Scenarios

In order to provide an acceptable prediction model for the reliability and availability of the PervCompRA-

SE, we implemented different simulation scenarios (Figure 6-15). We calculated the Mean Time between

Failures (MTBF) and Mean Time to Repair (MTTR) in order to calculate the reliability and the availability

scores of the simulation scenario. Table 6-13 shows the details of every scenario experiment:

Figure 6-15 Simulation Experimentation Scenarios

1. Perfect: This scenario assumes that the bus starts from point A to point B and that the system

completes processing all the sensor data on time Tp. There are no failures in the system and the

smart objects’ requests are all satisfied, and batteries do not deplete. The perfect scenario will be

used for benchmarking purpose. This scenario does not require a Fault Handler nor an

Optimization Manager. It will be executing always in the Runtime mode.

2. Normal (Runtime Mode Only): This scenario predicts the behavior of the system under normal

failure conditions (Best, Average, and Worst) during the Runtime mode only. It is as if the system

is self-healing without external intervention to switch into a different mode. There will be 3 runs

for each category of values (Best, Average, and Worst) using the values in Table 6-11. This

scenario should take a longer time to finish processing the sensor data due to introduced failures

in the system (Tp +∆Tnb) , (Tp +∆Tna) , and (Tp +∆Tnw) for best, average, and worst values,

respectively. The delta (∆T) represents the additional ticks that the simulation run takes to

process all data from the sensors. We assume a fixed number of resources (Rn = 12) across all the

runs.

3. Normal (Hybrid Modes): The normal scenario assumes the values in Table 6-11. There will be

faults and repairs in that scenario. The scenario introduces more disturbances to the normal flow

of the execution cycle by changes in its execution modes. It is expected that it will take a longer

time than scenario 2. There will be 3 runs for each category of values (Best, Average, and Worst).

It should finish at time (Tp +∆Tnb+∆Tnbh) , (Tp +∆Tna+∆Tnah) , and (Tp +∆Tnw+∆Tnwh), respectively. We

will assume a fixed number of resources (Rn = 12) across all the runs.

1

Perfect Scenario

No Failures

runtime mode

3 Experiments

2

Normal

Runtime Mode Only

Average x 3
runs

Best x 3 runs

Worse x 3
runs

3

Normal

Hybrid Modes

Average x 3
runs

Best x 3
runs

Worse x 3
runs

4

Normal

(No Optimization)

Hybrid Modes

Average x 3
runs

Best x 3 runs

Worse x 3
runs

5

Normal

(resource optimized)

Hybrid Modes

4 Resources

Average x 3
runs

8 Resources

Average x 3
runs

12 Resources

Average x 3
runs

6

Extreme

(Hybrid Modes)

Ext. Best

x 3 runs

Ext. Worse

x 3 runs

205 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

4. Normal (No Optimization): This scenario aims to predict the behavior of the technical model

without the optimization mechanisms (Optimization Manager, Resource Manager). There will be

3 runs for each category of values (Best, Average, and Worse). It is expected that the processing

time for this scenario will take additional time (∆Tnoop) for every group of runs than scenario 3. It is

expected also the MTBF will increase than what is recorded in scenario 3.

5. Normal (resource optimized): This scenario aims to predict the impact of number of resources on

the system reliability. The scenario will show the impact of the Optimization Manager and the

Resource Manager on the number of faults that the system may encounter. It is expected to see

some decrease, (-∆Tr = 4), (-∆Tr = 8), and (-∆Tr = 12), in the processing time relevant to the number of

resources, than scenario 3 and increased time between failures (MTBF + ∆Tf). There will be 3 runs

for each category of resources using the Average control variables. It is important to note that the

last scenario variation is the same as scenario 3 with Average control variables.

6. Extreme: This scenario aims to predict the behavior of the technical model under extreme

conditions. We will use the extreme values, as shown in Table 6-12, to run two categories of runs

(Extreme Best and Extreme Worst). We will assume a fixed number of resources as in scenario 3

(Rex = 12).

Table 6-13 Setting details of simulation experimentation Scenarios

ID Name Hybrid
mode

Control variable
group

resources optimization faults runs ticks

1 Perfect False Perfect N/A False False 3 1500

2 Normal (runtime mode
only)

False Average 12 True True 3 1500

3 Normal (runtime mode
only)

False Best 12 True True 3 1500

4 Normal (runtime mode
only)

False Worst 12 True True 3 1500

5 Normal (Hybrid modes) True Average 12 True True 3 1500

6 Normal (Hybrid modes) True Best 12 True True 3 1500

7 Normal (Hybrid modes) True Worst 12 True True 3 1500

8 Normal (No optimization) True Average N/A False True 3 1500

9 Normal (No optimization) True Best N/A False True 3 1500

10 Normal (No optimization) True Worst N/A False True 3 1500

11 Normal (resource
optimized)

True Average 4 True True 3 1500

12 Normal (resource
optimized)

True Average 8 True True 3 1500

13 Normal (resource
optimized)

True Average 12 True True 3 1500

14 Extreme True Extreme best 12 True True 3 1500

15 Extreme True Extreme worst 12 True True 3 1500

206 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6.5.6 Analyzing the Results

6 . 5 .6 . 1 RELIABILITY AND AVAI LABILITY

A reliable system is a system that can perform its assigned functionality with a high probability during a

specified period of time and within specific design constraints [144]. A reliability measurement is a

function in MTBF and gives a score between 0 and 1 [157] as shown in Equation 6-9. On the other hand,

software availability is the probability of the uptime of the system. It is a function of MTBF and MTTR

[157] as shown in Equation 6-9. For example, if we measure the availability of a website during a year and

it is 0.99, then it means that the system downtime was (3.65 days) calculated as ((1-availability) x 365).

MTBF measures the average time between successive failures without considering the time taken to repair

the system in order to reflect its ability to fulfill its duties. If a system’s reliability is 0.99, it means that the

system is expected to run successfully from time 0 to time t with probability 99%.

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+1
 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 Equation 6-9 System Reliability

and Availability Calculations

Table 6-14 Reliability and Availability for the simulation scenarios

Scenario MTBF MTTR Availability Reliability

Perfect 0 0 1 1

Extreme - ext_best - res 12 969.00 2.00 99.79% 99.90%

Normal (Hybrid modes) - Best - res 12 251.13 2.10 99.17% 99.60%

Normal (No optimization) - Best - res 12 230.12 2.05 99.12% 99.57%

Normal (runtime mode only) - Best - res 12 226.56 2.07 99.09% 99.56%

Normal (resource optimized) - Average - res 4 69.37 2.44 96.60% 98.58%

Normal (resource optimized) - Average - res 8 68.16 2.36 96.65% 98.55%

Normal (runtime mode only) - Average - res 12 62.05 2.54 96.06% 98.41%

Normal (Hybrid modes) - Average - res 12 60.87 2.46 96.11% 98.38%

Normal (resource optimized) - Average - res 12 59.69 2.39 96.16% 98.35%

Normal (No optimization) - Average - res 12 51.81 2.45 95.49% 98.11%

Normal (runtime mode only) - Worse - res 12 36.75 3.26 91.84% 97.35%

Normal (Hybrid modes) - Worse - res 12 36.41 3.14 92.06% 97.33%

Normal (No optimization) - Worse - res 12 30.85 3.09 90.89% 96.86%

Extreme - ext_worse - res 12 12.55 26.89 31.83% 92.62%

The experiments show some facts about the technical baseline architecture (Table 6-14) and (Figure 6-16):

1. The experiments predict the reliability of the architecture in the worst case as 96.86% and the

availability as 90.89% .

2. In the extreme worst cases both reliability and availability measurements decrease noticeably as

reliability becomes 92.62% and availability deteriorates to 31.83%.

3. On average the system availability is 95.77% and reliability is 98.08% if we exclude the Perfect and

extreme cases.

4. In the best cases, the system availability is 99.79% and reliability is 99.9%.

207 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Figure 6-16 Reliability and Availability for the simulation scenarios

On the other hand, if we calculate the reliability of each entity, assuming that they are independent to

some degree, then we can use the k-out-of-n reliability formula [157]. The formula assumes that the

entities are independently running in parallel and that they have different reliabilities (Equation 6-10). In

our case, the formula assumes that all the components must be running.

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑘, 𝑛) = ∑ (
𝑛

𝑖
) 𝑝𝑖𝑞𝑛−𝑖

𝑛

𝑖=𝑘

Where

 n =is the total number of components in parallel

 k = is the minimum number of components for a system success

 𝑝𝑖 = is the reliability of the i
th

component

 𝑞𝑛−𝑖 = the unreliability of the non i
th

 components

Equation 6-10 k-out-of-n reliability formula

The equation may be decomposed to be written exactly as the product of all reliability scores for all the

entities added to the unreliability score of the first entity multiplied by the reliability scores for all the

entities and the operation repeats for the second term by taking one entity after another until the last

entity (Equation 6-11).

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (11,11) = (𝑅1 𝑥 𝑅2 𝑥 𝑅3 … 𝑅11) + ((1 − 𝑅1) 𝑥 𝑅2 𝑥 𝑅3 𝑥 … 𝑅11) +

(𝑅1 𝑥 (1 − 𝑅2) 𝑥 𝑅3 𝑥 … 𝑅11) + ⋯ + (𝑅1 𝑥 𝑅2 𝑥 𝑅3 𝑥 … 𝑥 (−𝑅11))

Equation 6-11 decomposed k-out-of-n
reliability formula

By applying the formula on the calculated average reliability measurements (Table 6-15) for all the entities

across all the scenarios, the system shows that the reliability is almost 1.

208 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-15 Entities reliability measurements

Module MTBF MTTR Reliability

 AnalyticsManager 190.57 2.32 0.995

 DecisionManager 130.54 116.62 0.992

 DeviceManager 103.11 116.44 0.990

 EventHandler 184.02 125.20 0.995

 InterpretationManager 77.51 5.13 0.987

 OptimizationManager 82.24 5.73 0.988

 PolicyManager 61.80 4.30 0.984

 ProfileManager 61.83 4.55 0.984

 ResourceManager 58.69 4.70 0.983

 RiskHandler 60.49 5.03 0.984

 ServiceManager 61.84 5.32 0.984

 SMSEngine 44.08 4.03 0.978

 HospitalAlarmBoard 70.93 5.11 0.986

 PoliceAlarmBoard 65.44 4.31 0.985

 AnalyticsManager 190.57 2.32 0.995

6 . 5 .6 . 2 PROCESSING TIME

Figure 6-17 The processing time overhead for the simulation scenarios compared to the perfect scenario

The scenarios show that that there are variations in processing time among all the scenarios. We predict

an average of 2% additional time needed from the last sensor input (Table 6-16) calculated against the

perfect scenario. The results show that the resource optimization technique that we adopted is working

reasonably. In general, the scenarios show that the processing time increases as the working conditions

get worse (Figure 6-17). The extreme worst scenario does not show results because it did not complete

the whole journey because of the repetitive failures.

209 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

Table 6-16 The processing time overhead for the simulation scenarios compared to the perfect scenario

Scenario ∆T

Perfect - Perfect 0.00%

Normal (runtime mode only) - Best - res 12 0.03%

Normal (runtime mode only) - Average - res 12 0.16%

Normal (runtime mode only) - Worse - res 12 0.63%

Extreme - ext_best - res 12 0.99%

Normal (No optimization) - Best - res 12 1.88%

Normal (Hybrid modes) - Best - res 12 2.30%

Normal (Hybrid modes) - Average - res 12 2.36%

Normal (Hybrid modes) - Worse - res 12 2.36%

Normal (resource optimized) - Average - res 12 2.45%

Normal (No optimization) - Average - res 12 2.52%

Normal (resource optimized) - Average - res 4 2.60%

Normal (resource optimized) - Average - res 8 3.02%

Normal (No optimization) - Worse - res 12 3.55%

Extreme - ext_worse - res 12 N/A

Grand Average 14.00%

6 . 5 .6 . 3 FAULT TOLERANCE (OPT IMIZATION & RESOURCE

MANAGERS)

The experiments show an average of 3.09% immunity from failures across all the scenarios (28). As the

resources allocated increase, the immunity provided to the system increases as well (Table 6-17).

Table 6-17 Optimization and Resource Allocation in the Simulation Project

Scenario # Failures # Immunity

Extreme - ext_best - res 12 144.00 0.00

Extreme - ext_worse - res 12 N/A N/A

Normal (resource optimized) - Average - res 12 897.67 31.00

Normal (resource optimized) - Average - res 4 679.00 20.00

Normal (resource optimized) - Average - res 8 820.33 31.33

Normal (Hybrid modes) - Average - res 12 857.00 24.00

Normal (Hybrid modes) - Best - res 12 740.33 2.33

Normal (Hybrid modes) - Worse - res 12 1115.33 57.33

Normal (No optimization) - Average - res 12 N/A N/A

Normal (No optimization) - Best - res 12 N/A N/A

Normal (No optimization) - Worse - res 12 N/A N/A

Normal (runtime mode only) - Average - res 12 880.00 33.00

Normal (runtime mode only) - Best - res 12 758.67 2.67

Normal (runtime mode only) - Worse - res 12 1158.00 61.00

Perfect - Perfect - res 4 N/A N/A

28

 The scenarios that have N/A did not apply the optimization technique

210 - CHAPTER 6 ● EVALUATION

PervCompRA-SE

6.6 Insights from the Evaluation Exercises

In this section we express our proposed revisions for the PervCompRA-SE in light of the findings from the

evaluation exercises. It is helpful for the architect to consider possible improvement of the final

architecture product derived from the PervCompRA-SE as follows:

1. Baseline Architecture Complexity: the PervCompRA-SE architectural complexity score compared

to the experts’ outcome may be an indication to reconsider its dependency relationships (Table

6-8). Moreover, the Device Manager as shown in the traceability section (section 6.1) satisfies 55

requirements. This may indicate that the module is overloaded with extra responsibilities, or it

may indicate that the module needs to be broken down into more modules.

2. Ambiguity of Terminologies: the survey shows that two respondents gave lower scores for the

questions regarding the clarity of the terminologies. Accordingly, it was necessary to review all

ontological terminologies in order to further explain them.

3. Higher Reliability of common modules: there are modules that we did not expose to failures and

repairs during our simulation exercise (Repository Manager, Logger, Fault Handler, and

Synthesizers). These are common modules for all the other modules in the system. They do not

need a simulation exercise to understand that a single failure in the Repository Manager will

hinder the overall stability of the whole system. It is very clear also that the Logger can impact the

overall performance if it is not responsive. Moreover, the Fault Handler is designed to respond to

failures, and it is essential to make it more reliable and available than other modules. Finally, the

Synthesizer is either a part of the sensors and actuators hardware or it is a low-level software layer

that the sensors and actuators must interact with. If this layer fails, then the data may be

corrupted. Hence, we recommend the following for a concrete architecture:

a. Add redundancy for the Repository Manager’s software and hardware components.

b. Interactions with the Logger while logging events must be asynchronous.

c. The Fault Hander should be isolated from the rest of the system modules, if possible, to

reduce the probability of failure due to the failures of the other modules.

d. Add redundancy for the sensors and actuators, if possible, and especially if the synthesizer

is part of the hardware. Moreover, the system must be designed in a way that detects the

failure of the synthesizers in order to pass the data from the sensors and actuators even if

they may be corrupted. This should be better than not passing data at all, and the system

should refine the data if not processed.

4. System Availability: Although the analysis shows positive results about the reliability and the

availability of the architecture model, the prediction is an initial estimation which will definitely

change in a real environment. This should be a continuous improvement process by fetching real

numbers about the systems’ performance during runtime in order to give more accurate

predictions about the probability of the system failure.

211 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

C h a p t e r 7

7. Conclusion

In this thesis, we generated an FRA model that can be implemented in different domains. We adopted a

set of scientific methodologies rooted in sociology, psychology, process reengineering and statistical

concepts. We followed a systematic approach to deliver a Business Reference Architecture (BRA), a

Technical Reference Architecture (TRA), and an evaluation for both.

Since the subjective decisions were inevitable in some situations, we held workshops and ran surveys to

convert subjective decisions into quantitative figures. We linked the TRA with the BRA by inspecting the

requirements, solutions, values and issues generated from these requirements to build a technical model.

The technical model was then validated and evaluated using four tracks to provide a wider spectrum view

of the PervCompRA-SE. Throughout the whole research we worked on eliminating uncertainty of the

subjective methods by organizing meetings, a workshop, and filling in surveys in order to get quantitative

results.

We started our research by surveying different RA models in different domain areas to identify the quality

of the methodological approach and identify the quality features in the PervComp domain that are most

commonly found in these projects. The results showed that there is no single RA that adopts all the

methodological concepts nor presents architectural solutions for all the inspected quality features. We

surveyed also some research projects that adopted an approach to resolve conflicts among the basic

requirements.

The BRA represents a stand-alone business model which can be used by business analysts and architects.

The requirements model was driven from the literature and experience. It was then validated and refined

through a workshop with domain experts. We adopted some techniques to elicit requirements,

workshops and surveys, in order to eliminate the uncertainty of the subjective approaches that we may

have adopted to decide on the relationship between the requirements. We statistically analyzed these

relationships to give priority scores for every quality feature, and categorized these quality features into

enabler and constraint quality features. The priority was validated through a survey and it was compared

to the findings of Spínola and Travassos [25], and a close match was found.

The TRA represents the second major pillar in our research work. It captures commonalities, presents

patterns for the domain, highlights important technologies, and investigates the major network challenges

that must be considered to build an architectural model for a pervasive system. We showed the reference

model from three different aspects with respect to the smart environment, the smart object, and the

pervasive system itself:

1. The conceptual model of the smart environment forms our abstraction of the world of objects.

2. The standard interfaces that we stressed for the smart objects are essential handlers that the

pervasive system needs to work with.

212 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

3. The system abstraction model explains the static structure of the model as well as its behavioral

aspects. We stressed more on specific challenges in the model regarding the deployment,

optimization, and the variability of the baseline architectural model.

The evaluation and validation activities aimed to ensure the quality of the generated technical architecture

using different qualitative and quantitative methods. We analyzed the model to ensure that every module

satisfies at least a single requirement. We then analyzed the technical model to get qualitative figures for

different metrics (system complexity, module cohesion, module maintainability, module testability,

module coupling, and module complexity). We invited five architecture experts from industry and asked

them to generate baseline architectural models using the same set of business and architectural

requirements. We compared our measurements against their work and we found them quite comparable.

At the end, we wanted to have a lag measure to predict the system reliability at runtime. We

implemented a simulation project for the emergency domain covering a set of use cases based on our

study of the emergency domain, the smart environment domain, and the assigned responsibilities for

every module in the baseline architectural model.

7.1 Contributions

The main contribution of this research is the PervCompRA-SE which captures all the essential business and

architectural knowledge in the PervComp domain as diagrammatic models and associated guidelines.

Comparing our work to other RAs that we surveyed and covered in section 3.1, we characterize the

PervCompRA-SE with the following features:

1. Safety-Aware: the Safety quality feature was not addressed in any of the RA contributions, except

the IoT-A [56]. In our work, we explained all the safety concerns during the analysis phase and

introduced special handlers in the standards of the Smart Object (section 5.5.2) to address safety

concerns during the runtime execution of the smart object, and during the development phase of

the pervasive system. We introduced a specific module, the Risk Handler, in the baseline

architecture which is responsible for handling safety risks that may arise in the pervasive systems.

2. Almost Comprehensive: The PervCompRA-SE is based on a well-selected list of quality features, 17

quality features that represent almost all the current challenges in the PervComp domain. None

of the examined RAs in section 3.1 had addressed, to our best knowledge, this number of quality

features as architectural challenges.

3. Simple: We made sure that the representation of the TRA model is simple and clear. We

addressed the technical model from different aspects using clear and simple terminologies. It is

not too simple to capture the essential architectural details in PervComp like the smart

environment RA introduced by Fernandez-Montes et al. [49] neither too complex to introduce

unnecessary modules that can be eliminated like the RA that was introduced by Addo et al. [53] to

improve security and privacy in the IoT systems.

4. Open: The design of the PervCompRA-SE allows the smart objects to collaborate with the

pervasive system to log execution details. It allows also the system to provide analytical data

213 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

about its performance with respect to different objects, without revealing private or confidential

data, to interested communities. Openness was not addressed by 6 RAs from the surveyed ones

in section 3.1.

5. Business-Driven: The PervCompRA-SE provides solutions for real problems that can be found in

different business domains. We devoted chapter 4 to explore 3 different business domains and 11

quality features that are classified as business quality features. Compared to the surveyed RAs

(section 3.1), not all of them were driven by business needs, and even those that addressed them

were limited, mostly, in specific aspects of the PervComp domains.

6. Applicable: All the surveyed RAs (section 3.1) have a single starting point while the architectural

model PervCompRA-SE has more than one starting point for the business analyst and the

architect. They can start from the BRA through the TRA to generate a concrete architecture, or

start directly from the TRA to reach the same conclusion. They can start from the BRA and skip

the TRA, without excluding the architectural requirements, to reach for an analytical model only.

In addition, PervCompRA-SE contains a wealth of knowledge about different use cases and state

machines and different story boards which simplify the software engineering activities.

We introduced a new requirements engineering approach that uses process re-engineering concepts

(section 2.1.4). In our approach, we understand requirements as needs to maximize values, minimize

unneeded activities, or eliminate waste. The approach uses new stereotypes (maximize, minimize,

conflict) to model the relationships among the requirements. Although there are similar stereotypes, e.g.

positive correlation, negative correlation, and conflict stereotypes [8], the approach which we used is more

suitable for the PervComp domain because it is capable of modeling systems in goal-driven frameworks, as

described by the activity theory [4] (section 2.1.2). Moreover, it was easier to derive ontologies and

classify them as values and issues.

We provided innovative statistical analysis methodologies to prioritize groups of requirements,

represented as quality features, and to resolve conflicts among the requirements. Prioritization of the

requirements or the quality features during the analysis phase was never introduced in any of the

surveyed RAs. Moreover, we showed that it is a reliable, accurate, and a time-saving method (section

4.3.1 and section 5.1.3) which can be executed with only one domain expert compared to the other

methods (as shown in [25] and section 3.2) which require workshops with various stakeholders. Such

workshops could be a real waste of time especially if project timelines are very tight. On the other hand,

we used another statistical analysis method to prioritize solutions for the conflicting requirements. The

approaches that we discussed made subjective decisions from domain experts and stakeholders, which

consume more time and resources. We presented more than one sub-contribution in that context:

1. An early validation method for alternative resolutions of conflicts among or between the

requirements using the normality test.

2. A statistical and benchmarking framework to assess the probability of success for a solution. By

testing the solution against all the requirements of the quality features as shown in section 4.4 and

214 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

by using the z-value method, it is be possible to predict the reliability of a solution in a PervComp

system which applies the selected quality features.

We showed how to exploit the knowledge from the human perception theory to derive the requirements

of the Service Omnipresence quality feature (section 4.2.1.11) and to derive the core behavioral model of

the baseline architectural model (section 5.5.3). Our approach proved to be quite successful because the

devised set of requirements accurately impacted the priority of the Service Omnipresence quality feature

(see section 4.3.1) . On the other hand, although there is an RA which is dedicated to the smart behavior

of the pervasive systems (section 3.1.5), the behavioral model that we presented is different because it

considered the output of the actions as possible input for the system in order to learn and make

continuous improvements for its actions. Moreover, it is easier to understand for the normal users in

addition to the software specialist.

We presented a new approach to utilize the ontological dictionary in the PervCompRA-SE optimization

engine. The dictionary contains more than 63 ontological terminologies classified as values and issues.

We added runtime measurement responsibilities for every ontological terminology and linked it with the

quality features (Appendix E). We proposed an optimization approach (section 5.5.4) which aims to adjust

the weights of every quality feature during the runtime of the system. This approach has the privilege of

making runtime measurements not only meaningful for the software engineers, but also easier to track for

the quality features at runtime and to the requirements model. To our knowledge, there is no RA in

pervasive computing that presented such an approach.

We introduced a 360-degree methodology to evaluate the PervCompRA-SE using different quantitative

and qualitative methods. The approach evaluated the baseline architectural model using 7 quantitative

and 4 qualitative metrics. It covered the architectural model as well as the documented design decisions.

It involved architecture experts to run a subjective evaluation and to produce similar architectural models

for benchmarking. It provided lead and lag measurements. The lag measurement specifically was

predicted using a simulation case study.

The simulation case study, which was not used before to evaluate reference architectures, proved to be a

very powerful tool that can be used by the architects. The case studies that other researchers used to

evaluate their work are mostly towards real implementations to show how their architectural models

could be realized in real implementation. It is not a real evaluation since external factors such as network,

hardware, and programming language can limit the case study. It is almost impossible for an architect to

use all the different configurations and test the model. On the other hand, we easily executed multiple

runs using different configurations that can typically exist in real applications. We highly recommend

simulation case studies as long as there will be no architectural instantiations from the reference model.

We can summarize the artifact deliverables from each phase as shown in Table 7-1. Deliverables are

considered a practical piece of information that can be used for systems implementations. Some of these

deliverables were not used in later phases nor in the phase where it was generated. For example, the

deliverable “Quality Features Weights in Business Domains” was generated in the “Business Analysis”

phase but was not used in any other phase.

215 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

Table 7-1 Artifact Deliverables from different research phases

Phase Artifact Deliverable reused in Phase

B
u

si
n

es
s

A
n

al
ys

is

Business Requirements Model Business Analysis, Design, Evaluation

Business Ontology Design

Business Requirements Relationship Matrix Business Analysis

Quality Features Weights Business Analysis, Design

Quality Features Weights in Business Domains

Solutions for Conflicts
Design

Solutions Capability Framework

D
e

si
gn

Requirements Model Design, Evaluation

Requirements Relationship Matrix Design

Architectural Quality Features weights Evaluation

List of Key enabler technologies Design, Evaluation

Network Challenges and Design Decisions
Design

Essential Patterns

Smart Environment Conceptual Model

Evaluation
Smart Object essential API handlers

Pervasive System Abstraction

System Optimization

System Deployment

Architecture Variability

Ev
al

u
at

io
n

Requirements Traceability Matrix

Evaluation

Quantitative Metrics Measurements

Qualitative Metrics Measurements

Benchmarking Results

Runtime Reliability Prediction

Recommended enhancements to the reference
architecture

7.2 Findings

 We may summarize the following findings from our research study:

1. Design challenges in PervComp are very high: conflict and minimize relationships among the

business and architectural quality features represent around 40% of the total number of

relationships and they are considered issues that need accurate design decisions.

2. Physical Requirements are essential: arrangements for system software must be accompanied

with physical requirements for the environment. Software and physical requirements together

will make the system succeed.

216 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

3. There are common and cooperating requirements: It was possible using our analysis approach to

find common, cooperating, and conflicting requirements. This led us to a better understanding of

the quality features.

4. Trade-off analysis proved to be very useful: Although some researchers refrained from studying

the trade-off analysis while producing an RA, similar to the IoT-A project [56], we found that it is

very useful to understand the requirements based on a thorough analysis of the business and

architectural requirements, on prioritizing them, and on classifying them. It is essential for the

architect to understand the general priorities of the quality features. Moreover, it was possible to

use the results of the trade-off analysis in the optimization model as follows:

a. Requirements Relationships are indicative of their priority: a reasonable conclusion

about the priority of the system requirements can be reached based on the statistical

analysis of the requirements relationships by either using the complexity score method or

the conflict priority resolution method.

b. Priority is not static: Although the system architect can define a specific priority for every

quality feature during the development phase or at runtime, the priority of the feature

can change according to the context of the problem. The change of ordering could be 2-3

steps up or down as per the SD value. Changes of the priority that exceeds 2 steps must

be carefully verified to ensure that the overall goal of the system can still be achieved.

c. The Constraint Feature is just as important as the Enabler Feature: although the

pervasive systems sell for their smart features like context sensitivity and adaptable

behavior, the system will not be usable if features like safety, security, and privacy and

trust are not treated equally as the enabler features.

d. Statistical Analysis can reduce the frequent engagement of stakeholders: We were able

to reach conclusions about the priority of the business quality features without engaging

the stakeholders except in the requirements elicitation step. This can reduce a lot of

wasted time in the dependency on stakeholders to attend meetings or even to reply to a

simple email. It can give very accurate results if the dependencies among the

requirements are made accurately.

5. Studying a business domain adds value only during the business analysis phase: The study of the

different business domains proved to be useful only during the analysis of the requirements.

Further dependency during the technical assessment of the business architecture did not add

value. It was enough to extract the requirements, and abstract the required concepts from them.

6. The domain architectural model could be easily correlated with the pervasive RA: Architects

who are working on product-line architectures can run a variability analysis which shows the

different architecture scenarios based on the business domain and their intrinsic variations. The

architect can evaluate the architecture by describing different applications on different domain

names.

217 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

7. Getting expert advice is a very tough task: The benchmarking and evaluation survey tracks were

very challenging. It was very difficult to gather a large number of people to participate in the

evaluation exercise. We managed to secure five experts to participate in the benchmarking

exercise and 3 other experts to review a stable and minimized version of the PervCompRA-SE.

Both exercises were run completely on a voluntarily basis in order to get unbiased contributions.

8. Statistical data about software systems and devices is important for the future growth of

pervasive systems: one of the main challenges that we encountered during our research was to

find enough statistical data about software systems and devices. We had to assume values for

control variables during our simulation exercise based on general statistical information from

multiple sources and data sheets of devices. Our simulation exercise would have been more

practical and closer to reality if there was enough true published data in order to calculate

different probabilities with more accuracy.

9. The invisibility quality feature is demolished: We found, as did Spínola and Travassos [25], that

the invisibility quality feature has the lowest priority although it is one of the corner stones of

PervComp that Mark Weiser [1] envisioned in his early publication. It might be the case that

people need to be more aware about the technology surrounding them and that Weiser’s vision is

not totally true or it may be the case that technology providers need to make their technology

more trustworthy. It is possible that people need to be educated about PervComp and about the

benefits that it can bring to them.

10. The quantitative evaluation methods are not indicative all the time: In the benchmark exercise,

experiment #5 scored the highest rank for most of the evaluation metrics given that the model is

not easily consumed by humans because it is not layered. On the other hand, PervCompRA-SE and

the other 4 experiments’ models can be easily comprehended by the reader, but they scored less

than experiment #5. Accordingly, it is recommended to use the quantitative evaluation of the

architectural models as a differentiator method for the same architectural alternatives. For

example, if there are three architectural models proposed for the same problem and they have

equal subjective evaluations, then the mathematical methods can be used to make a final decision

about the most suitable model.

7.3 Future Research Work

Our work may be extended in several directions:

1. Improve the RA in light of a consolidated priority list of the business and architectural quality

features: It was not possible in some situations to use the weights of the quality features to drive

our analysis. For example, we reverted from calculating the complexity of the baseline

architecture modules (6.2.3) and in the simulation model using the complexity weight for the

quality features because we do not have a single priority list of all the 17 quality features. We wish

to further investigate the impact of such prioritization on the architectural baseline model.

Moreover, although the priority of the business quality features was not significantly different

218 - CHAPTER 7 ● CONCLUSION

PervCompRA-SE

from those deduced by Spínola and Travassos [25], the priority of the architectural quality features

were significantly different.

2. Evolve the study of requirements-conflict resolution: We want to define a computational model

to facilitate the identification and resolution of conflicts. Such a solution could be embedded in

the modeling tools to facilitate the requirements elicitation process.

3. Implement the RA in a large-scale project: initiate a large-scale project implementation using the

PervCompRA-SE. The feedback of the software engineers will add great value to the evolution of

the whole model. Moreover, it will help to evolve the PervCompRA-SE as a product that could be

used in other domains.

4. Investigate the value of linking the requirements with system performance at runtime: we want

to monitor an implementation of a system that drives its activity by the requirements. In normal

software development cycles, the lifetime of the requirements ends at the design phase, and the

specifications of the requirements that derived the development of the system components are

not linked. In other words, we want each requirement to exist at runtime and to be linked to its

values, issues, and system components. The weights of the quality features and the intersection

of the requirements with each other can represent a real improvement in handling the system

variability. This can lead to a different vision for the change management concepts and can

produce a wealth of insight information to understand the impact of changes on requirements, on

quality features of business domains, and even on the stakeholders.

5. Build a simulation package for the TRA with dynamic configurations for the control variables: it

can be quite beneficial for the architects to have a simulation package for the RA model containing

configurable settings for all the control variables. The simulation package should help the

architect with the different use cases to build a real-life scenario using the PervCompRA-SE.

6. Produce a product line architecture based on the PervCompRA-SE: investigate the possibility of

integrating PervCompRA-SE with product line architecture packages. By embedding the technical

model, solutions, and the weights of the quality features, the architect can generate suitable

architectural models for the selected business domains. This is a good research extension for the

coordination between the PervCompRA-SE and the business domain RAs, especially that it was

mainly useful during the study of the BRA phase.

7. Generate a formal specification Model: it will be useful to provide a formal specification model of

the PervCompRA-SE so that software engineers can generate systems that are consistent in

behavior with the requirements and specifications of the RA.

8. Generate a programming framework: our experience from the simulation experiment shows that

a programming framework can be very helpful for developers. It would go into the detailed design

and generation of reference APIs for that framework.

219 – APPENDICES ● APPENDIX A

PervCompRA-SE

Appendix A : SysML Overview

SysML [162] is a modeling language that extends the UML and adds additional parts to cover requirements

engineering. Its major design principles are:

 Requirements-driven: SysML is intended to satisfy the requirements of the UML Software

Engineering RFP.

 UML reuse: SysML reuses UML wherever practical

 UML extensions: SysML extends UML as needed to satisfy the requirements of the RFP.

Partitioning: The package is the basic unit of partitioning in this specification. The packages

partition the model elements into logical groupings that minimize circular dependencies among

them.

 Layering: SysML packages are specified as an extension layer to the UML meta model.

 Interoperability. SysML inherits the XMI interchange capability from UML. SysML is also intended

to be supported by the ISO 10303-233 data interchange standard to support interoperability

among other engineering tools.

The package structure in SysML is shown in Figure A-1

Figure A-1 SysML Package Structure [162]

220 – APPENDICES ● APPENDIX A

PervCompRA-SE

SysML differs from UML in the following points:

 It added a new requirements diagram and a new parametric diagram

 It uses a modified version of the Activity diagram, Block definition diagram, and Internal block

diagram

SysML reused all other UML diagrams (Sequence diagram, use case diagram, state machine diagram, and

package diagram), the notations that we used in our research.

221 – APPENDICES ● APPENDIX B

PervCompRA-SE

Appendix B : The Business Reference Architecture

(Extra Details)

B.1 Requirements Gathering Session (Focus Group)

As part of the research, we conducted a focus group with some domain experts who have a wealth of

business and technical knowledge. The focus group had 5 members and met on 28-11-2015 inside the

AUC campus. The discussion lasted for 5 hours and resulted in the requirements shown in Table B-1.

Table B-1 Focus Group #1 Requirements

Requirements Feature Classification

1 the system must provide ethical standards Safety Business

2 there must be rules that protect the surrounding
environment

Safety Business

3 There must be a way to avoid/resolve conflict among
objects

Safety Business

4 continuously evaluate and improve the system adaptive
actions

Adaptive Behavior Business

5 the system must guarantee that generated rules must abide
by the system policy

Safety Business

6 Make user aware of the change that happened in the
environment

Adaptive Behavior Business

7 the system must put the well-being of the society as the
most important objective

Safety Business

8 The object has to be aware of itself Context Awareness architecture

9 the system administrator must intervene to resolve conflicts
that cannot be resolved automatically

Safety Business

10 support automatic service discovery Service Discovery architecture

11 Provide the community with knowledge about the objects
and their behavior

Security Business

12 A smart Object that goes offline must have a mechanism to
operate to some extent

Fault Tolerance architecture

13 Detect faults and take proper recovery actions Fault Tolerance Business

14 Minimize the probability of going offline Fault Tolerance architecture, business

15 Distribute roles and responsibilities among objects to
minimize threats

Security architecture

16 The system must record the lifetime of the objects within
the system

Context Awareness Business

17 the system must be aware of the locations of the objects Context Awareness Business
18 Allow the regulator to override the system rules in critical

situations
Safety Business

19 Share user profile with smart objects Service
Omnipresence

architecture

20 In emergency, the system must ensure that the call reaches
central user

Emergency Business

222 – APPENDICES ● APPENDIX B

PervCompRA-SE

The requirements were revised and classified and only those classified as business requirements were

added to business architecture (shown in Table B-2) under the quality features or under one of the

business domain within this research. Architecture requirements will be addressed within the scope of the

technical architecture.

Table B-2 Revised/Approved requirements from the Focus Group

Alias Requirement Quality Feature

BR0030 Evaluate/Improve Adaptive actions Adaptable Behavior

BR0032 Notify users with changes Adaptable Behavior

BR0035 locate interacting objects Context Sensitivity

BR0038 Record object lifetime Context Sensitivity

BR0003 Ensure reachability of the rescue call Emergency Business Domain

BR0045 Detect faults quickly Fault Tolerance
BR0047 Minimize the probability of an object to be offline Fault Tolerance

BR0069 Override system rules by the regulator Safety

BR0067 Ensure that generated rules do not conflict with system policy Safety

BR0072 Respect societal ethics Safety

BR0071 resolve conflicts among objects by an administrator Safety

BR0080 announce malfunctioning smart objects Security

B.2 Business Requirements Relationships Analysis

Table B-3 shows the conflicts that may occur among different quality features requirements and the

requirement that should supersede if a conflict occurs. These are general rules that may be overridden

based on context. The relationships include also those requirements that maximize a desired value as

shown in Table B-4 or requirements that minimize/eliminate a non-desired value or issue as shown in

Table B-5.

Table B-6 shows another level of relationships among the quality feature requirements and the business

domains requirements. The purpose is to understand which quality features have greater impact within

those business domains according to the studied requirements.

Table B-3 Quality Features Conflict Relationships

ID Source Name Destination
Name

Notes Why Superseding

1 Use a unique
user identifier
(Superseding)

Provide a unique
identifier for
every object

a user may have more than one
device joining the pervasive
system, which may confuse the
system and lead it to make multiple
identifications for the same user.

having a unique user identifier
will ensure that different rules
associated with it are cascaded
properly for devices associated
with him/her

223 – APPENDICES ● APPENDIX B

PervCompRA-SE

ID Source Name Destination
Name

Notes Why Superseding

2 Capture
Knowledge
about users

Reveal
Information
controllably
(Superseding)

the system must not capture
personal knowledge if the user is
not willing to share in order to have
better control on private
information.

information security is much
more important as any
drawback may lead to
information leakage. The risk is
very high and it will shadow the
benefit of capturing personal
knowledge

3 Provide
Informative
messages

Reveal
Information
controllably
(Superseding)

informative messages may cause
leakage of information if private
and confidential information is not
filtered properly in all messages

privacy of the users is much
more important than a
message full of information
which may hinder the privacy
of the users

4 Maximize the
number of
device
technologies

Minimize
conflicting usage
of shared
resources
(Superseding)

the probability of generating
conflicts around shared resources
may increase due to expected
incompatibility among
manufacturers

shared resources that are
crucial for the safety of the
environment should have the
minimum number of conflicts.
If there is a new device
technology that is not studied
very well and may cause
troubles with shared resources,
then the system should avoid
incorporating it

5 Maximize the
number of
device
technologies

Avoid conflicting
side effects
(Superseding)

by introducing more device
technologies, the probability of
generating more side effects due to
incompatibility among
manufacturers increases

side effects that risk the safety
of the environment are very
crucial and poorly-studied
introduction of a new device
technology is not welcomed in
this case. This is because the
safety of living creatures or the
environment itself may be
compromised

6 Maximize the
number of
device
technologies
(Superseding)

Minimize Faults The number of faults is expected to
increase by default whenever a
new device joins a pervasive
system. The probability of faults
increases if the device technology
is new or has not been tested
before.

the benefit of increasing device
technologies will shadow the
faults that may appear in the
environment since the system
can handle them in different
ways

7 Maximize the
number of
device
technologies

Enforce Security
rules on all
objects
(Superseding)

by introducing different types of
device technologies, the probability
of introducing security threats
increases. For example, a device
may have an operating system
which is vulnerable to virus
attacks. Such a devices should be
scanned first before it starts to
share data with the system.

security rules are more
important for the sake of the
whole environment even if the
number of device technologies
may not increase.

224 – APPENDICES ● APPENDIX B

PervCompRA-SE

ID Source Name Destination
Name

Notes Why Superseding

8 Ensure secure
data
transmission
(Superseding)

Minimize
average
processing time

It is required to provide data
protection during transmission
which adds an extra load on the
system’s processing power. The
extra load can drain batteries, slow
down performance, and may
impact the system’s overall
availability. In other words, the
average processing capabilities for
the services may be negatively
impacted.
It is a controversial conflict, which
can be resolved only during
runtime based on the system’s
priority, data sensitivity, and user
context.
However, as a general rule, lenient
security rules may cause further
deteriorations and the system may
be completely compromised.

since the system may accept
non-trusted objects to join it, it
will be much better to secure
transmitted data even if this
will increase the average
processing capability.

9 Equip system
with sensors

Reveal
Information
controllably
(Superseding)

As a precaution, the system must
not collect unnecessary data via its
sensors, and also as a security rule,
in order to minimize the risk of
revealing information to
unauthorized entities.

This requirement must
supersede, because the risk of
not controlling information
may lead to leakage of
confidential data. This risk is
very high, which will shadow
the benefit of the sensors

10 Enforce Security
rules on all
objects
(Superseding)

Minimize
average
processing time

security rules may add an
additional burden the processing
power of the smart objects which
may increase the average
processing time in general

security rules is a must for the
overall environment security,
The wise decision in this case is
to accept any additional
increase in the average
processing capability for the
sake of the overall
environment health.

11 Take counter-
measures to
mitigate security
threats
(Superseding)

Minimize
average
processing time

counter-measures are very
expensive operations, they
consume more processing power
which are not serving the purpose
of the system in the first degree. If
the system used them, then the
average processing capability for
any service will be decreased

security threats may get the
whole system down, The wise
decision in this case is to
accept any additional increase
in the average processing
capability for the sake of the
overall environment’s health

225 – APPENDICES ● APPENDIX B

PervCompRA-SE

ID Source Name Destination
Name

Notes Why Superseding

12 Minimize
unneeded
interactions with
the system

Notify users
with changes
(Superseding)

Notifying users with changes in the
system may entail that the users
make unnecessary interactions
with the system.

Notifying the users with
changes is important even if it
will entail more interactions
with the system since
awareness of changes is critical
for the overall safety of the
environment

Table B-4 Quality Features Maximization Relationship

Source Name Destination Name Notes

Distribute computing power Capture Knowledge about users distributed computer power, including
sensors, can capture more information
about users including their habits,
movement patterns, and routine
actions within the space of the smart
environment

Utilize the user mobile phone Render content on the maximum
number of devices

it is expected to have different mobile
phone technologies interacting with
the smart environment, and hence the
system should be able to render
content on a maximum number of
mobile phone technologies

Use a unique user identifier Certify trusted entities a certificate requested by a user must
be issued for him/her only.
Accordingly, it is not possible to issue
more than one certificate for the same
user who has more than one ID

Utilize the user mobile phone Certify trusted entities a mobile phone can be easily certified,
and it implicitly indicates that its holder
is certified as well

Use a unique user identifier Provide data access rules data access rules regulate access for
specific users or objects. Accordingly,
these users or objects must have
unique identifiers

Render content on the maximum
number of devices

Allow the user to override/cancel
system decisions

the user will be able to take the proper
action from any medium which should
be facilitated through rendering the
content according to the used medium

Provide a unique identifier for every
object

Provide data access rules data access rules are given according to
the identification of the objects. If an
object has no unique id, then it will not
be possible to grant it access

Render content on the maximum
number of devices

Enrich the experience of the highly
used scenarios

if requested content can be displayed
properly over different devices, then
the system improves the experience in
general which helps in improving the
experience of highly used scenarios

226 – APPENDICES ● APPENDIX B

PervCompRA-SE

Source Name Destination Name Notes

Enforce Security rules on all objects Reveal Information controllably information is revealed for authorized
users or objects only according to
specific security rules

Provide data access rules Reveal Information controllably data access rules provide proper facility
for the system to reveal information in
a controlled manner

Take counter-measures to mitigate
security threats

Provide maximum protection for the
environment

counter-measures to mitigate security
threats are definitely considered a
protection for the environment

Equip system with sensors Capture Knowledge about users sensors generate a lot of data about
the environment including the users
such as users' locations

Equip system with sensors Classify Information sensors capture data about different
types of activities and situations, which
can give accurate classification for
private, social and public information

Provide analytical capability Monitor and improve QoS
boundaries

the knowledge generated from
analyzing the different contexts of the
system will help optimize the quality of
service boundaries which in turn, will
reflect on the overall experience with
the system

Evaluate/Improve Adaptive actions Monitor and improve QoS
boundaries

evaluating and improving adaptive
actions will help to optimize and
improve the quality of service
boundaries

Notify users with changes Alert if safety is about/or
compromised

if the users are notified with changes,
then it will help them to assess their
situation and take the proper counter
action, if needed, where safety may be
compromised

Notify users with changes Allow the user to override/cancel
system decisions

users who can override or cancel the
system actions, will need to be notified
of the smart environment changes
generated from system adaptive
actions

Capture Knowledge about users Correlate information and
knowledge

by increasing the knowledge about the
users, the system will be able to infer
new knowledge and rules

Correlate information and
knowledge

Capture/change behavioral patterns Correlated information and knowledge
helps the system by giving it knowledge
to capture common patterns about
users and objects

Conceal the part object(s) of the
pervasive system

Provide maximum protection for the
environment

some devices may risk the environment
if they are not concealed. The risk may
be severe if these devices can threaten
human lives

227 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-5 Quality Features Minimization Relationships

Source Name Destination Name Notes

Provide Informative messages Reduce Error consequences informative messages should help in reducing
implication of the errors through professional
communication with suitable contents according to
the audience

Distribute computing power Minimize average
processing capability

It is required from the system to distribute its
computing power to achieve better omnipresence,
which may negatively impact the average processing
capabilities of the services

Use a unique user identifier Disallow anonymous usage
of the system

the user will be able to use the system if he/she is
identified. Accordingly, anonymous usage of the
system will not be allowed

Provide a unique identifier for
every object

Minimize conflicting usage
of shared resources

by identifying every object in the environment, it will
be simple enough to minimize conflicts over shared
resources

Provide a unique identifier for
every object

Disallow anonymous usage
of the system

by using a single identifier for every device, there will
be no anonymous usage of the system

Detect faults quickly Reduce Error consequences detecting an error in a very short time can help the
system to take proper corrective actions and reduce
the wrong consequences that may occur due to that
error

Take the proper corrective
action

Minimize unneeded
interactions with the
system

One of the issues that can break the invisibility rules, is
to have a system fault with no correction solution. In
this case the system must have a proper corrective
action to ensure the invisibility of computations in the
system

Locate interacting objects Reduce Error consequences tasks that the system assign to mobile objects may be
interrupted because an object may move outside the
smart environment boundaries. By tracking these
objects, the system will be able to reduce the
problems that may be generated from an object
disappearing abruptly from the environment

Provide analytical capability Reduce Error consequences generated knowledge from the context analysis will
provide guidance that will help the system to reduce
consequences of errors and problems

Has smart decision rules Avoid conflicting side
effects

a system with smart decision rules should be aware of
the possible side effects that could be generated from
the environment after a specific sequence of changes

Has smart decision rules Avoid invalid operational
directives

a system with smart decision rules should work to
reduce invalid operational directives

Has smart decision rules Minimize conflicting usage
of shared resources

smart decision rules should address the conflicting
shared resources issue and minimize conflict

228 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-6 Quality Features Requirements vs Business Domains Requirements

Feature Feature
Requirement

Stereotype Domain
Requirement

Destination
Domain

Notes

Quality of
Service

Minimize
average
processing
capability

maximize Provide product
information in real-
time

Retail real time information requires to
have the minimum processing
time to retrieve information
about a product

Context
Sensitivity

Equip system
with sensors

maximize Facilitate support
and consultancy

Retail if the product/service is equipped
with sensors, then it can easily
collect information about its
problem

Adaptable
Behavior

Possess
actuation
capabilities

maximize Facilitate support
and consultancy

Retail actuators in a product/service
will help the support team to fix
the problem by giving direct
instructions for the
product/service

Quality of
Service

Minimize
average
processing
capability

maximize Guarantee An up-
to-date inventory

Retail the system must take the
minimum time to update its
inventory whenever it changes

Heterogen
eity of
Devices

Render
content on the
maximum
number of
devices

maximize Create a store view
automatically

Retail store view needs to be read on
different mediums according to
the customer preferred device

Heterogen
eity of
Devices

Render
content on the
maximum
number of
devices

maximize Enable Multiple-
channel browsing

Retail the system must render a
catalogue on different mediums
in order to facilitate multiple-
channel browsing

Safety Respect
societal ethics

maximize Increase
transparency with
customers

Retail in general, a society that has the
minimum ethical standards, will
put clear rules that makes
merchants treat customers fairly
and be transparent with them.

Ethics could be found in the
societal law.

Quality of
Service

Minimize
average
processing
capability

maximize Provide instant
feedback when
recording
multimedia

Learning the system must ensure that the
instant feedback is minimized

Fault
Tolerance

Minimize
Faults

maximize Auto-Save material Learning the main purpose of auto-save is
to minimize the probability of
losing a non-saved material. In
other words, minimize faults

229 – APPENDICES ● APPENDIX B

PervCompRA-SE

Feature Feature
Requirement

Stereotype Domain
Requirement

Destination
Domain

Notes

Context
Sensitivity

Equip system
with sensors

maximize Facilitate
interaction between
teacher and student

Learning sensors can facilitate interaction
between the student and the
teacher. For example, if the
student is taking a remote
course, then a camera and a
speaker on both sides will help
both of them to interact easily

Experience
Capture

Capture
Knowledge
about users

maximize Facilitate
interaction between
teacher and student

Learning Facilitating the interaction
between the student and the
teacher cannot be achieved only
through technology. Personal
characteristics about both of
them can help as well. For
example, if the system knows
that the student suffers difficulty
in hearing, it can increase the
sound volume for this student
during a remote teaching course.

Experience
Capture

Capture
Knowledge
about users

maximize Empower emotional
and social bond

Learning The personal knowledge about
the student and the teacher can
help the system to empower the
emotional and the social bond
between them. For example, the
system may remind the student
about the teacher’s birthday to
congratulate him/her. If the
student is absent due to illness, it
may help the teacher to ask
about him/her.

Context
Sensitivity

Equip system
with sensors

maximize Detect Classroom
mode

Learning sensors will gather data about
the students, class, and teacher

Adaptable
Behavior

Possess
actuation
capabilities

maximize Detect Classroom
mode

Learning the system may use its actuators
to adjust the class settings in
order to smooth the educational
process.

Adaptable
Behavior

Evaluate/Impr
ove Adaptive
actions

maximize Provide
Personalized
learning

Learning by evaluating/improving
continuously the learner's
personal needs in order to
achieve the maximum outcome
from the learning process

Context
Sensitivity

Equip system
with sensors

maximize Avail Information in
whatever means

Emergency sensors are the best way to
collect information about the
environment

Context
Sensitivity

Locate
interacting
objects

maximize Locate impacted
locations easily and
quickly

Emergency if impacted locations are
abstracted as objects with
sensors, then they could be
located easily

Quality of
Service

Minimize
average

maximize Collect/disseminate
information about

Emergency the system should reduce the
time needed to process data

230 – APPENDICES ● APPENDIX B

PervCompRA-SE

Feature Feature
Requirement

Stereotype Domain
Requirement

Destination
Domain

Notes

processing
capability

emergency events
quickly

Quality of
Service

Minimize
average
processing
capability

maximize Provide timely and
localized
information

Emergency the system should reduce the
time needed to process data

Context
Sensitivity

Equip system
with sensors

maximize Provide timely and
localized
information

Emergency A sensor collects data from the
location where it is installed, and
data is submitted to the system
immediately for analysis

Quality of
Service

Minimize
average
processing
capability

maximize Ensure reachability
of the rescue call

Emergency the system should reduce the
time needed to process the
rescue call

Privacy and
Trust

Track
Information

maximize Protect volunteer's
privacy

Emergency the volunteer has the right to
have a record of the entities who
viewed his/her personal
information

Privacy and
Trust

Reveal
Information
controllably

maximize Protect volunteer's
privacy

Emergency Only authorized and trusted
entities can view a volunteer's
personal information in situations
that need such an action.

Experience
Capture

Capture
Knowledge
about users

conflict Do not impose on
customer to reveal
his/her personal
knowledge
(Superseding)

Retail The conflict can be found if the
system mandates that the user
must share his/her personal
knowledge. However, if the
system gives the choice to the
customer, then the system
should use the customer
knowledge without bothering
him/her.

However, the customer identity
should be registered by the
system without revealing it.

The retail domain requirement
supersedes since the human
being may not feel comfortable if
it is imposed on him/her to share
knowledge which is not part of
the purchasing cycle.

231 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 Use Cases

The use cases help the architect and the analyst to understand in more details the different scenarios of

the system and links them to the business requirements. They crystalize the concepts and are considered

a good technique for analysis. The following sections provide the basic use cases in the aforementioned

business domains and general ones for the smart environment.

B.3.1 Emergency Business Domain

Figure B-1 Emergency Business Domain basic use cases

There are some basic use cases, as shown in Figure B-1, which are detailed in the coming sections, and

they can help with understanding the domain requirements through the refine relationships as shown in

Table B-7.

Table B-7 Emergency use cases vs emergency requirements refinement relationship matrix

 Use cases

Requirements

Follow up rescue
mission

make a
rescue call

Mobilize Rescue
Team

rescue

Avail Information in whatever means X

Collect/disseminate information about
emergency events quickly

 X

Ensure reachability of the rescue call X

Locate impacted locations easily and quickly X X X

Provide timely and localized information X X

uc [Package] Emergency [Emergency]

Emergency Situation

Rescue Team

RescueTeam Leader

Volounteer

Person at Risk

Central User

make a rescue call

Mobilize Rescue

Team

Follow up rescue

mission

rescue

Emergency System

232 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .1 . 1 FOLLOW UP RESCUE MIS SION

The main objective of this use case is to propagate information among all involved parties and make sure

that concerned stakeholders will be updated frequently. Ideal activities are shown in Figure B-2.

Figure B-2 Follow up rescue mission interaction diagram

B.3 .1 . 2 MOBILIZE RESCUE TEAM

This use case also shows the basic activities that should be implemented to mobilize a rescue team. An

ideal sequence of activities is shown in Figure B-3.

v

Figure B-3 Mobilize Rescue Team Interaction Diagram

INTERACTION MESSAGES

 1.0 'Find nearest Rescue Team' from ':Central User' sent to ':Emergency System'.
given the condition that the rescue team must not be running a rescue mission

 1.1 'contact' from ':Central User' sent to ':Emergency System'.
the central user contacts the rescue team through the emergency system to make sure the contact time is logged

 1.2 'establish contact' from ':Emergency System' sent to ':Rescue Team'.
emergency system establishes the call with the rescue team according to the best available communication method

 1.3 'send Instructions' from ':Central User' sent to ':Emergency System'.
the central user sends mobilization instruction to the rescue team

 1.4 'log and cascade Instructions' from ':Emergency System' sent to ':Rescue Team'.
the system will log information about this rescue mission and give clear instructions to reach the emergency location

sd Follow up rescue mission Interaction

:Central User :Emergency System :Rescue Team:RescueTeam Leader :Person at Risk :Volounteer

Send Information()

Cascade Information()

Cascade Information()

Send Information()

Send Information()

Send new Information()

Cascade Information()

Cascade Infomration()

Cascade Information()

Send Information()

sd Mobilize Rescue Team Interaction

:Central User :Emergency System :Rescue Team

Find nearest Rescue Team(Emergency Location)

send Instructions()

contact()

establish contact()

log and cascade Instructions()

233 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .1 . 3 MAKE A RESCUE CALL

The use case shows the main activities while making a rescue call. An ideal sequence of activities is shown

in Figure B-4.

Figure B-4 Make a rescue call Interaction Diagram

INTERACTION MESSAGES

 1.0 'contact' from ':Person at Risk' sent to ':Emergency System'.
this contact action could be made by either the person in the car or can be initiated automatically by the mobile phone
of the person, for example. A car that makes an accident, can initiate a rescue alert on behalf of the person as well. The
contact/call may take different forms. For example, it can be an SMS, a chat, or a normal voice call

 1.1 'Direct to employee on duty' from ':Emergency System' sent to ':Central User'.
the emergency system routes the call to the appropriate employee in the shortest time possible

 1.2 'answer' from ':Central User' sent to ':Emergency System'.
gather more information about the incident from the caller

 1.3 'establish connection' from ':Emergency System' sent to ':Person at Risk'.
establish connection with the person at risk, and the communication session may be recorded

 1.4 'Send Details' from ':Person at Risk' sent to ':Central User'.
give the central user details about the incidents including the location, type of incident, current situation, etc

 1.5 'send location' from ':Person at Risk' sent to ':Central User'.
location could be sent from a device as a GPS coordinates, or a descriptive location as an address

Give Details discussion: loop
keep giving details for the central user. During this window, the call may be recorded

Emergency: state
incident happened that requires support from others

B.3 .1 . 4 RESCUE

The main activities for a rescue mission are depicted in Figure B-5.

sd Make a rescue call Interaction

:Person at Risk :Central User

Emergency

:Emergency System

loop Giv e Details discussion

[Finished All Details]
Send Details()

send location()

Direct to employee on duty()

establish connection()

contact()

answer()

234 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-5 Rescue Interaction Diagram

INTERACTION MESSAGES

 1.0 'Give Guidelines' from ':RescueTeam Leader' sent to ':Rescue Team'.
the team leader gives guidelines to the rescue team that helps them with carrying out their mission

 1.1 'Give new instructions' from ':Central User' sent to ':Emergency System'.
central user gives new instructions all the time to the emergency team

 1.2 'log and broadcast' from ':Emergency System' sent to 'Standalone: Emergency System'.
the emergency system logs the new instructions and broadcasts them to the rescue team equipment

 1.3 'log and resend' from 'Standalone: Emergency System' sent to ':RescueTeam Leader'.
the team leader is notified with the instructions

 1.4 'review and communicate' from ':RescueTeam Leader' sent to ':Rescue Team'.
the rescue team reviews the new instructions and communicate them to the person at risk

 1.5 'carry out rescue mission' from ':Rescue Team' sent to ':Person at Risk'.
the mission may imply using multiple devices with sensors to accomplish the rescue mission. These sensors may
measure changes related to the environment and the person at risk

B.3.2 The Learning Business Domain

Figure B-6 Learning Business Domain basic use cases Diagram

sd Rescue Interaction

:Central User :Emergency System :Rescue TeamStandalone: Emergency

System

:RescueTeam Leader :Person at Risk

loop Carry out rescue mission

[Rescue Mission Accomplished]

review and communicate()

carry out rescue mission()

log and broadcast()Give new instructions()

log and resend()

235 – APPENDICES ● APPENDIX B

PervCompRA-SE

There are some basic use cases, as shown in Figure B-6, which are detailed in the coming sections, and

they can help with understanding the domain requirements through the refine relationships as shown in

Table B-8.

Table B-8 Learning use cases vs learning requirements refine relationship matrix

 Use case
Requirement

Enroll in Course Learn Take Exam Teach

Allow self-regulation for the learning process X

Auto-Save material X X

Empower emotional and social bond X

Enrich learning process with multimedia X X

Ensure Information Accessibility X X

Ensure Information Immediacy X X

Ensure Information Permanency X X

Facilitate interaction between teacher and student X X

Highlight new topics X

Provide auto-correction for exams X

Provide community with online learning X

Provide instant feedback when recording multimedia X X

Provide intuitive help facilities X X

Provide urgent learning mechanisms X

Reward high scores X

B.3 .2 . 1 ENROLL IN COURSE

This use case shows the basic activities for a student to enroll in a course as shown in Figure B-7.

236 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-7 Enroll in Course Interaction Diagram

INTERACTION MESSAGES

 Select a course: loop
 continue the catalogue browsing cycle until the student selects the required course

 1.0 'Browse Course Catalogue' from ':Student' sent to ':Smart Educational system'.
the learner can use different channels to complete the enrollment. For example, he/she may use a website or
a mobile application to browse the catalogue and enroll in the course

 1.1 'Select Course' from ':Student' sent to ':Smart Educational system'.
this could be a normal selection using the mouse and the keypad, or through other supporting technologies
like voice or finger touch

 1.2 'Enroll in course' from ':Student' sent to ':Smart Educational system'.
proceed in the enrollment process and complete any required information (user profiling), or special case handling

decide for enrollment: loop

If it is a normal enrollment with no special requests, and the student fulfills all requirements, then the admin may
proceed in the approval cycle.
Else, the admin needs to study the case, and makes sure that the student’s special requirements can be fulfilled. If it
cannot, then the admin may reject the request

 1.3 'approve' from ':Admin' sent to ':Smart Educational system'.
approve the enrollment request

 1.4 'Reject' from ':Admin' sent to ':Smart Educational system'.
reject the enrollment request

B.3 .2 . 2 LEARN

This use case also shows the basic activities for a standard learning cycle (Figure B-8) that do not involve a

human teacher.

sd Decide for enrollment

:Student :Admin:Smart Educational system

Registered

loop Select a course

[All courses selected]

opt decide for enrollment

[Meeting enrollment conditions]

[does not meet enrollment conditions]

Enroll in course()

approve()

Reject()

Browse Course Catalogue()

Select Course()

237 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-8 Learn use case interaction diagram

INTERACTION MESSAGES

 1.0 'Search for a learning material' from ':Student' sent to ':Smart Educational system'.
the student is looking for a suitable material to study. The search could be conducted using internet enabled PC, or a
mobile, or a local network connectivity inside the institution.
The system should provide proper and easy help facilities to let the learner find hot topics quickly.

 1.1 'Retrieve material' from ':Smart Educational system' sent to ':Knowledge DB System'.
the system retrieves the required material from the database

 1.2 'Display content' from ':Smart Educational system' sent to ':Student'.
the system displays the required content to the student according to the used medium

 1.3 'start the learning session' from ':Student' sent to ':Smart Educational system'.
the student starts a learning session. The system will record details about this session and will provide the needed help
to the student to complete his/her learning session successfully

 1.4 'Record notes' from ':Student' sent to ':Smart Educational system'.
the student is allowed to take notes and link them to the educational material

 1.5 'Close learning session' from ':Student' sent to ':Smart Educational system'.
the student may decide to pause/close his/her session at any time and may decide to resume it later on

 1.6 'Save session progress' from ':Smart Educational system' sent to 'learner profile: Smart Educational system'.
the system will store the session and its status in the learner’s profile

B.3 .2 . 3 TAKE EXAM

The basic activities for a student taking an exam which is auto-corrected by the system as shown in Figure

B-9.

sd Learn

:Student :Knowledge DB System:Smart Educational system learner profile: Smart

Educational system

start the learning session()

Retrieve material()

Search for a learning material()

Record notes()

Close learning session()

Save session progress()

Display content()

238 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-9 Take exam use case interaction diagram

INTERACTION MESSAGES

 1.0 'place exam question & answer' from ':Teacher' sent to ':Smart Educational system'.
the teacher prepares an exam in a suitable way with the model answers. Some exams may require multimedia
interaction, and some others may need only textual writing. So, the format of the exam differs according to the nature
of the educational process

 1.1 'record' from ':Smart Educational system' sent to ':Knowledge DB System'.
the system records the exam in its database to make it available for the students

 1.2 'take a scheduled exam' from ':Student' sent to ':Smart Educational system'.
the student takes a scheduled exam. The exam is scheduled on a specific date according to the teacher’s decision

 1.3 'monitor for exam rules' from ':Smart Educational system' sent to ':Student'.
the system is empowered to monitor the student to ensure that the exam rules are not violated and that all the tools
the student needs are available

 1.4 'submit answers' from ':Student' sent to ':Smart Educational system'.
the student submits the answer after he/she finishes the exam, or after the exam times out

 1.5 'record result' from ':Smart Educational system' sent to ':Knowledge DB System'.
the system records the results in its database

 1.6 'correct exam and show results' from ':Smart Educational system' sent to ':Student'.
the system corrects the exam according to the model answer and shows the resulting scores to the student.
The system may show good congratulation message to the student if he/she scored high.

 1.7 'notify' from ':Smart Educational system' sent to ':Teacher'.
the system notifies the teacher with the student’s exam score

B.3 .2 . 4 TEACH

The basic teaching activities, as shown in Figure B-10, that engage the teacher and the student inside a

class using smart educational tools.

sd Take Exam

:Student :Smart Educational system :Knowledge DB System:Teacher

notify()

record()

take a scheduled exam()

record result()

submit answers()

place exam question & answer()

correct exam and show results()

monitor for exam rules()

239 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-10 Teach use case interaction diagram

INTERACTION MESSAGES

 1.0 'get course material' from ':Teacher' sent to ':Smart Educational system'.
the teacher instructs the system to retrieve specific course material for teaching inside the class

 1.1 'retrieve knowledge' from ':Smart Educational system' sent to ':Knowledge DB System'.
the system fetches the required material from the database

 1.2 'uses smart tools' from ':Teacher' sent to ':Smart Educational system'.
the teacher uses the available smart tools in the class to explain the subjects

 1.3 'monitor students attention' from ':Smart Educational system' sent to ':Student'.
the system monitors the students in the class and records their attention level

 1.4 'conduct teaching' from ':Teacher' sent to ':Student'.
the teacher proceeds in the teaching process

 1.5 'End Class' from ':Teacher' sent to ':Smart Educational system'.
the teacher closes the class session

sd Teach

:Teacher :Student:Smart Educational system :Knowledge DB System

get course material()

retrieve knowledge()

uses smart tools()

conduct teaching()

monitor students attention()

End Class()

240 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3.3 The Retail Business Domain

Figure B-11 Retail business domain basic use cases

The following actors that appear in Figure B-11 are further explained:

E-Payment Collector:

an electronic method to collect payment in a fast and secure way without the need for physical cash. The

payment could be through mobile, credit card, e-cash, or any other electronic method.

Product/Service

is the main item list that a shopper may purchase from. This product/service may be tagged for use by the

retailer and the shopper.

uc [Package] Retail [Retail]

Retail Store

Shopper

Surv ey

Product/Serv ice

Browse Product

Catalogue

Purchase

Product/Serv ice

Visit Retail Store

«entity»

Shopping Cart

«entity»

Retailer

«entity»

E-Payment Collector

Product/Serv ice DB

Deliv er

Product/Serv ice

Return

Product/Serv ice

Support

Product/Serv ice

Internet

Retail System

241 – APPENDICES ● APPENDIX B

PervCompRA-SE

Retailer

provides locations that contain the physical products. The locations are usually equipped with different

sensors and readers. The retailer provides facilities to increase the probabilities of purchasing transactions

and tries to improve the shopping experience by providing different pervasive technologies like smart

screens, RFID tags, and e-payment.

Shopper

visits the retailer in order to purchase one or more products. The shopper in our scope will always visit the

retail physically and may have smart devices to enhance his/her shopping experience.

Shopping Cart

is used by the shopper to record one or more product items that may be purchased during the shopper’s

visit. The shopping cart may be a piece of paper or a software in an electronic device like a smart phone.

There are some basic use cases, as shown in Figure B-11, which are detailed in the coming sections, and

they can help with understanding the domain requirements through the refine relationships as shown in

Table B-9.

Table B-9 Retail use cases vs retail requirements refine relationship matrix

 Use Case

Requirement

Browse
Product

Catalogue

Deliver Purchase Return Select Support Survey Visit
Retail
Store

Create a store view automatically X X

Enable Multiple-channel browsing X X

Enable Multiple delivery methods X

Enable Multiple payment methods X

Facilitate support and consultancy X

Guarantee An up-to-date inventory X X

Ignore irrelevant product information
intelligently

 X

Provide complete information about
the product

X X

Provide product information in real-
time

X X

B.3 .3 . 1 BROWSE PRODUCT CATAL OGUE

The use case shows the basic activities a shopper needs to do while browsing a product catalogue as

shown in Figure B-12.

Figure B-12 Browse Product Catalogue Interaction Diagram

sd Browse Product Catalogue Interaction

:Shopper :Product/Service DB:Retail System

Browse()

*Read Details()

Show Catalogue()

Retrieve Catalogue()

242 – APPENDICES ● APPENDIX B

PervCompRA-SE

INTERACTION MESSAGES

 1.0 'Browse' from ':Shopper' sent to ':Retail System'.
Smart browsing could be by voice, eye, or finger moves

 1 'Browse' from ':Shopper' sent to 'Retail System'.
Smart browsing could be by voice, eye, or finger moves

 1.1 'Retrieve Catalogue' from ':Retail System' sent to ':Product/Service'.
the system retrieves product catalogue

 2 'Retrieve Catalogue' from ':Retail System' sent to 'Product/Service'.

 1.2 'Show Catalogue' from ':Retail System' sent to ':Shopper'.
different device types and technologies should be considered to render the content in the best way

 1.3 'Read Details' from ':Shopper' sent to ':Retail System'.

 4 'Read Details' from ':Shopper' sent to 'Retail System'.

B.3 .3 . 2 DELIVER PRODUCT/SERV ICE

The use case shows the basic activities the retailer needs to do in order to deliver a product/service to the

shopper as shown in Figure B-13.

Figure B-13 Deliver Product/Service Interaction Diagram

INTERACTION MESSAGES

 1.0 'Prepare Delivery Package' from ':Retail System' sent to ':Retailer'.
the system instructs the retailer to prepare the package for delivery according to the details of the purchaser

 1.1 'Collect Items' from ':Retailer' sent to ':Product/Service'.
the retailer collects the items that will be packaged

 1.2 'Ask for best Delivery method' from ':Retailer' sent to ':Retail System'.
the retailer gets information from the customer profile that indicates the best delivery method(either requested
explicitly, or preferred)

 1.3 'Get Shopper Delivery Preference' from ':Retail System' sent to ':Shopper'.
get the preference of the customer

 1.4 'Notify Retailer' from ':Retail System' sent to ':Retailer'.
notify the retailer to use the preferred delivery method

 1.5 'Deliver Package' from ':Retailer' sent to ':Shopper'.
deliver the package to the customer

sd Deliv er Product/Serv ice Interaction

:Shopper :Retail System :Product/Service DB

:Retailer

Ask for best Delivery method()
Get Shopper Delivery

Preference()

Notify Retailer()

Collect Items()

Deliver Package()

Prepare Delivery Package()

243 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .3 . 3 PURCHASE PRODUCT/SER VICE

The use case shows the basic activities that a shopper needs to do, as shown in Figure B-14, in order to

purchase a product/service. The system asks the shopper to make the payment. The payment can take

place in different forms (cash, by mobile, by bitcoin, etc ...) in a pervasive system, the payment should be

as simple as possible and convenient to the customer with different options.

Figure B-14 Purchase Product/Service Interaction Diagram

INTERACTION MESSAGES

 1.0 'Collect Items' from ':Retail System' sent to ':Shopping Cart'.
the shopper collects the items to purchase either virtually or physically and adds them to the shopping cart

 1.1 'Notify single items' from ':Shopping Cart' sent to ':Product/Service'.
every item being collected will be notified, if it is a virtual collection, or it will notify the retail system that it is being
checked out by a shopper

 1.2 'Move Items for Payment' from ':Shopping Cart' sent to ':Retail System'.
the customer decided to purchase the items, and it shall be added now for payment

 1.3 'Collect Payment' from ':Retail System' sent to ':Shopper'.
the system will collect payment from the customer in a convenient method suitable for the customer and supported by
the system. Payment options using mobile, smart cards, or bitcoin are convenient for the system

 1.4 'Place Payment' from ':Shopper' sent to ':Retail System'.
the customer places his/her payment according to the preferred method

 1.5 'Authorize Payment' from ':Retail System' sent to ':E-Payment Collector'.
the system authorizes payment from an authorized entity, if the shopper’s money resides in a different place, a bank
for example

 1.6 'Notify as ready for delivery' from ':Retail System' sent to ':Product/Service'.
the system reserves the items for the shopper, and they cannot be sold to another customer

B.3 .3 . 4 RETURN PRODUCT

The use case shows the basic activities a shopper needs to do in order to return a product/service to the

retailer as shown in Figure B-15.

sd Purchase Product/Serv ice Interaction

:Shopper :Retail System :Product/Service DB

:E-Payment

Collector

:Shopping Cart

Place Payment()

Notify single items()

Collect Payment()

Authorize Payment()

Collect Items()

Notify as ready for delivery()

Move Items for

Payment()

244 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-15 Return Product/Service Interaction

INTERACTION MESSAGES

 1.0 'Request Return' from ':Shopper' sent to 'Customer Service: Retailer'.
request could be by phone, a website, or even through social media

 1.1 'Record Request' from 'Customer Service: Retailer' sent to ':Retail System'.
the retailer records the customer request on the system

 1.2 'Request Justification' from 'Customer Service: Retailer' sent to ':Shopper'.
the retailer contacts the customer to know the exact problem with the product, if any

 1.3 'Ask support to revise product/service status' from 'Customer Service: Retailer' sent to ':Retail System'.
the retailer places a request on the system to check a returned product from a customer

 1.4 'Notify to review' from ':Retail System' sent to 'Support Team: Retailer'.
the system notifies the support team to check the item

 1.5 'Diagonize Product' from 'Support Team: Retailer' sent to ':Product/Service'.
the support team checks the product to make sure that it can be returned

 1.6 'Accept Item' from 'Support Team: Retailer' sent to ':Product/Service'.
the support team checks the item and accepts that the customer returns it

 1.7 'Send Feedback' from 'Support Team: Retailer' sent to 'Customer Service: Retailer'.
the support team sends approval to the retailer

 1.8 'Pickup Item' from 'Customer Service: Retailer' sent to ':Shopper'.
the retail team picks the item from the customer

 1.9 'Refund Money' from ':Shopper' sent to ':E-Payment Collector'.
the system refunds the money to the customer

 1.10 'Reject Item' from 'Support Team: Retailer' sent to ':Product/Service'.
the product cannot be returned

 1.11 'Send Feedback' from 'Support Team: Retailer' sent to 'Customer Service: Retailer'.
the support team sends their feedback about the returned item to the retailer confirming that the item cannot be
returned

 1.12 'Apologize and Justify' from 'Customer Service: Retailer' sent to ':Shopper'.
sends a suitable apology message to the customer with the proper justification

sd Return Product/Serv ice Interaction

:Shopper :Product/Service DB:Retail System

:E-Payment

Collector

Customer Serv ice:

Retailer

Support Team:

Retailer

alt Refund Decision

[<accepted>]

[<rejected>] Reject Item()

Record Request()

Refund Money()

Accept Item()

Request Justification()

Send Feedback()

Send Feedback()

Ask support to

revise product

status()

Pickup Item()

Apologize and Justify()

Notify to review()
Diagnose Product()

Request Return()

245 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .3 . 5 SELECT PRODUCT/SERVI CE

The use case shows the basic activities a shopper needs to do in order to select a product/service as shown

in Figure B-16.

Figure B-16 Select Product/Service Interaction Diagram

INTERACTION MESSAGES

 Selecting multiple items: loop
 keep selecting a product/service until all required items are selected

 1.0 'Select Product/Service' from ':Shopper' sent to ':Retail System'.
the shopper selects a product/service from the retail system, which could be, for example, on a website,
mobile, or through an interactive display inside the store itself

 1.1 'Reserve Item' from ':Retail System' sent to ':Product/Service'.
the system reserves the product/service

 1.2 'Move Product/Service' from ':Retail System' sent to ':Product/Service'.
the system notifies that product/service that it will be moved to the shopping cart of the customer

 1.3 'Add Item' from ':Retail System' sent to ':Shopping Cart'.
the system then adds the selected product/service to the customer shopping cart

 1.4 'Notify Stock Decreased' from ':Product/Service' sent to ':Retail System'.
the product notifies the system that its stock of this type decreased

B.3 .3 . 6 PRODUCT/SERVICE SUPPORT

The use case shows the basic activities that the support team needs to do in order to give technical

support for a product/service as shown in Figure B-17.

sd Select Product/Serv ice Interaction

:Shopper :Retail System

:Shopping Cart

:Product/Service DB

loop Selecting multiple items

Move Product/Service()

Select Product/Service()
Reserve Item()

Add Item()

Notify Stock Decreased()

246 – APPENDICES ● APPENDIX B

PervCompRA-SE

e

Figure B-17 Product/Service Support Interaction

INTERACTION MESSAGES

 Product/Service Notification Preference: opt
the customer has the option of receiving notification whenever there is a problem with the product/service

 1.0 'Notify with Problem' from ':Product/Service' sent to 'Customer: Shopper'.
the product/service notify the customer with the problem through its network interface, or through a display
screen

 1.1 'Request Permission to contact Support' from ':Product/Service' sent to 'Customer: Shopper'.
the product/service requests a permission from the customer to contact the manufacturer support team

 1.2 'Notify Support Team' from ':Product/Service' sent to ':Retail System'.
the product/service may send details about the product/service problem

 1.3 'Add to Tasks list' from ':Retail System' sent to 'Support Team: Retailer'.
the system adds this problem with the proper priority to the task list of the support team

Remote Access Permission: opt
 if the device is configured to allow access to the product/service only after the customer permission

 1.4 'Call Customer' from 'Support Team: Retailer' sent to 'Customer: Shopper'.
the system will notify the customer that the support team will be contacting him/her to discuss the problem
and provide a solution according to the case

 1.5 'diagnoses remotely' from 'Support Team: Retailer' sent to ':Product/Service'.
the support team accesses the device remotely and diagnoses remotely

 1.6 'fix issue' from 'Support Team: Retailer' sent to ':Product/Service'.
apply fix if it is possible

 1.7 'Notify operating normally' from ':Product/Service' sent to 'Customer: Shopper'.
the product/service notifies the customer that its problem is fixed and operation is back to normal

B.3 .3 . 7 SURVEY PRODUCT/SERVI CE

The use case shows the basic activities that a shopper needs to do while surveying for a product/service as

shown in Figure B-18.

sd Support Product/Serv ice Interaction

Customer: Shopper :Product/Service DB:Retail System

Support Team:

Retailer

opt Product/Serv ice Notification Preference

alt Remote access permission

Notify Support Team()

Notify with Problem()

Notify operating normally()

Call Customer()

diagnoses remotely()

fix issue()

Add to Tasks list()

Request Permission to contact Support()

247 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-18 Survey Product/Service Interaction

INTERACTION MESSAGES

 1.0 'Add me' from ':Product/Service' sent to ':Retail System'.
The product/service has information to add to the retail system. The retail system may get such info through sensors as
well

 1.1 'publish product info' from ':Retail System' sent to ':Internet'.
the system publishes its new stock updated with the new product/service on the Internet

 1.2 'Search for Product/Service Info' from ':Shopper' sent to ':Internet'.
the shopper surveys for a specific product/service on the Internet

 1.3 'Send Details' from ':Internet' sent to ':Shopper'.
details are submitted to the shopper through his/her convenient channel (computer, tablet, mobile phone). The
content is rendered to match the device capabilities

 1.4 'Request Nearest location' from ':Shopper' sent to ':Internet'.
the shopper requests to have the nearest store location that sells this product/service

 1.5 'Send GPS location' from ':Internet' sent to ':Shopper'.
the nearest store location is sent as a GPS point to the shopper’s mobile phone as detected from his/her profile

B.3 .3 . 8 VIS IT RETAIL STORE

The use case shows the basic activities that a shopper needs to do to visit a retail store as shown in Figure

B-19.

Figure B-19 Visit Retail Store Interaction Diagram

sd Surv ey Product/Serv ice Interaction

:Shopper :Retail System :Product/Service DB:Internet

publish product info()

Send GPS location()

Search for Product/Service Info()

Send Details()

Request Nearest location()

Add me()

sd Visit Retail Store Interaction

:Shopper :Retail System

Retail Store Display

update l ist()

Detects Shopper()

Walk in()

Show relevant items()

Direct to Item()

Get relevant items list()

248 – APPENDICES ● APPENDIX B

PervCompRA-SE

INTERACTION MESSAGES

 1.0 'Walk in' from ':Shopper' sent to 'Retail Store'.
the shopper walks in the retail store to purchase a product/service

 1.1 'Detects Shopper' from 'Retail Store' sent to ':Retail System'.
the retail system detects the shopper and retrieves his/her profile

 1.2 'Direct to Item' from ':Retail System' sent to ':Shopper'.
the system directs the shopper to an item which was already been surveyed before visiting the store

 1.3 'Get relevant items list' from 'Display' sent to ':Retail System'.
the display screens in the store show relevant product/services to the shopper while he/she is moving around the
store. The fetched items are relevant to the item that the shopper is interested in

 1.4 'update list' from 'Display' sent to ':Retail System'.
the list of product/service(s) are updated as the customer moves around, since the location may contain more relevant
items

 1.5 'Show relevant items' from ':Retail System' sent to 'Display'.
the display screens in the store display relevant product/services to the shopper while he/she is moving around the
store. The displayed items are relevant to the item that the shopper is interested in

B.3.4 Smart Environment

Figure B-20 Smart Environment basic use cases Diagram

249 – APPENDICES ● APPENDIX B

PervCompRA-SE

Object

The object could be a device or a living creature that can interact with the pervasive system

System

The pervasive system that should fulfill the interacting object needs

There are some basic use cases, as shown in Figure B-20, which are detailed in the coming sections, and

they can help with understanding the domain requirements through the refine relationships as shown in

Table B-10.

Table B-10 Smart Environment use cases vs quality features requirements refine relationship matrix

A
cc

e
ss

 S
e

rv
ic

e

A
d

ap
t

to
 t

h
e

C
h

an
ge

C
e

rt
if

y
Tr

u
st

e
d

O
b

je
ct

C
h

e
ck

 f
o

r
C

h
an

ge

H
an

d
le

 f
au

lt

Jo
in

 S
m

ar
t

En
vi

ro
n

m
e

n
t

Le
av

e
 S

m
ar

t

En
vi

ro
n

m
e

n
t

P
ro

fi
le

 O
b

je
ct

Sh
ar

e
 O

b
je

ct
 P

ro
fi

le

Alert if safety is about to be/or is compromised X

Allow the user to override/cancel system decisions X X

Announce malfunctioning smart objects X

Avoid invalid operational directives X X

Capture Knowledge about users X

Capture/change behavioral patterns

Certify trusted entities X

Classify Information X

Correlate information and knowledge

Declare service/quality feature boundaries X

Detect faults quickly X

Disallow anonymous usage of the system X X X

Distribute computing power X

Enforce Security rules on all objects X X

Enrich the experience of the highly used scenarios X

Ensure secure data transmission X

Ensure that generated rules do not conflict with
system policy

 X X

Equip system with sensors X

Evaluate/Improve Adaptive actions X

Has smart decision rules X

Locate interacting objects X

Maintain data integrity X

Maximize the number of device technologies X

Minimize average processing capability X

Minimize conflicting usage of shared resources X

Minimize Faults X

Minimize the probability of an object to be offline X

Minimize the use of explicit input X

Minimize unneeded interactions with the system X

250 – APPENDICES ● APPENDIX B

PervCompRA-SE

A
cc

e
ss

 S
e

rv
ic

e

A
d

ap
t

to
 t

h
e

C
h

an
ge

C
e

rt
if

y
Tr

u
st

e
d

O
b

je
ct

C
h

e
ck

 f
o

r
C

h
an

ge

H
an

d
le

 f
au

lt

Jo
in

 S
m

ar
t

En
vi

ro
n

m
e

n
t

Le
av

e
 S

m
ar

t

En
vi

ro
n

m
e

n
t

P
ro

fi
le

 O
b

je
ct

Sh
ar

e
 O

b
je

ct
 P

ro
fi

le

Monitor and improve QoS boundaries X X

Notify users with changes X

Override system rules by the regulator X

Possess actuation capabilities X

Prevent data leakage X X X X X

Provide a unique identifier for every object X X

Provide analytical capability X X

Provide data access rules X

Provide Informative messages X X

Provide interpretation rules X

Provide maximum protection for the environment X X X X X X

Record object lifetime X

Reduce Error consequences X

Remove unnecessary motions X

Render content on the maximum number of devices X

resolve conflicts among objects by an administrator X

Respect societal ethics X

Reveal Information controllably X

Show proper error message X X

Specify hard/soft deadline X

Take counter-measures to mitigate security threats X

Take the proper corrective action X

Track Information X

Use a unique user identifier X X X

Utilize the user mobile phone X X

B.3 .4 . 1 ACCESS SERVICE

The use case shows the ideal activities for requesting a service from the system. The service may serve the

object by giving information or executing specific tasks as depicted in Figure B-21.

251 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-21 Access Service Interaction Diagram

INTERACTION MESSAGES

 1.0 'Request access to service' from ':Object' sent to ':System'.
the object requests access to the system resources and services. The object could be a human being, a living creature
or a device that must have a valid identifier

 1.1 'check access' from ':System' sent to 'Service: System'.
check with the service or resource if the object can access it directly or not

 1.2 'join the environment' from ':System' sent to ':Join Environment Interaction'.
if the object has not already joined to the environment, then join it

 1.3 'check access permission' from ':System' sent to ':System'.
the rules of the smart environment and the permissions granted to the object governs whether to accept or reject the
access request

 1.4 'check capacity' from ':System' sent to ':System'.
a service may have limited capacity that prevents multiple access.

 1.5 'grant access' from ':System' sent to ':Object'.
allow the object to reach the requested service or resource

 1.6 'deny access' from ':System' sent to ':Object'.
deny access for the requested service or resource

 1.7 'send access rules' from 'Service: System' sent to ':Object'.
the service may have extra access rules that could be forced on the object. The rules would inform the object about
expected performance and its boundaries

 1.8 'execute required service' from ':Object' sent to 'Service: System'.
the object will then get the required resources from the service. These resources could be information to fetch, or
operations to run. Information will be sent to the object in a suitable form.

 1.9 'log event' from ':System' sent to ':System'.
the system will log the event for accessing the service or resource

sd Access Serv ice Interaction

:Object

system: System

:Join Environment

Interaction

Serv ice: System

opt access rules

[grant access]

[deny access]

check access

permission()

grant access()

log event()

request_access_to_service(String): int

check access()

join the environment()

deny access()

send access rules()

check capacity()

execute required service()

252 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .4 . 2 ADAPT TO THE CHANGE

The use case shows the basic activities in the pervasive system to adapt for context changes as depicted in

Figure B-22.

Figure B-22 Adapt to Change Interaction

INTERACTION MESSAGES

 1.0 'check decision rules' from ':System' sent to ':System'.
the system checks its decision rules to know the right action to take

 1.1 'make change' from ':System' sent to 'Actuator: System'.
the system takes the action and instructs the actuator to make the change. It is important to take the right and
intelligent action that minimizes the effort of the object and maintains the system’s health and user's safety.

 1.2 'notify' from ':System' sent to 'User: Object'.
the user is notified with the change. The notification differs according to the nature of the user and the context

 1.3 'study change' from ':System' sent to ':System'.
The system studies the change made to detect new decision rules if any

B . 3 . 4 . 3 CERTIFY TRUSTED OBJECT

The use case shows the process of approving/rejecting a certificate request as depicted in Figure B-23.

Figure B-23 Certify Trusted Object Interaction Diagram

sd Adapt to Change Interaction

:System

User: Object

Actuator: System

New Context

notify()

study change()

check decision

rules()
make change()

sd Certify Trusted Object Interaction

:Object

:System

Review Certification rules()

request trust certificate()

send certificate()

253 – APPENDICES ● APPENDIX B

PervCompRA-SE

INTERACTION MESSAGES

 1.0 'request trust certificate' from ':Object' sent to ':System'.
an object tries to certify itself by requesting a trust certificate from the system. A trust certificate will allow it to access
resources that are permitted only for objects that carry trust certificates and have valid identities

 1.1 'Review Certification rules' from ':System' sent to ':System'.
the system reviews the certification rules according to the

1. System security, trust, and privacy rules

2. Object’s role in the system

3. Rules enforced by the regulator

 1.2 'send certificate' from ':System' sent to ':Object'.
certificate will be granted if the system approved the object request

B . 3 . 4 . 4 CHECK FOR CHANGE

The use case shows how the system behaves when there is a change in the context as shown in Figure

B-24.

Figure B-24 Check for Change Interaction Diagram

INTERACTION MESSAGES

 1.0 'reads data' from 'Sensor: System' sent to 'Sensor: System'.
data gathered from the environment (air pressure, temperature, humidity, etc ...)

 1.1 'reads data' from 'Sensor: System' sent to 'User: Object'.
any information about the user through the sensor. It could be his/her photo picture, blood pressure, or existence of
the user in a location

 1.2 'send data' from 'Sensor: System' sent to ':System'.
the data could be temperature, humidity, pressure, camera, or any other data captured from the environment

 1.3 'interpret data to context' from ':System' sent to ':System'.
the system interprets the data coming from the sensors into specific meanings in order to make proper understanding
for the context

 1.4 'record context' from ':System' sent to ':System'.
the system records the current context

 1.5 'analyze to refine interpretation' from ':System' sent to ':System'.
the system should be able to analyze the changes in the context and their interpretation to generate more knowledge
in order to refine the interpretation rules of the system

sd Check for Change Interaction

Sensor: System :System

User: Object

reads data()

record context()

interpret data

to context()

send data()

analyze to refine interpretation()

reads data()

254 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .4 . 5 HANDLE FAULT

The basic activities the system has to do in order to handle faults are shown in Figure B-25.

Figure B-25 Handle fault Interaction Diagram

INTERACTION MESSAGES

 1.0 'make operation' from ':Object' sent to ':System'.
the object tries to execute a service or access a resource

 1.1 'raise fault' from ':System' sent to ':System'.
the operation cannot be executed and fails to achieve what it is designed for

 1.2 'Set Operation as Temp failed' from ':System' sent to ':System'.
in order to avoid future faulty operations, the system will put this operation as temporarily failing until the problem is
fixed

 1.3 'log fault event' from ':System' sent to ':Object'.
log the details of the fault event for future analysis

 1.4 'notify' from ':System' sent to 'Administrator: Object'.
notify the administrator with the problem in case it needs external intervention or for future analysis

 1.5 'fix situation' from ':System' sent to ':System'.
the system will try to fix the problem. The system has to limit its fix trials, according to the system design, before
considering it failed

 1.6 'set operation as available' from ':System' sent to ':System'.
restore the status of the operation as available to allow other objects to execute it

 1.7 'show error message' from ':System' sent to ':Object'.
the error message will be shown to the object in order to explain to it the reason of the fault and what to do next. It is
a classical response in case this object is a human being and the operation is requested explicitly by that user

 1.8 'send operation result' from ':System' sent to ':Object'.
send the result of the operation. It is failed unless the system succeeded in resolving the problem

:Object

:System

Administrator: Object

opt Fix problem decision

[problem is fixed]

[problem is not fixed]

log fault event()

fix situation()

notify()

show error message()

make operation()

send operation result()

set operation as

available()

raise fault()

Set Operation as

Temp failed()

255 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .4 . 6 JOIN THE SMART ENVIRONMENT

The basic activities that the system should do in order to fulfill a join request from an object are shown in

Figure B-26.

Figure B-26 Join Environment Interaction Diagram

INTERACTION MESSAGES

 1.0 'Request to Join' from ':Object' sent to ':System'.
a smart object or a user requests to join a smart environment. This request means that the object will be part of the
environment and can access allowed services. The object must have a valid identifier that the system can recognize.

Passive object(s) may be incorporated into the environment without explicit join if the smart environment recognizes it

 1.1 'Initial Profiling' from ':System' sent to ':Object'.
if the object joins for the first time, then the system makes initial profiling for the object. Details are requested
according to the nature of the object (human, animal, device) and the ability of the object to share such data. However,
the minimum that can be acquired to profile the object is its identity.

 1.2 'Check Join rules' from ':System' sent to ':Object'.
The join rules may differ from one system to another. For example, if the smart environment is for public, then the
administrator may choose to deny access to some critical services according to the nature of the object. If the
environment is private, then the join access may be rejected if the object is not trusted.
So, it is a combination between the nature of the smart environment and the nature of the object

 1.3 'log join event' from ':System' sent to ':System'.

 1.4 'Confirm Join' from ':System' sent to ':Object'.
the object has joined the smart environment now

 1.5 'Deny Join' from ':System' sent to ':Object'.
The object is not allowed to join the environment which could be due to many reasons. For example, the object may
compromise the security and safety of the environment

sd Join Env ironment Interaction

:Object

:System

opt First Join Check

[is first join]

alt Approv e/Deny Join

[Approved]

[Denied]

Initial Profil ing()

Check Join rules()

Confirm Join()

Deny Join()

log join

event()

Request to Join()

256 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.3 .4 . 7 LEAVE SMART ENVIRONMENT

The use case shows the basic activities that the system has to do when an object disappears from the

smart environment as depicted in Figure B-27.

Figure B-27 Leave Environment Interaction Diagram

INTERACTION MESSAGES

 1.0 'leave the environment' from ':Object' sent to ':System'.
 The object may leave the environment for more than one reason. Some of them are

a. The object finished its job and leaves the environment willingly.

b. The object runs out of battery and it cannot access the environment any more.

c. The object moves around in an ad hoc behavior and it is disconnected from the environment

 1.1 'release services and resources' from ':System' sent to ':System'.
Resources could be anything in the environment which was reserved for the object, like processor, memory, or
database resources.

 1.2 'log leave event' from ':System' sent to ':System'.

B.3 .4 . 8 PROFILE OBJECT

The use case shows the basic activities for the pervasive system to profile an object as depicted in Figure

B-28.

Figure B-28 Profile Object Interaction

:Object

:System

leave the environment()

releave services and resources()

log leave event()

sd Profile Object Interaction

:Object

:System Database: System

loop until profile is complete

[is information is correct]

send requested information()

store profile()

validate information()

request profile information()

257 – APPENDICES ● APPENDIX B

PervCompRA-SE

INTERACTION MESSAGES

Loop until profile is complete: loop

keep checking with the object until the profile information is complete and accurate

 1.0 'request profile information' from ':System' sent to ':Object'.
the object may be prompted to send profile information, or information may be fetched directly according to
the nature of the object (human, or a smart object). A smart object may have an embedded rule that allows
the smart environment(s) to get the allowed profile details

 1.1 'send requested information' from ':Object' sent to ':System'.
the system may enforce that the object must send specific information like the identifier and name. Other
details may be optional

 1.2 'validate information' from ':System' sent to ':System'.
this is left for every system to validate. However, the system must have some basic validation rules

1. it must validate that mandatory information is submitted

2. validate on the syntax of the submitted information. For example, if a cell phone number is requested and
it must start with predefined digits, then the system must check this.

3. validate on the length of the submitted data. For example, if the cell phone number has a length of 12
digits, then the system must validate information according to this rule.

 1.3 'store profile' from ':System' sent to 'Database: System'.
store the profile information in the system database for later use. The information should be stored in a
secure manner that preserves its authenticity and disallows future illegal manipulations to secure its access.
The profile of the object must include its nature (part object, resident object, visitor object, trusted object)

B.3 .4 . 9 SHARE OBJECT PROFILE

the profile of the object could be shared with other systems. Moreover, the same object may give other

profile details to other systems which could be shared as well with other systems according to an agreed

sharing policy (Figure B-29).

Figure B-29 Share Object Profile Interaction

INTERACTION MESSAGES

 1.0 'share profile' from 'system 1: System' sent to 'system 2: System'.
broadcast information of the object to other systems according to an agreed sharing policy and based on the security
rules of each system

 1.1 '' from 'system 1: System' sent to 'system 3: System'.

 1.2 'share profile' from 'system 3: System' sent to 'system 1: System'.

 1.3 'Share Profile' from 'system 1: System' sent to 'Smart Actuator: Object'.

 1.4 'Share Profile' from 'system 1: System' sent to 'Smart Sensor: Object'.

sd Share Object Profile Interaction

system 1: System system 2: System system 3: System the profile of the object could be

shared with other systems. Moreover,

the same object may give other profile

details to other systems which could be

shared as well with other systems.

broadcast information of the object to

other systems according to an agreed

sharing policy and based on the

security rules of each system.

A

Smart Actuator: Object Smart Sensor: Object

share profile()

Share Profile()

Share Profile()

share profile()

258 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.4 State Machines

State machines are considered very important in PervComp as they represent the main rules by which

context sensitivity and adaptive behavior works. A combination of some states for a context, and the

system may adapt to the new context and cause further changes as well. Moreover, they refine the use

cases and the requirements for better understanding.

B.4.1 The Emergency Business Domain

B.4 .1 . 1 PERSON AT RISK STATU S

Every person being rescued should be identified to be in one of the following states (Figure B-30):

1. At Risk: the person is at risk at that moment

2. Being Rescued: the rescue mission is being carried out

3. Rescued: the person at risk has been rescued successfully.

4. Unsaved: the rescue team could not accomplish the mission to rescue the person at risk

Figure B-30 Person at risk state machine diagram

B.4 .1 . 2 RESCUE MISSION STATU S

The rescue mission progresses through the following phases (Figure B-31):

1. started: the rescue team takes the rescue assignment and studies the best strategy for

accomplishing the mission in light of the available information.

2. in progress: the rescue team is taking real steps towards accomplishing the rescue mission. The

team will stay in this status until the mission succeeds, fails, or gets aborted.

3. Succeeded: the mission succeeded as assigned. However, the mission may succeed with or

without casualties .

4. Failed: the mission may fail for any reason. It can fail also with or without casualties.

5. Aborted: the mission may be aborted for any reason. It can be aborted also with or without

casualties.

stm [StateMachine] Person at risk status [Person at risk state machine]

Initial

At Risk RescuedBeing Rescued

Final

Unsav ed

Failed

[rescue

completed]

[start rescue]

[rescue mission

failed]
[rescue mission did

not start]

[cannot rescue]

[Waiting for Rescue

mission]

259 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-31 Rescue Mission state machine diagram

B.4.2 Learning Business Domain

B.4 .2 . 1 COURSE CLASS STATUS

A course class that can be taken by a student/learner passes through the following stages (Figure B-32):

1. available: the course class is available for a student to take. The availability could be determined

by the max number of students, for example. it will stay available till the semester starts with the

required number of students. If the conditions are not met then the course will be aborted.

2. taken: all the conditions to start the class are met, and the class started and the learning process is

running. The class may be aborted for any reason by the institution.

3. completed: the class completed its targets successfully. These targets could be that 1) all students

who enrolled took it 2) finished by the end of the semester 3) all students took the exam

4. aborted: this status represents the status of the class as being cancelled

Figure B-32 course state machine diagram

B.4 .2 . 2 EXAM STATUS

An exam could pass through the following states (Figure B-33):

1. announced: the teacher announces the exam to be taken on a certain date

2. taken: the student takes the exam, so it is taken

3. answered: the exam is completely answered

stm [StateMachine] Rescue Mission status [Rescue Mission state machine]

Initial

Final

Started In progress Succeeded

with casualties

Aborted

Failed

with no casualties

with casualties

with no casualties

with casualties

without casualties

stm course status

Initial

available taken completed

aborted

Final

260 – APPENDICES ● APPENDIX B

PervCompRA-SE

4. corrected: the system matches the student answers with the model answers stored in its database

and gives the results to the students

5. aborted: the student may abort the exam, so it is aborted

Figure B-33 exam state machine diagram

B.4 .2 . 3 LEARNER STATUS

The learner can have the following states (Figure B-34):

1. registered: the student is registered with an educational institution.

2. enrolled: the student is enrolled in at least one class

3. attending: he/she is attending the class regularly

4. examining: the student is in the examination process

5. certified: the students completed all his/her course work and got certified

6. declined: the student may postpone his/her course work in a semester after enrollment or after

attending classes

Figure B-34 learner state machine diagram

B.4 .2 . 4 TEACHER STATUS

The teacher could be in one of the following states (Figure B-35):

1. preparing: the teacher is preparing his/her teaching material for the class

2. teaching: the teacher is conducting the teaching process

3. finished: the teacher finished his/her teaching. This status is followed by the "preparing" status

stm exam status

Initial

announced taken answered

aborted
correctedFinal

stm learner status

Initial

registered enrolled attending examining

certified

Final

declined

261 – APPENDICES ● APPENDIX B

PervCompRA-SE

4. vacation: the teacher is in vacation with no teaching responsibilities

5. aborted: the teacher aborted the teaching process

Figure B-35 teacher state machine diagram

B.4.3 Retail Business Domain

B.4 .3 . 1 PRODUCT/SERVICE STAT US

A product/service passes by the following states (Figure B-36):

1. available: a product is available and any one can buy it

2. sold: it is sold through the purchasing cycle

3. returned: it is returned to the store. this could happen if there is a fault during the warranty

period.

4. maintenance: the retailer may put the product/service in maintenance

5. fixed: the issue of the product may be fixed without replacing the product/service

6. replaced: the product/service may be replaced if the fixing option is not possible and this could

happen during the warranty period

stm teacher status

Initial

preparing

teaching

finished

Final

abortedv acation

262 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-36 product/service state machine diagram

B.4 .3 . 2 SHOPPER STATUS

Based on the use cases as shown in use cases section in this appendix, a shopper passes through these

general states (Figure B-37):

1. surveying: the purchaser could spend some time surveying about a product/service, which may be

followed by making a visit to purchase or decide not to be buy "declined"

2. visiting: the purchaser is in the store, real or virtual, to buy the product/service

3. browsing: the purchaser may be browsing to select more products/services

4. purchasing: a final decision is taken, and the purchaser decided to buy the product/service

5. declined: the purchaser may decline the purchasing process while surveying, browsing, or

purchasing

stm product/serv ice status

Initial

av ailable

sold

returned

maintenance

Final

Fixed

replaced

263 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-37 shopper state machine diagram

B.4.4 The Smart Environment

B.4 .4 . 1 FAULT STATUS

The state machine (Figure B-38) shows the different stages for a fault until it is resolved:

 Raised: A system is notified by a fault from a user or from the system itself.

 Logged: The fault details are logged by the system. Details should include at least (fault name,

timestamp, description). The issue will continue to be in this state till it is assigned for

investigation

 Investigating: The fault is being investigated either by the system if it is marked as one of the auto-

fix issues, or by the system administrator

 Resolved: the fault is resolved successfully and the correct status of the system is restored

 Not Resolved: the fault is not resolved and the correct status of the system cannot be restored

stm shopper status

Initial

surv eying Visiting

Declined

Final

Browsing

Purchasing

264 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-38 Fault state machine diagram

B.4 .4 . 2 THE JOINING OBJECT STATU S

The state machine in Figure B-39 shows the stages of an object requesting to join the smart environment:

 Requested: a request is sent by an object to join a smart environment

 Pending: a request is being reviewed to decide if it should be approved or rejected

 Approved: the object is approved to join the environment and it is a acknowledged with that

information

 Rejected: the object is rejected to join the environment

 Joined: The object joined the environment

 Visiting: if the number of joins is less than X during the last Y days, then the object is marked as a

visitor. The visitor object is untrusted unless it has a trust certificate.

 Resident: if the number of joins is greater than X during the last Y days, then flag the object as

resident. The resident object is trusted.

 Disjoined: the visitor or resident objects could disappear from the environment, and in this case

the system will mark them as disjoined

stm Fault Status

Initial

Raised Inv estigatingLogged

is

resolved?

Resolv ed

Not resolv ed

Final

[log]

[send result]

[No]

[Yes]

[assign]

265 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-39 Joining object state machine diagram

B.4 .4 . 3 PART OBJECT LIFETIME STATUS

The state machine in Figure B-40 shows the lifetime of an object which is considered part of the system

until it goes out of service:

 Created: An object is defined to be created in our world somewhere on a system

 Idle: The object is kept idle until it is assigned a certain job

 On Service: It is part of a system now and has a specific job responsibility

 Defective: The object has a problem and is marked as defective

 Fixed: the object is fixed and it should be in service again

 Out of Service: the object has a permanent problem and cannot be fixed. The object will no

longer perform its assigned job.

stm Joining Object Status

Initial

Requested Pending Approv ed

Rejected

Final

Joined

Visiting number of

joins > X

during the

last Y days

ResidentDisjoined

[No]

[disappear]

[Approve]

[Review]

[Establish join]

[Yes]

[join]

[Wait

assignment]

[disappear]

[Reject]

266 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-40 Part object state machine diagram

B.4 .4 . 4 SHARED RESOURCE STAT US

The state machine in Figure B-41 shows the different states of a shared resource:

 Available: The shared resource is marked to be available for use. It will be in this state until it is

requested to be used.

 Locked: The shared resource is currently used. It will be in this state until it is unlocked to be

available again.

 Unavailable: the shared resource is not available for use. It will be in this state until it is decided

to terminate it -as a shared resource, or restored to be available again.

Figure B-41 Shared resource state machine diagram

stm Part Object State Machine

Initial

Created Idle

On serv ice

Defectiv e Fixed

Out of Serv ice

Final

[malfunction

permanently]

[assign job]

[Test]

[assign job]

[Fix]

[malfunction]

stm Shared Resource Status

Av ailable

Initial

Locked

Unav ailable

Final

[wait]

[Restore]

[lock]

[unlock]

[Remove]

267 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.4 .4 . 5 THE SMART ENVIRONMENT HE ALTH STATUS

The health status of the environment describes the basic states of the environment when safety, security,

or privacy are threatened or compromised (Figure B-42):

 Safe: the environment is marked to be safe with no threats. It will be in this state until it is

threatened.

 Threatened: the environment is threatened. It will be in this state until the threat is removed or

environment is compromised.

 Compromised: the environment is compromised and it is no longer a safe environment. Solving

the problem will restore it as a threatened environment until the situation is cleared for it to be a

safe environment again.

Figure B-42 smart environment health state machine diagram

B.4 .4 . 6 THE TRUST CERTIFICATE ST ATUS

The state machine shows the different states of a certificate request submitted from an object until it is

issued or rejected (Figure B-43):

 Requested: A trust certificate is requested for an object

 Pending Review: The certificate is pending for review

 Reviewed: The certificate is reviewed based on system rules

 Approved: The certificate is approved since the object meets the requirements

 Rejected: The object request is rejected since it does not meet the requirements

 Issued: Certificate is issued for the object and it is now a trusted object in the environment.

stm Smart Env ironment Status

Initial

Safe Threatened Compromised

Final

[threaten]

[remove threat]

[compromise]

[solve]

268 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-43 trust certificate state machine diagram

B.5 Conflict Resolution

B.5.1 One Solution Conflict

B.5 .1 . 1 CONFLICT 3

Conflict 3 as it appears in Table B-3 is between requirement (Provide Informative messages) and

requirement (Reveal Information controllably) can be resolved by making Solution SO-019 (Reveal

information controllably) requirement supersede as decided before (shown in Figure B-44).

Figure B-44 Conflict 3 resolution decision

B.5 .1 . 2 CONFLICT 6

Conflict 6 as it appears in Table B-3 is between requirement (Maximize the number of device technologies)

and requirement (Minimize Faults) can be resolved by solution SO-021 (Use compatible technologies) as

shown in Figure B-45.

stm Trust Certificate Status

Initial

Requested Pending Rev iew Rev iewed

is

approved?

Approv ed

Rejected

Issued

Final

[issue]

[add to queue]

[Yes]

[review]

[No]

[decide]

269 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-45 Conflict 6 resolution decision

B.5 .1 . 3 CONFLICT 11

Conflict 11 as it appears in Table B-3 is between requirement (Take counter-measures to mitigate security

threats) and requirement (Minimize average processing time) and can be resolved by making Solution SO-

020 (Take counter-measures to mitigate threats) requirement supersede as decided before (shown in

Figure B-46).

Figure B-46 Conflict 11 resolution decision

B.5.2 Alternative Solutions

B.5 .2 . 1 CONFLICT 1

Conflict 1 as it appears in Table B-3 is between requirement (Use a unique user identifier) and requirement

(Provide a unique identifier for every object) can be resolved using solution SO-001 (Associate device with

user) or solution SO-002 (Authenticate Every time) as shown in Figure B-47.

bdd [Package] QF v s QF conflict #06 [QF v s QF conflict #6]

Maximize the number of

dev ice technologies

Derived

Heterogeneity of Devices

(from Quality Features)

Minimize Faults

Derived

Fault Tolerance

(from Quality Features)

«solution»

architecture

QF v s QF conflict #04::

Use compatible

technologies

+ Score = 0.4341

«problem»

The number of faults is expected to increase

by default whenever a new device joins a

pervasive system. The probability of faults

increases if the device technology is new or

have not be tested before.

+Superseding

«conflict»

270 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-47 Conflict 1 alternative solutions

Table B-11 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-001 (Associate device with user): The system should ask the user to register his/her

devices and associate them with his/her unique identifier in the system. This solution has a

positive impact on 9 features and zero negative impact on all the features. The details of the

solution impact are included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

2. Solution SO-002 (Authenticate every time): Authenticate the user every time he/she is going to

use the system. In this case, the user does not have to bother about registering his/her devices.

The user just needs to remember his/her credentials. This solution has a positive impact on 4

features and negative impact on 3 other features. More details about the solution are included in

section (B.5.4 Conflict Solutions vs Quality Features Requirements).

Table B-11 conflict 1 solutions-features scores

Solution SO-001 SO-002

Feature mi mx cf Total mi mx cf Total

SY

 1 1

ST 1 1 3 3

SO 3 3 1 1

FT

2 2

HD 1 1 1 1

PT 2 2

CS 1 1

QoS 1

 1

1 1

AB 1 1

EC 2 2

IN 2

 2

2 2

Total 3 11 0 14 0 6 5 11

Score 1.1229 0.4499

bdd [Package] QF v s QF conflict #01 [QF v s QF conflict #1]

«solution»

business

Authenticate Ev ery time

+ Score = 0.4499

«solution»

business

Associate dev ice with user

+ Score = 1.1229

Prov ide a unique

identifier for ev ery object

Derived

Heterogeneity of Devices

(from Quality Features)

«problem»

a user may have more than one device joining the

pervasive system, but the user must be identified all

time as the same user not a different one

Use a unique user

identifier

Derived

Service Omnipresence

(from Quality Features)

+Superseding

«conflict»

271 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.5 .2 . 2 CONFLICT 4

Conflict 4 as it appears in Table B-3 is between requirement (Maximize the number of device technologies)

and requirement (Minimize conflicting usage of shared resources) can be resolved by solution SO-005

(Increase shared resources), solution SO-006 (Mediate access through a middleware), or solution SO-021

(Use compatible technologies) as shown in Figure B-48.

Figure B-48 Conflict 4 alternative solutions

Table B-12 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-005 (Increase shared resources): Increase the number of shared resources to

decrease conflicts. For example, if there is X number of temperature sensors and they are not

enough to serve the system and cause contention, then it may be possible to add more sensors to

respond to the increased demand. The condition here is that they have to be from the same

technology providers. This is a classic solution that works in case devices are not fully tested and

there is a high probability that they may cause problems in working systems. This solution has a

positive impact on 6 features and zero negative impact. More details about the solution are

included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

2. Solution SO-006 (Mediate access through a middleware): Shared resources can be mediated

using a middleware-software. The purpose of the middleware is to ensure proper access to the

shared resources even if they are coming from different technology providers. The middleware

has a main benefit which is hiding the complexity of the different technologies from service

requesters leading to better handling of resources [163]. This solution has a positive impact on 2

features and zero negative impact. More details about the solution are included in section (B.5.4

Conflict Solutions vs Quality Features Requirements).

3. Solution SO-021 (Use compatible technologies): There are technologies that were tested in

common solutions and proved to be working with minimal conflicts, including shared resource

conflicts. Hence, by using compatible technologies only, it will not be possible to add more

bdd [Package] QF v s QF conflict #04 [QF v s QF conflict #4]

Maximize the number of

dev ice technologies

Derived

Heterogeneity of Devices

(from Quality Features)

Minimize conflicting usage of

shared resources

Derived

Safety

(from Quality Features)

«solution»

architecture

Mediate access

through a

middleware

+ Score = 0.7419

«solution»

architecture

Use compatible

technologies

+ Score = 0.4341

«solution»

architecture

Increase shared

resources

+ Score = 0.7295

«problem»

The probability of generating conflicts

around shared resources may increase

due to expected incompatibility among

manufacturers.

«conflict»

+Superseding

272 – APPENDICES ● APPENDIX B

PervCompRA-SE

devices from other technology providers unless they were tested with the existing ones in the

system and proven to be working without major problems. This solution has a positive impact on

3 features and a negative impact on one feature. More details about the solution are included in

section (B.5.4 Conflict Solutions vs Quality Features Requirements).

Table B-12 Conflict 4 solutions-features scores

 Solution SO-005 SO-006 SO-021

 Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 1 1 2 2 2 2

ST

SO 2 2 1 1

FT 1 1 1 1

HD 1 1 2 2 1 1

PT

CS 1 1 1 1

QoS 1 1

AB 1 1 1 1

EC

IN

Total 2 5 7 3 4 7 3 1 1 5

Score 0.7295 0.7419 0.4341

B.5 .2 . 3 CONFLICT 9

Conflict 9 as it appears in Table B-3 is between requirement (Reveal Information controllably) and

requirement (Equip system with sensors) and can be resolved by solution SO-003 (Delete unnecessary

sensor data), or solution SO-004 (Disable sensors if not needed) as shown in Figure B-49.

Figure B-49 Conflict 9 alternative solutions

Table B-13 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-003 (Delete unnecessary sensor data): The sensors may collect data as long as they

are connected, then the system may delete unnecessary data later on. It has a positive impact on

5 features and negative impact on 3 features. More details about the solution are included in

section (B.5.4 Conflict Solutions vs Quality Features Requirements).

273 – APPENDICES ● APPENDIX B

PervCompRA-SE

2. Solution SO-004 (Disable sensors if not needed): In situations where sensors are not required to

function, it is preferred to disable them. For example, if the system is in maintenance, then the

sensors may be disabled. It has a positive impact on 3 features and a negative impact on 3

features. More details about the solution are included in section (B.5.4 Conflict Solutions vs

Quality Features Requirements).

Table B-13 Conflict 9 solutions-features scores

 Solution SO-003 SO-004

 Feature mi mx cf Total mi mx cf Total

SY 1 1 1 1

ST 1 1

SO

FT 1 1 1 1

HD

PT 2 2 1 1

CS 2 2 1 1 2

QoS

AB 1 1

EC 2 2 2 1

IN 1 1

Total 2 5 4 11 1 2 4 7

Score 0.2384 -0.1218

B.5.3 Merged Alternative Solutions

B.5 .3 . 1 CONFLICT 2

Conflict 2 as it appears in Table B-3 is between requirement (Capture Knowledge about users) and

requirement (Reveal Information controllably) can be resolved using solution SO-007 (Authorize access

upon information request), solution SO-008 (Classify personal information as a setting), solution SO-009

(Define information access explicitly), or a merged solution SO-022 of all the three as shown in Figure B-50.

Figure B-50 Conflict 2 alternative solutions

bdd [Package] QF v s QF conflict #02 [QF v s QF conflict #2]

Capture Knowledge about

users

Derived

Experience Capture

(from Quality Features)

Rev eal Information

controllably

Derived

Privacy and Trust

(from Quality Features)

«solution»

Merged solution - conflict #02

+ Score = 1.6550

«solution»

business

Authorize access upon

information request

+ Score = 1.1551

«solution»

business

Define information

access explicitly

+ Score = 0.6383

«solution»

business

Classify personal

information as a setting

+ Score = 0.4954

«problem»

The system must not capture

personal knowledge if the user

is not willing to share.

«conflict»

+Superseding

274 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-14 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-007 (Authorize access upon information request): If a user wants to access a

piece of information, then the system will first send to the information owner asking

him/her to authorize the permission. The user will then decide upon the proper

permissions. This solution has a positive impact on 6 features and has a negative impact

on 2 features. More details about the solution impact are included in section (B.5.4

Conflict Solutions vs Quality Features Requirements).

2. Solution SO-008 (Classify personal information as a setting): Allow the user to classify

his/her personal information while entering them on the system. So, the user may decide

which information should be public, social or private. The system will then reveal

information as per the user settings. This solution has a positive impact on 6 features and

has a negative impact on 2 features. More details about the solution impact are included

in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

3. Solution SO-009 (Define information access explicitly): The user will define who can

access his/her personal information. The "who" could be an individual, a device, or a

group of people. The group may be composed of individuals or devices or both. The

system will reveal information for access to allowed objects whenever requested and

deny access for those who are not permitted. This solution has a positive impact on 4

features and a negative impact on 1 feature. More details about the solution impact are

included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

4. The solution SO-022 (merged solution): has a positive impact on 7 features and has a

negative impact on one feature.

Table B-14 Conflict 2 solutions-features scores

 Solution SO-007 SO-008 SO-009 SO-022

 Feature mi mx cf Total mi mx cf Total mi mx cf Total mi mx cf Total

SY 2 2

 2 2

ST 2 2 4 1 1 2 2 1 3 2 1 3

SO

FT

1 1 2

1 3

 2 1 3

HD

PT 1 1 2 2 2 2 3 3

CS

QoS

1 1 1 1

 1 1

AB 1 1

 1 1 2 2

EC 1 1 2 2 1 1 2 2

IN 1

 1 1

 1

2 2 1

1 2

Total 3 7 2 12 3 6 2 11 2 5 2 9 5 12 1 18

Score 1.1551 0.4954 0.6383 1.6550

275 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.5 .3 . 2 CONFLICT 5

Conflict 5 as it appears in Table B-3 is between requirement (Maximize the number of device technologies)

and requirement (Avoid conflicting side-effects) can be resolved by solution SO-010 (Teach the system) or

solution SO-021 (Use compatible technologies) or both as shown in Figure B-51.

Figure B-51 Conflict 5 alternative resolutions

Table B-15 summarizes the relations of the solutions against the features which are explained as follows:

1. Solution SO-010 (Teach the system): One of the approaches to let the system know what is right

and what is wrong is to teach it before deployment. All expected side effects are fed to the system

in the learning phase to let it know the side-effects that could result from the different objects

when they work together. It has a positive impact on 6 features and zero negative impact. More

details are included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

2. Solution SO-021 (Use compatible technologies): the same solution adopted in conflict 4 is

adopted here as an alternative solution to resolve conflict 5. More details about the solution are

included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

3. Solution SO-023 (merged solution): is a merged solution of the above two and it has a positive

impact on 6 features and zero negative impact. Its score is the same as the solution SO-010 score.

bdd [Package] QF v s QF conflict #05 [QF v s QF conflict #5]

Maximize the number of

dev ice technologies

Derived

Heterogeneity of Devices

(from Quality Features)

«solution»

Merged solution - conflict #05

+ Score = 0.9362

«solution»

architecture

QF v s QF conflict #04::Use compatible

technologies

+ Score = 0.4341

«solution»

business

Teach the system

+ Score = 0.9362

«problem»

By introducing more device technologies,

the probability of generating more side

effects due to incompatibility among

manufacturers increases.

Av oid conflicting side

effects

(from Quality Features)

«conflict»

+Superseding

276 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-15 Conflict 5 solutions-features scores

 Solution SO-010 SO-021 SO-023

 Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 2 2 2 2 2 2

ST

SO 1 1 1 1 1 1

FT 2 2 1 1 2 2

HD 1 1 1 1 1 1

PT

CS 1 1 1 1

QoS

AB 1 1 1 1

EC

IN

Total 4 4 8 3 1 1 5 4 4 8

Score 0.9362 0.4341 0.9362

B.5 .3 . 3 CONFLICT 7

Conflict 7 as it appears in Table B-3 is between requirement (Maximize the number of device technologies)

and requirement (Enforce Security rules on all objects) can be resolved by solution SO-011 (Declare

security rules for the devices willing to join the system), solution SO-012 (Scan devices before joining the

system), or solution SO-024 which is a merged solution between them as shown in Figure B-52.

Figure B-52 Conflict 7 alternative solutions

bdd [Package] QF v s QF conflict #07 [QF v s QF conflict #7]

Maximize the number of

dev ice technologies

Derived

Heterogeneity of Devices

(from Quality Features)

Enforce Security rules on

all objects

Derived

Security

(from Quality Features)

«solution»

Merged solution - conflict #07

+ Score = 1.4149

«solution»

business

Scan dev ices before joining the

system

+ Score = 1.0535

«solution»

business

Declare security rules for the dev ices

willing to join the system

+ Score = 0.9486

«problem»

By introducing different types of device technology, the

probability of introducing security threats increase. For example,

a device may have an operating system which is vulnerable to

virus attacks. Such a devices should be scanned first before it

starts to share data with the system.

«conflict»

+Superseding

277 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-16 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-011 (Declare security rules for the devices willing to join the system): The system

will announce its security policy to all devices before joining the system. The device should receive

this declaration and must accept it before joining the system. It has positive impact on 5 features

and zero negative impact. More details are included in section (B.5.4 Conflict Solutions vs Quality

Features Requirements).

2. Solution SO-012 (Scan devices before joining the system): The device must allow the system to

scan it to check if it has enough security precautions. For example, the system may request that

the device has anti-virus software, specific OS security patches, or is configured to pass network

traffic through a certain network proxy. The solution has a positive impact on 4 features and a

negative impact on a single feature. More details are found in section (B.5.4 Conflict Solutions vs

Quality Features Requirements).

3. Solution SO-024 (merged solution): is a merged solution of the above two. It has a positive

impact on 5 features and a negative impact on a single feature.

Table B-16 Conflict 7 solutions-features scores

 Solution SO-011 SO-012 SO-024

 Feature mi mx cf Total mi mx cf Total mi mx Cf Total

SY 2 2 1 1 2 1 2 3

ST 1 1 2 1 3 2 1 3

SO 1 1 1 1

FT 1 1 1 1 1 1

HD 1 1 1 1 1 1

PT

CS

QoS 1 1 1 1

AB

EC

IN

Total 1 5 6 4 3 1 8 4 5 1 10

Score 0.9486 1.0535 1.4149

B.5 .3 . 4 CONFLICT 8

Conflict 8 as it appears in Table B-3 is between requirement (Ensure secure data transmission) and

requirement (Minimize average processing time) can be resolved by solution SO-017 (Transfer non-

securely if possible), solution SO-018 (Use light-weight encryption algorithm), or solution SO-027 which is a

merged solution between them as shown in Figure B-53.

278 – APPENDICES ● APPENDIX B

PervCompRA-SE

Figure B-53 Conflict 8 alternative solutions

Table B-17 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-017 (Transfer non-securely if possible): There are some contexts that may not

require secure transmission. For example, a) Private systems that are not accessed from outsiders

may transfer normally without encryption, b) Transmission of an already encrypted material, and

c) public data. The overall response time in this case will be optimum. This solution has positive

impacts on 5 features and negative impacts on 3 features. More details about the solution are

included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

2. Solution SO-018 (Use light-weight encryption algorithm): By using light-weight encryption

algorithms, the system may be able to sustain for a longer period of time, does not degrade

performance does not degrade as much, and an acceptable level of security achieved while

transmitting data [164]. This solution has a positive impact on 4 features and zero negative

impact. More details about the solution are included in section (B.5.4 Conflict Solutions vs Quality

Features Requirements).

3. Solution SO-027 (merged solution): a merged solution between the above two solutions. It has a

positive impact on 6 features and zero negative impact.

bdd [Package] QF v s QF conflict #08 [QF v s QF conflict #8]

Ensure secure data

transmission

Derived

Security

(from Quality Features)

Minimize av erage

processing time

Derived

Quality of Service

(from Quality Features)

«solution»

Merged solution - conflict #8

+ Score = 1.2667

«solution»

architecture

Transfer non-securely if possible

+ Score = 0.4219

«solution»

architecture

Use light-weight encryption algorithm

+ Score = 0.8200

«problem»

It is required to provide data protection during transmission which adds extra load on the system

processing power. The extra load can drain batteries, slow down performance, and may impact system

overall availability. In other words, the average processing capabilities for the services may be negatively

impacted.

It is a controversial conflict, which can be resolved only during runtime based on the system priority,

data sensitivity, and user context.

However, as a general rule, lenient security rules may cause further deteriorations and the system may

be completely compromised

+Superseding

«conflict»

279 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-17 Conflict 8 solutions-features scores

 Solution SO-017 SO-018 SO-027

 Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 1 1 1 1 1 1

ST 1 1 1 3 1 1 2 2 1 3

SO 1 1 1 1

FT 1 1 1 1 1 1

HD

PT

CS

QoS 1 1 2 1 1 2 1 1 2

AB 2 2 2 2

EC

IN

Total 3 4 3 10 3 3 6 4 6 10

Score 0.4219 0.8200 1.2667

B.5 .3 . 5 CONFLICT 10

Conflict 9 as it appears in Table B-3 is between requirement (Enforce security rules on all objects) and

requirement (Minimize average processing time) can be resolved by solution SO-013 (Apply less stricter

security rules on the private smart environment), solution SO-014 (Apply less stricter security rules on

trusted objects), or a merged solution SO-025 between the last two as shown in Figure B-54.

Figure B-54 Conflict 10’s alternative solutions

bdd [Package] QF v s QF conflict #10 [QF v s QF conflict #10]

Enforce Security rules on

all objects

Derived

Security

(from Quality Features)

Minimize av erage processing time

Derived

Quality of Service

(from Quality Features)

«solution»

Merged solution - conflict #10

+ Score = 0.0455

«solution»

architecture

Apply less strict security rules on

the priv ate smart env ironment

+ Score = 0.0455

«solution»

architecture

Apply less strict security rules on

trusted objects

+ Score = 0.2140

«problem»

Security rules may add an additional burden on

the processing power of the smart objects which

may increase the average processing time in

general.

+Superseding

«conflict»

280 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-18 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-013 (Apply less strict security rules on the private smart environment): A private

smart environment already has control that protects its privacy, e.g. firewalls or it may not be

connected to the internet. Hence, it will be possible to apply less strict security rules on the

system which will enhance the average processing time of the system as a whole. The solution has

positive impact on 3 quality features and negative impact on 2 quality features. More details

about the solution are included in section (B.5.4 Conflict Solutions vs Quality Features

Requirements).

2. Solution SO-014 (Apply less strict security rules on trusted objects): Certified objects may apply

less strict security rules. For example, it may not be necessary to authenticate trusted objects as

long as they have valid identifiers. The solution has positive impact on 3 quality features and

negative impact on 1 quality feature. More details about the solution are included in section

(B.5.4 Conflict Solutions vs Quality Features Requirements).

3. Solution SO-025 (merged solution): a merged solution between the above two solutions. It has a

positive impact on 3 quality features and negative impact on two quality features.

Table B-18 Conflict 10 solutions features score

 Solution SO-013 SO-014 SO-025

 Feature mi mx cf Total mi mx cf Total Mi mx cf Total

SY 1 1 1 1 1 1

ST 1 1 2 1 1 1 1 2

SO

FT 1 1 1 1 1 1

HD

PT

CS

QoS 1 1 1 1 1 1

AB

EC

IN

Total 2 1 2 5 2 1 1 4 2 1 2 5

Score 0.0455 0.2140 0.0455

B.5 .3 . 6 CONFLICT 12

Conflict 12 as it appears in Table B-3 is between requirement (Minimize unneeded interactions with the

system) and requirement (Notify users with changes) can be resolved by solution SO-015 (Log all changes

281 – APPENDICES ● APPENDIX B

PervCompRA-SE

for later access), solution SO-016 (Notify for important changes only), or a merged solution SO-026

between them as shown in Figure B-55.

Figure B-55 Conflict 12 alternative solutions

Table B-19 summarizes the relations of the solutions against the features which may be explained as

follows:

1. Solution SO-015 (Log all changes for later access): The system should log all changes silently in a

format accessible to the user. The user may access the log of changes later on based on his/her

needs. This solution has positive impact on 4 features and zero negative. More details about the

solution are included in section (B.5.4 Conflict Solutions vs Quality Features Requirements).

2. Solution SO-016 (Notify for important changes only): Important changes are all changes that the

system needs to take and are considered to be of a high degree of importance to the users.

Importance may be based on:

a. Degree of risk.

b. Prior request from the user to be notified when a specific change happens.

c. Unplanned changes

d. They are out of the users’ awareness circle.

For example, if the user expects the system to turn on the TV if he/she enters the room, based on

previous settings, then the system does not need to notify him/her about that change since it is

planned, and has a low degree of risk. However, if the system needs to switch off the TV due to a

problem in the electric current, then the system should notify the user as this is an unplanned

bdd [Package] QF v s QF conflict #12 [QF v s QF conflict #12]

Minimize unneeded

interactions with the system

Derived

Invisibil ity

(from Quality Features)

Notify users with changes

Derived

Adaptable Behavior

(from Quality Features)

«solution»

Merged solution - conflict #12

+ Score = 0.1970

«solution»

business

Log all changes for later

access

+ Score = 0.2038

«solution»

business

Notify for important

changes only

+ Score = 0.040169

«problem»

Notifying users with changes in the

system may entail that the users make

more interactions /in order to respond

to these changes.

«conflict»

+Superseding

282 – APPENDICES ● APPENDIX B

PervCompRA-SE

change. This solution has a positive impact on 3 features and a negative impact on one feature.

More details about the solution are included in section (B.5.4 Conflict Solutions vs Quality Features

Requirements).

3. Solution SO-026 (merged solution): a merged solution between the above two solutions. It has a

positive impact on 4 features and a negative impact on one feature.

Table B-19 Conflict 12 solutions-features scores

 Solution SO-015 SO-016 SO-026

 Feature mi mx cf Total mi mx cf Total mi mx cf Total

SY 1 1 1 1

ST

SO

FT

HD

PT 1 1 1 1 2 2

CS

QoS 1 1 1 1

AB 2 2 1 1 2 2

EC

IN 1 1 1 1 1 1

Total 1 4 5 1 2 1 4 1 5 1 7

Score 0.2038 0.0362 0.1970

B.5.4 Conflict Solutions vs Quality Features Requirements

The following sections give detailed analysis for the solutions proposed to resolve conflicts among the

requirements and their expected relationships with other quality features requirements within the scope

of the research.

For the sake of simplicity, we gave the following abbreviations for the features: (SO) Service

Omnipresence, (IN) Invisibility, (CS) Context Sensitivity, (AB) Adaptable Behavior, (EC) Experience Capture,

(HD) Heterogeneity of Devices, (FT) Fault Tolerance, (ST) Security, (SY) Safety, (PT) Privacy and Trust, and

(QoS) Quality of Service. We give also abbreviations for the relations as (mx) for maximize, (mi) for

minimize, and (cf) for conflict

B.5 .4 . 1 SO-001 : ASSOCIATE DEVIC E WITH USER

The system should ask the user to register his/her devices and associate them with his/her unique

identifier in the system. Table B-20 shows the impact of this solution on all the requirements of the quality

features.

283 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-20 Solution SO-001 reltionships with quality features’ requirements

Relation Requirement
ID

Requirement
Name

Feature Notes

Mx BR0032 Notify users with
changes

AB The system can notify the user with the changes using
the associated device.

Mx BR0035 Locate interacting
objects

CS In some situations, it may not be possible to
determine the exact location of the object unless the
carrying user announces it. For example, the system
may depend on the GPS technology to determine the
location of a smart object, but since GPS does not
work in indoor locations, the system will not be able
to locate the object. If the smart object is associated
with the user and the user announce its location using
this smart object, then the system can easily locate
the smart object using the user location.

mx BR0040 Provide a unique
identifier for every
object

HD

mx BR0042 Capture Knowledge
about users

EC The device is attached with the user, which simplifies
the process of capturing personal knowledge.
Personalized settings can be applied easily on the
device

mx BR0044 Capture/change
behavioral patterns

EC Personalized devices can easily capture user
interactions with the system specially if equipped with
sensors. These interactions can be submitted to the
system to evaluate its pattern behavior.

mi BR0051 Minimize
unneeded
interactions with
the system

IN The user does not have to enter his/her user name
and password whenever, he/she accesses the system.
Accordingly, the solution guarantees minimal
interaction of the user with the system.

mi BR0054 Minimize the use
of explicit input

IN This solution offers the user the option not to enter
his/her credentials, or enters minimal authentication
information, as it is detected from the device identity.

mx BR0055 Certify trusted
entities

PT Registered devices can be easily checked for trust
certificates if they are requested by the users or if the
system decides to grant them based on trust behavior
rules.

mx BR0056 Classify
Information

PT The user claims his ownership to the device, which
means that it is a private object for him/her. It is a
kind of implicit classification that helps the system
classify information.

mi BR0060 Minimize average
processing time

QoS It is only the association step that may take a longer
time. All subsequent requests from the device should
be satisfied without validating the user access with
the password.

mx BR0073 Disallow
anonymous usage
of the system

ST Anonymity is not a problem in this solution since the
identity of the user will be detected from the device
identifier.

mx BR0082 Enrich the
experience of the
highly used

SO The system can utilize the associated device,
especially if it is a smart device, by using its sensors,
actuators, and display screen, for example, to enrich

284 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement
Name

Feature Notes

scenarios the user experience with the system.

mx BR0084 Use a unique user
identifier

SO

mx BR0085 Utilize the user
mobile phone

SO The device could be the personal mobile phone of the
user

B.5 .4 . 2 SO-002 : AUTHENTICATE EVERY T IME

Authenticate the user every time he/she is going to use the system. In this case, the user does not have to

bother about registering his/her devices. The user just needs to remember his/her credentials. Table B-21

shows the impact of the solution on the requirements of the quality features.

Table B-21 Solution SO-002 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

cf BR0051 Minimize unneeded
interactions with
the system

IN This is an obvious explicit input that the user has to
access the services of the system.

mx BR0074 Enforce Security
rules on all objects

ST 1. Higher security with public devices.
2. User credentials on the system could be

protected even if the user device is lost.

cf BR0054 Minimize the use of
explicit input

IN This is an obvious explicit input that the user has to
access the services of the system.

mx BR0084 Use a unique user
identifier

SO

mx BR0070 Provide maximum
protection for the
environment

SY The solution ensures that only authenticated users
can access the system. So, if the user’s device is lost,
it will be difficult to steal the user credentials and
access user-related information.

mx BR0079 Take counter-
measures to
mitigate security
threats

ST Authentication made by humans minimizes the
probability of an infected or malfunctioning device
to threaten the environment if they request a
service from the environment without
authentication.

cf BR0046 Minimize Faults FT Humans make mistakes all the time. Accordingly,
requesting from the user to authenticate every time,
will increase the probability of having faults

mx BR0073 Disallow anonymous
usage of the system

ST The user is always known since it is required to
authenticate every time.

cf BR0060 Minimize average
processing time

QoS The processing time of the system is longer since it
takes time to receive credentials, validate them, and
reply back before allowing the user to access the
required service.

mx BR0040 Provide a unique
identifier for every
object

HD

Cf BR0047 Minimize the FT The authentication step requires the device to

285 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

probability of an
object to be offline

illuminate, show the authentication screen, and the
system validates then replies back with result. The
authentication step may be repeated if the user
failed to enter correct authentication information.
Such steps consume more power from the device
and the system, which increases the probability of
the device to be offline.

B.5 .4 . 3 SO-003 : DELETE UNNECESSARY S ENSOR DATA

The sensors may collect data as long as it is connected, then the system may delete unnecessary data later

on. Table B-22 shows the impact of the solution of the requirements of the quality features.

Table B-22 Solution SO-003 relationships with quality features' requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0034 Equip system with
sensors

CS

mi BR0077 Prevent data leakage ST Unnecessary data for the system could be
important for intruders and hackers. So, it could
be good to remove them and minimize the
probability of data leakage

cf BR0042 Capture Knowledge
about users

EC The definition of "unnecessary sensor data" must
be defined very carefully in order not to lose
important information about the users.

cf BR0044 Capture/change
behavioral patterns

EC The definition of "unnecessary sensor data" must
be defined very carefully in order not to lose
important information about the users' behaviors.

mx BR0056 Classify Information PT This is actually one classification of the data which
is "Unimportant".

cf BR0030 Evaluate/Improve
Adaptive actions

AB The definition of "unnecessary sensor data" must
be defined very carefully in order not to lose
important information about the adaptive actions
that could lead to good improvement.

mi BR0051 Minimize unneeded
interactions with the
system

IN Sensor data causes the system to make changes
which may require the user to interact with the
system. By erasing unnecessary data, the
probability of making interactions with the system
decreases.

mx BR0036 Provide analytical
capability

CS Unnecessary data does not add value to the
analytical capability of the system. In fact, it is
considered a burden on the system and may
mislead the interpretations and decisions of the
system.

mx BR0050 Take the proper
corrective action

FT It is one of the corrective actions.

Cf BR0060 Minimize average
processing time

QoS It is considered a waste of processing resources to
store unimportant data then delete it later on,
which increases the average processing time of

286 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

the system in general.

Mx BR0057 Reveal Information
controllably

PT

B.5 .4 . 4 SO-004 : DISABLE SENSORS IF N OT NEEDED

In situations where sensors are not required to function, it is preferred to disable them. For example, if

the system is in maintenance, then the sensors may be disabled. Table B-23 shows the impact of the

solution on the requirements of the quality features.

Table B-23 Solution SO-004 relationships with quality features' requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0034 Equip system with sensors CS

cf BR0063 Alert if safety is or about
to be compromised

SY In situations where safety is or about to be
compromised, the probability of giving the
proper safety alert is reduced when there
are disabled sensors.

cf BR0042 Capture Knowledge about
users

EC The system could miss an opportunity of
sensing data about users because some of its
sensors are disabled.

cf BR0044 Capture/change
behavioral patterns

EC The system could miss an opportunity of
sensing data about users because some of its
sensors are disabled.

cf BR0035 Locate interacting objects CS The probability of locating interacting
objects all the time could be violated due to
disabled sensors.

mx BR0057 Reveal Information
controllably

PT

Mi BR0047 Minimize the probability of
an object to be offline

FT The probability of the sensors to be offline is
minimized since they are disabled during
unneeded times.

B.5 .4 . 5 SO-005 : INCREASE SHARED RESO URCES

Increase the number of shared resources to decrease conflicts. For example, if there is X number of

temperature sensors and they are not enough to serve the system and causing contention, then it could be

possible to add more sensors to respond for the increased demand. The condition here is that they have

to be from the same technology providers. This is a classic solution that works in case devices are not fully

tested and there is a high probability that they may cause problems in working systems. Table B-24 shows

the impact of this solution on the requirements of the quality features.

Table B-24 Solution SO-005 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mi BR0068 Minimize conflicting
usage of shared

SY

287 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

resources

mx BR0036 Provide analytical
capability

CS As the system has more sensors, memory, and
processors, its analytical capability improves as
well.

mi BR0060 Minimize average
processing time

QoS This is a classical equation between shared
resources, e.g. memory and processors, and the
average processing time. So, as memory and
processing resources increase, processing time
decreases.

mx BR0082 Enrich the experience
of the highly used
scenarios

SO It is considered an enabling solution since shared
resources could be sensors, actuators, or
microprocessors which leads to richer experience.

mx BR0081 Distribute computing
power

SO Computing power resources are considered
shared resources.

mx BR0030 Evaluate/Improve
Adaptive actions

AB It is expected that as sensors and actuators
increase, the system will have better adaptive
techniques.

mx BR0039 Maximize the number
of device technologies

HD

B.5 .4 . 6 SO-006 : MEDIATE ACCESS THROU GH A MIDDLEWARE

Shared resources can be mediated using a middleware-software. The purpose of the middleware is to

ensure proper access to the shared resources even if they are coming from different technology providers.

The middleware has a main benefit which is hiding the complexity of the different technologies from

service requesters leading to better handling of resources [163]. Table B-25 shows the impact of this

solution on the requirements of the quality features.

Table B-25 Solution SO-006 relationships with quality features’ requirements

Relation Requirement
ID

Requirement
Name

Feature Notes

mx BR0033 Possess actuation
capabilities

AB Actuators from different manufacturers can be easily
integrated into the system through a middleware
platform which has the proper definition for its
communication interfaces.

mx BR0034 Equip system with
sensors

CS Sensors from different manufacturers can be easily
integrated into the system through a middleware
platform which has the proper definition for its
communication interfaces.

mx BR0039 Maximize the
number of device
technologies

HD

mx BR0041 Render content
on the maximum
number of
devices

HD One of the main purposes for using a middleware in
any solution is to hide the complexity of other
technologies. Hence, software engineers do not have to
learn other technologies to achieve a specific
integration goal. The middleware is supposed to have
enough knowledge about different technologies and

288 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement
Name

Feature Notes

provide robust integration techniques and fault-
tolerance solutions.
Accordingly, many middleware providers do have
solutions for rendering the same content on different
technologies. Even if the middleware does not have
built-in rendering capability, it is much easier to use a
middleware rather than allow every content provider to
implement it themselves.

mi BR0048 Reduce Error
consequences

FT A middleware platform is usually designed to be fault
tolerant when integrating with other systems.
Accordingly, error consequences due to integration
faults can be reduced using techniques like retries, logs
and scheduling.

mi BR0068 Minimize
conflicting usage
of shared
resources

SY

mi BR0071 Resolve conflicts
among objects by
an administrator

SY A middleware is considered a suitable environment for
the administrator to manage different objects through
it and resolve conflicts among objects if they occur.

B.5 .4 . 7 SO-007 : AUTHORIZE ACCESS UPO N INFORMATION

REQUEST

If a user wants to access a piece of information, then the system will send to the information owner asking

him/her to authorize the permission. The user will then decide for the proper permissions. Table B-26

shows the impact of this solution on the requirements of the quality features.

Table B-26 Solution SO-007 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mi BR0051 Minimize unneeded
interactions with the
system

IN The owner of the information will interact with the
system to authorize access only whenever needed
by other users.

mi BR0073 Disallow anonymous
usage of the system

ST Only users that are identified by the system can
request access to other's information

cf BR0060 Minimize average
processing time

QoS The solution implies two steps by which the
requester expresses his/her willing to access other's
personal information and the information owner
decides whether to grant access or not. The
information owner decides the type of access itself.
Other details can be sent through this solution. For
example, the requester may write a message to the
information owner to justify his/her request. The
owner may grant/deny access and write a message
as well.
Over all, the solution embodies steps that have
details which takes more processing time compared

289 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

with other solutions.

mx BR0074 Enforce Security
rules on all objects

ST The solution guarantees that security rules related
to personal information access is applied on user's
personal information.

mx BR0064 Allow the user to
override/cancel
system decisions

SY The owner of the information hasher an upper hand
all the time to authorize or reject access to his
personal information.

mi BR0077 Prevent data leakage ST Data leakage is minimized as the control is granted
to the information owner. Any leakage that happens
will be mostly due to user ignorance about what
should be done when he/she receives a request to
grant permission.

mx BR0070 Provide maximum
protection for the
environment

SY This solution raises the awareness of the
information owner about any attempts to access
his/her personal information. Accordingly, the
information owner may take counter-measurement
if he/she felt that their privacy is threatened.

cf BR0046 Minimize Faults FT Operations that include human activities are subject
to mistakes and as steps increase, the probability of
system faults increase as well.

mx BR0057 Reveal Information
controllably

PT

mx BR0042 Capture Knowledge
about users

EC

mx BR0032 Notify users with
changes

AB The system notifies the information owner about
others' needs to access his/her information.

mx BR0078 Provide data access
rules

ST this functional requirement could be considered one
of the data access rules

B.5 .4 . 8 SO-008 : CLASSIFY PERSONAL IN FORMATION AS A

SETTING

Allow the user to classify information about him/her while entering them on the system. So, the user may

decide which information should be public, social or private. The system will then reveal information as

per the user settings. Table B-27 shows the impact of this solution on the requirements of the quality

features.

Table B-27 Solution SO-008 relationships with quality features’ requirements

Relation Requirement
ID

Requirement
Name

Feature Notes

cf BR0050 Take the proper
corrective action

FT It is the information owner’s sole responsibility and if
he/she mistakenly classified information as public while
it is private, then it will not be possible by the owner to
prevent access unless the system notified him/her. After
that the user can take the corrective action. The
corrective action cannot be taken by the system, it has
to be taken by the personal information owner.

290 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement
Name

Feature Notes

mx BR0060 Minimize
average
processing time

QoS The requester of the personal information will access
what he/she needs directly without extra permission
from the information owner.

mi BR0046 Minimize Faults FT The solution has only one step made by the information
owner. This definitely decreases the system faults as
human activities are fewer and system operations are
fewer as well.

mi BR0047 Minimize the
probability of an
object to be
offline

FT Fewer steps means less processing and less network
communication which means less burden on the
batteries of the devices.

mi BR0051 Minimize
unneeded
interactions with
the system

IN The user will classify his/her personal information once,
or whenever he/she needs to classify it

mx BR0078 Provide data
access rules

ST This can be considered as one of the access rules

cf BR0073 Disallow
anonymous
usage of the
system

ST The solution does not guarantee that public information
is accessed by identified users.

mx BR0043 Correlate
information and
knowledge

EC Classifying personal information can help the system to
correlate them with other information items or system
knowledge.

mx BR0057 Reveal
Information
controllably

PT

mx BR0042 Capture
Knowledge about
users

EC

mx BR0056 Classify
Information

PT The personal information is classified by the information
owner not by the system.

B.5 .4 . 9 SO-009 : DEFINE INFORMATION A CCESS EXPLICITLY

The user will define who can access his/her personal information. The "who" could be an individual, a

device, or a group of people. The group could be composed of individuals or devices or both of them. The

system will reveal information in this access to allowed objects whenever requested and deny access for

those who are not permitted. Table B-28 shows the impact of this solution on the requirements of the

quality features.

Table B-28 Solution SO-009 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0030 Evaluate/Improve
Adaptive actions

AB The system can detect some sort of relationships
among the users based on such access permissions.
For example, the system can then grant permission
for users that always have access to personal

291 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

information for a certain user if requested by
him/her again for another piece of information

mx BR0042 Capture Knowledge
about users

EC

cf BR0051 Minimize unneeded
interactions with the
system

IN The user will grant access to authorized entities.
These entities may not need to access the personal
information of the user.

cf BR0054 Minimize the use of
explicit input

IN The user has to explicitly define who can access
his/her personal information.

mx BR0055 Certify trusted
entities

PT Only trusted users, from the point of view of the
user, can access his/her personal information.

mx BR0057 Reveal Information
controllably

PT

mi BR0073 Disallow anonymous
usage of the system

ST The solution guarantees that only identified
objects, users or devices, can access personal
information.

mi BR0077 Prevent data leakage ST Data leakage is minimized as the control is granted
to the information owner. Any leakage is the sole
responsibility of the information owner as he/she is
supposed to grant permission to the authorized
entities only.

mx BR0078 Provide data access
rules

ST It can be considered one of the data access rules.

B.5 .4 . 10 SO-010 : TEACH THE SYSTEM

One of the approaches to let the system know what is right and what is wrong is to teach it before

deployment. All expected side effects are fed to the system in the learning phase to let it know the side

effects that could come out from the different objects when they work together. The impact of this

solution on the requirements of the quality features are shown in Table B-29.

Table B-29 Solution SO-010 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0031 Has smart decision
rules

AB A trained system will have a good set of initial smart
rules that helps the system to take proper decisions

mx BR0037 Provide
interpretation rules

CS The trained system can have an enriched and
refined set of interpretation rules.

mx BR0039 Maximize the
number of device
technologies

HD

mi BR0046 Minimize Faults FT The faults which may have been overlooked during
the implementation phase, may be discovered
during the teaching phase.

mi BR0048 Reduce Error
consequences

FT It will be excellent if the system learned how to
reduce error consequences during the training
phase.

mi BR0065 Avoid conflicting side SY

292 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

effects

mi BR0068 Minimize conflicting
usage of shared
resources

SY The conflicts which may have been overlooked
during the implementation phase, may be
discovered during the teaching phase.

mx BR0082 Enrich the
experience of the
highly used scenarios

SO A system that is taught how to perform in specific
scenarios will definitely enrich the experience of the
users. Users will feel that the system is aware of
their needs and that it satisfies them very quickly.

B.5 .4 . 11 SO-011 : DECLARE SECURITY RUL ES FOR THE DEVICES

WILLING TO JOIN THE SYSTEM

The system will announce its security policy to all devices before joining the system. The device should

receive this declaration and must accept it before joining the system. The impact of the solution on the

requirements of the quality features is shown in Table B-30.

Table B-30 Solution SO-011 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0039 Maximize the number
of device technologies

HD

mi BR0048 Reduce Error
consequences

FT The users and objects will be aware of the system rules
before joining the system. This solution assumes that
the users will avoid common security mistakes that
may lead to block of services.

mx BR0070 Provide maximum
protection for the
environment

SY

mx BR0072 Respect societal
ethics

SY Giving the users the chance to know the system
security rules complies with the history of the society.

mx BR0074 Enforce Security rules
on all objects

ST

mx BR0083 Provide Informative
messages

SO Security declaration is a type of informative messages

B.5 .4 . 12 SO-012 : SCAN DEVICES BEFORE JOINING THE SYSTEM

The device must allow the system to scan it to check if it has enough security precautions. For example,

the system may request that the device has anti-virus software, specific OS security patches, or configured

to pass network traffic through a certain network proxy. The impact of the solution on the requirements

of the quality features is shown in Table B-31.

293 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-31 Solution SO-012 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0039 Maximize the
number of device
technologies

HD

mi BR0048 Reduce Error
consequences

FT Some users may not be aware that their devices
could be infected with viruses or spam software
applications. A quick scan for the famous ones, for
example, can reduce the probability of the device
to receive errors or infect the other systems.

cf BR0060 Minimize average
processing time

QoS Scanning the device is an extra load on the system
that negatively impacts the average processing
time while joining the system.

mi BR0065 Avoid conflicting
side effects

SY Incompetent smart objects can be discovered
during the scan action and prevented from joining
the system since incompetent smart objects may
increase the side effects among objects.

mx BR0070 Provide maximum
protection for the
environment

SY

mx BR0074 Enforce Security
rules on all objects

ST

mi BR0077 Prevent data leakage ST Spam objects may try to leak data from the
systems. So, by scanning devices first, the number
of spam objects will be reduced.

mi BR0080 Announce
malfunctioning
smart objects

ST The number of spam smart objects will reduce if
the system scans the device before joining.

B.5 .4 . 13 SO-013 : APPLY LESS STRI CT SECURITY RULES ON

PRIVATE SMART ENVIRO NMENT

A private smart environment already has controls that protects its privacy, e.g. firewalls or if not connected

to the internet. Accordingly, it could be possible to apply less strict security rules on the system which will

enhance the average processing time of the system as a whole. Table B-32 shows the impact of the

solution on the requirements of the quality features.

Table B-32 Solution SO-013 relationships with quality features’ requirements

Relation Requirement
ID

Requirement
Name

Feature Notes

mi BR0047 Minimize the
probability of an
object to be offline

FT In general, security rules add extra burden on the
system processing power which increases the
probability of an object to be offline in a shorter
period. By applying less security rules, the probability
of an object to be offline is minimized.

mi BR0060 Minimize average
processing time

QoS

cf BR0070 Provide maximum SY Maximum protection requires that security is applied

294 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement
Name

Feature Notes

protection for the
environment

all the time on all objects and in any circumstances.

mx BR0074 Enforce Security
rules on all objects

ST

cf BR0077 Prevent data
leakage

ST The environment may be private actually because of
the stricter security rules. There is a possibility that
softer security rules may increase the probability of
data leakage even if it is a private environment.

B.5 .4 . 14 SO-014 : APPLY LESS STRICTER SECURITY RULES ON

TRUSTED OBJECTS

Certified objects may apply less strict security rules. For example, it may not be necessary to authenticate

trusted objects as long as they have valid identifiers. Table B-33 shows the impact of the solution on the

requirements of the quality features.

Table B-33 Solution SO-014 relationships with quality features' requirements

Relation Requirement
ID

Requirement
Name

Feature Notes

mi BR0047 Minimize the
probability of an
object to be offline

FT In general, security rules add extra burden on the
system processing power which increases the
probability of an object to be offline in a shorter
period. By applying less security rules on trusted
objects, the probability of an object to be offline is
minimized.

mi BR0060 Minimize average
processing time

QoS

cf BR0070 Provide maximum
protection for the
environment

SY Maximum protection requires that security is applied
all the time on all objects and in any circumstances.

mx BR0074 Enforce Security
rules on all objects

ST

B.5 .4 . 15 SO-015 : LOG ALL CHANGES FOR LATER ACCESS

The system should log all changes silently in a format accessible to the user. The user may access the log

of changes later on based on his/her needs. Table B-34 shows the impact of this solution on the

requirements of the quality features.

Table B-34 Solution SO-015 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0030 Evaluate/Improve
Adaptive actions

AB Changes are considered the result for adaptive
actions. Adaptive actions could be improved by
reviewing the logged changes.

mx BR0032 Notify users with changes AB

295 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

mi BR0051 Minimize unneeded
interactions with the
system

IN

mx BR0058 Track Information PT Logging is one of the methods that could be
adopted to track transferred information.
Moreover, changes may embody information
transfer as well.

mx BR0061 Monitor and improve
QoS boundaries

QoS Well-organized logs that capture processing
time, for example, can help the system to
improve the QoS for services.

B.5 .4 . 16 SO-016 : NOTIFY FOR IMPORTANT CHANGES ONLY

Important changes are all changes that the system needs to take and are rated at a high degree of

importance to the users. Importance may be based on:

1. Degree of risk.

2. Prior request from the user to be notified when a specific change happens.

3. Unplanned changes

4. They are out of the users’ awareness circle.

For example, if the user expects the system to turn on the TV if he/she enters the room, based on previous

settings, then the system does not need to notify about that change since it is planned, and has a low

degree of risk. However, if the system needs to switch off the TV due to a problem in the electric current,

then the system should notify the user as this is an unplanned change. Table B-35 shows the impact of the

solution on the requirements of the quality features.

Table B-35 Solution SO-016 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0032 Notify users with
changes

AB

mi BR0051 Minimize unneeded
interactions with the
system

IN

mx BR0057 Reveal Information
controllably

PT This solution controls the revealed information by
showing only the important ones.

cf BR0070 Provide maximum
protection for the
environment

SY It is possible that the system decides wrongly and
does not notify the user with a piece of information
not classified as important by mistake.

B.5 .4 . 17 SO-017 : TRANSFER NON-SECURELY IF POSSIBLE

There are contexts that may not require secure transmission. For example, a) Private systems that are not

accessed from outsiders may transfer normally without encryption, b) Transmission of an already

296 – APPENDICES ● APPENDIX B

PervCompRA-SE

encrypted material, and c) public data. The overall response time in this case will be optimum. The impact

of the solution on the requirements of the quality features is shown in Table B-36.

Table B-36 Solution SO-017 relationships with quality features’ requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0030 Evaluate/Improve
Adaptive actions

AB It is a type of adaptation that the system takes
based on different types of security levels.

mx BR0031 Has smart decision rules AB It is one of the smart decision rules

mi BR0047 Minimize the probability
of an object to be offline

FT The solution makes some minimization based
on the situation, but it is not the minimum.

cf BR0059 Declare service/quality
feature boundaries

QoS As the transmission of security rules changes
based on context, it will not be possible for the
system to declare service response time
boundaries.

mi BR0060 Minimize average
processing time

QoS

cf BR0070 Provide maximum
protection for the
environment

SY This is not a maximum protection. The solution
provides an optimum protection

mx BR0075 Ensure secure data
transmission

ST

cf BR0077 Prevent data leakage ST There is a possibility that the system misjudges
the context and causes data leakage if data is
not encrypted during the transmission.

mi BR0079 Take counter-measures to
mitigate security threats

ST Data transmission security is one of the
counter-measures against security threats.

mx BR0082 Enrich the experience of
the highly used scenarios

SO This is a type of smartness behavior from the
system which helps to enrich the experience of
the users.

B.5 .4 . 18 SO-018 : USE LIGHT -WEIGHT ENCRYPTION AL GORITHM

By using light-weight encryption algorithms, the system may be able to sustain for a longer period of time,

does not impact performance so much, and achieves an acceptable level of security while transmitting

data [164]. The impact of the solution on the requirements of the quality features is shown in Table B-37.

Table B-37 Solution SO-018 relationships with quality features' requirements

Relation Requirement
ID

Requirement Name Feature Notes

mi BR0047 Minimize the
probability of an object
to be offline

FT The light-weight encryption algorithms have
moderate impact on processing power, which
improves a little bit the probability of the object
to be offline.

mx BR0059 Declare service/quality
feature boundaries

QoS If impact of the light-weight encryption is known
to the system, and accordingly it can declare the
expected response time boundaries.

mi BR0060 Minimize average
processing time

QoS

297 – APPENDICES ● APPENDIX B

PervCompRA-SE

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0070 Provide maximum
protection for the
environment

SY This is a kind of maximum protection for the
environment

mx BR0075 Ensure secure data
transmission

ST

mi BR0077 Prevent data leakage ST Encryption prevents data leakage if network is
compromised.

B.5 .4 . 19 SO-021 : USE COMPATIBLE TECHN OLOGIES

There are technologies that were tested in common solutions and proved to be working with minimal

conflicts, including shared resource conflicts. Accordingly, by using compatible technologies only, it will

not be possible to add more devices from other technology providers unless they were tested with the

existing ones in the system and proved to be working without major problems. Table B-38 shows the

impact of this solution on the requirements of the quality features.

Table B-38 Solution SO-021 relationships with quality features requirements

Relation Requirement
ID

Requirement Name Feature Notes

mx BR0039 Maximize the
number of device
technologies

HD

mi BR0046 Minimize Faults FT Faults among compatible technologies are minimal
since they are tested in different integration points.
Moreover, unavoidable faults are known and
anticipated.

mi BR0065 Avoid conflicting side
effects

SY It is expected that compatible technologies will
have minimal side effects since they were tested
together in different situations.

mi BR0068 Minimize conflicting
usage of shared
resources

SY

cf BR0085 Utilize the user
mobile phone

SO Users' mobile phones come from different
manufacturers and it will be almost impossible to
force users to use different phones because the
system requires that.
In this case, the system will not be personalized.

298 – APPENDICES ● APPENDIX B

PervCompRA-SE

B.6 Business Quality features requirements Survey

Result

We conducted an online survey to study the importance of the quality features’ requirements proposed in

chapter 4. The used questionnaire was designed to assess every piece of requirements separately and give

it a rating from 1 to 5 where 1 means (not important at all) and 5 means (extremely important) as shown in

Table B-39. We also asked the respondents to give some details about their professional experience with

respect to the domains and years of experience. These are shown in Table B-40 and Table B-41,

respectively.

Table B-39 Details of the quality features’ requirements evaluation survey

Respondents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Adaptive behavior

1. Evaluate/Improve Adaptive actions 3 3 2 4 5 3 5 5 3 4 3 3 5 4 5 4 3

2. Has smart decision rules 4 5 2 4 3 3 4 5 3 5 4 5 5 4 5 4 4

3. Notifies users with changes 5 5 4 5 5 1 4 2 4 5 4 5 4 5 5 5 5

4. Possesses actuation capabilities 4 4 3 4 2 1 3 4 4 4 3 3 4 3 5 4 5

Context Sensitivity

1. Equip system with sensors 5 5 5 4 3 1 4 5 4 5 5 3 4 5 5 4 5

2. Locate interacting objects 5 3 4 4 3 1 4 5 3 4 4 3 4 4 5 5 2

3. Provide analytical capability 2 4 4 3 5 3 4 3 4 4 3 4 4 3 3 5 2

4. Provide interpretation rules 4 4 3 3 5 3 4 4 3 4 5 3 3 5 4 5 4

5. Record object lifetime 4 4 4 4 3 1 4 5 3 4 2 3 4 5 3 4 2

Experience Capture

1. Capture Knowledge about users 3 3 5 3 5 1 3 3 2 2 2 3 4 5 2 4 1

2. Capture/change behavioral patterns 4 3 3 2 5 1 4 4 3 4 5 3 4 4 3 4 2

3. Correlate information and knowledge 3 2 3 2 5 2 5 5 2 4 4 3 4 4 4 5 2

Fault Tolerance

1. Detect faults quickly 5 4 5 5 5 1 4 5 4 5 5 5 5 4 5 4 4

2. Minimize Faults 4 5 5 5 4 1 4 5 4 5 4 5 4 4 5 5 5

3. Minimize the probability of an object to
be offline 4 5 5 4 5 1 5 5 4 4 3 5 5 5 5 5 4

4. Reduce Error consequences 4 5 5 4 5 1 3 5 3 5 4 5 5 5 5 5 5

5. Show proper error message 4 5 5 5 5 1 5 3 4 5 3 5 4 5 5 5 5

6. Take the proper corrective action 4 5 4 5 4 3 5 5 3 5 5 4 4 4 4 5 5

Heterogeneity of Devices

1. Maximize the number of device
technologies 2 2 4 2 5 3 5 5 4 4 2 5 4 5 3 5 3

2. Provide a unique identifier for every
object 4 5 5 5 5 1 4 3 3 5 5 5 3 5 4 4 5

3. Render content on the maximum
number of devices 3 4 4 3 4 1 3 2 3 4 3 3 4 5 4 4 3

Invisibility

1. Minimize un-necessary interactions with
the system 3 5 3 5 3 1 4 5 3 3 3 4 5 4 4 4 4

2. Remove unnecessary motions 2 5 4 5 2 1 3 5 3 4 5 4 5 4 4 4 2

3. Conceal the part object(s) of the 3 3 4 3 2 3 4 5 3 3 3 3 4 4 3 4 2

299 – APPENDICES ● APPENDIX B

PervCompRA-SE

Respondents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

pervasive system

4. Minimize the use of explicit input 4 4 4 4 3 3 4 3 4 4 4 3 4 4 4 4 4

Privacy and Trust

1. Certify trusted entities 5 5 4 5 4 1 5 5 4 5 5 3 4 4 4 4 5

2. Classify Information 5 4 4 4 3 1 4 4 5 5 5 3 4 4 4 4 5

3. Reveal Information controllably 5 5 5 4 5 3 4 5 4 5 5 3 5 4 4 5 5

4. Track Information 5 5 4 4 5 3 4 5 4 5 4 3 5 5 4 4 3

Quality of Service

1. Declare service/quality feature
boundaries 2 5 5 3 2 1 4 5 4 4 5 3 4 5 5 4 5

2. Minimize average processing time 4 3 5 4 5 2 5 4 4 5 4 5 4 5 5 4 5

3. Monitor and improve QoS boundaries 2 3 5 4 3 1 4 4 4 4 3 3 5 5 4 5 4

4. Specify hard/soft deadline 3 5 4 5 4 3 3 4 4 4 3 3 4 5 4 4 4

Safety

1. Alert if safety is compromised (or about
to be) 5 5 5 4 3 1 5 5 3 5 4 3 4 4 5 5 5

2. Allow the user to override/cancel system
decisions 5 5 5 5 5 1 4 3 3 4 3 3 3 3 3 5 5

3. Avoid conflicting side effects 5 5 5 5 5 1 4 5 3 5 4 3 4 5 3 5 5

4. Avoid invalid operational directives 4 5 5 4 4 1 4 5 3 4 4 3 4 5 3 5 5

5. Ensure that generated rules do not
conflict with system policy 4 5 5 5 5 1 4 5 4 4 5 3 4 5 3 4 2

6. Minimize conflicting usage of shared
resources 3 5 5 4 4 2 4 5 4 4 5 5 4 5 5 4 4

7. Override system rules by the regulator 2 5 5 4 4 1 5 3 3 5 3 3 5 5 4 4 5

8. Provide maximum protection for the
environment 5 5 5 4 5 1 5 5 3 5 5 3 5 5 5 5 4

9. Resolve conflicts among objects by an
administrator 4 5 5 5 3 1 4 5 3 5 3 3 4 5 4 5 5

10. respect societal ethics 5 5 5 5 5 1 5 5 4 5 5 3 4 5 3 4 5

Security

1. Disallow anonymous usage of the
system 1 5 4 5 5 1 5 5 5 5 2 5 2 5 5 5 3

2. Enforce Security rules on all objects 4 5 4 5 5 1 5 5 4 5 5 4 4 5 5 5 4

3. Ensure secure data transmission 5 5 4 5 5 1 5 5 4 5 4 4 4 5 4 5 3

4. Maintain data integrity 4 4 4 4 5 1 4 4 4 5 5 3 4 5 5 5 4

5. Prevent data leakage 5 4 4 4 5 1 5 5 4 5 4 3 5 5 3 5 4

6. Provide data access rules 5 5 4 4 5 1 4 4 4 4 4 3 4 5 4 5 5

7. Take counter-measures to mitigate
security threats 5 5 4 4 5 3 4 5 4 5 5 2 4 5 3 5 5

8. Announce malfunctioning smart objects 5 5 5 5 5 1 3 5 4 5 4 2 4 5 4 5 3

Service Omnipresence

1. Distribute computing power 3 3 5 5 4 1 4 3 4 4 4 3 4 4 3 4 3

2. Enrich the experience of the highly used
scenarios 3 3 5 4 4 1 4 3 4 5 4 3 4 4 4 4 4

3. Provide Informative messages 4 5 5 5 5 1 5 4 4 5 3 4 3 3 4 5 5

4. Use a unique user identifier 4 3 5 4 5 1 5 3 3 5 3 3 4 3 4 4 5

5. Utilize the user mobile phone 1 3 5 5 5 1 4 4 3 5 2 4 4 3 4 4 4

300 – APPENDICES ● APPENDIX B

PervCompRA-SE

Table B-40 Survey respondents years of experience

Years of Experience # of respondents

Less than 10 years 3

Less than 15 years 1

Less than 5 years 4

Over 15 years 9

Table B-41 Domains of experience for the survey respondents

Domains of Experience

Software Development
Telecom
Finance
IpTv devices
Electronics
IT Management
Image Processing
Pattern Recognition
Social Business

Smart Cities
Human computer Interaction
Pervasive computing
Ubiquitous computing
Internet of Things
Mobile Applications
Indoor Navigations
Web applications
Open Source
Software Architecture

301 – APPENDICES ● APPENDIX C

PervCompRA-SE

Appendix C : Technical Reference Architecture (Extra

Details)

C.1 Architecture Requirements Relationships

Table C-1 shows conflicts that may occur among the different architectural quality features requirements

and which requirement should supersede if a conflict occurs. These are general rules that may be

overridden based on context. The relationships included also those requirements that maximize a desired

value as shown in Table C-2.

Table C-1 Architectural Requirements conflict relationships

Source Name Destination Name Notes Why Superseding?

Shared resource must
keep acceptable
performance under
increased clients'
requests

The system must be
scalable within the
boundary of the available
resources
(Superseding)

The scalability of the system cannot be
stretched forever since a shared
resource will ultimately end with poor
processing if the number of clients
kept increasing.

The requirement is logical as it requests to
have predefined limitations for the shared
resource, even if it is a high-end technology.
The requirement sets expectations for the
users that the system may fail at a certain
point of time under increased requests.

The service
communication
protocol must be light
with respect to system
resources

The system should use
standard interoperable
protocols
(Superseding)

A light protocol may not be
interoperable if it depends on specific
formats, e.g. binary formats, which
may not be consumable by some
objects. The protocol must be
detached as much as possible from the
embedded technology of the system.

Since the binding operation may be done
once before the real transactions are made,
then it is more important for the system to
use a standardized interoperable protocol
even if there is an overhead cost during the
binding operation.
Moreover, there are standard lightweight
interoperable protocols that are convenient
to use in regular transactions.

The smart object
should bind to the
system quickly

The system should add
extra resources
transparently
(Superseding)

If the resource addition to the system
is not completely transparent, then it
is possible to delay the binding
operation between the smart object
and the system.

The existence of the additional resource
could be vital to the system’s existence. So,
it is acceptable to delay the binding process
for the sake of the whole system’s
healthiness.

The system should be
able to compose
functions dynamically
at runtime
(Superseding)

The system should
support smooth and quick
service handover

As the system builds more composite
services, it is not guaranteed that the
handover process will go as smoothly
as expected.

Service composition is considered more
important in case of conflict. It could be
acceptable in some cases to have a slight
delay in the handover process

The published service
should be accessed by
an authorization
certificate
(Superseding)

The smart object should
bind to the system quickly

The authorization certificate is an
extra overhead to the binding or
association process between the smart
object and the system.

Every service must be authentic and must
provide sufficient information about its
access permissions; otherwise, there will be
spam services with unknown origins.

The published service
should be accessed by
an authorization
certificate
(Superseding)

The system should be
able to compose
functions dynamically at
runtime

Services that do not have the same
access level cannot be composed to
form a new service.

It could be possible to reveal confidential
information if private services are composed
with public services

The published service
should be accessed via
authorization
certificate
(Superseding)

The system should be
able to compose new
functions from simple or
composite functions

Services that do not have the same
access level cannot be composed to
form a new service.

It could be possible to reveal confidential
information if private services are composed
with public services.

302 – APPENDICES ● APPENDIX C

PervCompRA-SE

Source Name Destination Name Notes Why Superseding?

The published service
should be accessed via
authorization
certificate
(Superseding)

The system should
support smooth and quick
service handover

The speed of the handover process
may be impacted by additional
authorization checks through the
certificate.

The authorization certificate for the service
is a must to ensure that the service is
authentic and that the client fulfills its
needs.

Table C-2 Architecture Requirements Maximization and Minimization relationships

Source Name Stereotype Destination Name Notes

A shared resource must keep
functioning as designed under
increased client requests

maximize The published services must have
documentation for developers

The documentation of some services may be
invalidated if shared resources failed to function as
designed.

A shared resource must keep
functioning as designed under
increased client requests

maximize The system should be able to
compose functions dynamically at
runtime

A system that has shared resources that do not
function as designed will not be able to compose new
functions at runtime. Failing resources may hinder
new functions or services.

Shared resource must keep
acceptable performance under
increased clients' requests

maximize The system should satisfy the
requirements of the service
requester while composing new
functions

The shared resource utilization should be used as an
indication if it will be used by the newly composed
service.

Shared resource must keep
acceptable performance under
increased clients' requests

maximize The system should be able to
forecast the required resources

As the system monitors its shared resources, it should
be possible for the system to determine if other
resources should be added to the system to support it
or not e.g. an additional sensor or actuator.

The system must register new
services

maximize The system should be able to
compose new functions from
simple or composite functions

Non-registered services should not be used by the
system to compose new services.

The service must declare its
contract interface

maximize The system should be able to
compose new functions from
simple or composite functions

new services cannot be composed if the basic service
interface is not known.

The service must declare its
contract interface

maximize The system should satisfy the
requirements of the service
requester while composing new
functions

Knowing the capability of the available services will
help the system to compose new services based on
the requirements of the service requester.

The service must declare its
contract interface

maximize The smart object should bind to the
system quickly

The service must be registered in the system before
binding.

The service communication
protocol must be light with
respect to system resources

maximize The published services must have
documentation for developers

The documentation must cover the communication
protocol of the service.

The service communication
protocol must be light with
respect to system resources

maximize The smart object should bind to the
system quickly

The lighter the communication protocol, the faster will
be the binding process.

The service communication
protocol must be light with
respect to system resources

maximize The system should satisfy the
requirements of the service
requester while composing new
functions

A light communication protocol will support a wider
number of requirements where performance is of
highest priority.

The smart object should bind
to the system quickly

maximize The system should support smooth
and quick service handover

It is a pre-requisite for the smart object to bind first to
the system before the system hands its request over
to another service.

The system should use
standard interoperable
protocols

maximize The smart object should bind to the
system quickly

An interoperable protocol will help the smart object to
bind to the system regardless of the embedded
technology.

The published services must
have documentation for
developers

maximize The published service should be
accessed by an authorization
certificate

Documentation should give details about the service
certificate e.g. issuer, needed permissions, expiry date,
etc ...

The published services must
have documentation for
developers

maximize The service must declare its
contract interface

The documentation should give details about the
service interface contract.

303 – APPENDICES ● APPENDIX C

PervCompRA-SE

Source Name Stereotype Destination Name Notes

The published services must
have documentation for
developers

maximize The system should publish some/all
of its services for external usage

Public services are typically documented to help the
developers find their way through them.

The published service should
be accessed via authorization
certificate

maximize The service must declare its
contract interface

The contract interface must have the authorization
certificate.

The published service should
be accessed via authorization
certificate

maximize The system should publish some/all
of its services for external usage

The published service must have an authorization
certificate even if it is for public use.

The system should report
about the performance of its
objects to interested
communities

maximize The system should be able to
compose functions dynamically at
runtime

The new service may be reportable as well based on
its building services.

The system should report
about the performance of its
objects to interested
communities

maximize The system must be scalable within
the boundary of the available
resources

Reporting about the performance of the objects can
help the system to request extra resources to stay
scalable.

The system should add extra
resources transparently

maximize The system must be scalable within
the boundary of the available
resources

Adding extra resources to the system stretches its
scalability.

The system should be able to
forecast the required
resources

maximize The system should add extra
resources transparently

Forecasting the needed resources will help the system
to add the services as required.

The service communication
protocol must be light with
respect to system resources

minimize Shared resource must keep
acceptable performance under
increased clients' requests

A Light communication protocol may reduce the
processing overhead for shared resources especially
shared CPUs.

The service communication
protocol must be light with
respect to system resources

minimize The system must be scalable within
the boundary of the available
resources

Light weight communication minimizes resource
utilization overhead which allows the system to
perform better under increased users' requests.

C.2 Review of the Technology Enablers

C.2.1 High-Speed Network

The 4G network’s goal is to achieve a very high speed scale to keep up with similar to landline network

speeds. The 5G network on the other hand is considered a true realization for the PervComp systems. Its

architecture aims to have heterogeneous networks, small cells, and even exploit the mobile devices to

expand its network coverage. The aim is to improve the efficiency of the network and enhance customer

experience. It will be dependent mostly on building virtual software systems that exploit the capabilities of

the network resources. However, the design will be more into context-awareness trying to satisfy client

needs [165].

IEEE introduced some amendments for wireless protocols. WiFi IEEE 802.11ah is an amendment to the

WiFi wireless communication that aims to lower the power consumption and increase the coverage of

data transmission (29). It is perfect for low-power consumption devices like sensors and can go through

obstacles [167]. It is an ideal choice for implementing smart home applications.

BlueTooth LE [168], ZigBee, Z-Wave, Thread are other communication protocols with low-power

consumption and wider data coverage that are also suitable for smart areas like homes and work places.

Bluetooth LE is designed to be secured and allow users to manage their own applications remotely. ZigBee

29 IEEE was expected to finalize the new standard by July 2016 [166].

304 – APPENDICES ● APPENDIX C

PervCompRA-SE

is a very efficient protocol which is suitable for different network topologies and suitable mostly for

control, sensor, and monitoring applications. Z-Wave is designed to be used in smart areas and it is

already distributed in different products and it has anti-interference mechanisms. Thread is a new protocol

that uses IPV6 implemented on the physical layer of the smart phones (30). It uses radio communication on

frequency 2.4 GHz band which may result into interference with normal WiFi. However, there is no point

of failure for it since there is no hub and it is very suitable for mesh networks [170].

C.2.2 Microcontrollers

The world of PervComp would like to have all its objects in small sizes. So, in order to embed computing

power in small-size objects, there is a real need for small microcontrollers. There are currently commercial

small microcontrollers including great capabilities; Intel Edison microprocessor, Samsun Artik

microprocessor family, and the famous Raspberry PI.

Intel Edison [171] is a very small-sized microcontroller which could be very close from a macro memory

card as shown in Figure C-1. It is powered with Linux OS, dual-core CPU, 1GB DDR, 4GB flash memory,

WiFi, Bluetooth, and micro USB plugin connector; in addition to an open-source software development

platform.

Figure C-1 Intel Edison microprocessor module [171]

Samsung ARTIK 5 [172] is similar to the Intel Edison in capabilities with even a smaller size as shown in

Figure C-2, but it supports more connectivity protocols like ZigBee, Thread, and Bluetooth LE with support

for IPV6. It supports external sensors and it has media options (camera, audio). It provides also secure

point-to-point authentication and data transfer. It provides support for IDEs using different programming

languages such as Java, and C++.

30 IPV6 is a 128-bit address space that allows more devices to connect. The protocol was first proposed in 1994 but with very
slow adaptation due to insufficient business cases [169].

305 – APPENDICES ● APPENDIX C

PervCompRA-SE

Figure C-2 Samsung ARTIK 5 microprocessor module [172]

The Raspberry PI 3 Model B [173] is a microcontroller with sufficient capabilities and a cheap price. It is

the third generation of the Raspberry PI and it includes a faster processor, wireless connectivity, and

supports Bluetooth 4.1 and Bluetooth LE in addition to the existing features like Ethernet port, USB ports,

Camera and Display interfaces. It is possible to build different applications via the Python programming

language, and Scratch (31). Its size is bigger than the Intel Edison and Samsung ARTIK with dimensions

(85.6mm x 56mm x 21mm) as shown in Figure C-3, but it is still a good choice for educational purposes and

other applications as well. The Raspberry organization provides an excellent documentation with it

including a good number of tutorials and projects.

Figure C-3 Raspberry PI 3 Model B [173]

We can consider the microprocessor as a programmable smart object with all essential components like

memory, processor, and network interface but without the smartness. The microcontroller can be

programmed to perform other roles like a sensor or actuator if required.

31 Scratch is a visual programming tool to create games via visual utilities

85.6 mm

56
mm 21 mm

306 – APPENDICES ● APPENDIX C

PervCompRA-SE

C.2.3 Smart Sensors

A sensor is a device that reads an analogue signal from the environment and transforms it into a digital

signal which is submitted to another system for processing. There is a large number of sensors that have

been lately integrated in our daily lives. The fire alarm sensor, the smoke alarm sensor, the anti-theft for

cars sensors, the temperature sensor, the light sensor, etc. A sensor is a type of input device that keeps

sending information to the system. The system is responsible for realizing the data and transforming it

into useful information.

The sensors technology witnessed a sharp advancement that transformed it from a passive sensor into a

smart sensor based on MEMS (Micro-Electro-Mechanical System) technology. It enabled the sensor to

communicate through a bi-directional bus, execute logical transactions, have failure detection methods, as

well as self-testing and and self-calibration [174]. The smart sensor is quite compatible with

microprocessors making further digital processing a very easy process. The sensors technology is available

now in almost every smart phone. A sensor is a physical implicit input that feeds the system with digitized

data as shown in Figure C-4.

Figure C-4 Sensor as an Input

C.2.4 Smart Phones

The smart mobile phone (32) is an intelligent device that provides classical communication tools (Voice and

SMS) in addition to other advanced data-based services. It includes multiple capabilities enabling the

smart phone to act as a mini-computer. A normal smart phone can contain a camera, microphone, GPS,

different wireless connectivity interfaces and proximity, temperature, light, accelerometer, and gyroscope

sensors. It is possible to develop an application hosted by a mobile phone that utilizes its capabilities to

introduce additional value-added services. It is possible also to utilize the mobile phone features remotely

through other distributed systems. Thousands of ready-made applications are available for normal users.

32

 It applies to tablets as well

bdd [Block] Input [Input]

«block»

Input

«block»

Implicit
«block»

Explicit

«block»

Physical

«block»

Virtual

«block»

Sensor

«block»

Smart Sensor

307 – APPENDICES ● APPENDIX C

PervCompRA-SE

One of the important reasons that make a smart phone very important for a pervasive system is its nature

as a personal device that can be rarely detached from the user. The smart phone holder tends to use it for

personal activities, save photos, record personal videos, provide information about his/her locations. It is

a user-centric device that can be integrated into any pervasive system to reflect personal preferences and

behaviors or allow the user to access services remotely. The smart phone can be programmed to play

different roles in the smart environment. It can monitor the environment without interacting with it. It

can monitor the environment and respond to activities according to environmental policies. It can

monitor, record activities, react to the environment and direct users to actions.

C.2.5 Contactless Tags

The Tag is a passive identification technology that identifies a specific item. Every passive identifier has its

own reader that can transform the symbolic data into digital information in order to be used by the system

for further processing. The earlier tags like Universal Product Code (UPC) used symbolic lines, as shown in

Figure C-5, to give numerical identification for products. The UPC tag reader scans the lines and

transforms them into numbers based on their thickness. This system is widely used in industry due to its

cheap cost and the durability of the tag under environmental conditions. Newer codes, like QR barcode

(Figure C-6) which is a Japanese patent, was invented to encode URLs, emails, and images. It is an

international standard that is frequently used for scanning by smart phones.

Figure C-5 UPC Tag

Figure C-6 QR code tag

PervComp systems can definitely deal with the classic tags, but the smartness of the system gains a

different aspect if the system uses electronic tags. There are two main tags that are considered the main

contactless solutions for many pervasive systems:

1. RFID: Radio Frequency Identification (RFID), shown in Figure C-7, is a passive identification card

that is used for contactless communication which ranges from 3.5m to 10m. It is The RFID tag that

can stand for the environmental conditions which makes it the perfect choice for many outdoor

applications especially in inventory tracking, vehicle tracking, and Supply Chain [175] [176].

2. NFC: Near Field Communication (NFC) technology was jointly developed by Philips and Sony [177].

It was named as near field, because the communication distance is limited to less than 10

centimeters. The NFC communication protocol standard is consistent with RFID tags and external

smart cards. Two communication modes exist: passive and active communication modes of the

NFC interface protocol. This helps to initiate communication traffic using the NFC device interface

and to work as a target using either NFC interface or the RFID interface [120]. Many smart phones

realize the NFC tags, shown in Figure C-8, and support it in passive or active modes. They work

also as NFC readers.

308 – APPENDICES ● APPENDIX C

PervCompRA-SE

Figure C-7 RFID tag label samples [176]

Figure C-8 NFC Tag [178]

As the NFC uses a very short distance to communicate, it makes it the perfect choice for all security-

sensitive and personalized applications. Embedding NFC technology in mobile phones opens the door for

a countless number of applications that require personal engagement, like payment (33), location access,

and ticketing [178] [180]. Contactless payment became a required service to the degree that some people

prefer it over credit card payment [181]. RFID is more suitable to non-sensitive security applications like

inventory tracking because the long distance that a RFID tag can be read from may compromise the

transactions by trapping the traffic or changing it. The RFID and NFC tags may represent a dummy passive

object when they tag other objects.

C.2.6 Efficient Power Technology

Power is one of the main challenges for any pervasive system built over small devices with limited power

sources. One of the main objectives of the system design is to minimize activities that consume power

quickly. However, the system can be more effective if the power sources can stand for unplanned

activities, failures, and longer-time operations. For example, a design for a system that can live on a

battery for 2 hours may be completely different from a system that has a battery that can survive for 6

hours given that they are subject to the same load. Within this scope, there are two main power

technologies that can be considered important to study for any pervasive system, namely:

Supercapacitors and Power harvesting.

Supercapacitors is an innovative technology that stores 10 to 100 times more energy per unit volume or

mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates

many more charge and discharge cycles than rechargeable batteries [182] [183]. Industrial devices like

smart mobile phones are its biggest markets; in addition to using the supercapacitor as a power backup

for cache RAM in failure incidents [183].

On the other hand, power harvesting technologies have been in industry for many years. They harvest

power from different sources like solar, vibration, and electromagnetic sources. Power harvesting has a

very positive impact on the environment since it reduces carbon production emitted through the normal

usage of electricity. Moreover, it is possible to install devices in harsh locations where electrical power

sources are scarce. The advancement of power harvesting technology made it possible to produce small

size photosynthetic cells that could be installed with devices like sensors [182] [184].

33 Mainwaring et al. [179] conducted a very interesting study to understand the usage of digital cash solutions using Sony FeliCa
NFC smartcard technology in Japan. They found that the Japanese society prefers to use the NFC technology rather than credit
cards as they tend to save time which is consistent with their cultural habits to avoid commotion as much as possible

309 – APPENDICES ● APPENDIX C

PervCompRA-SE

The main problem that power harvesting currently suffers from is the randomness of the energy stream

which impacts the data transmission rate. Accordingly, manufacturers usually add batteries, like

supercapacitors, along with the power harvesting technology in order to store the energy and empower

the device with a steady power stream [184].

C.3 Pattern Relationships

The following table (Table C-3) shows the list of patterns and their derivation relationship with the

business and architectural requirements.

Table C-3 Pattern Relationships with business and architectural requirements

ID Requirement

Q
u

al
it

y
Fe

at
u

re

A
sy

n
ch

ro
n

o
u

s
vs

.

sy
n

ch
ro

n
o

u
s

C
o

m
m

u
n

it
y

A
d

vi
ce

Ev
e

n
t

H
an

d
lin

g

D
e

le
ga

ti
o

n

Fe
e

d
b

ac
k

C
yc

le

Li
gh

tw
e

ig
h

t
vs

.

h
e

av
yw

e
ig

h
t

p
ro

to
co

l

p
e

e
r-

to
-p

e
e

r
vs

.

m
id

d
le

w
ar

e

P
o

lic
y-

d
ri

ve
n

 E
xe

cu
ti

o
n

P
ro

fi
le

 E
xt

e
n

si
o

n

Q
u

al
it

y
Fe

at
u

re

R
u

n
ti

m
e

 P
e

rf
o

rm
an

ce

Se
n

se
-S

yn
th

e
si

ze

BR0030 Evaluate/Improve Adaptive actions AB X

BR0039 Maximize the number of device technologies HD X

BR0042 Capture Knowledge about users EC X

BR0046 Minimize Faults FT X

BR0050 Take the proper corrective action FT X

BR0060 Minimize average processing time QoS X X X X

BR0061 Monitor and improve QoS boundaries QoS X

BR0066 Avoid invalid operational directives SY X

BR0067 Ensure that generated rules do not conflict
with system policy

SY X X

BR0068 Minimize conflicting usage of shared resources SY X

BR0069 Override system rules by the regulator SY X

BR0072 Respect societal ethics SY X

BR0074 Enforce Security rules on all objects ST X

BR0080 Announce malfunctioning smart objects ST X

BR0081 Distribute computing power SO X

BR0082 Enrich the experience of the highly used
scenarios

SO X X

BR0099 Shared resource must keep acceptable
performance under increased clients' requests

CON X

BR0102 The system must register new services SDV X

BR0104 The service must declare its contract interface SDV X X

BR0105 The service communication protocol must be
light with respect to system resources

SDV X X

BR0108 The system should support the maximum
number of communication protocols

SIP X

BR0109 The system should use standard interoperable
protocols

SIP X

BR0115 The system should report about the
performance of its objects to interested
communities

OPS X

310 – APPENDICES ● APPENDIX C

PervCompRA-SE

C.4 Baseline architecture detailed diagram

Figure C-9 shows the dependency relationships among the modules of the baseline architecture in the TRA. They are the generic modules excluding

any specific domain modules.

Figure C-9: Reference Architecture baseline architecture detailed diagram

bdd [Package] architecture baseline [architecture baseline]

«block»

Repository Manager

«block»

Synthesizer

+ AnalyzeInput(Real): double

«block»

Interested

Community

«block»

Decision

Manager

«block»

Interpretation

Manager

«block»

Fault Handler

«block»

Profile

Manager

«block»

Resource

Manager

«block»

Risk Handler

«block»

Explicit

Implicit

Input

«block»

Visible

Invisible

Output

«block»

Device

Manager

«block»

Service

Manager

«block»

Logger

«block»

Analytics

Manager

«block»

Event Handler

«block»

Policy Manager

«block»

Optimization

Manager

Dependency on Repository Manager
Dependency on Logger
Dependency on Fault Handler

Legend

circular

feedback

analyze & Update

Interpretation Rules

act

feed

use proper input and

output services

feedback

save data

311 – APPENDICES ● APPENDIX D

PervCompRA-SE

Appendix D : Evaluation (Extra Details)

D.1 Baseline Architecture Modules Satisfaction

Relationships

Table D-1 shows the business and architectural requirements and the modules in the baseline architecture

(section 5.5.3) that satisfy their needs. Only the requirement id is shown in the table along with a single

letter (M) or (S) to indicate whether this module plays a main role (M) to achieve this requirement or a

support role (S), respectively. The table shows also the subset of related requirements that are handled

by the module split into business (B) and architectural (A) requirements.

Table D-1 Baseline architecture modules satisfying relationships with requirements

Module Name Requirement ID (Module role) Related Requirements

Analytics
Manager

BR0082 (S), BR0043 (M), BR0056 (M), BR0044(S), BR0080 (S),
BR0042(S), BR0058 (S), BR0036 (M), BR0115 (M), BR0118 (M)

B BR0042(mx) BR0043
BR0043(mx) BR0044

A None

Decision
Manager

BR0031 (M) ,BR0057 (S) ,BR0066 (S) ,BR0042 (S) ,BR0044 (S)
,BR0056 (S) ,BR0073 (S) ,BR0074 (S) ,BR0082 (S) ,BR0064 (S)
,BR0030 (M) ,BR0032 (S) ,BR0069 (S) ,BR0036 (S) ,BR0070 (S)
,BR0048 (S) ,BR0052 (S) ,BR0071 (S) ,BR0067 (M) ,BR0065 (S)
,BR0049 (S) ,BR0072 (S) ,BR0079 (S) ,BR0050 (S) ,BR0058 (S)
,BR0063 (S) ,BR0118 (S) ,BR0116 (S) ,BR0106 (S) ,BR0115 (S)

B BR0042 (cf) BR0057
BR0036 (mi) BR0048
BR0031 (mi) BR0066
BR0031 (mi) BR0065
BR0074 (mx) BR0057
BR0079 (mx) BR0070
BR0032 (mx) BR0063
BR0032 (mx) BR0064

A BR0106 (cf) BR0116
BR0118 (mx) BR0116

Device
Manager

BR0070(S) ,BR0068(S) ,BR0046(S) ,BR0047(S) ,BR0054 (M)
,BR0051(S) ,BR0032(S) ,BR0033 (M) ,BR0040 (M) ,BR0035 (M)
,BR0038 (M) ,BR0048(S) ,BR0052(S) ,BR0041 (M) ,BR0071(S)
,BR0072(S) ,BR0077(S) ,BR0043(S) ,BR0063(S) ,BR0080(S)
,BR0065(S) ,BR0066(S) ,BR0042(S) ,BR0055(S) ,BR0060(S)
,BR0053 (M) ,BR0039 (M) ,BR0045(S) ,BR0073(S) ,BR0081 (M)
,BR0074(S) ,BR0082(S) ,BR0075(S) ,BR0034 (M) ,BR0079(S)
,BR0056(S) ,BR0049(S) ,BR0050(S) ,BR0085 (M) ,BR0058(S)
,BR0059(S) ,BR0083(S) ,BR0057(S) ,BR0115(S) ,BR0099(S)
,BR0097(S) ,BR0105(S) ,BR0106 (M) ,BR0117(S) ,BR0116(S)
,BR0112(S) ,BR0107(S) ,BR0108(S) ,BR0109(S) ,BR0118(S)

B BR0085 (mx) BR0055
BR0085 (mx) BR0041
BR0081 (mi) BR0060
BR0081 (mx) BR0042
BR0042 (mx) BR0043
BR0042 (cf) BR0057
BR0083 (mi) BR0048
BR0083 (cf) BR0057
BR0039 (cf) BR0068
BR0039 (cf) BR0065
BR0039 (cf) BR0046
BR0039 (cf) BR0074
BR0041 (mx) BR0082
BR0040 (mi) BR0068
BR0040 (mi) BR0073
BR0050 (mi) BR0051
BR0075 (cf) BR0060
BR0034 (mx) BR0056
BR0034 (cf) BR0057
BR0034 (mx) BR0042
BR0074 (cf) BR0060
BR0074 (mx) BR0057

312 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Requirement ID (Module role) Related Requirements

BR0079 (mx) BR0070
BR0079 (cf) BR0060
BR0032 (mx) BR0063
BR0035 (mi) BR0048
BR0045 (mi) BR0048
BR0053 (mx) BR0070
BR0051 (cf) BR0032

A BR0099 (cf) BR0117
BR0099 (mx) BR0118
BR0105 (mi) BR0099
BR0105 (mi) BR0117
BR0105 (mx) BR0106
BR0105 (cf) BR0109
BR0106 (cf) BR0116
BR0106 (mx) BR0107
BR0109 (mx) BR0106
BR0115 (mx) BR0117
BR0116 (mx) BR0117
BR0118 (mx) BR0116

Event Handler BR0070 (S) ,BR0060 (S) ,BR0050 (S) ,BR0048 (S) ,BR0051 (S)
,BR0031 (S) ,BR0030 (S) ,BR0082 (S) ,BR0079 (S) ,BR0042 (S)
,BR0045 (S) ,BR0063 (S) ,BR0107 (S) ,BR0116 (S) ,BR0119 (S)
,BR0099 (S) ,BR0097 (S) ,BR0106 (S) ,BR0102 (S)

B BR0050 (mi) BR0051
BR0079 (mx) BR0070
BR0079 (cf) BR0060
BR0045 (mi) BR0048

A

BR0099 (mx) BR0119
BR0106 (cf) BR0116
BR0106 (mx) BR0107

Fault Handler BR0050 (M) ,BR0083 (S) ,BR0048 (M) ,BR0049 (M) ,BR0066 (S)
,BR0063 (S) ,BR0065 (S) ,BR0045 (M) ,BR0073 (S) ,BR0060 (S)
,BR0068 (S) ,BR0046 (M) ,BR0047 (S) ,BR0070 (S) ,BR0080 (S)
,BR0071 (M) ,BR0114 (S) ,BR0099 (S) ,BR0102 (S) ,BR0107 (S)
,BR0119 (S) ,BR0111 (S) ,BR0117 (S) ,BR0106 (S) ,BR0097 (S)
,BR0116 (S)

B BR0083 (mi) BR0048
BR0045 (mi) BR0048

A BR0097 (mx) BR0111
BR0099 (mx) BR0119
BR0099 (cf) BR0117
BR0106 (cf) BR0116
BR0106 (mx) BR0107
BR0111 (cf) BR0107
BR0114 (cf) BR0106
BR0114 (cf) BR0111
BR0114 (cf) BR0107
BR0116 (mx) BR0117

Interpretation
Manager

BR0052 (S) ,BR0071 (S) ,BR0072 (S) ,BR0049 (S) ,BR0079 (S)
,BR0050 (S) ,BR0038 (S) ,BR0070 (S) ,BR0030 (S) ,BR0065 (S)
,BR0066 (S) ,BR0042 (S) ,BR0056 (S) ,BR0048 (S) ,BR0082 (S)
,BR0060 (S) ,BR0068 (S) ,BR0046 (S) ,BR0054 (S) ,BR0051 (S)
,BR0077 (S) ,BR0036 (S) ,BR0037 (M) ,BR0043 (M) ,BR0099 (S)
,BR0097 (S) ,BR0118 (S)

B BR0042 (mx) BR0043
BR0050 (mi) BR0051
BR0036 (mi) BR0048
BR0079 (mx) BR0070
BR0079 (cf) BR0060

A BR0099 (mx) BR0118

Logger BR0048 (S) ,BR0077 (S) ,BR0042 (S) ,BR0044 (S) ,BR0045 (S)
,BR0030 (S) ,BR0058 (S) ,BR0061 (S) ,BR0071 (S) ,BR0036 (S)
,BR0038 (S) ,BR0070 (S) ,BR0060 (S) ,BR0115 (S) ,BR0118 (S)
,BR0114 (S)

B BR0036 (mx) BR0061
BR0036 (mi) BR0048
BR0030 (mx) BR0061
BR0045 (mi) BR0048

A None

313 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Requirement ID (Module role) Related Requirements

Optimization
Manager

BR0051 (M) ,BR0059 (M) ,BR0052 (M) ,BR0062 (M) ,BR0060 (M)
,BR0061 (M) ,BR0030 (S) ,BR0036 (S) ,BR0070 (S) ,BR0107 (S)
,BR0119 (S) ,BR0115 (S) ,BR0099 (S) ,BR0097 (S) ,BR0106 (S)
,BR0117 (M) ,BR0116 (S) ,BR0110 (S)

B BR0036 (mx) BR0061
BR0030 (mx) BR0061

A BR0099 (mx) BR0119
BR0099 (cf) BR0117
BR0106 (cf) BR0116
BR0106 (mx) BR0107
BR0115 (mx) BR0117
BR0116 (mx) BR0117

Policy
Manager

BR0069 (M) ,BR0072 (M) ,BR0041 (S) ,BR0077 (S) ,BR0067 (S)
,BR0074 (S) ,BR0066 (S) ,BR0070 (S) ,BR0108 (M) ,BR0115 (S)
,BR0112 (S) ,BR0118 (S) ,BR0113 (S) ,BR0114 (S) ,BR0109 (M)

B None

A BR0113 (mx) BR0114
BR0113 (mx) BR0112
BR0114 (mx) BR0112

Profile
Manager

BR0084 (M) ,BR0078 (S) ,BR0071 (S) ,BR0057 (S) ,BR0049 (S)
,BR0052 (S) ,BR0040 (S) ,BR0058 (S) ,BR0077 (S) ,BR0085 (S)
,BR0083 (S) ,BR0079 (S) ,BR0055 (S) ,BR0063 (S) ,BR0064 (S)
,BR0036 (S) ,BR0044 (M) ,BR0056 (S) ,BR0043 (S) ,BR0073 (S)
,BR0074 (S) ,BR0082 (S) ,BR0054 (S) ,BR0051 (S) ,BR0069 (S)
,BR0042 (M) ,BR0072 (S) ,BR0070 (S) ,BR0114 (S) ,BR0119 (S)

B BR0084 (mx) BR0055
BR0084 (cf) BR0040
BR0084 (mx) BR0078
BR0084 (mi) BR0073
BR0085 (mx) BR0055
BR0042 (mx) BR0043
BR0042 (cf) BR0057
BR0083 (cf) BR0057
BR0040 (mx) BR0078
BR0040 (mi) BR0073
BR0078 (mx) BR0057
BR0074 (mx) BR0057
BR0079 (mx) BR0070
BR0043 (mx) BR0044

A None

Repository
Manager

BR0080(S) ,BR0038(S) ,BR0042(S) ,BR0044(S) ,BR0056(S)
,BR0043(S) ,BR0076(S) ,BR0060(S) ,BR0077(S) ,BR0036(S)
,BR0070(S) ,BR0058(S) ,BR0078(S) ,BR0097(S) ,BR0099(S)
,BR0104(S) ,BR0118(S) ,BR0113(S) ,BR0102(S)

B BR0042 (mx) BR0043
BR0043 (mx) BR0044

A BR0097 (mx) BR0113
BR0099 (mx) BR0118
BR0113 (mx) BR0104

Resource
Manager

BR0081 (S), BR0065 (S), BR0066 (S), BR0053 (S), BR0059 (S),
BR0045 (S), BR0073 (S), BR0074 (S), BR0062 (S), BR0085 (S),
BR0038 (S), BR0075 (S), BR0034 (S), BR0035 (S), BR0039 (S),
BR0060 (S), BR0068 (S), BR0071 (S), BR0047 (S), BR0041 (S),
BR0061 (S), BR0033 (S), BR0040 (M), BR0036 (S), BR0070 (S),
BR0046 (S), BR0115 (S), BR0118 (S), BR0116 (M), BR0117 (S),
BR0106 (S), BR0105 (S), BR0097 (M), BR0099 (M)

B BR0085 (mx) BR0041
BR0081 (mi) BR0060
BR0039 (cf) BR0068
BR0039 (cf) BR0065
BR0039 (cf) BR0046
BR0039 (cf) BR0074
BR0040 (mi) BR0068
BR0040 (mi) BR0073
BR0075 (cf) BR0060
BR0036 (mx) BR0061
BR0074 (cf) BR0060
BR0053 (mx) BR0070

314 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Requirement ID (Module role) Related Requirements

A BR0099 (cf) BR0117
BR0099 (mx) BR0118
BR0105 (mi) BR0099
BR0105 (mi) BR0117
BR0105 (mx) BR0106
BR0106 (cf) BR0116
BR0115 (mx) BR0117
BR0116 (mx) BR0117
BR0118 (mx) BR0116

Risk Handler BR0079 (M), BR0058 (M), BR0083 (S), BR0055 (M), BR0063 (M),
BR0064 (M), BR0080 (M), BR0066 (M), BR0084 (S), BR0073 (M),
BR0049 (S), BR0075 (M), BR0067 (S), BR0065 (M), BR0074 (M),
BR0047 (M), BR0045 (S), BR0069 (S), BR0077 (M), BR0078 (M),
BR0070 (M), BR0048 (S), BR0071 (S), BR0072 (S), BR0076 (M),
BR0032 (M), BR0057 (M), BR0068 (M), BR0118 (S), BR0116 (S),
BR0117 (S), BR0114 (S), BR0097 (S), BR0099 (S), BR0115 (S)

B BR0084 (mx) BR0055
BR0084 (mx) BR0078
BR0084 (mi) BR0073
BR0083 (mi) BR0048
BR0083 (cf) BR0057
BR0078 (mx) BR0057
BR0074 (mx) BR0057
BR0079 (mx) BR0070
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0045 (mi) BR0048

A BR0099 (cf) BR0117
BR0099 (mx) BR0118
BR0115 (mx) BR0117
BR0116 (mx) BR0117
BR0118 (mx) BR0116

Service
Manager

BR0049 (S), BR0062 (S), BR0070 (S), BR0077 (S), BR0073 (S),
BR0065 (S), BR0066 (S), BR0042 (S), BR0057 (S), BR0045 (S),
BR0074 (S), BR0082 (S), BR0075 (S), BR0060 (S), BR0068 (S),
BR0046 (S), BR0059 (S), BR0083 (S), BR0113 (M), BR0110 (M),
BR0107 (M), BR0105 (M), BR0119 (M), BR0112 (M), BR0104
(M), BR0102 (M), BR0111 (M), BR0114 (M)

B BR0042 (cf) BR0057
BR0083 (cf) BR0057
BR0075 (cf) BR0060
BR0074 (cf) BR0060
BR0074 (mx) BR0057

A BR0102 (mx) BR0110
BR0104 (mx) BR0110
BR0104 (mx) BR0119
BR0105 (mx) BR0113
BR0105 (mx) BR0119
BR0111 (cf) BR0107
BR0113 (mx) BR0114
BR0113 (mx) BR0104
BR0113 (mx) BR0112
BR0114 (mx) BR0104
BR0114 (cf) BR0111
BR0114 (cf) BR0110
BR0114 (mx) BR0112
BR0114 (cf) BR0107

Synthesizer BR0050 (S), BR0065 (S), BR0066 (S), BR0045 (S), BR0082 (S),
BR0060 (S), BR0046 (S), BR0048 (S), BR0099 (S), BR0097 (S),
BR0105 (S), BR0104 (S)

B BR0045 (mi) BR0048

A BR0105 (mi) BR0099

315 – APPENDICES ● APPENDIX D

PervCompRA-SE

D.2 Survey

The following questions were presented to the reviewers in order to give their subjective evaluation for

the BRA and TRA documentations.

Totally disagree (TD), Slightly disagree (SD), Neutral (N), Agree (A), Strongly Agree (SA)

Questions TD SD N A SA N/A

Research Approach

The research approach is very clear to me ○ ○ ○ ○ ○ ○

The research derivers are relevant to the research content ○ ○ ○ ○ ○ ○

The research approach is presented scientifically ○ ○ ○ ○ ○ ○

Business Reference Architecture

The selected quality features provide sufficient evaluation coverage ○ ○ ○ ○ ○ ○

The business domains (Emergency, Learning, and Retail) added value to the business
reference architecture

○ ○ ○ ○ ○ ○

Business Reference Architecture [The business requirements are comprehensive enough] ○ ○ ○ ○ ○ ○

The business requirements are clearly expressed ○ ○ ○ ○ ○ ○

There are no duplicate business requirements ○ ○ ○ ○ ○ ○

The business ontology is useful to the business reference architecture ○ ○ ○ ○ ○ ○

The conflict resolution added value to the business reference architecture ○ ○ ○ ○ ○ ○

The trade-off analysis added value to the business reference architecture ○ ○ ○ ○ ○ ○

Technical Reference Architecture

The architectural requirements are consistent and comprehensive ○ ○ ○ ○ ○ ○

It is better not to merge architectural requirements with the business requirements ○ ○ ○ ○ ○ ○

The trade-off analysis is sufficient and valuable ○ ○ ○ ○ ○ ○

The Technology Enabler section is useful ○ ○ ○ ○ ○ ○

The selected patterns are enough ○ ○ ○ ○ ○ ○

The baseline architecture is solid and generic enough to describe the pervasive systems ○ ○ ○ ○ ○ ○

The baseline architecture abstraction presented all possible concepts ○ ○ ○ ○ ○ ○

The baseline architecture can help an architect build a concrete architecture ○ ○ ○ ○ ○ ○

I do not have a problem understanding the terminologies ○ ○ ○ ○ ○ ○

Clarity

I went over the document easily ○ ○ ○ ○ ○ ○

All concepts are explained clearly ○ ○ ○ ○ ○ ○

I rarely needed to revise a concept in order to understand it fully ○ ○ ○ ○ ○ ○

The diagrams and tables are useful and self-explanatory ○ ○ ○ ○ ○ ○

Consistency

All concepts discussed use the same terminologies ○ ○ ○ ○ ○ ○

316 – APPENDICES ● APPENDIX D

PervCompRA-SE

Questions TD SD N A SA N/A

The terms used in the research conform with terms used in typical relevant technical
areas

○ ○ ○ ○ ○ ○

Every section is consistent with the concepts it addresses ○ ○ ○ ○ ○ ○

Novelty

The research presents novel concepts ○ ○ ○ ○ ○ ○

The research adds value to the software engineering community ○ ○ ○ ○ ○ ○

This research can make a shift in the way reference architectures are built ○ ○ ○ ○ ○ ○

Applicability

I would recommend this reference architecture for industrial use ○ ○ ○ ○ ○ ○

The addressed concepts are grounded on well-defined theories ○ ○ ○ ○ ○ ○

The business reference architecture could be separately applied in industry ○ ○ ○ ○ ○ ○

The technical reference architecture could be separately applied in industry ○ ○ ○ ○ ○ ○

The material presented in the research is useful for me ○ ○ ○ ○ ○ ○

I can use some of the research concepts in my work ○ ○ ○ ○ ○ ○

The research could be applied in domain areas like Internet of Things, autonomous
computing and embedded systems

○ ○ ○ ○ ○ ○

The mistakes in a pervasive system architecture are minimized if the reference
architecture is used as a starting point

○ ○ ○ ○ ○ ○

D.3 Benchmarking

The following two sections show details of the two benchmarking experiments.

D.3.1 Experiment 1

Expert #1 generated a model composed of 11 modules. These modules are classified into four groups

(Figure D-1). The descriptions of these modules, from the expert’s point of view, are shown in Table D-2.

317 – APPENDICES ● APPENDIX D

PervCompRA-SE

Figure D-1 Benchmarking: experiment #1 baseline architecture

Expert #1 assumed that the device cannot initiate communication with the system and it is the

responsibility of the system to probe the device periodically to get or submit information from/to it. The

Security layer serves all other modules. In other words, all the other modules depend on it.

Table D-2 Module Description for benchmarking experiment 1

Module Name Description

Authentication,
Authorization & Audit
Trail

Authenticates users and authorizes the system to access other devices and assign the
specified roles.
Keeps track of all actions taken by authenticated users for future reference

Policy Enforcement Applies the correct usage policy on the authenticated users to protect the system from
unexpected and malicious behaviors

Machine Learning The brain responsible for predicting events and actions given the historical trends and
patterns

Rule Processing For correlating inputs with predefined rules to identify the future course of actions

Interactions Processing An orchestration engine responsible for workflow management and automation within
the system

QoS Monitor the quality of service against the pre specified SLAs

Fault Management collects faulty events, assigns their severity and tracks its resolution

Device Management Provides the device with the initial setup parameters and provides future updates for
the device configuration regardless of the device type or manufacturer

 Actuation System APIs to trigger the device to perform its main functionality

Event Generation System API to Collect device events and sends them to northbound interfaces

Provisioning System API to set provisioning commands

318 – APPENDICES ● APPENDIX D

PervCompRA-SE

The relationships between the modules in (Figure D-1) are summarized in Table D-3. The modules that

depend on other modules, have arrows going out, are marked as source and they have a black bullet in the

cell where the source module depends on the destination module.

Note The Device is not a module in the system, but it is shown as a destination to highlight the interaction with it.

Table D-3 Benchmarking experiment #1 module relationships matrix

 Destination

Source

A
u

th
e

n
ti

ca
ti

o
n

,

A
u

th
o

ri
za

ti
o

n

&

A
u

d
it

 T
ra

il

P
o

lic
y

En
fo

rc
e

m
en

t

M
ac

h
in

e
 L

e
ar

n
in

g

R
u

le
 P

ro
ce

ss
in

g

In
te

ra
ct

io
n

s

P
ro

ce
ss

in
g

Q
o

S

Fa
u

lt
 M

an
ag

e
m

e
n

t

D
e

vi
ce

M
an

ag
e

m
e

n
t

 A
ct

u
at

io
n

Ev
e

n
t

G
e

n
e

ra
ti

o
n

P
ro

vi
si

o
n

in
g

D
e

vi
ce

Authentication,
Authorization &
Audit Trail

Policy Enforcement

Machine Learning ● ● ●

Rule Processing ● ● ●

Interactions Processing ● ● ● ●

QoS ● ●

Fault Management ● ● ● ●

Device Management ● ●

Actuation ● ● ●

Event Generation ● ● ● ●

Provisioning ● ● ● ●

Table D-4 shows the satisfaction relationship of the modules in the model against the business and

architecture requirements. It shows also the related requirements from within these requirements. For

example, the Device Management module satisfies 8 requirements where it plays the role of the main

module with 5 requirements and as the supportive module with 3 requirements. Only one relationship can

be recognized among these requirements. Architect #1 assumed also that Actuation, Event Generation,

and Provisioning modules are treated as one unit through their container module called Communication

regarding the satisfaction model.

319 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-4 Benchmarking experiment #1 module satisfaction relationships with requirements

Module Name Satisfied Requirements Relations

Device
Management

BR0035 (m), BR0038 (m), BR0039 (m), BR0040 (m),
BR0041 (s), BR0085 (m), BR0102 (s), BR0106 (s)

BR0085 (mx) BR0041

Auth & Audit BR0055 (m), BR0056 (s), BR0057 (m), BR0058 (m),
BR0073 (m), BR0077 (m), BR0078 (m), BR0084 (m),
BR0114 (m), BR0112 (s)

BR0084 (mx) BR0055
BR0084 (mx) BR0078
BR0084 (mi) BR0073
BR0078 (mx) BR0057

Rule Processing BR0030 (s), BR0031 (m), BR0037 (m), BR0042 (s),
BR0065 (s), BR0066 (m), BR0067 (s), BR0068 (s), BR0069
(s), BR0070 (s), BR0071 (s), BR0074 (s), BR0082 (s),
BR0119 (s)

BR0031 (mi) BR0068
BR0031 (mi) BR0066
BR0031 (mi) BR0065

Interaction
Processing

BR0030 (s), BR0032 (m), BR0033 (m), BR0042 (s),
BR0043 (s), BR0044 (s), BR0048 (s), BR0050 (s), BR0063
(m), BR0064 (s), BR0065 (m), BR0068 (m), BR0070 (m),
BR0083 (s), BR0110 (m), BR0111 (m)

BR0042 (mx) BR0043
BR0083 (mi) BR0048
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0043 (mx) BR0044

Actuation BR0033 (s), BR0034 (m), BR0036 (s), BR0045 (s), BR0064
(m), BR0075 (m), BR0083 (s), BR0105 (s), BR0106 (m),
BR0107 (m), BR0108 (m), BR0109 (m), BR0111 (s)

Event
Generation

BR0033 (s), BR0034 (m), BR0036 (s), BR0045 (s), BR0064
(m), BR0075 (m), BR0083 (s), BR0105 (s), BR0106 (m),
BR0107 (m), BR0108 (m), BR0109 (m), BR0111 (s)

Provisioning BR0033 (s), BR0034 (m), BR0036 (s), BR0045 (s), BR0064
(m), BR0075 (m), BR0083 (s), BR0105 (s), BR0106 (m),
BR0107 (m), BR0108 (m), BR0109 (m), BR0111 (s)

Machine
Learning

BR0030 (m), BR0036 (m), BR0042 (m), BR0043 (m),
BR0044 (m), BR0067 (m)

BR0042 (mx) BR0043
BR0043 (mx) BR0044

Fault
Management

BR0045 (m), BR0046 (m), BR0048 (m), BR0063 (s),
BR0068 (s), BR0080 (m), BR0097 (s)

BR0045 (mi) BR0048

QoS BR0047 (s), BR0059 (m), BR0060 (s), BR0061 (m),
BR0062 (m), BR0115 (s), BR0117 (s), BR0118 (s)

Policy
Enforcement

BR0074 (m), BR0079 (m), BR0099 (s), BR0097 (s),
BR0116 (m), BR0102 (s)

The requirements in Table D-5 were not satisfied by the architecture baseline from this experiment. It was

deliberately ignored by the architect who assumed that they are not major requirements. However,

dropping them does not impact the essential design of the model.

Table D-5 Ignored requirements from benchmarking experiment #1

Req ID Requirement Name Req ID Requirement Name

BR0049 Show proper error message BR0072 Respect societal ethics

BR0051 Minimize unneeded interactions with the
system

BR0076 Maintain data integrity

BR0052 Remove unnecessary motions BR0081 Distribute computing power

BR0053 Conceal the part object(s) of the pervasive
system

BR0113 The published services must have
documentation for developers

BR0054 Minimize the use of explicit input BR0104 The service must declare its contract interface

320 – APPENDICES ● APPENDIX D

PervCompRA-SE

The next table (Table D-6) shows the summarized statistics for the model as derived from the details of the

model.

Table D-6 Experiment 1 summarized statistics

Module Name Fan-in Fan-out Total Relations # Requirements Relations

Authentication, Authorization &
Audit Trail

9 0 9 10 4

Policy Enforcement 9 0 9 6 0

Machine Learning 0 3 3 6 2

Rule Processing 2 3 5 14 3

Interactions Processing 3 4 7 16 5

QoS 1 2 3 8 0

Fault Management 0 4 4 7 1

Device Management 1 2 3 8 1

Actuation 1 3 4 13 0

Event Generation 0 4 4 13 0

Provisioning 0 4 4 13 0

By feeding the data in Table D-6 into equations (Equation 6-1 Cyclomatic Complexity), (Equation 6-2

Baseline Architecture Module Cohesion), (Equation 6-3 Average Output Interface size of a module), and

(Equation 6-4 Average Input Interface size of a module) the resulting measurements are as follows:

Architecture

Complexity

Module

Cohesion

Module

Maintainability

Module

Testability

Module

Coupling

Module

Complexity

20 0.139 0.240 0.215 2.36 2.63

D.3.2 Experiment 2

Expert 2 generated the high level model diagram shown in Figure D-2. The model is designed in a way

where the horizontal modules depend on the modules directly below them or on vertical modules to their

right as shown in Table D-7. For example, we can understand from that Channels depend on the API

Gateway and Governance. The Container modules like Services are not conceptual. They will play a role in

the model. The descriptions of these modules are found in Table D-8.

Note The Sensor and Smart Device are not modules in the system. They are shown as destinations to

highlight the system interaction with them. They are highlighted in green in Table D-7.

321 – APPENDICES ● APPENDIX D

PervCompRA-SE

Figure D-2 Benchmarking: experiment #2 baseline architecture

322 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-7 Module dependency relationships (benchmarking experiment #2)

 Destination

Source

C
h

an
n

e
ls

A
P

I G
at

e
w

a
y

B
u

si
n

e
ss

 M
an

ag
e

m
e

n
t

an
d

 In
te

lli
ge

n
ce

R
u

le
s

En
gi

n
e

P
ro

ce
ss

 O
rc

h
e

st
ra

ti
o

n

En
gi

n
e

Se
rv

ic
e

s

A
n

al
yt

ic
s

Se
rv

ic
e

B
u

si
n

e
ss

 S
e

rv
ic

e

P
re

se
n

ta
ti

o
n

 S
e

rv
ic

e

D
e

vi
ce

 G
at

e
w

a
y

D
e

vi
ce

 S
e

rv
ic

e

D
e

vi
ce

 D
B

D
e

vi
ce

 a
n

d
 S

e
rv

ic
e

M
an

ag
e

m
e

n
t

G
o

ve
rn

an
ce

In
te

gr
at

io
n

Q
o

S

Se
n

so
r

Sm
ar

t
D

e
vi

ce

Channels ● ●

API Gateway ● ● ● ● ● ●

Business Management
and Intelligence

 ● ● ● ● ●

Rules Engine ● ● ● ● ●

Process Orchestration
Engine

 ● ● ● ● ●

Services ● ● ● ● ●

Analytics Service ● ● ● ● ●

Business Service ● ● ● ● ●

Presentation Service ● ● ● ● ●

Device Gateway ●

Device Service ● ● ● ●

Device DB

Device and Service
Management

 ●

Governance

Integration ●

QoS ●

Sensor ●

Smart Device

323 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-8 Module description (benchmarking experiment #2)

Module Name Description

Channels The channels layer is the one responsible for providing interaction to the system from the
outside world and it provides the ability to reflect the current status of the system and the
current system context.

API Gateway the API Gateway is providing a unified layer to access all the microservices which is covered
by the presentation, business and analytics services. In this way we will be able to build
different applications using the hexagon pattern which is the entry to the microservices
architecture.

Business
Management and
Intelligence

In this layer, we are using this different components to orchestrate between different
services which means we will have the ability to create composite services out of the original
services. It also contains the ability to take business decisions based on inputs from the
different devices. It can also update the system's context based on the different inputs from
the system.

 Rules Engine The rules engine is the execution engine for executing the different business or system rules
which impact the way the system should react for certain inputs and outputs.

 Process
Orchestration
Engine

The orchestration engine is responsible for executing the logic to interact between different
services to create a new composite service.

Services The Services Layer is the layer that provides the needed services whether business,
presentation or analytics. It is based on the idea that all are microservices and that these
services will be called upon to complete a specific application need.

 Analytics
Service

Is a microservice that provides a small and specific service for analytics purposes. It could be a
composite service that is providing the same analytics services for the applications.

 Business
Service

Is a microservice that is providing a small and specific service for business purposes. It could
be a composite service that is providing the same business services for the applications.

 Presentation
Service

Is a microservice that provides a small and specific service for presentation (UI) purposes. It
could be a composite service that is providing the same UI services for the applications.

Device Gateway This is the layer that is responsible for deploying the devices, and communicating with them
(more than a smart device or just a simple sensor). It also handles persistent input messages
until it is consumed and also responsible for registering and unregistering the device. It
provides the information received from the device to the rest of the systems. It contains a set
of microservices each of which is responsible for a set of devices from the same category.

 Device
Service

Is a microservice that is responsible for communicating information to/from the devices.

 Device DB A storage area that is available per service to queue the received messages. It also works as a
data store for this microservice.

Device and
Service
Management

This layer is the responsible for Device and service management. In other words, for
deploying a new device or setting an old device as well as the registry for these services.

Governance This is the layer that is responsible for managing the different aspects of deploying the new
version of the code as well as the devices

Integration This layer is responsible for playing the integration role to catch the messages and
communicate with the devices and deploy up to the API .

QoS The Quality of Service module contains data about service level agreement (SLA) for specific
microservices as well as the integration between the service and its business layer. It also
includes the identity management service functionality.

Sensor A sensor, is just a device which is emitting real time data to the enclosed system. An example
is the speed sensor or the RFID.

Smart Device A smart device contains a process unit and memory for processing the Real Time data

324 – APPENDICES ● APPENDIX D

PervCompRA-SE

The satisfaction relationships of the model are shown in Table D-9 which is similar to what we have in our

model. Hence, we gather from this table that the Channels module satisfies 9 requirements whereby it

plays the role of a main module with 7 requirements and a supportive module with 2 requirements. From

these 9 requirements, there is only one recognized relation.

Note The table depicts the modules that have internal modules in different colors and borders.

Table D-9 model satisfaction relationships (benchmarking experiment #2)

Module Name Satisfied Requirements Relations

Channels BR0030 (s), BR0032 (m), BR0049 (m), BR0052 (m),
BR0054 (m), BR0064 (m), BR0071 (s), BR0083 (m),
BR0085 (m)

BR0032 (mx) BR0064

API Gateway BR0030 (s), BR0053 (m), BR0070 (m), BR0071 (m),
BR0073 (s), BR0074 (s), BR0075 (s), BR0077 (m),
BR0084 (s), BR0085 (s), BR0110 (m), BR0111 (s),
BR0112 (m)

BR0053 (mx) BR0070

Business
Management and
Intelligence

BR0030 (m), BR0031 (s)

 Rules Engine BR0030 (m), BR0031 (m), BR0037 (m), BR0050
(m), BR0055 (s), BR0064 (m), BR0067 (m), BR0069
(m), BR0070 (m), BR0072 (s), BR0073 (m)

 Process
Orchestration
Engine

BR0030 (m), BR0031 (m), BR0037 (m), BR0050
(m), BR0055 (s), BR0064 (m), BR0067 (m), BR0069
(m), BR0070 (m), BR0072 (s), BR0073 (m)

Services BR0053 (s), BR0055 (m), BR0057 (m), BR0110 (m),
BR0111 (m), BR0112 (m) , BR0113 (m)

 Analytics Service BR0030 (s), BR0036 (m), BR0043 (m), BR0044 (m),
BR0058 (m), BR0113 (s)

BR0043 (mx) BR0044

 Business Service BR0030 (s) , BR0113 (m)

 Presentation
Service

BR0032 (s), BR0049 (s), BR0052 (s), BR0054 (s),
BR0057 (m), BR0083 (m), BR0085 (m) , BR0113
(m)

BR0083 (cf) BR0057

Device Gateway BR0033 (s), BR0034 (s), BR0035 (m), BR0038 (m),
BR0045 (m), BR0046 (m), BR0047 (m), BR0048
(m), BR0049 (m), BR0053 (m)

BR0035 (mi) BR0048
BR0045 (mi) BR0048

 Device Service BR0033 (m), BR0034 (m), BR0035 (s), BR0036 (s),
BR0038 (s), BR0045 (s), BR0046 (s), BR0047 (s),
BR0048 (s), BR0049 (s), BR0050 (s), BR0039 (m),
BR0040 (s), BR0041 (m), BR0051 (s), BR0058 (m),
BR0060 (s), BR0066 (s), BR0079 (m), BR0080 (m),
BR0083 (m), BR0099 (m), BR0097 (m), BR0115
(m), BR0107 (s)

BR0083 (mi) BR0048
BR0039 (cf) BR0046
BR0050 (mi) BR0051
BR0036 (mi) BR0048
BR0079 (cf) BR0060
BR0035 (mi) BR0048
BR0045 (mi) BR0048

 Device DB BR0045 (s), BR0046 (s), BR0047 (s), BR0048 (s),
BR0049 (s), BR0050 (s), BR0041 (s), BR0056 (m),
BR0076 (m), BR0115 (s)

BR0045 (mi) BR0048

Device and Service
Management

BR0033 (m), BR0034 (m), BR0035 (m), BR0038
(m), BR0045 (s), BR0046 (s), BR0047 (s), BR0048
(s), BR0049 (s), BR0050 (s), BR0039 (m), BR0040

BR0081 (mi) BR0060
BR0039 (cf) BR0068
BR0039 (cf) BR0046

325 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Satisfied Requirements Relations

(s), BR0060 (m), BR0066 (m), BR0068 (m), BR0081
(m), BR0099 (m), BR0097 (m), BR0116 (m),
BR0118 (m), BR0102 (m), BR0106 (m), BR0107 (m)

BR0040 (mi) BR0068
BR0035 (mi) BR0048
BR0045 (mi) BR0048

Governance BR0030 (s), BR0035 (m), BR0040 (m), BR0051 (m),
BR0061 (m), BR0065 (s), BR0067 (m), BR0069 (m),
BR0075 (m), BR0080 (s), BR0114 (m), BR0115 (m),
BR0117 (m), BR0104 (m), BR0102 (m), BR0106
(m), BR0107 (m), BR0119 (s)

Integration BR0039 (m), BR0040 (m), BR0051 (m), BR0053
(m), BR0054 (s), BR0058 (s), BR0064 (s), BR0081
(m), BR0106 (m), BR0107 (m), BR0110 (m),
BR0111 (m)

QoS BR0042 (m), BR0043 (s), BR0050 (m), BR0053 (m),
BR0055 (m), BR0057 (m), BR0059 (m), BR0060
(m), BR0061 (m), BR0063 (m), BR0065 (m),
BR0074 (m), BR0075 (m), BR0077 (m), BR0078
(m), BR0080 (m), BR0082 (m), BR0084 (m),
BR0099 (m), BR0097 (m), BR0114 (m), BR0115
(m), BR0117 (m), BR0118 (m), BR0119 (m)

BR0084 (mx) BR0055
BR0084 (mx) BR0078
BR0042 (mx) BR0043
BR0042 (cf) BR0057
BR0078 (mx) BR0057
BR0075 (cf) BR0060
BR0074 (cf) BR0060
BR0074 (mx) BR0057

Sensor BR0034 (m)

Smart Device BR0033 (m)

Table D-10 shows the summarized statistics for the model as derived from the details explained above.

Table D-10 Experiment 2 summarized statistics

 Module Name

Fan-in Fan-out Total Relations # Requirements Relations

Channels 0 2 2 9 1

API Gateway 1 6 7 13 1

Business Management and Intelligence 1 5 6 11 0

Rules Engine 1 5 6 11 0

Process Orchestration Engine 1 5 6 11 0

Services 3 5 8 7 0

Analytics Service 3 5 8 7 1

Business Service 3 5 8 3 0

Presentation Service 3 5 8 9 1

Device Gateway 4 1 5 27 2

Device Service 7 4 11 25 7

Device DB 5 0 5 10 1

Device and Service Management 4 1 5 23 6

Governance 3 0 3 18 0

Integration 9 1 10 12 0

QoS 2 1 3 25 8

326 – APPENDICES ● APPENDIX D

PervCompRA-SE

By applying equations (Equation 6-1 Cyclomatic Complexity), (Equation 6-2 Baseline Architecture Module

Cohesion), (Equation 6-3 Average Output Interface size of a module), and (Equation 6-4 Average Input

Interface size of a module) the resulting measurements are as follows:

Architecture

Complexity

Module

Cohesion

Module

Maintainability

Module

Testability

Module

Coupling

Module

Complexity

38 0.092 0.199 0.195 3.125 3.18

D.3.3 Experiment 3

Expert #3 generated a model composed of 14 modules grouped into 5 layers as shown in Figure D-3. The

description of the modules are given in Table D-12. Expert #3 designed the model to contain active

components which he called “Managers” because they are mainly responsible for initiating requests and

processing them as well. On the other hand, there are “Engine” components which are responsible mainly

for consuming requests not initiating them.

Figure D-3 Benchmarking: experiment #3 baseline architecture

The dependency relationships among the modules are detailed in Table D-11.

327 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-11 Module dependency relationships (benchmarking experiment #3)

Ec
o

sy
st

e
m

M
an

ag
e

r

U
se

r
P

o
rt

al

A
ct

u
at

o
rs

Se
n

so
rs

A
P

I M
an

ag
e

r

Se
cu

ri
ty

 M
an

ag
e

r

D
e

vi
ce

 M
an

ag
e

r

R
e

al
-t

im
e

 D
e

ci
si

o
n

M
an

ag
e

r

Le
ar

n
in

g
En

gi
n

e

Ev
e

n
t

M
an

ag
e

r

C
o

n
fi

gu
ra

ti
o

n

M
an

ag
e

r

P
e

rs
o

n
al

iz
at

io
n

M
an

ag
e

r

N
o

ti
fi

ca
ti

o
n

En
gi

n
e

B
u

si
n

e
ss

 S
e

rv
ic

e
s

Ecosystem Manager ●

User Portal ●

Actuators ●

Sensors ●

API Manager

Security Manager ● ● ● ● ● ●

Device Manager ● ● ● ● ● ●

Real-time Decision
Manager

 ● ● ● ● ● ●

Learning Engine

Event Manager ● ● ● ● ● ●

Configuration Manager

Personalization Manager ● ● ●

Notification Engine

Business Services ● ● ●

Table D-12 Benchmarking: experiment #3 modules’ descriptions

Module Name Description

Sensors They are the sensors attached to the system.

Actuators They are the actuators attached to the system.

User Portal It is a web application that utilizes the system’s services.

Ecosystem Manager It is responsible for integrating the system with the external partners.

API Manager It is responsible for facilitating the integration of the sensors, actuators, user portal,
and the ecosystem manager with the core modules of the system.

Device Manager It is responsible for registering/unregistering the devices that joins the systems.

Event Manager It is responsible for capturing the events of the environments which related to the
system and interpreting them.

Real-time Decision
Engine

It is responsible for taking real time decisions based on the system configuration and
the sequence of event.

Personalization Engine It is responsible for setting users’ preferences in the systems and for suggesting
personalized user experience based on user’s recorded behaviors and characteristics.

Business Services It is designed to introduce services that other modules or external partners can use.

Security Manager It is responsible for managing all related security issues of the system

Configuration Manager It is responsible for managing the general settings of the system

Notification Engine It is responsible for sending notifications to the users in different formats according to
the context and the user’s preferences

Learning Engine It is designed to learn for the events and actions and improve the behavior of the
system in response to the environment events.

328 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-13 details the requirements that the modules satisfy as well as the related requirements from

every satisfied set of requirements.

Table D-13 Benchmarking exercise #3 satisfaction relationships

Module Name Satisfied Requirements Relations

Sensors BR0031 (s), BR0034 (m), BR0035 (m), BR0044 (s), BR0045 (s),
BR0046 (s), BR0047 (m), BR0049 (s), BR0040 (s), BR0041 (s),
BR0052 (s), BR0053 (m), BR0054 (m), BR0060 (s), BR0063 (s),
BR0064 (s), BR0070 (s), BR0071 (s), BR0074 (s), BR0075 (s),
BR0078 (s), BR0082 (m), BR0106 (s), BR0107 (s), BR0108 (s)

BR0041 (mx) BR0082
BR0041 (mx) BR0064
BR0040 (mx) BR0078
BR0075 (cf) BR0060
BR0074 (cf) BR0060
BR0053 (mx) BR0070

Actuators BR0033 (m), BR0047 (s), BR0049 (s), BR0040 (s), BR0041 (s),
BR0052 (s), BR0053 (s),BR0060 (s), BR0063 (s), BR0064
(s),BR0070 (s),BR0071 (s),BR0074 (s), BR0075 (s), BR0078 (s),
BR0082 (m), BR0106 (s), BR0107 (s), BR0108 (s)

BR0041 (mx) BR0082
BR0041 (mx) BR0064
BR0040 (mx) BR0078
BR0075 (cf) BR0060
BR0074 (cf) BR0060
BR0053 (mx) BR0070

User Portal BR0032 (m), BR0049 (m), BR0041 (s), BR0051 (m), BR0052 (s),
BR0055 (s), BR0063 (s), BR0064 (s), BR0074 (s), BR0075 (s),
BR0078 (s), BR0083 (s), BR0085 (m)

BR0085 (mx) BR0055
BR0085 (mx) BR0041
BR0041 (mx) BR0064
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0051 (cf) BR0032

Ecosystem
Manager

BR0055 (m), BR0057 (m), BR0058 (m), BR0069 (m), BR0072
(m), BR0078 (s), BR0081 (m), BR0107 (s)

BR0078 (mx) BR0057

API Manager BR0032 (s), BR0039 (s), BR0041 (m), BR0055 (s), BR0057 (s),
BR0058 (s), BR0069 (s), BR0073 (s), BR0074 (s), BR0075 (s),
BR0076 (m), BR0077 (s), BR0078 (s), BR0081 (s), BR0082 (s),
BR0085 (s), BR0099 (s), BR0097 (s), BR0113 (m), BR0112 (m),
BR0117 (m), BR0116 (s), BR0105 (m), BR0104 (m), BR0102 (s),
BR0107 (s), BR0108 (m), BR0109 (m), BR0110 (s), BR0111 (s)

BR0085 (mx) BR0055
BR0085 (mx) BR0041
BR0039 (cf) BR0074
BR0041 (mx) BR0082
BR0078 (mx) BR0057
BR0074 (mx) BR0057

Device Manager BR0045 (s), BR0039 (m), BR0040 (m), BR0041 (s), BR0052 (m),
BR0068 (m), BR0070 (m), BR0071 (s), BR0074 (s), BR0075 (s),
BR0080 (m), BR0085 (s), BR0114 (s), BR0115 (m), BR0102 (m),
BR0106 (m), BR0107 (m)

BR0085 (mx) BR0041
BR0039 (cf) BR0068
BR0039 (cf) BR0074
BR0040 (mi) BR0068

Event Manager BR0036 (s), BR0038 (s), BR0043 (s), BR0044 (s), BR0045 (m),
BR0046 (s), BR0048 (s), BR0050 (s), BR0058 (s), BR0059 (s),
BR0061 (s), BR0063 (s), BR0067 (s), BR0118 (m)

BR0036 (mx) BR0061
BR0036 (mi) BR0048
BR0045 (mi) BR0048
BR0043 (mx) BR0044

Real-time Decision
Engine

BR0030 (m), BR0031 (m), BR0036 (m), BR0037 (m), BR0042 (s),
BR0056 (s), BR0069 (s), BR0111 (s)

Personalization
Engine

BR0042 (m), BR0043 (s), BR0056 (m), BR0083 (m), BR0084 (m) BR0042 (mx) BR0043

Business Services BR0048 (m), BR0049 (s), BR0050 (m), BR0060 (m), BR0064 (m),
BR0065 (m), BR0066 (s), BR0099 (m), BR0097 (m), BR0113 (s),
BR0117 (s), BR0116 (m), BR0105 (s), BR0104 (s), BR0110 (m),
BR0111 (m), BR0119 (m)

Security Manager BR0073 (m), BR0074 (m), BR0075 (m), BR0076 (s), BR0077 (m),
BR0078 (m), BR0079 (m), BR0080 (s), BR0084 (s), BR0114 (m)

BR0084 (mx) BR0078
BR0084 (mi) BR0073

Configuration BR0059 (m), BR0062 (m), BR0063 (m), BR0066 (m), BR0071 (m)

329 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Satisfied Requirements Relations

Manager

Notification Engine BR0050 (s)

Learning Engine BR0030 (s), BR0036 (s), BR0043 (m), BR0044 (m), BR0046 (m),
BR0048 (s), BR0061 (m), BR0067 (m)

BR0036 (mx) BR0061
BR0036 (mi) BR0048
BR0030 (mx) BR0061
BR0043 (mx) BR0044

Table D-14 Experiment #3 summarized statistics

 Module Name In Out Total Relations # Requirements Relations

Ecosystem Manager 0 1 1 8 1

User Portal 0 1 1 13 6

Actuators 0 1 1 19 6

Sensors 0 1 1 25 6

API Manager 4 0 4 30 6

Security Manager 3 6 9 10 2

Device Manager 1 6 7 17 4

Real-time Decision Manager 1 6 7 8 0

Learning Engine 6 0 6 8 4

Event Manager 1 6 7 14 4

Configuration Manager 6 0 6 5 0

Personalization Manager 3 3 6 5 1

Notification Engine 6 0 6 1 0

Business Services 3 3 6 17 0

By feeding the data in Table D-14 into equations (Equation 6-1 Cyclomatic Complexity), (Equation 6-2

Baseline Architecture Module Cohesion), (Equation 6-3 Average Output Interface size of a module), and

(Equation 6-4 Average Input Interface size of a module) the resulting measurements are as follows:

Architecture

Complexity

Module

Cohesion

Module

Maintainability

Module

Testability

Module

Coupling

Module

Complexity

22 0.197 0.133 0.133 2.429 2.429

D.3.4 Experiment 4

This is a high level layered architecture model (Figure D-4) that defines the system layers and

components based on the requirements as mentioned in section 4.2.1 and section 5.1.1. The suggested

architecture is based on the service oriented architecture. An application programming interface is used

to hide the system information while allowing services to access or manipulate data as needed.

The choice of a layered architecture was based on the following considerations/requirements:

1- It increases the flexibility of the system.

2- It increases system maintainability.

330 – APPENDICES ● APPENDIX D

PervCompRA-SE

3- It increases the chances of system scalability and in turns its life expectancy.

4- It eases components reuse; different types of applications and interfaces can use the main

components of the system without depending on the UI component environment.

5- It increases mobility.

6- It increases modularity.

7- It increases innate plasticity

8- It increases interoperability.

Device Sensors
………..........Environment

Sensors

Context
Aggregation

Context
interpretation

Error
Handling

Context
services

Context Aggregation Layer

Context
Preprocessor

Feature
Extractor

Context
Classifier

Context Acquisition Layer

Dynamic Sensor Context
Extractor

Static User Context
Extractor

Context
Validator

Context Reasoning and Storage Layer

Services Layer

Application Programming Interface

Database

Context Reasoning
Engine

Data Extraction Manager

Adaptable Web
Applications

Adaptable Services
Adaptable Mobile

Applications
…. ….

Services

Content Aware
Devices

Content Aware
Agents

Adaptable Deployable
Applications

Context
Interface

Context
Interface

C
o

n
te

xt
 A

w
ar

e
M

an
ag

em
en

t

Enterprise Application Server

Figure D-4 Benchmarking: experiment #4 baseline architecture

The dependency relationships among the modules are detailed in Table D-15.

331 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-15 Module dependency relationships (benchmarking experiment #4)

 Destination

Source

Se
n

so
rs

C
o

n
te

n
t

A
w

ar
e

 D
e

vi
ce

s

C
o

n
te

xt
 In

te
rf

ac
e

D
yn

am
ic

 S
e

n
so

r
C

o
n

te
xt

Ex
tr

ac
to

r

St
at

ic
 U

se
r

C
o

n
te

xt

Ex
tr

ac
to

r

C
o

n
te

xt
 P

re
p

ro
ce

ss
o

r

C
o

n
te

xt
 V

al
id

at
o

r

Fe
at

u
re

 E
xt

ra
ct

o
r

C
o

n
te

xt
 C

la
ss

if
ie

r

D
at

a
Ex

tr
ac

ti
o

n
 M

an
ag

e
r

C
o

n
te

xt
 R

e
as

o
n

in
g

En
gi

n
e

D
at

ab
as

e

A
p

p
lic

at
io

n
 P

ro
gr

am
m

in
g

In
te

rf
ac

e

Se
rv

ic
e

s

A
d

ap
ta

b
le

 A
p

p
lic

at
io

n
s

En
te

rp
ri

se
 A

p
p

lic
at

io
n

Se
rv

e
r

Sensors

Content Aware Devices

Context Interface

Dynamic Sensor Context
Extractor

● ● ● ●

Static User Context Extractor ● ● ● ●

Context Preprocessor ● ● ●

Context Validator ●

Feature Extractor ●

Context Classifier

Data Extraction Manager ● ●

Context Reasoning Engine ● ●

Database

Application Programming
Interface

 ● ●

Services ● ● ●

Adaptable Applications ● ● ●

Enterprise Application Server ● ● ●

The following is a brief explanation of the layers purposes and their components:

Sensors:

The system has all the necessary sensors installed.

Content Aware Devices/Agents:

An Application Interface Component, “Context Interface” must be installed on such devices to be able to
run the specific/desirable pervasive application on the user hand held device, when it comes to taking
invisible actions and decisions on behalf of the user.
It allows the user/developer to:

- Provide/define the required user interface; and

- Identify the type of protocol/communication standard to be used such as HTTP, Bluetooth, WiFi,

etc.

332 – APPENDICES ● APPENDIX D

PervCompRA-SE

Applications:

These are all the applications that use the context awareness system and need adaptation.

Services Layer:

Contains the necessary frameworks and application servers used for handling the security of the system,

user profiling, personalization, protecting data privacy, encryption of data, authentication,

authorization, logging system errors and interactions, concurrency, and all the other necessary services

provided by enterprise application servers.

Contains the Application Programming interface that exposes the system’s data by directly

communicating with the “Data Extraction Manager” component available in the “Context Storage and

Reasoning Layer”.

The Application Programming Interface allows developers of different application types to design and

implement their applications independently of the context management system, while having the

flexibility of using different communication protocol standards to facilitate the interactions between the

applications and the system.

This layer also included an extendible list of services that can make use of the context management

system and also provide services as part of the adaptable behavior when the context changes.

On top of the application layer lies a set of adaptable applications that changes according to the context

changes communicated through the “Context Storage and Reasoning Layer”. The decisions and actions

based on context changes are made in the applications.

Context Reasoning and Storage Layer:

The context reasoning and storage layer is the main layer of the context management system. Here is

where context data is monitored, understood and compared with the rules policies of the system and

the context collected from the sensing systems to detect changes. Changes are then stored in the

database to be processed, classified, and computed to be used in the applications.

The following are the main components of the layer:

Database:
Rules Data:
Rules and policies are viewed in the form of event-conditions-actions and dictate the behavior
of the services in reacting to service invocation.

Knowledge Data:
The knowledge repository stores the smart environment information using an ontology based
representation. Ontology is about the exact description of things and their relationships.

User Data:
Stores information about the user’s activity, location and other context related data to the user.
Data/information in the extracted data database is vitally important by low level context
extractor components so as to enhance the context extraction processes.

333 – APPENDICES ● APPENDIX D

PervCompRA-SE

Context Reasoning Engine:
This component takes the data from the content classification manager and produces a high-level
context data in consultation with the rules and the knowledge data stores in the database. It is also used
to predict the exact activity of the user on the classified contextual data. The reasoning engine stores
the output from the processing in the “user data” repository.

User Data Protection and Computation Manager:
This component interfaces the system’s data and the application. This component is also responsible all
the computational implementations on the storied user data.

Context Aggregation Layer:

This layer is responsible for aggregating data collected in the context acquisition layer. The following are

the main four components of this layer:

Context Preprocessor:

Binds the data collected by the two components in the data acquisition layer dynamically. Once any

context is identified by the sensors, the preprocessor will make use of a decision algorithm defined in

the system to suggest possible meaningful context information.

Context Validator:

This component is a key component in context aggregation. It deals with context level agreement at a

low level to increase the validity and correctness of raw context data.

Feature Extractor:

Finds the most relevant attribute of the preprocessed raw context. It deals with the characterization of

raw context information in an activity, an event, or a resource capability in the user environment as well

as other features.

Context Classifier:

Classifies the features extracted by the Feature extractor. At this stage, medium level context data is

generated by combining activity, location, and other context features supplied from the Feature

extractor. A new context class will be created as unique features are identified or existing context

classes are used to support context reasoning.

Context Acquisition Layer:

The main layer for extracting information from different kinds of sensors available in the system. This

layer has the necessary software drivers to help in extracting data out of the different sensing systems

available in the system.

The acquisition layer consists of two components; the sensor context and the user context components.

Dynamic Sensor Context Extractor:

334 – APPENDICES ● APPENDIX D

PervCompRA-SE

Extracts context information dynamically from heterogeneous sensors available in the changing

pervasive system. Data collected can be segmented to location, activity, event or any other user

environment based context information.

Static User Context Extractor:

Extracts user data from applications installed on hand held devices in off-line mode. This will help in
context aggregation, prediction, reasoning and associations.

Table D-16 details the requirements that the modules satisfy as well as the related requirements from

every satisfied set of requirements.

Table D-16 Benchmarking exercise #4 satisfaction relationships

Module Name Satisfied Requirements Relations

Sensors BR0032 (s), BR0033 (s), BR0034 (m), BR0035 (s), BR0036 (s),
BR0037 (s), BR0042 (s), BR0044 (s), BR0045 (m), BR0051 (m),
BR0084 (m), BR0119 (m)

BR0034 (mx) BR0042
BR0051 (cf) BR0032

Content Aware
Devices

BR0032 (s), BR0033 (s), BR0035 (s), BR0036 (s), BR0037 (s), BR0042
(s), BR0044 (s), BR0045 (m), BR0048 (m), BR0039 (m), BR0051 (m),
BR0052 (s), BR0054 (m), BR0084 (m), BR0085 (m)

BR0036 (mi) BR0048
BR0035 (mi) BR0048
BR0045 (mi) BR0048
BR0051 (cf) BR0032

Context
Interface

BR0032 (m), BR0033 (m), BR0035 (s), BR0036 (s), BR0037 (s),
BR0042 (s), BR0044 (s), BR0045 (m), BR0039 (m), BR0041 (m),
BR0051 (m), BR0052 (m), BR0054 (m), BR0084 (m), BR0105 (m),
BR0104 (m), BR0102 (m), BR0108 (m)

BR0051 (cf) BR0032

Dynamic Sensor
Context
Extractor

BR0032 (s), BR0033 (s), BR0034 (s), BR0035 (s), BR0036 (s), BR0037
(s), BR0042 (m), BR0043 (s), BR0044 (s), BR0045 (s), BR0051 (m),
BR0052 (s), BR0054 (m), BR0084 (m)

BR0042 (mx) BR0043
BR0034 (mx) BR0042
BR0043 (mx) BR0044
BR0051 (cf) BR0032

Static User
Context
Extractor

BR0032 (s), BR0033 (s), BR0035 (s), BR0036 (s), BR0037 (s), BR0042
(m), BR0043 (s), BR0044 (s), BR0045 (s), BR0051 (m), BR0052 (s),
BR0054 (m), BR0084 (m)

BR0042 (mx) BR0043
BR0043 (mx) BR0044
BR0051 (cf) BR0032

Context
Preprocessor

BR0030 (s), BR0031 (s), BR0032 (s), BR0033 (s), BR0035 (m),
BR0036 (m), BR0037 (m), BR0038 (s), BR0043 (m), BR0044 (m),
BR0063 (s), BR0065 (s), BR0067 (s), BR0084 (m), BR0110 (s),
BR0111 (s), BR0119 (s)

BR0031 (mi) BR0065
BR0032 (mx) BR0063
BR0043 (mx) BR0044

Context
Validator

BR0030 (s), BR0031 (s), BR0032 (s), BR0033 (s), BR0035 (s), BR0036
(m), BR0038 (s), BR0043 (s), BR0063 (s), BR0065 (s), BR0067 (s),
BR0076 (m), BR0084 (m), BR0110 (s), BR0111 (s), BR0119 (s)

BR0031 (mi) BR0065
BR0032 (mx) BR0063

Feature
Extractor

BR0030 (m), BR0031 (s), BR0032 (s), BR0033 (s), BR0036 (m),
BR0037 (m), BR0038 (s), BR0043 (s), BR0044 (m), BR0051 (m),
BR0063 (s), BR0065 (s), BR0067 (s), BR0084 (m), BR0110 (m),
BR0111 (m), BR0119 (m)

BR0031 (mi) BR0065
BR0032 (mx) BR0063
BR0043 (mx) BR0044
BR0051 (cf) BR0032

Context
Classifier

BR0030 (m), BR0031 (s), BR0032 (s), BR0033 (s), BR0036 (m),
BR0037 (m), BR0038 (s), BR0043 (s), BR0044 (m), BR0051 (m),
BR0063 (s), BR0065 (s), BR0067 (s), BR0084 (m), BR0110 (m),
BR0111 (m), BR0119 (m)

BR0031 (mi) BR0065
BR0032 (mx) BR0063
BR0043 (mx) BR0044
BR0051 (cf) BR0032

Data Extraction
Manager

BR0032 (m), BR0033 (m), BR0045 (s), BR0046 (s), BR0047 (s),
BR0048 (s), BR0049 (s), BR0050 (s), BR0051 (m), BR0052 (s),
BR0053 (s), BR0054 (s), BR0063 (m), BR0064 (m), BR0065 (m),

BR0050 (mi) BR0051
BR0032 (mx) BR0063
BR0032 (mx) BR0064

335 – APPENDICES ● APPENDIX D

PervCompRA-SE

Module Name Satisfied Requirements Relations

BR0066 (s), BR0067 (m), BR0084 (m), BR0115 (m), BR0119 (m) BR0045 (mi) BR0048
BR0051 (Cf) BR0032

Context
Reasoning
Engine

BR0030 (m), BR0031 (m), BR0032 (s), BR0033 (s), BR0037 (m),
BR0038 (m), BR0042 (m), BR0043 (m), BR0044 (m), BR0045 (s),
BR0046 (s), BR0047 (s), BR0048 (s), BR0049 (s), BR0050 (m),
BR0051 (m), BR0054 (s), BR0063 (m), BR0065 (m), BR0066 (m),
BR0067 (m), BR0069 (m), BR0072 (m), BR0076 (m), BR0080 (m),
BR0084 (m), BR0110 (m), BR0111 (m), BR0119 (m)

BR0050 (mi) BR0051
BR0032 (mx) BR0063
BR0045 (mi) BR0048
BR0051 (cf) BR0032

Database BR0030 (m), BR0031 (m), BR0032 (m), BR0033 (m), BR0037 (m),
BR0038 (m), BR0042 (m), BR0043 (m), BR0044 (m), BR0045 (s),
BR0046 (s), BR0047 (s), BR0048 (s), BR0049 (s), BR0050 (m),
BR0051 (m), BR0053 (s), BR0063 (m), BR0064 (m), BR0065 (m),
BR0066 (m), BR0067 (m), BR0069 (m), BR0072 (m), BR0076 (m),
BR0080 (m), BR0083 (s), BR0084 (m), BR0115 (m), BR0110 (m),
BR0111 (s), BR0119 (m)

BR0042 (mx) BR0043
BR0083 (mi) BR0048
BR0050 (mi) BR0051
BR0031 (mi) BR0066
BR0031 (mi) BR0065
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0045 (mi) BR0048
BR0043 (mx) BR0044
BR0051 (cf) BR0032

Application
Programming
Interface

BR0032 (s), BR0033 (s), BR0045 (s), BR0046 (s), BR0047 (s), BR0048
(s), BR0049 (s), BR0050 (s), BR0039 (m), BR0053 (m), BR0078 (m),
BR0113 (m), BR0112 (m), BR0115 (s), BR0105 (m), BR0104 (m),
BR0102 (m), BR0108 (m), BR0119 (m)

BR0039 (cf) BR0046
BR0045 (mi) BR0048

Services BR0032 (m), BR0033 (m), BR0045 (m), BR0046 (m), BR0047 (s),
BR0048 (m), BR0049 (m), BR0050 (m), BR0039 (m), BR0041 (m),
BR0051 (m), BR0052 (m), BR0053 (s), BR0054 (m), BR0063 (m),
BR0064 (m), BR0065 (m), BR0066 (s), BR0067 (m), BR0076 (m),
BR0083 (m), BR0084 (m), BR0113 (m), BR0112 (m), BR0115 (m),
BR0105 (m), BR0119 (m)

BR0083 (mi) BR0048
BR0039 (cf) BR0065
BR0039 (cf) BR0046
BR0041 (mx) BR0064
BR0050 (mi) BR0051
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0045 (mi) BR0048
BR0051 (cf) BR0032

Adaptable
Applications

BR0032 (m), BR0033 (m), BR0045 (m), BR0046 (m), BR0047 (s),
BR0048 (m), BR0049 (m), BR0050 (m), BR0041 (m), BR0051 (m),
BR0052 (m), BR0053 (s), BR0054 (m), BR0063 (m), BR0064 (m),
BR0065 (m), BR0066 (s), BR0067 (m), BR0076 (m), BR0083 (m),
BR0084 (m), BR0113 (m), BR0112 (m), BR0115 (m), BR0119 (m)

BR0083 (mx) BR0048
BR0041 (mx) BR0064
BR0050 (mi) BR0051
BR0032 (mx) BR0063
BR0032 (mx) BR0064
BR0045 (mi) BR0048
BR0051 (cf) BR0032

Enterprise
Application
Server

BR0045 (m), BR0046 (m), BR0047 (m), BR0048 (m), BR0049 (s),
BR0050 (m), BR0053 (m), BR0055 (m), BR0056 (m), BR0057 (m),
BR0058 (m), BR0059 (m), BR0060 (m), BR0061 (m), BR0062 (m),
BR0063 (m), BR0064 (m), BR0065 (m), BR0068 (m), BR0069 (m),
BR0070 (m), BR0071 (m), BR0073 (m), BR0074 (m), BR0075 (m),
BR0076 (m), BR0077 (m), BR0078 (m), BR0079 (m), BR0080 (m),
BR0083 (s), BR0084 (m), BR0099 (m), BR0097 (m), BR0114 (m),
BR0112 (m), BR0115 (m), BR0117 (m), BR0116 (m), BR0118 (m),
BR0105 (m), BR0102 (m), BR0108 (m)

BR0084 (mx) BR0055
BR0084 (mx) BR0078
BR0084 (mi) BR0073
BR0083 (mi) BR0048
BR0083 (cf) BR0057
BR0078 (mx) BR0057
BR0075 (cf) BR0060
BR0074 (cf) BR0060
BR0074 (mx) BR0057
BR0079 (mx) BR0070
BR0079 (cf) BR0060
BR0045 (mi) BR0048
BR0053 (mx) BR0070

336 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-17 Experiment #4 summarized statistics

 Module Name

In Out Total
Relations

Requirements Relations

Sensors 2 0 2 12 2

Content Aware Devices 2 0 2 15 4

Context Interface 2 0 2 18 1

Dynamic Sensor Context
Extractor

2 4 6 14 4

Static User Context Extractor 2 4 6 13 3

Context Preprocessor 0 3 3 17 3

Context Validator 1 1 2 16 2

Feature Extractor 1 1 2 17 4

Context Classifier 3 0 3 17 4

Data Extraction Manager 3 2 5 20 5

Context Reasoning Engine 3 2 5 29 4

Database 3 0 3 32 10

Application Programming
Interface

1 2 3 19 2

Services 1 3 4 27 9

Adaptable Applications 0 3 3 25 7

Enterprise Application Server 2 3 5 43 13

By feeding the data in Table D-17 into equations (Equation 6-1 Cyclomatic Complexity), (Equation 6-2

Baseline Architecture Module Cohesion), (Equation 6-3 Average Output Interface size of a module), and

(Equation 6-4 Average Input Interface size of a module) the resulting measurements are as follows:

Architecture

Complexity

Module

Cohesion

Module

Maintainability

Module

Testability

Module

Coupling

Module

Complexity

14 0.219 0.109 0.109 1.75 1.75

D.3.5 Experiment 5

Expert #5 introduced an architectural model composed of 23 modules (Figure D-5). The model is a kind of

mix between the software and hardware components (load balancer). Moreover, the architect considers

the user interface and the need of the users for help support. Every module is described in the Table D-18.

337 – APPENDICES ● APPENDIX D

PervCompRA-SE

Device n

Rules Engine

Data Collector

&

Categorization

Database

<<Send Data>>

Analytics

Engine

Notification

Engine

Behavioral

Patterns

Recognition

Engine

<<Query Rules>>

<<Add new Rules>>

<<Send Data>>

<<Query Rules>>

<<Add new Rules>>

Historical

Reporting

Engine

Correlation

Engine

<<Send Data>>

Fault Detector

and Logging

<<Send Data>>

Internal Device Management

<<Send Data>>

<<Send Actions>>

Device

Registration

Device

Communication

Interface

<<Send Data>>

User Interface

<<Register Device>>

Certificate

Authority

Identity

Management
Communication Bus

<<Send Data>>

Actuators

SLA Analyzer

Authorization

Management

Help Module

Services

Composer

Service

Registry

Load

Balancer

<<Send Data>>

<<Uses>>

<<Uses>>

<<Uses>>

Resource

Manager
<<Send Data>>

Sensors

Figure D-5 Benchmarking: experiment #5 baseline architecture

338 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-18 Benchmark experiment #5 module description

Module Description

Analytics Engine The analytics module is responsible for analyzing the different actions and correlate gathered
data from the different system components and sensors. It can recommend new services and
other needed action as well

Authorization
Management

The authorization management is responsible for checking the authorization of a person or a
device to access certain services or actions

Behavioral Patterns
Recognition Engine

This module analyzes the behavioral of the system users to detect their patterns of usage and
potentially automate them in the future.

Certificate Authority This module is keeping track of the security keys and verify the user/device authenticity.

Communication Bus The communication bus is the central communication backbone of the system. All internal or
external communications must go through it.

Correlation Engine This engine is responsible for correlating the collected information to its sources and the other
entities that will be affected by this information

Data Collection and
Categorization

This module is correlating the collected information to its related devices and persons. It also
categorize them according a predefined categories in the system

Database The database stores the collected information for future processing and reporting

Device Communication
Interface

This module is responsible of all the communication in and out of the device. It follows a pre-
defined API that all devices implement according to its contents.

Device Registration This module is responsible for registering new devices and keep tracking of available devices
along with their metadata

Fault Detector and
Logging

This module analyzes the collected information to detect any bugs in the system and keep the
logging of theses devices for future analysis

Help Module This module is a central repository of all help and support messages to be communicated to the
users and devices consistently

Historical Reporting
Engine

This is the reporting engine. It analysis the stored information in the database and present them
in visual reporting to the system admins

Identity Management This module is responsible for authentication the users of the system and keep the needed user
information as well

Internal Device
Management

The is the management module in the device that is responsible to operate the device as a stand
alone entity

Load Balancer This is the first entry point of the communication bus to balance the loads between different
system resources

Notification Engine This module sends the notifications to the target recipient using multiple channels (e.g. email,
SMS gateway, etc.)

Resource Manager This module is responsible of identifying the utilization of the system components and assign new
resources to them. It controls the Load balancer to direct the communication to the allocated
system resources.

Rules Engine This module is keeping track of the technical and business rules. Different components of the
system uses the rule engine to determine their behavior according to the provided rules

Service Composer This module can generate new services from existing services based on the analytics done on the
system

Service Registry This is the service lookup registry. It keeps track of all available services, their functionality,
location, versions, and parameters. It contain also the SLA and authorization access for each
service.

SLA Analyzer It analyze the system response time and if it fits into the agreed upon Service Level Agreement or
not. IT can trigger other components such as Resource Manager to allocate new resources for
certain functionalities

User Interface This is the end user application interface. It can be as a simple web application or as a mobile
application for example.

The dependency relationships among the modules are shown in Table D-19 where the modules in the row

(source) have outgoing arrows to the modules in the columns (destinations).

339 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-19 Module dependency relationships (benchmarking experiment #5)

 Destination

Source

A
n

al
yt

ic
s

En
gi

n
e

A
u

th
o

ri
za

ti
o

n
 M

an
ag

em
e

n
t

B
e

h
av

io
ra

l P
at

te
rn

s
R

e
co

gn
it

io
n

 E
n

gi
n

e

C
e

rt
if

ic
at

e
 A

u
th

o
ri

ty

C
o

m
m

u
n

ic
at

io
n

 B
u

s

C
o

rr
e

la
ti

o
n

 E
n

gi
n

e

D
at

a
C

o
lle

ct
io

n
 a

n
d

 C
at

e
go

ri
za

ti
o

n

D
at

ab
as

e

D
e

vi
ce

 C
o

m
m

u
n

ic
at

io
n

 In
te

rf
ac

e

D
e

vi
ce

 R
e

gi
st

ra
ti

o
n

Fa
u

lt
 D

e
te

ct
o

r
an

d
 L

o
gg

in
g

H
e

lp
 M

o
d

u
le

H
is

to
ri

ca
l R

e
p

o
rt

in
g

En
gi

n
e

Id
e

n
ti

ty
 M

an
ag

em
e

n
t

In
te

rn
al

 D
ev

ic
e

 M
an

ag
em

e
n

t

Lo
ad

 B
al

an
ce

r

N
o

ti
fi

ca
ti

o
n

 E
n

gi
n

e

R
e

so
u

rc
e

 M
an

ag
er

R
u

le
s

En
gi

n
e

Se
rv

ic
e

 C
o

m
p

o
se

r

Se
rv

ic
e

 R
e

gi
st

ry

SL
A

 A
n

al
yz

e
r

U
se

r
In

te
rf

ac
e

Analytics Engine x x x x

Authorization
Management

Behavioral
Patterns
Recognition
Engine

x x

Certificate
Authority

Communication
Bus

 x x x x x x

Correlation
Engine

 x

Data Collection
and
Categorization

x x x x x

Database x

Device
Communication
Interface

 x x

Device
Registration

Fault Detector
and Logging

 x

Help Module

Historical
Reporting Engine

Identity
Management

 x

Internal Device
Management

 x

Load Balancer x x x

Notification
Engine

Resource
Manager

 x

Rules Engine

Service
Composer

x x x

Service Registry x x

SLA Analyzer

User Interface x x

340 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-20 details the satisfied requirements by each module in the architectural model and the related

modules from within.

Table D-20 Benchmarking exercise #5 satisfaction relationships

Module Name Satisfied Requirements Relations

Analytics Engine BR0030 (m), BR0031 (s), BR0036 (m), BR0037 (s), BR0043 (m),
BR0048 (s), BR0052 (s), BR0054 (m), BR0056 (m), BR0057 (s),
BR0063 (s), BR0065 (m), BR0067 (m), BR0068 (m), BR0070 (m),
BR0072 (m), BR0079 (m), BR0082 (s)

BR0036 (mi) BR0048
BR0031 (mi) BR0068
BR0031 (mi) BR0065
BR0079 (mx) BR0070

Authorization Management BR0055 (s), BR0057 (m), BR0064 (s), BR0073 (m), BR0074 (m),
BR0078 (m), BR0080 (s), BR0084 (s), BR0114 (m), BR0112 (s)

BR0084 (mx) BR0055
BR0084 (mx) BR0078
BR0084 (mi) BR0073
BR0078 (mx) BR0057
BR0074 (mx) BR0057

Behavioral Patterns
Recognition
Engine

BR0044 (m), BR0051 (m), BR0052 (m), BR0061 (s), BR0082 (m)

Certificate Authority BR0055 (m), BR0075 (s), BR0076 (s), BR0077 (s)

Communication Bus BR0045 (s), BR0041 (s), BR0074 (s), BR0075 (m), BR0076 (m),
BR0077 (m), BR0099 (s), BR0097 (s), BR0117 (s), BR0108 (m),
BR0109 (m)

Correlation Engine BR0053(s), BR0058 (m)

Data Collection and
Categorization

BR0030 (s), BR0034 (s), BR0035 (s), BR0036 (s)

Database BR0038 (s), BR0042 (s), BR0043 (s) BR0042 (mx) BR0043

Device Communication
Interface

BR0047 (m), BR0039 (m), BR0040 (s), BR0041 (m), BR0053 (m),
BR0085 (m), BR0106 (s), BR0108 (s), BR0109 (s)

BR0085 (mx) BR0041

Device Registration BR0035 (m), BR0040 (m), BR0080 (m), BR0105 (s), BR0106 (m)

Fault Detector and Logging BR0045 (m), BR0046 (s), BR0049 (s), BR0050 (s)

Help Module BR0049 (m), BR0083 (m), BR0113 (m)

Historical Reporting Engine BR0038 (m), BR0115 (m), BR0118 (m)

Identity Management BR0042 (m), BR0044 (s), BR0051 (s), BR0058 (s), BR0073 (s),
BR0084 (m), BR0085 (s), BR0114 (s)

BR0084 (mi) BR0073

Internal Device Management BR0033 (m), BR0034 (m), BR0050 (m), BR0039 (s), BR0105 (m)

Load Balancer BR0047 (s), BR0060 (m), BR0081 (m), BR0099 (m), BR0097 (m),
BR0117 (m), BR0116 (s), BR0107 (s)

BR0081 (mi) BR0060

Notification Engine BR0032 (m), BR0063 (m), BR0115 (s) BR0032 (mx) BR0063

Resource Manager BR0081 (s), BR0116 (m), BR0118 (s)

Rules Engine BR0031 (m), BR0032 (s), BR0033 (s), BR0037 (m), BR0046 (m),
BR0048 (m), BR0054 (s), BR0056 (s), BR0059 (m), BR0065 (s),
BR0066 (m), BR0067 (s), BR0068 (s), BR0069 (s), BR0070 (s),
BR0071 (s), BR0072 (s), BR0078 (s), BR0079 (s)

BR0031 (mi) BR0068
BR0031 (mi) BR0066
BR0031 (mi) BR0065
BR0079 (mx) BR0070

Service Composer BR0062 (s), BR0104 (s), BR0102 (s), BR0110 (m), BR0111 (m),
BR0119 (s)

Service Registry BR0062 (m), BR0066 (s), BR0112 (m), BR0104 (m), BR0102 (m),
BR0107 (m), BR0110 (s), BR0111 (s), BR0119 (m)

SLA Analyzer BR0059 (s), BR0060 (s), BR0061 (m)

User Interface BR0064 (m), BR0069 (m), BR0071 (m), BR0083 (s), BR0114 (s)

341 – APPENDICES ● APPENDIX D

PervCompRA-SE

Table D-21 Experiment #5 summarized statistics

 Module Name In Out Total Relations # Requirements Relations

Analytics Engine 3 4 7 18 4

Authorization Management 2 0 2 10 5

Behavioral Patterns Recognition Engine 1 2 3 5 0

Certificate Authority 1 0 1 4 0

Communication Bus 3 6 9 11 0

Correlation Engine 1 1 2 2 0

Data Collection and Categorization 1 5 6 4 0

Database 2 1 3 3 1

Device Communication Interface 2 2 4 9 1

Device Registration 0 0 0 5 0

Fault Detector and Logging 1 1 2 4 0

Help Module 2 0 2 3 0

Historical Reporting Engine 1 0 1 3 0

Identity Management 1 1 2 8 1

Internal Device Management 1 1 2 5 0

Load Balancer 3 3 6 8 1

Notification Engine 1 0 1 3 1

Resource Manager 1 1 2 3 0

Rules Engine 3 0 3 19 4

Service Composer 2 3 5 6 0

Service Registry 2 2 4 9 0

SLA Analyzer 1 0 1 3 0

User Interface 0 2 2 5 0

By feeding the data in Table D-21 into equations (Equation 6-1 Cyclomatic Complexity), (Equation 6-2

Baseline Architecture Module Cohesion), (Equation 6-3 Average Output Interface size of a module), and

(Equation 6-4 Average Input Interface size of a module) the resulting measurements are as follows:

Architecture

Complexity

Module

Cohesion

Module

Maintainability

Module

Testability

Module

Coupling

Module

Complexity

14 0.103 0.105 0.098 1.5 1.5

D.4 The Simulation Project

D.4.1 Project Pre-requisites

The following items show the setup for the simulation experiment as we ran it (34)

1. Windows 8.

2. UCanAccess database driver version 3.0.6.

3. MS Access 2007

34 Project may be implemented a native JDBC driver database, and a different Java IDE.

342 – APPENDICES ● APPENDIX D

PervCompRA-SE

4. DEVS-Suite (version 2.0): It is a discrete event simulation tool developed by Arizona Center for

Integrative Modeling & Simulation [185].

5. Java IDE: we used Eclipse IDE (Luna) version.

6. Java 6: DEVS-Suite version 2.0 is compatible only with Java 6.

It is highly advisable to go over the guidelines manual for the DEV-Suite in order to understand the basic

concepts of the tool, which will help in building the simulation model.

D.4.2 Installation & Configuration

The following installation and configurations are of great support to whoever is going to rerun the same

experiment:

1. Review the installation manual for DEVS-Suite version 2.0 as shown in [185].

2. Configure the JDK compiler path in the Java IDE to locate tools.jar which is installed in Java 6.

3. Make the project root as the source directory.

4. Make sure to initialize two basic attributes in any class that will be part of the simulation model,

Phase and sigma (which is the time event that we called tick in our research), else the project will

not perform correctly.

5. Viewing a simulation module or component visually requires that you ensure the proper reference

for the component Name and the source file (.java) of the class has to exist in the same directory

for the compiled file.

6. The system will choose a default location for the simulation component if not specified explicitly

by the project.

D.4.3 The High Level Design & Experimentation Approach

Figure D-6 shows a high level design of the simulation project where the DevSuite Package is started, then

we open the model from it. The Emergency model is initialized by fetching its structure and settings from

the database.

Model
Database

DEVSSuite
Application

Emergency
Environment

Model

Loads
Model

Loads data
And stores

Execution Runs

Figure D-6 Emergency Environment Simulation Project High Level Design

Once the model is loaded on DEVSuite, it clears the database and fetches the new settings of the next

scenario as described in section 6.5.5. We set the running time in terms of ticks. After the simulation run

completes, we set a specific flag on the model to archive the database along with other logs (Figure D-7)

Load Model
- Clear Database

- Fetch the settings
of the next scenario

Set Execution
Time (1500 ticks)

Archive the results of
the scenario execution

Figure D-7 Execution flow of the simulation scenario

343 – APPENDICES ● APPENDIX D

PervCompRA-SE

After we finish all the runs, which can consume around 2 days, we run customized Java classes to report on

all the data from all the scenarios categorized per scenario per run.

D.4.4 Database Design

Figure D-8 shows the database tables of the simulation application:

1. LocationEvent, TimeEvent, and SpeedEvent store mappings of data ranges to specific context.

2. ContextInterpretation interprets the content by linking the Context with the Interpretation tables.

3. InterpretationDecision gives a predefined decision based on the Interpretation and the Decision.

4. DecisionAction provides the actions on table Action based on the decision. The ActionActuator

contains the devices that should be triggered based on the action. Actuator stores the actuator

name and id.

5. ModuleParameters defines all the simulation classes and ModelRelations links them with input

and output ports. ModuleParamTestInput defines the test input data for every class.

ModuleSettings stores some general settings for every module, used mostly for the control

variables of the simulation model.

6. Resource stores all the resources for the simulation model, while resourceReserved keeps track of

the assigned resources during the simulation runtime. ResourceManager defines the optimization

ports for the monitored modules by the OptimizationManager.

7. Optimizationonitor stores the classes under monitoring for optimization and resource allocation.

8. ModuleFaultsWeight stores the probability of failure for every class relative to each other.

9. Service stores the service names with their permitted categories of users. ServiceModule stores

the classes that should cooperate to fulfill the service request. ServedService keeps track of the

requested services during runtime from the visitors.

10. Scenario, Scenario_results, and control_variables are made to organize the different experiments

with different values for every control variable.

344 – APPENDICES ● APPENDIX D

PervCompRA-SE

Figure D-8 Simulation Project Database Design

The Java project is composed of 6 packages (Figure D-9). The major classes were already described in the

Simulation Model specification (section 6.5.3):

1. PRAMeasurement: It is responsible for logging the status of the entities during the simulation. It

contains one class only called Metrics for this purpose

2. PRAEnvironment: The conceptual model of the smart environment. Its classes are described in

section 5.5.1 (Figure D-10).

3. PRASystem: It contains classes that act as transferable objects between the entities during the

simulation. They are the data entities for the database tables in the first place (Figure D-13).

345 – APPENDICES ● APPENDIX D

PervCompRA-SE

4. PRAExperiment: Instantiations of some of the objects in the smart environment. It contains other

necessary classes to organize the simulation project and switch the modes (Figure D-11).

5. PRASystemCore: This is the baseline architecture model as described in section 5.5.3 (Figure

D-12).

6. PRAUtil: Project utilities to simplify coding (Figure D-14).

The main class that the Simulation package loads is class EmergencyEnvironment located in the

PRAEnvironment package. It initializes the rest of the model.

Figure D-9 Simulation Project Package Diagram

Figure D-10 PRAEnvironment Class Diagram

pkg Simulation Model

PRASystem

PRASystemCorePRAUtil

PRAEnv ironment

PRAExperiment

PRAMeasurement

+ Metrics

class PRAEnv ironment

Activ eObject Activ ityAwareObject

Actuator

DummyObject

ViewableDigraph

Env ironment

Passiv eObject PolicyAwareObject ProcessAwareObject

Sensor

SmartObject

ViewableAtomic

Visitor

Part

Resident

Trusted

Entity < Visitor->List<Entity >

-objects

0..*

346 – APPENDICES ● APPENDIX D

PervCompRA-SE

Figure D-11 PRAExperiment Class Diagram

Figure D-12 PRASystemCore Class Diagram

Figure D-13 PRASystem Class Diagram

class PRAExperiment

Synthesizer

CrashSensorSynthesizer

Environment

EmergencyEnv ironment

Actuator

HospitalAlarmBoard

Entity

InterestedCommunity

Entity

LocationSensor

Synthesizer

LocationSensorSynthesizer

Actuator

PoliceAlarmBoard

Entity

SimulationStarter

Actuator

SMSEngine

Entity

SpeedSensor

class PRASystemCore

Entity

AnalyticsManager

Entity

DecisionManager

Entity

Dev iceManager

Entity

Ev entHandler

Entity

FaultHandler

Entity

InterpretationManager

Entity

Logger

Entity

OptimizationManager
OptimizationManager::

MonitorModule

Entity

PolicyManager

Entity

ProfileManager

Entity

RepositoryManager

Entity

ResourceManager

Entity

RiskHandler

Entity

Serv iceManager

Serv iceManager::

Serv iceModule
Entity

Synthesizer

class PRASystem

Action Context
entity

DataRecord
Decision

entity

Ev ent
Fault Interpretation

entity

JoinRequest

entity

Profile
Resource

bag

Serv ice

347 – APPENDICES ● APPENDIX D

PervCompRA-SE

Figure D-14 PRAUtil Class Diagram

class PRAUtil

Adv Math

{leaf}

+ between(double, double, double): boolean

Adv String

+ isNullOrEmpty(String): boolean

+ main(String[]): void

entity

bag

- extraMessage: Object

+ bag(String)

+ getExtraMessage(): Object

+ setExtraMessage(Object): void

DBUtil

+ executeSingleInsert(Connection, String): int

+ executeSingleUpdate(Connection, String): void

+ getKeyValueTable(Connection, String): Hashtable<String, String>

+ getKeyValueTable(Connection, String, String, String): Hashtable<String, String>

+ getQuery(Connection, String): Hashtable<String, String>

+ getSingleRow(Connection, String): Hashtable<String, String>

+ getStringValue(Connection, String, String): String

+ getTable(Connection, String): Hashtable<String, String>

+ loadDBConnection(String, String, String, String): Connection

+ main(String[]): void

MiscUtil

+ loadProperties(String): Properties

«interface»

Probability

+ getProbability(): double

+ setProbability(double): void

«interface»

Status

+ currentStatus(): int

+ nextStatus(): int

348 – APPENDICES ● APPENDIX E

PervCompRA-SE

Appendix E : Ontology

E.1 Business Ontology

The following is a list of values and issues defined as ontological terminology. Each terminology has a Scale

and optionally a Type. The type describes the classification of the ontological terminology, which should

be part of the Scale definition.

9.1 Adaptable behavior

1. <<value>> Actuator: A tool that the system uses to make a change in its context.
 Scale: The percentage of used actuators during a period of time aggregated by type.
 Type:

 Physical: the actuator can affect the environment of the users
 Virtual: the actuator affects only the software components which may indirectly

impact the physical world
2. <<value>> Decision Rule: sequence of actions a system must take in response to a specific

stimulus
 Scale: The percentage of the used decision rules during a certain period of time.

9.2 Context sensitivity

1. <<value>> Analysis: automated analysis activity for data, information, and knowledge
 Scale: The number of information, knowledge and wisdom records generated during a certain

period of time.
 Type:

 generate information: gives meaning for the data items

 generate knowledge: generate relations among the information pieces

 generate wisdom: make meaningful scenarios out of the knowledge
2. <<value>> Interpretation rule: A rule that interprets a specific context to a certain meaning

 Scale: The percentage of the used interpretation rules during a certain period of time.
3. <<value>> Sensor: a tool that the system uses to sense data from the environment

 Scale: The percentage of used sensors during a certain period of time aggregated by type.
 Type:

 Virtual: the sensor gets data from the software world and transmits it to other software
components or physical components.

 Physical: the sensor gets data from the outside environment. For example, it can be a
sound, temperature, or humidity sensor

9.3 Device Heterogeneity

1. <<value>> Content Rendering: the ability of the system to show the same content on different
devices with different specifications

 Scale: The percentage of rendered content calculated based on the total number of connected
devices at a certain period of time aggregated by type.

 Type: PC, tablet, TV, others
2. <<value>> Device Identifier: a unique identifier for a device

 Scale:

 The average number of unique device bindings during a certain period of time.

 The average binding time during a certain period of time.

349 – APPENDICES ● APPENDIX E

PervCompRA-SE

9.4 Experience Capture

1. <<value>> Knowledge Mining: the ability of the system to correlate information and knowledge
and find/generate new knowledge out of them

 Scale: The number of the new correlated rules during a certain period of time.
2. <<value>> Object Profiling: information that is considered part of the user profile like id, name,

date of birth. The profile could contain personal, social, or public information
 Scale: The percentage of fetched profiles during a certain period of time aggregated by type

during.
 Type:

 personal: details of the profile belong to the user only

 social: details of the profile could be accessed by the user and a limited group of people

 public: the details of the profile could be accessed through anyone
3. <<value>> Pattern Recognition: the ability of the system to detect patterns of objects and record

them for later use
 Scale: The percentage of used patterns during a certain period of time aggregated by type.
 Type:

 Simple: the number of activities in the pattern does not exceed X value
 Standard: the number of activities in the pattern does not exceed Y value.

 Complex: the number of activities in the pattern exceeds the Y value

9.5 Fault Tolerance

1. <<value>> Corrective Action: an action that the system takes to correct a faulty situation
 Scale: The percentage of corrective actions based on the total number of faults during a

certain period of time aggregated by type.
 Type:

 complete correction: the proper situation is completely restored

 partial correction: a satisfying portion of the problem is solved

 message: the situation cannot be corrected and a message is displayed to explain the
situation instead

2. <<value>> Error Message: a message that is shown to the system users or printed on system logs
as a result of a system error

 Scale: The number of error messages that the system showed to the users during a certain
period of time.

3. <<issue>> Error outcome: the result of an error that happened in the system
 Scale: The percentage of outcomes compared to the number of risks during a certain period of

time.
4. <<issue>> Error Risk: an expected event that may jeopardize the system due to an error

 Scale: The percentage of risks compared to errors during a certain period of time.
5. <<issue>> Fault: a defect generated from a system problem

 Scale: The percentage of faults compared to activities during a certain period of time.
 Type:

 Severe: This category includes fatal errors that may result in complete outage of the
system, severe financial loss, or total corruption of data and there are no instant
resolutions of the problem

 High: This category of problems does not suffer from complete outage of the system, but
may have complete outage in some functions, noticeable financial problems, or impacts a
large number of users. There are no instant resolutions for the problem

350 – APPENDICES ● APPENDIX E

PervCompRA-SE

 Medium: Such a category has a moderate failure in terms of functions and impacted users
and has no financial loss. There could be alternative approaches for the system to
complete the required service

 Low: this category usually includes cosmetic, textual, and partial issues with specific
functions. They do not impact the validity of data neither hinder the completion of the
user’s full scenario. But resolving them can enhance the user’s experience

9.6 Invisibility

1. <<issue>> explicit Input: the ability of the system to capture input implicitly from the environment
 Scale: The percentage of explicit inputs during a certain period of time aggregated by type.
 Type:

 Keyboard: the user gives the input to the system through a keyboard pad

 Mouse: the user gives the input to the system through a mouse

 Touch: the user gives the input to the system through touch actions
2. <<value>> Object invisibility: it is the ability of the system to conceal its parts from the users in

order not to interrupt their normal activities and tasks by focusing on the tools
 Scale: The percentage of invisible object(s) that are accessed during a certain period of time

aggregated per type.
 Type:

 Invisible: the object is completely hidden
 Semi-invisible: the object is partially hidden
 visible: the object is visible

3. <<issue>> Unnecessary motions: Unnecessary interaction or a motion that the system can save
for the user

 Scale: The percentage of explicit interactions with the system during a certain period of time
aggregated by type.

 Type:

 Linear motion: where the whole body moves

 Angular motion: where part of the body moves

9.7 Privacy and Trust

1. <<value>> Information Classification: a logical organization of information and knowledge based
on classes

 Scale: The percentage of accessed pieces of information during a certain period of time
aggregated by type.

 Type:

 public: data could be accessed by anyone
 social: data could be accessed by a specific group of people
 private: data could be accessed by a very limited number of people

2. <<value>> Information Control: the action of restraining activities that manipulate information
 Scale: The percentage of used validation rules during a certain period of time.

3. <<value>> Information Tracking: tagging information to follow its distribution
 Scale: The percentage of tracked information using information tags during a certain period of

time.
4. <<value>> Trust Certificate: a certificate issued for an entity to show that it is authorized for

specific action(s)
 Scale: The percentage of approved certificate requests during a certain period of time.

351 – APPENDICES ● APPENDIX E

PervCompRA-SE

9.8 Quality of Service

1. <<value>> QoS deadline Type: a classification of quality of service deadline to be hard or soft.
Hard deadline means that the system response is considered failed if it exceeds the hard deadline.
A soft deadline means the system did not fail

 Scale: The percentage of operations that met the deadline during a certain period of time aggregated by
type.

 Type:

 Hard: if the system did not meet the deadline, then the operation is considered failed

 Soft: if the system did not meet the deadline, then the operation is not considered failed, but it may
be considered successful with problems.

2. <<value>> QoS Improvement: the action of optimizing the quality average measure and the
quality boundaries to be close from perfection

 Scale: The positive/negative percentage of change for all quality measures during a certain
period of time.

3. <<value>> Quality Average Measure: a rounded figure that shows the average performance of a
specific quality attribute

 Scale: The percentage of quality measures that changed their averages during a certain period
of time.

4. <<value>> Quality Boundaries: the boundaries that the quality average measure cannot exceed
 Scale:

 The percentage of quality measures that changed their boundaries during a certain
period of time.

 The percentage of change for all quality measures during a certain period of time.

9.9 Safety

1. <<value>> Environment Protection: safety procedures that should be addressed in order to
protect the system environment

 Scale: The percentage of safety procedures executed to protect the system from safety threats
during a certain period of time.

2. <<issue>> Invalid Operational Directive: an action command that is considered invalid within a
specific context

 Scale: The percentage of invalid directives during a certain period of time.

3. <<value>> Safety Alert: a warning that aims to notify users for an issue that may risk their safety
 Scale: The percentage of alert messages compared to detected threats during a certain period

of time aggregated per type.
 Type:

 readable: alert is shown in a readable format

 hearable: alert is shown in a hearable format

 seeable: alert is shown in a visual format
The alert may take one or all the above forms, or it may take other forms as long as it
guarantees that the user will be in a safe mode

4. <<issue>> Safety Compromise: putting the safety of the environment into a dangerous situation
 Scale: The percentage of safety threats that compromised the system during a certain period of

time aggregated by type.
 Type:

 extreme: dangerous conditions impacting human lives

 high: potential dangerous conditions

 moderate: less than ideal conditions

352 – APPENDICES ● APPENDIX E

PervCompRA-SE

 low: normal conditions
5. <<issue>> Shared resource Conflict: a conflict among different entities that want to use a shared

resource
 Scale: The percentage of shared resources that had conflicts during a certain period of time.

6. <<issue>> Side Effect: an expected or unexpected event that may impact user safety or security as
a result from an expected action(s)

 Scale: The percentage of expected side effects during the design time that appeared during
runtime in a certain period of time aggregated by type.

 Type:

 expected: side effect was spotted during design time

 unexpected: side effect was discovered during runtime

9.10 Security

1. <<issue>> Anonymity: the term refers to an object that has no identifier
 Scale: The percentage of objects that the system rejected to bind due to the anonymity issue.

2. <<value>> Data Access rule: an authorization rule that governs the access of the data
 Scale: The percentage of used data access rules during a certain period of time aggregated by

type.
 Type:

 public: data has no access restriction and anyone can get it

 protected: data has access restrictions and not everyone can access it
3. <<value>> Data Integrity: data must be in its original format without corruption

 Scale: The percentage of corrupted records in the system during a certain period of time.
4. <<issue>> Data leakage: data is accessed by unauthorized entities which could be due to

unnoticed vulnerability in the system
 Scale: The percentage of unauthorized access to the system during a certain period of time.

5. <<issue>> Malfunctioning Smart Object: A smart object is considered malfunctioning when it fails
to fulfill an assigned responsibility or misbehaves in the system.

 Scale: The percentage of malfunctioning objects that the system detected during a certain
period of time aggregated by type.

 Type:

 Incompetent: the smart object is incapable to deliver the required tasks.

 Spam: the smart object is harmful to the system.
6. <<value>> Data Transmission Security: security measurements taken while transmitting data

among entities.
 Scale: The percentage of encrypted transmissions during a certain period of time.
 Type:

 encrypted: data is changed in a reversible way

 not encrypted: data is transmitted in a clear form
7. <<value>> Security Rule: a system safety rule that is designed to protect data or respond to threat

 Scale: The percentage of used security rules during a certain period of time.
8. <<value>> Threat Counter Measure: an action that should be taken in response to an identified

threat to the system. This could be like an anti-virus deleting a mal-ware from the system
 Scale: The percentage of eliminated threats during a certain period of time aggregated by type.
 Type:

 eliminate: the counter measure is to eliminate the threat regardless of the consequences

353 – APPENDICES ● APPENDIX E

PervCompRA-SE

 contain: the threat may not be eliminated, but it is better if it can be contained as it may
risk very important data

 ignore: the decision is to ignore the threat as it is not considered a real threat

9.11 Service Omnipresence

1. <<value>> Computer Distribution: computing power is distributed in different locations of the
environment

 Scale: The percentage of computing objects that carry out the system tasks at a certain period
of time.

2. <<value>> Experience Improvement: the activity of using stored information and knowledge to
enhance the user interaction with the system to an acceptable level

 Scale: The percentage of users that expressed positive feedback about the system compared to
the total number of visitors during a certain period of time.

3. <<value>> Informative Message: a message that shows enough details for the user by which
he/she knows how to act accordingly

 Scale: The percentage of informative message that resulted into actions within [x minutes]
during a certain period of time.

4. <<value>> Mobile Phone Utilization: maximizing the utilization of the mobile phone since it is
considered a sticky personal device that can identify the user

 Scale: The percentage of mobile phones that joined the system during a certain period of time.
5. <<value>> Unique User Identifier: an identifier for the user that does not change even if he/she

changes his/her device or the context changes
 Scale: The percentage of unique user identifiers that had conflicts in identity validation during a

certain period of time.

E.2 Architectural-Driven Ontology

The following ontological terminologies are driven from the architectural requirements. Every terminology

is given a definition, scale, and association with related architectural features.

1. <<value>> Authorization Certificate: A certificate issued from an authorized entity from the
system. The certificate authorizes the access to some restricted system features. For example,
the certificate may allow access to some protected or private services. It may allow access to
some handlers in a smart object or a dummy object.

 Scale: The percentage of objects that have authorization certificates during a certain period
of time

 quality features: Openness
2. <<value>> Client Request: It is a request sent from one of the objects in the system whether it is

a visiting, resident, trusted, or part object to fulfill a specific need.
 Scale: The percentage of the bound objects that have [x] requests during a certain period of

time.
 quality features: Concurrency

3. <<value>> Client Requirement: A specific requirement from a client that needs to be fulfilled by
using the system. The requirement may be sent to the system first then the system will reply
back with a confirmation that the requirement can be fulfilled by a specific service before the
request is sent.

 Scale: The percentage of objects that have special requirements during a certain period of
time.

 quality features: Composing Functions

354 – APPENDICES ● APPENDIX E

PervCompRA-SE

4. <<value>> Communication Protocol: It is a set of incoming and outgoing message types with
valid exchange sequence.

 Scale: The percentage of used protocols during a certain period of time aggregated by their
types.

 quality features: Service Discovery, Spontaneous Interoperability
5. <value>> Composite Service: It is a normal service with a specific contract interface but is

composed from other services that exist in the system.
 Scale: The percentage of used composite services during a certain period of time.
 Quality features: Service Discovery, Composing Functions

6. <<issue>> Congestion: It is the problem of delaying or dropping requests due to high traffic of
requests that the shared resource cannot handle efficiently.

 Scale: The percentage of failed requests due to time-out problem during a certain period of
time.

 Quality features: Concurrency
7. <<value>> Interested Community: It refers to an external system (or a cloud) to which the

information generated from the system about its performance and the performance of its
objects is important.

 Scale: The percentage of incoming/outgoing traffic for/from interested communities during
a certain period of time.

 Quality Features: Openness
8. <<value>> Plug and Play: It is the ability of the smart object or the dummy object to interact

with the system with no human interaction to facilitate this interaction.
 Scale: The percentage of objects that bind with the system with no human interaction

during a certain period of time.
 Quality Features: Scalability

9. <<value>> Registered Service: It is a service that the system registered in its directory
 Scale: The percentage of services that register in the system during a certain period of time.
 Quality Features: Service Discovery

10. <<value>> Resource: Any system component, e.g. a processor, a portion of memory, a storage, a
sensor, or an actuator that the system needs to perform its tasks.

 Scale: The percentage of resources utilized by the system during a certain period of time
aggregated by the resource type.

 Type: Processor, Memory, Storage, Network interface, Sensor, Actuator, Others
 Quality Features: Scalability

11. <<value>> Service Access Status: The access status of the service could be private, protected, or
public.

 Scale: The percentage of service accesses during a certain period of time aggregated by
type.

 Type: Private, Protected, Public
 Quality Features: Service Discovery, Openness

12. <<value>> Service Binding: It is the process of matching a service with an authorized client.
 Scale : The percentage of services that had requests from clients during a certain period of

time.
 Quality Features: Spontaneous Interoperability

13. <<value>> Service Documentation: It is the produced documentation about the service that
describes its interface, usage, outputs. The documentation could be useful for the normal users
or the developers.

355 – APPENDICES ● APPENDIX E

PervCompRA-SE

 Scale: The percentage of services for which users downloaded their documentation during a
certain period of time.

 Quality Features: Openness
14. <<value>> Service Handover: It is the operation of transferring the task processing to another

service. This could be, for example, due to the mobility of the client or because the service is
unable to fulfill its job due to degradation of resources.

 Scale: The percentage of objects that fulfilled service requests from different points of
interaction during a certain period of time.

 Quality Features: Spontaneous Interoperability
15. <<value>> Shared Resource: It is a resource that the system allows its usage by more than one

service or object.
 Scale: The percentage of shared resources used by non-owner objects during a certain

period of time.
 Quality Features: Concurrency

16. <<value>> Simple Service: It is a basic service that depends directly on system resources with no
intermediate services in between.

 Scale: The percentage of used simple services during a certain period of time.
 Quality Features: Service Discovery, Composing Functions

17. <<value>> Statistics: It is the data and information that the system collects about its resources,
services, and objects.

 Scale: The number of generated statistical records about objects during a certain period of
time.

 Quality Features: Openness, Scalability
18. <<value>> License: A file that includes permissions from the service provider to use a specific set

of services or objects.
 Scale: The percentage of objects that impose license verification before accessing their APIs.
 Quality Features: Openness

356 – APPENDICES ● APPENDIX F

PervCompRA-SE

Appendix F : Additional Readings

We surveyed [186] different areas in PervComp which helped us to form our understanding about this

complex domain. The following sections provide rich information about different research activities in

PervComp which are very useful for both the business analyst and the software architects.

F.1 Requirements Engineering

The essence of requirements engineering is to address stakeholders’ requirements and concerns. A

Stakeholder is any person who has a need from the system either directly or indirectly. A successful and

robust automated solution must consider socio-cultural aspects as well. For example, user’s behavioral

aspects, cultural norms, and risks on human activities are common issues that Pervasive systems must

address.

Analyzing cultural and social behavioral patterns takes a considerable space in UbiComp. Business Analysts

need to have a deep understanding of the users’ intrinsic behaviors and the reasons behind them. This

understanding represents the corner stones of all the work directed towards building an efficient

PervComp solution. In addition, researchers contributed in finding more suitable requirements elicitation

techniques that can be used effectively with pervasive systems.

Figure F-1: Example of causal graphs representing two different behaviors of a user in doing an activity. (a) and (b)
represent behaviors of a person doing 'Use bathroom', while (c) and (d) represent behaviors of a person doing 'Get drink'.

Nodes represent events. [187]

Several studies have been conducted within this context. For example, Chikhaoui et al. [187] introduce an

attractive approach to build personal profiles by understanding users’ behaviors and their relationships

through a causal model. The researchers visualize the model as an undirected graph linking major

behavioral patterns with each other to help in design decisions as shown in Figure F-1.

Another research by Kawsar et al. [188] attempts to understand how people use technology in households

especially those connected with the Internet. Their findings show that the role of devices such as desktop

PCs diminished to be used for special purposes like working from home or game playing, while tablets and

357 – APPENDICES ● APPENDIX F

PervCompRA-SE

smart phones are being used now on a larger scale especially with internet-related services. Moreover,

locations like kitchen and bathroom are becoming common places for several computing activities.

In another similar example, Takayama et al. [189] studied sources of satisfaction in home automation

systems. Their research team worked to answer some key questions related to the purpose, meaning, and

usability of the home technology. The answers to these questions represent important values of the user,

which they found to include things like personalization, entertainment and making impression for others.

Grönvall et al. [190] approached household ubiquitous technology in healthcare applications based on a

deep understanding of the non-functional aspects surrounding it. They focused their study on people,

resources, places, routines, knowledge, control and motivation. The outcome of the research shows, for

example, that patients and care-networks need to be aware of their health situation through learning and

reflection on non-regular settings.

Tian et al. [191] studied user behavior in video-chatting services and got to understand behavioral trends

with respect to many aspects such as the duration of the chat, usage of the camera, and the misbehaving

users. The study shows that normal users directly face the camera in opposition to misbehaving users who

hide their faces. They also show those strategies for selecting the proper partner need to be developed as

chat durations are short mainly because of failing to select such a partner. The authors limited their

research to the Android platform and did not use other platforms like Apple IOS, for example. The Apple

user may have different characteristics because Apple platform devices are in general more expensive.

Lin et al. [192] researched the privacy concerns of the users who install Android applications with respect

to permissions needed to access phone resources. Their approach focused on bridging the gap between

the expectation of the user from the application through what is known as the mental model, and the

actual features and permissions needed by the application to access mobile sensitive resources. This kind

of understanding prompted them to build a new privacy summary interface to help the users take a proper

decision by reading past misconceptions of the users.

Kostakos et al [89] introduced an interesting conceptual framework for privacy/publicity issues in

pervasive systems within urban areas. They divided the publicness into public, social, and private aspects

and related them to three selected aspects of pervasive systems namely location, technology, and

information. The analysis of this approach is shown in Figure F-2. A Social degree is neither public nor

private, and may indicate that there is a group access rather than individual access. Figure F-2 shows

situations at which locations, technology, and information can be public, social, or private. For example,

headphones are considered a technology that imposes privacy. Train-time table is a public piece of

information. A person talking in the elevator is in a social location.

358 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-2 Publicness spectrum. The vertical axis represents the degree of publicness, while the horizontal axis describes
three main features of pervasive systems and the relationship between them [89]

Other researchers took a specific aspect of the pervasive systems like Presti et al [193] and Yang and Helal

[91]. The first introduces a methodology for Trust Analysis and describes techniques to find inherent trust

issues in the pervasive system that helps, as claimed, in guiding the system design. The second discusses

safety issues and gives a deep analysis in order to be considered in the system design.

The trust Analysis by Presti et al. [193] recommends eleven trust issues categorized as subjective, data, and

system. They present their approach as a matrix-based model. They propose 4 steps to realize and

understand trust issues fully. They suggest that the analyst must write the PervComp scenarios fully and

ask subject matter experts to review them. Then, the analyst builds a trust-analysis matrix that analyzes

vignettes of the scenarios, and checks the trust issue value against each vignette. Once developed, the

trust-analysis matrix goes into a peer-review session to enhance the scenarios, which is the fourth step.

The fifth and the last step is to guide the design by identifying the most significant areas that need

attention and match technology against design. The authors also present a trust-analysis matrix for

common technologies used in PervComp which is quite interesting.

Yang and Helal [91] refer to a specific criteria or aspect of PervComp which is safety. They give a rich

analysis for different risk scenarios that may cause safety hazards. For example, they describe the conflict

that may happen between two different appliances if there are side effects in their computation of the

temperature, which may cause severe hazards. They describe other scenarios that show different types of

risks as well. The authors claim that any solution focusing on safety must focus on four main contributors

in any PervComp environment namely, device, service, user, and space. They describe and analyze their

role in PervComp in order to put proper solutions for safety and minimize risk of hazards for these items.

359 – APPENDICES ● APPENDIX F

PervCompRA-SE

In this section we introduced attempts to understand cultural and social behaviors of individuals and the

relevant/corresponding requirements engineering techniques that software engineers can use directly to

build their analysis model. Studies on social and cultural aspects provide the software business analyst

with scientific knowledge to direct him/her to the best analysis technique. Different techniques can be

used according to the skills of the business analyst and implementation context. Accordingly, such studies

complement each other and enrich the software requirements engineering practices.

F.2 Pervasive Computing Frameworks

The technical community members agree that system architecture and design are considered key success

factors for any system. In this section we discuss the design issues, profound architecture approaches that

address these design issues, the technologies that can be used with pervasive computation and finally the

different architecture models which address key issues in pervasive systems.

There are some frameworks that target the development of pervasive systems with different capabilities

and are designed for different purposes. For example, the JCAF (Java Context Awareness Framework) [194]

is a java based framework for implementing context-aware applications. It has enough flexibility for

programmers, which allows them to implement varieties of pervasive systems running on different

contexts. The framework followed some design principles like flexibility of distribution with loosely

coupled services. It is designed also to show context-adaptive behavior according to context events. It

provides privacy and security protection mechanisms for data although pervasive environments are not

secured by nature. Additionally, they have programmer APIs for extensibility in order to allow for different

types of customizations.

Figure F-3 The Runtime Architecture of the JCAF Framework [194]

It is very useful to explore the JCAF runtime architecture to understand some concepts in pervasive

computation. Its design stimulates thinking and shows a high level of abstraction. The runtime

architecture (Figure F-3) is composed of two tiers Context Service Tier and Context Client Tier. Context

Service is responsible for handling context in a specific environment and communicating with other

services (peer-to-peer). It is ultimately a process running on the J2EE Application Server. Inside the

context Service, we see the Entity Container which manages Entities. Entities respond to changes in the

360 – APPENDICES ● APPENDIX F

PervCompRA-SE

context. An Entity Container handles subscription to context events and notifies clients accordingly. The

Entity Environment provides the required resources for entities. Access Control provides the required

authentication to access the entity environment.

A Context Client is a client who can access a context service either through a normal request-response

scenario, or by subscribing to context events on specific entities. A Context Client can monitor context

changes via the sensors and update the entity accordingly. It can also change the context if it is an

actuator in cooperation with other actuators.

JCAF is so generic and does not provide all required advanced architecture functionalities for pervasive

systems. Korpipää et al [195] had worked on a framework with open APIs called Context Management

Framework (CMF) designed for Symbian mobile phones. It allows real-time context reasoning for

information even if there is noise. The researchers used an expandable ontology which clients can use in

different contexts. The framework design principles are built over security and event-based interaction

with clients. The real power of the CMF framework is its capability for reasoning based on context

variables. Figure F-4 shows the main categories that the CMF reasons against. It is important to notice

that the framework APIs allow the client to interrogate with context information to reason, to subscribe

for events, or change behavior according to the context variables CMF Ontology’s main Vocabulary.

Figure F-4 CMF Context Ontology Main Elements [195]

Other researchers focused on resource discovery and tried to refine its behavior to make it more efficient.

For example, Kalapriya et al. [196] present a resource predictor mechanism along with the resource

discovery in order to detect variability of resources, if available. Resources, if available, may vary based on

their location, and accordingly a mobile device should detect their variability as early as possible so that

precautionary actions can be taken if the resource cannot meet device task requirements. They devised

their research for mobile devices, which may lose resources upon changing location. They claim that it

will help also in recovering from service disconnection and handoff resources smoothly if disconnected

while changing location.

Seo et al. [197] worked on more or less the same design issues as Kalapriya et al. [196] and provide their

view for a fault-tolerant pervasive system by adapting principles of software architecture. They argue that

361 – APPENDICES ● APPENDIX F

PervCompRA-SE

by providing services and resource discovery, fault-tolerance, and component replication, the system

becomes more stable. They provide their own middleware solution which is called “Prism-MW” and they

argue that it resolves the key architecture principles to achieve the required fault-tolerance. The research

addresses the limited computational resources in any pervasive system and the need for faster failure

recovery. Accordingly, they adopt an active replication technique, which consumes more computational

resources by nature, but provides analytical algorithms to identify the components to be replicated and

achieves the best performance with less failure and less computational resources.

Hafez et al. [198] introduced a context-aware architecture for pervasive systems which allows required

services to adapt to quality of service requirements by clients. Their research work highlights three major

design issues in existing context-aware architecture solutions, namely openness, scalability, and

extensibility. Their proposed solution provides mechanisms for designers so that they can provide services

that match client quality of service requirements. They offer a Qos-Broker, which is responsible for

deciding on whether the served client received the required QoS or not. It takes also corrective actions,

and self-healing, to rectify the situation, which may reach up to replacing the service with another one.

Finally, we present a modeling approach that gives the architect a view with simple UML notations. Figure

F-5 shows an architecture modeling process by Muñoz and Pelechano [39] which allows the architect to

have three models namely the Binding Providers Model, the Component Structure Model, and the

Functional Model. The Binding Providers shows a set of devices or software systems that provide similar

functionality without referring to the manufacturer specification (Figure F-5). The Component Structure

Model shows the objects that will build the system. For example there could be 3 lamps and a single

FluourescentPanel for building a lighting system. The Functional Specification Model describes the

interaction of objects described in the Component Structure Model.

Figure F-5 Some Elements of a Bindings Providers Model [39]

All the above listed researchers are motivated by the fact that by resolving context-awareness and quality

of service issues, they achieve a major step forward in providing a better pervasive system. Their

presented ideas and concepts are considered innovative and promising. All surveyed papers in this section

depended on architecture approaches to resolve these design issues in addition to mathematical solutions.

362 – APPENDICES ● APPENDIX F

PervCompRA-SE

It is important to mention here that the advancement in hardware technologies is expected to lead to

better architecture solutions as well.

F.3 Pervasive Computing Patterns

More researchers contributed in the PervComp field to identify suitable and usable patterns. This area still

needs more efforts from researchers, since their contributions will help in simplifying the development of

solutions for environments which are complex by nature. A PervComp environment is described to be

complex as it inherits this complexity from being distributed, and depends on non-permanent resources.

 In this section we survey papers that discuss patterns and their use in the PervComp field.

René Reiners [199] in his research work paves the way towards a pattern language for PervComp. This

paper addresses the main design principles towards defining patterns and anti-design patterns for

PervComp solutions. René Reiners gives definitions for the Smart Object, Smart Service, Smart

Environment, and Take-away feature [199]. A Smart Object is defined as any object or device that is

augmented with additional computational behavior to its main purpose [199]. A Smart Service could be

any computing service augmented to the physical object ranging from simple informative services to

sophisticated applications [199].

In addition to the above definitions, objects can provide a take-away facility that can be available for smart

services (Figure F-6). This feature allows the collection of information offline for further retrieval and

processing. However, the author highlights the risk of dealing with such a feature when working with

appliances [199]. Finally, the author gives a definition of a Smart Environment which is a setup of arbitrary

kinds of services attached with an arbitrary number of real-world objects. A Smart Environment can be

broken down into sub categories to reflect the purpose of the provided services [199].

Figure F-6 In this example, services with the takeaway-attribute are connected to a metro plan and a TV screen. The
coffee-machine and speakers providing playback services but only allow direct interaction [199].

Kostakos et al. [89] described a conceptual framework for designing and analyzing a pervasive system and

identified two patterns called Insulating technology and Secrets revealed out of their work. The Insulating

363 – APPENDICES ● APPENDIX F

PervCompRA-SE

technology pattern describes the use of technology that separates a user from his/her physical

environment. This separation may be desirable or undesirable based on the user's context and activity.

The designer must identify the system patterns where insulating technologies are appropriate and if not

defined then it means that there is no individual or group privacy. The Secrets revealed pattern indicates

situations at which private or social information is made public. This pattern may or may not be

appropriate based on the user's context and activity. The designer must understand the situations that

can make this pattern desirable.

Other researchers surveyed HCI (Human Computer Interaction) patterns in PervComp. Wilde et al. [200]

show concrete examples and references for patterns that could be used for mobile phone applications. On

the other hand, researchers could not introduce a single pattern for other areas like a Smart Environment,

and Collaborative work, which are considered, with the mobile phones, all the categories of patterns in

PervComp, according to the authors. However, they give real-world applications which were used in both

the Smart Environment and Collaborative work categories [200].

Sauter et al [201] introduce an extension to the MVC design patterns towards a task-oriented

development approach. They do this by extending the Service to Worker design pattern which adopts the

MVC approach. The Service to Worker pattern tries to separate the business logic from the user’s

interaction with the implementation for web applications. They focus mainly on developing the required

logic as separate from the design view according to the target device [201]. This approach handles the

displayed attributes, style and actions performed to achieve the required task at the end. It is important to

point out that this research has a concrete implementation in J2EE with mobile phones.

Shams and Zamanifar [202] introduced architectural patterns with external user interface elements to help

the user connect with them. The problems that these patterns address are:

1. Remote Controls: it is where the input controls are moved to an external device, e.g. a remote

control device. The user can control the device state, behavior, and output using this device

2. Complementary or duplicated user interfaces: this case splits the user interfaces into two parts.

One part is externalized for users, and the other one resides on the device to control.

3. Detached user interfaces: in this case, the device user interface is moved completely to an

external device. This could be the case with embedded systems that have limited internal user

interface capabilities that may not be conveniently used.

Figure F-7 shows the structure of the pattern, out of which the authors made a number of variations to

suit the mentioned cases. The pattern shows that the external device controls the application host to

change its status, retrieve data, or change its behavior through the Broker which coordinates the

interaction and provides the needed access points to control the application. The authors accordingly

showed three variations of the patterns to suit the specific problems mentioned above. Some of the

mentioned components in the pattern, e.g. Display Element, may behave differently according to the

problem. So, if this pattern will be applied for the remote control situation, then the Display Element will

show feedback about the interaction only and will not display output.

364 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-7 The pattern for applications with external user interface elements [202]

Detweiler and Hindriks [203] introduced two business analysis patterns for health-care pervasive systems

which considers human values as the base of analysis. Their approach was to analyze human sensitive

values using the Value-Sensitive Design (VSD) approach. The VSD approach studies the technology and its

impact on the direct and indirect stakeholders. They adopted the design pattern approach to document

their proven solutions. The first pattern solution was to collect health care information about the elders

through sensors which monitor their activities and the environment especially for their relatives who live

far away from them. The second pattern solution was to help the elders not to feel socially isolated due to

distance by collecting information digitally about their activities and present them to their relatives who

want to monitor them in order to enhance connectedness.

In summary, the researchers in PervComp did not introduce complete pattern languages in many

categories. There are of course pattern languages inherited from other domain areas, which suit

PervComp, but the characteristic additions of PervComp need to enrich this literature as well. A possible

explanation for this limitation, although the concept was only introduced in the 90’s, is due to the lack of

diversified applications that utilize all the PervComp theories. PervComp requires more open and mobile

smart objects and services. Openness will allow for more applications, and hence more patterns.

F.4 Aspect-Oriented Software Development for

Pervasive Computing

There is a fair number of research efforts on aspect-oriented development for PervComp which focus

mainly on application design. For example, Fuentes et al. [204] introduced an aspect oriented design and

implementation for context-aware pervasive applications. They argue that context-awareness is a cross-

cutting concern in most context-aware applications, which makes it difficult in reusability and design-

365 – APPENDICES ● APPENDIX F

PervCompRA-SE

checking. The authors use UML 2.0 for modeling and use it also for execution to validate the design and

they prototyped their approach with a vehicle navigation case study.

Figure F-8 Executable AO Design (AOEM UML 2.0 Profile) [204]

The AO Design approach of Fuentes et al. [204] in their case study, Figure F-8, goes as follows:

1. There is an executable Aspect-Oriented executable UML 2.0 that contains the components’ core

logic (e.g. sensors and controllers), pervasive cross-cutting concerns such as error-handling, and

context-awareness, and then composition rules that define the pointcuts of the cross-cutting

concerns with the components’ core logic.

2. There is an aspect-oriented model weaver that acts as a pre-processor to build the design model

including the cross-cutting behavior as specified in the aspects.

3. The generated model is then tested using the UML virtual machine, and if the design does not

meet its objectives, then fixes will be applied on the design model, and it gets simulated again

until it is completely correct.

4. The final and correct design will be transformed after that into an implementation model hosted

on an aspect-oriented middleware for pervasive systems. Components will be transformed into

executable ones that can run on the middleware. The cross-cutting concerns will be

transformed into user-configurable aspectual middleware services. The composition rules are

transformed into weaving directives that bind components to the aspectual services.

Daniele et al. [205] developed an application context-aware RA based on the SOA RA with automation to

generate design as well. Authors applied this architecture in a project called A-MUSE which aims to

provide smart contact solutions in order to contact the right person at the right time in the right place

using the right channel. The main component in the design, as shown in Figure F-9, is the Service

Coordinator which is responsible for receiving events and sending actions. Events taken from users or

from context sources and actions are translated through the Action Providers

366 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-9 A-MUSE reference architecture for context-aware mobile applications [205]

Carton et al. [206] developed cross-cutting concerns using an aspect-oriented model based on eight

context types namely: device, location, user, social, environmental, system, temporal, and application-

specific context. They used Theme/UML, which is a special extension to UML to provide specifications for

cross-cutting requirements. The authors made a comparison between an AspectJ implementation and a

normal Object-Oriented implementation. Their results were in favor of the aspect-oriented

implementation especially with respect to comprehensibility, maintainability and manageability metrics.

 The authors used the Model-Driven Architecture (MDA) in order to cope with the nature of PervComp

where there are many different technologies with limited resources. They argue that MDA can provide a

platform-independent model (PIM) and a platform-specific model (PSM).

In this research, the authors merged Aspect-oriented development techniques with model-driven

technologies to gain benefits from both standards. It starts by designing cross-cutting concerns using the

Theme/UML Model and then merging it with a composition model where the designer specifies where and

how these concerns are modularized to arrive at a platform-specific model, and finally generate the code

(Figure F-10).

Theme/UML Model Composition Model

PSMCode

Figure F-10 Aspect-Oriented Model-Driven Development for Mobile Context-Aware Computing Process Overview [206]

Other researchers, such as Abdelkrim et al. [207] conducted a comparative study using a navigation case

study where a person needs to know his/her way towards a certain location or a certain event. Displays

installed in locations need to adapt to the event accordingly as shown in Figure F-11. The authors found,

367 – APPENDICES ● APPENDIX F

PervCompRA-SE

(as shown in Table F-1), that the AO approach is better than the OO in terms of maintainability,

evolvability, and complexity while they were equivalent in modularity and reusability.

Table F-1 Comparative overview of AO and OO implementations [207]

Implementation Property AO implementation OO implementation

Modularity Yes Yes
Reusability Domain & Application Specific Domain & Application Specific
Maintainability Good Average
Evolvability Good Poor
Complexity Low Medium

Figure F-11 UML diagram for pervasive environment [207]

F.5 Development Methodologies for Pervasive

Computing

There is a substantial number of recent research efforts on software development methodologies for

PervComp systems, all of which try to find suitable ways to produce a PervComp system at a high quality

and within reasonable times. Many researchers are convinced that the existing development

methodologies are insufficient for the software engineers to use with PervComp. Some others try to

enhance existing methodologies and make them more convenient for the software engineer.

Cassou et al. [208] introduced a tool-based development methodology for PervComp applications. They

devised a design language called DiaSpec to describe the taxonomy of a specific PervComp area and its

application architecture. They also developed a tool-based methodology called DiaSuite which works on

the design, implementation, testing, deployment and evolution of PervComp applications (Figure F-12).

They claim that they made a solid contribution because they applied it on a variety of domains.

368 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-12 Flowchart of the development activities of the DiaSuite tool-based methodology [208]

The cycle starts with an area expert who defines the area taxonomy if it is not defined. Then an

application architect works on it to define the application architecture. A tool, called DiaGen, then takes

both the taxonomy and the architecture artifacts to generate a Java programming framework which is

generic in terms of used technology. The same tool generates a simulation model for the tester, which is

executed using another graphical simulation tool called DiaSim. The system administrator then runs the

deployment with actual implementation related to the selected technology (Figure F-13).

369 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-13 Development support provided by the DiaSuite tool [208]

On the other hand, Henricksen and Indulska [209] argue that PervComp solutions did not find their way to

commercial markets due to some factors like development overheads and social barriers. They developed

three related modeling approaches to i) explore specific context requirements ii) manage context

information stored in a repository and iii) specify abstract context classes that are mentally close to human

and programmer viewpoints of context. The authors worked on context information that combines

sensed, static, user-supplied and derived information.

The researchers in this work developed a context modeling approach called the Context Modeling

Language (CML) which is an extension of Object-Role Modeling (ORM) to help designers in the

requirements elicitation task. The model is built using some design notations that the authors found

useful to explore context-aware applications as shown in Figure F-14.

370 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-14 (a) An example context model, constructed for the context-aware communication application (b) Relational
mapping of the model shown in (a). Note that the Located Near relation, which represents derived context information,

would be implemented as a view rather than an ordinary relation. [209]

Moreno-Garcia and Estublier [210] propose a model-driven methodology for designing, developing,

executing, and managing service-based applications as shown in Figure F-15. The authors developed

Computer Aided Domain Specific Engineering environments (CADSEs) to help designers and engineers do

software engineering for specific domains including PervComp domains. They developed a constraint

language that allows the specification of constraint expressions on model elements and of navigation

models.

371 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-15 Component-Service meta-model [210]

F.6 IoT Frameworks

The term IoT refers to the world of “things” that interact over a network. The term “things” refers to living

organisms or dummy objects that can be equipped with sensors, processing power and network

connectivity. For example, smart phones are objects that can sense information from the world and

transfer it to other objects. A smart phone can be used to read an RFID tag embedded in a board or a

piece of clothes and gets information about it [211].

Researchers in IoT are interested more in availing information on the Internet with minimal human

interaction. Such an approach provides more accurate information and reduces human mistakes in

normal data-entry. PervComp can benefit from the advancement of the IoT which avails on-demand-data

[211]. Software engineers can then use this on-demand information to build real-time services.

The commercial benefits that can be generated from the IoT services are enormous. According to Kim and

Lee [212] there are 6 main players who can benefit from ecosystems based on IoT services. According to

Kim and Lee (Figure F-16) the device developer provides the suitable device to host an application which is

generated by a software developer. The service provider purchases the application and asks the Platform

Operator to host it. The Service User then uses the application using the Network Operator.

372 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-16 Ecosystem of IoT services [212]

Kim and Lee developed an Open Source platform called OpenIoT (Figure F-17) in order to recognize the

mentioned ecosystem. The framework consists of four major platforms (Planet Platform, Mash-up

Platform, Store Platform and a Device Platform) to facilitate, for the ecosystem stakeholder, the

interaction through open-source APIs.

Figure F-17 Open Service framework for IoT services [212]

Vlacheas et al. [213] proposed a framework for self-management and self-configuration. They claim that

their framework addresses three major challenges related to the large number of objects and the

associated complexity and unreliability that comes with them due to their inherited heterogeneity. They

introduced a Virtual Object (VO) that models a Real World Object (RWO). They also introduced a

Composite Virtual Object (CVO) which is considered a cluster of objects that provides services.

373 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-18 a technical view of the cognitive management framework for the Internet of Things [213]

They divide their framework into VO, CVO, and service level. Cognition is adopted along these three levels.

The Virtual Object (VO) needs to keep a link with the RWO via self-management and self-configuration to

help the VO learn and generate knowledge about the RWO. For the CVO level, self-management and self-

configuration are used to let the CVO provide the application requirements. Finally, the cognition

technique in the service level aims to capture the application requirements and policies in order to help

the CVO in its selection process for VOs (Figure F-18).

On the other hand, real world objects represent a different challenge for other researchers. Perera et al.

[214] worked on designing a framework to discover sensors and configure them. They consider their

model important as they address some major challenges in the sensor discovery and configuration

process. These challenges are:

1. The number of sensors: this requires autonomous configuration if the number of sensors grows.

2. Heterogeneity of Sensors: Different sensors use different technologies with different

communication protocols, and different types of data.

3. Sampling rate, scheduling, and communication frequency: the strategies of defining the

frequency at which sensors collect data, for defining the time table for sensing and

communication, and the setting of the frequency of data transmission through the network.

4. Data acquisition: sensors may push data to clouds, or clouds pull data from sensors. Which

technique to use?

5. Dynamicity: it has to do with the appearance, position, and movement of sensors

6. Context: Sensors can be configured in a better way if the context is well understood

Accordingly, the authors propose a Context-aware Dynamic Discovery of Things (CADDOT) Framework

model which has specific tasks to detect, extract, identify, find, retrieve, register, reason, and configure

sensors using a generic approach that tries different communication protocols (Figure F-19).

374 – APPENDICES ● APPENDIX F

PervCompRA-SE

Figure F-19 CADDOT Model for Sensor Configuration [214]

Li et al. [215] discuss a futuristic architecture platform (MobilityFirst) that enables access to things by their

Global Unique Identifier (GUID). The architecture as shown in Figure F-20 consists of three major services:

1. Global Name Resolution Service (GNRS): which holds a proper mapping between the GUID and

the network address

2. Hybrid GUID/network address routing: which takes routing decisions for data blocks based on

the GUID/network address mapping

3. Delay-tolerant network (DTS) transport: which provides a caching and forwarding mechanism

based on routing decisions

Services attached to objects or sensors can be built on top of this service stack without worrying
about object mobility.

Figure F-20 MobilityFirst Core Network Architecture [215]

375 – APPENDICES ● APPENDIX G

PervCompRA-SE

Appendix G : Publications

1. Osama M. Khaled, Hoda M. Hosny, Mohamed Shalan (2017). A Statistical Approach to resolve
conflicting requirements in pervasive computing systems. The 12th International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE 2017), Porto, Portugal, 28-29 April
2017.

Abstract: Pervasive computing systems are complex and challenging. In this research, our aim is to
build a robust reference architecture for pervasive computing derived from real business needs and
based on process re-engineering practices. We derived requirements from different sources grouped
by selected quality features and worked on refining them by identifying the conflicts among these
requirements, and by introducing solutions for them. We checked the consistency of these solutions
across all the requirements. We built a mathematical model that describes the degrees of consistency
with the requirements model and showed that they are normally distributed within that scope.

2. Osama M. Khaled, Hoda M. Hosny, Mohamed Shalan (2016). A Pervasive Computing Business
Reference Architecture: The Basic Requirements Model, volume 10, no. 1. In the International Journal
of Software Engineering (IJSE).

Abstract: Pervasive computing is considered one of the most complex computing domains. Our
research work attempts to solve some of the business challenges associated with pervasive
computing. In this paper we present a novel business reference architecture which addresses the
basic business requirements to build a pervasive computing system by exploring eleven basic quality
features and defining their requirements model. It has a detailed trade-off analysis for the selected
quality features which guides the user while making decisions on real projects. We found that
building a basic business requirements model is a very useful step towards building a business
reference architecture, which will lead to a more practical technical reference architecture.

3. Osama M. Khaled, Hoda M. Hosny, Mohamed Shalan (2016). Towards A Futuristic Pervasive
Computing Reference Architecture: The Vision and Approach. In the Fourth International Japan-Egypt
Conference on Electronics, Communications and Computers, Cairo, June 2016.

Abstract: In this paper we present our research approach to generate a futuristic pervasive computing
reference architecture (FPCRA). It embodies an innovative approach to resolve most of the domain’s
current challenging problems. A business reference architecture, a technical reference architecture,
and an evaluation method are the main outcomes of the research phases. We completed the
business reference architecture and are currently working on the remaining phases.

4. Osama M. Khaled, Hoda M. Hosny, Mohamed Shalan (2015). On the Road to a Reference Architecture
for Pervasive Computing. In the 5th International Joint Conference on Pervasive and Embedded
Computing and Communication Systems, Feb 11-13, 2015, Angers, France.

Abstract: An efficient development strategy for pervasive computing requires that the smart object
manufacturers design their devices with profound facilities that can be accessible for developers. In
our in-progress research, we present a high level design for smart object essential handlers. This
design establishes rules and regulations for the development of pervasive computing in general and
promotes for quality in pervasive systems in particular.

376 – APPENDICES ● APPENDIX G

PervCompRA-SE

5. Osama M. Khaled, Hoda M. Hosny, Sherif G. Aly (2014). A Survey of Building Robust Business Models
in Pervasive Computing. In the Proceedings of The 2014 World Congress in Computer Science,
Computer Engineering, and Applied Computing, Las Vegas, Nevada, USA, 2014 July 21-24.

Abstract: Pervasive computing is one of the most challenging and difficult computing domains
nowadays. It includes many architectural challenges like context awareness, adaptability, mobility,
availability, and scalability. There are currently few approaches which provide methodologies to build
suitable architectural models that are more suited to the nature of the pervasive domain. This area
still needs a lot of enhancements in order to let the software business analyst (BA) cognitively handle
pervasive applications by using suitable tasks and tools. Accordingly, any proposed research topic that
would attempt to define a development methodology can greatly help BAs in modeling pervasive
applications with high efficiency. In this survey paper we address some of the most significant and
current software engineering practices that are proving to be most effective in building pervasive
systems.

377 – REFERENCES

PervCompRA-SE

References

[1] M. Weiser, “The computer for the 21st Century,” IEEE Pervasive Comput., vol. 1, no. 1, pp. 19–25, Jan.
2002.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Pers. Commun., vol. 8, no. 4, pp.
10–17, Aug. 2001.

[3] N. Kim, S. Lee, and T. Ha, “Understanding IoT Through the Human Activity: Analogical Interpretation of IoT
by Activity Theory,” in HCI International 2015 - Posters’ Extended Abstracts: International Conference, HCI
International 2015, Los Angeles, CA, USA, August 2-7, 2015. Proceedings, Part I, C. Stephanidis, Ed. Cham: Springer
International Publishing, 2015, pp. 38–42.

[4] Y. Engeström, R. Miettinen, and R. L. Punamäki, Perspectives on Activity Theory. Cambridge University
Press, 1999.

[5] A. Pinkerton, “Pervasive Computing.” Parliamentary Office of Science and Technology, 2006.

[6] “Internet of Things - Architecture IoT-A. Deliverable D1.5 – Final architecture reference model for the IoT
v3.0.” European Lighthouse Integrated Project, Jul-2013.

[7] “Ensure project success with requirements management,” Requirements Management. [Online].
Available: https://www-01.ibm.com/software/au/rational/offerings/requirements_management/. [Accessed: 21-
Apr-2017].

[8] A. Salado and R. Nilchiani, “The Concept of Order of Conflict in Requirements Engineering,” IEEE Syst. J.,
vol. 10, no. 1, pp. 25–35, Mar. 2016.

[9] “A Guide to the Business Analysis Body of Knowledge,” International Institute of Business Analysis, 1.6,
2006.

[10] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and Design, 5th ed.
USA: Addison-Wesley Publishing Company, 2011.

[11] O. M. Khaled, “Capturing Design Patterns for Performance Issues in Database-Driven Web Applications,”
School of Science and Engineering, The American University in Cairo, Cairo, Egypt, 2004.

[12] K. Beck and W. Cunningham, “Using Pattern Languages for Object-Oriented Programs,” Sep. 1987.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[14] G. Kiczales et al., “Aspect-oriented programming,” in ECOOP’97 — Object-Oriented Programming: 11th
European Conference Jyväskylä, Finland, June 9–13, 1997 Proceedings, M. Akşit and S. Matsuoka, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–242.

[15] “Aspect-Oriented Software Development,” 2012. [Online]. Available: http://en.wikipedia.org/wiki/Aspect-
oriented_software_development. [Accessed: 21-Apr-2017].

[16] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley Publishing Company, 2010.

[17] M. A. Babar and I. Gorton, “Comparison of scenario-based software architecture evaluation methods,” in
11th Asia-Pacific Software Engineering Conference, 2004, pp. 600–607.

[18] W. Dargie, J. Plosila, and V. De Florio, “Existing Challenges and New Opportunities in Context-aware
Systems,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, New York, NY, USA, 2012, pp.
749–751.

[19] M. U. Ashraf and N. A. Khan, “Software Engineering Challenges for Ubiquitous Computing in Various
Applications,” in 2013 11th International Conference on Frontiers of Information Technology, 2013, pp. 78–82.

378 – REFERENCES

PervCompRA-SE

[20] V. Gazis et al., “Short Paper: IoT: Challenges, projects, architectures,” in 2015 18th International
Conference on Intelligence in Next Generation Networks, 2015, pp. 145–147.

[21] IEEE Standards Association, “IEEE Project (P2413) - Standard for an Architectural Framework for the
Internet of Things (IoT),” Dec-2016. [Online]. Available: http://standards.ieee.org/develop/project/2413.html.
[Accessed: 21-Apr-2017].

[22] S. Angelov, J. J. M. Trienekens, and P. Grefen, “Towards a Method for the Evaluation of Reference
Architectures: Experiences from a Case,” in Software Architecture: Second European Conference, ECSA 2008
Paphos, Cyprus, September 29-October 1, 2008 Proceedings, R. Morrison, D. Balasubramaniam, and K. Falkner, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 225–240.

[23] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The Concept of Reference
Architectures,” Syst. Eng., vol. 13, no. 1, pp. 14–27, 2010.

[24] E. Y. Nakagawa, “Reference Architectures and Variability: Current Status and Future Perspectives,” in
Proceedings of the WICSA/ECSA 2012 Companion Volume, New York, NY, USA, 2012, pp. 159–162.

[25] R. O. Spínola and G. H. Travassos, “Towards a framework to characterize ubiquitous software projects,”
Inf. Softw. Technol., vol. 54, no. 7, pp. 759–785, 2012.

[26] C. Chen and S. Helal, “System-wide support for safety in pervasive spaces,” J. Ambient Intell. Humaniz.
Comput., vol. 3, no. 2, pp. 113–123, 2012.

[27] B. Vogel, A. Kurti, T. Mikkonen, and M. Milrad, “From Architectural Requirements Towards an Open
Architecture for Web and Mobile Societal Applications,” in Proceedings of the 1st International Workshop on
Inclusive Web Programming - Programming on the Web with Open Data for Societal Applications, New York, NY,
USA, 2014, pp. 20–23.

[28] Henry Gleitman, James Gross, Daniel Reisberg., Psychology, 8th ed. W.W.Norton & Company, 2011.

[29] G. V. Bodenhausen and K. Hugenberg, “Attention, perception, and social cognition.,” Soc. Cogn. Basis
Hum. Interact., pp. 1–22, 2009.

[30] K. Cherry, “Perception and the Perceptual Process,” verywell, 23-Jun-2016. [Online]. Available:
https://www.verywell.com/perception-and-the-perceptual-process-2795839. [Accessed: 21-Apr-2017].

[31] A. Gunasekaran and B. Kobu, “Modelling and analysis of business process reengineering,” Int. J. Prod. Res.,
vol. 40, no. 11, pp. 2521–2546, 2002.

[32] S. Mohapatra, “BPR and Automation,” in Business Process Reengineering: Automation Decision Points in
Process Reengineering, S. Mohapatra, Ed. Boston, MA: Springer US, 2013, pp. 213–219.

[33] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and F. Oquendo, “Consolidating a Process for the
Design, Representation, and Evaluation of Reference Architectures,” in 2014 IEEE/IFIP Conference on Software
Architecture, 2014, pp. 143–152.

[34] M. Hamza, “Feature-based Generation of Pervasive Systems’ Architectures Utilizing Software Product Line
Concepts,” School of Science and Engineering, The American University in Cairo, Cairo, Egypt, 2011.

[35] V. Bogado, S. Gonnet, and H. Leone, “A Discrete Event Simulation Model for the Analysis of Software
Quality Attributes,” CLEI Electron. J., vol. 14, no. 3, Dec. 2011.

[36] S. P. Miller, “Proving the Shalls: Requirements, Proofs, and Model-Based Development,” in 14th IEEE
International Requirements Engineering Conference (RE’06), 2006, pp. 266–266.

[37] L. Kolos-Mazuryk, G.-J. Poulisse, and P. van Eck, “Requirements Engineering for Pervasive Services,” in
Second Workshop on Building Software for Pervasive Computing, 2005.

[38] A. H. Afridi and S. Gul, “Method Assisted Requirements Elicitation for Context Aware Computing for the
Field Force,” Lect. Notes Eng. Comput. Sci., 2008.

379 – REFERENCES

PervCompRA-SE

[39] J. Muñoz and V. Pelechano, “Building a Software Factory for Pervasive Systems Development,” in
Advanced Information Systems Engineering: 17th International Conference, CAiSE 2005, Porto, Portugal, June 13-
17, 2005. Proceedings, O. Pastor and J. Falcão e Cunha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 342–356.

[40] F. Pérez and P. Valderas, “Allowing End-Users to Actively Participate within the Elicitation of Pervasive
System Requirements through Immediate Visualization,” in 2009 Fourth International Workshop on Requirements
Engineering Visualization, 2009, pp. 31–40.

[41] A. Salado and R. Nilchiani, “The Tension Matrix and the Concept of Elemental Decomposition: Improving
Identification of Conflicting Requirements,” IEEE Syst. J., vol. PP, no. 99, pp. 1–12, 2015.

[42] V. Sadana and X. F. Liu, “Analysis of Conflicts among Non-Functional Requirements Using Integrated
Analysis of Functional and Non-Functional Requirements,” in 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), 2007, vol. 1, pp. 215–218.

[43] Z. J. Oster, G. R. Santhanam, and S. Basu, “Scalable modeling and analysis of requirements preferences: A
qualitative approach using CI-Nets,” in 2015 IEEE 23rd International Requirements Engineering Conference (RE),
2015, pp. 214–219.

[44] H. Vahdat-Nejad, “Context-Aware Middleware: A Review,” in Context in Computing, New York, 2014, pp.
83–96.

[45] D. Romero, “Context-Aware Middleware: An overview,” Paradig. Oscar Gonzalez, vol. 2, no. 3, pp. 1–11,
2008.

[46] C. A. Machado, E. Silva, T. Batista, J. Leite, and E. Nakagawa, “RA-Ubi: A Reference Architecture for
Ubiquitous Computing,” in Software Architecture: 8th European Conference, ECSA 2014, Vienna, Austria, August
25-29, 2014. Proceedings, P. Avgeriou and U. Zdun, Eds. Cham: Springer International Publishing, 2014, pp. 98–105.

[47] Y. Liu and F. Li, “PCA: A Reference Architecture for Pervasive Computing,” in 2006 First International
Symposium on Pervasive Computing and Applications, 2006, pp. 99–103.

[48] J. Zhou et al., “PSC-RM: Reference Model for Pervasive Service Composition,” in 2009 Fourth International
Conference on Frontier of Computer Science and Technology, 2009, pp. 705–709.

[49] A. Fernandez-Montes, J. A. Ortega, J. A. Alvarez, and L. Gonzalez-Abril, “Smart Environment Software
Reference Architecture,” in 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009, pp. 397–403.

[50] R. Al Ali, I. Gerostathopoulos, I. Gonzalez-Herrera, A. Juan-Verdejo, M. Kit, and B. Surajbali, “An
Architecture-Based Approach for Compute-Intensive Pervasive Systems in Dynamic Environments,” in Proceedings
of the 2Nd International Workshop on Hot Topics in Cloud Service Scalability, New York, NY, USA, 2014, p. 3:1–3:6.

[51] J. Liao, J. Wang, B. Wu, and W. Wu, “Toward a multiplane framework of NGSON: a required guideline to
achieve pervasive services and efficient resource utilization,” IEEE Commun. Mag., vol. 50, no. 1, pp. 90–97, Jan.
2012.

[52] G. Roussos and A. Marsh, “A blueprint for pervasive self-care infrastructures,” in Fourth Annual IEEE
International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06), 2006, p. 6 pp.-
pp.484.

[53] I. D. Addo, S. I. Ahamed, S. S. Yau, and A. Buduru, “A Reference Architecture for Improving Security and
Privacy in Internet of Things Applications,” in 2014 IEEE International Conference on Mobile Services, 2014, pp.
108–115.

[54] R. Popescu-Zeletin, S. Steglich, and S. Arbanowski, “Pervasive communication: a human-centered service
architecture,” in Proceedings. 10th IEEE International Workshop on Future Trends of Distributed Computing
Systems, 2004. FTDCS 2004., 2004, pp. 140–146.

380 – REFERENCES

PervCompRA-SE

[55] L. C. Bueno, “A Reference Architecture for Component-Based Self-Adaptive Software Systems,”
Department of Information and Communication Technologies Faculty of Engineering, ICESI University, Cali,
Columbia, 2012.

[56] “Internet of Things Architecture IoT-A Project Deliverable D6.2 – Updated Requirements.” European
Lighthouse Integrated Project, Jan-2011.

[57] B. Graaf, H. van Dijk, and A. van Deursen, “Evaluating an Embedded Software Reference Architecture —
Industrial Experience Report —,” in Ninth European Conference on Software Maintenance and Reengineering,
2005, pp. 354–363.

[58] J. Madhusudanan and V. Prasanna Venkatesan, “Metrics for Evaluating Pervasive Middleware,” Int. J.
Intell. Syst. Appl., vol. 6, no. 1, pp. 58–63, Dec. 2013.

[59] Y. Malik, M. Soliman, and B. Abdualrazak, “Towards an Evaluation Framework for Pervasive Computing
System,” presented at the International Conference on Modeling, Simulation and Visualization Methods (MSV), Las
Vegas, USA, 2011, p. 8.

[60] L. Mei and S. Easterbrook, “Evaluating User-centric Adaptation with Goal Models,” in Software
Engineering for Pervasive Computing Applications, Systems, and Environments, 2007. SEPCASE ’07. First
International Workshop on, 2007, pp. 6–6.

[61] Z. Liu, N. Gu, and G. Yang, “A Reliability Evaluation Framework on Service Oriented Architecture,” in 2007
2nd International Conference on Pervasive Computing and Applications, 2007, pp. 466–471.

[62] J. S. Challa, A. Paul, Y. Dada, V. Nerella, P. R. Srivastava, and A. P. Singh, “Integrated Software Quality
Evaluation: A Fuzzy Multi-Criteria Approach,” J. Inf. Process. Syst., vol. 7, no. 3, pp. 473–518, 2011.

[63] M. Hamza and S. Aly, “A Study and Categorization of Pervasive Systems Architectures Towards Specifying
a Software Product Line,” in Proceedings of the 2010 International Conference on Software Engineering Research &
Practice, SERP 2010, July 12-15, 2010, Las Vegas, Nevada, USA, 2 Volumes, 2010, pp. 635–641.

[64] Stefan G. Weber and Prima Gustiené, “Crafting Requirements for Mobile and Pervasive Emergency
Response based on Privacy and Security by Design Principles,” Int. J. Inf. Syst. Crisis Response Manag. IJISCRAM,
vol. 5, no. 2, pp. 1–18, 2013.

[65] A. Filippoupolitis, G. Gorbil, and E. Gelenbe, “Pervasive emergency support systems for building
evacuation,” in 2012 IEEE International Conference on Pervasive Computing and Communications Workshops,
2012, pp. 525–527.

[66] J. Franke, C. Ulmer, and F. Charoy, “Pervasive emergency response process management system,” in 2010
8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops),
2010, pp. 376–381.

[67] I. Shklovski, L. Palen, and J. Sutton, “Finding Community Through Information and Communication
Technology in Disaster Response,” in Proceedings of the 2008 ACM Conference on Computer Supported
Cooperative Work, New York, NY, USA, 2008, pp. 127–136.

[68] C.-Y. Chen, K.-D. Chang, H.-C. Chao, and S.-Y. Kuo, “Ubiquitous IMS Emergency Services over Cooperative
Heterogeneous Networks,” in Proceedings of the 2009 International Conference on Wireless Communications and
Mobile Computing: Connecting the World Wirelessly, New York, NY, USA, 2009, pp. 968–972.

[69] C.-Y. (Juyi) Lin, Y.-C. Tseng, and C.-W. Yi, “PEAR: Personal Evacuation and Rescue System,” in Proceedings
of the 6th ACM Workshop on Wireless Multimedia Networking and Computing, New York, NY, USA, 2011, pp. 25–
30.

[70] S. G. Weber, Y. Kalev, S. Ries, and M. Mühlhäuser, “MundoMessage: Enabling Trustworthy Ubiquitous
Emergency Communication,” in Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, New York, NY, USA, 2011, p. 29:1–29:10.

381 – REFERENCES

PervCompRA-SE

[71] S. Yahya, E. A. Ahmad, K. A. Jalil, and U. T. Mara, “The definition and characteristics of ubiquitous learning:
A discussion,” Int. J. Educ. Dev. Using Inf. Commun. Technol. IJEDICT, 2010.

[72] J. Norman, “Impact of Pervasive Computing in Education,” Int. J. Educ. Learn., vol. 2, no. 2, pp. 39–48,
2013.

[73] Y.-M. Huang, P.-S. Chiu, T.-C. Liu, and T.-S. Chen, “The design and implementation of a meaningful
learning-based evaluation method for ubiquitous learning,” Comput. Educ., vol. 57, no. 4, pp. 2291–2302, 2011.

[74] E. del Carmen Valderrama Bahamóndez, J. Häkkilä, and A. Schmidt, “Towards Better UIs for Mobile
Learning: Experiences in Using Mobile Phones As Multimedia Tools at Schools in Rural Panama,” in Proceedings of
the 11th International Conference on Mobile and Ubiquitous Multimedia, New York, NY, USA, 2012, p. 39:1–39:4.

[75] C. Dede, “Emerging Technologies, Ubiquitous Learning, and Educational Transformation,” in Towards
Ubiquitous Learning: 6th European Conference of Technology Enhanced Learning, EC-TEL 2011, Palermo, Italy,
September 20-23, 2011. Proceedings, C. D. Kloos, D. Gillet, R. M. Crespo García, F. Wild, and M. Wolpers, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–8.

[76] R. Martinez-Maldonado et al., “Integrating Orchestration of Ubiquitous and Pervasive Learning
Environments,” in Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation,
Application, Innovation, Collaboration, New York, NY, USA, 2013, pp. 189–192.

[77] A. Resmini and L. Rosati, Pervasive Information Architecture: Designing Cross-Channel User Experiences.
Elsevier Science, 2011.

[78] R. Pous, J. Melià-Seguí, A. Carreras, M. Morenza-Cinos, and Z. Rashid, “Cricking: Customer-product
Interaction in Retail Using Pervasive Technologies,” in Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication, New York, NY, USA, 2013, pp. 1023–1028.

[79] S. Longo, E. Kovacs, J. Franke, and M. Martin, “Enriching Shopping Experiences with Pervasive Displays and
Smart Things,” in Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, New York, NY, USA, 2013, pp. 991–998.

[80] T. Meneweger, D. Wilfinger, I. Aslan, D. Zachhuber, and M. Tscheligi, “Towards the Counter Free Store:
Requirements for Mobile Sales Assistants,” in Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication, New York, NY, USA, 2013, pp. 999–1006.

[81] A. Carreras et al., “STORE VIEW: Pervasive RFID & Indoor Navigation Based Retail Inventory
Management,” in Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, New York, NY, USA, 2013, pp. 1037–1042.

[82] K.-J. Lin, T. Yu, and C.-Y. Shih, “The Design of A Personal and Intelligent Pervasive-Commerce System
Architecture,” in Second IEEE International Workshop on Mobile Commerce and Services, 2005, pp. 163–173.

[83] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, “Fulfilling the Vision of Autonomic Computing,”
Computer, vol. 43, no. 1, pp. 35–41, Jan. 2010.

[84] G. D. Abowd, E. D. Mynatt, and T. Rodden, “The human experience [of ubiquitous computing],” IEEE
Pervasive Comput., vol. 1, no. 1, pp. 48–57, Jan. 2002.

[85] O. M. Khaled, H. M. Hosny, and M. Shalan, “On the road to a reference architecture for pervasive
computing,” in 2015 International Conference on Pervasive and Embedded Computing and Communication Systems
(PECCS), 2015, pp. 98–103.

[86] S. Purao, S. Paul, and S. Smith, “Understanding enterprise integration project risks: A focus group study,”
in 18th International Workshop on Database and Expert Systems Applications (DEXA 2007), 2007, pp. 850–854.

[87] M. Nosrati, R. Karimi, and H. A. Hasanvand, “Mobile Computing: Principles, Devices and Operating
Systems,” World Appl. Program., vol. 2, no. 7, pp. 399–408, 2012.

382 – REFERENCES

PervCompRA-SE

[88] A. N. Joinson, U.-D. Reips, T. Buchanan, and C. B. P. Schofield, “Privacy, trust, and self-disclosure online,”
Hum.-Comput. Interact., vol. 25, no. 1, pp. 1–24, Jan. 2010.

[89] V. Kostakos, E. O’Neill, and A. Penn, “Designing Urban Pervasive Systems,” Computer, vol. 39, no. 9, pp.
52–59, Sep. 2006.

[90] S. Hua and G. Qu, “A new quality of service metric for hard/soft real-time applications,” in Proceedings
ITCC 2003. International Conference on Information Technology: Coding and Computing, 2003, pp. 347–351.

[91] H. I. Yang and A. Helal, “Safety Enhancing Mechanisms for Pervasive Computing Systems in Intelligent
Environments,” in 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications
(PerCom), 2008, pp. 525–530.

[92] A. Ray and R. Cleaveland, “An Analysis Method for Medical Device Security,” in Proceedings of the 2014
Symposium and Bootcamp on the Science of Security, New York, NY, USA, 2014, p. 16:1–16:2.

[93] S. Feruza Y. and P. T. Kim, “IT Security Review: Privacy, Protection, Access Control, Assurance and System
Security,” Int. J. Multimed. Ubiquitous Eng., vol. 2, no. 2, Apr. 2007.

[94] T. GILB and L. BRODIE, “7.4.2 What’s fundamentally wrong? Improving our approach towards capturing
value in requirements specification,” INCOSE Int. Symp., vol. 22, no. 1, pp. 926–939, 2012.

[95] M. Galster, P. Avgeriou, D. Weyns, and T. Männistö, “Variability in Software Architecture: Current Practice
and Challenges,” SIGSOFT Softw Eng Notes, vol. 36, no. 5, pp. 30–32, Sep. 2011.

[96] D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to the practice of statistics : extended version, 6th
ed. New York: W.H. Freeman, 2009.

[97] F. Bachmann and L. Bass, “Managing Variability in Software Architectures,” in Proceedings of the 2001
Symposium on Software Reusability: Putting Software Reuse in Context, New York, NY, USA, 2001, pp. 126–132.

[98] “WebSphere Application Server Top 10 Performance Tuning,” 15-Dec-2011. [Online]. Available:
www.ibm.com.

[99] G. F. A. Ahammed and R. Banu, “Analyzing the Performance of Active Queue Management Algorithms,”
CoRR, vol. abs/1005.1992, 2010.

[100] A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd ed. Pearson, 2012.

[101] J. Siebert, J. Cao, Y. Lai, P. Guo, and W. Zhu, “LASEC: A Localized Approach to Service Composition in
Pervasive Computing Environments,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 7, pp. 1948–1957, Jul. 2015.

[102] R. Xu, B. Ji, and Y. Chen, “Proxy based framework for personalized Web service composition,” in 2013 IEEE
Eleventh International Symposium on Autonomous Decentralized Systems (ISADS), 2013, pp. 1–8.

[103] “Categories of Free and non-free software,” 04-May-2016. [Online]. Available: www.gnu.org.

[104] D. Schneider and M. Trapp, “A Safety Engineering Framework for Open Adaptive Systems,” in 2011 IEEE
Fifth International Conference on Self-Adaptive and Self-Organizing Systems, 2011, pp. 89–98.

[105] R. Sanderson, P. Ciccarese, and H. Van de Sompel, “Designing the W3C Open Annotation Data Model,” in
Proceedings of the 5th Annual ACM Web Science Conference, New York, NY, USA, 2013, pp. 366–375.

[106] J. McGovern, S. W. Ambler, M. E. Stevens, J. Linn, E. K. Jo, and V. Sharan, The Practical Guide to Enterprise
Architecture. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[107] R. Liu, F. Chen, H. Yang, W. C. Chu, and Y.-B. Lai, “Agent-based Web services evolution for pervasive
computing,” in 11th Asia-Pacific Software Engineering Conference, 2004, pp. 726–731.

[108] A. Ranganathan and S. McFaddin, “Using workflows to coordinate Web services in pervasive computing
environments,” in Proceedings. IEEE International Conference on Web Services, 2004., 2004, pp. 288–295.

383 – REFERENCES

PervCompRA-SE

[109] N. A. B. Gray, “Comparison of web services, java-rmi, and corba service implementation,” in Fifth
Australasian Workshop on Software and System Architectures, 2004.

[110] K. Harihar and S. Kurkovsky, “Using Jini to Enable Pervasive Computing Environments,” in Proceedings of
the 43rd Annual Southeast Regional Conference - Volume 1, New York, NY, USA, 2005, pp. 188–193.

[111] T. Deng, L. Feng, Y. Suo, and Y. Chen, “Spontaneous Interoperation of Information Appliances in a Smart
Meeting Room,” in 2010 2nd International Workshop on Intelligent Systems and Applications, 2010, pp. 1–4.

[112] V. Ramakrishna, P. Reiher, and L. Kleinrock, “Distributed policy resolution through negotiation in
ubiquitous computing environments,” in 2009 IEEE International Conference on Pervasive Computing and
Communications, 2009, pp. 1–10.

[113] J. Juárez, J. A. Rodríguez-Mondéjar, and R. García-Castro, “An ontology-driven communication
architecture for spontaneous interoperability in Home Automation systems,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014, pp. 1–4.

[114] C.-F. Chiu, S. J. Hsu, S. R. Jan, and S.-M. Lyu, “The design of topology-aware overlay networks for
ubiquitous applications,” in 2009 Joint Conferences on Pervasive Computing (JCPC), 2009, pp. 229–234.

[115] E. D. Skiani, S. A. Mitilineos, and S. C. A. Thomopoulos, “A Study of the Performance of Wireless Sensor
Networks Operating with Smart Antennas,” IEEE Antennas Propag. Mag., vol. 54, no. 3, pp. 50–67, Jun. 2012.

[116] M. Z. Win, P. C. Pinto, and L. A. Shepp, “A Mathematical Theory of Network Interference and Its
Applications,” Proc. IEEE, vol. 97, no. 2, pp. 205–230, Feb. 2009.

[117] G. Feng, S. C. Liew, and P. Fan, “Minimizing Interferences in Wireless Ad Hoc Networks through Topology
Control,” in 2008 IEEE International Conference on Communications, 2008, pp. 2332–2336.

[118] L. A. Magagula, H. A. Chan, and O. E. Falowo, “Handover Coordinator for Improved Handover Performance
in PMIPv6-Supported Heterogeneous Wireless Networks,” in 2010 IEEE Wireless Communication and Networking
Conference, 2010, pp. 1–6.

[119] L. A. Magagula, H. A. Chan, and O. E. Falowo, “Achieving seamless mobility through handover
coordination in a network-based localized mobility managed heterogeneous environment,” in 21st Annual IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications, 2010, pp. 2505–2510.

[120] N. Kaur and S. Monga, “COMPARISONS OF WIRED AND WIRELESS NETWORKS: A REVIEW,” Int. J. Adv.
Eng. Tech Nology, vol. V, no. II, pp. 34–45, 2014.

[121] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A Close Examination of Performance
and Power Characteristics of 4G LTE Networks,” in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, New York, NY, USA, 2012, pp. 225–238.

[122] J. Sommers and P. Barford, “Cell vs. WiFi: On the Performance of Metro Area Mobile Connections,” in
Proceedings of the 2012 ACM Conference on Internet Measurement Conference, New York, NY, USA, 2012, pp.
301–314.

[123] P. Vignéras, “Transparency and Asynchronous Method Invocation,” in On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings, Part I, R. Meersman and Z. Tari, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 750–762.

[124] N. Ibrahim, “Orthogonal Classification of Middleware Technologies,” in 2009 Third International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2009, pp. 46–51.

[125] “MQTT M2M connectivity protocol,” 29-Oct-2014. [Online]. Available: mqtt.org. [Accessed: 21-Apr-2017].

[126] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns. O’ Reilly & Associates, Inc.,
2004.

384 – REFERENCES

PervCompRA-SE

[127] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as building blocks for the Internet
of things,” IEEE Internet Comput., vol. 14, no. 1, pp. 44–51, Jan. 2010.

[128] B. Lawson, “A Software Configurable Battery,” presented at the EVS26 International Battery, Hybrid and
Fuel Cell Electric Vehicle Symposium (EVS26), Los Angeles, California, 2012.

[129] “Battery Status API,” W3C, 2014. [Online]. Available: http://www.w3.org/TR/battery-status/. [Accessed:
21-Apr-2017].

[130] “BatteryManager,” Developers. [Online]. Available:
http://developer.android.com/reference/android/os/BatteryManager.html. [Accessed: 21-Apr-2017].

[131] N. Almonte, D. Cook, J. Devereaux, M. Henry, T. Higgins, and G. Roth, “Electronics Prognostics Reference
Architecture,” in MILCOM 2008 - 2008 IEEE Military Communications Conference, 2008, pp. 1–7.

[132] M. Wollschlaeger, S. Theurich, A. Winter, F. Lubnau, and C. Paulitsch, “A reference architecture for
condition monitoring,” in 2015 IEEE World Conference on Factory Communication Systems (WFCS), 2015, pp. 1–8.

[133] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event System Simulation, 5th ed. Prentice Hall,
2010.

[134] E. Cavalcante, T. Batista, and F. Oquendo, “Supporting Dynamic Software Architectures: From
Architectural Description to Implementation,” in 2015 12th Working IEEE/IFIP Conference on Software
Architecture, 2015, pp. 31–40.

[135] J. B. Michael, R. Riehle, and M. T. Shing, “The verification and validation of software architecture for
systems of systems,” in 2009 IEEE International Conference on System of Systems Engineering (SoSE), 2009, pp. 1–
6.

[136] H. Venkitachalam, J. Richenhagen, A. Schlosser, and T. Tasky, “Metrics for verification and validation of
architecture in powertrain software development,” in 2015 First International Workshop on Automotive Software
Architecture (WASA), 2015, pp. 27–33.

[137] Y. Liu and I. Traore, “Complexity Measures for Secure Service-Oriented Software Architectures,” in
Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007. International Workshop on,
2007, pp. 11–11.

[138] P. A. Laplante, What Every Engineer Should Know About Software Engineering (What Every Engineer
Should Know). Boca Raton, FL, USA: CRC Press, Inc., 2007.

[139] B. C. da Silva, C. N. Sant’Anna, and C. von F. G. Chavez, “An Empirical Study on How Developers Reason
About Module Cohesion,” in Proceedings of the 13th International Conference on Modularity, New York, NY, USA,
2014, pp. 121–132.

[140] W. Lee, J. K. Lee, and J. Baik, “Software Reliability Prediction for Open Source Software Adoption Systems
Based on Early Lifecycle Measurements,” in 2011 IEEE 35th Annual Computer Software and Applications
Conference, 2011, pp. 366–371.

[141] N. Hämäläinen and J. Markkula, “Quality Evaluation Question Framework for Assessing the Quality of
Architecture Documentation,” in Proceedings of the International BCS Conference on Software Quality
Management, Tampere, Finland, 2007.

[142] F. Mårtensson and P. Jönsson, “Software Architecture Simulation – a Continuous Simulation Approach,”
Department of Software Engineering and Computer Science, Blekinge Institute of Technology, Sweden, 2002.

[143] S. S. Brink, “Enabling Architecture Validation in the Analysis Phase of Developing Enterprise or Complex
Systems using Enterprise Architecture Simulation Environment (EASE),” in MILCOM 2007 - IEEE Military
Communications Conference, 2007, pp. 1–8.

385 – REFERENCES

PervCompRA-SE

[144] R. Roshandel, N. Medvidovic, and L. Golubchik, “A Bayesian Model for Predicting Reliability of Software
Systems at the Architectural Level,” in Proceedings of the Quality of Software Architectures 3rd International
Conference on Software Architectures, Components, and Applications, Berlin, Heidelberg, 2007, pp. 108–126.

[145] “Speed Sensor Edge 520.” [Online]. Available: https://www8.garmin.com/manuals/webhelp/edge520/EN-
US/GUID-F50056D5-6DC6-43D2-81A6-61095620E142.html. [Accessed: 21-Apr-2017].

[146] K. Byrne, “Best phone battery life 2016: Top smartphones tested,” Expertreviews, 02-Nov-2016.

[147] “SIL3 Speed Sensors.” [Online]. Available:
http://www.jaquet.com/site/assets/files/1218/flyer_sil3_a4_en.pdf. [Accessed: 21-Apr-2017].

[148] “NEO-6 u-blox 6 GPS Modules.” [Online]. Available: https://www.u-blox.com/sites/default/files/NEO-
M8_DataSheet_(UBX-13003366).pdf.

[149] X. Meng, P. Zerfos, V. Samanta, S. H. Y. Wong, and S. Lu, “Analysis of the Reliability of a Nationwide Short
Message Service,” in IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications,
2007, pp. 1811–1819.

[150] “Reducing LCD TV Warranty Claims Through an Organized and Aggressive Approach to Sub-Assembly and
Full LCD TV Assembly Accelerated Stress Testing,” presented at the International Applied Reliability Symposium,
EUROPE, Milan, Italy, 2010.

[151] “Frequency of server failure based on the age of the server (per year).” [Online]. Available:
https://www.statista.com/statistics/430769/annual-failure-rates-of-servers/. [Accessed: 21-Apr-2017].

[152] O. Bäckström, J.-E. Holmberg, M. Jockenhövel-Barttfeld, M. Porthin, A. Taurines, and T. Tyrväinen,
“Software reliability analysis for PSA: failure mode and data analysis,” Nordic Nuclear Safety Research (NKS), NKS-
341, ISBN 978-87-7893-423-9, Jul. 2015.

[153] L. YAN, “Applying Model Checking to Pervasive Computing Systems,” Department of Computer Science,
School of Computing. National University of Singapore, Singapore, 2014.

[154] D. Storm, “Of 10 IoT-connected home security systems tested, 100% are full of security FAIL,”
COMPUTERWORLD, 11-Feb-2015.

[155] “How to save on software maintenance costs,” Omnext, Nov. 2014.

[156] S. Jary, “How to properly charge a phone’s battery: stop charging from zero to 100% and other tips,”
TechAdvisor, 26-Jul-2016.

[157] H. Pham, System Software Reliability. Springer London, 2006.

[158] J. Iqbal, D. S.M.K.Quadri, and T. Rasool, “Article: On Way to Acquiring Reliability Growth in Software
Systems,” Int. J. Comput. Appl., vol. 24, no. 7, pp. 33–36, Jun. 2011.

[159] “Traffic Safety facts Research Note,” U.S. Department of Transportation, National Highway Traffic Safety
Administration, Aug. 2016.

[160] D. Toups, “How many times will you crash your car?,” Forbes.

[161] “2013 Motor Vehicle Crashes: Overview,” U.S. Department of Transportation, National Highway Traffic
Safety Administration, Dec. 2014.

[162] “OMG Systems Modeling Language (OMG SysML),” Object Management Group (OMG), 1.3.

[163] D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman, “ShAir: Extensible Middleware for Mobile Peer-to-
peer Resource Sharing,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
New York, NY, USA, 2013, pp. 687–690.

[164] N. E. Petroulakis, I. G. Askoxylakis, and T. Tryfonas, “Life-logging in smart environments: Challenges and
security threats,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 5680–5684.

386 – REFERENCES

PervCompRA-SE

[165] B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun.
Mag., vol. 52, no. 2, pp. 90–96, Feb. 2014.

[166] “IEEE P802.11- TASK GROUP AH - MEETING UPDATE.” [Online]. Available: www.ieee802.org. [Accessed:
21-Apr-2017].

[167] W. Sun, M. Choi, and S. Choi, “IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz,” J. ICT Stand., vol.
1, pp. 83–108, 2013.

[168] M. Castelluccio, “A New Bluetooth in 2016,” Strategic Finance, vol. 97, no. 12, pp. 55–56, 01-Dec-2015.

[169] J. Hyun, J. Li, H. Kim, J. H. Yoo, and J. W. K. Hong, “IPv4 and IPv6 performance comparison in IPv6 LTE
network,” in 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), 2015, pp. 145–
150.

[170] S. S. I. Samuel, “A review of connectivity challenges in IoT-smart home,” in 2016 3rd MEC International
Conference on Big Data and Smart City (ICBDSC), 2016, pp. 1–4.

[171] “Intel Edison.” [Online]. Available: https://software.intel.com/en-us/iot/hardware/edison. [Accessed: 21-
Apr-2017].

[172] “ARTIK Modules.” [Online]. Available: www.artik.io. [Accessed: 21-Apr-2017].

[173] “Raspberry Pi 3.” [Online]. Available: www.raspberrypi.org. [Accessed: 21-Apr-2017].

[174] R. L. Leal, J. M. Castillo, A. G. M. López, and A. L. H. May, “Analysis of the development of smart sensors
based on MEMS devices and smart sensor platform proposal,” in 2016 IEEE International Engineering Summit, II
Cumbre Internacional de las Ingenierias (IE-Summit), 2016, pp. 1–6.

[175] I. Lacmanović, B. Radulović, and D. Lacmanović, “Contactless payment systems based on RFID
technology,” in The 33rd International Convention MIPRO, 2010, pp. 1114–1119.

[176] M. Pasquet, D. Vacquez, J. Reynaud, and F. Cuozzo, “Contactless Payment with RFID and NFC,” in
Encyclopedia of Information Science and Technology, 2nd ed., IGI Global, 2009, pp. 715–721.

[177] B. Benyo, A. Vilmos, G. Fordos, B. Sodor, and L. Kovacs, “The StoLPan view of the NFC ecosystem,” in 2009
Wireless Telecommunications Symposium, 2009, pp. 1–5.

[178] “NFC Forum.” [Online]. Available: http://nfc-forum.org/. [Accessed: 21-Apr-2017].

[179] S. Mainwaring, W. March, and B. Maurer, “From Meiwaku to Tokushita!: Lessons for Digital Money Design
from Japan,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY,
USA, 2008, pp. 21–24.

[180] “Mobile NFC Services white paper,” GSMA Association, 1.0, Feb. 2007.

[181] U. B. Ceipidor, C. M. Medaglia, A. Opromolla, V. Volpi, A. Moroni, and S. Sposato, “A Survey about User
Experience Improvement in Mobile Proximity Payment,” in 2012 4th International Workshop on Near Field
Communication, 2012, pp. 51–56.

[182] S. Jacobs, “Driving Future Technology With Solar-Powered Energy Harvesting,” Product Design &
Development, vol. 70, no. 3, pp. 26–27, 2015.

[183] P. Mars, “A survey of supercapacitors, their applications, power design with supercapacitors, and future
directions,” in 2011 IEEE Technology Time Machine Symposium on Technologies Beyond 2020, 2011, pp. 1–2.

[184] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting
communications,” IEEE Commun. Mag., vol. 53, no. 4, pp. 126–132, Apr. 2015.

[185] “DEVS-Suite,” Arizona Center for Integrative Modeling & Simulation, 2.0.

387 – REFERENCES

PervCompRA-SE

[186] O. M. Khaled, H. M. Hosny, and M. Shalan, “A Survey of Building Robust Business Models in Pervasive
Computing,” in The proceedings of the 2014 World Congress in Computer Science, Computer Engineering, and
Applied Computing, Las Vegas, Nevada, USA, 2014.

[187] B. Chikhaoui, S. Wang, and H. Pigot, “Towards Causal Models for Building Behavioral User Profile in
Ubiquitous Computing Applications,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, New
York, NY, USA, 2012, pp. 598–599.

[188] F. Kawsar and A. J. B. Brush, “Home Computing Unplugged: Why, Where and when People Use Different
Connected Devices at Home,” in Proceedings of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, New York, NY, USA, 2013, pp. 627–636.

[189] L. Takayama, C. Pantofaru, D. Robson, B. Soto, and M. Barry, “Making Technology Homey: Finding Sources
of Satisfaction and Meaning in Home Automation,” in Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, New York, NY, USA, 2012, pp. 511–520.

[190] E. Grönvall and N. Verdezoto, “Beyond Self-monitoring: Understanding Non-functional Aspects of Home-
based Healthcare Technology,” in Proceedings of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, New York, NY, USA, 2013, pp. 587–596.

[191] L. Tian et al., “Understanding User Behavior at Scale in a Mobile Video Chat Application,” in Proceedings of
the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA, 2013,
pp. 647–656.

[192] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Expectation and Purpose: Understanding
Users’ Mental Models of Mobile App Privacy Through Crowdsourcing,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, New York, NY, USA, 2012, pp. 501–510.

[193] S. L. Presti, M. Butler, M. Leuschel, and C. Booth, “A Trust Analysis Methodology for Pervasive Computing
Systems,” in Trusting Agents for Trusting Electronic Societies: Theory and Applications in HCI and E-Commerce, R.
Falcone, S. Barber, J. Sabater-Mir, and M. P. Singh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
129–143.

[194] J. E. Bardram, “The Java Context Awareness Framework (JCAF) – A Service Infrastructure and
Programming Framework for Context-Aware Applications,” in Pervasive Computing: Third International
Conference, PERVASIVE 2005, Munich, Germany, May 8-13, 2005. Proceedings, H.-W. Gellersen, R. Want, and A.
Schmidt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 98–115.

[195] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E. J. Malm, “Managing context information in mobile
devices,” IEEE Pervasive Comput., vol. 2, no. 3, pp. 42–51, Jul. 2003.

[196] K. Kalapriya, S. K. Nandy, D. Srinivasan, R. Uma Maheshwari, and V. Satish, “A Framework for Resource
Discovery in Pervasive Computing for Mobile Aware Task Execution,” in Proceedings of the 1st Conference on
Computing Frontiers, New York, NY, USA, 2004, pp. 70–77.

[197] C. Seo et al., “Exploring the Role of Software Architecture in Dynamic and Fault Tolerant Pervasive
Systems,” in Software Engineering for Pervasive Computing Applications, Systems, and Environments, 2007.
SEPCASE ’07. First International Workshop on, 2007, pp. 9–9.

[198] D. Hafez, S. G. Aly, and A. Sameh, “A Context and Service-Oriented Architecture with Adaptive Quality of
Service Support,” J Comput Appl, vol. 18, no. 1, pp. 37–51, 2011.

[199] “Towards a common pattern language for ubicomp application design,” presented at the The second
International Conferences on Pervasive Patterns and Applications (PATTERNS), Lisbon, Portugal, 2010.

[200] A. G. Wilde, P. Bruegger, and B. Hirsbrunner, “An overview of Human-Computer Interaction patterns in
pervasive systems,” in 2010 International Conference on User Science and Engineering (i-USEr), 2010, pp. 145–150.

[201] P. Sauter, G. Vögler, G. Specht, and T. Flor, “Extending the MVC Design Pattern towards a Task-Oriented
Development Approach for Pervasive Computing Applications,” in Organic and Pervasive Computing – ARCS 2004:

388 – REFERENCES

PervCompRA-SE

International Conference on Architecture of Computing Systems, Augsburg, Germany, March 23-26, 2004.
Proceedings, C. Müller-Schloer, T. Ungerer, and B. Bauer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 309–321.

[202] H. Shams and K. Zamanifar, “MVCC: An Architectural Pattern for Developing Context-aware Frameworks,”
Procedia Comput. Sci., vol. 34, pp. 344–351, 2014.

[203] C. Detweiler and K. Hindriks, “Value-sensitive design patterns for pervasive health care,” in 2012 IEEE
International Conference on Pervasive Computing and Communications Workshops, 2012, pp. 908–913.

[204] L. Fuentes, N. Gámez, and P. Sánchez, “Aspect-oriented design and implementation of context-aware
pervasive applications,” Innov. Syst. Softw. Eng., vol. 5, no. 1, pp. 79–93, 2009.

[205] L. M. Daniele, E. Silva, L. Ferreira, and M. van Sinderen, “A SOA-based platform-specific framework for
context-aware mobile applications,” in Enterprise Interoperability, Berlin Heidelberg, 2009, vol. 38, pp. 25–37.

[206] A. Carton, S. Clarke, A. Senart, and V. Cahill, “Aspect-Oriented Model-Driven Development for Mobile
Context-Aware Computing,” in Proceedings of the 1st International Workshop on Software Engineering for
Pervasive Computing Applications, Systems, and Environments, Washington, DC, USA, 2007, p. 5–.

[207] B. Abdelkrim, B. Noureddine, and B. Fethi Tarik, “A Comparative Study of Aspect-Oriented and Object-
Oriented Implementations: Pervasive System Use Case,” in Digital Information Processing and Communications:
International Conference, ICDIPC 2011, Ostrava, Czech Republic, July 7-9, 2011, Proceedings, Part II, V. Snasel, J.
Platos, and E. El-Qawasmeh, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 178–192.

[208] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a Tool-Based Development Methodology for
Pervasive Computing Applications,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1445–1463, Nov. 2012.

[209] K. Henricksen and J. Indulska, “A software engineering framework for context-aware pervasive
computing,” in Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of
the, 2004, pp. 77–86.

[210] D. Moreno-Garcia and J. Estublier, “Model-Driven Design, Development, Execution and Management of
Service-Based Applications,” in 2012 IEEE Ninth International Conference on Services Computing, 2012, pp. 470–
477.

[211] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[212] J. Kim and J. W. Lee, “OpenIoT: An open service framework for the Internet of Things,” in 2014 IEEE World
Forum on Internet of Things (WF-IoT), 2014, pp. 89–93.

[213] P. Vlacheas et al., “Enabling smart cities through a cognitive management framework for the internet of
things,” IEEE Commun. Mag., vol. 51, no. 6, pp. 102–111, Jun. 2013.

[214] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and P. Christen, “Sensor discovery and
configuration framework for the Internet of Things paradigm,” in 2014 IEEE World Forum on Internet of Things
(WF-IoT), 2014, pp. 94–99.

[215] J. Li, Y. Shvartzshnaider, J. A. Francisco, R. P. Martin, and D. Raychaudhuri, “Enabling Internet-of-Things
services in the MobilityFirst Future Internet Architecture,” in 2012 IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2012, pp. 1–6.

389 – INDEX

PervCompRA-SE

Index

A

Accessibility · 70
active object · 146
active user interaction · 45
Activity Theory · 34
Activity-aware object · 145
Actuator · 348
A-MUSE · 365
Analysis · 348
Analysis Approach · 33
Anonymity · 352
Architectural baseline · 30
architectural challenges · 25, 26, 47
Architectural Patterns · 30
Architectural Vision · 30
Architecture Patterns · 38
area expert · 368
area taxonomy · 368
Aspect · 23
AspectJ · 23, 366
Aspect-Oriented executable UML · 365
Availability · 70

B

Bluetooth LE · 305
BlueTooth LE · 303
Business Analysis · 21
business architecture · 33
Business Context · 30
business domain · 111
Business Needs · 30
business reference architecture · 33

C

CADSEs · 370
casual model · 356
chain of superiority · 108
characteristic score · 47
CIPS · 54
CMF framework · 360
Cohesion · 178
Common Dictionary · 30
communication protocols · 303
comparative study · 366
complexity · 367
Complexity · 41, 54, 72, 85, 108, 178, 271
complexity score · 114, 131, 132, 165, 185, 216

Component-Based Self-Adaptive Software Systems
Reference Architecture · 62

composite function · 121
Computer Distribution · 353
Concurrency · 22
conflict · 104
Conflict · 36
constraint feature · 106
constraint language · 370
Content Rendering · 348
context information · 369
Context Modeling Language · 369
Corrective Action · 349
Coupling · 178
cross-cutting concerns · 365

D

Data Access rule · 352
Data Integrity · 352
Data leakage · 352
Data Transmission Security · 352
Decision Rule · 348
degree of confidence · 173
Deployment Topologies · 38
Design Patterns · 38
development methodologies · 367
Device Identifier · 348
DiaSpec · 367
dummy object · 146

E

Emergency · 74
enabler feature · 106
Entity Container · 360
Entity Environment · 360
Environment Protection · 351
Error Message · 349
Error outcome · 349
Error Risk · 349
Essence of Existing Architectures · 30
evolvability · 367
Experience Improvement · 353
explicit Input · 350

F

Failure Handling · 22
Fault · 349

390 – INDEX

PervCompRA-SE

Fault Tolerance · 31
framework for privacy/publicity · 357
Futuristic Reference Architecture

FRA · 26

H

Heterogeneity · 22
Heterogeneity of Devices · 31
home automation systems · 357

I

I-Centric · 61
IIBA · 21
Information Classification · 350
Information Control · 350
Information Tracking · 350
Informative Message · 353
Intel Edison · 304
Interpretation rule · 348
Invalid Operational Directive · 351
IoT Security and Privacy Reference Architecture · 59
issue · 102

J

Joinpoint · 23

K

Knowledge Mining · 349

L

Learning · 78

M

main module · 173
maintainability · 367
Maintainability · 178
maturity score · 47
maximize · 104
Maximize · 36
MEMS · 306
minimize · 104
Minimize · 36
Mobile Phone Utilization · 353
model-driven · 370
Model-Driven Architecture · 366

Modeling Approach · 36
modularity · 367

N

NFC · 308
NGSON · 56

O

Object invisibility · 350
Object Profiling · 349
Object-Role Modeling · 369

ORM · 369
ontology · 102
Openness · 22

P

Pareto Chart
 · 109

Part Object · 147
passive object · 146
Pattern Recognition · 349
Pervasive Self-Care Infrastructures · 58
platform-independent model · 366
Pointcut · 23
Policy-aware object · 145
Practice Reference Architecture

PRA · 26
priority pyramid · 108
Privacy and Trust · 31
private · 147
Process Engineering · 35
Process–aware object · 145
Prototype · 30
provides the required resources for entities. Access

Control · 360
PSC-RM · 51
public · 147

Q

QoS deadline Type · 351
QoS Improvement · 351
Qos-Broker · 361
Quality Average Measure · 351
Quality Boundaries · 351
Quality of Service · 22

R

Raspberry PI · 305

391 – INDEX

PervCompRA-SE

RA-Ubi · 47
Relationships · 104
Resident Object · 148
Retail · 81
reusability · 367

S

safety · 358
Safety Alert · 351
Safety Compromise · 351
Samsung ARTIK · 304
satisfaction impact · 175
Scalability · 22
scale · 102
Security · 22
Security Rule · 352
sensed · 369
Sensor · 348
Service Coordinator · 365
Service Omnipresence · 31
Shared resource Conflict · 352
Side Effect · 352
smart environment · 146
Smart Environment · 362
Smart Environment Software Reference Architecture · 53
Smart Object · 362
smart phones · 357
Smart Service · 362
social · 147
support module · 173

T

Take-away feature · 362
Technology · 38

technology enablers · 29, 132
Technology Enablers · 38
Testability · 178
Thread · 303
Threat Counter Measure · 352
Timeless Way of Building · 23
traceability · 173
Transparency · 22
Trust Certificate · 350
Trusted Object · 148

U

UML · 219, 365
Unique User Identifier · 353
Unnecessary motions · 350

V

value · 102
video-chatting services · 357
Visitor Object · 148

W

Weaving Process · 23

Z

ZigBee · 303
Z-Wave · 303

	Pervasive computing reference architecture from a software engineering perspective (PervCompRA-SE)
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592431923.pdf.gpP88

