
IEEE COMMUNICATIONS SURVEYS & TUTORIALS 1

Survey of Context Provisioning Middleware

Michael Knappmeyer, Saad Liaquat Kiani, Eike Steffen Reetz,

Nigel Baker, Ralf Tönjes

Abstract—In the scope of ubiquitous computing, one of the key issues is the awareness of context, which includes

diverse aspects of the user’s situation including his activities, physical surroundings, location, emotions and social

relations, device and network characteristics and their interaction with each other. This contextual knowledge is typically

acquired from physical, virtual or logical sensors. To overcome problems of heterogeneity and hide complexity, a signif-

icant number of middleware approaches have been proposed for systematic and coherent access to manifold context

parameters. These frameworks deal particularly with context representation, context management and reasoning, i.e.

deriving abstract knowledge from raw sensor data. This article surveys not only related work in these three categories

but also the required evaluation principles.

Index Terms—Middleware, Context Provisioning, Context Management, Context Representation, Evaluation, Simula-

tion, Ubiquitous Computing.

✦

1 INTRODUCTION

U BIQUITOUS Computing (UbiComp) para-
phrases the paradigm of hardware and

software components being transparently inter-
woven by means of wireless communication.
Value added computer intelligence resulting
from the smart and autonomous networking of
multiple devices has much more potential than
that originating from a single, isolated device.
A key objective of these systems is to signif-
icantly simplify Human Computer Interaction
(HCI) by deploying sensors, processors and ac-
tuators in the fabric of everyday life, such that
their presence and complexity is hidden from
users [1]. UbiComp is commonly understood
as the next wave of an evolution chain of com-
puting paradigms, which have gone through
the personal computing (second generation)
and distributed computing (third generation)

• M. Knappmeyer, E.S. Reetz and R. Tönjes are with the Faculty
of Engineering and Computer Science, University of Applied
Sciences Osnabrück, Germany.
E-mail: {m.knappmeyer, e.reetz, r.toenjes}@hs-osnabrueck.de

• S.L. Kiani and N. Baker are with the Faculty of Environment and
Technology, University of the West of England, Bristol, UK.
E-mail: saad2.liaquat@uwe.ac.uk

First manuscript submitted December 31, 2011. Revised manuscript
submitted October 9, 2012. Final manuscript submitted December
17, 2012.

from the roots of mainframe computing. Figure
1 illustrates our view of this evolution and
highlights some of the features pertinent to the
realisation of UniComp.

!"#

Internet of Things Participatory Sensing

Smart Sensors & Actuators

Context-Awareness

Personal Computing Mainframe Computing

Distributed Computing

Ubiquitous Computing

$%#

Augmented Reality

Grid Computing

Mobile Computing

&%#

'%#

Cloud Computing

Fig. 1. Evolution Chain and Features of Ubiqui-
tous Computing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323895909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 2

1.1 Context and Context-awareness

Context is information about a location, its
environmental attributes (e.g. noise level, light
intensity, temperature, and motion) and the
people, devices, objects and software agents
that it contains. Context may also include sys-
tem capabilities, services offered and sought,
the activities and tasks in which people and
computing entities are engaged, and their sit-
uational roles, beliefs, and intentions. Context-
awareness is one of the key enablers to facili-
tate proactive support of users in their current
situation. Users do not have to define their
situation explicitly by utilising time consuming
and counter-intuitive input devices but it is im-
plicitly recognised by the “smart” environment
instead. The idea that computing devices can
sense and react to stimuli from users’ environ-
ment is labelled as context-aware computing.

User identity and location are the most
prominent context parameters widely utilised
in various location-based services. Beyond that,
as defined by Dey [2], context may comprise
any information relevant for describing the
users’ interaction with each other and with
context-aware services and applications. In our
digital world there is a large amount of dis-
tributed information available describing such
interaction in a diverse way, e.g. the location of
a person (GPS enabled smart phones), activity
(phone-based gyroscope, accelerometer, fore-
ground applications, digital calendar), social
situation (location, time of the day, proxim-
ity to friends) and evolving preferences (self-
configured and history-based digital profiles).

Context-awareness is an interdisciplinary
field of research involving communication en-
gineering and computer science, more pre-
cisely mobile communication, HCI (Human
Computer Interaction) design, sensor data pro-
cessing, feature extraction and artificial in-
telligence. In these communities a large set
of application domains benefiting from con-
textual awareness has been proposed. Use
cases of high potential include health care and
well-being [3], e-learning and campus life [4],
tourism and travelling [5], office and other
business applications [6], advertising and e-
commerce [7], entertainment [8], gaming [9]

and social community applications [10]. More-
over, smart places – an emerging research field
in itself – heavily rely on context-awareness. A
smart place is a geographically bounded area
providing smart interaction between computa-
tional devices and users located in the space.
Smart offices, smart labs and smart homes are
examples of smart places [11].

1.2 Context-aware Systems

The computing systems that are designed to
provide context-aware services have to per-
form a variety of distinct functions. These in-
clude collection of raw data about the users
and their environment, applying different rea-
soning techniques on such data to synthesise
higher-level context information, storage of the
context information in a retrievable and in-
dexed format to make available when required,
management and coordination of context and
related information between different compo-
nents of the systems, and to provide a platform
for building, hosting or enabling context-aware
applications and services.

A number of design approaches have been
attempted for collective provisioning of these
functions with the overall aim of making con-
text information available about anything, any
time, and anywhere. Context-aware systems
are usually designed as middleware adopting
a layered design – each functional layer hiding
the details of the underlying layers (see Fig.
2). The primary benefit of this approach is
the encapsulation of varying complexities of
different functions. Each layer builds on the
information made available by the layer below
it, e.g. the Context Processing Layer uses data
collected at the Data Acquisition Layer while
the Applications Layer interacts with the Con-
text Processing Layer to retrieve context and
does not concern itself with the details of data
acquisition or synthesis process.

With such a variety of functions to perform,
the design, development, operation and evalu-
ation of context-aware systems becomes a very
complex task. Each functional layer in the mid-
dleware faces multidimensional challenges in
contributing to the overall objective of context
provisioning, e.g. with respect to data acqui-
sition, to fully exploit awareness, context has

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 3

Sensors Layer

Data Retrieval Layer

Context Processing Layer

Applications Layer

Context Management Layer

Fig. 2. Layered design of a context-aware mid-
dleware

to be acquired from heterogeneous sources, be
processed and aggregated, as well as associated
to users, devices and smart artefacts. Context
is not only fetched from physical sensors but
also from virtual and logical sensors, e.g. from
databases or web services. This diversity and
general applicability of context-awareness sub-
stantiate the need for architectural and func-
tional support of ubiquitous services.

The design and operation of a context pro-
visioning middleware is also laterally affected
by the context model or representation scheme
as it can influence the expressiveness and util-
ity of the contextual information. In addition,
current trends and innovations facilitate rapid
development and deployment of new (smart-
phone) applications and services through the
use of Service Creation Environments and spe-
cific Software Development Kits (SDK). Their
context demands are unexpected and not eas-
ily predictable. The support of both existing
context-aware applications/services and those
emerging in the future requires functional scal-
ability and gradual extendibility of the mid-
dleware with regard to new context types and
new context processing capabilities. With their
increasing processing, storage and communica-
tion capabilities, smartphones can be consid-
ered as personalised companions for interfac-
ing with the digital world. Focussing on them
as the main source of interaction allows for
increasing the physical size of smart spaces to
urban or even global extent. Therefore physical
scalability is another prerequisite of a context

provisioning middleware.
The complex operation of a context-aware

system is illustrated as an autonomic com-
munication cycle in Fig. 3. The cycle high-
lights the acquisition of raw data from sen-
sors and user profiles, undergoing an aggre-
gation/processing stage through application of
various reasoning mechanisms, the resultant
information providing a basis for decision mak-
ing, which can support adaptation in context-
based services and eventually serve as an in-
put to the next cycle of (higher-level) context
generation. In general, decision and adaptation
are considered to be rather application/service
specific and therefore tend to be realised by
the actual service/application logic. The col-
lection of sensor data and its analysis can
be performed by a common middleware that
is able to support a huge variety of appli-
cation/service domains. Individual functions
can be logically organised in different lay-
ers (cf. Fig. 2) of the context-aware middle-
ware. The middleware as a whole thus acts
a glue that binds these functions together to
achieve the goal of context-provisioning. The
role of a context-aware middleware is therefore
both central and critical to the effectiveness of
context-aware services in the realm of ubiqui-
tous computing, without which the virtual and
real worlds can not be bridged.

This article presents a retrospective view of
the means by which existing context-aware
systems carry out their functions using their
constituent components for provision of con-
textual information and services. The com-
prehensive review and analyses provided in
the following sections are focussed on how
context-aware middleware systems undertake
context modelling, management, provisioning
and reasoning. Particularly, we analyse how
such complex and interwoven systems, with
the difficult task of bridging the virtual and
real worlds, can be evaluated through multi-
disciplinary approaches.

1.3 Major Contributions

This article assembles the state of the art in the
multifarious aspects of context-aware systems.
The comprehensive review and analyses of

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 4

these aspects contains significant contributions
in the following categories:

The concept of context: Elaboration of the
conceptual definition of context and
context-awareness, including a view of
how the definition of context has evolved
over time, especially regarding human
computer interaction.

Context modelling: A review of the context
modelling and representation approaches,
classifications of context models, the sig-
nificance of context meta data and discus-
sion on the features exposed by various
context models that affect the utility and
suitability of these models.

Context management: Identification of dis-
tinct functions carried out by context pro-
visioning middleware and a review of ex-
isting classification of these systems. We
present the basis of new classifications in
terms of design, architecture and technol-
ogy based parameters. A review of ex-
isting context provisioning middleware is
presented, which serves as a basis for
developing our novel three-tier classifica-
tion based on the conceptual design model
(layered, object-oriented, event-based, etc.)
of a context provisioning middleware,
the resulting architecture and implemen-
tation (central server, multiple-distributed
servers, peer-to-peer, etc.) and an intersec-
tion of these two categories. Our classifica-
tion presents a novel view for examining
context provisioning middleware.

Context reasoning: We discuss the role of
context reasoning as a critical function
provided by context provisioning mid-
dleware, highlight the variety of multi-
disciplinary techniques employed in con-
text provisioning middleware and review
the most prominent of these techniques.
The context reasoning and processing ap-
proaches are categorised with respect to
their requirements and features, and ex-
amples of their application domains are
provided as well.

Evaluation of context middleware: A major
contribution of this article is the detailed
discussion on the evaluation strategies

and mechanisms of context provisioning
middleware. We identify the challenges
faced in evaluating a multidisciplinary
domain, review the approaches used
in evaluation of contemporary context
middleware as a whole and that of their
individual functions and components,
identify the recent trends and evolution
of evaluation methodologies in these
systems. A comparison of these evaluation
methodologies, with respect to the target
environment and requirements, is also
presented along with examples from the
state of the art.

Domain outlook: Finally, the domain of con-
text provisioning is discussed in a broader
perspective, highlighting the overlap and
its interaction with other research disci-
plines. Based on lessons learnt and recent
trends, we sketch the expected evolution
and identify future research objectives.

Our objective is not only to present an in
depth coverage of the approaches taken in
fulfilling the critical functions of context provi-
sioning middleware, but also to present a guide
that comprehensively introduces the domain of
context-aware systems to new researchers. To
achieve this objective, it is essential to present
the background and definitions of pertinent
domain concepts, which we do so in Section
2. The overall article structure is described in
the following subsection.

1.4 Structure

We first of all elaborate the concepts of
ubiquitous computing, context, and context-
awareness as required background knowledge
in Section 2. Context modelling and representa-
tion are discussed from a classification perspec-
tive in Section 3 and the context management
approaches adopted in existing systems are
discussed and analysed in Section 4. Section 5
contains a discussion on the context reasoning
and inference mechanisms. Section 6 presents a
detailed review and analysis on the evaluation
techniques of these middleware systems. In this
article decision taking is not covered, actua-
tion and adaptation are only briefly addressed
when discussing the evaluation (Section 6).

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 5

The article finally concludes with a summary,
presentation of future trends and discussion of
open issues in Section 7.

2 BACKGROUND AND DEFINITIONS

2.1 Ubiquitous Computing

Ubiquitous Computing (UbiComp) evolved
from mobile communication and relies on
context-awareness as one of its key features (cf.
Fig. 1). The term has been shaped by Mark
Weiser [1]. Weiser’s vision encompasses a new
view and a paradigm shift with regard to the
interaction of human beings with computa-
tional resources distributed pervasively across
the environment and becoming part of the fab-
ric of everyday life. Interaction includes both
novel input mechanisms (e.g. gesture recogni-
tion based on accelerometers) and output de-
vices (e.g. displays embedded in furniture). The
use of processing resources is facilitated and
refreshing as a “walk in the woods” [1]. Com-
puters are pushed into the background. Ambi-
ent intelligence [13] arises from interweaving
small embedded devices by means of mostly
wireless communication. Overall, the HCI is
simplified by autonomous adaptation to the
users’ situation and demands – and not vice
versa. UbiComp systems aid in overcoming the
problem of information overload.

When introduced, these UbiComp concepts
appeared as a science fictional long-term target.
However, due to the intermediate technologi-
cal progress in increased processing, sensing,
memory and communication capabilities, the
vision has already become true to a certain
extent. The size of handheld devices, environ-
mental sensors and smart-its [14] has decreased
continuously due to the advancements in solid-
state technology. Numerous protocols and ra-
dio access technologies have been developed
for supporting wireless communication in var-
ious ranges (e.g. Wi-Fi, IEEE 802.11; Zigbee,
IEEE 802.15.4; Bluetooth, IEEE 802.15.1; 3GPP
3G/LTE). Today, smartphones, wireless sensors
and networked desktop computers can eas-
ily be interwoven by always-on connectivity.
However, there are a number of barriers to be
overcome before truly context-aware applica-

tions and services can be deployed and made
widely available.

2.2 Context

According to Dey [2], context is any infor-
mation that can be used to characterise the
situation of an entity (person, place, physical
or computational object) that is considered rel-
evant to the interaction between entity and
application [2]. This definition is by far the
most cited in the literature. Zimmermann pro-
poses five fundamental categories of context
information: time, location, activity, relations
and individuality [15].

Regarding the definition of a situation in
context-aware systems, different views exist in
the research community. Zimmermann defines
it as “the state of a context at a certain point (or
region) in space at a certain point (or interval)
in time, identified by a name” [15]. Being a
structured representation of a part of the con-
text, it can be compared to a snapshot taken
by a camera. Location and time can be used
as spatio-temporal coordinates. Giunchiglia fol-
lows a more philosophical approach and sees
context as a “subset of the complete state of
an individual that is used for reasoning about
a given goal” [16]. Situation is then “the com-
plete state of the universe at an instant of time”.
With regard to situation-awareness, Billings
[17] defines a situation as “an abstraction that
exists within our minds, describing phenomena
that we observe in humans performing work in
a rich and usually dynamic environment”. In
summary, a situation may contain an infinite
variety of contextual information.

Context can be classified into the following
(incomplete) list of elements:

• Spatial context: information about the lo-
cation, e.g. absolute geographic coordi-
nates, relative physical proximity (dis-
tance), street, city, main business of places
in proximity (e.g. shopping mall, univer-
sity campus);

• Temporal context: information about the ab-
solute time, relative time, day time (e.g.
morning, afternoon, evening), weekend vs.
business day, season;

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 6

Collect

Act &

Adapt

Decide

Analyse &

Aggregate

Physical

Sensors

Virtual

Sensors

User

Profiles

Logical

Sensors

Context

Processing

Context

Modelling

Context

Management

Reasoning/

Inference

Risk

Analysis

Decision

TheoryHypothesis

generation

Mobile Device

Actuation

Content

Tagging &

Lookup

User

Assistance

Environment

Actuation

Feature

Extraction

Application &
Service Logic

Context Provisioning Middleware

Fig. 3. The Context-Aware System Cycle (adapted from [12])

• Device context: information about the users’
interaction device(s), i.e. processing capa-
bilities, input sensors, visualisation capa-
bilities (e.g. supported codecs, screen size);

• Network and communication context: infor-
mation about network characteristics, e.g.
Wi-Fi access points in proximity, available
bandwidth and throughput, supported
Quality of Service (QoS) class, delay, trans-
mission costs [18];

• Environmental context: information refer-
ring to the physical environment of an
entity, e.g. noise level, air pressure, light
intensity, pollution;

• Individuality and user profile context: infor-
mation about the preferences, interests and
habits associated to uniquely identified
users;

• Activity context: information about what
an entity does, which task it is currently
involved in and what it intends to do next;

• Mental context: information about internal
states of mind, e.g. a user’s feelings and
mood, level of stress;

• Interaction context: interaction may com-
prise both social interaction between sev-
eral users and interaction between users
and an application or service.

Interestingly, some of these context cate-
gories are directly or indirectly related to each

Location

Proximity

Street/
business

Time of day

Day of week

Day of month

Season

Noise

Brightness

Pollution

Network Sensors

Status/Activity Settings

Weather

QoS

Social profiles

Emotional state

Activities

Spatial Temporal Environmental

Device/Network Physical/Mental User Profile

Fig. 4. Examples of various types of personal
context

other. For instance, considering the contextual
illustrations from Fig. 4, the spatial context in-
fluences the temporal context since time of day
directly depends on the current time zone. Var-
ious abstraction levels are also notable within
most of the presented context types, e.g. some
of the context elements associate information to
any type of entity (user, device, room) whereas
other elements are only applicable to selected
sets of entities. Location, identity, time and ac-
tivity are considered being the most important
[19] in contemporary literature and context-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 7

aware systems. Fig. 5 illustrates a partial evo-
lution map, according to published literature,
of the definition and understanding of ‘context’
in human-computer interaction. In the scope of
this article, we define context as follows:

Context is any information that provides knowl-
edge and characteristics about an entity (a user, an
application/service, a device, or a spatially bound
smart place) which is relevant for the interaction
between the entities themselves and with the digital
world. Context can be categorised as being static,
dynamic and rapidly changing.

2.3 Context-Awareness

The ability of a service, application or actua-
tor to adapt to a specific context is referred
to as context-awareness. For a piece of data
to contribute to the adaptation ability of an
application or service, it has to go through
to complete lifecycle of acquisition, reason-
ing, representation, organisation, and then be
communicated to the application or service
to act upon it. These lifecycle stages are il-
lustrated in Fig. 6. Given the classification of
context types (cf. Section 2.2), awareness can
be categorised accordingly to define the spe-
cific focus, e.g. location-awareness, network-
awareness. The term context-awareness was first
introduced by Schilit and Theimer [20]. Typi-
cally, a context-aware system follows the auto-
nomic communication feedback loop presented
in Fig. 3 and comprises the following tasks [12],
[15], [24]:

1) Perception/Acquisition, i.e. collection of rel-
evant data allowing conclusion to the
context;

2) Reasoning/Inference, i.e. deduce more
meaningful information from the raw
data;

3) Learning from historic context information
and actions;

4) Context Representation, i.e. representation
and modelling of context information in
a machine interpretable way;

5) Management and Diffusion of context infor-
mation;

6) Actuation, i.e. Triggering/adapting the
service execution or application be-
haviour based on the available context

information.
Moreover, three different categories of adap-

tation can be identified [19]:
1) presentation of information and services

to a user, i.e. information is filtered and
services are selected based on users’ con-
text;

2) automatic execution of a service and
adaptation of an actuator, i.e. the service
execution logic and actuation behaviour
depend on users’ context;

3) tagging of context to content (or informa-
tion in general), i.e. context is associated
to content in order to retrieve it more
easily later on.

In order to take various levels or complexity
into account the following definition of context-
awareness is proposed.

The adaptive behaviour of services, applications
and actuators according to the detected context
depends on the degree of consciousness and con-
text complexity. It can be subdivided into three
different stages: Context-based adaptation refers
to applications querying context on-demand syn-
chronously and changing the execution based on
current context parameters. Context-aware adap-
tation requires an event-based asynchronous con-
text diffusion in order to allow the execution logic to
adapt on sensed and propagated events of interest.
Situation-aware adaptation is more complex and
requires (primitive) context to be further aggregated
and high-level context to be inferred.

The different stages of this adaptive be-
haviour can be explained with the following
example: consider an application on a user’s
mobile device that can notify the user about
nearby restaurants in a certain location. Such
an application may poll the on-device GPS for
coordinates and the time service for the time
of the day. When certain conditions are met,
e.g. time of day that can be considered a meal
time and location is known, the application can
query a location information service for nearby
restaurants and notify the user. We term this
behaviour context-based because the application
itself is not aware of the user’s context, but
is merely looking for information that can fire
certain rules in its logic.

The next stage of context-awareness comes
when such an application no longer actively

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 8

1998 2001 2004 2007 2010

Loca
tio

n
[2

0]

U
se

r
an

d
his

en
viro

nm
en

t,
e.

g. lo
ca

tio
n, tim

e,
te

m
per

at
ure

[2
1]

M
obile

dev
ic

es
, in

fr
as

tru
ct

ure
an

d
en

viro
nm

en
t [2

2]

Char
ac

te
ris

tic
s

of an
en

tit
y’s

sit
uat

io
n

[2
]

Loca
tio

n, en
viro

nm
en

t,
peo

ple
, dev

ic
es

, so
ftw

ar
e

ag
en

ts
[2

3]

U
se

r’
s

sit
uat

io
n

(s
pac

e,
tim

e
an

d
ac

tiv
ity

) [1
5]

Know
led

ge
/ch

ar
ac

te
ris

tic
s

of
an

en
tit

y,
di

gi
ta

l su
rr

ou
ndi

ngs

Fig. 5. A partial timeline of the evolution in the definition and understanding of ‘context’ (human-
computer interaction) in literature.

Acquire Reason Represent Manage Act

Source data (or
low-level context)

Aggregated
information

Uniformly formatted
context

Organised context
(storage, historic)

Communication
and actuation

C
on

te
xt

 d
at

a

Li
fe

cy
cl

e
st

at
es

F

un
ct

io
na

l s
te

ps

af
fe

ct
in

g
st

at
es

Fig. 6. Lifecycle stages that a context datum goes through, with respect to the functional processes
in a context middleware.

engages in information polling but rather reg-
isters its interest in particular types of context
information regarding an entity and is notified
asynchronously when certain conditions are
met. It becomes aware of the various context
elements when they exist. While these types of
applications are economical in their logic flow
and execution, they do however depend on the
availability of asynchronous event registration
and notification in the middleware infrastruc-
ture. For such applications to be practically
useful, there needs to be a higher level of

contextual understanding, e.g. the user may
not be in a situation to have lunch (driving,
meeting, may already have had a meal).

A situation-aware adaptation scenario means
that the application will base its recommenda-
tion (or lack thereof) on additional informa-
tion which may include establishment of the
user’s current activities, historic context regard-
ing meals taken at this time and place in the
past, his social situation, list of commitments
from his digital calendar, etc.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 9

The review of existing applications that
provide context related facilities, both re-
search based prototypes and widely used
smartphone-based applications, suggests that
the current stage is predominantly context-
aware adaptation.

3 CONTEXT MODELLING & REPRE-

SENTATION

Context modelling is the process of designing
a model of real world entities, their properties,
state of their environment and situations that
can be used as a reference for acquiring, inter-
preting and reasoning contextual information.
The purpose of creating a context model for use
in a context-aware middleware is to provide
a uniform, machine processable context repre-
sentation scheme, facilitate context sharing and
inter-operability between different middleware
layers and external applications. The unifor-
mity of the model asserts a common under-
standing between all software components and
applications in the middleware. This common
understanding is vital because the acquisition,
reasoning and utilisation of context informa-
tion is usually done by separate components,
layers or applications in the middleware. More-
over, additional demands of a context model
are raised due to the temporal nature of con-
text, variable certainty of sensed information
in the environment and about users, the fluid
nature of relationships between entities as well
as the availability of new types of knowledge
about the environment.

Context modelling techniques and require-
ments have been surveyed by Strang and
Linnhoff-Popien [25] and Bettini et al. [26].
Context information needs to be represented
and modelled for being machine interpretable
and exchangeable using well-defined inter-
faces. The goals are to support easy manip-
ulation (low overhead in keeping the model
up-to-date), easy extension (cheap and simple
mechanism for adding new types of informa-
tion), efficient search and query access as well
as scalability. A number of different approaches
for representing contextual knowledge and se-
mantic information can be found in literature.
On the one hand the representation is tightly

coupled to the inference mechanism, e.g. prob-
abilistic logic requires the modelling of prob-
abilities. On the other hand the representation
is often tailored to the problem domain and to
the specific goal of the system.

Strang and Linnhoff-Popien [25] identify
generic requirements: The modelling approach
should (1) be able to cope with high dynamics
and distributed processing and composition,
(2) allow for partial validation independently
of complex interrelationships, (3) enable rich
expressiveness and formalism for a shared un-
derstanding, (4) indicate richness and qual-
ity of information (QoI), (5) must not assume
completeness and unambiguousness, and (6)
be applicable to existing infrastructures and
frameworks.

3.1 Classification of Context Models

Bolcini et al. [27] provide a framework for
the analysis of context models that caters for
modelled aspects, representation features, us-
age and context management features. They
analyse existing context modelling efforts and,
based on their level of fulfilment of analysis
parameters, they are classified into five ‘classes
of use’ that include Context as a matter of (1)
channel-device presentation, (2) location and
environment, (3) user activity, (4) agreement
and sharing and (5) data/service selection.

Moreover, context models can be classified
into six different model categories, namely key-
value models, markup scheme models, graphi-
cal models, object oriented models, logic based
models and ontology based models [28]. Re-
cently, chemistry inspired models have been
proposed [29] as well. Table 1 provides an
overview of the individual advantages and
disadvantages of different context modelling
schemes, which are further discussed in the
following paragrahs.

Key-value pairs form a simple tuple of infor-
mation. The context information is assigned to
a unique key in order to allow for easy lookup
by applying a matching algorithm. These pairs
are easy to manage but lack structuring and
therefore do not allow for efficient context
retrieval. Markup scheme models incorporate a
hierarchical data structure of markup tags,

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 10

TABLE 1
Context Modelling and Representation Approaches

Context
Modelling
Approach

Advantages Disadvantages H
ig

h
D

yn
am

ic
s

*

D
is

tr
ib

u
te

d
P

ro
ce

ss
in

g
*

F
or

m
al

is
m

*

Q
oI

In
di

ca
ti

on
*

In
co

m
pl

et
en

es
s

*

Examples

Key-Value
Fast processing, storage and
lookup

Lack of data structure X / / / /

Markup
Scheme

Structured representation;
fast reasoning; schemes allow
for a common definition
and knowledge of available
parameters

Data processing slows down
with increasing size of the
scheme

(X) X (X) (X) /
ContextML [30],
CC/PP [31]

Graphical
Readable by machines and hu-
mans; clear relations between
model components

Implementation of graphical
models typically requires a
technology model (e.g. object
oriented design) for imple-
mentation

(X) (X) (X) / ORM [32]

Object Oriented

Support of coalgebraic and
abstract data types, recursive
types, encapsulated states, in-
heritance

Data exchange in a distributed
middleware requires an object
oriented communication pro-
tocol

(X) / (X) X / JCAF [33]

Logic based
Fast processing, high degree
of formalism

Typically restricted to the tar-
geted reasoning mechanism
(cf. Section 5); possible need of
model conversion

X X /

Ontology based

Implicit reasoning
mechanisms; coherent and
unambiguous knowledge
representation

A large ontology slows down
the reasoning; domain experts
and ontology engineering are
required

/ (X) X / /

Wang et al. [34],
CoBrA [23], SO-
CAM [35]

Chemistry
inspired

Ability to fuse environment
and user context to trigger ser-
vices autonomously; similar-
ity to chemical bonding and
chemical reactions

Complex model requiring
event-based context
propagation

(X) X (X) / / Ikram et al. [29]

* X= support; (X) = limited support; / = no support. Empty fields indicate a significant dependency on the chosen implementation.

attributes and content. Examples include the
User Agent Profile and the Composite Capa-
bilities/Preference Profile (CC/PP) [31], which
are based on XML (Extendible Markup Lan-
guage) and standardised by the World Wide
Web Consortium (W3C). The Context Meta
Language (ContextML) [30] is another markup
based scheme that not only represents the con-
text information but context metadata as well.

Graphical models (e.g. based on the Unified
Modelling Language) allow for a picturesque
description of a context model [36] and for de-
riving an Entity Relationship model as required
in rational databases. An extension is proposed
by Henricksen and Indulska [32], introducing
Object-Role Modelling (ORM). Object oriented
models offer powerful capabilities of inher-

itance, reusability and encapsulation. Access
of contextual information is provided by well
defined interfaces [37]. Logic based models offer
a high degree of formalism and typically com-
prise facts, expressions and rules. They enable
formal inference, e.g. by means of general prob-
abilistic logic, description logic, functional logic
or first-order predicate logic.

Ontological modelling refers to an abstract
conceptual vision of the world. The relations
within could also be described by object ori-
ented methods. However, an ontology is com-
monly described by using languages standard-
ised by the W3C in the context of the semantic
web. Most relevant are the Resource Descrip-
tion Framework Schema (RDF-S) [38] and the
Web Ontology Language (OWL) [39].

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 11

Korpipää and Mäntyjärvi [40] enumerate the
following goals for designing a context on-
tology: simplicity, flexibility, extensibility, gen-
erality and expressiveness. Many researchers
have come to the conclusion that ontologies
are theoretically the best way to represent and
model context due to the extendibility and un-
ambiguousness [28], [34]. However, there may
be certain drawbacks as ontology engineer-
ing is a challenging and interminable matter.
With the size of the ontology, querying and
processing the information embedded within
becomes slow, in particular if performed on re-
source constrained mobile devices. The context
model can be arranged in layers to cushion
this effect. Wang et al. [34] propose ontology
modularisation, i.e. a generic upper ontology
on top and domain specific ontologies below.
Full featured ontological representations tend
to decrease the inference performance and are
not suited for highly dynamic systems. Espe-
cially if resource constrained mobile devices are
envisaged as the main source and consumer
of context an appropriate alternative must be
chosen. Another argument for not applying
ontological representation is its limited support
for modelling uncertain and unavailable data.

3.2 Context Meta Data

Beside the context information itself, a model
for representing related meta data is crucial.
Such context meta information may include a
quality of information quantifier, the degree
of uncertainty, possibility, measurement accu-
racy, resolution or confidence interval. As an
example, Fig. 7 depicts the context meta data
elements of the ContextML schema [30].

These attributes are especially helpful for cer-
tain inference and reasoning mechanisms (cf.
Section 5). When taking historic context into ac-
count, it is important to embed data related to
the temporal domain such as time of detection
and expiry time. Rapidly changing information
can be differentiated from rather static informa-
tion (such as gender, year of birth). In addition,
if tracing back context inference processes is
required, both context sources and context pro-
cessing entities may be captured and stored as
meta data. Crucial – but out of scope of this

Context Instance
Context Instance

Context Scope
Context Scope

Context Data
Context Data Context Parameter (Simple)

Context Parameter (Array)
Context Parameter (Array)

Associated Entity
Associated Entity

Validity Period
Validity Period

Entity Type
Entity Type

Detection Time
Detection Time

Expiration Time
Expiration Time

Processing
Processing

Sensor Source
Sensor Source

Processing Component
Processing Component

Entity ID
Entity ID

Context Meta Data
Context Meta Data

Quality of Context Indicator
Quality of Context Indicator

Context Parameter (Struct)
Context Parameter (Struct)

1 1

1

1 0..n

0..n

0..n

1

1

1..n

1 1

1

1

0..1

0..1

1

1

1

1

1

1

1

1..n

0..n

Fig. 7. Context meta data in the ContextML
schema [30])

article – is privacy and security information
[41]. In their work, Chang et al. [42] propose the
modelling of a lifecycle for contextual informa-
tion and an appropriate representation in meta
data. The state of contextual information (e.g.
ready, running, expired, suspended) enables
flexible and fast transitions when the context
changes temporarily. However, other models
such as ContextML only utilises two states
of context information; transitions only occur
unidirectionally and ultimately from valid to
historic context. The following definition clar-
ifies this differentiation.

Context meta data refers to information explic-
itly attached to the context data. Meta data may
be subdivided into mandatory and optional param-
eters and may comprise the detection time, validity
period, source of information, quality of context,
probability or uncertainty, associated entity, applied
processing, etc.

A context instance refers to a specific instan-
tiated object of contextual information, including
meta data. Due to limited validity of context, each
context instance only remains valid for a specific
period of time. Any expired context instance is
considered to be historic context.

4 CONTEXT MANAGEMENT & PROVI-

SIONING

The management and provisioning of context
information are essential elements for realis-
ing context-aware services and applications.
A notable number of context management

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 12

approaches have been presented; surveys of
which have been published for instance in [28],
[43], [44].

4.1 Functionalities

The overall management is usually subdivided
into several functional tasks as illustrated in the
core layer of Fig. 8. The access to contextual
information is typically aided by a context
management system, toolbox, framework or
middleware enabling services and applications
to acquire and utilise context.

Sensor Data Acquisition deals with how raw
information about any context is fetched and
used as input to the middleware. It is impor-
tant that the system can cope with a variety
of heterogeneous sources and sensors simulta-
neously. Sensors may be physical, virtual, or
logical in nature. Depending on the intelligence
and computational power, preprocessing and
filtering may be performed by the sensor nodes
themselves or as part of the middleware func-
tionality. Both synchronous and asynchronous
sources are generally supported. The benefit of
Context Storage is twofold. Caching strategies
allow for faster provisioning of the required
context since repeated processing stages may
be omitted. Moreover, the storage of expired
context in a history database enables the anal-
ysis of previous situations. Such information
can be used to determine habits and long-
term intentions taking successive sequences of
activities towards the desired goal into account.

Context Lookup & Discovery provide means
for an application, service or actuator to iden-
tify the available context and how to acquire
and query for it. Commonly used approaches
include lookup tables, semantic queries or web
service mechanisms such as SOAP (Simple
Object Access Protocol) and WSDL (Web Ser-
vices Description Language). Context Diffusion
& Distribution are related to the output of a
middleware system, i.e. how context informa-
tion is made available to the consumers. This
encompasses not only the definition of query
models (e.g. key-value based or SQL based)
but also the mode of communication. Commu-
nication protocols may support event-driven
asynchronous publish/subscribe mechanisms

to notify the application layer about context
changes of interest. Additionally, synchronous
on-demand queries may be supported by the
middleware. Since context reveals private in-
formation about users, Privacy, Security and Ac-
cess Control are crucial tasks in every middle-
ware. However, due to the selected scientific
focus, they are not considered in-depth in this
article.

Context Processing & Reasoning refer to the
capability of inferring context from raw sen-
sor data or from existing primitive low-level
context. The middleware may apply feature ex-
traction, description logic, rule-based reasoning
or probabilistic inference on behalf of the ap-
plication layer, hence saving battery consump-
tion on mobile resource constrained devices. A
powerful middleware has to support modular-
ity so that numerous processing mechanisms
and algorithms can be plugged in. Details of
processing and reasoning techniques employed
in contemporary systems are discussed later in
Section 5.

Functional, spatial, synchronisation and tem-
poral decoupling of these elementary tasks is
targeted in most of the architectural principles
as further discussed below. Functional decou-
pling is achieved whenever functionalities can
be invoked independently from each other.
Spatial decoupling foresees a sender being un-
aware of the receivers’ address or presence.
Synchronisation decoupling prevents blocking
in the sender and receiver components when
exchanging context so that their main flow
of execution can continue to be carried out.
Temporal decoupling requires senders and re-
ceivers of context not to be involved at the
same time.

4.2 Existing Classifications

Hong et al. [44] classify context middleware
approaches into the following six categories: (1)
agent-based, (2) reflective, (3) metadata based,
(4) tuple space based, (5) adaptive and ob-
jective based and (6) Open Services Gateway
Initiative (OSGI) based. However, this group-
ing mixes up architectural approaches, context
representation and applied technologies. Bal-
dauf et al. [28] differentiate between (1) direct

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 13

SENSORS

MIDDLEWARE

APPLICATIONS

Context

Lookup &

Discovery

Context

Processing &

Reasoning

Context

Storage

Physical

Sensors

Virtual

Sensors

Logical

Sensors

Physical

Actuators

Media

Tagging

Service

Composition

Context-Aware Mobile

Applications

Service

Adaptation

Context

Diffusion &

Distribution

Privacy,

Security and

Access Control

Sensor Data

Acquisition

Sensor

Gateways

Fig. 8. Middleware Functionalities

sensor access, (2) middleware infrastructure
and (3) context server as architectural models.
Hence architectural design is focused without
going into detail about technological details.
Winograd [45] proposes a distinction between
(1) widgets providing interfaces for hardware
sensors, (2) networked services resembling the
context server architecture and a (3) blackboard
model representing a data-centric view.

Regarding the overall system design, Hong
et al. [44] recommend four layers (bottom-up):
(1) Network Infrastructure Layer, (2) Middle-
ware Layer, (3) Application Layer and (4) User
Infrastructure Layer. Baldauf et al. [28] iden-
tify five layers focussing on functional stages:
(1) Sensors, (2) Raw data retrieval, (3) Pre-
processing, (4) Storage/Management and (5)
Application. Zimmermann [15] derives a lay-
ered framework comprising (1) Sensor Layer,
(2) Semantic Layer, (3) Control Layer and (4)
Actuation Layer where only the first two lay-
ers are directly related to context management
and provisioning and the latter two deal with
decision logic and service adaptation.

Makris et al. [46] identified six categories
of abstract context aware functionalities. These
functionalities are (1) context acquisition, (2)
context modelling, (3) context exchange, (4)
context evaluation, (5) exploitation of context
from business logic perspective and (6) context
aware horizontal functionality dealing with se-
curity, privacy and trust issues.

Based on these existing classifications, the
following subsections discuss concrete design
approaches, categories of architectural mod-
els and relevant implementations. We present
an overview of selected context management
frameworks and middleware solutions, classify

them according to our proposed characteristics
and furthermore review their successive evolu-
tion.

4.3 Design-based Classification of Context
Provisioning Middleware

As discussed in the previous paragraphs, a
number of design approaches have been at-
tempted for the collective provisioning of
context-awareness related functions. These de-
sign approaches range from layered middle-
ware designs to object-oriented and event-
based middleware designs. Different commu-
nication and coordination semantics between
individual components of the logical design
result in varied architectures of context-aware
systems as well. The layered middleware de-
sign is prominent, where each functional layer
hides the details of the underlying layers. The
primary benefit of this approach is the encap-
sulation of varying complexities of different
functions. Each layer builds on the information
available from the layer below it, e.g. a context
processing layer uses data collected at the data
acquisition layer while the application platform
layer interacts with the context processing layer
to retrieve context and does not concern itself
with the details of data acquisition or synthe-
sis process. Within this design approach, the
provision of functions is often separated into
different architectural components, e.g. some
functions are provided by a central server
while applications that use these functions are
deployed remotely. SOCAM [35] is a prominent
example of a layered middleware design.

Some examples of context-provisioning mid-
dleware adopt an object oriented model, where
functions of context-awareness are assigned to

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 14

separate software objects. These objects en-
capsulate the internal processing of the func-
tions and provide interfaces for interaction
with other objects. The primary difference be-
tween the layered middleware and the object-
oriented design is that in the layered design
the context processing pipeline is vertical and
operates in series amongst the various layers,
whereas an object-oriented approach allows
different functions to interact ‘out of series’
and horizontally. This feature is demonstrated
in CORTEX [47], which showcases the concept
of sentient objects enabling context-awareness
in ad-hoc environments by exchanging context
amongst themselves. Object oriented design
also provides developers with the benefit of
extensibility through polymorphism and inher-
itance, as demonstrated in JCAF [33], which
exploits these benefits to provide an infrastruc-
ture and a programming API for developing
and deploying context-aware applications and
services.

Event based middleware design is conceptu-
ally closest to the nature of context processing
because human context and that of related
computing entities is naturally reactive and
fluctuates with stimuli. Context-aware middle-
ware designed with this approach operate on
the production, detection, consumption of, and
reaction to events. An event in such a system
is any change in state of any user or device
context. System components are usually di-
vided into context producers that generate con-
text related events and context consumers that
react to contextual events. An event service is
usually employed to process and route events
between consumers and producers and may
also perform filtering and transformation on
context events in complex context-aware sys-
tems. Event consumers register their interest
in particular events either directly with the
event producers or with the event service. Pub-
lish/subscribe and message notification based
communication semantics are used in the mid-
dleware developed using this design approach.
Event based design affords better responsive-
ness in context-aware systems as they are by
design more normalised to unpredictable and
asynchronous environments.

Different middleware designs exist due to

Sensors

Context

Application

Computing Device

Fig. 9. Direct sensor coupled application run-
ning on a single computing device

the different approaches used by designers to
realise the functions of context-awareness (ac-
quisition, reasoning, communication etc.). We
have classified some of the contemporary mid-
dleware according to their design philosophy
(cf. Table 2). The realisation of a design ap-
proach is carried out by specifying functional
responsibilities to architectural components of
a software system. While most of the existing
middleware can be categorised under one of
the listed design categories, there is a further
categorisation that can be elicited by examining
these systems from a deployment and com-
ponent architecture perspective. This architec-
tural categorisation, described in the following
paragraphs, is primarily based on how the
components that carry out different context-
awareness functions in the middleware interact
amongst each other to achieve the overall goal
of context provisioning.

4.4 Architectural Classification of Context
Middleware

In some middleware systems, context related
applications operate by directly accessing the
sensors states on which the context information
is based (direct sensor coupling). Generally, in
such middleware a context-aware application
directly consumes information retrieved from
sensors and there are no dedicated context rea-
soning, communication or coordination func-
tions. As illustrated in Fig. 9, the role of the
middleware is limited to that of a hardware
abstraction layer, with no other specialised
functions available.

In context server based architectures, a cen-
tral server performs the functions of collecting

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 15

Sensor Data Acquisition

Context Storage

Applications

Context Lookup
and Discovery

Central Server

Context Processing
and Reasoning

Context Diffusion
and Distribution

Fig. 10. Central server based middleware archi-
tecture

and synthesising context from sensor data and
other information sources. As illustrated in Fig.
10, clients of the server access it remotely to
retrieve context or raw data to process locally.
Therefore, the context server performs most of
the middleware functions. This is one of the
most common architectures used in context-
aware systems. One of the reasons for the
prevalence of this architecture is the functional
flexibility it affords to designers. For example,
the central server may limit its functions to
mere data acquisition or it may provide context
synthesis and application platform on top of it.

In a peer-to-peer architecture the functional
tasks of context-awareness are carried out by
peer components, each peer acting as both
a server and a client. It is a distributed de-
sign approach where peers either individually
carry out mutually exclusive subsets of context-
awareness related functions or replicate the
functionality in different geographical or log-
ical domains. These peer components usually
utilise a centralised server for coordination of
context with context consuming applications
e.g. Hydrogen [37] and Context Toolkit [48].
Server-less peer-to-peer architectures also ex-
ist (JCAF [33], CORTEX [47]) but may suffer
from limitations due to the lack of a coordinat-
ing component e.g. the requirement of hard-
coding addresses of communication endpoints
between context services and clients in JCAF.

Different approaches to designing context-
aware systems exist due to the constraints im-
posed by a variety of factors. Leading factors
effecting the design decision and resultant ar-
chitecture include location of sensors, number

Applications

Context Lookup
and Discovery

Sensor Data Acquisition

Context Storage

Central Server

Context Diffusion
and Distribution

Context Processing
and Reasoning

Fig. 11. Central server based middleware archi-
tecture with distributed components

and mobility patters of users, available re-
sources, targeted scale of the system and meth-
ods of context acquisition and distribution. Di-
rect sensor coupled architecture has been used
when sensors and context consuming applica-
tions are accessible within a single system (e.g.
a mobile device or a desktop computer) and
there is no pressing requirement for complex
context reasoning. However, due to this tight
coupling, the scale, scope and usability of these
middleware to be exploited as holistic context-
aware systems is severely restricted. Most sen-
sors have limited communication range and
software components that access data from
such sensors have to be located physically close
to the sensors. These limitations triggered the
evolution towards a context server approach
where a central server acquires, processes and
stores context while providing interfaces for
local and remote applications to access con-
text. Context server architecture allows reuse of
sensor data and relieves resource constrained
devices from context acquisition and process-
ing. While leveraging these benefits, context
server architecture requires consideration of
new factors in the design that include selec-
tion of appropriate network protocols, quality
of service parameters, network performance,
mobility management etc.

The basic central server architecture allows
remote components to access context but the
data acquisition function is still restricted by
the limitation in communication range of sen-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 16

sors and other information sources. To over-
come this shortcoming, the central server ar-
chitecture has evolved further in terms of dis-
tribution of its constituent components, e.g.
distribution of the data acquisition function
into multiple remote data acquisition modules
that acquire data from their assigned sources
and push it to the central server. This further
distribution of functionality, illustrated in Fig.
11, has transformed context-aware middleware
systems into truly distributed systems where
each function may be hosted on different ma-
chines in a network and a central server co-
ordinates the flow of information and control
between these components. Other factors that
have influenced the adoption of this archi-
tecture include availability of a large number
of distributed information sources and sen-
sors, dedicated reasoning components, mobil-
ity of modern day users and abundance and
increased usage of mobile devices. Table 2
presents the architectural approach based cate-
gorisation of context-aware systems that have
been classified earlier according to their design
approaches (cf. Section 4.3) and provides a con-
solidated view of the overlap between design
and architectural approaches of these systems.

4.5 Implementation

Network based frameworks have utilised RMI
(Java Remote Method Invocation) or CORBA
(Common Object Request Broker Architecture)
standards as technological basis for interaction.
Examples for RMI comprise JCAF (Java Con-
text Awareness Framework) [33] and SOCAM
[35]. CORBA has been used in Gaia [53]. Both
CORBA and RMI can be considered as rudi-
mentary technologies for realising distributed
networked applications. Because of the rela-
tively low abstraction level, it may outperform
newer technologies as far as speed and a low
footprint are concerned. However, develop-
ment is more complex and the interoperability
limited.

The OSGI framework is an open modular
service platform based on Java that implements
a dynamic component model as an extension
to the standalone runtime environment. OSGI
interface principles have been applied in [59]

and [60]. Multiagent systems (MAS) evolved
from Distributed Artificial Intelligence and are
comprised of individual agents. Each is consid-
ered a locus of problem-solving activity. By op-
erating asynchronously it has a certain level of
autonomy and intelligence. Cooperative agents
collaborate towards achieving common goals
[61]. Hence, agent-based systems have also
been successfully adopted in context provision-
ing middleware designs, for instance in CoBra
[62] and EgoSpaces [63].

Moreover, web service technologies have re-
cently received greater attention in develop-
ment of context middleware. Web services
utilise standard protocols, such as HTTP (Hy-
pertext Transfer Protocol) and SOAP (Simple
Object Access Protocol). In addition, WSDL
(Web Services Description Language) may be
applied for describing the interfaces of archi-
tectural components semantically. In the tradi-
tional client-server view, interacting services in-
voke each other, the requesting one becomes a
client of the invoked service [43]. A full level of
web service implementation has been used in
CA-SOA (Context-aware Service Oriented Ar-
chitecture) [64], CoSWAMI [55], ESCAPE [65],
inContext [66] and Omnipresent [67]. The pri-
mary advantage of web service technologies is
their wide interoperability across networks and
devices. Representational State Transfer (REST)
[68] compliance allows for stateless information
exchange, e.g. based on XML. These concepts
are not only applicable for context-aware web
services but also for other types of actuators
and ubiquitous computing applications.

4.6 Overview of Related Frameworks and
Middleware

Table 3 provides an overview of related sys-
tems and their historic evolution. Furthermore,
major achievements and limitations are dis-
cussed in the following paragraphs.

ActiveBadge [50], one of the earliest localisa-
tion and context-aware systems, is based on
a centralised location server and communi-
cates through Remote Procedure Calls (RPC).
Mainly due to its very limited scope, the het-
erogeneity of networks, context consumption
devices and sensors is not supported. Context

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 17

TABLE 2
Context-aware middleware design approaches and system architectures matrix

Layered Object Oriented Event Based

Direct Sensor Coupling Cyberguide [49]

Central Server
Active Badge [50] CASS [51]
CoBrA [23] Active Map [20]
OPEN [52]

Central Server with
Distributed Components

Gaia [53] C-CAST [54] C-CAST [54]
PACE [32] CoWSAMI [55] ACE [56]
SOCAM [35] GUIDE [57]

MobiLife [58]
ACE [56]

Peer-to-Peer
CORTEX [47] CORTEX [47]

Hydrogen [37] Context Toolkit [48]
JCAF [33]

TABLE 3
Context Management & Provisioning Frameworks

Middleware/Project C
om

m
u

n
ic

at
io

n
Te

ch
n

ol
og

y
‡

C
tx

M
od

el
&

R
ep

re
se

n
ta

ti
on

§

S
u

pp
or

t
fo

r
S

en
so

r
D

iv
er

si
ty

*

S
u

pp
or

t
fo

r
C

tx
D

iv
er

si
ty

*

C
tx

M
od

el
E

xt
en

di
bi

li
ty

*

S
u

pp
or

t
fo

r
E

n
ti

ty
D

iv
er

si
ty

*

S
u

pp
or

t
fo

r
H

is
to

ri
c

C
tx

*

C
tx

P
ro

ce
ss

in
g

S
ca

la
bi

li
ty

*

C
tx

M
an

ag
em

en
t

S
ca

la
bi

li
ty

*

Active Badge [50] RPC ? / / / / / / /

Active Map [20] RPC & o ? / / / (X) / / (X)
Cyberguide [49] ? ? / / / / / / /

GUIDE [57] web ? / / / / / / (X)
Context Toolkit [48] web M X X (X) / / (X) (X)
Gaia [53] RPC, CORBA o X X ? X ? (X) (X)
CoBrA [23] ag, (web) Ont X X / ? ? / (X)
SOCAM [35] RMI, OSGi Ont X X ? ? ? ? ?

CASS [51] ? ? (X) (X) ? / ? ? /

CORTEX [47] o M X (X) ? X ? (X) /

JCAF [33] RMI OO X X (X) X ? (X) /

PACE [32] RMI, web OO, M, G X X (X) ? ? (X) /

CoWSAMI [55] web M X X (X) (X) ? (X) /

MobiLife [58] web Ont X X X ? ? (X) (X)
OPEN [52] ? Ont X X / ? / (X) ?

ACE [56] web Ont X X (X) ? / / ?

‡ web = web based; ag = agent based; RPC = Remote Procedure Calls; RMI = Remote Method Invocation; CORBA = Common Object Request
Broker Architecture; OSGi = OSGi based; o = other; ? = unknown, i.e. not discussed in available literature.

§ Ont = Ontology; M = Markup Scheme; G = Graphical; OO = Object Oriented; o = other; ? = unknown, i.e. not discussed in available literature.
* X= support; (X) = limited support; / = no support; ? = unknown, i.e. not discussed in available literature.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 18

representation is proprietary and details are
not specified in related literature. The sup-
port for sensor, context and entity diversity
as well as model extendibility and scalability
are weak since only localisation of infra-red
based sensors embedded in badges is targeted.
The ActiveMap [20] system is comparably lim-
ited and again, location is the focus. Due to
utilisation of the publish/subscribe paradigm,
the context management scalability capability
is supposed to outperform ActiveBadge, al-
beit no specific or comparative performance
analysis has been published. Alongside users,
the concept foresees support of generic ob-
jects. Hence, entity heterogeneity is addressed,
however not discussed in detail. Localisation
is arranged in hierarchies, for example room,
building, regions. In addition to basic RPC
communication, infra-red based multicast is
supported. Cyberguide [49] was developed as
a rapid prototyping system for assessing the
utility of context-awareness in mobile devices
and focussed on location and orientation con-
text of users. Infra-red based beacons and GPS
sensors are used for estimating the position
of a device. Support of sensors, context and
context processing capabilities are very narrow
and static. GUIDE [57] is another framework
supporting location-based travelling. The sys-
tem, which uses HTTP-based communication,
demonstrates an improvement over its prede-
cessors by applying a distributed architecture
in which separate servers manage individual
cells.

The systems mentioned above have been
primarily designed to illustrate the benefit of
context-awareness based on a selected usage
scenarios. Being very restricted in functional-
ity, degree of awareness as well as acquisi-
tion and processing of contextual knowledge,
they can be classified as early systems that
increased interest and understanding of ubiq-
uitous computing. However, they cannot be
referred to as context provisioning middle-
ware. The need for generic and systematic sup-
port of context-aware applications and services
emerged slowly and has been addressed in
later systems.

The Context Toolkit [48] is one of the first
demonstrations of utilising a complex combi-

nation of different types of user context in-
formation. Its architecture is based on dis-
tributed widgets that hide complexity and het-
erogeneity of sensors. The hybrid design fur-
ther encompasses a central context interpreter
and server. Context is represented by using
a custom XML schema. Subscription based
context updates are communicated based on
the TCP/IP networking suite through SMTP
(Simple Mail Transfer Protocol) or HTTP. While
the system is by design not intended to be used
over a large scale and is focussed on utilising
context information bound to a geographical
area, physical and functional scalability are
partly supported.

Gaia [53] is the first context provisioning and
management framework entitled as a middle-
ware by the authors. It models a smart space
as a programmable entity, providing support
to context based applications via well estab-
lished operating system concepts. Gaia applies
I/O operations and file system manipulation
for interconnecting active space objects. Event-
based communication is established through
both RPC and CORBA. Context diversity orig-
inates from the so called Context Providers
and covers location, room conditions, weather,
stock prices and executing applications. Gaia
has not been assessed in terms of large-scale
use. The authors mention federating multiple
active spaces but such an attempt has not been
documented.

CoBrA [23] is architecturally based on dis-
tributed agents being organised by a central
broker. Context is represented in ontologies
(RDF/OWL). The broker is responsible for pro-
viding a shared model of context, removing in-
consistencies and masking heterogeneous con-
text sensing sources. Communication is estab-
lished through the Agent Communication Lan-
guage (ACL) and HTTP. The concept of com-
partmentalising context into domains exists in
CoBrA but physical scalability has not been
evaluated. Functional scalability is problematic
due to a tight coupling of applied technologies
and the resulting need for following these strict
guidelines.

SOCAM [35] targets providing an architec-
ture specified for rapid prototyping of context-
aware services. The framework encompasses

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 19

Context Providers, Context Interpreter, Service
Location Service and Context-aware Mobile
Services. Context Providers acquire primitive
data which is further processed by a cen-
tral Context Interpreter. Context is modelled
based on ontologies (RDF/OWL). SOCAM is
built on top of an OSGi service platform and
also utilises RMI, hence facilitating service dis-
covery and management through these tech-
nologies. The availability of both on-demand
queries and subscriptions is only briefly men-
tioned without any details and, therefore, the
scalability capabilities are difficult to estimate.

CASS [51] focusses on providing higher
level context abstractions through a knowledge
base, sensor listener, context storage database
and rule engine (for reasoning) deployed on
a server. Context-aware applications on mo-
bile devices can listen for relevant changes
in context data propagated through the cen-
tral database. The rule engine monitors such
modifications accordingly. Context representa-
tion is not discussed, however queries are re-
alised through SQL. While prototype applica-
tions demonstrate feasibility of CASS in keep-
ing resource intensive context processing tasks
from mobile devices, it is not designed to be
scalable. Firstly, both sensor nodes and mobile
devices have to communicate with a central
CASS server and no discovery mechanism is
built in. Secondly, support for mobility is lack-
ing.

CORTEX [47] proposes a sentient object
model to support the construction of ubiq-
uitous applications in wireless mobile ad-
hoc networks. Sentient objects are defined as
entities consuming, processing and produc-
ing events and effect actuators. Therefore, a
publish-subscribe component for discovery of
neighbouring components and sharing data is
provided. Context is represented in XML and
serves as input and output of sentient objects.
While CORTEX is suitable for a number of
mobile entities interacting with sentient objects,
this communication is specifically designed to
work in ad-hoc environments focussed around
a particularly bounded area. Event propagation
is limited by the range of multicast protocols,
hence scalability is very limited.

The JCAF [33] system is based on a dis-

tributed, event-based infrastructure for devel-
opment and deployment of context-aware ap-
plications. Each covered context domain is
modelled by a dedicated context service be-
ing realised as Java Enterprise Application de-
ployed on an Application Server. Inhabitants
of such a domain are programmed as entities.
Context is modelled “semantically-free” and
utilises an object oriented representation. Con-
text monitor and actuator components serve for
acquisition and publication of context. Com-
ponents in JCAF use RMI for communication
which limits device heterogeneity severely. Due
to the inadequate central RMI registry and un-
availability of dynamic lookup facilities JCAF
fails to support large-scale deployments.

The PACE middleware [32] provides a con-
text management component along with a pro-
gramming toolkit for development and deploy-
ment of context-aware applications. In addi-
tion, decision support and a flexible messaging
framework are investigated. Architecturally a
distributed set of context repositories is pro-
posed, each repository managing a specific
catalogue which is implemented as relational
database. In addition to Java RMI, an HTTP
based web interface is provided. The authors
explicitly state that scalability is not a targeted
design goal. Moreover, the middleware uses an
event-based message routing scheme on top of
RMI and HTTP communication. This configu-
ration compounds the overall scalability due
the fundamental differences in the communi-
cation protocols i.e. messaging notification of
the routing scheme and object-oriented RPC of
Java RMI.

CoWSAMI [55] addresses the issue of using
context from dynamic sources by decoupling
context sources from context aggregators and
providing dynamic discovery. Context sources
expose web service interfaces, including SOAP
and WDSL technologies. Users can define rela-
tional context views and map them to the con-
text source interfaces and aggregators produce
context to satisfy these mappings accordingly.
Both context and rules are encoded in XML.
The application of CoWSAMI is limited to a
particular application domain of mobile users
and vehicles. Moreover, the loose coupling and
dynamic discovery of context requires explicit

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 20

involvement of users in defining rules and
mappings, hence limiting the usability.

MobiLife [58] applies a role model comprising
distributed Context Providers, Context Con-
sumer and a central Context Broker in its Con-
text Management Framework. RESTful HTTP
interfaces are used for communication and en-
sure the support of device heterogeneity. Con-
text is represented in ontologies. Entity diver-
sity is not discussed, however the described ap-
plication scenarios are clearly user centric. The
design can be used for a large-scale deployment,
however a single, central Context Broker can be
identified as bottleneck in practice.

OPEN [52] tries to address the developers’
functional requirements as well as users’ sim-
plicity requirements. Therefore, OPEN enables
different layers of programming support from
simple program parametrisation to incremental
and composite programming paradigms. Sev-
eral cooperation patterns are woven into the
programming framework for encouraging the
users’ cooperation. Context queries are imple-
mented by an adopted SPARQL context request
and user defined rules are stored and executed
based on a JESS engine. The usability of the
system has been evaluated based on a treasure-
game scenario. However, processing and ad-
ministrative scalability aspects have not been
investigated so far.

ACE [56] aims at closing the gap between
the (1) management and retrieval of context
and (2) the demands of higher-level context
related tasks such as application triggers. An
application context model is proposed to allow
application developers to explicitly describe
their context logic. The application context en-
gine stores the described models and handles
the whole lifecycle of the defined application.
Experiments have demonstrated the use of the
framework but also identified current limita-
tions. The reasoning delay from the underlying
inference machine prevents its practical usage
in a large-scale system.

To summarise, a diverse set of design ap-
proaches has been adopted for developing con-
text provisioning frameworks and middleware.
The general trend towards large-scale systems
as well as the support of application and de-
vice heterogeneity becomes obvious. However,

recent work still fails to adequately display
the desired features including middleware ex-
tendability and the required support for both
emerging and evolving context-aware applica-
tions and services. This is not only related to
the introduction of new context categories but
also to the aggregation of detected context in
various abstraction levels. Another prominent
reason that hinders contemporary context mid-
dleware from stepping out of the bounds of lab
environments into the real world is the lack of
scalability and its appropriate evaluation.

5 CONTEXT PROCESSING & REASON-

ING

In general terms, reasoning derives “conclusions
from a corpus of explicitly stored information”
[69]. In the original philosophical sense de-
ductive, inductive, abductive, analogical and
fallacious reasoning can be differentiated, the
first two variants being most relevant: Deduc-
tion attempts to show that a conclusion nec-
essarily follows from a set of premises or hy-
potheses. Induction tries to derive propositions
about unobserved objects based on previous
observations, either specifically or generally
[70]. Anagnostopoulos et al. [71] describe con-
text reasoning as “a process for inferring new
context, previously unidentified on the basis
of a-priori known context”. In the domain of
context-aware and ubiquitous computing and
for the scope of this article, Context Reason-
ing and Context Inference are synonymously
defined as follows.

Context Reasoning and Context Inference re-
fer to the automated deduction of high-level context
from lower-level or primitive context. In addition to
an aggregation of available context information, rea-
soning/inference may derive new conclusions based
on existing context (i.e. measurable and observable
facts) and an available knowledge base.

Consequently, a significant number of mech-
anisms originating from the fields of artificial
intelligence and knowledge-based systems can
be adopted for context reasoning. Moreover,
there is a strong relation to activity recognition
(e.g. [72]) and plan recognition (e.g. [73]). Be-
fore reviewing the different context reasoning

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 21

mechanisms, we discuss the role of a context
middleware in the the following subsection.

5.1 Context Processing and the Middle-
ware

Real World

Raw Sensor Data

Low-level context (primitive context)

Mid-level context, e.g. user‘s activitiy

...

Sensing, Sampling

Preprocessing (e.g. filtering)

Classification, Labelling

High-level context, e.g. user‘s intention

Time Series Analysis

C
o

n
te

x
t

R
e

a
s

o
n

in
g

Preprocessed Sensor Data

Feature extraction

Fig. 12. Context Processing Stages

The entire context detection process can be
subdivided into subsequent stages as depicted
in Fig. 12. A specific utilisation of such a
layered design is for example discussed in
[74]. From bottom to the top of the processing
chain, the complexity of mechanisms increases
while reducing the amount of data through
aggregation. Real world events are initially
sensed and sampled. Particularly if physical
sensors are utilised, the collected raw data is
preprocessed afterwards, either on-the-fly or
in bulk. Pre-processing may comprise removal
of noise and faulty data by applying filtering
techniques, averaging sensor readings or fusion
of redundant data. In the next step, features
are extracted, for example by fuzzy logic or
crisp filters, to derive low-level context. This
primitive context may also be directly fetched
from virtual and logical sensors and serves as
input for inferring common-sense abstractions,
for example a user’s situation, his mental and
physical activities, his intentions.

The process of context reasoning is evidently
a complex one, and the context middleware
is tasked with masking this complexity from

other components and applications in the sys-
tem. The encapsulation of complexity is impor-
tant because it provides decoupling between
the functionally separate components of the
middleware and external applications. Con-
sider a simple example of a reasoning com-
ponent in a middleware that uses finite state
machines (FSM) to determine if a person is
free to take a phone call. This reasoning engine
depends on input from various physical or vir-
tual sensors that may include location, motion,
phone status, noise, activity, etc. Assuming a
common context model exists within the over-
all system, raw data from these sensors will
serve as input the the FSM and may or may
not result in a state that signifies a person’s
ability to take a phone call within that con-
text. A different reasoning component, which
may be present in the same middleware, may
use a different reasoning mechanism, e.g. rule-
based or probabilistic reasoning. The role of the
middleware in such scenarios is to facilitate the
data acquisition to feed the acquired data to the
reasoning component without being concerned
about what process the data will go through
during the reasoning stage. Similarly, once the
reasoning and context inference has been car-
ried out, interested third party applications or
other components of the middleware (e.g. con-
text storage components) need only request the
deduced context information. While this encap-
sulation of the context reasoning complexity is
important for the vertical integration between
the components/layers of a middleware, it is
still critical to review the variety of context rea-
soning mechanisms that have been employed
in existing context-aware systems.

Different reasoning mechanisms may be
suited to different types of context domains,
offer varying degrees of confidence in the con-
textual information that is based on fuzzy or
incomplete data and have different computa-
tional costs associated with their application
in practice. The factors are important to con-
sider because mirroring the state of human
activities into computational constructs is a
challenging process. Kim et al. [72] identify
typical challenges when dealing with the na-
ture of human activities: (1) several activities
may be performed concurrently; (2) activities

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 22

may be interleaved; (3) the interpretation of
activities may be ambiguous; (4) multiple resi-
dents may be present in a smart environment
and follow collaborative activities. Identifying
users’ activities refers to either a classification
problem or to a time-series analysis task [75].
Various reasoning mechanisms can be applied
for recognising high-level context information.
The selection of an adequate technique mostly
depends on the targeted context, the avail-
able input information and the chosen context
model. The following subsections present fun-
damental background information and discuss
related work.

5.2 Rule-based Reasoning

As in any other rule-based system, rule-based
context reasoning requires a fact base (knowl-
edge base) and a rule base in which rules are
stored. For inferring high-level context, primi-
tive context is asserted into the fact base. Rule-
based reasoning comprises a threefold cycle
of (1) matching, (2) conflict-resolution and (3)
acting. Whenever the fact base is updated, the
internal inference engine checks if the rule base
contains any matching premises. After solving
potential conflicts, e.g. though consideration of
assigned priorities, the rule fires, which may
optionally change the fact base and/or trigger
an asynchronous context update message to
external components. This mechanism is also
referred to as forward chaining. The general
architecture of a rule-based reasoning system
is shown in Fig. 13.

A C B

IF A THEN B

IF B THEN C

Rule and Knowledge Base

Inference Engine

Input acquisition

Input

Actions

Knowledge acquisition

Fig. 13. Architecture of a Rule-based reasoning
system

Rule-based reasoning comes with certain
drawbacks. A large rule base easily becomes

confusing and intractable. Particularly, if ac-
tions result in fact assertion, unforeseen and
undesired chain reactions may occur which
may not only halt the system but possibly
even destroy the previously derived asserted
facts and/or conclusions. Moreover, the storage
of fact knowledge requires a large amount of
memory consumption since the input context
parameters of all entities need to be watched
constantly. Most importantly, rule-based rea-
soning can only be usefully applied in systems
supporting event-based context propagation.
Boolean execution, i.e. rules fire or they do not,
prevents the support of impreciseness.

5.3 Description Logic

Description Logic (DL), a compound of logic
based formalisms for knowledge representa-
tion and reasoning, is applied in conjunction
with ontological context representation. The
semantic modelling of concepts (classes), roles
(properties, relationships) and individuals al-
lows terminological knowledge to be speci-
fied in a machine interpretable manner. An
ontology is a formal specification of a shared
conceptualisation of a domain of interest [76].
The so called TBox (terminological box) con-
tains axioms relating concepts to each other,
e.g. describing concept hierarchies. The ABox

(assertional box) comprises ground sentences,
i.e. it associates individual objects to concepts.
Both TBox and ABox constitute the knowledge
base whereas the TBox formalises intensional
knowledge and the ABox extensional knowl-
edge. An architectural representation of the
description logic based system is shown in Fig.
14.

DL are variable-free fragments of First Order
Logic. Several classes of formal expressiveness
are differentiated. The smallest propositionally
closed DL is ALC and comprises atomic con-
cepts, atomic rules, conjunction, disjunction,
negation, existential restriction and value re-
striction [77]. S is used if transitive roles are
supported moreover. Additional letters indi-
cate further extensions, e.g. H for role hier-
archy, O for nominals/singelton classes, I for
inverse roles, N for number restrictions, Q for
qualified number restrictions and F for func-
tional number restrictions. SHIQ is the basis

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 23

TBox

ABox

Description
Logic

Reasoning

Knowledge
Base

A
pp

lic
at

io
ns

R
ul

es

Fig. 14. Architecture of a Description Logic
based system

for OWL, SHOIQ for OWL-DL and SHIF
represents the formal range of OWL Lite.

Description logic based reasoning has been
applied in [34] for inferring users’ activities
in the home domain (e.g. watching movies,
having dinner, taking shower) based on an
OWL representation. In [62], ontologies de-
scribing places, locations and activities have
been defined and used for reasoning by an
OWL inference engine.

Performance measurements of DL based rea-
soning have been conducted in [34] and [78].
Researchers share the opinion that reasoning
based on ontologies is computationally inten-
sive and that response times largely depend on
the size of the data set and rule set. Scalabil-
ity is a problem addressed in [78], in which
a hybrid approach combining relational and
semantic representation is proposed. In addi-
tion to the reasoning complexity, designing an
ontology is a complex endeavour requiring
domain knowledge and expert agreement. In
addition to a base layer of (potentially too
large) commonly defined ontologies, more spe-
cific application dependant ontologies need to
be designed on top. Extra effort is needed if
uncertainty and unavailability of context are to
be supported.

5.4 Probabilistic Logic

Probabilistic models can be distinguished as
generative models or discriminative models as
depicted in Fig. 15. Assuming input values
x and the target class variable y, generative

models require joint probability distributions
p(y, x) to be represented whereas discrimina-
tive models are based on conditional probabil-
ities, i.e. p(y|x) [79]. Both categories of proba-
bilistic models can be represented graphically.
Each node represents a random variable. The
conditional independence of two random vari-
ables is graphically represented by the ab-
sence of an edge between the associated nodes.
Hence, causal dependencies become human
comprehensible. Let G = (V,E) be a graph
with vertexes V and edges E. The vertexes
V = X ∪ Y are depicted as circles, X being
the set of input or observation variables and Y

the set of output variables. Generative models
are represented as Directed Acyclic Graph, i.e.
their edges are directed. Discriminative models
are undirected and link random variables to so
called factor nodes graphically represented as
small filled rectangle. A factor Ψs comprises all
random variables to which the factor node is
connected.

Naive Bayes
Maximum

Entropy

Hidden Markov
Linear-chain

CRF

joint conditional

joint conditional

single class

sequence

single class

sequence

Generative

directed models
General CRF

joint conditional

linear sequence

general sequence

linear sequence

general sequence

Generative

Probabilistic Models

Discriminative

Probabilistic Models

Fig. 15. Probabilistic Reasoning Models

The Naı̈ve Bayes (NB) model [80] is the sim-
plest generative approach for classifying single
class variables in dependence of multiple fea-
ture values. The Hidden Markov Model (HMM)
[81] extends NB for representing sequentially
structured data, allowing modelling of tempo-
ral changes. Like the NB model, the Maximum
Entropy model [82] is used for classifying a sin-
gle output variable based on a set of observed
input parameters. In contrast to NB, it contains
conditional probabilities, hence it is discrimina-
tive. Linear-chain Conditional Random Fields

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 24

(CRF) [79] can be interpreted as a linearly
sequential extension to the Maximum Entropy
model. Generic sequential analysis of data is
also supported when using the unconstrained
CRF models. According to Lafferty et al. [83]
CRF tend to be more robust than generative
models to the violations of their independence
assumptions.

In particular, physical sensors are likely to
give imprecise measurements. Moreover, due
to potential temporary lack of communication
facilities, sensor data may not be available at
all. This is why Probabilistic Reasoning is es-
pecially applicable in context-aware environ-
ments. Furthermore, probabilistic models, i.e.
causal dependencies, can be learnt from train-
ing data, e.g. by applying the Expectation Max-
imization or Maximum Likelihood methods.
With regard to context-aware systems, such
training data may be collected from user based
feedback. Sequential probabilistic models can
be represented as finite state machine (FSM)
with specific transition probabilities between
states. This is particularly useful, if the context-
aware system tries to detect real-world activi-
ties that usually occur in a particular order.

In related work, both CRFs and HMMs have
been applied for recognition of human activity
in the kitchen domain [72]. A Naı̈ve Bayesian
Classifier is used in [74] to identify various
activity context features taken from audio sen-
sors and accelerometers; such as driving a car,
running to the door, taking an elevator and
listening to music. Oliver et al. [84] propose
theoretical concepts of Layered HMM allowing
for inference at multiple levels of temporal
granularity. Dynamic Belief Networks (DBN)
(a generalisation of Bayesian Networks incor-
porating temporal dependencies) and Linear
Dynamical Systems (LDS) (a more general form
of HMMs without constraints on number of
state spaces) and their applicability to human
activity recognition is discussed by Turaga et
al. [85].

5.5 Other Reasoning Mechanisms

Wen-Yu et al. [86] use Situation Calculus to
model ubiquitous information services. Situa-
tion Calculus [87] is a formal first-order lan-

guage defining actions, objects, situations, pre-
condition axioms and successor state axioms.
Sharing its basic philosophy with commonly
applied FSM, Situation Calculus eliminates the
need for a-priori definition of possible states
since situations are dynamically generated and
an infinite number of instances is allowed. This
makes Situation Calculus eligible to model an
open dynamic world but makes it unman-
ageable and not applicable for context-aware
applications that expect a defined output state.
Situation Calculus has been applied for incre-
mental plan recognition in [73].

A combined approach of Fuzzy Logic and
clustering is presented in [88]. Imprecise rea-
soning about situational context and unsuper-
vised model learning are supported. Yin et
al. [89] present an activity recognition algo-
rithm segmenting low-level sensor data with a
probabilistic model. Each segment of signals is
represented as an LDS model where transitions
are modelled as Markov processes. The overall
goal is to derive high-level activities from Wi-Fi
radio signal strengths.

A notable number of approaches apply
workflow-inspired patterns focussing on tem-
poral flows. Bosse et al. [90] and Both et al. [91]
introduce the Temporal Trace Language (TTL),
a formally specified language based on pred-
icate logic which shares similarities with Sit-
uation Calculus. Inference rules are translated
into temporal rules for describing the reason-
ing behaviour in temporal partial logic. Both
forward reasoning and backward reasoning are
supported for deriving a human’s progress in
task execution while observing his behaviour.

5.6 Overview of Reasoning Mechanisms

Table 4 provides an overview of the approaches
presented above. It rates the support of ma-
chine based model learning, sequential data
analysis and whether the mechanism can cope
with imprecise and unavailable input data. In
summary, a diverse set of mechanisms has been
successfully applied to derive a rich set of high-
level context.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 25

TABLE 4
Context Processing & Reasoning Approaches

Reasoning Approach Requirements Im
pr

ec
is

en
es

s
&

U
n

av
ai

la
bi

li
ty

*

S
eq

u
en

ti
al

A
n

al
ys

is
*

M
ac

hi
n

e
L

ea
rn

in
g

*

Applicability (Examples)

Rule-based Reasoning
Event-based context propagation; scalable fact

storage
/ (X) / Situation Recognition [92]

Description Logic Domain knowledge represented in ontologies / X /

Home activities [34], locations [62],
unspecific/generic [93], [78], [94],

[95]

Situation Calculus Formalised language model / X /
Modelling ubiquitous information

services [86]
Naı̈ve Bayes Labelled training data X / X Activity Recognition [74]

Hidden Markov Models,
Linear Dynamical Systems

Labelled training data or knowledge about
conditional probabilities, availability of historic

context
X X X Activity Recognition [85], [89]

Bayesian Networks Labelled training data X / X
Generic High-level Context

Reasoning [96]

Dynamic Belief Networks
Labelled training data, availability of historic

context
X X X Activity Recognition [85]

Conditional Random Fields
Labelled training data or knowledge about

conditional probabilities, availability of historic
context

X X X Activity Recognition [97]

* X= support; (X) = limited support; / = no support.

6 EVALUATION OF UBIQUITOUS MID-

DLEWARE

6.1 Challenges of Middleware Evaluation

Context-Awareness and Ubiquitous Comput-
ing are both multidisciplinary research areas,
incorporating elements of HCI design, artificial
intelligence, communication engineering, psy-
chology and social/behavioural sciences. Cor-
respondingly, the evaluation of such a complex
and interwoven system is extraordinarily chal-
lenging and requires multidisciplinary tech-
niques. Interesting studies and surveys have
been conducted with focus on the evaluation
of a UbiComp application from the user’s per-
ception, for example in [98], [99]. Proposed
methodologies for context-aware systems are
borrowed and extended from the background
of HCI research.

Though the users’ experience is essential,
the work presented in this article concentrates
on the evaluation of the context management
middleware rather than on the applications

themselves. Hence, a context middleware is
assumed which is able to support the users in
their everyday life with their device(s) mov-
ing through their usual environment seam-
lessly. The middleware has the difficult task
of bridging the virtual and real worlds, which
comes with numerous challenges. One problem
in evaluating a middleware supporting rich
context-awareness is that a generic one-size-
fits-all approach is unrealistic [100]. In related
work, evaluation often fails to be objective and
comparable. A common consensus is required,
not only related to UbiComp applications but
also to the underlying middleware caring for
holistic or partial awareness.

Neely et al. [100] explain the need for a com-
mon evaluation framework and for a combina-
tion of multidisciplinary approaches. We agree
with their opinion that evaluation is always
goal oriented and needs to be tailored accord-
ingly. The following sections survey existing
methods, propose recommendations for usage

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 26

and discuss limitations.

6.2 Prototyping

Prototyping the conceptualised middleware is
the most commonly applied evaluation tech-
nique. Usually, core functionalities are imple-
mented and deployed in a controlled lab en-
vironment. In an early stage, lab staff and
colleagues are usually taken as test subjects.
This community is rarely extended to external
participants. Selected applications or services
are realised to demonstrate the benefit of the
system under test and prove its correct func-
tionality. Testbeds have been developed, for
instance, in the Active Badge project [50], for
the Active Map Service [20], the Cyberguide
[49] and GUIDE [57] project. Other examples
comprise an Office Assistant [101] and Gaia
[53]. This kind of evaluation technique has
its advantage in illustrating the final user ex-
perience while hiding middleware complexity.
Obviously, it has been frequently used in early
work where the innovative idea of UbiComp
and context-awareness had to be delivered to
a non-technical audience. But still, recent eval-
uations have focused on and are sometimes
even restricted to building a small demonstra-
tor (e.g. inContext [66], MobiLife [58]). A disad-
vantageous side effect of achieving middleware
transparency in such evaluations is that the
internal performance metrics do not become
visible. Testbeds seldom succeed in proving
scalability. Showing the context and application
flexibility and variety requires enormous ef-
forts (time and costs) since a lot of disjunct and
complementary services need to be prototyped.
However, prototyping is a suitable choice if
either the end user view is to be investigated
or if the ability of rapid prototyping is to be as-
sessed (e.g. Context Toolkit [102]). Nonetheless,
the experiences while coding the concepts often
help in identifying shortcomings and improv-
ing or extending the architectural/functional
model. The main target is to show the capabil-
ities of the middleware based on experimental
applications. As with other HCI evaluation,
the user experience can be explicitly (e.g. in-
terviews, questionnaires) or implicitly (obser-
vation, application based feedback) evaluated,

albeit this view may not necessarily mirror the
middleware capabilities but only the look &
feel and usability of the applications.

6.3 Field Trials

6.3.1 Basic Approaches

Numerous methodological approaches have
been used for evaluating UbiComp applica-
tions in the field, particularly their HCI design.
Before discussing their relevance for middle-
ware evaluation, the most important techniques
for collecting and analysing user behaviour
and experience are briefly introduced; see [99],
[103]–[105] for more details.

• Interviewing: Qualitative data is gathered
by evaluators asking individual users or
groups open-ended questions about their
work, background, ideas, etc. The answers
are captured by a combination of note
taking, audio and video. Though this ap-
proach is inexpensive, automatic everyday
actions might not be reported. When be-
ing conducted outside the natural envi-
ronment, the user might forget to mention
important information and impacts.

• Direct Observation or Contextual Field Re-
search: Trained observers directly follow
the test subjects and note down their be-
haviour. This costly, time-consuming and
disruptive technique may utilise photo-
graphic and video analysis and is inap-
propriate in private settings and for large-
scale scenarios. One of the most relevant
advantages is that users do not have to
recall their actions and the quality of data
is independent from variations in their
individual reporting.

• Self Reporting: Recall Surveys that are based
on users orally reporting their behaviour
suffer from recall and selective reporting
biases. Activities are often either not re-
membered or incorrectly reported. Alter-
natively, users note down their daily rou-
tines in Time Diaries. This method provides
less biased data but due to distraction and
annoyance, the records usually do not pro-
vide complete information.

• Usability Testing: Conventionally, usability
data is collected using a combination of

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 27

methods (observation, interviews, ques-
tionnaires) in a controlled setting, usually
a lab, where equipment for recording is
available. Tailored to software applications
executing on desktop computers, the pri-
mary goal is to determine whether an
interface is usable by the intended user
population.

• Lag Sequential Analysis (LSA): Originating
from development psychology, the LSA
technique allows for acquisition of quanti-
tative data by observing users performing
their normal activities. Evaluators can gen-
erate statistics such as frequency and con-
ditional probabilities of events. A draw-
back is that users being recorded by video
may alter their behaviour, knowing they
are being observed.

• Automatic Tracing: Instead of a human eval-
uator, the behaviour is tracked by an au-
tonomous systems with the help of various
sensors and devices. User input or feed-
back is not supported.

• Wizard of Oz: In a Wizard of Oz exper-
iment, subjects typically interact with a
computer system. This system is believed
to work autonomously but its functional-
ities are in fact being performed by un-
recognised human being(s).

• Obstacle Course Data Collection: Evaluators
prepare a to-do list for the test subjects.
Instead of just observing their natural be-
haviour, specific activities or goals are de-
fined which the user has to follow.

• Experience Sampling Method (ESM): This
technique, also referred to as Ecological Mo-
mentary Assessment, shares similarities with
Self Reporting but avoids the retrospective
character. An alarm is presented to the user
during or shortly after the behavioural ac-
tivity has been conducted. Upon reception
of the alarm, the user has to answer ques-
tions or report what he is doing or feeling.
This way, data does not suffer from re-
call bias. Commonly used ESM tools com-
prise PDAs, smart phones, paper booklets,
mobile phones, traditional phones, audio
player/recorder, pagers, watches, cameras
or custom devices [106]. ESM allows the
collection of both structured qualitative

data (by defining fixed responses) and
unstructured qualitative data (by asking
open-ended questions).

The presented techniques are not only use-
ful for UbiComp application assessment. The
recognition of high-level context (i.e. reasoning
or inference) can best be evaluated by the users
whose context is to be derived. Three different
main targets can be identified:

1) Evaluate the reasoning/inference algo-
rithms qualitatively and quantitatively,
i.e. assess their accuracy by comparing ex-
pected (calculated) context against actual
(user reported) context;

2) Collect training and feedback data for rea-
soning/inference algorithms that support
supervised machine learning;

3) Evaluate the overall user experience,
particularly as far as adaptive ser-
vice/application execution is concerned.

The evaluation of ubiquitous everyday assis-
tance benefits from in-situ studies, also referred
to as in the wild or ethnomethodological. The key
idea is to collect data while users are situ-
ated in their own natural environment rather
than creating an artificial one in the lab which
might influence their behaviour [99]. Due to the
characteristics of the UbiComp domain (user
mobility, invisible sensing systems, distributed
and fragmented interaction across different ap-
plications and devices [107]), the ESM tech-
nique appears most promising, in particular if
combined with automatic tracing and logging.

Preferably, the data collection is performed
by common everyday devices so that users do
not have to wear additional hardware. It is im-
portant to minimise distraction from their ordi-
nary workflow. Especially if long-term studies
are envisaged, minimal obtrusiveness on the
user experience is essential. When applying
ESM, this can be achieved by supporting (1)
event-based context-aware triggering of ques-
tions (i.e. when is the alarm activated?), (2)
context-aware selection of the alarming mode
(i.e. how is the alarm presented?, e.g. audible vs.
tactile) and (3) context-aware selection of ques-
tions and possible answers. Bearing in mind
the variety of context, ESM tools may further
serve as appropriate human sensors for under-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 28

standing subjective areas such as emotional
state, time use, social interactions, intentions,
abstracted activities, habits and goals [108].
Another advantage of ESM is that evaluators
can collect preliminary data in near real time
and the context recognition accuracy can be
measured quantitatively by applying stochastic
methods. However, the individuality of users
and their cognitive perception of events and
activities (cf. [109]) results in potential errors
and is problematic for learning generic models.
The same applies to long-term activities con-
sisting of short-term successive or even parallel
actions. Multitasking, false starts and human
error can be serious dilemmas when assigning
labels to time sequences [110].

6.3.2 ESM Tools

Various tools for the evaluation of applications
have been designed, primarily based on ESM.
Four of them are briefly presented below.

The Context-Aware Experience Sampling Tool
(CAES) [111] addresses HCI researchers and
allows them to acquire feedback from users
in particular situations detected by sensors.
It runs on PocketPC devices and supports
context-aware alarm triggering for the ESM.
The main target is to assess the application
interface design while concentrating on de-
fined situations, hence decreasing the degree
of interruption and annoyance. The flexibility
of questions presented to the test subjects is
increased by enabling the dynamic upload of
new protocols. Sequences of questions, mul-
tiple choice and multiple response questions
are supported, as well as recurrence patterns
and randomisation. Audio and photographic
feedback can be collected.

MyExperience [105] combines autonomic cap-
tion of objective sensor data (passive tracing)
and subjective user feedback (active context-
triggered ESM). The open-source implementa-
tion is based on .NET and available for Win-
dows Mobile devices. MyExperience utilises a
three-tiered, event-driven architecture of sen-
sors, triggers and actions – hence support-
ing conditionally triggered report surveys and
SMS/Email notifications. Moreover, it allows
for preliminary data collection by providing
direct remote access to collected data without

any need for physical access to the device un-
der study. An XML schema has been designed
for enabling the scripting based remote con-
figuration or control of the evaluation client.
Therefore, study customisation (i.e. definition
of surveys, triggers and actions) is simplified
and accelerated.

Momento [112] utilises an architecture that
comprises a (1) desktop platform being used
by the evaluators in order to configure and
monitor an experiment, (2) a server component
and (3) mobile devices collecting sensor data
and applying ESM. The desktop platform can
be connected to the fixed applications via a
Context Toolkit. The mobile client is realised
based on Java and C#. It can be configured via
simple text files in which rules for ESM alarm
triggering can be defined.

The ActivityDesigner [110] focuses on the
test-driven design process of UbiComp appli-
cations. It refers to the domain of Activity-
Centered Design (ACD) and targets an activity-
based UbiComp prototyping. Long-term ev-
eryday user activities are captured over an
extended time period. A graphical user front-
end is used to analyse automatically gener-
ated activity journals and to design prototypes
for defined storyboards (i.e. activities, actions,
scenes and the transitions in between). These
prototypes can be deployed in a virtual ma-
chine (high-end device) or by a web appli-
cation based on the Google Web Toolkit. In
summary, the ActivityDesginer tries to support
the interlinked process of (1) field observations,
(2) activity analysis/modelling, (3) interaction
prototyping and (4) in-situ testing.

6.3.3 Trends & Evolution

The increasing penetration of smartphones and
the availability of equipped sensors could
significantly accelerate the evolution of ESM
based clients without the need for any extra
hardware. The basic requirements still remain
the same: avoidance of massive battery con-
sumption, systems crash and negative impact
on the user experience. One constraint of earlier
work was the very limited number of par-
ticipants. In contrast, mobile applications can
be developed and disseminated more easily
nowadays. Distribution frameworks such as

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 29

Apple App Store or Google Play Store allow
large scale studies to be conducted. This would
turn the human sensor into a crowd sensor and
enable participatory sensing. The more feed-
back is provided by unknown and unbiased
test subjects the more fruitful and meaning-
ful the statistical analyses. However, adaptive
filter techniques are required to support a fo-
cus on situations and users of special interest.
Context-aware alarming could be combined
with context-aware selection of test users. Both
hoped and unexpected effects have to be mon-
itored [99]. Another important aspect is the
motivation of users. Long-term studies may be
burdensome if the number of ESM triggered
feedback requests is too high. A socially or
gaming inspired reward mechanism may help.
Finally, it is questionable how a test subject
feels about being observed by strangers. In
this regard, privacy, security and anonymisa-
tion have to be supported. Moreover, interested
users would benefit from improved context
recognition accuracy. In summary, field trials
offer essential insight into otherwise hidden
results. They are not only useful for the eval-
uation of UbiComp applications but also for
the assessment and gradual optimisation of
reasoning/inference algorithms.

6.4 Emulation & Simulation

In the literature, especially in the scope of
UbiComp and context-awareness, the terms
emulation and simulation are often used syn-
onymously without much differentiation. In
general, the goal of emulation is to be able
to substitute the object that is emulated. The
focus of a simulation is the modelling of es-
sential features of the system under test. In
general simulation does not necessarily lead
to emulation. In particular, a simulation may
run slower (or faster) than real-time whereas
emulation requires the system under test to be
at least partly available in a real deployment
and invoked in real time.

Transferred to the domain of context-aware
middleware, at least four basic categories of
approaches appear useful:

1) Emulating Context: The system under test
(middleware core) is used as is, i.e. pro-

totyped system components are directly
invoked. But context does not originate
from real world events and real users,
instead it is emulated.

2) Emulating Middleware Components: The
real life implementation of the middle-
ware core remains untouched. However,
the middleware is extended by further
components, e.g. processors, sources and
sinks of context information that are con-
sidered outside of the real prototype.

3) Emulating Actuation: In order to illustrate
the adaptive behaviour of context-aware
applications or actuators, a virtualised en-
vironment can be added.

4) Middleware Simulation: The system under
test is simulated entirely. The contextual
input as well as the functionalities of the
system components are modelled in an
abstract manner. There is no real life de-
ployment required outside the simulation
environment.

These four approaches are analysed and dis-
cussed in more depth below before related
work is summarised.

6.4.1 Context Emulation

The emulation of context aims at ensuring con-
trolled test conditions. In a UbiComp environ-
ment it is impractical to send real users around
in the real world and ask them to follow a
defined behaviour. That is why the real world
(or parts of it) are substituted by a virtual
world designed by the evaluators. The reac-
tion of the middleware based on events and
context changes in this virtual world is then
evaluated. The key challenge is to represent the
physical world reasonably and realistically and
not just randomly. One approach is to define
labelled and parameterised sequences of con-
text changes (e.g. “having breakfast at home”).
These templates can then be executed by the
emulation environment to create a vivid setting
autonomously. Alternatively, a Graphical User
Interface (GUI) allows for temporary manip-
ulation of selected parameters. The following
targets can be addressed:

• Context Emulation allows for generating
huge amounts of context information. Not

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 30

only knowledge about the individual user
but also the number of users can be easily
increased in the virtual test world. Real
context is duplicated and associated to
pseudo entities (also known as avatars)
[113]. The same applies to device context.
Therefore, a real middleware system can
be probed in order to analyse its scalability
behaviour under almost realistic circum-
stances.

• Context reasoning, aggregation and pro-
cessing in general, can be evaluated if
primitive context (e.g. acceleration, loca-
tion) is emulated. The high-level context
(e.g. activity) output of the middleware is
then compared against expectations. This
requires context to be recordable and repli-
cable.

• The adaptation behaviour of applications
and other actuators can be observed while
manipulating the context.

It is essential to make recorded context pro-
files exchangeable so that the results of dif-
ferent approaches can be compared with each
other. Efforts have been made by researchers
at the Massachusetts Institute of Technology
(MIT) who shared their sensor data collected
in a smart live-in lab [114]. A representa-
tion schema is for instance proposed in [115].
The need for dataset exchange has also been
emphasised in the BoxLab project at MIT
(http://datasets.mit.edu). In their shared re-
sources not only datasets are available for
downloads but also annotation schemas. Cur-
rent research focus is on smart homes but
extensions towards a smart world covering
everyday activities is desirable.

6.4.2 Emulating Middleware Components

The target of emulating middleware compo-
nents is the substitution of hardware (e.g. phys-
ical sensors) by software. This approach is use-
ful if new context types are to be added to the
system. Before putting too much effort into the
design and implementation, the behaviour of
the middleware can be estimated beforehand.
The effect of the number of components can
be measured. This applies not only to context
sources and processors but also to context con-
sumers or sinks. Especially in an event-driven

system the number of consumers is expected to
influence metrics such as the notification time
and network load.

6.4.3 Emulating Actuation

The evaluation of actuating components can
be tricky in a UbiComp environment. Imag-
ine a smart home adjusting the heating or
light level according to its inhabitants. The
smarter and larger the space is, the more expen-
sive becomes classical prototyping. Therefore,
evaluators experimented with virtual three-
dimensional graphic engines, e.g. those used in
popular games including Half Life, Quake III
Arena, and Unreal Tournament, to produce a
realistic demonstration of how the environment
would react to context events.

Obviously this approach fails if we consider
a large scale, e.g. an urban smart space. Even in
a geographically small area, it is questionable
if a realistic and fancy layout would add value
and insight to the middleware evaluation. Only
if the emulation of actuation is combined with
context emulation, these techniques might im-
prove understanding and the look & feel of
selected UbiComp spaces. Still the focus of
emulating actuation remains on the end user
perspective and experience rather than on the
middleware.

6.4.4 Middleware Simulation

The methodology of a system-level simulation
is borrowed from classical communication en-
gineering. The behaviour of the middleware,
including all its distributed components, is
modelled. Typically, only limited core func-
tionalities and the exchanged messages are in-
cluded in the simulation model where Discrete
Event Simulation can be applied. When build-
ing a simulation model the following questions
and challenges need to be addressed:

• The appropriate degree of abstractness
must be identified for the simulation
model. A model with too much details will
increase development costs and simulation
time without providing more realistic re-
sults. The model depends on the specific
goals of the simulation [116].

• The parameters (input values) and met-
rics (output values) must be chosen. In

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 31

a UbiComp setting, the definition of rea-
sonable scenarios is extremely complex.
Not only the user behaviour but also the
application behaviour (or in general the
requirements of context consumers) has to
be estimated. This comprises the number
of context requests/subscriptions per unit
time, the amount and frequency of context
changes.

• In addition, as far as a distributed middle-
ware is to be evaluated, knowledge about
the behaviour (e.g. response time, proces-
sor and memory consumption) of each
component is required. The key is finding
simple parameters that are able to repre-
sent the real system without simplifying
too much. Obviously it is difficult – if not
impossible – to build a realistic simulation
model without ever having implemented a
prototype of the middleware and feeding
the simulation parameters with metrics de-
termined in the real testbed.

The essential advantage of system-level sim-
ulations is that parameters can be varied eas-
ily to investigate various scenarios. Parameters
like the number of users, number of devices,
the amount of context types, the context query
frequency can be used to estimate the large-
scale performance of a middleware. Network
load, context traffic and response times are
interesting metrics to observe. If modelled well,
the simulation can help in identifying bottle-
necks of the system and provide guidelines
for improving the concepts and algorithms. To
facilitate the comparison of results obtained by
different researchers, common simulation sce-
narios (sets of parameters) need to be defined
in the future.

6.4.5 Simulation/Emulation Tools

Categories of emulation and simulation are not
necessarily differentiated in related literature.
There is a body of research which concentrates
on three-dimensional graphical user interfaces.
Testers can navigate around in the first person
perspective and see the (emulated) actuation
capabilities of the smart space based on emu-
lated context changes, as expanded below.

UbiWise [117] is built on the Quake III Arena
graphics engine and allows multiple users to

participate in interactive UbiComp scenarios.
The physical environment view is simulated by
a subcomponent called UbiSim whereas a de-
vice view is provided by a separated module,
realised in Java, named Wise. As an example
the authors emulate a UbiComp camera and
an actuating picture frame. Real web service
interaction is supported as well. The emulated
camera can be controlled in the Wise view and
it can be carried around in the UbiSim 3D-
simulator environment. Spatial and environ-
mental interactions of devices and users are
focused.

A Hybrid Test and Simulation Environment
[118] has been developed by researchers at Lan-
caster University. In contrast to UbiWise, their
approach does not provide a three-dimensional
GUI interface. According to the system under
test, the interfaces of the evaluator components
are based on Web Services (HTTP and SOAP).
Important features are centralised logging and
the support of configuration and automated
test scripts. The simulation environment fo-
cuses on the evaluation of location-based ap-
plications under consideration of different ra-
dio access technologies. Quantitative measure-
ments such as the response and transport delay
have been taken.

CIVE [119] presents a context-based inter-
active System for distributed virtual environ-
ments. It tries to bridge the gap between real
and virtual cyber-world with focus on how to
deliver real UbiComp interaction (e.g. gestures)
into cyber systems. The submodule ubi-UCAM
generates contexts and user profiling out of real
world interaction, whereas NAVER cares for a
virtual heritage and sensing of users’ activities
in the cyber environment. Another component
called INTERFACE connects those two.

TATUS [113] also aims at building a virtual
ubiquitous computing environment. The com-
plexity is reduced by emulating sensors and
actuators. Users’ devices are not emulated but
the original ones are connected to the simula-
tor. Further, rapid scenario and virtual world
modelling are facilitated by providing a design
toolkit allowing for a reasonable level of re-
alism, software flexibility, experiment usability
and simulator extensibility support. Moreover,
a Wireless Network Simulator has been de-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 32

signed in order to evaluate the performance
of communication systems used in UbiComp
environments. Its main purpose is to model
channel conditions based on distance and ob-
stacles (human beings, walls, etc.).

UbiREAL [120] is another simulator address-
ing virtual 3D spaces. Its developers extend
previous work by generating more realistic
context and supporting systematic testing. Both
virtual and real devices can cooperate via Eth-
ernet. Besides a network simulator and the
3D GUI interface, UbiREAL comprises a sim-
ulator for physical quantities and a test suite.
The former one models the change of physical
conditions based on triggered actions (e.g. the
room becomes warmer if the heating has been
switched on). The latter one can be used to
define action rules and expected outcomes in a
formal representation schema, hence allowing
for autonomous validation of results.

CAST (Context-Awareness Simulation
Toolkit) [121] concentrates on a virtual home
domain and allows creating virtual context.
Security aspects are taken into consideration
when sharing such context between simulator
components. Conceptually a Virtual Device
Manager is responsible for emulating sensors
and context consumers. Pseudo user entities
can be generated by a Virtual Person Manager
and the Virtual Home-Map Editor allows for
designing the virtual smart space. The two-
dimensional graphical presentation is based
on Macromedia Flash and fails to provide a
realistic impression of the setting. The comic-
like approach is not suited for middleware
evaluation either.

UbiHolo [122] is rather a UbiComp soft-
ware paradigm than a simulator. However, the
authors’ work deserves attention because it
contains one of the few approaches to apply
system-level simulation in the UbiComp do-
main. To evaluate the large-scale performance
of their concept, a peer-to-peer simulator called
p2psim has been utilised.

Siafu [123] is a representative example of a
Java-based context emulator. Based on a two-
dimensional GUI, it allows the comfortable ma-
nipulation of context temporarily. Since it re-
linquishes the three-dimensionality, it is suited
to cover (spatially) larger areas such as ur-

ban smart spaces. Siafu can generate its own
simulated context (e.g. by defined user move-
ments) and in parallel incorporate real world
context acquired from sensors. Datasets can
be produced for machine learning and effects
of context changes can be demonstrated and
visualised by plugging an application.

C-ProMiSE (A Context Provisioning Middle-
ware with Support for Evolving Awareness)
[124] has been quantitatively evaluated by dis-
crete event simulation. The simulation models
have been derived from black-box assessments
of prototyped systems components. The defi-
nition of various context query scenarios and
context update assumptions facilitates a sys-
tematic analysis of the overall performance.

6.5 Comparison of Methodologies

This section has highlighted the dependence on
multidisciplinary approaches and challenges in
evaluating middleware for ubiquitous comput-
ing. Techniques incorporating prototyping, em-
ulation, simulation and field trials have been
discussed and their utilisation in various sys-
tems has also been presented. These techniques
not only target different – and often mutually
exclusive – objectives, but also require vary-
ing aspects of functional availability in the
middleware being evaluated. Table 5 provides
a comparative summary the these evaluation
techniques in terms of targets and requirements
along with examples of their utilisation in ex-
isting middleware systems.

7 SUMMARY AND OUTLOOK

7.1 Synopsis

This article has presented a survey of context
provisioning middleware with emphasis on
context modelling, context management, con-
text processing and evaluation of context mid-
dleware approaches. Related work has been
analysed and categorised correspondingly.

The main points of this article and key find-
ings from the analyses of various domain spe-
cific topics can be summarised as follows:

1) Context-awareness is a key feature to en-
able the vision of ubiquitous computing.
A Context Provisioning Middleware can

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 33

TABLE 5
Overview of Evaluation Strategies

Evaluation
Technique

Targets Requirements Examples

Prototyping
Most realistic proof-of-concept for
end-to-end scenarios; provides in-
put parameters for simulations

Implemented applications and test
persons

Active Badge [50], Active Map Service
[20], Cyberguide [49], GUIDE [57],
Conference Assistant [125], Office

Assistant [101], Gaia [53]

Field Trials
Assess Reasoning/Inference accu-
racy, collect feedback & training
data

Context-aware experience sampling,
dynamically reconfigurable by eval-
uators, easily distributable and de-
ployable on everyday devices

MyExperience [105], Momento [112],
CAES [111] [103], ActivityDesigner

[110]

Context
Emulation

Real-world context is extended
or replaced by creating a virtual
world; prototypes can be fed with
input in order to evaluate scalabil-
ity

For evaluating context processing,
reasonable models must be defined
(e.g. taken from recorded real-life
context and associated to avatars)

Siafu, UbiWise [117], TATUS [113],
UbiREAL [120]

Emulating
Middleware
Components

Substitution of hardware (e.g.
physical sensors) by software; re-
duction of costs in large scale Ubi-
Comp environments; Estimation
of consequences when extending
the middleware

Emulation models must reflect the
behaviour of the real hardware

UbiWise [117], TATUS [113]

Emulating
Actuation

Providing a realistic outlook of
context-based actuation in a smart
environment

The influence of the actuation must
be fed back into the system by pro-
ducing emulated context (e.g. heat-
ing ⇒ warmth)

CIVE [119], UbiWise [117], TATUS
[113], UbiREAL [120]

Middleware
Simulation

System-level analysis of large-
scale behaviour

Abstract Simulation model, reason-
able parameter assumptions (taken
from prototypes)

UbiHolo [122], C-ProMiSE [124]

aid in collecting sensor data, detect the
user’s situation and make it available to
context-aware services and applications.
Its major requirements are functional and
physical scalability while ensuring coher-
ent and simple access to contextual infor-
mation.

2) A broad definition of context helps in
identifying a large set of application do-
mains. Early systems were limited to spa-
tial context whereas recent, more innova-
tive systems tend to increase the abstrac-
tion level, e.g. activity or plan recognition.
Semantic context modelling utilises ontolo-
gies represented by semantic web tech-
nologies. Numerous researchers highlight
their difficulties when designing ontolo-
gies and applying reasoning with large
ontologies; therefore a layered approach
has been proposed with common sense
ontologies at the bottom and domain spe-
cific knowledge on top.

3) Recent work in the area of context man-
agement architectures concentrates on web
service approaches and tries to sup-
port modular extendibility to cope with

emerging services and applications; fur-
thermore the interoperability and wide
utilisation of web standards support het-
erogeneous devices and (radio access)
networks.

4) A number of different approaches, from
various domains of computing and ar-
tificial intelligence, have been used in
the complex functional task of context
reasoning/processing. Different reason-
ing mechanisms may be suited to dif-
ferent types of context domains and of-
fer varying degrees of confidence in the
processed contextual information. The se-
lection of an appropriate technique de-
pends on the type of context being rea-
soned about, available input data and the
adopted context model.

5) The approaches to context middleware
evaluation are often limited in focus
to functional assessment, particularly
through prototype implementation. The
size and number of playgrounds and
test beds is increasing. However, context-
aware systems have not yet stepped out
of the laboratory environments into the

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 34

real world significantly.

7.2 Lessons Learnt

Based on the multi-spectrum review of the
domain of context-awareness in general and
context-provisioning middleware in particular,
we summarise the lessons learnt in this section:

• Because it deals with the practical applica-
tion of wide-ranging computing concepts,
ubiquitous computing in general is becom-
ing indistinguishable from other fields of
computing. This aspect highlights both the
cross disciplinary applicability and con-
ceptual complexity in designing context-
aware systems.

• We do not expect a single reason-
ing/inference technology or a single con-
text model to be able to cope with all ap-
plication domains simultaneously. Instead,
context conversation and translation mech-
anisms as well as a diverse set of context
processing technologies need to be incor-
porated.

• The evaluation of context provisioning
middleware is a complex endeavour. A fair
and objective comparison of concurrent
context representation and management
approaches is challenging mainly due to
the fact that the amount of published mea-
surements is insufficient. Here we encour-
age the definition of useful metrics and
a common evaluation methodology that
enables the quantitative juxtaposition.

• The number of context sources and sinks
is expected to increase tremendously with
Internet of Things (IoT) deployments and
sensor equipped smartphones. Therefore,
the scalability of a middleware, both in
terms of computation and administration,
is a sincere concern.

• A systematic evaluation methodology def-
initely benefits from prototyping, (global)
field trials, context emulation and system-
level simulations.

7.3 Trends and Evolution

In addition to academic research, industrial
developments have recently gained a foothold

into context-aware computing. Dominant mar-
ket forces, including Apple, Google and Mi-
crosoft, not only build and equip smart-
phones but also entire software ecosystems
that include software development kits and
software distribution platforms. An obvious
trend is the seamless integration of social net-
working suites and tools for sharing user-
generated content. Corresponding function-
alities are integrated in the operating sys-
tem. Siri (www.apple.com/uk/ios/siri/) and
Vlingo (www.vlingo.com/) are prominent ex-
amples of mobile applications that provide a
speech-based HCI and constitute the first prac-
tical realisation of a context-aware personal
assistant.

User-generated content and voluntary dis-
closure of confidential information in social
networks appears to be a more expressive
source of context than physical sensor readings,
at least for most of the application domains.
Social and emotional sensors might alterna-
tively utilise the Experience Sampling Method
that has been discussed in this article. Sensor
equipped smartphones are the users’ primary
source of interaction with the digital world;
furthermore they allow for opportunistic or
participatory sensing, i.e. multiple phones may
form a crowd sensor. Data exchange may occur
globally via the Internet or by low range com-
munication and the utilisation of opportunistic
networking [126].

There is a growing realisation of the need
for real-world experimental facilities in order to
advance the domain of ubiquitous computing.
The SmartSantander initiative [127] uniquely
conducts a smart city experiment that provides
a smart space at an urban scale across four
European cities, in essence becoming one of the
largest living labs in Europe. It remains to be
seen if the IoT concepts and related technolo-
gies will increase the size of such smart spaces
to larger geographical areas or even globally.

Recent advances point towards a computing
paradigm shift in progress, which can be per-
ceived as an intermediary step towards reali-
sation of ubiquitous computing. The first gen-
eration of computing provided one computer
to many individuals (mainframes), the second
generation allowed for one computer per in-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 35

dividual (PC) and the third generation (dis-
tributed/mobile) computing has made possible
many computers per individual. The current
transformations are paving the way for a many
computers–many individuals correspondence
through the Cloud computing paradigm. It is
interesting to note that while earlier genera-
tions maintained a strong identity association
between the computer and the individual, fu-
ture generations may no longer maintain that
association due to virtualised (Cloud) and com-
munity administered (sensors) computing re-
sources. In such computing environments, we
believe that it will be the role of middleware to
mask the numerous computing resources from
users and manage the identity associations,
which have accessibility, privacy and security
concerns, at the same time.

7.4 Open Issues and Future Work

The expected evolution discussed above moti-
vates further research contributing to the vision
of a generic and evolving context provisioning
middleware for utilisation in ubiquitous com-
puting. Based on the current state of the art,
the following objectives appear essential.

The paradigm of Cloud computing may aid
in context processing and context storage by
offering virtual resources that can be efficiently
utilised on demand [128]. How to support and
embed virtual resources in context modelling,
context management and reasoning mecha-
nisms is still an open issue. Moreover, pri-
vacy and security concerns increase with the
available variety and amount of context – and
its potential storage in the Cloud. Personal
information allows virtually tracing users and
their activities. Therefore, appropriate protec-
tion mechanisms are required. Particularly user
management, authentication and authorisation
need to be systematically incorporated. Third-
party context access has to be bound to explicit
grants or autonomous anonymisation. Further
investigation is required to establish how to ef-
ficiently and safely support these mechanisms
in a Cloud-based context provisioning middle-
ware.

Recent middleware designs tend to unidirec-
tionally detect and publish irrelevant context

that is not required by any application/service
at all or at least not in the provided granularity
or accuracy. Hence, processing resources and
energy are wasted. The efficiency could be
increased by autonomous remote (re-) configu-
ration of sensing devices according to the con-
text demands of consumers. These demands
may either be explicitly defined through con-
text subscriptions or implicitly derived and
predicted from earlier queries. The resulting
feedback loop may be adequately addressed
and analysed from control systems engineering
point of view.

Most researchers have had difficulties in
identifying a killer application for ubiqui-
tous computing. Ubiquitous computing and
context-awareness intend to pro-actively sup-
port users during their everyday life without
any need for complicated interaction to the
computing resources. This leads to the appli-
cation of ubiquitous computing and context-
aware concepts in a huge variety of useful
application domains. However, we underscore
the quite obvious choice of an all encompassing
personal digital assistant as the context-aware
application of choice, which can provide an
interface for different application domains and
further route the demands to other domain
specific services. In existing systems, the fo-
cus has been on the adaptation of the ser-
vice/application logic and its execution. How-
ever, future research may investigate the possi-
bility of context-aware service composition and
context-aware service deployment.

Another avenue of exploration is the level
of control delegation to context-aware systems.
Even considering simple context-aware ser-
vices, there is a significant amount of comput-
ing and processing in the background that the
user is intentionally not made aware of. The
system does not want to be intrusive and dis-
tract the user from his current activity i.e. there
is not necessarily the need for a computing-
aware user. However, the user needs to under-
stand the system; and more importantly, the
user needs to be able to easily overrule automa-
tisms and thus enforce individualistic control.
This need for individualistic control is impor-
tant because though human beings collectively
share certain common-sense logic and knowl-

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 36

edge, a particular human being behaves with
a certain individuality. This individuality has
other ramifications as well, e.g. most reasoning
techniques in existing context-aware systems
apply probabilistic logic, which is based on
probabilistic models derived through machine
learning. These techniques depend on available
training data that usually originates from an
individual user and/or from a group of users.
Hence, the training data is often tainted with
individualistic noise, which may over represent
random individualistic expressions. A useful
trade-off for training data has to be identified
to compensate for this individualistic noise and
thus derive general context reasoning heuris-
tics.

Finally, one of the early proponents of ubiq-
uitous and context-aware computing, Abowd
[129] states that ubiquitous computing has per-
formed an intellectual disappearing act through
its multi-disciplinary nature i.e. its ideas and
concepts already pervade much of comput-
ing research and practice. This argument is
not meant to close the chapter on focussed
ubiquitous computing research but rather to
emphasise the importance of this next gener-
ation of computing. Abowd argues that the
intellectual agenda of ubiquitous computing
has become so profound that it is increasingly
indistinguishable from the overall agenda of
computing research today [129, p. 2], echoing
Weiser’s argument that the most profound re-
search topics are those that disappear by weav-
ing themselves into the fabric of every research
until they are indistinguishable from it [130].
This analysis best explains the diversity in the
scope of the work discussed in this article, as
it is increasingly difficult to analyse the state
of the art in context-aware systems without
addressing the multi-disciplinary nature of the
domain of ubiquitous computing.

8 CONCLUSION

This article has presented a comprehensive re-
view and analysis of how context-aware mid-
dleware systems undertake context modelling,
management, reasoning and provisioning re-
lated functions. By examining the state-of-
the-art in the multifarious aspects of context-
awareness, the article has aimed at developing

an understanding of the functional diversity of
the middleware bridging the virtual and real
worlds. We have also examined how such com-
plex and interwoven systems can be evaluated
through multidisciplinary approaches. Based
on the discussions and analyses of various
domain specific topics, this article has also
presented the main trends and ongoing evo-
lution of context provisioning. Open research
issues have been identified and recommended
for future work.

ACKNOWLEDGMENTS

The work presented in this article has been
partly funded by the European research project
“Context Casting (C-CAST)” in Framework
Programme 7. Its main objective is to evolve
mobile multimedia multicasting to exploit the
increasing integration of mobile devices with
our everyday physical world and environment.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 272, no. 3, pp. 78–89, 1995.

[2] A. K. Dey, “Understanding and using context,” Personal
and Ubiquitous Computing, vol. 5, pp. 4–7, 2001.

[3] N. Kara and O. A. Dragoi, “Reasoning with contextual
data in telehealth applications,” in Proceedings of the
Third IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, ser. WIMOB
’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 69–. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1318474.1318622

[4] Y.-M. Huang, Y.-H. Kuo, Y.-T. Lin, and S.-C. Cheng,
“Toward interactive mobile synchronous learning envi-
ronment with context-awareness service,” Computers &
Education, vol. 51, no. 3, pp. 1205 – 1226, 2008.

[5] W. Choi, H. Kim, J. Kim, and J. Chae, “A context-aware
framework for mobile navigation service,” in Computer
and Information Technology, 2007. CIT 2007. 7th IEEE In-
ternational Conference on. IEEE Computer Society Press,
Oct 2007, pp. 423–428.

[6] H. Chen, F. Perich, D. Chakraborty, T. Finin, and
A. Joshi, “Intelligent agents meet semantic web in
a smart meeting room,” in Proceedings of the Third
International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 2, ser. AAMAS ’04.
Washington, DC, USA: IEEE Computer Society, 2004,
pp. 854–861. [Online]. Available: http://dx.doi.org/10.
1109/AAMAS.2004.152

[7] J. Simoes and T. Magedanz, “Smart advertising in the
home of the future,” International Journal of Computer
Aided Engineering and Technology, vol. 2, no. 2, pp. 164–
180, 2010.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 37

[8] B. Adams, D. Phung, and S. Venkatesh, “Extraction of
social context and application to personal multimedia
exploration,” in Proceedings of the 14th annual ACM
international conference on Multimedia, ser. MULTIMEDIA
’06. New York, NY, USA: ACM, 2006, pp. 987–
996. [Online]. Available: http://doi.acm.org/10.1145/
1180639.1180857

[9] S. Björk, J. Holopainen, P. Ljungstrand, and R. Mandryk,
“Special issue on ubiquitous games,” Personal and Ubiq-
uitous Computing, vol. 6, no. 5-6, pp. 358–361, 2002.

[10] A. Gupta, S. Paul, Q. Jones, and C. Borcea, “Automatic
identification of informal social groups and places for
geo-social recommendations,” International Journal of Mo-
bile Network Design and Innovation, vol. 2, no. 3, pp. 159–
171, 2007.

[11] D. Cook and S. Das, Smart environments: technologies,
protocols, and applications. Wiley-Interscience, 2005.

[12] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli, “A survey of autonomic communica-
tions,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 1, no. 2, pp. 223–259, 2006.

[13] E. Aarts, R. Harwig, and M. Schuurmans, Ambient in-
telligence, The invisible future: the seamless integration of
technology into everyday life, P. J. Denning, Ed. New York,
NY, USA: McGraw-Hill, Inc., 2001.

[14] H. Gellersen, “Smart-its: computers for artifacts in the
physical world,” Commun. ACM, vol. 48, no. 3, pp. 66–,
Mar. 2005. [Online]. Available: http://doi.acm.org/10.
1145/1047671.1047707

[15] A. Zimmermann, “Context Management and Personali-
sation,” Ph.D. dissertation, University of Aachen, 2007.

[16] F. Giunchiglia, “Contextual reasoning,” Epistemologia,
special issue on I Linguaggi e le Macchine, vol. 16, pp. 345–
364, 1993.

[17] C. Billings, “Situation awareness measurement and anal-
ysis: A commentary,” in Proceedings of the International
Conference on Experimental Analysis and Measurement of
Situation Awareness, D. Garland and M. Endsley, Eds.
Daytona Beach, FL: Embry-Riddle Aeronautical Univer-
sity Press, 1995, pp. 1–6.

[18] P. Bellavista, A. Corradi, and C. Giannelli, “A unifying
perspective on context-aware evaluation and manage-
ment of heterogeneous wireless connectivity,” Commu-
nications Surveys Tutorials, IEEE, vol. 13, no. 3, pp. 337
–357, quarter 2011.

[19] A. Dey, “Providing architectural support for building
context-aware applications,” Ph.D. dissertation, Georgia
Institute of Technology, 2000.

[20] B. Schilit and M. Theimer, “Disseminating active map
information to mobile hosts,” IEEE Network, vol. 8, no. 5,
pp. 22–32, 1994.

[21] N. S. Ryan, J. Pascoe, and D. R. Morse, “Enhanced
reality fieldwork: the context-aware archaeological
assistant,” in Computer Applications in Archaeology
1997, ser. British Archaeological Reports, V. Gaffney,
M. van Leusen, and S. Exxon, Eds. Oxford: Tempus
Reparatum, October 1998. [Online]. Available: http:
//www.cs.kent.ac.uk/pubs/1998/616

[22] G. D. Abowd, E. D. Mynatt, and T. Rodden, “The human
experience,” IEEE Pervasive Computing, vol. 1, no. 1, pp.
48–57, 2002.

[23] H. Chen, “An intelligent broker architecture for perva-
sive context-aware systems,” Ph.D. dissertation, Univer-
sity of Maryland, Baltimore County, December 2004.

[24] C. Burghardt and T. Kirste, “Inferring intentions in
generic context-aware systems,” in Proceedings of the
6th international conference on Mobile and ubiquitous
multimedia, ser. MUM ’07. New York, NY, USA:
ACM, 2007, pp. 50–54. [Online]. Available: http:
//doi.acm.org/10.1145/1329469.1329475

[25] T. Strang and C. Linnhoff-Popien, “A context model-
ing survey,” in First International Workshop on Advanced
Context Modelling, Reasoning And Management at UbiComp
2004, Nottingham, UK, September 2004.

[26] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni, “A survey of
context modelling and reasoning techniques,” Pervasive
and Mobile Computing, vol. 6, no. 2, pp. 161–180, 2010.

[27] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber,
and L. Tanca, “A data-oriented survey of context
models,” SIGMOD Rec., vol. 36, pp. 19–26, December
2007. [Online]. Available: http://doi.acm.org/10.1145/
1361348.1361353

[28] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context-aware systems,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277, 2007.

[29] A. Ikram, N. Baker, M. Knappmeyer, E. Reetz, and
R. Tonjesy, “An artificial chemistry based framework
for personal and social context aware smart spaces,” in
Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International. IEEE, 2011, pp. 2009–
2014.

[30] M. Knappmeyer, S. Kiani, C. Frá, B. Moltchanov, and
N. Baker, “Contextml: A light-weight context represen-
tation and context management schema,” in In Proceed-
ings of IEEE International Symposium on Wireless Pervasive
Computing, May 2010, pp. 367 – 372.

[31] Ubiquitous Web Applications Working Group,
“Composite Capability/Preference Profiles (CC/PP):
Structure and vocabularies 2.0,” World Wide Web
Consortium (W3C), W3C Working Draft, April
2007. [Online]. Available: http://www.w3.org/TR/
2007/WD-CCPP-struct-vocab2-20070430/

[32] K. Henricksen and J. Indulska, “A software engineering
framework for context-aware pervasive computing,” in
Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference on.
IEEE Computer Society, Mar 2004, pp. 77 – 86.

[33] J. E. Bardram, “The java context awareness framework
(JCAF): a service infrastructure and programming
framework for context-aware applications,” in
Proceedings of the Third international conference on Pervasive
Computing, ser. PERVASIVE’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 98–115. [Online]. Available:
http://dx.doi.org/10.1007/11428572 7

[34] X. Wang, D. Zhang, T. Gu, and H. Pung, “Ontology
based context modeling and reasoning using owl,” in
Pervasive Computing and Communications Workshops, 2004.
Proceedings of the Second IEEE Annual Conference on,
March 2004, pp. 18 – 22.

[35] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services,” Journal
of Network and Computer Applications, vol. 28, pp. 1–18,
January 2005.

[36] Q. Sheng and B. Benatallah, “Contextuml: a uml-based
modeling language for model-driven development of
context-aware web services,” in Mobile Business, 2005.
ICMB 2005. International Conference on, W. Brookes,

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 38

E. Lawrence, R. Steele, and E. Chang, Eds. IEEE
Computer Society, July 2005, pp. 206 – 212.

[37] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger,
J. Altmann, and W. Retschitzegger, “Context-awareness
on mobile devices - the hydrogen approach,” in
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 9 -
Volume 9, ser. HICSS ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 292.1–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=820756.821849

[38] D. Brickley and R. Guha, “Rdf vocabulary
description language 1.0: Rdf schema,” W3C, W3C
Recommendation, Feb 2004. [Online]. Available:
http://www.w3.org/TR/rdf-schema

[39] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Stein, “OWL web ontology language reference,” World
Wide Web Consortium (W3C), W3C Recommendation,
February 2004. [Online]. Available: http://www.w3.
org/TR/owl-ref/

[40] P. Korpipää and J. Mäntyjärvi, “An ontology for mobile
device sensor-based context awareness,” in Proceedings
of the 4th international and interdisciplinary conference
on Modeling and using context, ser. CONTEXT’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 451–458.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1763142.1763181

[41] A. Ranganathan, J. Al-Muhtadi, and R. Campbell, “Rea-
soning about uncertain contexts in pervasive computing
environments,” IEEE Pervasive Computing, vol. 3, no. 2,
pp. 62–70, 2004.

[42] H. Chang, S. Shin, and C. Chung, “Context Life Cycle
Management Scheme in Ubiquitous Computing Envi-
ronments,” in Mobile Data Management, 2007 International
Conference on. IEEE Computer Society, May 2007, pp.
315–319.

[43] H. Truong and S. Dustdar, “A survey on context-aware
web service systems,” International Journal of Web Infor-
mation Systems, vol. 5, no. 1, pp. 5–31, 2009.

[44] J. Hong, E. Suh, and S. Kim, “Context-aware systems: A
literature review and classification,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8509–8522, 2009.

[45] T. Winograd, “Architectures for context,” Human-
Computer Interaction, vol. 16, no. 2, pp. 401–419, 2001.

[46] P. Makris, D. Skoutas, and C. Skianis, “A survey on
context-aware mobile and wireless networking: On net-
working and computing environments’ integration,”
IEEE Communications Surveys and Tutorials, 2012.

[47] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair,
P. Okanda, A. Friday, and H. Duran-Limon, “A context-
aware middleware for applications in mobile ad hoc
environments,” in Proceedings of the 2nd workshop on
Middleware for pervasive and ad-hoc computing, ser. MPAC
’04. New York, NY, USA: ACM, 2004, pp. 107–
110. [Online]. Available: http://doi.acm.org/10.1145/
1028509.1028510

[48] A. K. Dey, D. Salber, M. Futakawa, and G. D.
Abowd, “An architecture to support context-aware
applications,” Georgia Institute of Technology, Technical
Report GIT-GVU-99-23, 1999. [Online]. Available: http:
//smartech.gatech.edu/handle/1853/3390

[49] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long,
R. Kooper, and M. Pinkerton, “Cyberguide: a mobile
context-aware tour guide,” Wireless Networks, vol. 3,

no. 5, pp. 421–433, Oct 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1019194325861

[50] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The
active badge location system,” ACM Transactions on In-
formation Systems, vol. 10, no. 1, pp. 91–102, Jan 1992.

[51] P. Fahy and S. Clarke, “Cass-middleware for mobile
context-aware applications,” in Workshop on Context
Awareness, The Second International Conference on Mobile
Systems, Applications, and Services (MobiSys). Boston,
Massachusetts: ACM SIGMOBILE, June 2004, pp. 304–
308.

[52] B. Guo, D. Zhang, and M. Imai, “Toward a coopera-
tive programming framework for context-aware applica-
tions,” Personal and Ubiquitous Computing, vol. 15, no. 3,
pp. 221–233, 2011.

[53] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt, “A middleware infras-
tructure for active spaces,” Pervasive Computing, IEEE,
vol. 1, no. 4, pp. 74 – 83, OIct-Dec 2002.

[54] M. Knappmeyer, N. Baker, S. Kiani, and R. Tönjes, “A
context provisioning framework to support pervasive
and ubiquitous applications,” in Proceedings of the 4th
European conference on Smart sensing and context, ser.
EuroSSC’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 93–106.

[55] D. Athanasopoulos, A. Zarras, V. Issarny, E. Pitoura, and
P. Vassiliadis, “CoWSAMI: Interface-aware context gath-
ering in ambient intelligence environments,” Pervasive
and Mobile Computing, vol. 4, no. 3, pp. 360–389, 2008.

[56] J. Zhu, H. Pung, M. Oliya, and W. Wong, “A con-
text realization framework for ubiquitous applications
with runtime support,” Communications Magazine, IEEE,
vol. 49, no. 9, pp. 132–141, 2011.

[57] N. Davies, K. Cheverst, K. Mitchell, and A. Friday,
“’Caches in the Air’: Disseminating tourist information
in the guide system,” in Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications,
ser. WMCSA ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 11–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=520551.837524

[58] R. Kernchen, D. Bonnefoy, A. Battestini, B. Mrohs,
M. Wagner, and M. Klemettinen, “Context-awareness in
mobilife,” in Proceedings of the 15th IST Mobile Summit.
Mykonos, Greece: IST Mobile Summit, June 2006.

[59] T. Gu, H. Pung, and D. Zhang, “Toward an OSGi-based
infrastructure for context-aware applications,” Pervasive
Computing, IEEE, vol. 3, no. 4, pp. 66–74, 2005.

[60] Z. Yu, X. Zhou, Z. Yu, D. Zhang, and C.-Y. Chin, “An
osgi-based infrastructure for context-aware multimedia
services,” Communications Magazine, IEEE, vol. 44, no. 10,
pp. 136 –142, Oct 2006.

[61] V. Lesser, “Cooperative multiagent systems: A personal
view of the state of the art,” Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 11, no. 1, pp. 133–142,
2002.

[62] H. Chen, T. Finin, and A. Joshi, “An ontology for context-
aware pervasive computing environments,” The Knowl-
edge Engineering Review, vol. 18, no. 03, pp. 197–207, 2003.

[63] C. Julien and G. Roman, “Egospaces: Facilitating rapid
development of context-aware mobile applications,”
IEEE Transactions on Software Engineering, vol. 32, no. 5,
pp. 281–298, May 2006.

[64] I. Chen, S. Yang, and J. Zhang, “Ubiquitous provision of
context aware web services,” in Services Computing (SCC

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 39

’06), IEEE International Conference on. Chicago, IL: IEEE
Computer Society, Sept 2006, pp. 60–68.

[65] H.-L. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar,
“Escape – an adaptive framework for managing and
providing context information in emergency situations,”
in Smart Sensing and Context, ser. Lecture Notes in
Computer Science, G. Kortuem, J. Finney, R. Lea, and
V. Sundramoorthy, Eds. Springer Berlin / Heidelberg,
2007, vol. 4793, pp. 207–222. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75696-5 13

[66] H.-L. Truong, S. Dustdar, D. Baggio, S. Corlosquet,
C. Dorn, G. Giuliani, R. Gombotz, Y. Hong, P. Kendal,
C. Melchiorre, S. Moretzky, S. Peray, A. Polleres, S. Reiff-
Marganiec, D. Schall, S. Stringa, M. Tilly, and H. Yu,
“incontext: A pervasive and collaborative working en-
vironment for emerging team forms,” in Applications and
the Internet (SAINT 2008), International Symposium on.
IEEE Computer Society, Aug 2008, pp. 118 –125.

[67] D. de Almeida, C. de Souza Baptista, E. da Silva,
C. Campelo, H. de Figueiredo, and Y. Lacerda, “A
context-aware system based on service-oriented architec-
ture,” in Advanced Information Networking and Applications
(AINA ’06), 20th International Conference on, vol. 1. IEEE
Computer Society, Apr 2006, p. 6.

[68] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. disserta-
tion, University of California, 2000.

[69] R. Greiner, C. Darken, and N. I. Santoso, “Efficient
reasoning,” ACM Comput. Surv., vol. 33, no. 1, pp. 1–30,
Mar. 2001. [Online]. Available: http://doi.acm.org/10.
1145/375360.375363

[70] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards,
Artificial intelligence: a modern approach, 3rd ed. Engle-
wood Cliffs, NJ: Prentice Hall, Dec 2009.

[71] C. Anagnostopoulos, A. Tsounis, and S. Hadjiefthymi-
ades, “Context awareness in mobile computing
environments,” Wireless Personal Communications, vol. 42,
pp. 445–464, 2007, 10.1007/s11277-006-9187-6. [Online].
Available: http://dx.doi.org/10.1007/s11277-006-9187-6

[72] E. Kim, S. Helal, and D. Cook, “Human activity
recognition and pattern discovery,” Pervasive Computing,
IEEE, vol. 9, no. 1, pp. 48–53, 2010. [Online]. Available:
http://dx.doi.org/10.1109/MPRV.2010.7

[73] A. Goultiaeva and Y. Lespérance, “Incremental plan
recognition in an agent programming framework,” in
Working Notes of the AAAI Workshop on Plan, Activity, and
Intention Recognition (PAIR), Vancouver, BC, July 2007.

[74] P. Korpipää, M. Koskinen, J. Peltola, S.-M. Mäkelä,
and T. Seppänen, “Bayesian approach to sensor-based
context awareness,” Personal Ubiquitous Comput., vol. 7,
no. 2, pp. 113–124, Jul. 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00779-003-0237-8

[75] P. Nurmi, P. Floréen, M. Przybilski, and G. Lindén, “A
framework for distributed activity recognition in ubiqui-
tous systems,” in Proceedings International Conference on
Artificial Intelligence (ICAI), vol. 1. Las Vegas, Nevada,
USA: CSREA Press, June 2005, pp. 650–655.

[76] T. R. Gruber, “A translation approach to portable
ontology specifications,” Knowl. Acquis., vol. 5, no. 2,
pp. 199–220, Jun. 1993. [Online]. Available: http:
//dx.doi.org/10.1006/knac.1993.1008

[77] M. Schmidt-Schauß and G. Smolka, “Attributive concept
descriptions with complements,” Artificial intelligence,
vol. 48, no. 1, pp. 1–26, 1991.

[78] D. Ejigu, M. Scuturici, and L. Brunie, “Semantic

approach to context management and reasoning in
ubiquitous context-aware systems,” in Digital Information
Management (ICDIM’07), 2nd International Conference
on, vol. 1. Lyon: IEEE, Oct 2007, pp. 500–505.
[Online]. Available: http://dx.doi.org/10.1109/ICDIM.
2007.4444272

[79] R. Klinger and K. Tomanek, “Classical probabilistic mod-
els and conditional random fields,” Technische Univer-
sität Dortmund, Dortmund, Germany, Algorithm Engi-
neering Report TR07-2-013, Dec 2007.

[80] D. Lewis, “Naive (bayes) at forty: The independence
assumption in information retrieval,” in Machine Learn-
ing: ECML-98, ser. Lecture Notes in Computer Science,
C. Nédellec and C. Rouveirol, Eds. Springer Berlin /
Heidelberg, 1998, vol. 1398, pp. 4–15.

[81] L. Rabiner and B. Juang, “An introduction to hidden
markov models,” IEEE ASSP Magazine, vol. 3, no. 1, pp.
4–16, 1986.

[82] I. Csiszár, “MaxEnt, mathematics, and information the-
ory,” Maximum entropy and Bayesian methods, pp. 35–50,
1996.

[83] J. Lafferty, A. McCallum, and F. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” in Proceedings of 18th Interna-
tional Conference on Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp.
282–289.

[84] N. Oliver, E. Horvitz, and A. Garg, “Layered
representations for human activity recognition,”
in Proceedings of the Fourth IEEE International
Conference on Multimodal Interfaces. IEEE Com-
puter Society, 2002, pp. 3–8. [Online]. Available:
http://dx.doi.org/10.1109/ICMI.2002.1166960

[85] P. Turaga, R. Chellappa, V. Subrahmanian, and
O. Udrea, “Machine recognition of human activ-
ities: A survey,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 18, no. 11,
pp. 1473–1488, Nov 2008. [Online]. Available:
http://dx.doi.org/10.1109/TCSVT.2008.2005594

[86] D. Wen-Yu, X. Ke, and L. Meng-Xiang, “A Situation
Calculus-based Approach To Model Ubiquitous Infor-
mation Services,” Arxiv preprint cs/0311052, 2003.

[87] F. Pirri and R. Reiter, “Some contributions to the
metatheory of the situation calculus,” Journal of the ACM
(JACM), vol. 46, no. 3, pp. 325–361, May 1999. [Online].
Available: http://doi.acm.org/10.1145/316542.316545

[88] C. B. Anagnostopoulos, P. Pasias, and S. Had-
jiefthymiades, “A framework for imprecise context
reasoning,” in IEEE International Conference on
Pervasive Services. IEEE Computer Society, 15-
20 July 2007, pp. 181–184. [Online]. Available:
http://dx.doi.org/10.1109/PERSER.2007.4283913

[89] J. Yin, Q. Yang, D. Shen, and Z. Li, “Activity recognition
via user-trace segmentation,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 4, pp. 1–34, 2008.

[90] T. Bosse, F. Both, C. Gerritsen, M. Hoogendoorn,
and J. Treur, “Model-based reasoning methods within
an ambient intelligent agent model,” in Constructing
Ambient Intelligence, ser. Communications in Computer
and Information Science, M. Mühlhäuser, A. Ferscha,
and E. Aitenbichler, Eds. Springer Berlin Heidelberg,
2008, vol. 11, pp. 352–370. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-85379-4 40

[91] F. Both, M. Hoogendoorn, and J. Treur, “Model-
based ambient analysis of human task execution,” in

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 40

Proceedings of the 1st international conference on PErvasive
Technologies Related to Assistive Environments, ser. PETRA
’08. New York, NY, USA: ACM, 2008, pp. 92:1–
92:8. [Online]. Available: http://doi.acm.org/10.1145/
1389586.1389690

[92] L. Goix, M. Valla, L. Cerami, and P. Falcarin, “Situation
inference for mobile users: a rule based approach,”
in Mobile Data Management (MDM ’07), International
Conference on. Mannheim, Germany: IEEE, May 2007,
pp. 299–303. [Online]. Available: http://dx.doi.org/10.
1109/MDM.2007.63

[93] J. Serrano, J. Serrat, and A. Galis, “Ontology-based con-
text information modelling for managing pervasive ap-
plications,” in Autonomic and Autonomous Systems (ICAS
’06), International Conference on, P. Dini, D. Ayed, C. Dini,
and Y. Berbers, Eds. California, USA: IEEE Computer
Society, 19-21 July 2006.

[94] T. Gu, X. Wang, H. Pung, and D. Zhang, “An ontology-
based context model in intelligent environments,” in
Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference. San Diego,
California, USA: The Society for Modeling and Simula-
tion International (SCS), 18–21 Jan 2004, pp. 270–275.

[95] E. Christopoulou, C. Goumopoulos, and A. Kameas,
“An ontology-based context management and reasoning
process for UbiComp applications,” in Proceedings of
the 2005 Joint Conference on Smart Objects and Ambient
Intelligence: Innovative Context-aware Services, Usages and
Technologies, ser. sOc-EUSAI ’05, ACM. New York,
NY, USA: ACM, 2005, pp. 265–270. [Online]. Available:
http://doi.acm.org/10.1145/1107548.1107613

[96] M. Knappmeyer, E. Wittkorn, S. Kiani, R. Tönjes, and
N. Baker, “Context provisioning middleware with prob-
abilistic reasoning support,” in Proceedings of the 20th
Future Network and Mobile Summit, Warsaw, Poland, 2011.

[97] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional
random fields for activity recognition,” in Proceedings of
the 6th international joint conference on Autonomous agents
and multiagent systems, ser. AAMAS ’07. New York, NY,
USA: ACM, 2007, pp. 235:1–235:8. [Online]. Available:
http://doi.acm.org/10.1145/1329125.1329409

[98] J. Scholtz and S. Consolvo, “Towards a discipline for
evaluating ubiquitous computing applications,” Intel
Research, Tech. Rep. IRS-TR-04-004, Jan 2004. [Online].
Available: http://www.seattle.intel-research.net/pubs/
022520041200 232.pdf

[99] Y. Rogers, K. Connelly, L. Tedesco, W. Hazlewood,
A. Kurtz, R. E. Hall, J. Hursey, and T. Toscos, “Why
it’s worth the hassle: the value of in-situ studies when
designing ubicomp,” in Proceedings of the 9th international
conference on Ubiquitous computing, ser. UbiComp ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 336–353.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1771592.1771612

[100] K. Connelly, K. Siek, I. Mulder, S. Neely, G. Stevenson,
and C. Kray, “Evaluating pervasive and ubiquitous sys-
tems,” Pervasive Computing, IEEE, vol. 7, no. 3, pp. 85
–88, july-sept. 2008.

[101] H. Yan and T. Selker, “Context-aware office assistant,”
in Proceedings of the 5th international conference on
Intelligent user interfaces, ser. IUI ’00. New York, NY,
USA: ACM, 2000, pp. 276–279. [Online]. Available:
http://doi.acm.org/10.1145/325737.325872

[102] A. K. Dey and G. D. Abowd, “Cybreminder: A context-
aware system for supporting reminders,” in Proceedings

of the 2nd international symposium on Handheld and
Ubiquitous Computing, ser. HUC ’00. London, UK:
Springer-Verlag, 2000, pp. 172–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647986.757284

[103] S. Intille, E. Tapia, J. Rondoni, J. Beaudin, C. Kukla,
S. Agarwal, L. Bao, and K. Larson, “Tools for
studying behavior and technology in natural settings,”
in UbiComp 2003: Ubiquitous Computing, ser. Lecture
Notes in Computer Science, A. Dey, A. Schmidt,
and J. McCarthy, Eds. Springer Berlin / Heidelberg,
2003, vol. 2864, pp. 157–174. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-39653-6 13

[104] S. Consolvo, L. Arnstein, and B. R. Franza, “User
study techniques in the design and evaluation of
a ubicomp environment,” in Proceedings of the 4th
international conference on Ubiquitous Computing, ser.
UbiComp ’02. London, UK: Springer-Verlag, 2002, pp.
73–90. [Online]. Available: http://dl.acm.org/citation.
cfm?id=647988.741490

[105] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and
J. A. Landay, “Myexperience: a system for in situ tracing
and capturing of user feedback on mobile phones,”
in Proceedings of the 5th international conference on
Mobile systems, applications and services, ser. MobiSys ’07.
New York, NY, USA: ACM, 2007, pp. 57–70. [Online].
Available: http://doi.acm.org/10.1145/1247660.1247670

[106] S. Consolvo and M. Walker, “Using the experience sam-
pling method to evaluate ubicomp applications,” Perva-
sive Computing, IEEE, vol. 2, no. 2, pp. 24 – 31, Apr-Jun
2003.

[107] A. Crabtree, S. Benford, C. Greenhalgh, P. Tennent,
M. Chalmers, and B. Brown, “Supporting ethnographic
studies of ubiquitous computing in the wild,” in
Proceedings of the 6th conference on Designing Interactive
systems, ser. DIS ’06. New York, NY, USA: ACM, 2006,
pp. 60–69. [Online]. Available: http://doi.acm.org/10.
1145/1142405.1142417

[108] S. S. Intille, L. Bao, E. M. Tapia, and J. Rondoni,
“Acquiring in situ training data for context-aware
ubiquitous computing applications,” in Proceedings of
the SIGCHI conference on Human factors in computing
systems, ser. CHI ’04. New York, NY, USA: ACM,
2004, pp. 1–8. [Online]. Available: http://doi.acm.org/
10.1145/985692.985693

[109] J. Zacks and B. Tversky, “Event structure in perception
and conception,” Psychological Bulletin, vol. 127, no. 1,
pp. 3–21, 2001.

[110] Y. Li and J. A. Landay, “Activity-based prototyping of
ubicomp applications for long-lived, everyday human
activities,” in Proceedings of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
ser. CHI ’08. New York, NY, USA: ACM, 2008, pp.
1303–1312. [Online]. Available: http://doi.acm.org/10.
1145/1357054.1357259

[111] S. S. Intille, J. Rondoni, C. Kukla, I. Ancona, and
L. Bao, “A context-aware experience sampling tool,”
in CHI ’03 extended abstracts on Human factors in
computing systems, ser. CHI EA ’03. New York, NY,
USA: ACM, 2003, pp. 972–973. [Online]. Available:
http://doi.acm.org/10.1145/765891.766101

[112] S. Carter, J. Mankoff, and J. Heer, “Momento: support
for situated ubicomp experimentation,” in Proceedings
of the SIGCHI conference on Human factors in computing
systems, ser. CHI ’07. New York, NY, USA: ACM, 2007,
pp. 125–134. [Online]. Available: http://doi.acm.org/10.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 41

1145/1240624.1240644
[113] E. O’Neill, M. Klepal, D. Lewis, T. O’Donnell,

D. O’Sullivan, and D. Pesch, “A testbed for evaluating
human interaction with ubiquitous computing
environments,” in First International Conference on
Testbeds and Research Infrastructures for the Development
of Networks and Communities (Tridentcom) 2005., ser.
TRIDENTCOM ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 60–69. [Online]. Available:
http://dx.doi.org/10.1109/TRIDNT.2005.7

[114] S. S. Intille, K. Larson, E. M. Tapia, J. S. Beaudin,
P. Kaushik, J. Nawyn, and R. Rockinson, “Using a live-
in laboratory for ubiquitous computing research,” in
Proceedings of the 4th international conference on Pervasive
Computing, ser. PERVASIVE’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 349–365. [Online]. Available:
http://dx.doi.org/10.1007/11748625 22

[115] S. Hossein, S. Helal, and A. Mendez-Vasquez, Sensory
Dataset Description Language (SDDL) Specification, Mobile
and Pervasive Computing Laboratory Department of
Computer and Information Science and Engineering
Std., Rev. 1.0, April 2009. [Online]. Available: http:
//www.icta.ufl.edu/persim/sddl

[116] A. M. Law and W. D. Kelton, Simulation Modelling and
Analysis, 3rd ed. Mcgraw-Hill Higher Education, Dec.
1999.

[117] J. Barton and V. Vijayaraghavan, “UBIWISE, a simulator
for ubiquitous computing systems design,” Hewlett-
Packard Labs, Palo Alto, Tech. Rep. HPL-2003-93,
2003. [Online]. Available: http://www.hpl.hp.com/
techreports/2003/HPL-2003-93.pdf

[118] R. Morla and N. Davies, “Evaluating a location-based
application: A hybrid test and simulation environment,”
IEEE Pervasive Computing, vol. 3, no. 3, pp. 48–56, Jul-
Sept 2004.

[119] S. Jang, Y. Lee, W. Woo, G. U. vr Lab, and S. Korea,
“CIVE: Context-based interactive system for distributed
virtual environment,” in The 14th International Conference
on Artificial Reality and Telexistence (ICAT 2004), Seoul, S.
Korea, 30 Nov – 02 Dec 2004, pp. 495–498.

[120] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki,
T. Kitani, N. Shibata, K. Yasumoto, and M. Ito,
“Ubireal: Realistic smartspace simulator for systematic
testing,” in UbiComp 2006: Ubiquitous Computing, ser.
Lecture Notes in Computer Science, P. Dourish and
A. Friday, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4206, pp. 459–476. [Online]. Available: http:
//dx.doi.org/10.1007/11853565 27

[121] I. Kim, H. Park, Y. Lee, H. Lee, and B. Noh, “Design
of context-awareness simulation toolkit for ubiquitous
computing,” in Industrial Electronics, 2006 IEEE Interna-
tional Symposium on, vol. 4, July 2006, pp. 3220 –3225.

[122] J. Barbosa, R. Hahn, D. Bonatto, F. Cecin, and C. Geyer,
“Evaluation of a large-scale ubiquitous system model
through peer-to-peer protocol simulation,” in Distributed
Simulation and Real-Time Applications (DS-RT 2007), 11th
IEEE International Symposium, Oct 2007, pp. 175–181.

[123] M. Martin and P. Nurmi, “A generic large scale simulator
for ubiquitous computing,” in Mobile and Ubiquitous
Systems: Networking & Services, 2006 Third Annual Inter-
national Conference on. IEEE, 2006, pp. 1–3.

[124] E. Reetz, M. Knappmeyer, S. Kiani, A. Anjum, N. Bessis,
and R. Tönjes, “Performance simulation of a context
provisioning middleware based on empirical measure-
ments,” Simulation Modelling Practice and Theory, 2012.

[125] A. K. Dey, D. Salber, G. D. Abowd, and M. Futakawa,
“The conference assistant: Combining context-awareness
with wearable computing,” in Proceedings of the 3rd
IEEE International Symposium on Wearable Computers, ser.
ISWC ’99. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 21–. [Online]. Available: http://dl.
acm.org/citation.cfm?id=519309.856496

[126] X. Gong, T. Chandrashekhar, J. Zhang, and H. Poor,
“Opportunistic cooperative networking: To relay or not
to relay?” Selected Areas in Communications, IEEE Journal
on, vol. 30, no. 2, pp. 307 –314, february 2012.

[127] L. Sanchez, J. Galache, V. Gutierrez, J. Hernandez,
J. Bernat, A. Gluhak, and T. Garcia, “Smartsantander:
The meeting point between future internet research and
experimentation and the smart cities,” in Future Network
Mobile Summit (FutureNetw), 2011, june 2011, pp. 1 –8.

[128] S. Kiani, A. Anjum, N. Antonopoulos, and M. Knapp-
meyer, “Context-aware service utilisation in the clouds
and energy conservation,” Journal of Ambient Intelligence
and Humanized Computing, pp. 1–21, 2012.

[129] G. D. Abowd, “What next, ubicomp?: celebrating an
intellectual disappearing act,” in Proceedings of the
2012 ACM Conference on Ubiquitous Computing, ser.
UbiComp ’12. New York, NY, USA: ACM, 2012, pp.
31–40. [Online]. Available: http://doi.acm.org/10.1145/
2370216.2370222

[130] M. Weiser, “Some computer science issues in ubiquitous
computing,” Communications of the ACM, vol. 36, no. 7,
pp. 75–84, 1993.

Dr. Michael Knappmeyer received his
Ph.D. (Computer Science) from the Univer-
sity of the West of England, Bristol, UK,
in 2012. His thesis presented a Context
Provisioning Middleware with Support for
Evolving Awareness. In 2006 he received
the Diplom-Informatiker degree from the
University of Applied Sciences Osnabrück,
Germany. As research associate Michael

participated in the European research projects “C-MOBILE” and
“Context Casting (C-CAST)”. In the latter he led the context
reasoning activity and contributed to the overall system archi-
tecture. His interests include smart spaces, context modelling,
reasoning and mobile device management.

Dr. Saad Liaquat Kiani received his B.E.
from the National University of Sciences
and Technology, Islamabad, Pakistan, in
2003. He received his M.S. in Computer
Engineering from Kyung Hee University,
South Korea, in 2007 and completed his
Ph.D. in Computer Science at the Univer-
sity of the West of England, Bristol, UK, in
2011. He is currently a Senior Lecturer in

Networks and Mobile Computing at the University of the West
of England. He is also a visiting lecturer at Cardiff University’s
School of Computer Science and Informatics. His research
interests are in the areas of mobile and distributed computing,
context-aware systems and participatory sensing.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS 42

Eike Steffen Reetz is working as a Re-
search Assistant at the Mobile Communi-
cation Research Group at the University of
Applied Sciences Osnabrück (UASO). His
current research interests include context
detection, delivery and distribution from
physical sensors. He has studied Electri-
cal Engineering with focus on communica-
tion techniques at UASO and received his

Diplom-Ingenieur (FH) degree in August 2007. He was involved
in the European FP6 IST C-MOBILE project and the FP7 ICT
C-CAST project.

Nigel Baker led the Mobile & Ubiquitous
Systems Group, was the Co-Director of
CCCS research centre and Associate Pro-
fessor (Reader) in Computer Science at
the University of the West of England until
2011. His first degrees were in Physics
and Nuclear & Particle Physics. His spe-
cialisms in the last twenty years have been
Real Time Systems, Computer Networks,

Distributed Systems and in the last decade Mobile Commu-
nications. He was a visiting researcher at CERN, Geneva for
six years. He was also a Motorola Fellow until 2006 through
which he developed and led the Mobile Applications of Soft-
ware Technologies (MAST) Programme whilst a recipient of
a Royal Academy of Engineering Industrial Fellowship award
with Motorola European Cellular Infrastructure Division (ECID),
Swindon. During this collaboration with Motorola he worked on
several EU 5th, 6th and 7th Framework projects.

Prof. Dr.-Ing. Ralf Tönjes is heading the
mobile communications group at the Uni-
versity of Applied Sciences Osnabrück. He
studied communication engineering at the
University of Hannover and biomedical en-
gineering at the University of Strathclyde in
Glasgow. In 1998 he received his Dr.-Ing.
degree (summa cum laude) in electrical en-
gineering from the University of Hannover.

From 1998 to 2005 he was with Ericsson Research, working
on future mobile networks and representing Ericsson in stan-
dardisation. In 2005 Ralf Tönjes joined the University of Applied
Sciences of Osnabrück as full professor for Mobile Communica-
tions. He is a TPC member of several international conferences
and (co-) authored more than seventy scientific publications.
His current research interests include wireless communication
networks, Internet of things, context-aware service platforms
and test automation.

