325 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Multiparty interactions in dependable distributed systems

    Get PDF
    PhD ThesisWith the expansion of computer networks, activities involving computer communication are becoming more and more distributed. Such distribution can include processing, control, data, network management, and security. Although distribution can improve the reliability of a system by replicating components, sometimes an increase in distribution can introduce some undesirable faults. To reduce the risks of introducing, and to improve the chances of removing and tolerating faults when distributing applications, it is important that distributed systems are implemented in an organized way. As in sequential programming, complexity in distributed, in particular parallel, program development can be managed by providing appropriate programming language constructs. Language constructs can help both by supporting encapsulation so as to prevent unwanted interactions between program components and by providing higher-level abstractions that reduce programmer effort by allowing compilers to handle mundane, error-prone aspects of parallel program implementation. A language construct that supports encapsulation of interactions between multiple parties (objects or processes) is referred in the literature as multiparty interaction. In a multiparty interaction, several parties somehow "come together" to produce an intermediate and temporary combined state, use this state to execute some activity, and then leave the interaction and continue their normal execution. There has been a lot of work in the past years on multiparty interaction, but most of it has been concerned with synchronisation, or handshaking, between parties rather than the encapsulation of several activities executed in parallel by the interaction participants. The programmer is therefore left responsible for ensuring that the processes involved in a cooperative activity do not interfere with, or suffer interference from, other processes not involved in the activity. Furthermore, none of this work has discussed the provision of features that would facilitate the design of multiparty interactions that are expected to cope with faults - whether in the environment that the computer system has to deal with, in the operation of the underlying computer hardware or software, or in the design of the processes that are involved in the interaction. In this thesis the concept of multiparty interaction is integrated with the concept of exception handling in concurrent activities. The final result is a language in which the concept of multiparty interaction is extended by providing it with a mechanism to handle concurrent exceptions. This extended concept is called dependable multiparty interaction. The features and requirements for multiparty interaction and exception handling provided in a set of languages surveyed in this thesis, are integrated to describe the new dependable multiparty interaction construct. Additionally, object-oriented architectures for dependable multiparty interactions are described, and a full implementation of one of the architectures is provided. This implementation is then applied to a set of case studies. The case studies show how dependable multiparty interactions can be used to design and implement a safety-critical system, a multiparty programming abstraction, and a parallel computation model.Brazilian Research Agency CNPq

    A Reflexive Extension to Arachne's Aspect Language

    Get PDF
    International audienceAspect weaving at run time has proven to be an effective way of implementing software evolution. Nevertheless, it is often hard to achieve adequate modularization and reusability in face of run time and implementation issues. Arachne is an AO system that features a run time aspect weaver for C applications, and a language close to the C syntax. In this paper we present a reflexive extension of Arachne's aspect language. We show through extracts of a deadlock detection aspect, how this extension improves the modularization of crosscutting concerns and the reusability of aspects

    A language and toolkit for the specification, execution and monitoring of dependable distributed applications

    Get PDF
    PhD ThesisThis thesis addresses the problem of specifying the composition of distributed applications out of existing applications, possibly legacy ones. With the automation of business processes on the increase, more and more applications of this kind are being constructed. The resulting applications can be quite complex, usually long-lived and are executed in a heterogeneous environment. In a distributed environment, long-lived activities need support for fault tolerance and dynamic reconfiguration. Indeed, it is likely that the environment where they are run will change (nodes may fail, services may be moved elsewhere or withdrawn) during their execution and the specification will have to be modified. There is also a need for modularity, scalability and openness. However, most of the existing systems only consider part of these requirements. A new area of research, called workflow management has been trying to address these issues. This work first looks at what needs to be addressed to support the specification and execution of these new applications in a heterogeneous, distributed environment. A co- ordination language (scripting language) is developed that fulfils the requirements of specifying the composition and inter-dependencies of distributed applications with the properties of dynamic reconfiguration, fault tolerance, modularity, scalability and openness. The architecture of the overall workflow system and its implementation are then presented. The system has been implemented as a set of CORBA services and the execution environment is built using a transactional workflow management system. Next, the thesis describes the design of a toolkit to specify, execute and monitor distributed applications. The design of the co-ordination language and the toolkit represents the main contribution of the thesis.UK Engineering and Physical Sciences Research Council, CaberNet, Northern Telecom (Nortel)

    Using mobility and exception handling to achieve mobile agents that survive server crash failures

    Get PDF
    Mobile agent technology, when designed and used effectively, can minimize bandwidth consumption and autonomously provide a snapshot of the current context of a distributed system. Protecting mobile agents from server crashes is a challenging issue, since developers normally have no control over remote servers. Server crash failures can leave replicas, instable storage, unavailable for an unknown time period. Furthermore, few systems have considered the need for using a fault tolerant protocol among a group of collaborating mobile agents. This thesis uses exception handling to protect mobile agents from server crash failures. An exception model is proposed for mobile agents and two exception handler designs are investigated. The first exists at the server that created the mobile agent and uses a timeout mechanism. The second, the mobile shadow scheme, migrates with the mobile agent and operates at the previous server visited by the mobile agent. A case study application has been developed to compare the performance of the two exception handler designs. Performance results demonstrate that although the second design is slower it offers the smaller trip time when handling a server crash. Furthermore, no modification of the server environment is necessary. This thesis shows that the mobile shadow exception handling scheme reduces complexity for a group of mobile agents to survive server crashes. The scheme deploys a replica that monitors the server occupied by the master, at each stage of the itinerary. The replica exists at the previous server visited in the itinerary. Consequently, each group member is a single fault tolerant entity with respect to server crash failures. Other schemes introduce greater complexity and performance overheads since, for each stage of the itinerary, a group of replicas is sent to servers that offer an equivalent service. In addition, future research is established for fault tolerance in groups of collaborating mobile agents

    Exception handling in the development of fault-tolerant component-based systems

    Get PDF
    Orientador: Cecilia Mary Fischer RubiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Mecanismos de tratamento de exceções foram concebidos com o intuito de facilitar o gerenciamento da complexidade de sistemas de software tolerantes a falhas. Eles promovem uma separação textual explícita entre o código normal e o código que lida com situações anormais, afim de dar suporte a construção de programas que são mais concisos fáceis de evoluir e confáveis. Diversas linguagens de programação modernas e a maioria dos modelos de componentes implementam mecanismos de tratamento de exceções. Apesar de seus muitos benefícios, tratamento de exceções pode ser a fonte de diversas falhas de projeto se usado de maneira indisciplinada. Estudos recentes mostram que desenvolvedores de sistemas de grande escala baseados em infra-estruturas de componentes têm hábitos, no tocante ao uso de tratamento de exceções, que tornam suas aplicações vulneráveis a falhas e difíceis de se manter. Componentes de software criam novos desafios com os quais mecanismos de tratamento de exceções tradicionais não lidam, o que aumenta a probabilidade de que problemas ocorram. Alguns exemplos são indisponibilidade de código fonte e incompatibilidades arquiteturais. Neste trabalho propomos duas técnicas complementares centradas em tratamento de exceções para a construção de sistemas tolerantes a falhas baseados em componentes. Ambas têm ênfase na estrutura do sistema como um meio para se reduzir o impacto de mecanismos de tolerância a falhas em sua complexidade total e o número de falhas de projeto decorrentes dessa complexidade. A primeira é uma abordagem para o projeto arquitetural dos mecanismos de recuperação de erros de um sistema. Ela trata do problema de verificar se uma arquitetura de software satisfaz certas propriedades relativas ao fluxo de exceções entre componentes arquiteturais, por exemplo, se todas as exceções lançadas no nível arquitetural são tratadas. A abordagem proposta lança de diversas ferramentas existentes para automatizar ao máximo esse processo. A segunda consiste em aplicar programação orientada a aspectos (AOP) afim de melhorar a modularização de código de tratamento de exceções. Conduzimos um estudo aprofundado com o objetivo de melhorar o entendimento geral sobre o efeitos de AOP no código de tratamento de exceções e identificar as situações onde seu uso é vantajoso e onde não éAbstract: Exception handling mechanisms were conceived as a means to help managing the complexity of fault-tolerant software. They promote an explicit textual separation between normal code and the code that deals with abnormal situations, in order to support the construction of programs that are more concise, evolvable, and reliable. Several mainstream programming languages and most of the existing component models implement exception handling mechanisms. In spite of its many bene?ts, exception handling can be a source of many design faults if used in an ad hoc fashion. Recent studies show that developers of large-scale software systems based on component infrastructures have habits concerning the use of exception handling that make applications vulnerable to faults and hard to maintain. Software components introduce new challenges which are not addressed by traditional exception handling mechanisms and increase the chances of problems occurring. Examples include unavailability of source code and architectural mismatches. In this work, we propose two complementary techniques centered on exception handling for the construction of fault-tolerant component-based systems. Both of them emphasize system structure as a means to reduce the impactof fault tolerance mechanisms on the overall complexity of a software system and the number of design faults that stem from complexity. The ?rst one is an approach for the architectural design of a system?s error handling capabilities. It addresses the problem of verifying whether a software architecture satis?es certain properties of interest pertaining the ?ow of exceptions between architectural components, e.g., if all the exceptions signaled at the architectural level are eventually handled. The proposed approach is based on a set of existing tools that automate this process as much as possible. The second one consists in applying aspect-oriented programming (AOP) to better modularize exception handling code. We have conducted a through study aimed at improving our understanding of the efects of AOP on exception handling code and identifying the situations where its use is advantageous and the ones where it is notDoutoradoDoutor em Ciência da Computaçã

    Fault-tolerant software: dependability/performance trade-offs, concurrency and system support

    Get PDF
    PhD ThesisAs the use of computer systems becomes more and more widespread in applications that demand high levels of dependability, these applications themselves are growing in complexity in a rapid rate, especially in the areas that require concurrent and distributed computing. Such complex systems are very prone to faults and errors. No matter how rigorously fault avoidance and fault removal techniques are applied, software design faults often remain in systems when they are delivered to the customers. In fact, residual software faults are becoming the significant underlying cause of system failures and the lack of dependability. There is tremendous need for systematic techniques for building dependable software, including the fault tolerance techniques that ensure software-based systems to operate dependably even when potential faults are present. However, although there has been a large amount of research in the area of fault-tolerant software, existing techniques are not yet sufficiently mature as a practical engineering discipline for realistic applications. In particular, they are often inadequate when applied to highly concurrent and distributed software. This thesis develops new techniques for building fault-tolerant software, addresses the problem of achieving high levels of dependability in concurrent and distributed object systems, and studies system-level support for implementing dependable software. Two schemes are developed - the t/(n-l)-VP approach is aimed at increasing software reliability and controlling additional complexity, while the SCOP approach presents an adaptive way of dynamically adjusting software reliability and efficiency aspects. As a more general framework for constructing dependable concurrent and distributed software, the Coordinated Atomic (CA) Action scheme is examined thoroughly. Key properties of CA actions are formalized, conceptual model and mechanisms for handling application level exceptions are devised, and object-based diversity techniques are introduced to cope with potential software faults. These three schemes are evaluated analytically and validated by controlled experiments. System-level support is also addressed with a multi-level system architecture. An architectural pattern for implementing fault-tolerant objects is documented in detail to capture existing solutions and our previous experience. An industrial safety-critical application, the Fault-Tolerant Production Cell, is used as a case study to examine most of the concepts and techniques developed in this research.ESPRIT

    Open Multithreaded Transactions: A Transaction Model for Concurrent Object-Oriented Programming

    Get PDF
    To read the abstract, please go to my PhD home page

    Debugger interface pro Java PathFinder model checker

    Get PDF
    Cílem této práce je začlenit Java PathFinder do architektury Java Platform Debugger Architecture, tedy umožnit debuggování Java Pathfinderu z jakéhokoliv moderního Java vývojového prostředí se všemi výhodami s tím spojenými stejně jako u běžných Java virtuálních strojů. Těmi jsou kupříkladu různé typy breakpointů, krokování v otevřených zdrojových souborech a inspekce zásobníku volání a objektů v programu. Výsledná práce dává uživatelům k dispozici plnohodnotnou škálu možností debugování jako u běžných Java programů, a to bez nutnosti použití dalších nástrojů, editorů a zejména bez nutnosti složitého nastavování prostředí pro debugování. Díky tomu mohou uživatelé zkoumat, debugovat a pochopit stav programu při procházení error trace vyhodnocené Java PathFinderem. Klíčovou části práce je implementace Java Debug Wire Protocol agenta jako doplněk Java PathFinderu. V důsledku tohoto se Java PathFinder stává kompletnějším Java virtuálním strojem jak v očích komunity tak i celé obce Java uživatelů. Powered by TCPDF (www.tcpdf.org)The aim of this work is to integrate Java PathFinder into Java Platform Debugger Architecture. That is, to allow using Java PathFinder instead of a common Java Virtual Machine for the purpose of debugging Java applications in any modern Java Integrated Development Environment with all its advantages such as various kinds of breakpoints, direct stepping in opened source files, and call stack and object inspection. The resulting work provides users with all the features they are used to while debugging Java applications. None of this requires any external tools, editors or a complicated setup. Therefore, users are able to view, debug and understand the program state while replaying an error trace in Java PathFinder. The key part of the study is an implementation of the Java Debug Wire Protocol Agent as an extension for Java PathFinder. That makes JPF more complete as a Virtual Machine in the eyes of the community and the Java users in general. Powered by TCPDF (www.tcpdf.org)Department of Distributed and Dependable SystemsKatedra distribuovaných a spolehlivých systémůFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF
    corecore