
 brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Open Multithreaded Transactions
A Transaction Model for Concurrent

Object-Oriented Programming
THÈSE No 2393 (2001)
PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Jörg Kienzle
Ingénieur Informaticien Diplômé EPF
Originaire de Hofstetten-Flüh (SO)

acceptée sur proposition du jury:
Prof. A. Strohmeier, directeur de thèse

Prof. Rachid Guerraoui, rapporteur
Prof. Rudolf Keller, rapporteur

Prof. Oscar Nierstrasz, rapporteur
Dr. Alexander Romanovsky, rapporteur

Lausanne, EPFL
Avril 2001

https://core.ac.uk/display/12574783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Modern programming languages provide features that allow a programmer to express con-
currency in an application by using active objects, i.e. objects with their own thread of con-
trol, and distribution. Concurrent systems can be classified into cooperative systems, where
individual components collaborate, share results and work for a common goal, and compet-
itive systems, where the individual components are not aware of each other and compete for
shared resources. Programming languages address collaboration and competition by provid-
ing means for communication and synchronization among active objects.

The realization of complex object-oriented systems often needs sophisticated and
elaborate concurrency features which may go beyond the traditional concurrency control
associated with separate method calls. A transaction groups together a sequence of actions,
and can therefore encapsulate complex behavior and embrace groups of objects and method
calls. Transactions structure the dynamic system execution as opposed to the static structur-
ing based on objects. Because of the ACID properties, transactions are able to hide the
effects of concurrency and at the same time act as firewalls for errors, making them appro-
priate building blocks for structuring reliable distributed systems. This thesis investigates
how transactions can be integrated with concurrent object-oriented programming, and in
particular, how transactions can be made available to an application programmer at the pro-
gramming language level.

In the first part of the thesis, existing transaction models are reviewed and their suit-
ability for concurrent programming languages is discussed. The analysis of existing models
of multithreaded transactions shows that they either give too much freedom to threads and
do not control their participation in transactions, or unnecessarily restrict the computational
model by assuming that only one thread can enter a transaction. Hence, a significant part of
this thesis is devoted to the establishment of a new transaction model named Open Multi-
threaded Transactions, providing features for controlling and structuring not only accesses
to objects, as usual in transaction systems, but also threads taking part in transactions. The
model allows several threads to enter the same transaction in order to perform a joint activ-
ity. It provides a flexible way of manipulating threads executing inside a transaction by
allowing them to be forked and terminated, but it restricts their behavior in order to guaran-
tee correctness of transaction nesting and isolation among transactions.

The open multithreaded transaction model incorporates disciplined exception han-
dling adapted to nested transactions. It allows individual threads to perform forward error
recovery by handling an abnormal situation locally, and promotes a defensive approach for
developing transactional objects, so that errors are detected early and dealt with inside the
transaction. If local handling fails, the transaction support applies backward error recovery
and reverses the system to its “initial” state.
i

Abstract

The second part of the thesis describes the design of an object-oriented framework
called OPTIMA, which provides the necessary run-time support for open multithreaded
transactions. Since applications from many different domains can benefit from using trans-
actions, it is important to allow an application programmer to customize the framework.
This flexibility is achieved with the help of design patterns. Class hierarchies with classes
implementing standard transactional behavior are provided, but a programmer is free to
extend the hierarchies to tailor the framework to the application-specific needs. The frame-
work supports among others optimistic and pessimistic concurrency control, different
recovery strategies (i.e. Undo/Redo, NoUndo/Redo, Undo/NoRedo), different caching tech-
niques, different logging techniques (i.e. physical logging and logical logging), and differ-
ent storage devices. Among pessimistic concurrency control, the framework provides built-
in support for lock-based concurrency control, with strict read / write or commutativity-
based locking.

An important decision was to provide support for open multithreaded transactions in a
programming language without modifying the language itself, which avoids having to mod-
ify the compiler. Possible interfaces for an application programmer are exposed, including a
procedural, an object-based and an object-oriented interface. The feasibility and the ele-
gance of the interfaces depend on the available features of the programming language.

The third part of the thesis presents an implementation of the OPTIMA framework for
the concurrent object-oriented programming language Ada 95. It has been realized in form
of a library based on standard Ada only. This makes the approach useful for all settings and
platforms which have standard Ada compilers. Based on the features offered by Ada 95, a
procedural, an object-based and an object-oriented interfaces for the transaction framework
have been implemented. The prototype implementation validates the appropriateness of the
design of the framework, and allows application programmers to experiment with the open
multithreaded transaction model.

The last part of the thesis describes the design and implementation of an auction sys-
tem based on open multithreaded transactions. This case study, an example of a dynamic
system with cooperative and competitive concurrency, validates the open multithreaded
transaction model. It shows how the complexity of the application can be reduced by struc-
turing the execution using open multithreaded transactions. Reasoning about fault tolerance
issues and consistency of the overall system is made a lot easier. Due to the isolation prop-
erty and disciplined exception handling, open multithreaded transactions do not allow errors
to propagate to the outside, and therefore constitute units of fault tolerance.
ii

Résumé

Les langages de programmation modernes comprennent des mécanismes permettant
d’exprimer la concurrence inhérente à une application à travers les objets actifs, c’est-à-dire
des objets qui ont leur propre fil d’exécution (tâche), et la répartition. Il existe deux types de
systèmes concurrents: les systèmes coopérants, où les composants individuels collaborent,
partagent leurs résultats et travaillent dans un même but, et les systèmes compétitifs, où les
composants individuels s’ignorent les uns les autres et se disputent les ressources partagées.
Les langages de programmation abordent les problèmes de collaboration et de compétition
en offrant des mécanismes de communication et de synchronisation parmi les objets actifs.

Lorsque l’on réalise des systèmes à objets complexes, il est souvent nécessaire de dis-
poser de mécanismes de contrôle de concurrence plus sophistiqués et plus évolués que ceux
traditionellement associés avec les appels de méthodes individuelles. Une transaction
regroupe une séquence d’action et peut ainsi renfermer un comportement complexe et
englober des groupes d’objets et d’appels aux méthodes. Les transactions structurent l’exé-
cution dynamique d’un système, par opposition à la structure statique réalisée par la décom-
position en objets. Grâce aux propriétés ACID, les transactions permettent de cacher les
problèmes liés à la concurrence et empêchent en même temps la propagation d’erreurs. Cel-
les-ci forment ainsi des blocs d’éléments de base appropriés à la structuration de systèmes
répartis fiables. Cette thèse étudie la manière dont les transactions peuvent être intégrées à
la programmation à objets concurrente et examine en particulier comment les transactions
peuvent être mises à disposition au niveau du langage de programmation.

La première partie de la thèse décrit les modèles de transaction existants tout en exa-
minant leur place éventuelle dans un langage de programmation concurrent. L’analyse des
modèles de transaction multitâches montre que soit les tâches ont trop de liberté, leur parti-
cipation à la transaction n’étant pas contrôlée, soit le modèle est trop restrictif en ne laissant
qu’une seule tâche entrer dans une transaction. Pour cette raison, une partie importante de la
thèse a été consacrée à l’établissement d’un nouveau modèle appelé transactions multitâ-
ches ouvertes (Open Multithreaded Transactions). Le modèle offre non seulement les méca-
nismes habituels qui permettent de contrôler et de structurer l’accès aux objets, mais aussi
la possibilité de superviser les tâches qui participent à la transaction. Plusieurs tâches ont le
droit de pénétrer dans une même transaction pour travailler en commun. Ce modèle autorise
également la création de nouvelles tâches de même que leur destruction à l’intérieur ou à
l’extérieur d’une transaction. Ce comportement est limité à certains endroits pour obtenir
une imbrication correcte et pour garantir l’isolation entre les transactions.

Le modèle présenté intègre également un traitement d’exceptions structuré. Les
tâches participant à une transaction peuvent appliquer une politique de recouvrement en
avant et donc essayer de rétablir une situation correcte localement. Une approche défensive
pour le développement d’objets transactionnels est également préconisée, afin de détecter
iii

Résumé

les erreurs au plus tôt et de permettre leur traitement à l’intérieur même de la transaction. Si
les démarches locales échouent, le support transactionnel applique le recouvrement en
arrière et remet le système dans son état initial.

La deuxième partie de la thèse décrit la conception d’un framework (cadre applicatif à
objets) baptisé OPTIMA, qui offre le support nécessaire pour les transactions multitâches
ouvertes à l’exécution. Etant donné que des applications dans de nombreux domaines diffé-
rents peuvent bénéficier de l’utilisation de transactions, il est important de permettre à un
programmeur de modifier le framework à la demande. Cette flexibilité est atteinte à l’aide
de “design patterns”. Une hiérarchie de classes est mise à disposition, et des classes concrè-
tes implémentent plusieurs comportements transactionnels standards. Si nécessaire, un pro-
grammeur peut étendre la hiérarchie pour adapter le framework aux exigences de son
application. Ce framework offre parmi d’autres un contrôle de concurrence optimiste et pes-
simiste, plusieurs stratégies de reprise après défaillance (Défaire / Refaire, Ne Pas Défaire /
Refaire, Défaire / Ne Pas Refaire), différentes techniques de gestion de cache, la journalisa-
tion physique et logique, et permet de gérer des unités de stockage de différents types.
Parmi les méthodes de contrôle de concurrence pessimiste, le framework met à disposition
le verrouillage à deux phases strict ou typé, basé sur la commutativité des opérations de
l’objet transactionnel en question.

Le choix d’intégrer les transactions multitâches ouvertes dans un langage de program-
mation sans modifier le langage lui-même rend le framework plus portable et maintenable.
Le programmeur peut bénéficier de différentes interfaces, notamment d’une interface procé-
durale, d’une interface s’appuyant sur des objets (object-based), et d’une interface à objets.
L’éventuelle réalisation des interfaces et leur mise en œuvre dépendent des mécanismes mis
à disposition par le langage de programmation en question.

La troisième partie de la thèse expose une implémentation du framework OPTIMA

pour le langage de programmation à objets concurrent Ada 95. La réalisation est écrite en
Ada standard sous forme de bibliothèque, et est ainsi utilisable sur toutes les plateformes
qui proposent un compilateur Ada standard. Les interfaces mentionnées précédemment ont
été réalisées en s’appuyant sur les mécanismes de concurrence offerts par Ada 95. Cette
implémentation valide les concepts du framework et permet à un programmeur de mettre en
pratique les transactions multitâches ouvertes.

La dernière partie de la thèse décrit la conception et la réalisation d’un système de
vente aux enchères électronique utilisant les transactions multitâches ouvertes. Cette étude
de cas, qui présente simultanément des traits de concurrence coopérative et compétitive,
valide le modèle et montre également comment la complexité de l’application peut être
réduite en structurant l’exécution par les transactions multitâches ouvertes. De plus, ce pro-
cédé facilite la gestion de la tolérance aux pannes et garantit la cohérence globale du sys-
tème. La propriété d’isolation empêche la propagation éventuelle d’erreurs à l’extérieur de
la transaction. Les transactions multitâches ouvertes peuvent donc être considérées comme
les unités de tolérance aux défaillances.
iv

Acknowledgements

This thesis, as it stands here, could not have been completed without the help of others. I
would like to express my gratitude to them.

First of all, I would like to thank Professor Alfred Strohmeier for supervising this
research work and for supporting me through all these years. He has given me a lot of free-
dom by letting me choose the topic of my Ph.D., and has given me ample opportunities to
meet some of the experts in the field by sending me to renowned conferences. He has
always found time for me, and his accuracy and his talent for pointing out the essential have
helped me to bring out the best in my papers and in my research work in general. I also
thank him for offering me the opportunity to teach, and for having read draft versions of this
thesis; I think it has benefited greatly from his criticisms.

I am grateful to the jury members Professor Rachid Guerraoui, Professor Rudolf
Keller, Professor Oscar Nierstrasz, and Dr. Alexander Romanovsky for having accepted to
serve on my examination board and for the time they invested to read and evaluate this
work. I am indebted to Dr. Alexander Romanovsky for the intense discussions we had dur-
ing his visit at the Software Engineering Lab. His knowledge and experience in the field of
fault tolerance have been invaluable for me. His advice and suggestions helped me give
shape to the open multithreaded transaction model, and he pushed me to work out the inter-
action with exception handling in detail. His enthusiastic emails have been very stimulating,
and I very much appreciate his openness and sympathy.

I also want to express my thanks to Dr. Ricardo Jiménez-Peris for allowing me to start
the work on the OPTIMA framework on his bases, and for assisting me throughout the whole
development.

I am grateful to Professor Andy Wellings, Professor Bo Sanden, Dr. Bob Johnson, Dr.
Thomas Wolf and Stephen Michell for the interesting research we performed together on
extensible protected types. This far-reaching work has given me deep insight into concur-
rent object-oriented programming languages and Ada in particular.

Special thanks go to Dr. Thomas Wolf, my “buddy” and former office mate, on whom
I can always count on when I am in “scientific distress”. I thank him for telling me the ways
of Ada 95 and for his sincere friendship. I am grateful to Shane Sendall for his careful
review of this thesis, and to Xavier Caron for the work he accomplished in his diploma the-
sis on stable storage and for implementing parts of the auction system. I also thank the other
members of the Software Engineering Lab, Anne Schlageter, Dr. Didier Buchs, Mohamed
Kandé, Benjamin Barras, Enzo Grigio, Stanislav Chachkov, Adel Besrour, David Hürzeler,
Sandro Costa, Raul Silaghi and Rodrigo Garcia-Garcia for the pleasant atmosphere.

I thank the students of the first year programming class in the years 2000 and 2001 for
making teaching such an enjoyable task, and in particular Simon Schule for implementing
parts of the graphical user interface of the auction system.
v

I am grateful to my parents, and especially to my father, for always supporting my dif-
ferent undertakings, whether they were related to computers or to ice skating. I also want to
thank the parents of my wife for welcoming me in their family and for the many philosoph-
ical discussions. I will never forget my ice dancing coach Walter Hofer, a man of good
advice, who has taught me close teamwork and how to last out.

I also want to thank my “Gemini Brother” Yann Le Tensorer and Henrik Gudat for all
the fun we had in the past developing computer games and writing songs.

Finally, I thank my daughters Julie, Laura and Isabelle for their smiles and their posi-
tive energy, and for periodically reminding me of how much work is left to do:

Laura: “Hi Daddy! How was work today? Did you finish your thesis?”
Me: “Well, only half of chapter 7.”
Julie: “Great, that leaves you with only 6 1⁄2 chapters to write, plus the introduction

and conclusion.”

But most of all I thank my wife Valérie for her cheerfulness and great sense of humor. She
makes life worth living, and a thesis worth writing! Without her support I might not have
accomplished this work. She watched with devotion over our three daughters, and raised my
spirits more than once when stress got the better of me.

To Valérie

Table of Contents

Table of Contents

Abstract.. i

Résumé .. iii

Acknowledgements ... v

Table of Contents .. ix

List of Figures.. xvii

1 Introduction .. 1
1.1 Context and Objectives .. 1
1.2 Contributions of this Thesis ... 3
1.3 Thesis Organization ... 5

Part I: Transaction Models

2 Fundamental Concepts... 9
2.1 Object-Orientation ... 9

2.1.1 Base Principles... 9
2.1.2 Concepts... 10
2.1.3 Object-Oriented Programming .. 11
2.1.4 Evolution of Object-Oriented Programming 11
2.1.5 Objects ... 12
2.1.6 Classes ... 12
2.1.7 Inheritance ... 13
2.1.8 Polymorphism.. 13
2.1.9 Interactions... 13
2.1.10 Preconditions, Postconditions and Invariants 14

2.2 Concurrency ... 14
2.2.1 Nature of Concurrent Systems... 15
2.2.2 Concurrency and Object-Oriented Programming 16
2.2.3 Direct Communication... 17
2.2.4 Communication via Shared Passive Objects 18
2.2.5 Deadlocks and Starvation .. 18

2.3 Fault Tolerance .. 19
2.3.1 Terminology... 19
2.3.2 Fault Classification .. 20
2.3.3 Failure Semantics... 20
ix

Table of Contents

2.3.4 Error Processing... 21
2.3.5 System Structuring for Fault Tolerance... 22

2.4 Exceptions.. 23
2.4.1 Exception Handling in Concurrent Systems.................................. 24

2.5 Persistence.. 25
2.5.1 Persistence and Programming Languages 26

3 Transaction Models ... 29
3.1 Atomic Units of System Structuring.. 30
3.2 Atomic Units and Exception Handling .. 30
3.3 Competitive and Cooperative Structuring Units.. 31
3.4 Competitive World: Transactions and Derivatives...................................... 31

3.4.1 Flat Transactions.. 33
3.4.2 Flat Transactions with Savepoints ... 34
3.4.3 Chained Transactions... 35
3.4.4 Nested Transactions... 36
3.4.5 Split Transactions .. 38
3.4.6 Joint Transactions .. 39
3.4.7 Recoverable Communicating Actions ... 40
3.4.8 Sagas .. 40

3.5 Collaborative World: Conversations and Derivatives 41
3.5.1 Conversations... 41
3.5.2 Atomic Actions .. 42

3.6 Combining Cooperative and Competitive Concurrency.............................. 43
3.6.1 Multithreading inside Transactions ... 43
3.6.2 Multithreaded Transactions ... 45
3.6.3 Coordinated Atomic Actions ... 46

4 Open Multithreaded Transactions ... 49
4.1 Motivations .. 49
4.2 Requirements ... 50

4.2.1 Integration Requirements... 50
4.2.2 Guaranteeing the ACID Properties .. 50

4.3 Analysis of Existing Models .. 51
4.4 Open Multithreaded Transactions.. 53

4.4.1 Starting an Open Multithreaded Transaction................................. 53
4.4.2 Joining an Open Multithreaded Transaction.................................. 54
4.4.3 Concurrency Control in Open Multithreaded Transactions........... 54
4.4.4 Ending an Open Multithreaded Transaction.................................. 54

4.5 Exception Handing in Open Multithreaded Transactions............................ 56
x

Table of Contents

4.5.1 Classification of Exceptions .. 56
4.5.2 Internal Exceptions .. 56
4.5.3 External Exceptions ... 56

4.6 Additional Considerations.. 58
4.6.1 Closing an Open Multithreaded Transaction 58
4.6.2 Naming an Open Multithreaded Transaction................................. 59
4.6.3 Deserters .. 59
4.6.4 Transactional Objects .. 59

4.6.4.1 Two-level Concurrency Control... 59
4.6.4.2 Enhanced Error Detection .. 60
4.6.4.3 Exception Handling and Transactional Objects 60

4.6.5 Exception Resolution... 61
4.6.6 Open Multithreaded Transactions as Firewalls for Errors............. 61

4.7 Comparison .. 62

Part II: The OPTIMA Framework

5 Overall Design ... 67
5.1 General Considerations .. 67
5.2 Design Patterns .. 68

5.2.1 The Abstract Factory Design Pattern .. 68
5.2.2 The Strategy Design Pattern .. 69
5.2.3 The Serializer Design Pattern .. 70

5.3 OPTIMA Framework Design Overview .. 72
5.3.1 Transaction Support ... 73
5.3.2 Concurrency Control.. 73
5.3.3 Recovery .. 74

6 Transaction Support ... 75
6.1 States of an Open Multithreaded Transaction.. 75
6.2 Synchronizing Participant Exit .. 76
6.3 Monitoring Accesses to Transactional Objects.. 76
6.4 Handling Nesting ... 77
6.5 The Transaction Hierarchy .. 77
6.6 Handling Named Transactions... 78

7 Concurrency Control .. 79
7.1 Handling Cooperative Concurrency .. 79
7.2 Handling Competitive Concurrency... 80

7.2.1 Pessimistic Concurrency Control... 80
xi

Table of Contents

7.2.2 Optimistic Concurrency Control.. 81
7.3 Encapsulating Different Concurrency Control Strategies............................ 82
7.4 Concurrency Control Information for Operations 83

7.4.1 Strict Concurrency Control .. 84
7.4.2 Semantic-Based Concurrency Control... 84

7.4.2.1 Commutativity.. 85
7.4.3 Encapsulating Operation Concurrency Control Information......... 87

8 Recovery .. 89
8.1 Global Design .. 90
8.2 Persistence Support .. 90

8.2.1 Classification of Storage Devices .. 91
8.2.2 Object Serialization.. 95
8.2.3 Identification of Transactional Objects.. 95
8.2.4 Storage Management ... 96

8.3 Caching Support... 97
8.3.1 Cache Fetch Algorithm.. 98
8.3.2 Cache Replacement Algorithm.. 98
8.3.3 Extensible Cache Design ... 99
8.3.4 Consequences of Caching.. 100

8.4 Logging .. 100
8.4.1 Encapsulating Logging Techniques... 101
8.4.2 Encapsulating Log Information ... 102

8.5 Recovery Support... 103
8.5.1 Recovery Strategies ... 103

8.5.1.1 Undo/Redo.. 103
8.5.1.2 Undo/No-Redo ... 103
8.5.1.3 No-Undo/Redo ... 103
8.5.1.4 No-Undo/No-Redo ... 104

8.5.2 Encapsulating Recovery Strategies.. 104
8.5.3 Undo/NoRedo Recovery Algorithms... 105
8.5.4 NoUndo/Redo Recovery Algorithms... 106
8.5.5 Undo/Redo Recovery Algorithms ... 107

9 Interfacing with Programming Languages ... 109
9.1 Associating Participants with a Transaction .. 109
9.2 Encapsulating Objects.. 110

9.2.1 The Transactional Object... 111
9.2.2 Handling Durability ... 112
9.2.3 Encapsulating Operation Invocations on Data Objects 112
xii

Table of Contents

9.2.4 Tying Things Together .. 114
9.2.5 In-place Update and Deferred Update ... 115
9.2.6 Trace of an Operation Invocation .. 116

9.3 Initializing and Shutting Down the Transaction Support............................. 118
9.4 Providing Transactions at the Programming Language Level..................... 119

9.4.1 Procedural Interface ... 119
9.4.1.1 Discussion .. 121

9.4.2 Object-Based Interface .. 121
9.4.2.1 Discussion .. 122

9.4.3 Object-Oriented Interface .. 122
9.5 Additional Considerations.. 123

9.5.1 Reflection... 124
9.5.1.1 Applying Reflection ... 124

9.5.2 Aspect-Oriented Programming .. 125
9.5.3 Evaluation .. 126

Part III: Implementation for Ada 95

10 Ada 95 ... 131
10.1 Ada 83 vs. Ada 95.. 131
10.2 Object–Oriented Programming in Ada .. 132

10.2.1 Controlled Types.. 134
10.3 Concurrency in Ada ... 134

10.3.1 Tasks .. 134
10.3.2 Task Identification ... 135
10.3.3 Task Attributes... 135
10.3.4 The Rendezvous... 135
10.3.5 Protected Types.. 137
10.3.6 Asynchronous Transfer of Control .. 139

10.4 Integration of Concurrency and Object-Orientation in Ada 140
10.4.1 Extensible Protected Types.. 140

10.5 Distributed Systems in Ada.. 143
10.5.1 Remote Procedure Calls... 144
10.5.2 Distributed Objects .. 145
10.5.3 Fault Tolerance in Distributed Ada ... 146

10.6 Exceptions in Ada .. 146
10.6.1 The Package Ada.Exceptions............................... 148

10.7 Persistence in Ada.. 148
xiii

Table of Contents

11 Implementation for Ada 95... 151
11.1 Implementing the Framework.. 151

11.1.1 Objects ... 151
11.1.2 Concurrency Control.. 153
11.1.3 Persistence ... 156

11.1.3.1 The Storage Hierarchy.. 156
11.1.3.1 The Buffer Hierarchy ... 157
11.1.3.1 Normal and Buffered Streams.. 158

11.2 Transaction Framework Interfaces for Ada 95 .. 159
11.2.1 Transaction Identifier Management... 159
11.2.2 Encapsulating Data Objects ... 160

11.2.2.1 Interfacing with the Cache Manager 160
11.2.3 Procedural Interface ... 161
11.2.4 Object-Based Interface .. 163
11.2.5 Object-Oriented Interface .. 166
11.2.6 Initializing and Shutting Down the Transaction Support 169

12 Related Work ... 171
12.1 Argus.. 171

12.1.1 Transaction Model ... 172
12.1.2 Concurrency... 173
12.1.3 Exceptions.. 173

12.2 Camelot and Avalon... 174
12.2.1 Transaction Model and Concurrency... 174
12.2.2 Exceptions.. 175
12.2.3 Transactional Objects .. 175

12.3 Arjuna... 176
12.3.1 Transaction Model ... 177
12.3.2 Exceptions.. 177
12.3.3 Transactional Objects .. 178

12.4 Venari / ML.. 178
12.4.1 Transaction Model and Concurrency... 178
12.4.2 Exceptions.. 178

12.5 Transactional Drago... 179
12.5.1 Transaction Model ... 179
12.5.2 Exceptions.. 180

12.6 PJama ... 180
12.6.1 Transaction Model ... 180
12.6.2 Exceptions.. 181

12.7 Isis .. 181
xiv

Table of Contents
12.8 CORBA Object Transaction Service ... 181
12.8.1 Transactional Objects .. 182
12.8.2 Transaction Model ... 182
12.8.3 Exceptions.. 183

12.9 Enterprise Java Beans .. 183
12.9.1 Session Beans and Entity Beans .. 183
12.9.2 Transaction Model ... 184
12.9.3 Concurrency Control.. 185
12.9.4 Exceptions.. 186

Part IV: Case Study

13 Online Auction System ... 189
13.1 Requirements ... 189

13.1.1 General Requirements.. 189
13.1.2 Registration.. 190
13.1.3 Login.. 190
13.1.4 Starting an Auction .. 190
13.1.5 Browsing the List of Current Auctions.. 191
13.1.6 Participating and Bidding in an Auction.. 191
13.1.7 Closing an Auction .. 191
13.1.8 Member History... 192
13.1.9 Delivery of the Goods.. 192
13.1.10 Fault-Tolerance Requirements... 192

13.2 Application Design .. 192
13.2.1 Transactional Objects in the Auction System................................ 192

13.2.1.1 The Account Class.. 194
13.2.1.2 The Transactional_Account Class.. 194

13.2.2 Open Multithreaded Transactions in the Auction System 195
13.2.2.1 Registration Transaction... 195
13.2.2.2 English Auction.. 196

13.3 Implementation .. 198
13.3.1 Transactional Objects .. 198

13.3.1.1 Account_Type Implementation.. 198
13.3.1.2 Transactional_Account_Type Specification 199
13.3.1.3 Transactional_Account_Type Implementation 199
13.3.1.4 Type Safety... 200
13.3.1.5 Creation, Loading, Saving and Deletion 201
13.3.1.6 Concurrency Control .. 201
xv

Table of Contents
13.3.1.7 Encapsulating Operations... 204
13.3.2 Starting the System .. 204
13.3.3 Example Implementation of Open Multithreaded Transactions.... 205

13.3.3.1 Registration .. 205
13.3.3.2 English Auction Transaction .. 207

14 Conclusion... 213
14.1 Summary of Results ... 213
14.2 Future Work ... 215

14.2.1 Extending the OPTIMA Framework to Support Distribution.......... 215
14.2.1.1 Distributed Access to Transactional Objects........................ 215
14.2.1.2 Distributed Transaction Control ... 216

14.2.2 Interacting with the CORBA Object Transaction Service............. 216
14.2.3 Formalizing the Open Multithreaded Transaction Model 217
14.2.4 Experimenting with Aspect-Oriented Programming Techniques.. 217

Part V: Annexes

A Bibliography ... 221

B Author and Citation Index.. 235

Curriculum Vitae ... 245
xvi

List of Figures
List of Figures

Part I: Transaction Models

Chapter 1: Fundamental Concepts
Figure 2.1: Programming Language Concepts ... 12
Figure 2.2: Synchronous vs. Asynchronous Communication........................... 17
Figure 2.3: Fault Tolerance Terminology... 20
Figure 2.4: Failure Semantics Hierarchy .. 21
Figure 2.5: Idealized Fault-Tolerant Component ... 23

Chapter 2: Transaction Models
Figure 3.1: A Flat Transaction .. 33
Figure 3.2: A Flat Transaction with Savepoints ... 35
Figure 3.3: Chained Transactions ... 35
Figure 3.4: Serial Nested Transactions ... 37
Figure 3.5: Concurrent Nested Transactions .. 38
Figure 3.6: Split Transactions ... 39
Figure 3.7: Joint Transactions... 40
Figure 3.8: Nested Conversations ... 41
Figure 3.9: An Atomic Action with Coordinated Exception Handling 42
Figure 3.10: Multithreading in Transactions .. 44
Figure 3.11: Multithreaded Transactions.. 45
Figure 3.12: A Coordinated Atomic Action ... 47

Chapter 3: Open Multithreaded Transactions
Figure 4.1: An Open Multithreaded Transaction.. 55
Figure 4.2: Exceptions in Open Multithreaded Transactions 57
Figure 4.3: Comparison of Transaction Models ... 63

Part II: The OPTIMA Framework

Chapter 4: Overall Design
Figure 5.1: The Abstract Factory Design Pattern... 69
Figure 5.2: The Strategy Design Pattern... 70
Figure 5.3: The Serializer Pattern... 71
Figure 5.4: OPTIMA Framework Overview... 73
xvii

List of Figures
Chapter 5: Transaction Support
Figure 6.1: Life Cycle of an Open Multithreaded Transaction......................... 76
Figure 6.2: The Transaction Hierarchy .. 77

Chapter 6: Concurrency Control
Figure 7.1: The Concurrency_Control Hierarchy .. 83
Figure 7.2: Compatibility Table of Read and Write Operations....................... 84
Figure 7.3: Backward Commutativity Table for the Set ADT.......................... 86
Figure 7.4: The Operation_Information Hierarchy .. 87

Chapter 7: Recovery
Figure 8.1: Recovery Support Overview .. 90
Figure 8.2: The Storage Hierarchy ... 92
Figure 8.3: Stable Storage Based On Mirroring ... 93
Figure 8.4: The Complete Storage Hierarchy... 94
Figure 8.5: The Storage_Parameter Hierarchy .. 96
Figure 8.6: Caching for Transactional Objects ... 97
Figure 8.7: The Memory Object ... 99
Figure 8.8: The Cache_Manager Hierarchy... 99
Figure 8.9: The Logging_Technique Hierarchy.. 101
Figure 8.10: The Log_Information hierarchy ... 102
Figure 8.11: The Recovery_Manager Hierarchy .. 104

Chapter 8: Interfacing with Programming Languages
Figure 9.1: A Transactional Set .. 111
Figure 9.2: The Operation Hierarchy ... 113
Figure 9.3: An Example Operation... 113
Figure 9.4: Encapsulation of a Data Object .. 115
Figure 9.5: The Memory_Object Hierarchy.. 116
Figure 9.6: An Operation Invocation on a Transactional Object...................... 117
Figure 9.7: Object-Based Interface ... 121
Figure 9.8: Object-Oriented Interface... 123

Part III: Implementation for Ada 95

Chapter 9: Ada 95
Figure 10.1: A Tagged Type Hierarchy.. 132
Figure 10.2: Illustrating Dispatching Calls... 133
Figure 10.3: The Rendezvous ... 136
Figure 10.4: Synchronous Communication in the Rendezvous Model 136
Figure 10.5: A Protected Type for Mutual Exclusion .. 137
xviii

List of Figures
Figure 10.6: A Protected Type with Entries ... 138
Figure 10.7: Syntax for Asynchronous select Statements 139
Figure 10.8: Abstract definition of a Signal using Extensible Protected Types . 141
Figure 10.9: Deriving a Persistent Signal ... 141
Figure 10.10: Deriving a Transient Signal.. 142
Figure 10.11: A Generic Signal that Releases All Waiting Tasks........................ 142
Figure 10.12: Schematic View of a Remote Procedure Call 144
Figure 10.13: Exception Declaration and Explicit Raising 147
Figure 10.14: Exception Handling.. 147
Figure 10.15: The Package Ada.Streams .. 149
Figure 10.16: Overriding the Default Write Procedure .. 149
Figure 10.17: Writing and Reading Data to / from a Stream............................... 150

Chapter 10: Implementation for Ada 95
Figure 11.1: Reference Counting with Controlled Types................................... 152
Figure 11.2: The Lock_Manager Specification... 153
Figure 11.3: Implementing Cooperative Concurrency Control 154
Figure 11.4: Implementing Competitive Concurrency Control.......................... 155
Figure 11.5: Specification of type Storage_Type.. 156
Figure 11.6: The Buffer Hierarchy.. 157
Figure 11.7: Specification of the Streams package.. 158
Figure 11.8: Associating the Transaction Context with a Task 159
Figure 11.9: Obtaining a Memory Object from the Cache Manager.................. 161
Figure 11.10: Procedural Interface for Ada 95 ... 162
Figure 11.11: Programming Guidelines for the Procedural Interface................... 163
Figure 11.12: Object-Based Interface for Ada 95... 164
Figure 11.13: Using the Object-Based Interface .. 165
Figure 11.14: Using Named Transactions with the Object-Based Interface 165
Figure 11.15: Implementation of the Object-Based Interface 167
Figure 11.16: Object-Oriented Interface for Ada 95 .. 167
Figure 11.17: Programming Guidelines for the Object-Oriented Interface.......... 168
Figure 11.18: Initializing and Shutting Down the Transaction Support............... 169

Chapter 11: Related Work
Figure 12.1: Declaration of Guardians and Handlers in Argus 172
Figure 12.2: Executing Nested Actions Concurrently .. 173
Figure 12.3: Exception Handling in Argus ... 173
Figure 12.4: Pre-Emption of Sibling Actions ... 174
Figure 12.5: Mapping Avalon Keywords to Argus .. 174
Figure 12.6: The Avalon Base-Classes... 175
Figure 12.7: Nested Transactions in Arjuna ... 177
xix

List of Figures
Figure 12.8: Creating a Transaction in Venari / ML .. 178
Figure 12.9: Enterprise Java Beans Transaction Policies 184

Part IV: Case Study

Chapter 12: Online Auction System
Figure 13.1: Transactional Objects found in the Auction System...................... 193
Figure 13.2: The Account Class .. 194
Figure 13.3: Compatibility Table for the Transactional_Account Class........... 194
Figure 13.4: The Registration Transaction ... 196
Figure 13.5: The English Auction Transaction ... 197
Figure 13.6: Implementation of the Accounts package....................................... 199
Figure 13.7: Specification of the Transactional_Accounts package 200
Figure 13.8: From Account_Ref to Data_Ref, and Vice Versa............................ 201
Figure 13.9: Implementing Creation, Loading, Saving and Deletion................. 202
Figure 13.10: Implementing the Create Constructor for Transactional Accounts 203
Figure 13.11: Implementing Concurrency Control Information for Accounts..... 203
Figure 13.12: Encapsulating the Deposit Operation... 205
Figure 13.13: Implementation of the Registration Transaction............................ 206
Figure 13.14: Implementation of the Seller Task ... 208
Figure 13.15: Implementation of the Bidder Task.. 209

Chapter 13: Conclusion

Part V: Annexes

Bibliography

Author and Citation Index

Curriculum Vitae
xx

Chapter 1:

Introduction

1.1 Context and Objectives

Computer software has become a driving technology. It is embedded in systems of all kinds:
transportation, medical, telecommunications, military, industrial processes, entertainment,
appliances, office products, etc. Software is virtually inescapable in a modern world. People
have accepted the omnipresence of software, and view it as a technological fact of life.

As a consequence, applications must respond to an increasing amount of demands. To
satisfy user expectations, applications offer more and more functionality, and hence grow
more complex. Fancy user interfaces or interaction with real-time devices, e.g. sensors,
require software to promptly respond to external stimuli and to be able to perform several
operations simultaneously. There is also an increasing need for integrating different systems
and applications, which results in heterogeneous and possibly distributed systems. More-
over, the ever increasing popularity of the Internet and the growing field of e-commerce
have lead to an explosion of the number of distributed systems in operation. Such systems
typically are required to provide highly available services, and must therefore satisfy hun-
dreds of clients simultaneously. For the same reason, fault tolerance requirements, that used
to be applied only in the domain of mission-critical and safety-critical systems, are nowa-
days also applied to other distributed systems.

Modern programming languages such as Java [GJS96] or Ada [ISO95] reflect this
trend. They provide features that allow a programmer to express concurrency and distribu-
tion in the program code, and provide exceptions as a standard way for handling abnormal
situations. Objects support concurrency, resulting in so-called active objects, i.e. objects
1

Context and Objectives
with their own thread of control, and can be distributed by assigning them to physical nodes
in a network.

Many researchers view all object-oriented systems as inherently concurrent, since
objects themselves are “naturally concurrent” entities. In reality, concurrency adds a new
dimension to system structure and design. Concurrent systems are extremely difficult to
understand, design, analyze and modify.

In general, the execution of a sequential object-oriented program starts by executing a
method of a certain object, which in turn calls methods on other objects, etc. At any given
time, only one object is executing one of its methods. In concurrent object-oriented pro-
grams, several methods can be active at a given time, and even a given method might be
invoked multiple times concurrently. Objects must be aware of this concurrency in order to
guarantee state consistency in the presence of simultaneous method invocations.

Concurrent systems can be classified into cooperative systems, where individual com-
ponents collaborate, share results and work for a common goal, and competitive systems,
where the individual components are not aware of each other and compete for shared
resources. In general, concurrent programming languages address collaboration and compe-
tition by providing means for communication and synchronization among active objects.

However, concurrent and distributed computing often gives rise to complex concur-
rent and interacting activities. Sophisticated object-oriented systems often need more
advanced and elaborate concurrency features which may go beyond the traditional concur-
rency control associated with separate method calls. Because multiple objects must usually
be accessed or updated together to correctly reflect the real world, great care must be taken
to keep related objects globally consistent. Any interruption of updates to objects, or the
interleaving of updates and accesses, can break the overall consistency of an object system.

In the field of database systems, the notion of transaction has been introduced to solve
a similar problem, i.e. to correctly handle interrelated and concurrent updates of data and to
provide fault tolerance with respect to hardware failures. But very soon, transactions have
been applied to a wider range of domains, especially to distributed systems. Jim Gray, one
of the experts of transactions, has said in the foreword for [Elm93]:

The transaction concept has emerged as the key structuring technique for dis-
tributed data and distributed computations. Originally developed and applied to
database applications, the transaction model is now being used in new applica-
tion areas ranging from process control to cooperative work. Not surprisingly,
these more sophisticated applications require a refined and generalized trans-
action model. The concept must be made recursive, it must deal with concur-
rency within a transaction, it must relax the strict isolation among transactions,
and it must deal more gracefully with failures.

Jim Gray
2

A transaction groups together a sequence of actions. It can therefore encapsulate complex
behavior and embrace groups of objects and method calls. Transactions structure dynamic
system execution as opposed to static structuring based on objects.

Transactions are programmed in a way that they move an application from one consis-
tent state to another. Transaction processing technology ensures that each transaction is
either executed to completion or not at all, and that concurrently executed transactions
behave as though each transaction executes in isolation. Moreover, once a transaction com-
pletes successfully, its changes to the states of objects are made persistent. These properties
are called the ACID properties: atomicity, consistency, isolation and durability. The signifi-
cance of transactions is magnified by the fact that these guarantees are upheld despite fail-
ures of computer components, distribution of data across multiple computers, and
overlapping or parallel execution of different transactions.

If problems are encountered during the execution of a transaction, the transaction can
be aborted, which results in undoing all changes that have been made to transactional
objects on behalf of the transaction so far. Thanks to the isolation property, errors that
appear inside a transaction can not spread to other parts of the application. Aborting a trans-
action therefore results in applying backward error recovery: consistency of the application
state is restored.

Transactions are a very powerful concept, since they are able to hide the effects of
concurrency, and therefore reduce complexity, and at the same time act as firewalls for
errors, making them appropriate building blocks for structuring reliable, concurrent, and
possibly distributed systems.

This thesis investigates how transactions can be integrated with concurrent object-ori-
ented programming, and in particular, how transactions can be provided to an application
programmer at the programming language level.

1.2 Contributions of this Thesis

The main contributions of this thesis are the following:

• A new transaction model called Open Multithreaded Transactions, suitable for con-
current object-oriented programming.

The open multithreaded transaction model addresses cooperative and competitive
concurrency as found in modern programming languages. It provides features for con-
trolling and structuring not only accesses to objects, as usual in transaction systems,
but also threads taking part in transactions. The model allows several threads to enter
the same transaction in order to perform a common activity. It provides a flexible way
of manipulating threads executing inside a transaction by allowing them to be forked
and terminated, but it restricts their behavior when necessary in order to guarantee
3

Contributions of this Thesis
correctness of transaction nesting and isolation among transactions. The model incor-
porates disciplined exception handling adapted to nested transactions. It allows indi-
vidual threads to perform forward error recovery by handling an abnormal situation
locally, and promotes a defensive approach for developing transactional objects, so
that errors are detected early and dealt with inside the transaction. If local handling
fails, the transaction support applies backward error recovery and reverses the system
to a previous consistent state.

• An object-oriented framework called OPTIMA, that provides support for transactions in
general, and in particular for open multithreaded transactions.

The framework is based on design patterns, making it possible to customize and
extend the framework according to the application needs. Class hierarchies with
classes implementing standard transactional behavior are provided, but a programmer
is free to extend the hierarchies to implement application-specific transaction control.
The framework provides:

– Support for optimistic and pessimistic concurrency control
– Support for strict and semantic-based concurrency control
– Undo/Redo, NoUndo/Redo and Undo/NoRedo recovery strategies
– Customizable caching techniques
– Support for in-place and deferred update
– Support for physical and logical logging
– Customizable support for storage.

• A procedural interface, an object-based interface, and an object-oriented interface
that allow an application programmer to interact with the OPTIMA framework.

Only classic procedural and object-oriented programming techniques have been used
to build these interfaces to the framework, and therefore the programming language
itself does not need to be modified to take advantage of transactions. No compiler
modifications are necessary.

• An implementation of the OPTIMA framework for the concurrent object-oriented pro-
gramming language Ada.

The implementation is based on standard Ada only, which makes it usable with any
settings and platforms that provide standard Ada compilers.

• A case study that validates the concepts of the open multithreaded transaction model.

The design and implementation of an auction system, an example of a dynamic sys-
tem with cooperative and competitive concurrency, shows how complex, distributed,
4

fault-tolerant systems can be designed and structured using open multithreaded trans-
actions.

1.3 Thesis Organization

The thesis is split into four main parts. Part I (chapter 2 - chapter 4) covers the theoretical
part of the thesis, which consists in finding an appropriate transaction model that supports
different forms of concurrency. Chapter 2 reviews the fundamental concepts found in mod-
ern programming languages that must be taken into account when looking for suitable
transaction models. Object-orientation, concurrency, fault-tolerance, exceptions and persis-
tence are the major topics of this chapter. From a historical perspective, two different kinds
of atomic units dealing with concurrency have emerged: transactions, which emphasize
competitive concurrency, and conversations, which emphasize cooperative concurrency.
Both models have been extended in many ways, and recently, some of them even address
both forms of concurrency. Chapter 3 presents an overview of this evolution. Unfortunately,
none of the existing models offers all desired features and hence, chapter 4 defines a new
transaction model named Open Multithreaded Transactions, integrating thread control and
exception handling.

Part II (chapter 5 - chapter 9) presents the OPTIMA framework, an object-oriented
framework providing support for open multithreaded transactions. Chapter 5 gives an over-
view of the design of the framework, which is split into three main components, namely
transaction support, concurrency control and recovery support. The design patterns that
have been used throughout the framework to achieve customizability and extensibility are
presented. The detailed design description starts with chapter 6, in which the transaction
support component is described. Responsible for the life cycle of an open multithreaded
transaction, the transaction support also controls and synchronizes the participating threads.
Chapter 7 presents the concurrency control component, which provides support for optimis-
tic and pessimistic concurrency control strategies. It is shown how semantic knowledge of
operations can be exploited to increase concurrency. The design of the recovery support
component is exposed in chapter 8. The recovery manager, which implements the different
recovery strategies, controls the interaction between the cache manager, the log, and the
persistence support. Finally, chapter 9 shows how these three components work together,
and presents different interfaces to the OPTIMA framework for application programmers. A
procedural, an object-based, and an object-oriented interface are laid out in detail.

Part III (chapter 10 - chapter 12) covers the implementation of the OPTIMA framework
for the concurrent object-oriented programming language Ada 95. In chapter 10, some of
the advanced features of Ada, in particular those addressing concurrency, are reviewed.
Chapter 11 shows how these features have been used in the implementation of the OPTIMA

framework for Ada, and how they have determined the concrete form of the procedural, the
5

Thesis Organization
object-based, and the object-oriented interface that are provided to the application program-
mer. Chapter 12 finally reviews other transactional system implementations and their asso-
ciated transaction models, as well as two middlewares offering transaction services.

Part IV (chapter 13) presents the design and implementation of an auction system, a
typical distributed application found in the field of e-commerce. In light of this case study it
is shown how a design based on open multithreaded transactions can reduce complexity
resulting from cooperative and competitive concurrency, and at the same time achieve the
required fault tolerance. Sample code taken from the Ada implementation of the auction
system illustrates the use of the object-based Ada interface presented in chapter 11.

Finally, chapter 14 gives a conclusion, summarizing the main results of this work and
indicating several directions for future research.
6

Part I

Transaction Models

Chapter 2:

Fundamental Concepts

This chapter reviews some fundamental concepts of concurrent object-oriented systems and
the features found in programming languages that support them. The individual sections
contain considerations that must be taken into account when designing a transaction model
to be used in concurrent object-oriented programming languages. Note that the sections in
this chapter are only intended to set the context for the discussions of the following chap-
ters. They should not be considered complete summaries.

The main topics addressed in this chapter are object-orientation, concurrency, fault-
tolerance, exceptions, and persistence.

2.1 Object-Orientation

Object-orientation is a way of thinking about problems. It is an approach to viewing the
world and building software in terms of objects. Object-orientation is built upon well estab-
lished principles, namely abstraction, information hiding, modularity and classification.

2.1.1 Base Principles

Abstraction
An abstraction of an entity focusses on the essential, inherent characteristics of the entity
and ignores its accidental properties. The abstraction defines a contract upon which clients
may depend.
9

Concepts
Information Hiding
Information hiding is the process of hiding all the details of an entity that do not contribute
to its essential characteristics. By using encapsulation one can separate the external aspects
of an entity, i.e. its interface, from the internal implementation details. Communicating via
the interface is the only way for the client to work with the entity.

Modularity
Modularization is the action of dividing a system into smaller pieces, i.e. modules, which
can be developed separately. These modules form the structural architecture of the system.
A module should be cohesive: it groups together logically related abstractions. Modules can
be connected with other modules, but this coupling should be loose. Dependencies and
interconnections among modules should be as few as possible. Providing clean modularity
relies on encapsulation. Interfaces should be as narrow as possible.

Classification
Classification allows reasoning about entities based on kinds, sorts, or types. Classes group
together entities marked by common properties: the similarities among the entities are pro-
moted, the differences are ignored. This approach makes it possible to characterize by a
finite set of properties an infinite set of possible entities. Classification is often hierarchical.

2.1.2 Concepts

The previously described principles of object-orientation are achieved using the notions of
objects and classes.

An object represents an individual identifiable item, unit, or entity, either real or con-
ceptual, with a well-defined role in the problem domain or in a system. When an object
models a real-world entity, it is an abstraction of this entity. What is essential and what is
accidental will depend on the application and on the developer. A property is an inherent or
distinctive characteristic, trait, quality, or feature of an object.

An object has an identity, state, and behavior. Identity is the property that distin-
guishes an object from all other objects. It makes the object unique. The state of an object is
its memory. The behavior of an object defines how it acts on its own initiative and how it
reacts to external stimuli. The behavior of an object usually depends on its current state.

A class groups objects in such a way that the similarities can be promoted, and the dif-
ferences ignored. Whereas an object is a concrete entity that exists in time and space, a class
represents only the properties, the “essence” of an object, as it were. A class can be made of
all the objects having the same internal structure, or a similar internal structure, and the
same behavior, or a similar behavior.

The second view of the class concept is that it can be seen as a template or mold from
which objects can be instantiated, i.e. created. In that case the created object is said to be an
instance of the corresponding class. This feature gives classes an economic interest: instead
10

Fundamental Concepts
of describing the properties and behavior of each object individually, it suffices to describe
their classes.

Object-orientation can be used throughout all the phases of software development
[Mey97]. Software analysis, architecture, design and implementation can use object-orien-
tion. Several object-oriented software development methods have been developed. Popular
methods include OMT [RBP+91], Booch [Boo94], and Fusion [CAB+94].

The Unified Modeling Language [RJB99], UML for short, is a graphical modelling
language that provides the means for describing object-oriented systems. It began in 1994
as an attempt to unify the Booch and OMT models, but quickly developed into a broadly
based effort to standardize object-oriented modeling concepts, terminology, and notation. In
1997, UML was adopted as a standard by the Object Management Group, OMG for short,
which also has the responsibility for future evolution of the UML. The UML specification
contains a meta-model of modeling constructs, constraints defining well-formedness of
models, definitions of semantics of the constructs, and notation for expressing models visu-
ally. UML does not standardize the development process, but is intended to support many
current and future processes.

The UML notation will be used in this thesis whenever possible, especially in the fig-
ures on the design of the transaction framework presented in chapter 5 to chapter 9.

2.1.3 Object-Oriented Programming

Object-oriented programming is a method of programming inspired by the principles of
object-orientation and is based on the object-oriented concepts mentioned above. Object-
oriented programming languages encapsulate data as well as operations applicable to that
data into objects.

2.1.4 Evolution of Object-Oriented Programming

Early programmers thought of programs as instruction sequences. Procedure-oriented lan-
guages introduced procedural abstractions that encapsulate sequences of actions into proce-
dures. The procedure-oriented paradigm has strong organizing principles for managing
actions and algorithms, but has weak organizing principles for managing shared data.

Typed languages introduced the notion of a data type. A type characterizes a set of
values, and a set of operations applicable to those values. By adding means for providing
encapsulation, the notion of type has been extended to be close to what we nowadays call
object. At that time, objects providing a clearly defined interface and hiding the internal
implementation were called abstract data types, ADT for short.

A programming language is said to be object-based if it supports objects as a lan-
guage feature, and is said to be object-oriented if, additionally, objects are required to
belong to classes that can be incrementally modified through inheritance [Weg90].
11

Objects
The evolution of programming language concepts is summarized in figure 2.1.

2.1.5 Objects

An object in programming languages is a collection of operations that share a state. The
operations determine the messages or calls to which the object can respond, while the state
shared among these operations is hidden from the outside world. It is usually accessible
only to the object’s operations. Variables representing the internal state of an object are
called instance variables. The operations of an object are often called methods. The collec-
tion of methods of an object determines its interface and behavior.

The object’s behavior is entirely determined by its responses to acceptable messages
and is independent of the data representation of its instance variables. The operations of an
object share its state so that state changes by one operation are “seen” by subsequently exe-
cuted operations.

2.1.6 Classes

In object-oriented languages, the behavior of objects is specified by classes, which are like
the types of traditional languages, but serve additionally to classify objects into hierarchies
through the inheritance mechanism. Classes serve as templates from which objects can be
created by executing a “make-instance” operation. Instantiating a class results in the cre-
ation of an object having the same interface as the class, and having a state represented by
instance variables as defined by the class. When a client calls a method of an object, the
object looks for the method and its implementation in its class definition.

Instantiating two objects of the same class will yield two objects that have each a dif-
ferent identity and a separate state, but share the operations specified in the class definition.

Figure 2.1: Programming Language Concepts

Data

Encapsulation

Inheritance

Operations

Modularity

Polymorphism

Type

ADT

OOP
12

Fundamental Concepts
2.1.7 Inheritance

Inheritance is a mechanism for sharing interfaces, code and behavior. It allows reuse of the
behavior of a class in the definition of new classes. Subclasses of a class inherit the opera-
tions of their parent class and may add new operations and new instance variables.

Inheritance can express relations among behaviors such as classification, specializa-
tion, generalization, approximation, and evolution. Inheritance classifies classes in much the
same way as classes classify objects. The ability to classify classes provides even greater
conceptual modelling power. Inheritance can be seen as a second-order classification means
for sharing, managing and manipulating behavior that complements the first-order manage-
ment of objects by classes [Weg90].

Abstract classes, also called virtual classes, are incomplete behavior specifications
that require subclasses to complete their behavior specification before they can be instanti-
ated. Incomplete behaviors are natural building blocks in constructing composite behavior
specifications. Abstract methods or virtual methods are methods without an implementa-
tion. They define interfaces common to all subclasses. Concrete subclasses must provide
implementations for all abstract methods.

Single inheritance allows a subclass to derive from one parent class only. The result-
ing hierarchy forms a tree structure. Multiple inheritance, which supports subclasses that
share the behavior of several superclasses, gives rise to more complex structures, such as
directed acyclic graphs.

2.1.8 Polymorphism

Polymorphism is the ability of several classes of objects to respond to the same message in a
similar way. The client that calls a method of an object does not need to know the specific
class of the receiver. The semantics of the message will remain the same across many simi-
lar classes.

In object-oriented programming languages, polymorphism is reflected in the ability of
variables to dynamically denote objects belonging to different classes of a given hierarchy.
When invoking a method by means of such a variable, the run-time must determine which
actual implementation of the method must be called according to the actual class of the
denoted object.

2.1.9 Interactions

Object-oriented programming is a method of implementation in which programs are orga-
nized as cooperating collections of objects. To achieve this collaboration, objects may
invoke operations on other objects. The result are so-called client / server relationships. The
invoking object is called the client, the object providing the service and executing the
13

Preconditions, Postconditions and Invariants
method is called the server. In order to make a call to a server object, a client must hold a
reference to the server.

2.1.10 Preconditions, Postconditions and Invariants

As we have seen above, one of the main ideas of object-orientation is information hiding.
Objects encapsulate state, and client objects may interact with the object only though a
well-defined interface. This interface represents the contract between the clients and the
object, imposing a certain structure to the way the state of the object can be accessed and
manipulated from the outside. This contract can be strengthened to enhance consistency of
an object [Mey88].

A precondition expresses the constraints under which a method will function prop-
erly. A precondition applies to all invocations of the method, regardless of whether the
method has been invoked from within a client object, from within the same object or from
within an object belonging to a subclass. The precondition binds clients: it defines the con-
ditions under which a call to the method is legitimate.

A postcondition expresses properties of the state of an object resulting from a
method’s execution. It puts an obligation on the implementor of the method. Provided that
the method is called with the precondition satisfied, the implementation of the method must
fulfil the postcondition.

Whereas preconditions and postconditions describe properties of individual methods,
class invariants express global properties of all instances of a class, which must be pre-
served by all methods, or at least by all interface methods. A class invariant can be inter-
preted as describing the set of all consistent states of its instances.

Preconditions, postconditions and invariants are usually identified during the software
development process, especially during the analysis and design phases. The UML specifica-
tion defines the Object Constraint Language [WK99], OCL for short, that allows a designer
to specify constraints of this kind for a particular object or method.

When it comes to implementation, these constraints are in general verified by manu-
ally inserting assertions into the program code. However, some programming languages,
e.g. the object-oriented programming language Eiffel [Mey92], provide more elaborate sup-
port for preconditions, postconditions and class invariants.

2.2 Concurrency

The reasons for encountering concurrency in computing systems are two-fold. In a distrib-
uted system, concurrency is caused by the fact that the individual components are active.
They evolve independently, and sometimes they communicate with each other in order to
14

Fundamental Concepts
synchronize or to exchange data. Concurrency is inherent to distributed systems and can not
be avoided.

Centralized systems can also benefit from concurrency. Typical examples of such sys-
tems are simulation applications, industrial surveillance systems, or any other system that
must handle sporadic incoming events, such as events generated by user interfaces or net-
work traffic. Most of the time, the addressed problem can also be solved using a purely
sequential approach. But since in these systems the nature of the problem to be solved is
concurrent, designing and structuring such systems by using concurrent activities is intui-
tive and simple. Concurrency can also be used in centralized systems to improve perfor-
mance by exploiting multiprocessor architectures.

To handle concurrency, modern operating systems offer two forms of concurrency
support. Processes (or heavyweight concurrency) are programs that usually execute in sepa-
rate address spaces on a computer system. They can execute concurrently, and the process-
ing power of the system is assigned to the processes following different scheduling policies
and priorities. Threads make concurrency possible inside a single process (lightweight con-
currency). Here again, the processing power available to a process is split up among the
threads. Processes and threads may take advantage of multi-processor systems.

In the following sections, the term process is used to designate operating system pro-
cesses or threads.

2.2.1 Nature of Concurrent Systems

According to [LA90, Hoa75, HR73] concurrent systems can be classified into three catego-
ries, namely independent, competing or cooperating systems.

In independent systems, the individual processes are completely separated from each
other. They do not communicate with each other, neither directly or indirectly. They are
even not aware of the fact that there are other components running concurrently in the sys-
tem.

Competitive concurrency exists when two or more processes are designed separately.
They are not aware of each other, but share the same resources. Programmers of such pro-
cesses would like to live in an artificial world in which they do not have to care about other
concurrent activities. They want to access objects as if they had them at their exclusive dis-
posal. This form of concurrency is used for example in databases.

Cooperative concurrency exists when several processes cooperate, i.e. do some job
together and are aware of this. They can communicate by resource sharing or explicitly.
They have been designed together. They cooperate to achieve their joint goal and use each
other’s help and results.

Real systems are sometimes hard to classify. Often, at some level, active components
cooperate, whereas at some other level, they compete for shared resources.
15

Concurrency and Object-Oriented Programming
2.2.2 Concurrency and Object-Oriented Programming

Many researchers view all object-oriented systems as inherently concurrent, since objects
themselves are “naturally concurrent” entities. In reality, concurrency adds a new dimension
to system structure and design. Concurrent systems are extremely difficult to understand,
design, analyze and modify.

In general, the execution of a sequential object-oriented program starts by executing a
method of a certain object, which in turn calls methods on other objects, etc. At any given
time, only one object is executing one of its methods. In concurrent object-oriented pro-
grams, several methods can be active at a given time, and even a given method might be
invoked multiple times concurrently. Objects must be aware of this concurrency in order to
guarantee state consistency in the presence of simultaneous method invocations.

Based on the relationship between processes and objects, concurrent object-oriented
programming languages can be divided into two broad categories: orthogonal and inte-
grated [NP90, TOM99].

Orthogonal languages support concurrent programming by introducing processes as
special entities different from objects. Processes are active, whereas objects are passive.
Processes perform their work by executing methods of objects.

Integrated languages unify processes and objects by defining objects as active entities,
eliminating the need for any special mechanisms to define and create processes. An active
object encapsulates data as well as one or more processes. Concurrency is introduced in a
program by creating active objects.

Integrated languages can be further divided into two subclasses: homogeneous and
inhomogeneous. Homogeneous languages have only one kind of object, namely the active
object. Inhomogeneous languages support both active and passive objects. The major draw-
back of inhomogeneous languages is that the programmer must decide in advance whether
to make an object active or passive. This might lead to redundant definitions of classes of
very similar behavior and structure when both active and passive objects of a similar kind
are needed. The primary advantage is that implementing passive objects is generally simpler
and more efficient than implementing active ones. Also, concurrency can be introduced in a
selective and controlled manner, so there is no risk of performance degradation when using
a large number of objects. The designers of Ada 83 believed that active objects (tasks) as a
language construct are enough, and that passive objects are a special case to be dealt with as
an optimization issue. Experience has shown that designers of concurrent applications
structure their programs differently when passive objects are available, and therefore pas-
sive objects have been introduced in Ada 95. A complete overview of the concurrency fea-
tures present in Ada 95 are reviewed in detail in chapter 10.

The simplest structure for an active object is one in which a single thread is encapsu-
lated within it. In multithreaded active objects, the number of threads within an object may
be fixed statically at compile-time or may be changed dynamically at run-time.
16

Fundamental Concepts
[BGL98] gives an extensive overview of the different levels of integration of objects
and concurrency.

Java [GJS96] is an example of a language falling into the integrated, inhomogeneous
category. Concurrency in Java is supported via the Thread class, an instance of which repre-
sents a single-threaded object. Programmers can create active objects in two ways:

• A class can extend the Thread class and implement the thread’s Run method.
• A class can implement the Runnable interface, which includes a Run method. An

object with a Runnable interface can be passed as a parameter to one of the Thread
constructors.

A thread object is started by executing its Start method. This results in spawning a new
thread of control that executes the object’s Run method.

The major difficulties associated with concurrent programming arise from process
interaction. Communication among processes can either be direct, often also referred to as
message passing, or indirect, based on shared passive objects.

2.2.3 Direct Communication

An active object can communicate with another active object by directly invoking its inter-
face methods. This interaction is viewed as a client / server model relationship.

Communication between the client and the server object can be synchronous or asyn-
chronous as shown in figure 2.2.

When using synchronous communication, the client waits for the method invocation on the
server side to complete before continuing its execution. In distributed systems, this model is
often used when performing remote procedure calls [BN84], RPC for short, or remote
method invocations in the case of object-orientation. It allows the system to abstract from
lower level communication details, e.g. parameter marshalling and message sending, and

Client Object

Operation

Server ObjectClient Object

bl
oc

ke
d

Operation

Result

Server Object

Figure 2.2: Synchronous vs. Asynchronous Communication
17

Communication via Shared Passive Objects
hide the inherent concurrency of distributed systems: a remote procedure call, just as a nor-
mal procedure call, blocks until the call has been completely executed on the server.

When using asynchronous communication, the client and the server execute concur-
rently. Returning a result is dissociated from the method invocation.

2.2.4 Communication via Shared Passive Objects

With programming languages that allow communication through shared objects, there are
two particularly important classes of synchronization: mutual exclusion and condition syn-
chronization. The execution of a program implies the use of resources, e.g. files, devices,
memory locations, many of which can only be safely used by one process at a time. Mutual
exclusion is a synchronization mechanism that ensures that while one process is accessing a
resource, no other process can possibly gain access. The sequence of statements that manip-
ulates the resource is called a critical section. One means of defining mutual exclusion is to
treat a critical section as an indivisible operation. The complete actions on the resource must
therefore have been performed before any other process is allowed to execute any, possibly
corrupting, action. The monitor concept introduced in [BH73] encapsulates a resource and
all operations that manipulate the resource. A monitor allows multiple readers or a single
writer to access the resource at any given time.

Condition synchronization is necessary when a process wishes to perform an opera-
tion that can only sensibly or safely be performed if another process has itself taken some
action or is in some defined state. For example, if two processes are communicating via a
shared variable, then the receiver of the data must be able to know that the sender has
already stored the desired information by executing the appropriate assignment statement.
In this case, the receiver wants to synchronize with the sender, but the sender does not need
to synchronize with the receiver. If the sender wants to know that the receiver has taken the
data, then both processes must synchronize.

In order to provide condition synchronization, C. A. R. Hoare extended the basic
monitor concept in [Hoa74] with so–called “condition variables” that could be declared
inside a monitor. These basically are signals. A procedure of a monitor may suspend itself
by waiting for the condition to become true. Another procedure of the monitor will signal
on the condition variable to indicate that the condition has become true. In Hoare’s scheme,
the wait operation relinquishes exclusion to allow some other process to enter the monitor
on the other procedure. The signal operation immediately resumes a waiting process if
there is one, making the signalling process leave the monitor.

2.2.5 Deadlocks and Starvation

The above synchronizations, although necessary, lead to difficulties that must be considered
in the design of concurrent programs. Unfortunately, it is impractical to remove the possibil-
ity of these difficulties arising by just providing proper language constructs.
18

Fundamental Concepts
A deadlock is a situation in which a set of processes are in a state from which it is
impossible for any of them to proceed. This situation arises if the processes form a circular
chain, and each process holds resources that are being requested by the next process in the
chain.

Different approaches to the deadlock problem can be taken:

• One can attempt to prove that deadlocks are not possible in a particular program under
investigation. Although difficult, this is clearly the correct approach to take. Unfortu-
nately, program complexity can make this approach unfeasible.

• Deadlock avoidance algorithms attempt to look ahead and stop the system from mov-
ing into a state that will potentially lead to a deadlock.

• Deadlocks can be detected by maintaining wait-for graphs for each resource (see
section 7.2.1 on page 80). A cycle in a wait-for graph represents a deadlock. Once a
deadlock is detected, the cycle can only be broken by preemptively removing
resources from one of the processes.

Livelock or starvation is less severe than deadlock. It occurs if a process that wishes to gain
access to a resource is never allowed to do so because there are always other processes gain-
ing access before it.

2.3 Fault Tolerance

What exactly is meant by fault tolerance always depends upon the context in which one
operates. It is therefore important to first define this context and the domain–specific terms
used.

2.3.1 Terminology

To discuss fault tolerance meaningfully, a definition of correct behavior of a program is
needed — otherwise, how could one know that something went wrong? For the purposes of
fault–tolerant computing, the specification of the program is considered to be the definition
of correct program behavior: as long as the program meets its specification, it is considered
correct.

A failure is the observation of an erroneous system state: an observable deviation
from the specification is considered a failure. An error is that part of the system state that
leads to a failure of the system. An error itself is caused by some defect in the system; those
defects that cause observable errors are called faults. There may be defects in the system
that remain undetected; only those that manifest themselves as errors are considered faults.
Likewise, an error does not necessarily lead to a failure: it may be a latent error [Lap85].
19

Fault Classification
Only when the error in the system state causes the system to behave in a way that is contra-
dictory to its specification, a failure occurs. This relationship is illustrated in figure 2.3.

The goal of fault tolerance is to avoid system failure in the presence of faults. When
an error occurs, it must be corrected to avoid a later potential failure: corrective actions have
to be taken to restore a correct system state.

2.3.2 Fault Classification

Faults can be characterized in various ways. One can consider the temporal characteristics
of a fault. A transient fault has a limited duration, e.g. a temporary malfunction of the sys-
tem, or a fault due to external interference. If a transient fault occurs repeatedly, it is called
an intermittent fault. In contrast, permanent faults persist, i.e. the faulty component of the
system will not work correctly again unless it is replaced.

Another way to classify faults is to consider the software lifecycle phase in which they
occur. Here, one can distinguish design faults (in particular software design faults) from
operational faults occurring during the use of the system.

2.3.3 Failure Semantics

Failures, i.e. deviations from a program’s specification, can manifest themselves in various
ways [Cri91]:

• Timing failures can occur in real–time systems if the system fails to respond within
the specified time slice. Both early and late responses are considered timing failures;
late timing failures are sometimes called performance failures.

• Omission failures occur when the system doesn’t respond to a request when it is
expected to do so.

• A crash failure occurs when the system stops responding completely. One generally
distinguishes fail–silent and fail–stop behavior: with the latter, the clients of the sys-
tem have a means to detect that it has failed.

• A system is said to exhibit byzantine failure semantics, if upon failure it behaves arbi-
trarily [LSP82].

These failure semantics can be organized in a hierarchy: byzantine failures are the most
general model, and subsume all others as shown in figure 2.4.

Figure 2.3: Fault Tolerance Terminology

Fault Error Failure
20

Fundamental Concepts
The algorithms used for achieving any kind of fault tolerance depend on the computa-
tional model, i.e. on what failure semantics we assume for the components in our system.

2.3.4 Error Processing

Once an error has been detected in the system state it should be corrected to avoid a poten-
tial system failure later on. Of course, the fault(s) causing the error also should be treated,
which means that the reason for the error must be identified and then the defect be corrected
in order to avoid that the fault causes more errors. Fault diagnosis and removal is quite dif-
ferent from error processing and is beyond the scope of this thesis.

Once an error is detected, there are several techniques that can be used to deal with it.
They can be split into preventive (error compensation) and corrective (error recovery) mea-
sures.

Error masking is the main preventive fault tolerance technique. It exploits redundancy
to detect errors and to mask them; a common example is triple modular redundancy (TMR):
a fault–tolerant component consists of three replicas, the output of the component is the
result of some comparator function of the three replicas’ individual outputs. Voting (i.e.,
taking the majority of replies) is one possible comparator function, but depending on the
context and the failure semantics of the replicated component, other functions such as tak-
ing the average might be adequate.

Corrective methods try to bring the system back into a correct state once an error has
been detected. There are two base cases:

• Forward error recovery attempts to construct a coherent, error–free system state by
applying corrective actions to the current, erroneous state.

• Backward error recovery replaces the erroneous system state with some previous, cor-
rect state.

Figure 2.4: Failure Semantics Hierarchy

Fail–Stop

Crash

Omission

Timing

Byzantine
21

System Structuring for Fault Tolerance
Forward error recovery requires that a more or less accurate damage assessment be made.
The error must be identified in order to apply corrective actions to prevent system failure.
This diagnosis for forward error recovery depends on the particular system. Exceptions (see
section 2.4) are provided in programming languages to signal and at the same time identify
the nature of an error. Forward error recovery can be achieved through exception handling.

Backward error recovery requires that a previous correct state exists: such systems
periodically store a copy of a coherent state (sometimes called recovery point, check point,
savepoint or recovery line, depending on the recovery technique), to which they can roll
back in case of an error. Backward error recovery is a general method: because it re–installs
a previous, hopefully correct system state, it does not depend on the nature of the error nor
on the application’s semantics. Its main drawback is that it incurs an overhead even in fail-
ure–free executions because recovery points have to be established from time to time.
Transactions are a typical instrument for providing backward error recovery. They are pre-
sented in detail in chapter 3.

2.3.5 System Structuring for Fault Tolerance

Software systems and systems in general are not monolithic; they usually consist of several
components or subsystems, and fault tolerance approaches must account for that. Different
approaches may be applied to different components. The composite nature of systems also
means that the classification of fault, error, and failure is not absolute: a given component
may perceive the failure of a sub–component as a fault and have its own fault tolerance
techniques in place to handle it.

This hierarchic model of a system gives rise to the notion of error confinement: the
system is structured in regions beyond which the effects of a fault should not propagate
undetected. This implies that a given component be accessible to other components only
through a well–defined (and preferably narrow [Kop97]) interface. Different error confine-
ment regions may employ different means to achieve fault tolerance. The chosen technique
depends upon the failure semantics the system component should adhere to according to its
specification, as well as on the failure semantics of its sub–components.

The Idealized Fault-Tolerant Component [LA90, RX95] is shown in figure 2.5. The
component offers services that may return replies to the component that made a service
request. If a request is malformed, the component signals this by raising an interface excep-
tion, otherwise it executes the request and produces a reply. If an exception signaling an
error occurs, error processing is activated in an attempt to handle the error. If it can be dealt
with, normal processing in the component resumes; if not, the component itself signals its
failure by an exception. It is immaterial whether exceptions are true exceptions in the sense
of exceptions provided by programming languages or are indicated using exceptional
replies to requests. It is even possible that some entity external to the system component
observes its failure and initiates appropriate error processing in the users of the component.
22

Fundamental Concepts
2.4 Exceptions

In order to support fault-tolerance, most modern programming language provide forward
error-recovery features by means of exceptions [Goo75]. Exceptions are abnormal events
which can happen during program execution. They represent situations in which the normal
execution of an operation can not be completed due to some fault [Cri95], e.g. environmen-
tal faults, software defects, faults of the underlying software, etc.

Many languages and systems provide special features for handling exceptions in a
disciplined way. They allow application programmers to declare exceptions and provide
them with the ability to treat a program block as an exception context. Handlers are associ-
ated with such a context, so that when an exception is raised in this context the execution
stops and the handler corresponding to the exception is searched among the handlers. Note
that there are some models where an exception can be propagated straight to the outside of a
context.

Structuring of exception handling is improved if it is possible to differentiate between
internal exceptions to be handled inside the context, and external exceptions, also called
interface exceptions, which are propagated outside the context. These two kinds of excep-
tions are not clearly separated in most programming languages although they are intended
for very different purposes.

To achieve this separation, the following programming language features are needed:

• Exception contexts are associated with program units;
• Program units have interfaces, where exceptions can be declared;
• Exception contexts can be nested.

Figure 2.5: Idealized Fault-Tolerant Component

Normal Processing Error Processing

Failure

FailureReplyService

Reply
Service

ExceptionRequest

Request

Interface
Exception

Interface
Exception Exception

Return to normal

Local Exception
23

Exception Handling in Concurrent Systems
The majority of existing exception handling mechanisms use dynamic exception context
nesting. In this case the execution of the context can be completed either successfully or by
interface exception propagation. In the latter case, the propagated exception is treated as an
internal exception raised in the containing context. The simplest example of this approach
are nested procedure calls. Actually this is the dominating approach suitable for the client /
server and the remote procedure call paradigms. It is used in the majority of systems and
languages (e.g. in C++ [Str91], Ada [ISO95], Java [GJS96], CLU [LAB+81]). The BETA
[MMPN93] programming language on the other hand relies on static exception handling
[Knu87].

External exceptions allow programmers to pass in a disciplined, unified and structured
fashion different operation outcomes to the containing context. They can be used to inform
the higher level context of the reasons for abnormal behavior, and of the state in which the
lower level context has been left. The latter is very important, for it makes error recovery at
the higher level context possible.

Some systems provide an automatic support which guarantees “all-or-nothing”
semantics: if an exception is propagated outside a context, all modifications made inside the
context are cancelled. This sort of behavior can be achieved when integrating transactions
and exceptions (see chapter 3 for more details). The disadvantage of such systems is of
course that such features require complicated run-time support that often results in signifi-
cant execution overhead. This is why many modern programming languages rely entirely on
the application programmer for leaving the context in a known and consistent state.

There is no significant difference between exception handing in object-oriented pro-
gramming languages and exception handling in block-based programming languages.
Exception handling in object-oriented programming languages is in general dynamic, based
on nested method calls, or sometimes static, based on objects or classes. The exception con-
texts are methods or classes, the interface exceptions are declared in the class, often even in
the methods’ signatures.

Exception handling integrates very well with object-oriented programming. In some
languages, exceptions themselves are objects. They can therefore carry data through
attributes, and be extended through inheritance. Object-oriented exceptions make it possible
to define exception handlers that handle hierarchies of exceptions.

2.4.1 Exception Handling in Concurrent Systems

Exception handling and concurrency are in general not well integrated in programming lan-
guages. Most concurrent object-oriented systems, e.g. Java [GJS96], or Arche [Iss93], pro-
vide only classic sequential exception handling. However, concurrency adds a new
dimension to system design and execution, and it seems clear that exception handling must
live up to this. Concurrent exception handling should be associated with the way a concur-
rent system is structured, just as it is done for sequential systems. In order to reduce the
24

Fundamental Concepts
complexity of concurrent systems, exception contexts should encapsulate complex behavior
consisting of several operations on several objects.

Some researchers have realized the benefits of integrating exception handling and
concurrency. The language Facile [TLP+93], an extension of SML, allows the application
programmer to declare the same exception in several processes; when the exception is
raised in any one of them, the execution of all processes which declared this exception is
interrupted and the corresponding handlers are called. If there is no handler for an excep-
tion, the process terminates.

The Ada programming language defines synchronous communication between
threads by means of the rendezvous concept (see section 10.3.4 on page 135). An exception
raised during a rendezvous is propagated out of the accept body into the context of the caller
of the rendezvous and into the context of the callee containing the accept body.

A more sophisticated example is the concurrent object-oriented language ABCL/1. It
has been extended in [IY91] to include concurrent exception handling. This extension relies
on the ABCL/1 computational model, within which method calls are viewed as message
transmissions between concurrent objects. On the server side, a method call is initiated by
accepting the corresponding message. Any method call can be accompanied by a message
reply tag indicating the name of the object which will receive the method’s results.

In the extended ABCL/1 model, exceptions are treated as signals that can be transmit-
ted between objects. The exception context is a block of statements or a method body. A
new notion of complaint is introduced. It is similar to the notion of message reply, but
intended for informing another object, the complaint destination, of any abnormal situations
occurring during method execution. There are four different kinds of complaints: unac-
cepted messages, time-outs, system-defined and user-defined complaints. A default com-
plaint destination can also be declared for all methods of an object. This mechanism makes
it possible to delegate exception handling to an object that is not necessarily the object that
invokes the method.

The language εCSP [BI92] also introduces exception handling into concurrent systems.
In this language, if a process cannot continue its normal execution because of an exception,
it signals a global exception. Any process which subsequently communicates with this pro-
cess in the course of its normal execution will get the global exception raised in its context.

2.5 Persistence

Persistence is the property of an object through which its existence transcends time
(i.e. the object continues to exist after its creator ceases to exist) and / or space (i.e.
the object’s location moves from the address space in which it was created).

Grady Booch [Boo91]
25

Persistence and Programming Languages
There are many possible schemes for supporting persistence. For a complete survey, the
reader should refer to [AM95].

The most sophisticated and desired form of persistence is orthogonal persistence
[ABC+83]. It is the provision of persistence for all data irrespective of their type. In a pro-
gramming language providing orthogonal persistence, persistent data is created and used in
the same way as non-persistent data. Loading and saving of values does not alter their
semantics, and the process is transparent to the application program.

Whether or not data should be made persistent is often determined using a technique
called persistence by reachability. The persistence support designates an object as a persis-
tent root and provides applications with a built-in function for locating it. Any object that is
“reachable” from the persistent root, for instance by following pointers, is automatically
made persistent.

2.5.1 Persistence and Programming Languages

The first language providing orthogonal persistence, PS-Algol [ACC81], was conceived in
order to add persistence to an existing language with minimal perturbation to its initial
semantics and implementation. Others have followed this example. There are, for example,
persistent versions of functional programming languages such as Persistent Poly and
Poly ML [Mat87]. There has also been work on adding orthogonal persistence to widely
used programming languages. Probably the most interesting project nowadays is PJava (see
section 12.6 on page 180), a project that aims at providing orthogonal persistence to the
Java [GJS96] programming language.

Due to the demanding requirements of orthogonal persistence, all these implementa-
tions had to slightly modify the programming language and / or modify the run-time sys-
tem. The paper [OC96] investigates adding orthogonal persistence to the Ada 95 [ISO95]
programming language. The authors identified the following problems:

• Orthogonal persistence requires that both data and types can have indefinite lifetimes.
If a persistent application is to evolve, structural equivalence and dynamic type check-
ing are necessary when a program binds to an object from the persistent store. When
introducing orthogonal persistence, type compatibility within an execution extends to
type compatibility across different executions. This may conflict with the typing rules
of the programming language.

• Often programming languages allow the use of static variables inside classes or even
as standalone global variables. It is possible that a programmer uses such static vari-
ables to link objects together, such as for instance a static table that links key values to
some other data. Now if the key values are made persistent, the table should also per-
sist, or else the key values are useless. It might be tricky to provide automatic persis-
tence for such static variables without breaking orthogonal persistence.
26

Fundamental Concepts
• Orthogonal persistence also requires that elaborate types such as active objects and
subprogram pointers persist. This can raise severe implementation problems.

• A program might evolve and change the definition of types and classes, but still try
and work with values saved in previous executions. To make this work, some form of
version control must be provided, and additional dynamic checking is required. The
problem can be even more complicated when considering inheritance.

• Another important problem when providing orthogonal persistence is storage man-
agement. Persistent data that will not be used anymore must be deleted, for storage
leaks will result in permanent loss of storage capacity. This basically requires some
form of automatic garbage collection, at least for all persistent data.

Finally the authors conclude that adding orthogonal persistence to the Ada 95 language
would require major changes, making the new language backwards incompatible. It is inter-
esting to note here that even in the case of the Java language, a modern object-oriented lan-
guage that already provides automatic garbage collection and a powerful reflection
mechanism, the virtual machine executing the Java byte code had to be modified in order to
support orthogonal persistence [AJDS96].

As soon as one does not require orthogonal persistence, persistence support for con-
ventional programming languages can be provided in multiple ways. Many languages have
been extended or provide standard libraries that allow data to be made persistent for
instance by saving it to disk. Avalon (see section 12.2 on page 174) for instance is an exten-
sion to C++ that provides persistence and transactions. The authors have extended the C++
language, providing additional keywords such as stable used to designate class attributes
that are to be made persistent.

Persistence support in object-oriented programming languages must provide a mecha-
nism that allows the state of an object to persist between different executions of an applica-
tion. It can be quite challenging to find a means for taking the in-memory representation of
the object’s state and writing it to some storage device. Fortunately, object-oriented pro-
gramming languages often provide some kind of streaming functionality that allows trans-
forming the state of an object into a flat stream of bytes. Some languages go even further
and provide streams that allow a user to write objects into files or other storage devices, e.g.
Ada Stream_IO [ISO95 A.12.1] or Java [GJS96] FileOutputStreams. Unfortu-
nately, the facilities provided by the programming language are not always sufficient, or
they lack modularity and extensibility, making the definition of new persistent objects or the
addition of new storage devices difficult or even impossible.
27

Persistence and Programming Languages
28

Chapter 3:

Transaction Models

Complex systems often need more elaborate concurrency features than the ones offered by
concurrent object-oriented programming languages (see “Concurrency” on page 14.). The
existing single method approaches do not scale well, since they deal with each single opera-
tion separately. There is a need for structuring units that encapsulate complex behavior and
embrace groups of objects and method calls. These units should represent dynamic system
execution as opposed to the static declaration of objects inside objects. System understand-
ing, verification and modification is facilitated if program execution is recursively struc-
tured using such units. Examples of applications which require such structuring units are
banking systems and e-commerce systems in general, computer supported cooperative work
systems (CSCW systems), complex workflow systems, computer assisted design systems
(CAD systems), control of modern production lines and cells, etc.

Another concern which makes it necessary to extend the single-object view of system
structuring is provision of fault tolerance: in many situations one can not guarantee that
erroneous state is confined inside an object. In that case, the application programmer has to
deal with very complex error containment domains consisting of several interconnected
objects. An error in a server can for example affect several client objects. In order to con-
tinue program execution, it is not sufficient to recover only the server or a client. Correct
error recovery must recover the system as a whole.
29

Atomic Units of System Structuring
3.1 Atomic Units of System Structuring

Many researchers rely on the concept of atomicity in developing structuring approaches for
system design. The execution of atomic units is indivisible. Therefore atomic units provide
an elegant way to encapsulate state and behavior. No intermediate results can be seen from
the outside. The ability to nest such units is extremely important for dealing with system
complexity in a scalable way.1

The atomicity of an execution has general importance for all phases of system devel-
opment. It facilitates reasoning about the system, system understanding, verification and
development. For instance [Bes96, KSM98] show that concurrent object-oriented systems
are easier to understand and to analyze if their execution is built out of atomic units encap-
sulating several objects and method calls. Providing fault tolerance of different types is also
facilitated as these units confine erroneous information [Rom99].

3.2 Atomic Units and Exception Handling

Systems that are structured using atomic units offer a straightforward choice of exception
contexts. Atomic units have clearly defined borders, they can be nested, and no information
is allowed to cross the border of an atomic unit during its execution. These properties make
them ideal candidates for exception contexts.

Exceptions are used to signal abnormal events. In order to recover, all potentially
erroneous information must be dealt with during exception handling. The atomicity prop-
erty makes this task a lot easier, since it guarantees the containment of all potentially erro-
neous information which must be considered for recovery.

It is important that the way of integrating atomic units and exceptions is compatible
with the way exceptions are used in sequential systems. The most natural way is to allow
internal exceptions and corresponding handlers to be associated with an atomic unit. The
units can have interfaces enriched by external exceptions which the unit can propagate into
the containing exception context, i.e. into the containing structuring unit.

There is evidence indicating that it is very likely that multiple exceptions are raised at
the same time in a concurrent and, in particular, in a distributed system [RXR96, XRR00].
These complex situations have to be addressed correctly, and atomic units provide a simple
and well-structured way of dealing with them.

An overview of exception handling in systems that are structured using atomic units
can be found in [RK01].

1. A unit is nested if it contains a subset of objects and method calls of the containing one.
30

Transaction Models
3.3 Competitive and Cooperative Structuring Units

Two different forms of atomic units have evolved: transactions and their derivatives which
emphasize competitive concurrency, and atomic actions and their derivatives which empha-
size cooperative concurrency. The authors of [SMR93] name the former Object and Action
model and the latter Process and Conversation model. They claim that the two models are
duals of each other, and provide a mapping from one model to the other. Using this map-
ping, they show that mechanisms used in one model can have interesting counterparts in the
other model.

This chapter presents a survey of transaction and atomic action models and analyzes
their suitability for concurrent object-oriented programming languages and their integration
with exception handling.

3.4 Competitive World: Transactions and Derivatives

Transactions [GR93] are a classic software structure for managing concurrent accesses to
global data and for maintaining data consistency in the presence of failures. The notion of
transaction has first been introduced in database systems in order to correctly handle con-
current updates of data and to provide fault tolerance with respect to hardware failures
[GR93]. A transaction groups an arbitrary number of operations on data objects (from now
on called transactional objects) together, making the whole appear indivisible as far as the
application is concerned and with respect to other concurrent transactions. By using transac-
tions, updates involving multiple transactional objects can be executed as if they happened
in a sequential world.

The transaction scheme relies on three standard operations: begin, commit and abort,
which mark the boundaries of a transaction. After beginning a new transaction, all update
operations on transactional objects are done on behalf of that transaction. At any time dur-
ing the execution of the transaction it can abort, which means that the state of the system is
restored to the state at the beginning of the transaction (also called roll back). Once a trans-
action has completed successfully (is committed), the effects become permanent and visible
to the outside. This approach focusses on preserving and guaranteeing important properties
of the data objects (sometimes called resources) accessed during a transaction. These prop-
erties are referred to as the ACID properties: Atomicity, Consistency, Isolation and Durabil-
ity [GR93].

Atomicity
From the perspective of the caller of a transaction, the execution of the transaction appears
to jump from the initial state to the result state, without any observable intermediate state —
or, if the transaction can not be completed for some reason, it appears as though it had never
31

Competitive World: Transactions and Derivatives
left the initial state. Atomicity is a general, unconditional property of transactions. It holds
whether the transaction, the entire application, the operating system, or any other compo-
nents function normally, function abnormally, or crash. For a transaction to be atomic, it
must behave atomically to any outside observer. Under no circumstances may a transaction
produce a result or a message that later disappears if the transaction rolls back. Atomicity is
a vital property for proper system structuring and providing fault tolerance.

Consistency
A transaction produces consistent results only; otherwise it aborts. A result is consistent if
the new state of the application fulfills all the validity constraints of the application accord-
ing to the applications specification1. Unfortunately, this requirement is very hard or even
impossible to verify. The state of an application tends to be very complex, and the number
of possible consistency constraints among data items is huge. In order to still guarantee con-
sistency, current transaction systems rely on the application programmer to only commit a
transaction if the application state has been updated in a consistent way. A transaction must
be written to preserve consistency. That is, each transaction expects a consistent state when
it starts, and recreates that consistency after making its modifications, provided it runs to
completion. Note that the intermediate states produced by a transaction during execution of
its individual operations need not necessarily be consistent. The transaction system guaran-
tees only that the execution of a transaction will not erroneously corrupt the application
state.

Isolation
Multiple transactions may execute concurrently. The isolation property states that transac-
tions that execute concurrently do not affect each other, and that the recovery of any of them
is separated from the execution of the others. Therefore concurrent transactions produce the
same results as if they had been executed sequentially in some order. This does not mean
that transactions cannot share objects. It only implies that all modifications that a transac-
tion has made to transactional objects during its execution can not be based on data com-
puted by a yet-to-be-committed transaction.

Durability
Durability requires that the results of a transaction having completed successfully remain
available in the future. The system, once it has acknowledged the execution of a transaction,
must be able to reestablish its results after any type of subsequent failure. It also implies that
there is no automatic function for revoking a completed transaction. The only way to get rid
of what a completed transaction had done is to execute another transaction with a counter-
algorithm.

1. This assumes that the specification is correct and complete.
32

Transaction Models
Serializability
The mechanism that guarantees the isolation property during transaction execution is called
concurrency control. It is based on the serializability criteria, which states that the results
produced by a concurrent execution of a set of transactions must be equivalent to the results
produced by executing the same set of transactions serially, i.e. one after the other, in some
arbitrary order.

3.4.1 Flat Transactions

Flat transactions represent the simplest type of transaction. A flat transaction contains an
arbitrary number of statements encapsulated between a begin transaction statement and an
“end of transaction” statement, which can either be a commit transaction or an abort trans-
action statement. This kind of transaction is called flat because there is only one layer of
control by the application programmer. Every statement inside the transaction is at the same
level; that is, the transaction will either survive together with all modifications made to
transactional objects on behalf of the transaction (commit), or it will be rolled back, which
means that all changes made to transactional objects will be undone.

The concept of flat transactions is illustrated in figure 3.1. The figure represents a
transaction that performs a transfer of money from the bank account A to the bank account
B. Both bank accounts are transactional objects. After starting the transaction, the amount
of money to be transferred is first withdrawn from account A, then the amount is deposited
on account B. If no problems are encountered, the transaction commits.

Banking systems extensively use transactions, and their importance is nicely illustrated by
the transfer example. Without an enclosing transaction, a failure occurring after the with-
draw operation has been completed on account A, but before the deposit operation has
begun on account B, results in the loss of the amount of money being transferred. Such a sit-
uation is not acceptable.

Most systems that only provide flat transactions do not integrate exception handling
with transactions, but use return error codes instead. There are many problems with this

Figure 3.1: A Flat Transaction

Thread

Withdraw (Amount)Transaction Begin

Account B

Transaction Commit

Account A

Deposit (Amount)
33

Flat Transactions with Savepoints
approach. Firstly, the use of return codes has always been described as a canonical example
of bad practice caused by the absence of a proper exception handling mechanism [Goo75].
Secondly, even if the core language has exception handling, it is not integrated with transac-
tions and, as a result, application exception handling (including the exception context,
exception propagation, etc.) is separated from the transactional structure.

3.4.2 Flat Transactions with Savepoints

If some error occurs during the execution of a flat transaction that prevents it from continu-
ing (such as a bank account with insufficient balance, or simply resources that are unavail-
able), the application programmer has only two choices:

• Perform conventional error recovery, meaning that he or she must manually recover
from the error by undoing what went wrong up to a certain point and then re-execute
the failed operation or try a different alternate, or

• Abort the transaction as a whole, thereby giving up all changes made on behalf of the
transaction so far.

Of course the latter approach is much simpler, and for a short transaction, such as the Trans-
fer transaction, it is more appropriate. But there are situations where results are accumu-
lated, not all of which are invalidated by a single error in processing along the way. In that
case, giving up all results is undesirable. Having the option of stepping back to an earlier
state inside the same transaction would be very convenient. This is the idea of flat transac-
tions with savepoints.

Inside a transaction, a savepoint can be established by invoking the operation
Save_Work, which causes the system to record the current state of the transactional objects
used so far. The operation returns to the application program a handle that can subsequently
be used to refer to that savepoint; it can be passed as a parameter to the operation
Rollback_Work. As a result, the states of the transactional objects of the savepoint are rees-
tablished. The idea is to establish savepoints at partially consistent states of the application
program, which can then be used as restart points when problems are subsequently encoun-
tered. The application programmer can then decide to return to the most recent savepoint, or
to any other savepoint earlier inside the transaction.

This concept is illustrated in figure 3.2. It shows a flat transaction with three save-
points. After invoking the operation OpA1 on the transactional object A, savepoint 2 is
established. Then, operation OpB1 is invoked on transactional object B. At this point, if
anything unforeseen happens, the programmer of the transaction has the possibility to roll-
back to savepoint 2, thus undoing the effects of OpB1, but keeping the effects of OpA1.

Note that the Begin_Transaction statement also establishes the first savepoint. There
is a difference between aborting a transaction and rolling back to savepoint 1. In the first
case, all changes made to transactional objects are undone and the transaction context is
34

Transaction Models
deleted. When rolling back to savepoint 1, the transaction stays alive, which means that it
keeps the acquired rights on transactional objects and simply returns to the state where it
has not yet done anything.

3.4.3 Chained Transactions

Chained transactions are somewhat similar to transactions with savepoints. They try to
achieve a compromise between the flexibility of rollback and the amount of work lost after a
crash.

The idea of chained transactions is that rather than taking volatile savepoints, the
application can commit what it has done so far, thereby giving up the possibility of undoing
the changes made to transactional objects. The application, however, can instantly start a
new transaction and continue working with the transactional objects without having to reac-
quire the rights to use them. This request to commit plus the intent to keep going is called
Chain_Transaction. It is a combination of Commit_Transaction and Begin_Transaction in
one indivisible command. The commitment of the first transaction and the beginning of the
next one are wrapped together into one atomic operation. This means in particular that no
other transaction can have seen or altered the state of any accessed transactional objects in
the mean time. Figure 3.3 illustrates the chained transaction concept.

Figure 3.2: A Flat Transaction with Savepoints

Thread

OpA1

Transaction Begin

Transactional Object A

Transaction End

Transactional Object B

OpB1

OpA2

OpB2 (Rollback to anySavepoint 1

Savepoint 2

Savepoint 3

savepoint or Commit)

Figure 3.3: Chained Transactions

Thread

Op1

Transaction Begin

Transactional Object

Transaction Commit

Op2 (inherits the rights of the previous

Chain Transaction

 transaction)
35

Nested Transactions
3.4.4 Nested Transactions

Nested transactions are an extension of the flat transaction model and have first been pro-
posed by Moss [Mos81]. In the nested transaction model, a transaction is allowed to start
subtransactions, thereby creating a hierarchy of transactions in form of a tree. The transac-
tion at the root of the tree is called the top-level transaction. The transactions at the leaf level
are flat transactions. A transaction’s predecessor in the tree is called a parent; a subtransac-
tion at the next lower level is called a child. Figure 3.4 shows a parent transaction with three
subtransactions.

The rules for nested transactions are summarized below.

Starting Nested Transactions

• At any point in time a new transaction can be created. Creating a new transaction
inside some other transaction will start a nested transaction.

Concurrency Control in Nested Transactions

• Accesses to transactional objects from inside a nested transaction are isolated with
respect to the parent transaction, to sibling transactions and to other, unrelated trans-
actions.

• All objects held by a parent transaction are made accessible to its subtransactions.

Ending Nested Transactions

• A parent transaction can only commit once all its subtransactions have committed.
• The commit of a subtransaction makes its results accessible only to the parent transac-

tion. Therefore, the changes made to transactional objects are made visible to the out-
side world only on the commit of the top-level transaction.

• If a transaction aborts, all its subtransactions are also aborted, independently of their
local commit status. This rule is applied recursively down the nesting hierarchy.
Therefore, if the top-level transaction is aborted, all its subtransactions are also rolled
back.

Figure 3.4 shows a top-level transaction T1 with two child transactions T1.1 and T1.2. The
second child transaction contains yet another child transaction, transaction T1.2.1. The
operation OpB1 is invoked on the transactional object B on behalf of the child transaction
T1.1. The effects of the operation are made visible to T1 once T1.1 commits. The transac-
tion T1.2.1 that calls OpB2 later on will therefore operate on the state produced by OpB1.
The situation is quite similar for the operations invoked on transactional object A. OpA1 is
invoked by the top-level transaction T1. Child transactions are not isolated from their parent
transaction, and therefore the child transaction T1.2 is allowed to call OpA2. All changes to
A and B are made visible to the outside world once T1 commits.
36

Transaction Models
It is important to note that leaf-level subtransactions are not fully equivalent to classical flat
transactions. The key point is that the properties of such transactions are valid only within
the confines of the surrounding parent transaction. Leaf-level subtransactions are atomic
from the perspective of the parent transaction, they preserve consistency with respect to the
local function they implement; they are isolated from all other activities inside and outside
the parent transaction. An immediate consequence of the commit rules is that subtransac-
tions are not durable, since their changes are only made persistent when the top-level trans-
action commits.

Concurrent Execution of Nested Transactions

All transaction models discussed up to this point make use of a single thread to execute
operations on transactional objects. The following sections present extended transaction
models that increase concurrency by using multiple threads.

In the nested transaction model, sibling transactions can not cooperate, since they are
separate transactions, and thus run in isolation from each other. But they can run concur-
rently, which may increase the performance of the parent transaction dramatically. Most
systems implementing nested transactions have realized this. For example Argus (see
section 12.1 on page 171) or Camelot / Avalon (see section 12.2 on page 174) provide con-
structs that allow an application programmer to run sibling transactions in parallel. It is
important to note here that the additional threads that are needed to execute the siblings con-
currently are created at the transaction boundary. The transactions themselves are still
sequential.

 Figure 3.5 shows a transaction that performs the transfer operation introduced in the
section on flat transactions. This time, the Withdraw and Deposit operations are performed
each in a separate nested transaction. The two sibling transactions are executed concur-
rently, thus increasing the overall performance. The result of the transfer does not depend on
the order in which the two component operations are executed, what counts is that they are
either both executed, or none is. This property is guaranteed by the outer transaction. If a

Figure 3.4: Serial Nested Transactions

Thread

OpA1

Top-level

Transactional Object A

Top-level

Transactional Object B

OpB1

OpA2

OpB2Transaction Begin Transaction End

T1.2.1

T1.2

T1T1.1
37

Split Transactions
child transaction encounters a problem, it notifies the parent transaction, which in turn can
decide to re-execute the failed child transaction, or to abort the entire transaction.

Nested Transactions and Exception Handling

Argus (see section 12.1.3 on page 173) allows a transaction to declare external exceptions
in its interface. These interface exceptions are propagated to the initiator of the transaction if
the transaction signals it. An exception can be signalled with or without transaction abort,
which makes it possible to commit partial results, and to associate different results with dif-
ferent exceptional outcomes.

When executing nested transactions concurrently, exceptions are dealt with separately
by each subtransaction. Argus offers also special construct for propagating an external
exception out of a group of concurrently executing nested transactions.

3.4.5 Split Transactions

To cope with the problems of long-running transaction as found in CAD/CAM, VLSI
design and CASE tools, several additional transaction models have been proposed. They all
strive to increase concurrency in order to provide better performance.

The Split Transaction [PKH88] model increases concurrency by allowing certain
transactions to view the results of other transactions before they commit or abort. Of course,
this may create a certain dependency between these transactions as detailed below. In this
model, an application programmer may dynamically split a (long) transaction T1, creating a
split-off transaction T2 in such a manner that the two resulting transactions are serializable.
The application programmer can therefore commit or abort partial results by, for instance,
committing the transaction that has been split off (here T2) even before the splitting transac-
tion is committed. In order to make this happen correctly, at the time of the split, operations
invoked by T1 up to the split can be divided between T1 and T2, making each responsible
for committing and aborting those operations that have been assigned to them. The opera-

Figure 3.5: Concurrent Nested Transactions

Thread

Withdraw

Top-level

Account A

Account B

Deposit
Transaction Begin

T 1 T 1.1

T 1.2

Transaction End
Top-level
38

Transaction Models
tions remaining under the responsibility of T1 may be designated as not conflicting with
operations invoked by T2 after the split, and hence T2 can view the effects of these opera-
tions. Depending on whether or not such operations have been designated, a split may be
serial or may be independent. In the former case, T1 must commit in order for T2 to com-
mit, whereas in the latter, T1 and T2 can commit or abort independently.

Using this mechanism it is possible to make changes visible to other transactions,
even though the transaction that made the changes is still in progress. Splitting also allows
other short-duration transactions, which are waiting for objects released as a result of the
partial commitment, to proceed.

After the split, T1 can split again. Split transactions can further split, creating a hierar-
chy of structured transactions different from nested transactions.

Figure 3.6 shows an example of a transaction T1 and its split-off T2. Before splitting, T1
has invoked operations on the transactional objects A and B. During the split, the responsi-
bility for the operation OpB1 already invoked on B by T1 is handed over to the splitting
transaction T2, whereas the right to access the object A remains with T1. Committing T1
will thus result in committing the changes made to A, whereas committing T2 results in
committing the changes made to B. After the split, T1 has lost the right to access the exter-
nal object B.

3.4.6 Joint Transactions

The Joint Transaction model [PKH88] is in some way dual to the Split Transaction model.
In this model a transaction, instead of committing or aborting, is allowed to join another
transaction as illustrated in figure 3.7. At the join, the joining transaction T2 releases all its
objects, here object B, to the joint transaction T1. The changes made on behalf of T2 are
made visible to the outside world only when the joint transaction, here T1, commits; other-
wise they are discarded. Thus, if the joint transaction aborts, the operations executed on
behalf of the joining transaction are also undone.

Thread A

Thread A’

Split Transaction (T1, T2, B->OpB1) Commit T1

Commit T2

OpB1

Transactional Object B

Begin T1

OpA1

Transactional Object A

OpB2

OpA2

Figure 3.6: Split Transactions

T1

T2
39

Recoverable Communicating Actions
3.4.7 Recoverable Communicating Actions

The Recoverable Communication Actions model proposed in [VRS86] also addresses the
issue of long running transactions.

This model allows a transaction (the sender) to communicate with another transaction
(the receiver) by sending results of operations. This communication induces an abort depen-
dency of the receiver on the sender. If the sender aborts, then the receiver must abort as a
result of the dependency. Likewise, in order for the receiver transaction to commit, the
sender transaction must commit, too.

3.4.8 Sagas

Sagas are another model supporting long-lived activities [GMS87]. A saga is a set of rela-
tively independent component transactions T1, …, Tn, which can interleave in any way with
component transactions of other sagas. Component transactions within a saga execute in a
predefined order which, in the simplest case, is either sequential or parallel.

Each component transaction is associated with a compensating transaction. A com-
pensating transaction undoes, from a semantic point of view, any effects of the component
transaction.

Both component and compensating transactions behave like normal transactions,
meaning that they have the ACID properties. Component transactions can commit without
waiting for any other component transaction or the saga to commit, and hence sagas do not
require a commit protocol, as opposed, for example, to nested transactions. Component
transactions make their changes to transactional objects visible to the outside world upon
commit, and isolation is limited to the component transaction level. Sagas may view partial
results of other sagas. Therefore, consistency is not based on serializable executions of
sagas.

Thread A

Commit T1

Begin T2 OpB1

External Object B

Begin T1
OpA1

External Object A

OpB2

Figure 3.7: Joint Transactions

Thread B

Join Transaction T1

T 1

T 2
40

Transaction Models
A saga commits if all of its component transactions commit in the prescribed order. A
saga can not execute partially. Thus, when a saga aborts, it has to compensate for the com-
mitted component transactions by executing their corresponding compensating transactions.
Compensating transactions are executed in the reverse order of commitment of the compo-
nent transactions.

3.5 Collaborative World: Conversations and Derivatives

3.5.1 Conversations

The concept of a conversation has been introduced by [Ran75] in 1975 to achieve software
fault tolerance. A fixed number of processes enter a conversation asynchronously; a recov-
ery point is established in each of them. They freely exchange information within the con-
versation but cannot communicate with any outside process (violations of this rule are
called information smuggling). When all processes participating in the conversation have
come to the end of the conversation, their acceptance tests are to be checked. If all tests have
been satisfied, the processes leave the conversation together. Otherwise, they restore their
states from the recovery points and may try and execute a different alternate. By providing
different alternates based on different algorithms that produce the same result allows con-
versations to tolerate software design faults. This technique is called software diversity.

The occurrence of an error in a process inside a conversation requires the rollback of
all (and only) the processes in the conversation to the checkpoint established upon entering
the conversation. Conversations may be nested freely, meaning that any subset of the pro-
cesses involved in a conversation at nesting level i may enter a conversation at nesting level
i + 1 [SGR97].

Figure 3.8 shows four processes entering a conversation C1. Inside, they collaborate by
exchanging messages. The processes B and C enter a nested conversation C2. None of the
processes is allowed to communicate with the outside world during the execution of the
conversation. B and C are not allowed to communicate with A or D during the execution of

Process A

Process D

Process C

Process B

Figure 3.8: Nested Conversations

Acceptance Test
Asynchronous Entry Synchronous Exit

C1

C2

Direct Communication
41

Atomic Actions
C2. Once all processes have reached the end of the conversation, the acceptance test is eval-
uated. If it fails, all processes must rollback their state to the recovery point established
before entering C1.

3.5.2 Atomic Actions

Later on, the conversation scheme has been generalized to tolerate not only design faults,
but also hardware faults, transient faults, environmental faults, etc. The resulting model,
atomic actions [CR86, LA90], provides additional support for forward error recovery and
exception resolution.

The structure of an atomic action is represented in figure 3.9. A fixed number of participants
(threads, processes or active objects) enter an action and cooperate inside it to achieve joint
goals. They are designed to cooperate inside the action and are aware of this cooperation.
These participants share work and explicitly exchange information in order to complete the
action successfully. Atomic actions structure dynamic system behavior. To guarantee action
atomicity, no information is allowed to cross the action border. Actions can be nested,
meaning that a subset of the participants of the containing action can enter a nested action.
The number of participants of an atomic action is fixed in advance, and hence no dynamic
creation of threads is allowed. Participants leave the action together when all of them have
completed their job.

Exception Handling in Atomic Actions

A set of internal and external exceptions is associated with each atomic action, and these
exceptions are clearly separated. The model is recursive, and all external exceptions of an
action are viewed as internal ones of the containing action. Each participant of the action
has a set of handlers for all internal exceptions. In this approach, action participants cooper-
ate not only when they execute program functions (i.e. during normal activity) but also
when they handle abnormal events. This is mainly due to the fact that when an atomic action
is executed, an error can spread to all participants, and the system can be returned into a

Process B

Process A

Process D

Process C

Figure 3.9: An Atomic Action with Coordinated Exception Handling

Acceptance Test
Asynchronous Entry

X

Cooperative Handling

Exception X raised

Exception Y raised

Exception
Resolution

Of Exception Y

Synchronous Exit

Y Y

Y

Y

Y

Exception Y raised in
All Participants

Direct Communication
42

Transaction Models
consistent state only if all participants are involved in handling. This is why, when an excep-
tion is raised in any participant, appropriate handlers are initiated in all of them. An action
can be completed either normally (without raising any internal exceptions or after a success-
ful cooperative handling of such exceptions) or by signalling an interface exception to the
context of the containing action. Concurrent internal exceptions are resolved using a resolu-
tion graph, and handlers for the resulting exception are called in all participants as illus-
trated in figure 3.9.

The figure represents an atomic action with four participant processes. At some point
in time, an instruction executed on behalf of process C raises an internal exception X. Con-
currently (or at least before the other participants have been notified of the occurrence of
exception X), another exception Y is raised in process A. The exceptions are resolved, and
the resulting exception, in our example exception Y, is raised in all participants. Corre-
sponding handlers are called in all participants, and after cooperatively handling the excep-
tion, the action terminates successfully.

A number of atomic action schemes incorporating different fault tolerance techniques
have been developed since then for different languages (such as CSP, Concurrent Pascal,
Ada, OCCAM, Java (with and without extensions)), for distributed, multiprocessor and sin-
gle computer settings, and for different application requirements.

3.6 Combining Cooperative and Competitive Concurrency

3.6.1 Multithreading inside Transactions

With the advent of multiprocessor systems, distributed systems, and programming lan-
guages supporting concurrency and distribution, system developers wanted to start using
multiple threads of execution inside a single transaction. The concept of using multithread-
ing inside a transaction has been used in different transactional models for quite a long time.

Some systems just allow multiple threads accessing transactional objects on behalf of
the same transaction, without paying special attention to this additional form of cooperative
concurrency. Figure 3.10 depicts such a transaction. One thread, here Thread C, starts a
transaction, then others learn the transaction’s identity. By using this identity they can
access transactional objects on behalf of this transaction. The model does not restrict the
behavior of these threads in any way. They can spawn new threads, or terminate within the
transaction. Any thread can commit or abort the transaction at any time (Thread B in
figure 3.10). Thread exit from a transaction is not coordinated.

This model is quite general and flexible and has been used in many industrial applica-
tions. It leaves thread coordination inside a transaction to the application programmer.
Unfortunately this can be dangerous. For example, a thread can decide to leave the transac-
tion and perform some other operations before the outcome of the transaction has been
43

Multithreading inside Transactions
determined, or a thread can abort the transaction without notifying the other threads. In this
model, threads do not actually join the transaction, because the transaction support is not
aware of the concurrency. Transactional objects might not be aware of the intra-transaction
concurrency either, and therefore consistent execution of concurrent operations is not guar-
anteed.

Very typical examples using this model are the CORBA Transaction Service (see
section 12.8 on page 181) and Arjuna (see section 12.3 on page 176). Generally speaking, a
very similar transactional model is provided by the Enterprise Java Beans architecture (see
section 12.9 on page 183), EJB for short. Enterprise Java Beans allow system developers to
associate several client threads with the same transactional context. Unfortunately, the EJB
architecture only supports flat transactions, since nesting is not allowed.

Exception Handling in Transactions with Multithreading

Since there is no well-defined border for these kind of transactions, exception handling is
not well integrated into current implementations that use this model. When using the
CORBA Transaction Service [Obj00] for instance, a programmer can use only sequential
exceptions, i.e. those of the host languages, e.g. C++ or Java. Any exception raised in a
transaction can cross the transaction border unnoticed, since the transaction is not the
exception context. One cannot define or handle exceptions at the transaction level. Threads
working on behalf of the same transaction deal with their exceptions in isolation. Thread
coordination in both normal and abnormal situations is the application programmers’
responsibility.

It is symptomatic that the designers of Enterprise Java Beans (see section 12.9 on
page 183) have made some efforts in combining exception handling and transactions. In this

Figure 3.10: Multithreading in Transactions

Op

Transactional Object B

Transactional Object A

Op

Op

Op

Thread A

Thread B

Thread C

Thread C’

Thread B’

Thread C starts
the transaction

Op

Op

Thread B ends
the transaction
44

Transaction Models
model, an exception signalled by a transactional object to a thread participating in the trans-
action can affect the execution of the whole transaction. System exceptions will always abort
a transaction. Application exceptions on the other hand do not automatically abort a transac-
tion, but the programmer can explicitly mark the transaction for abort before raising the
exception. Nevertheless, an EJB transaction is not an exception context, and coordination of
participating threads, such as notifying them of transaction abort, is left to the application
programmer.

3.6.2 Multithreaded Transactions

Multithreaded Transactions first appeared in Venari / ML (see section 12.4 on page 178),
and have later also been used in Transactional Drago (see section 12.5 on page 179). In this
model, a thread starting a transaction is allowed to spawn additional threads from the inside.
Conceptually, the spawning takes places at the transaction border. Before committing or
aborting a multithreaded transaction, the forked threads must run to completion. Threads
inside a multithreaded transaction can cooperate with each other, but the model does not
control or provide any special means of cooperation. However, they can share transactional
objects. The transactional objects are aware of this form of cooperative concurrency.

Figure 3.11 shows a multithreaded transaction T1 with a nested multithreaded trans-
action T1.1.

Thread A starts T1, after which it forks 2 additional threads, Thread A’ and Thread A”.
Thread A’ accesses the transactional object A. Later on, Thread A” also accesses the trans-
actional object. This is possible since the threads are both working on behalf of the same
transaction. Thread A starts a nested transaction, T1.1, forking again two new threads. One
of these threads accesses the transactional object. This is also perfectly legal, since a child
transaction may inherit the rights of its parent. There might be a problem later on, if Thread
A’ tries to access the transactional object again, since child transactions must be run in iso-

Thread A

Figure 3.11: Multithreaded Transactions

Top-level
Transaction Begin

Top-level
Transaction End

T 1

T 1.1

Op1

Transactional Object A

Thread A’

Thread A”

Op3Op2

Not allowed, if the operation
conflicts with Op3
45

Coordinated Atomic Actions
lation from their parent. T1.1 commits once all three threads have completed their work.
The same rule applies for T1.

Exception Handling in Multithreaded Transactions

Existing systems based on multithreaded transactions incorporate exceptions and transac-
tion in slightly different ways.

The exception handling model of Venari / ML is in many ways similar to that of
Argus, but it does not differentiate between external and internal exceptions. It is not possi-
ble to declare external exceptions in transactional functions. A transaction is always aborted
if any exception is propagated outside of a transactional function. If an exception is raised in
a multithreaded transaction without a local thread-level handler addressing the exception, it
gets propagated outside the transaction and the transaction is aborted.

Transactional Drago, unlike Argus and Vinari/ML, resolves concurrent exceptions
raised by several participating threads before signalling a resulting exception to the outside
of the transaction. In this model, external exceptions cannot be declared in the transaction
interface, and any exception which is not handled by a thread locally aborts the transaction
and gets propagated to the outside.

3.6.3 Coordinated Atomic Actions

The developers of the Coordinated Atomic Action (CA action) concept [XRR+95] have
defined a model that fully integrates cooperative and competitive concurrency. They have
extended the atomic action concept by allowing participants of an atomic action to access
external objects. Atomic actions are used to control cooperative concurrency and to imple-
ment coordinated error recovery, whilst external objects are accessed using transactions in
order to maintain the consistency of shared resources in the presence of failures and com-
petitive concurrency.

Each CA action is designed as a stylized multi-entry procedure with roles which are
activated by action participants cooperating within the CA action. Logically, the action
starts when all roles have been activated and finishes when all of them reach the action end.
CA actions can be nested. The state of the CA action is represented by a set of local and
external objects. External objects can be used concurrently by several CA actions in such a
way that information cannot be smuggled among them. Any sequence of operations on
these objects bracketed by the start and completion of the CA action has the ACID proper-
ties with respect to other sequences. The execution of a CA action looks like a transaction
for the outside world. Action participants explicitly cooperate (interact and coordinate their
executions) through local objects.

Figure 3.12 shows a coordinated atomic action with 3 participants.
46

Transaction Models
Exception Handling in Coordinated Atomic Actions

All participants are involved in recovery if an error is detected inside a CA action. Concep-
tually it makes no difference which of them detects the error. The whole CA action repre-
sents the recovery region. Exception handling in CA actions is very similar to that in atomic
actions: all action participants are involved in cooperative handling of any internal excep-
tion, internal exceptions raised concurrently are resolved and external exceptions are explic-
itly propagated by action participants. Exception handling in CA actions explicitly deals
with local and transactional objects [XRR00].

The CA action interface can contain one or more abort exceptions, a predefined fail-
ure exception and a number of exceptions corresponding to partial (committed and consis-
tent) results which the action can provide. In the latter case, it uses external exceptions to
inform the containing action of the fact that it has not been able to produce a complete
required result and, indirectly, of the state in which objects have been left and of the avail-
able partial results. If one of the participants signals an abort interface exception, the CA
action is aborted; all modifications made to transactional objects are undone and all local
objects destroyed. Note that to improve performance, local objects can simply be re-initial-
ized if software diversity or retry are used for recovery. A failure interface exception is sig-
nalled by the support when some serious problems are encountered. This might happen if,
for example, the support cannot abort or commit the states of transactional objects. When an
interface exception corresponding to a partial result is signalled to the outside of an action,
the state of all transactional objects is committed before raising this exception in the con-
taining context. In all these cases signalling an interface exception means that the responsi-
bility for dealing with the abnormal event is passed to a higher level in the system structure.
At this level, detailed information about the current system state and the reasons for the

Local Object

Process A

Process C

Process B

Figure 3.12: A Coordinated Atomic Action

Exception X

Cooperative

Op

External Object
Synchronous or

Asynchronous Entry

Handling

Direct Communication

Op Op

Synchronous Exit
47

Coordinated Atomic Actions
exception occurrence can be determined based on the identity of the exception, optional
output parameters and the post-conditions associated with the exception.

There has been considerable experimental research on developing object-oriented CA
action schemes in Java and Ada and on applying CA actions to developing realistic case
studies: a distributed internet gamma computation; an auction system; a subsystem of a rail-
way control system which deals with train control and coordination in the vicinity of a sta-
tion; and a series of production cell case studies, including a fault tolerant one [XRR+99]
and a real time one. For the production cell case study, which implements a system control-
ling a complex industrial application with high reliability and safety requirements, elaborate
exception resolution graphs have been built.
48

Chapter 4:

Open Multithreaded Transactions

This chapter introduces a new transaction model called Open Multithreaded Transactions
[KRS01] that supports competitive and cooperative concurrency, and integrates well with
the concurrency features found in modern programming languages.

4.1 Motivations

A wide range of applications can make use of transactions. As we have seen in the previous
chapter, the classic transaction model has been extended in many ways to satisfy the
requirements of different application domains.

Using sequential transactions in a concurrent programming language can be very
cumbersome. Concurrency must be artificially restricted in accordance with the sequential
transaction model. Transactions or subtransactions are allowed to execute concurrently in
isolation, but there is no possibility for threads to cooperate and work on behalf of the same
transaction.

If concurrency inside a transaction is used together with a transaction support that is
not aware of this concurrency, the effects are unpredictable. The state of the transactional
objects may get corrupted and information smuggling may occur, compromising the consis-
tency of the application.

The only safe way is to extend the transaction model by integrating concurrency. As a
result, the application programmer can make use of concurrency and transactions as he
pleases, and does not have to worry about possible interference problems.
49

Requirements
Such a model would be of direct benefit to applications that incorporate cooperative
and competitive concurrency, dynamic systems that must handle multiple requests in a reli-
able way, and in general to applications that work in distributed settings and therefore must
address fault-tolerance issues. A typical example of such systems are e-commerce applica-
tions such as the auction system presented in chapter 13. Other applications that use trans-
actions may also take advantage of such a model by exploiting the possibility of using
concurrency inside a transaction to increase performance.

4.2 Requirements

4.2.1 Integration Requirements

When introducing transactions into a concurrent object-oriented programming language,
several aspects must be considered. These aspects have been discussed in chapter 2 in
detail, and are summarized below:

• Structure: In order to make transactions a general and scalable feature for structuring
the execution of a system and for providing fault tolerance, nesting of transactions
must be possible. This is similar to what is done in object-oriented programming lan-
guages, which allow nested method invocations to provide scalable system structuring
based on objects.

• Concurrency: It is important for the transaction model to support concurrency in a
natural way. Inter-transaction concurrency, but also intra-transaction concurrency
should be allowed. In particular, the use of the concurrency constructs provided by the
language should not be restricted on the inside and outside of transactions, if possible.

• Exceptions: Most modern programming languages provide exceptions and sequential
exception handling in order to deal with abnormal events. Exception handling is
tightly coupled with the structure of a program. Transactions also provide a means of
structuring systems, and act as firewalls for errors thanks to the isolation property.
Integration of exceptions and transactions is therefore highly desirable.

4.2.2 Guaranteeing the ACID Properties

The classic transaction model guarantees the ACID properties for updates on transactional
objects (see section 3.4.1 on page 33). A transaction model for concurrent programming
must do so as well.

In general, transactional systems provide atomicity, isolation and durability. The
responsibility for consistency is left with the application programmer: a transaction must be
written to preserve consistency, moving the application from one consistent state to another
one.
50

Open Multithreaded Transactions
Classic transaction models (see section 3.4 on page 31) allow only one thread to work
on behalf of a transaction. In order to achieve the desired state change, a thread starts a
transaction and sequentially performs operations on transactional objects. If no problems
are encountered, the thread commits the transaction and continues execution, once the com-
mit completes successfully. It knows that the transaction committed, and can therefore
safely make use of this knowledge on the outside. On the other hand, if anything abnormal
happens during a transaction that might compromise consistency, the thread must abort the
transaction. The transaction support then performs backward error recovery and undoes all
the changes made on behalf of the transaction. The thread then continues execution know-
ing that the transaction has been aborted.

If multiple threads are allowed to work on behalf of the same transaction, special care
must be taken to still guarantee the ACID properties, in particular isolation and consistency.
The important issues are summarized below:

• Abnormal situations that might compromise consistency may arise in any of the
threads that participate in a transaction, and therefore each of them should be able to
abort the transaction.

• In order to prohibit information smuggling, a thread that has successfully completed
its work on behalf of a transaction should not be allowed to make use of any informa-
tion, which has been computed inside the transaction, on the outside, as long as it is
not sure if the transaction will commit.

• Transactional objects must be aware of the fact that operations may now be invoked
concurrently from within the same transaction. The concurrency control handling iso-
lation between concurrent transactions does not address this issue. To prevent corrup-
tion of state, transactional objects must provide additional concurrency control
mechanisms.

4.3 Analysis of Existing Models

A model that allows concurrency inside a transaction is the one used by the CORBA Object
Transaction Service, Arjuna and Enterprise Java Beans, presented in section 3.6.1 on page
43. Arguably, this model does not really integrate concurrency and transactions; one might
better say that concurrency and transactions coexist. The main drawback of this model is
that there is no real transaction border, making it hard to guarantee the ACID properties. A
thread may conceptually leave a transaction before its outcome has been determined, which
may lead to information smuggling if the transaction gets aborted later on. It is also not
clear what should happen if during the execution of a transaction a new thread is created and
the transaction is aborted later on. Should this new thread be killed? Likewise, must a thread
51

Analysis of Existing Models
that terminates inside a transaction be re-created if the transaction aborts? Finally, excep-
tions and transactions are not integrated in this model.

The multithreaded transaction model (see section 3.6.2 on page 45) comes closest to
what is needed to satisfy the requirements discussed in the previous sections of this chapter.
One drawback however is that the only way of having concurrency inside a transaction is to
start a transaction in one thread, and then spawn new threads inside the transaction. These
spawned threads must run to completion before the transaction can be committed. Creation
and deletion of threads can be very time-consuming and therefore programmers try to avoid
it whenever possible. Process control and especially real-time systems tend to use a static
number of threads, created once and for all during initialization of the system. A transaction
model for concurrent object-oriented languages should allow existing threads to join an
ongoing transaction. Therefore the multithreaded transaction model cannot be used as it
does not allow already existing threads to come together and to perform a job on a set of
objects in a transactional manner.

 On the other hand, we do not want to forbid spawning new threads inside a transac-
tion. This requirement excludes the use of the coordinated atomic action model (see
section 3.6.3 on page 46), since it requires the number of participants to be fixed in advance.
The kind of collaboration we are looking for is also different from that in the coordinated
atomic action model. Participants of a coordinated atomic action collaborate closely; they
rely on each other. This is possible, because they know the identity of the other participants
and are assured of their presence; they have been designed together and hence are tightly
coupled, communicating explicitly or through shared local resources. The collaboration we
want to achieve in transactions is somehow different, less entangling. Communication
between threads is done exclusively through transactional objects. Also, the number of par-
ticipant threads is not fixed in advance, since at the beginning of a transaction it may some-
times not even be foreseeable how many threads will participate. In the online auction
system example presented in chapter 13, individual auctions are structured using transac-
tions. There will always be a seller thread, but the number of bidder threads is not known in
advance. A bidder may want to be able to join an ongoing auction at any time.

These considerations have led to the definition of a new transaction model named
Open Multithreaded Transactions [Kie99, KR01], borrowing features of the existing mod-
els when possible, and adding new features to achieve a seamless integration with concur-
rent programming. A table showing the relation between open multithreaded transactions
and other transaction models is shown in figure 4.3 on page 63.

The following paragraphs describe the rules for open multithreaded transactions.
Some of the rules are followed by justifications, which are highlighted using an italic font.
52

Open Multithreaded Transactions
4.4 Open Multithreaded Transactions

Lightweight and heavyweight concurrency are treated in the same way in the open multi-
threaded transactions model, meaning that what is called thread here might as well be a pro-
cess executed on a single machine or in a distributed setting. The model allows threads to be
created, to run to completion, or to join an ongoing transaction at any time.

There are only two rules that restrict thread behavior:

• A thread created outside of an open multithreaded transaction is not allowed to termi-
nate inside the transaction.

• A thread created inside an open multithreaded transaction must also terminate inside
the transaction.
These two rules avoid the semantic problems that arise when an existing thread
enters a transaction and terminates inside it, respectively when a new thread is
created inside a transaction and leaves it. The issue here is what happens to these
threads if the transaction aborts. If the all-or-nothing semantics of transactions is
not only applied to transactional objects, but also to participants, such threads
would have to be re-created respectively killed.

Within an open multithreaded transaction, threads can access a set of transactional objects.
Although individual threads evolve independently inside an open multithreaded transaction,
they are allowed to collaborate with other threads of the transaction by accessing the same
transactional objects. In that case they have to be synchronized with respect to the other par-
ticipating threads in order to guarantee consistency of the accessed transactional objects.

Threads working on behalf of an open multithreaded transaction are referred to as
participants. External threads that create or join a transaction are called joined participants;
a thread created inside a transaction by some other participant is called a spawned partici-
pant, e.g. in figure 4.1 on page 55 threads A, B, C and D are joined participants, whereas
threads B’ and C’ are spawned participants of the open multithreaded transaction T1.

4.4.1 Starting an Open Multithreaded Transaction

• Any thread can start a transaction. This thread will be the first joined participant of
the transaction. A newly created transaction is open.

• Transactions can be nested. A participant of a transaction that starts a new transaction
creates a nested transaction. Sibling transactions created by different participants exe-
cute concurrently.

• Optionally, the maximum number of participants that are allowed to join a transaction
can be specified at creation time. In that case, the transaction closes once the maxi-
mum number of joined participants has been reached.
53

Joining an Open Multithreaded Transaction
4.4.2 Joining an Open Multithreaded Transaction

• A thread can join a transaction as long as it is open, thus becoming one of its joined
participants. In order to join, it has to learn (at run-time) or to know (statically) the
identity of the transaction it wishes to join.

• A thread can join a top-level transaction if and only if it does not already participate in
any other transaction. To join a nested transaction, a thread must be a participant of
the parent transaction. A thread can participate in only one sibling transaction at a
time.
This rule is necessary for guaranteeing the isolation property. Otherwise, information
local to a thread can pass between transactions that should be isolated.

• A thread spawned by a participant will automatically become a spawned participant
of the innermost transaction in which the spawning thread participates. A spawned
participant can join a nested transaction, in which case it becomes a joined participant
of the nested transaction.

• A participant of a transaction can decide to close the transaction at any time. Once the
transaction is closed, no new threads can join the transaction anymore. Note that a
participant can still spawn a new thread. If no participant closes the transaction explic-
itly, it closes once all participants have finished (see below).

4.4.3 Concurrency Control in Open Multithreaded Transactions

• Accesses to transactional objects by participants working on behalf of an open multi-
threaded transaction are isolated from accesses by other transactions. However, partic-
ipants are allowed to make the identity of the transaction visible to the outside world.
This identity can be used by threads willing to join the transaction.
This rule is one of the main rules guaranteeing the isolation property.

• Accesses to transactional objects by participants of a child transaction are isolated
from accesses by participants of the parent transaction.
This rule extends the nesting rules to allow concurrency while still guaranteeing the
isolation property.

• Inside a given transaction, classic consistency techniques, i.e. mutual exclusion, are
used to guarantee consistency of transactional objects when accessed by several par-
ticipants of the same open multithreaded transaction.
This rule is necessary for guaranteeing the consistency property.

4.4.4 Ending an Open Multithreaded Transaction

• All participants finish their work inside a transaction by voting on the transaction out-
come. Possible votes are commit and abort. Voting abort is done by raising an external
exception (see below).
54

Open Multithreaded Transactions
• The transaction commits if and only if all participants vote commit. In that case, the
changes made to transactional objects on behalf of the transaction are made visible to
the outside world. If any participant votes abort, the transaction aborts. In that case,
all changes made to transactional objects on behalf of the transaction are undone.
This rule is important for guaranteeing the isolation and consistency properties. Only
changes approved by all participants can be made visible to the outside. If only one
participant detects a potential problem that may compromise consistency, the transac-
tion is aborted.

• Once a spawned participant has given its vote, it terminates immediately.
• Joined participants are not allowed to leave a transaction, i.e. they are blocked, until

the outcome of the transaction has been determined. This means in particular that all
joined participants of a committing transaction exit synchronously. At the same time,
but only then, the changes made to transactional objects on behalf of the transaction
are made visible to the outside world. If a transaction is aborted, the joined partici-
pants may exit asynchronously, but changes made to transactional objects on behalf of
the transaction are undone.
This rule guarantees the isolation property by prohibiting information smuggling. If
participants that voted commit were allowed to leave the transaction before its out-
come has been determined, they might make use of uncommitted information on the
outside.

• If a participating thread “disappears” from a transaction without voting on its out-
come, the transaction is aborted, as this case is treated as an error.
This rule is necessary for guaranteeing the consistency property.

Figure 4.1 shows two open multithreaded transactions: T1 and T1.1. Thread C creates the
transaction T1, threads A, B and D join it. Threads A, B, C and D are therefore joined par-

Figure 4.1: An Open Multithreaded Transaction

Threads are blocked until the outcome of
the transaction is known

Thread A

Thread B

Thread C

Thread D

Thread C’

Thread B’

Thread C starts
the transaction

T1

T1.1
55

Exception Handing in Open Multithreaded Transactions
ticipants of the transaction T1. Inside T1 thread C forks a new thread C’ (a spawned partic-
ipant), which performs some work inside the transaction and then terminates. Thread B also
forks a new thread, thread B’. B and B’ perform a nested transaction T1.1 inside of T1. B’
is a spawned participant of T1, but a joined participant of T1.1. In this example, all partici-
pants of T1 vote commit. The joined participants A, C, and D are therefore blocked until the
last participant, here thread B, has finished its work and given its vote.

4.5 Exception Handing in Open Multithreaded Transactions

This section discusses the exception handling mechanism developed for open multithreaded
transactions [Kie00]. Two important design decisions are:

• The model distinguishes internal and external exceptions; the latter ones are also
called interface exceptions;

• Any external exception propagated from a transaction context is interpreted as an
abort vote passed by the participant.

The following rules govern exception handling in open multithreaded transactions.

4.5.1 Classification of Exceptions

• Each participant has a set of internal exceptions that must be handled inside the trans-
action, and a set of external exceptions which are signalled to the outside of the trans-
action, when needed. The predefined external exception Transaction_Abort is
always included in the set of external exceptions.

4.5.2 Internal Exceptions

• Inside a transaction each participant has a set of handlers, one for each internal excep-
tion that can occur during its execution.

• The termination model [Goo75] is adhered to: after an internal exception is raised in a
participant, the corresponding handler is called to handle it and to complete the partic-
ipant’s activity within the transaction. The handler can signal an external exception if
it is not able to deal with the situation.

• If a participant “forgets” to handle an internal exception, the external exception
Transaction_Abort is signalled.

4.5.3 External Exceptions

• External exceptions are signalled explicitly. Each participant can signal any of its
external exceptions.
56

Open Multithreaded Transactions
• Each joined participant of a transaction has a containing exception context.
• When an external exception is signalled by a joined participant, it is propagated to its

containing context. If several joined participants signal an external exception, each of
them propagates its own exception to its own context.

• If any participant of a transaction signals an external exception, the transaction is
aborted, and the exception Transaction_Abort is signalled to all joined participants
that vote commit.

• Because spawned participants don’t outlive the transaction, they cannot signal any
external exception except Transaction_Abort, which results in aborting the transac-
tion.

Because the open multithreaded transaction model provides transaction nesting, the excep-
tion handling rules have to be applied “recursively” by the programmer. All external excep-
tions of a joined participant are internal exceptions of the calling environment.

Figure 4.2 illustrates exception handling in open multithreaded transactions. It depicts an
open multithreaded transaction with three participant threads. Thread A starts the transac-
tion, thread B joins it, and at some point thread A spawns thread A’. Thread A’ performs
some work, votes commit and terminates. Thread A generates an exception while perform-
ing its work, but the exception is handled locally. It therefore does not affect the outcome of
the transaction; after successful handling, thread A also votes commit. Unfortunately thread
B has generated an exception, exception Y. It tries to handle the exception, but realizes that
it can not recover from this situation. It therefore raises an external exception, exception Z,
which causes the transaction to abort. The exception Z is propagated to the calling environ-
ment of thread B; in all other joined participants, here thread A, the exception
Transaction_Abort is raised to notify them of the transaction abort.
If an interface exception has been raised, all participants should be informed about the abort
of the transaction as soon as possible. There are two distinct approaches: non-preemptive
and preemptive.

Figure 4.2: Exceptions in Open Multithreaded Transactions

Thread A

Thread B Thread A’

Exception X

Threads A and A’ are blocked until
 the outcome of the transaction is known

Handler

Exception X raised

Exception Y

Exception Y raised

Transaction_Abort

Exception ZHandler

Exception Z raised in
the context of Thread B

Transaction_Abort
raised in the context
of Thread A
57

Additional Considerations
In the non-preemptive approach, each participant completes the transaction by voting
commit or by signalling an interface exception in order to vote abort. If a participant votes
abort, the other participants get to know that the transaction has aborted only once they vote
commit1. Non-preemption can decrease performance in applications with long running
transactions. If one of the participants of a long running transaction votes abort just after the
transaction has been created, all other participants will continue their now useless work
until they reach their commit statement.

When using the pre-emptive approach, the transaction support does not wait for the
participants to complete, but interrupts all participants as soon as one of them has signalled
an external exception. This preemption often requires special run-time support. Its feasibil-
ity depends on the mechanisms provided by the programming language or on the underly-
ing operating system. The model does not suffer from performance decrease for long
transactions, but unfortunately introducing preemption mechanisms often results in some
constant performance overhead even when these mechanisms are not used, i.e. for transac-
tions that commit. Choosing the appropriate model, non-preemptive or preemptive, depends
on the characteristics of the application.

4.6 Additional Considerations

This subsection gives the rational for some of the decisions taken during the definition of
the open multithreaded transaction model.

4.6.1 Closing an Open Multithreaded Transaction

The open multithreaded transaction model allows a participant to close the transaction, pre-
venting new threads from joining the transaction. This feature has been introduced for two
reasons:

• There might be static systems in which one of the participants (most probably the cre-
ating thread) knows how many participants are needed to successfully complete the
transaction. In that case, it can specify the number of participants during creation of
the transaction. As soon as this number of participants is reached, the transaction sup-
port automatically closes the transaction.

• In dynamic systems, i.e. systems where at transaction creation time the number of
participants is not known, there is a potential for livelock, even though all participants
behave correctly. In order to successfully commit a transaction, all participants must
vote commit. Without the possibility of closing the transaction, new participants can
arrive at any time. This might lead to the situation where all current participants have

1. Of course, if they also signal an interface exception, they have themselves decided to
abort the transaction.
58

Open Multithreaded Transactions
decided to commit, but before they can do so, a new participant arrives. It will take
some time for this participant to realize that all the work inside this transaction has
already been completed. Once it has, it also commits. But during this time, a new par-
ticipant might have arrived, and so on. In order to prevent this from happening, the
transaction must be closed at some point. For some applications, it makes sense to
close the transaction as soon as one of the participants has voted commit, other appli-
cations might want to leave the decision to a participant that plays a special role (like
the seller in the auction system example presented in chapter 13).

4.6.2 Naming an Open Multithreaded Transaction

The general model of open multithreaded transactions is asymmetric. In order to set up an
open multithreaded transaction with multiple participants, one thread must start the transac-
tion, and only then the other threads can join it. The thread that starts the transaction plays a
special role. After starting the transaction, it must somehow tell the other threads that they
can now safely join the transaction. On transaction exit, i.e. when voting commit or abort,
all participants are treated alike. No synchronization is required among participants; they
just vote on the outcome of the transaction once they have finished their work.

This asymmetry can not be avoided if the application requires transactions to be cre-
ated dynamically. In a static environment on the other hand, a transaction can be associated
with a name. In this case, there is no need for differentiating starting and joining of such a
named transaction. The first thread that expresses the wish to work on behalf of the transac-
tion will effectively start the transaction, the following threads will simply join it.

4.6.3 Deserters

The model requires all participants of an open multithreaded transaction to vote on its out-
come. Deserters, i.e. participant threads that terminate without voting, are treated as an
error, and cause the transaction to abort.

4.6.4 Transactional Objects

4.6.4.1 Two-level Concurrency Control

In the open multithreaded transactions model access to transactional objects must be con-
trolled at two levels. Guaranteeing the isolation property of all updates made within a trans-
action with respect to other transactions running concurrently is the first concern. The
second concern is ensuring the mutual exclusion of individual operations performed by par-
ticipants of the same transaction. Generally speaking, the first level can use existing opti-
mistic or pessimistic concurrency control techniques (see section 7.2 on page 80). With the
optimistic techniques, where a transaction abort is used to compensate for a consistency
59

Transactional Objects
violation, the abort can be either reported to the containing transaction by signaling the
Transaction_Abort exception or the same transaction can be re-tried (this requires addi-
tional run-time support for restoring the thread states). The second level consistency can be
guaranteed simply by using monitors or similar techniques found in modern concurrent lan-
guages (for example protected objects in Ada 95 (see section 10.3.5 on page 137) or objects
with synchronized methods in Java).

4.6.4.2 Enhanced Error Detection

Early error detection is vitally important for modern applications as it makes error recovery
faster and more effective. This can be guaranteed only if special methodologies are used
while developing systems. In the open multithreaded transaction model the intention is to
make the recovery local to individual transaction participants, whenever possible. There are
two ways of achieving this within the open multithreaded transaction model: on the partici-
pant or on the object sides.

Firstly, all participants of an open multithreaded transaction have to check all parame-
ters which they pass to transactional objects and receive from them when an operation is
completed. This is in line with well-known defensive programming.

The second way of enhancing error detection is to develop self-checking transactional
objects, that is to introduce invariants while designing them. Methods of transactional
objects are to be decorated with pre- and post-conditions. When an invariant, pre- or post-
condition is violated by the execution of a method, an exception is propagated to the partic-
ipant that has invoked the operation. There is a considerable body of research related to
designing objects / classes together with developing their pre- and post-conditions and
invariants, as well as to developing executable conditions to be checked at run-time. The
best known example is B. Meyer's “design by contract” methodology supported by features
of Eiffel [Mey97] (see also “Preconditions, Postconditions and Invariants” on page 14).
This is how transactional objects have to be designed in order to provide early error detec-
tion and in order to localize exception handling within one transaction participant.

4.6.4.3 Exception Handling and Transactional Objects

The error detection techniques mentioned above make error containment stronger and
increase the chances that an internal exception can be handled locally by a participant. Of
course there will still be situations when they fail. In that case the transaction is aborted and
all the changes made to transactional objects on behalf of the transaction are undone and an
external exception is propagated to the calling context. If additional error recovery is
needed, it must be performed at the higher level context.

Just as the open multithreaded transaction model does not support tight collaboration
among participants by providing means for direct communication, there is also no auto-
matic cooperative exception handling. Loose collaboration among participants of an open
60

Open Multithreaded Transactions
multithreaded transaction can take place through transactional objects. Exception handling
follows the same pattern. If a transactional object propagates an exception to one of the par-
ticipants during the execution of an operation, it may be left in an erroneous state. If no cor-
rective actions are taken by the participant, then subsequent operation invocations by other
participants are likely to raise an exception as well. This situation leads to a form of loose
cooperative exception handling, in which the participants may decide to perform a compen-
sation activity on the transactional object. Sometimes, even multiple transactional objects
are involved in recovery, since the error might have spread to other transactional objects
accessed from within the transaction.

4.6.5 Exception Resolution

As mentioned above, threads inside an open multithreaded transaction cooperate loosely.
Each participant thread has its own local exception context, and must handle its exceptions
separately. Unlike [PMJPA98, XRR+95] we have decided against some form of coordinated
exception resolution for multiple reasons. Firstly, the number of participants of an open
multithreaded transaction is not determined in advance, and hence any form of error han-
dling that depends on the presence of participants other than the one that raised the excep-
tion can be error-prone. Secondly, exceptions defined in one participant thread might have
no meaning or even be undefined in some other participant. Thirdly, there is no need to
impose any synchronization among participants, because participants do not cooperate
tightly; they act as independently as possible. Finally, concurrent and potentially distributed
exception resolution can be very time-consuming and difficult to implement.

4.6.6 Open Multithreaded Transactions as Firewalls for Errors

Open multithreaded transactions are atomic units of system structuring that are intended to
move the system from a consistent state to some other consistent state. They are units of
error confinement, and as such provide forward and backward error recovery. Application
programmers can use exception handlers to catch internal exceptions and then try to address
the exceptional situation.

There are three sources of exceptions inside an open multithreaded transaction:

• An internal exception can be raised explicitly by a participant.
• An external exception raised inside a nested transaction is raised as an internal excep-

tion in the parent transaction.
• Self-checking transactional objects accessed by a participant of a transaction can raise

an exception to signal a situation that violates the consistency of the state of the trans-
actional object.
61

Comparison
All these situations give rise to a possibly inconsistent application state. If a participant does
not handle such a situation, the application’s correct behavior can not be guaranteed.

This is the rationale for providing a default handler for internal exceptions, that sim-
ply raises the external exception Transaction_Abort and hence will force a roll-back of
the entire transaction: the transaction is aborted, the other participants are notified, and the
consistent state of the application is restored.

With this behavior, open multithreaded transactions act as firewalls for errors and
hence constitute the units of fault tolerance.

4.7 Comparison

Figure 4.3 compares the open multithreaded transaction model with the three main transac-
tion models that allow multiple threads to work on behalf of the same transaction (see
section 3.6 on page 43). More details on the systems that use these models can be found in
chapter 12.

The highlighted cells in columns 2 - 4 represent the features that the open multi-
threaded transaction model borrows from the corresponding models. In the last column, the
highlighted cells mark the new features introduced by open multithreaded transactions.
62

Open Multithreaded Transactions
Feature CORBA
Transactions,

Arjuna,
EJB

Multithreaded
Transactions:
Venari ML,

Trans. Drago

Coordinated
Atomic
Actions

Open
Multithreaded
Transactions

Nesting Yes (EJB: No) Yes Yes Yes

Joining Dynamic No Fixed Dynamic

Forking Unrestricted Transaction
Bounds

No Restricted

Commit One Participant Main Thread,
Waits for

Others

All
Participants,

Blocking
Commit

All
Participants,

Blocking
Commit

Exception
Integration

No
(EJB: A little)

Exception
Resolution,

Exception
Resolution, Internal and

External
Exceptions,

Transactional
Objects

Not Addressed Two-Way
Concurrency

Control

Not Addressed Two-Way
Concurrency

Control,

Figure 4.3: Comparison of Transaction Models

Unhandled
Exceptions

Abort

Internal and
External

Exceptions

Local Handling

Unhandled
Exceptions

Abort

Self-Checking
63

Comparison
64

Part II

The OPTIMA Framework

Chapter 5:

Overall Design

This chapter presents the design of an object-oriented framework named OPTIMA

[KJPRPM01] (OPen Transaction Integration for Multithreaded Applications) that provides
support for transactions in general, and in particular for open multithreaded transactions. It
is a further development of the TransLib framework presented in [JPPMA00].

5.1 General Considerations

An object-oriented framework is a set of cooperating classes that make up a reusable design
for a specific class of software, in our case transactional systems. As such it defines the
architecture of the transaction support, its partitioning into classes and objects, the key
responsibilities thereof, and how the classes and objects collaborate. The OPTIMA frame-
work only relies on basic object-oriented and concurrent programming techniques, and can
therefore be implemented in any concurrent object-oriented programming language.

Since transactions are used in different software domains, application requirements
can differ from one application to another. This is why it is of paramount importance that
the framework can be configured by an application programmer to fit the application needs.
A transaction support programmer might also want to extend the framework, e.g. by supply-
ing customized concurrency control schemes or adding support for new storage devices.

Section 5.2 presents how such flexibility and extensibility can be achieved using
design patterns [GHJV95]. Section 5.3 presents the global overview of the OPTIMA frame-
work. Details about the different components of the framework are given in the following
chapters.
67

Design Patterns
5.2 Design Patterns

Well-structured object-oriented architectures are full of patterns that represent solutions to
specific recurring problems. Focusing on such mechanisms during a system’s development
can yield an architecture that is smaller, simpler, and far more understandable than if these
patterns are ignored.

The authors of [GHJV95] have realized this and written a book that contains a collec-
tion of design patterns describing simple and elegant solutions to specific problems in
object-oriented software design. Design patterns capture solutions that have been devel-
oped, that have evolved over time and proven to be successful. They reflect the experience
that programmers have gained during application development, struggling for greater reuse
and flexibility in their software. Reference implementations of the most well-known design
patterns exist for various programming languages. Design patterns also have the advantage
that people familiar with them need less time to understand applications that use them.

The collection of design patterns is constantly growing, and design patterns accepted
by the design patterns community are published in the Pattern Languages of Program
Design book series [CS95, VCK96, MRB98]. The following paragraphs present the design
patterns used in the transaction support framework.

5.2.1 The Abstract Factory Design Pattern

The Abstract Factory design pattern [GHJV95] belongs to the group of creational patterns.
As such it helps to make a system independent of how its objects are created, using inherit-
ance to vary the class of the object that is instantiated. It decouples the application code that
wants to create an object belonging to a “product” class hierarchy from the code that instan-
tiates and initializes a particular object of the hierarchy. This decoupling increases flexibil-
ity and extensibility. It lets a programmer configure a system with objects that vary in
structure and functionality, statically or dynamically, and also allows him to add additional
functionality to the system by extending the product class hierarchy and the factory class
hierarchy.

[GHJV95] defines the intent of the Abstract Factory design pattern as follows:

Provide an interface for creating families of related or dependent objects with-
out specifying their concrete classes.

Figure 5.1 shows the structure of the Abstract Factory design pattern and the names of the
different participants. The participants of the design pattern and the roles they play are sum-
marized below:

• Abstract_Factory The Abstract_Factory class declares an interface for operations
that create abstract product objects.
68

Overall Design
• Concrete_Factory The Concrete_Factory implements the operations that create
concrete product objects.

• Abstract_Product The Abstract_Product declares an interface for a type of product
object.

• Concrete_Product The Concrete_Product defines a product object to be created by
the corresponding concrete factory. The class must of course
implement the Abstract_Product interface.

• Client After instantiating a concrete product object by means of the fac-
tory method, the Client object works with the product object by
calling the methods defined in the Abstract_Product class.

5.2.2 The Strategy Design Pattern

The Strategy design pattern belongs to the group of behavioral patterns. Its intent as defined
in [GHJV95] is the following:

Define a family of algorithms, encapsulate each one, and make them inter-
changeable. Strategy lets the algorithm vary independently from clients that use
it.

Figure 5.2 shows the structure of the Strategy design pattern and the different names of the
participants. The participants of the design pattern and how they interact with each other are
summarized below:

Abstract_Factory

Factory_Method()

Concrete_Factory_1

Factory_Method()

Concrete_Factory_N

Factory_Method()

Abstract_Product

Concrete_Product_1 Concrete_Product_N

Client

Figure 5.1: The Abstract Factory Design Pattern

<<call>>

<<call>>

<
<
i
n
s
t
a
n
t
i
a
t
e
s
>
>

<
<
i
n
s
t
a
n
t
i
a
t
e
s
>
>

69

The Serializer Design Pattern
• Strategy The Strategy class declares an interface common to all supported
algorithms. Context uses this interface to call the algorithm
defined by a Concrete_Strategy.

• Concrete_Strategy The Concrete_Strategy implements the algorithm using the Strat-
egy interface.

• Context The Context is configured with a Concrete_Strategy object,
which it stores as a reference to a Strategy object. If necessary, a
Context class my define an interface that lets Strategy access its
state.

The Strategy pattern is very useful when many related classes differ only in their behavior.
By encapsulating the different behaviors in separate classes, it is possible to configure a
class with one of these behaviors. Different variants of an algorithm, e.g. reflecting different
space / time trade-offs, can be encapsulated and configured at run-time. The hierarchy of
strategies can also be easily extended, adding new possible behaviors, without modifying
the context classes. The application code in the context class is independent of the concrete
strategy implementations, since it only uses the interface defined in Strategy.

5.2.3 The Serializer Design Pattern

The Serializer design pattern described in [RSB+98] is a pattern that is maybe less well
known than the previous ones. It provides a mechanism to efficiently stream objects into
data structures of any form as well as create objects from such data structures. This is its
intent:

Read arbitrarily complex object structures from and write them to varying data
structure based backends. The Serializer pattern lets you efficiently store and
retrieve objects from different backends, such as flat files, relational databases
and RPC buffers.

Figure 5.2: The Strategy Design Pattern

Strategy

Concrete_Strategy_1

Algorithm_Interface()

Concrete_Strategy_N

Algorithm_Interface()

Context

Context_Interface()

strategy

...

Algorithm_Interface()
70

Overall Design
The structure of the Serializer pattern is shown in figure 5.3. The participants of the design
pattern and how they collaborate with the other participants are summarized below:

• Reader / Writer
The Reader and Writer classes declare protocols for reading and writing objects.
These protocols consist of read and write operations for every value type, including
composite types, array types and object references. The Reader and Writer hide the
Backend and the external representation format from the serializable objects.

• Concrete_Reader / Concrete_Writer
The Concrete_Reader and Concrete_Writer implement the Reader and Writer proto-
cols for a particular backend and external representation format.

• Serializable Interface
The Serializable interface defines operations that accept a Reader for reading and a
Writer for writing. It should also provide a Create operation that takes a class iden-
tifier as an argument and creates an instance of the denoted class. Concrete Element is
an object implementing the Serializable interface. Such an object can read and write
its attributes to a Concrete_Reader / Concrete_Writer.

• Backend
The Backend is a particular backend, and corresponds to our storage class shown in
the previous subsection. A Concrete_Reader / Concrete_Writer reads from/writes to
its backend using a backend specific interface. Relational database front-ends, flat
files or network buffers are examples of concrete backends.

When invoked by a client, the Reader and Writer hand themselves over to the serializable
object. The serializable object makes use of its protocol to read / write its attributes by call-
ing the read and write operations provided by the Reader and Writer. For certain value types
such as composite types, the Reader and Writer might call back to the serializable object or

Figure 5.3: The Serializer Pattern

Writer

Write

Backend_1 Backend_N

Reader

<<call>> <<call>>

Concrete_Element_N

Concrete_Element_1

<<interface>>
Serializable

Read_From(Reader)
Write_To(Writer)
Create(Class_Id) Read

<<call>>

<<call>>

Concrete_Reader_1

Concrete_Writer_1

Concrete_Reader_N

Concrete_Writer_N
71

OPTIMA Framework Design Overview
forward the call to other objects that implement the Serializable interface. This results in a
recursive back-and-forth interplay between the two parties.

The bigger the set of supported value types of the Reader / Writer interface is, the
more type information can be used by the Concrete Reader / Concrete Writer to efficiently
store the data on the backend. On the other hand, there are backends that support only a
small set of value types. Flat files for instance only support byte transfers. For these kinds of
backends the Concrete Reader / Concrete Writer must contain implementation code that
maps the read / write operations of unsupported value types to the ones that are sup-
ported.

The big advantage of the Serializer pattern is that the application class itself has no
knowledge about the external representation format which is used to represent their
instances. If this were not the case, introducing a new representation format or changing an
old one would require to change almost every class in the system.

In some object-oriented programming languages, such a serialization mechanism is
already provided, which means that the Read_From / Write_To operations defined in the Seri-
alizable interface have predefined implementations for all value types of the programming
language that are not covered by the Reader / Writer interface. The Java Serialization pack-
age [Sun98] and Ada streams (see section 10.7 on page 148) are examples of such pre-
defined language support. If no language support is available, the Read_From / Write_To
operations of the Serializable interface must be implemented for every Concrete Element.

5.3 OPTIMA Framework Design Overview

A framework providing support for open multithreaded transactions must allow threads run-
ning inside transactions to access transactional objects in a consistent manner, guaranteeing
the transactional ACID properties: atomicity, consistency, isolation and durability. At a first
glance one might be tempted to design support for these properties separately, but it turns
out that most of the properties need a common set of features in order to be implemented
correctly. Durability for instance requires some form of persistence support, since the state
of a transactional object must be stored on non-volatile storage. After some reflection it
becomes apparent that persistence is also needed to guarantee atomicity in the presence of
system failures.

The design of the OPTIMA framework can be broken into three important aspects,
namely transaction support, concurrency control and recovery support. They will be intro-
duced briefly in the following subsections, and explained in detail in the following chapters.

How an application programmer will use the framework is also an important issue.
Interfaces to the framework, and ways of configuring and extending the framework are pre-
sented in chapter 9. The elegance of the interface depends on the features of the program-
ming language. Figure 5.4 gives a general overview of the OPTIMA framework architecture.
72

Overall Design
5.3.1 Transaction Support

The transaction support component is responsible for keeping track of the life cycle of an
open multithreaded transaction. A newly created open multithreaded transaction starts in
the open state, is subsequently closed (either explicitly or implicitly), and then aborted or
committed. In order to perform these state changes correctly, the transaction support compo-
nent keeps track of all participants of an open multithreaded transaction by storing their
identity and kind, i.e. joined participant or spawned participant. When a participant votes on
the outcome of an open multithreaded transaction, the transaction support is notified. If the
vote is commit, and if there are still other participants working on behalf of the transaction,
the calling task is suspended. Only in case of an abort, or if all participants have voted com-
mit, the transaction support passes the decision on to the recovery support.

In addition to participant information, the transaction support also manages the trans-
action hierarchy, i.e. parent-child relationships among transactions. For each open multi-
threaded transaction, it must also keep track of all transactional objects that have been
accessed by participants.

5.3.2 Concurrency Control

The main objectives of the concurrency control component is to handle cooperative and
competitive concurrency in open multithreaded transactions. Dealing with competitive con-
currency comes down to guaranteeing the isolation property for each transaction. Transac-
tions running concurrently are not allowed to interfere with each other; participants of a
transaction access transactional objects as if they were the only threads executing in the sys-

Thread A Thread B Thread C

Figure 5.4: OPTIMA Framework Overview

Recovery_Support

Transaction_Support

Concurrency_Control

OPTIMA Framework

In
te

rf
ac

e

T
ra

ns
ac

tio
n

A

T
ra

ns
ac

tio
n

B

73

Recovery
tem. Handling cooperative concurrency means insuring data consistency despite concurrent
accesses to transactional objects by participants of the same transaction.

These problems can be solved by synchronizing the accesses to transactional objects
made by concurrent transactions. Ensuring consistency among participants of the same
transaction requires that operations that update the state of a transactional object execute
within mutual exclusion. Competitive concurrency control among concurrent transactions
can be pessimistic (conservative) or optimistic (aggressive), both having advantages and
disadvantages. In both cases, the serializability criteria of all transactions must be respected.

The principle underlying pessimistic concurrency control schemes is that, before
attempting to perform an operation on any transactional object, a transaction has to get per-
mission to do so. If a transaction invokes an operation that causes a conflict, the transaction
is blocked or aborted. This can lead to deadlock situations (see section 2.2.5 on page 18).
On the other hand, any transaction that successfully terminates is serializable.

In optimistic concurrency control schemes [KR81], transactions are allowed to per-
form conflicting operations on objects without being blocked, but when they attempt to
commit, transactions are validated to ensure that they preserve serializability. If a transac-
tion is validated, it means that it has not executed operations that conflict with the opera-
tions of other transactions, and it then commits.

Concurrency control techniques also differ depending on if only read / write opera-
tions are considered, or if more semantic information is available for each operation of a
transactional object.

The detailed design of the concurrency control component for open multithreaded
transactions is presented in chapter 7.

5.3.3 Recovery

The recovery support provides open multithreaded transactions with atomicity and durabil-
ity properties in spite of system failures. Either all modifications made on behalf of an open
multithreaded transaction are reflected in the state of the accessed transactional objects, or
none is, which means that any partial execution of the modifications has been undone. There
are lots of different techniques to perform recovery in case of a system failure, but all save
information to a log stored in stable storage [LS79] in order to do so. What information
must be stored in the log and when it must be stored depends on when the state of transac-
tional objects are written to their associated non-volatile storage, and again on if only read /
write operations are considered or if more semantic information is available for operations
of transactional objects.

Chapter 8 addresses the detailed design of the recovery support for open multi-
threaded transactions.
74

Chapter 6:

Transaction Support

The transaction support is responsible for keeping track of the life cycle of an open multi-
threaded transaction, i.e. its current state and the set of transactional objects that have been
accessed on its behalf. This information is also called the transaction context.

Whenever a thread wants to start a new open multithreaded transaction, join an exist-
ing open multithreaded transaction, close a transaction or vote on its outcome, it must con-
tact the transaction support. How this is done depends on the interface to the transaction
support and is presented in chapter 9.

6.1 States of an Open Multithreaded Transaction

Figure 6.1 shows a state diagram representing the life cycle of an open multithreaded trans-
action. A newly created open multithreaded transaction is open. As long as it is open, other
threads are allowed to join the transaction.

A participant of an open multithreaded transaction can decide to close the transaction
at any time. Once the transaction is closed, no new threads can join the transaction anymore.
In order for an open multithreaded transaction to commit, all participants must have voted
commit. If only one participant votes abort, the transaction is aborted.

Threads must explicitly join an open multithreaded transaction in order to be part of
it. In particular, only participants of an open multithreaded transaction are allowed to close
the transaction or vote on its outcome. Therefore, before effectively changing the state of an
open multithreaded transaction, the transaction support must verify that the requesting
75

Synchronizing Participant Exit
thread is a participant of the transaction. It therefore needs to keep track of the identity of
each participant.

6.2 Synchronizing Participant Exit

All joined participants of an open multithreaded transaction that commits must exit syn-
chronously. A joined participant that has finished its work on behalf of an open multi-
threaded transaction by voting commit is not allowed to leave the transaction. This rule
prevents results known to participants of an open multithreaded transaction to be revealed to
the outside world before the outcome of the transaction has been determined.

In order to implement synchronous exit, the transaction support must have a means to
suspend the execution of participants. When a joined participant votes commit and there are
still other participants working on behalf of the transaction, the participant is suspended.
Only in case of an abort, or if all other participants have already voted commit, the transac-
tion support passes the final decision on to the recovery support. If the recovery support is
able to successfully commit the transaction, then all suspended participants are released.

6.3 Monitoring Accesses to Transactional Objects

For each open multithreaded transaction, the transaction support must keep a record of all
transactional objects that have been accessed by participants of the transaction. This infor-
mation is needed to perform correct abort or commit processing and to apply recovery in
case of a system failure.

Closed

Committed

Aborted

Open
begin / N := 1 close

join / N := N + 1

commit [N>1] / N := N - 1

abort

commit [N=1]

Figure 6.1: Life Cycle of an Open Multithreaded Transaction

Active

N : Number of Participants
76

Transaction Support
6.4 Handling Nesting

In order to support nesting of open multithreaded transactions, subtransactions must know
the identity of their parent transaction. This information is needed in two situations:

• When a thread wishes to join an open multithreaded subtransaction, the transaction
support must verify that the thread is already a participant of the parent transaction.

• When a subtransaction commits or aborts, the responsibility of all operations made on
behalf of the subtransaction must be handed over to the parent transaction.

6.5 The Transaction Hierarchy

The functionality described in the previous sections of this chapter has been encapsulated in
the Transaction class represented in figure 6.2. For each open multithreaded transaction
that is started in the system, a corresponding transaction object is created. The object stores
the transaction context containing the following data:

• The transaction identity, i.e. a unique identifier, in general a serial number;
• The status of the transaction, i.e. open, closed, aborted, committed;
• The current number of participants, their identity and their status, i.e. joined partici-

pant or spawned participant;
• The maximum number of participants of the transaction, provided that such a maxi-

mum has been specified;
• A list of subtransactions, and a reference to the parent transaction, if there is one;
• A list of all transactional objects that have been accessed from within the open multi-

threaded transaction.

Begin_Transaction
Join_Transaction
Close_Transaction
Abort_Transaction
Commit_Transaction

Subtransaction

Figure 6.2: The Transaction Hierarchy

Parent: Transaction

Id: Transaction_Identifier

Transaction

Status: enum {Open, Closed,

0..*

1

parent

child

Transactional_Object

1

0..*

Participant_Info

Id: Identity
Status: enum

{Joined, Spawned}

1 0..*

Add_Transactional_Object

 Aborted, Committed}

participant

object

Max_Participants: Integer
77

Handling Named Transactions
The Subtransaction class inherits from the transaction class, providing an additional asso-
ciation link that designates the parent transaction.

The begin, join, close, abort and commit operations change the state of an open multi-
threaded transaction according to the state diagram shown in figure 6.1. The
Add_Transactional_Object method is called each time an operation is invoked on a transac-
tional object on behalf of the transaction (see “Tying Things Together” on page 114).

6.6 Handling Named Transactions

An instance of the Transaction class presented in the previous section uniquely identifies a
transaction. If transactions are associated with names (see “Naming an Open Multithreaded
Transaction” on page 59), then the transaction support must provide a way to retrieve the
transaction object associated with a particular transaction name.

This functionality is localized in a class named Transaction_Directory that provides
the operations Insert_Transaction, Delete_Transaction and Get_Transaction_Object.
78

Chapter 7:

Concurrency Control

The main objective of the concurrency control component of the OPTIMA framework is to
handle cooperative and competitive concurrency in open multithreaded transactions.

Participants of an open multithreaded transaction collaborate loosely by accessing the
same transactional objects. They are allowed to communicate directly, but this form of com-
munication and synchronization is not supported by the model. Hence, concurrency control
in open multithreaded transactions concentrates on the synchronization of accesses to trans-
actional objects by participants:

• Dealing with cooperative concurrency means ensuring data consistency despite con-
current accesses to transactional objects made by participants of the same transaction.

• Handling competitive concurrency comes down to guaranteeing the isolation property
for each transaction.

Transactions running concurrently are not allowed to interfere with each other; partic-
ipants of a transaction access transactional objects as if they were the only threads executing
in the system. The isolation property guarantees that the abort of a transaction does not
cause other transactions to abort. Cascading aborts are prevented.

7.1 Handling Cooperative Concurrency

Providing consistency among participants of the same transaction requires that operations
that update the state of a transactional object (so-called modifiers) execute within mutual
exclusion. Observers — operations that do not change the state of a transactional object —
79

Handling Competitive Concurrency
may execute concurrently. In this respect a transactional object is equivalent to a monitor
[Han73].

Cooperative concurrency control should be active for the shortest possible time in
order to maximize performance.

7.2 Handling Competitive Concurrency

Competitive concurrency control among concurrent transactions can be pessimistic (conser-
vative) or optimistic (aggressive), both having advantages and disadvantages. In any case,
the serializability of all transactions must be guaranteed.

7.2.1 Pessimistic Concurrency Control

The principle underlying pessimistic concurrency control schemes is that, before attempting
to perform an operation on any transactional object, a transaction has to get permission to
do so. Typically, a concurrency control manager is associated with each transactional
object. Before allowing a transaction to execute an operation on the object, the concurrency
manager checks if the transaction performing that particular operation would create a con-
flict with any other uncommitted operation executed on the object on behalf of other trans-
actions. If a transaction invokes an operation that causes a conflict, the transaction is
blocked or aborted. The duration of blocking and the number of times blocking or aborting
occurs can be reduced by exploiting operation and object semantics (see “Semantic-Based
Concurrency Control” on page 84).

Lock-based protocols use locks to implement permissions to perform operations.
When invoking an operation on a transactional object, the caller must first request the lock
associated with this operation from the concurrency manager of the transactional object.
Before granting the lock, the concurrency manager must verify that this new lock does not
conflict with any other lock held by other transactions in progress. If the concurrency man-
ager determines that there indeed would be a conflict, the thread requesting the lock is
blocked, waiting for the release of the conflicting lock. Otherwise, the lock is granted, and
the thread may proceed and execute the operation.

The order in which locks are granted to transactions imposes an execution ordering on
the transactions with respect to their conflicting operations. Two-phase locking [EGLT76]
ensures serializability by not allowing transactions to acquire any lock after a lock has been
released. This implies in practice that a transaction acquires locks during its execution
(1st phase), and releases them at the end once the outcome of the transaction has been deter-
mined (2nd phase).

When using blocking pessimistic concurrency control, deadlocks are possible. Two
transactions A and B trying to acquire locks on two objects P and Q can deadlock, if A first
80

Concurrency Control
requests P and B first requests Q. Now A is waiting for Q, and B is waiting for P. Such dead-
locks can be detected and remedied by aborting one of the blocking transactions.

Different deadlock detection mechanisms have been proposed. A common solution is
to maintain a wait-for graph for each transactional object. Deadlock detection is initiated
either periodically or each time a transaction is blocked by combining the different wait-for
graphs of all accessed transactional objects and checking for cycles. A cycle in a wait-for
graph represents a deadlock. In such a case, a victim transaction is selected among the
blocked transactions. Aborting this transaction frees all the locks held by it, breaking the
cycle and allowing some of the blocked transactions to proceed. Another simple deadlock
detection strategy is time-out, which aborts a transaction waiting for too long for a lock by
simply guessing that the transaction may be involved in a deadlock.

Another solution is to avoid deadlocks. Timestamp ordering [BG81] for instance is a
pessimistic concurrency control scheme of this kind. The basic idea of timestamp ordering
is to associate a timestamp with each transaction, and then process conflicting operations
based on the timestamps of the invoking transactions. A transaction is aborted if it attempts
to execute an operation after the execution of a conflicting operation invoked by another
transaction with a larger timestamp. The concurrency control manager of a transactional
object determines whether an operation is in timestamp order by keeping track, for each
operation, of the largest timestamp of all transactions that invoked the operation.

Serialization graph testing [Bad79] is another pessimistic concurrency control scheme
that avoids deadlocks. In this scheme the concurrency control manager maintains a serial-
ization graph and ensures serializability by aborting the transactions that invoke conflicting
operations leading to cycles in the graph. Although serialization graph testing permits any
interleaving that is serializable, it requires a computationally expensive solution because it
involves cycle testing. In contrast, two-phase locking leads to relatively light implementa-
tions, although it disallows the occurrence of certain consistency-preserving interleavings.

7.2.2 Optimistic Concurrency Control

In optimistic concurrency control schemes [KR81], transactions are allowed to perform
conflicting operations on objects without being blocked, but when they attempt to commit,
the transactions are validated to ensure that they preserve serializability. If a transaction is
validated, it means that it has not executed operations that conflict with the operations of
other concurrent transactions. It can then commit safely. A distinction can be made between
optimistic concurrency control schemes based on forward validation or backward valida-
tion, depending on the manner in which conflicts are determined.

Forward validation checks to ensure that a committing transaction does not conflict
with any still active transaction and, consequently, that the committing transaction’s effects
will not invalidate any active transaction’s results. One possibility [HCL90] is to ask all
transactional objects involved in a transaction to validate the transaction. Even if only one of
81

Encapsulating Different Concurrency Control Strategies
them signals a conflict with some operation executed on behalf of another active transac-
tion, the committing transaction is aborted. This may lead to wasted aborts — aborts caused
by transactions that get aborted themselves later on.

A different forward validation protocol, avoiding wasted aborts, is broadcast commit
[MN82]. It guarantees to commit all transactions that reach their commit point. In this strat-
egy, all active transactions that have performed operations conflicting with the validating
transaction are aborted. This method avoids wasted aborts, however, instead of aborting
only a single transaction at its commit stage as in the previous strategy, many active transac-
tions may be aborted.

Backward validation checks to ensure that a committing transaction has not been
invalidated by the recent commit of another transaction. Each object keeps track of
Last (op), the timestamp of the most recently committed transaction that executed the oper-
ation op. For each active transaction t, each object also keeps track of First (t, op), the logi-
cal time when t first executed op. An object will validate t if and only if Last (op’) < First (t,
op) for each operation op’ that conflicts with any operation op executed by t.

In order to avoid rejecting operations that arrive out of order, several concurrency pro-
tocols have been proposed that maintain multiple versions of objects [BG81, PK84, AS89].
For each update operation on an object, a new version of the object is produced. Read oper-
ations are performed on an appropriate, old version of the object, thereby minimizing the
interactions between read-only transactions and update transactions. Versions are transpar-
ent to transactions: objects appear to them as only having a single state.

Many papers have been written describing concurrency control protocols that com-
bine aspects from each of the canonical techniques discussed above (see section 4.5 in
[BHG87] for an overview).

7.3 Encapsulating Different Concurrency Control Strategies

Choosing an optimal concurrency control strategy is application dependent. It is therefore
important for the framework to allow an application programmer to customize concurrency
control to his or her needs. This can be done on a per-object basis using the Strategy design
pattern (see “The Strategy Design Pattern” on page 69).

The essential concurrency control features are encapsulated in the abstract class
Concurrency_Control as shown in figure 7.1. It defines the common interface for any con-
currency control scheme. At instantiation time, a transactional object can be configured with
a concrete concurrency control. The following paragraphs describe the operations provided
by the abstract Concurrency_Control class.

The Pre_Operation and Post_Operation operations must be called before respectively
after executing any operation on a transactional object. A call to Pre_Operation comprises
two phases. First, competitive concurrency must be handled. In optimistic concurrency con-
82

Concurrency Control
trol schemes based on timestamps for instance, Pre_Operation must remember the logical
invocation time of the operation. The situation is different in a pessimistic scheme based on
locking, where the caller must acquire the lock in order to proceed with the operation. If the
lock is not compatible with all other locks granted for this transactional object, the caller
will be blocked, waiting for the conflicting transactions to free their resources.

The second phase deals with cooperative concurrency. In both pessimistic and opti-
mistic concurrency control schemes, Pre_Operation must acquire the mutual exclusion lock
for operations that modify the state of the transactional object. This must be done to guaran-
tee consistency of data modified concurrently by participants of the same open multi-
threaded transaction. Post_Operation releases the mutual exclusion lock again, but does not
discard competitive concurrency control information by, for example, discarding the times-
tamps, or releasing the transaction locks. In general, competitive concurrency control infor-
mation must be kept until the outcome of the transaction is known.

When the transaction support is ready to commit a transaction, the Validate operation
is called for each accessed transactional object. In optimistic concurrency control schemes,
Validate verifies that there are no serializability problems for this transaction by applying
forward or backward validation techniques. For pessimistic concurrency control schemes,
Validate always succeeds.

7.4 Concurrency Control Information for Operations

In order to correctly handle cooperative concurrency, the concurrency manager must be able
to determine for each operation of a transactional object if it is an observer or a modifier. To
deal with competitive concurrency, optimistic and pessimistic concurrency control schemes
must be able to decide if there are conflicts between operations invoked by different transac-

Figure 7.1: The Concurrency_Control Hierarchy

Concurrency_Control

Pre_Operation
Post_Operation
Validate
Commit_Transaction

Optimistic_Control Pessimistic_Control

Abort_Transaction

Locking_Control

Validate
83

Strict Concurrency Control
tions that would compromise the serializability of these transactions. This information must
be associated with each operation of a transactional object.

The following sections introduce strict concurrency control and semantic-based con-
currency control for operations, and how they are integrated into the OPTIMA framework.

7.4.1 Strict Concurrency Control

The simplest form of concurrency control among operations of a transactional object is
strict concurrency control. In locking based concurrency control schemes this technique is
also referred to as read / write locking.

It is simple, for strict concurrency control only distinguishes observer and modifier
operations. Reading a value from a data structure does not modify its contents, writing a
value to the data structure does. In this case, cooperative and competitive concurrency con-
trol are based on the same criteria.

The compatibility table of read and write operations is shown in figure 7.2.

Some programming languages explicitly show the difference of observer and modifier
operations in the signature of the operation. Protected types in Ada distinguish functions,
which can only read values encapsulated in a protected object, and procedures, which on the
other hand are allowed to modify the encapsulated value (see section 10.3.5 on page 137).

Depending on the different constructs that are available to an application programmer
and depending on the visibility rules of the programming language, the compiler may be
able to automatically determine if a operation modifies data values encapsulated inside an
object or not.

7.4.2 Semantic-Based Concurrency Control

Inter-transaction concurrency can be increased if one knows more about the semantics of
the operations of a transactional object. Exploiting this knowledge can drastically increase
the performance of an application that uses transactions.

According to [RC97], the concurrency semantics of a transactional object depend on
the following:

• Semantics of the operations,
• Operation input and output values,

Read (x) Write (x)

Read (x) yes no

Write (x) no no

Figure 7.2: Compatibility Table of Read and Write Operations
84

Concurrency Control
• Organization of the object, and
• Object usage.

Operation semantics are related to the effects of an operation on the state of the transac-
tional object. As mentioned before, operations can be broadly classified as observers, which
do not change the state of an object, and modifiers, which do change the state of the object.

Input / Output semantics refer both to the direction of information flow between a cli-
ent and a transactional object, and to the meaning of input and output values of an opera-
tion. The information flows into and out of an object occur via the arguments of the
operations defined on the object and through the return values of these operations.

Object organization semantics refer to the abstract organization of an object. It can be
further composed into composition semantics, which pertain to what an object is composed
of, and order semantics, which refer to the relative ordering among the component objects.
It is obvious that if an object contains two separate data structures, operations that work
only on one of them do not conflict with operations that work on the other one.

Usage semantics refer to how the object is used and what is done with the information
extracted from an object by an operation invoked by a transaction. This depends on the
structural and behavioral semantics of the transaction, and on the application.

The following section discusses how to increase inter-transaction concurrency by
exploiting the first three characteristics of transactional objects. The last characteristic can
not be exploited on a per-object base, since the usage of an object depends in general on the
application.

7.4.2.1 Commutativity

Lets consider an abstract data type representing a set. A set is a non-ordered collection of
elements without duplicates, meaning that for a given element there can only be one
instance in the set at a given time. A set provides three operations, Insert(Set,Element) to
insert an element into the set, Remove(Set,Element) to remove an element from a set, and
Is_In(Set,Element), an operation that tests if a certain element is part of a given set or not.

Insert and Remove are modifier operations, Is_In is an observer operation. At first
sight one might think that two invocations of Insert conflict with each other. If we take into
account the input / output semantics of the Insert operation, we soon realize that two invo-
cations of the insert operation for different elements, Insert(Set,A) and Insert(Set,B) do
not conflict with each other. The resulting set does not depend on the sequence in which the
two insertion operations are executed. This property, allowing to interchange two operations
and still get the same result is called commutativity. Two operations commute, if their effects
on the state of a transactional object and their return values are the same, irrespective of
their execution order.

In order to apply commutativity, every transactional object must provide a compatibil-
ity table that precisely states for each operation of the object the conditions under which an
85

Semantic-Based Concurrency Control
invocation of the operation commutes with the other available operations. When a transac-
tion invokes an operation, the concurrency control can consult this table and determine if
there is a conflict by verifying that the operation commutes with every uncommitted opera-
tion executed on the object so far. The commutativity table for the set operations is shown in
figure 7.3.

Depending on the update strategy used for transactional objects (see section 9.2.5 on
page 115), two slightly different forms of commutativity must be provided. Backward com-
mutativity is used in combination with immediate update of data objects. In this scheme,
each operation is immediately executed on the transactional object, possibly modifying its
state. The ordering in which two operations A and B are executed on a transactional object
is important in this case, since the operation executed second “sees” the results of the execu-
tion of the first one. B commutes with A, if A followed by B has the same effects as execut-
ing A, then B and then undoing A, irrespective of the initial state of the transactional object.
In particular, the return values of B must be the same in both cases.

Forward commutativity is used in combination with deferred update of data objects. In
this scheme, each operation on a transactional object is executed on a separate copy of the
state of the object. The ordering of the operations A and B is not important in this case,
since they both “see” the same state of the object. B commutes with A, if B’s return values
do not dependent on the modifications that A applies to the state of the transactional object.

The difference between these two forms of commutativity can be illustrated on the set
example. In both schemes, two insert operations that insert different elements into the set
commute. However, if the inserted elements are identical, the two operations commute only
if deferred update and hence forward commutativity is used. When using immediate update,
the first insert operation Insert(Set,A) will insert the element A into the set. The second
invocation of Insert(Set,A) has no effect on the set, since the set already contains the ele-
ment A. If the transaction that executed the first insert operation aborts, the insert operation
must be undone. Unfortunately, undoing the first operation will remove the element A from
the set, thereby also undoing the second insert operation.

Insert (y) Remove (y) Is_In (y)

Insert (x) x ≠ y x ≠ y x ≠ y

Remove (x) x ≠ y x ≠ y x ≠ y

Is_In (x) x ≠ y x ≠ y yes

Figure 7.3: Backward Commutativity Table for the Set ADT
86

Concurrency Control
7.4.3 Encapsulating Operation Concurrency Control Information

The concurrency control component of the OPTIMA framework provides support for strict
concurrency control and semantic-based concurrency control.

Optimistic and pessimistic concurrency control schemes must be able to decide if
there are conflicts between operations that would compromise serializability of transactions.
They must also know if an operation modifies the state of the transactional object. This
information is encapsulated in the operation information hierarchy shown in figure 7.4.

For each operation of a trans-
actional object, an operation infor-
mation object must be provided
implementing the operations
Is_Modifier and Is_Compatible,
two functions that return a boolean
value. Is_Modifier is needed for
dealing with cooperative concur-
rency. It returns true if the operation
modifies the state of the transactional object. This determines if mutual exclusion is needed
when participants of the same transaction access the transactional object concurrently.
Is_Compatible addresses competitive concurrency. The function must determine whether an
operation conflicts with other operations available for this transactional object with respect
to transaction serializability.

Strict concurrency control is provided in the OPTIMA framework by means of the con-
crete class Read_Write_Information. It implements classical strict concurrency control as
shown in figure 7.2, allowing multiple readers or a single writer to access a transactional
object at the same time.

Semantic-based concurrency control can not be provided out-of-the-box, since it
depends on the properties of each transactional object. Nevertheless, the framework is flexi-
ble enough to allow a programmer of a transactional object to provide his or her own con-
currency control by deriving from the abstract Operation_Information class and
implementing the two required abstract functions. For commutativity-based concurrency
control, the Is_Compatible operation must contain the compatibility table that allows to
determine if the operation commutes with other operations of the transactional object1.

At any given time, the concurrency manager associated with a transactional object
holds the complete list of operation information objects representing all operation invoca-
tions made on behalf of transactions in progress. For a detailed description of how the

1. Depending on the update strategy chosen for a transactional object (see section 9.2.5 on page 115), for-
ward or backward commutativity must be provided. If the framework has to support in-place and deferred
update strategies for the same transactional object, then the Operation_Information class must be
extended to provide two operations, Is_Forward_Compatible and Is_Backward_Compatible.

Operation_Information

Read_Write_Info User_Defined_Info

Is_Modifier
Is_Compatible

Figure 7.4: The Operation_Information Hierarchy

Is_Modifier
Is_Compatible
87

Encapsulating Operation Concurrency Control Information
Operation_Information classes and Concurrency_Manager classes work together, see
“Tying Things Together” on page 114.
88

Chapter 8:

Recovery

This chapter presents the detailed design of the recovery support for open multithreaded
transactions. Recovery actions have to be taken in two situations: on transaction abort and in
case of a system failure. Transaction abort can occur in the following situations:

• One of the participants explicitly aborts the transaction by raising an external excep-
tion.

• One of the participants can not handle a locally raised exception. The default handler
will abort the transaction.

• A participant thread terminates without voting on the outcome of the transaction. This
case is treated as an error (see section 4.4.4 on page 54).

A system failure can occur if:

• The process running the transaction support crashes.

It is the responsibility of the recovery support to handle all these cases, guaranteeing the
atomicity and durability of all transactions at all time. In case of a system failure this
implies more precisely that:

• If a transaction has committed before the failure occurred, then all modifications
made on behalf of the transaction are reflected in the state of the transactional objects.

• All transactions that have not yet been committed successfully are aborted, which
means that all modifications made on behalf of these transactions to transactional
objects are undone, if necessary.
89

Global Design
Note that the OPTIMA framework can only handle modifications made to transactional
objects. Invocations of operations on non-transactional objects are ignored by the frame-
work and can not be undone.

8.1 Global Design

In order to be able to recover from a system failure, the recovery support must keep track of
the status of all running transactions and of the modifications that the participants have
made to transactional objects on their behalf. This information, also called a transaction
trace, must be stored on some kind of storage, called a log, that will not be affected by a
system failure. Once the system restarts, the recovery support can consult the log and per-
form the cleanup actions necessary to restore the system to a consistent state. The informa-
tion written to the log depends on the chosen recovery strategy, and the necessary cleanup
actions depend on the strategy, the status of the transactions and whether the modifications
made to the transactional objects have already been propagated from the cache to the non-
volatile storage or not.

An overview of the recovery support architecture is given in figure 8.1. The recovery
management component is the central unit. It controls the persistence support, the cache
manager and the log.

8.2 Persistence Support

This section presents the design of a persistence support that allows the state of any object,
in our case transactional objects, to be written to any kind of storage device. The support has
been designed to be general, since different forms of storage are needed throughout the
transactional system. The following situations are examples of where the state of an object
must be stored on some storage unit:

Figure 8.1: Recovery Support Overview

Cache_Management

Recovery_Management Log_Management

Persistence_Management

Transaction_Management

Recovery Support
90

Recovery
• The state of transactional objects must be stored on non-volatile storage in order to
achieve durability.

• The log is stored on a special kind of non-volatile storage that must be able to survive
system failures.

• Some recovery techniques make backup copies of the state of a transactional object in
volatile memory (also called checkpointing). To undo modifications of the state of an
object when a transaction aborts, the recovery support can simply replace the invalid
state with the consistent state that was stored at the beginning of the transaction.

The persistence support is completely separated from the rest of the OPTIMA framework,
and can therefore also be used in a stand-alone manner as presented in [KRS00]. The design
of the persistence support strives to achieve the following goals:

• Clear separation of concerns: The object should not know about storage devices or
about the data format that is used when writing the state of the object onto the storage
unit and vice versa.

• Modularity and extensibility: It should be straightforward to define new persistent
objects or add support for new kinds of storage.

8.2.1 Classification of Storage Devices

At some point, transactional objects must save their state on some storage device, so that it
can be retrieved again in a later execution. The term storage is used in a wider sense here.
Sending the state of the object over a network and storing it in the memory of some other
computer would for instance also be valid, as long as the data survives program termination.

The kind of storage to be used for saving application data depends heavily on the
application requirements. Properties such as performance, capacity of the storage media and
particularities of usage (for instance write-once devices like CD writers) may affect the
choice. Persistence can be implemented in a stronger form to support different kinds of fault
tolerance, for instance for tolerating faults of the underlying hardware as required by trans-
actions. To apply persistence properly in a fault-tolerant context, the application program-
mer has to identify the fault assumptions under which his or her system operates. Each
storage device must provide documentation that allows a user to determine the reliability of
the device. Based on this information, the application programmer can choose the device
that fits the requirements of his or her application.

The OPTIMA framework organizes all supported storage devices in a class hierarchy as
shown in figure 8.2. A concrete implementation of a storage class must derive from one of
the abstract storage classes and implement the required operations. The Storage class repre-
sents the interface common to all storage devices. The operations Read and Write represent
the operations that allow the user to read and write data from and to the storage device.
91

Classification of Storage Devices
What kind of value types the operations must support will be discussed in more detail in the
next subsection.

At instantiation time, a transactional object is associated with a storage unit. Subsequently,
the transactional object can save its state on the storage unit. To achieve decoupling, the
Strategy design pattern described in section 5.2.2 on page 69 has been used. The Strategy, in
our case the root storage class, declares the common interface to all concrete strategies. The
Context, in our case the transactional object, uses this interface to make calls to a concrete
storage class implementation defined by a Concrete Strategy.

Storage devices do not all have the same properties, and therefore must not all provide
the same set of operations. The storage hierarchy is split into volatile storage and non-vola-
tile storage. Data stored on volatile storage will not survive program termination. An exam-
ple of volatile storage is conventional random access memory. Once an application
terminates, its memory is usually freed by the operating system, and therefore any data still
remaining in it is lost. Data stored on non-volatile storage, on the other hand, remains on the
storage device even when a program terminates. Databases or disk files are common exam-
ples of non-volatile storage. Since the data will not be lost when the program terminates,
additional housekeeping operations are needed to establish connections between the object
and the actual storage unit, to cut off existing connections, and to delete data that will not be
used anymore. These operations are Open, Close and Delete.

Even conventional memory can survive program termination if it is located in a pro-
cess running on a remote machine. The framework comprises a parameterized class
Remote_Storage that can turn any storage into non-volatile storage. The class implements
the communication mechanism between the application and the process running on the
remote machine. Invocations of storage operations on the local machine must be forwarded
to the remote process, where they are executed on the actual storage object.

The design of the Remote_Storage class is also based on the Strategy design pattern.
The type of storage that is used to store data on the remote machine can be chosen when

Non_Stable_Storage

Storage

Volatile_Storage Non_Volatile_Storage

Stable_Storage

Read
Write

Open
Close
Delete

Figure 8.2: The Storage Hierarchy
92

Recovery
declaring the instance of the remote storage class. The Remote_Storage class is a descendant
of the non-volatile storage class, since from the application point of view the remote storage
device is non-volatile, even if a volatile storage is used on the remote machine.

In order to support fault tolerance, we distinguish between stable and non-stable stor-
age devices among non-volatile storage devices. Data written to non-stable storage may get
corrupted if the system fails in some way, for instance by crashing during the write opera-
tion. Stable storage ensures that stored data will never be corrupted, even in the presence of
application crashes and other failures. The execution of the Write operation is atomic.

Stable storage has been first introduced in [LS79]. The paper describes how conven-
tional disk storage that shows imperfections such as bad writes and decay can be trans-
formed into stable storage, an ideal disk storage with no failures, using a technique called
mirroring. When using this technique, data is stored twice on the disk (often two different
physical disks are used to store the two copies of the data to increase reliability even more).
If a crash occurs during the write operation of the first copy, the previously valid state can
still be retrieved using the second copy. If the crash happens during the write operation of
the second copy, the new state has already been saved in the first copy. When the system
restarts later on, the state stored in the first copy must be duplicated and saved over the sec-
ond copy. In order to decide which copy is valid, a third disk file called the log is used.

Using this mirroring technique, any non-volatile storage can be transformed into sta-
ble storage. Just as with the remote storage class, it is possible to write an implementation of
the mirroring algorithm that is independent of the actual non-volatile storage class that will
effectively be used to store the data. Again, the Strategy design pattern has been used to
achieve this flexibility. The structure of the collaboration is shown in figure 8.3.

When declaring a mirrored storage object, three non-volatile storage objects must be passed
as a parameter to the constructor of the mirroring class. These could be, for instance, objects
of the class File_Storage that implements storage based on the local file system. Using this
technique, a variety of stable storage based on mirroring can be created reusing concrete
implementations of non-volatile storage. The kind of non-volatile storage that will be cho-

Non_Stable_Storage

Non_Volatile_Storage

Open
Close
Delete

Stable_Storage

Mirrored_StorageFile_Storage

3

Figure 8.3: Stable Storage Based On Mirroring
0..1
93

Classification of Storage Devices
sen depends on the needs of the application. To help the programmer, it is again very impor-
tant that a concrete non-volatile storage implementation documents the assumptions under
which the storage is considered non-volatile and other information that might be useful for
the application programmer, such as performance. A detailed description of the design and
implementation of the Mirrored_Storage class can be found in [CKS01].

The mirroring technique is not the only one that can be used to create stable storage.
Database systems for instance have their own mechanism to guarantee atomic updates of
data. Typically, they enclose updates of data in a database transaction. It is possible to write
a concrete stable storage class that provides a bridge between an object-oriented program-
ming language and a database.

Yet another way of providing stable storage is replication. The state of a transactional
object can be broadcast over the network and stored on storage devices belonging to a set of
remote machines. Remote memory provides very good performance. Although a replica can
crash, the group of replicas as a whole can be considered stable; for as long as at least one of
the remote machines remains accessible, the data can always be retrieved on a later execu-
tion.

Again, the replicated solution can be implemented in a generic way using the Strategy
design pattern. The relationship between the context and the strategy is this time one to
many. The Replicated_Storage class implements broadcasting and other replica manage-
ment algorithms that handle failures of replicas during program execution. When declaring
an instance of the replicated storage class, a storage object must be passed as a parameter to
the constructor. Any type of storage can be used to store the data on the remote machine.

The complete storage class hierarchy and the relationships between the classes is
shown in figure 8.4.

Storage

Volatile_Storage

Read
Write

Stable_Storage

Mirrored_Storage

Replicated_Storage

Remote_Stable_Storage

1..*

3

File_Storage

Memory_Storage

Create

Create

Create Create

Create

Create

1

1

Figure 8.4: The Complete Storage Hierarchy

0..1 0..1
0..1

0..1

Remote_Non_Stable_Storage

Open
Close
Delete

Non_Volatile_Storage

Non_Stable_Storage
94

Recovery
8.2.2 Object Serialization

When storing the state of a transactional object on some kind of storage unit, it must first be
transformed from its representation in memory into some form that can be stored by the
device. Most of the time the most convenient form will be a flat stream of bytes e.g. for stor-
ing data in flat files or sending data through network transport buffers. Interfaces to ODBMs
can be more elaborate.

The Serializer design pattern, described in section 5.2.3 on page 70, is an ideal solu-
tion for this kind of problem. It provides a mechanism to efficiently stream objects into data
structures of any form as well as create objects from such data structures.

The bigger the set of supported value types of the Reader / Writer interface is, the
more type information can be used by the Concrete Reader / Concrete Writer to efficiently
store the data on the backend. On the other hand, there are backends that support only a
small set of value types. Flat files for instance only support byte transfer. For these kinds of
backends the Concrete Reader / Concrete Writer must contain implementation code that
maps the read / write operations of unsupported value types to the ones that are supported.

The big advantage of the Serializer pattern is that the application class itself needs no
knowledge about the external representation format which is used to represent their
instances. If this were not the case, introducing a new representation format or changing an
old one would require to modify almost every class in the system.

In some object-oriented programming languages, such a serialization mechanism is
already provided, which means that the readFrom / writeTo operations defined in the Serial-
izable interface have predefined implementations for all value types of the programming
language that are not covered by the Reader / Writer interface. The Java Serialization pack-
age [Sun98] or Ada streams [ISO95, 13.13] are examples of such predefined language sup-
port. If no language support is available, the readFrom / writeTo operations of the
Serializable interface must be implemented for every Concrete Element.

8.2.3 Identification of Transactional Objects

Since the state of a transactional object survives program termination, there must be a
unique way to identify a transactional object that remains valid during several executions of
the same program. Also, when creating a transactional object, the user must be able to spec-
ify on what kind of storage he or she wants the state of the object to be saved. The object
must be able to create an instance of the corresponding storage class and establish a connec-
tion to the storage device.

The information needed to create an instance of a concrete storage class is device
dependent. To create a new file, a user must typically provide a file name that follows cer-
tain conventions, and maybe also a path name that specifies in which directory the file
should be created. To access remote memory, an IP number or machine name must be pro-
vided. To solve this problem, a hierarchy of storage parameters has been introduced. This
95

Storage Management
hierarchy parallels that of the storage hierarchy and is shown in figure 8.5. Each storage
device must define it’s own storage parameter class that contains all the information needed
to identify data stored on the device. Since a storage parameter object points to a unique
location on a particular storage device, the storage parameter can also be used as a means
for identifying a particular transactional object.

In order to allow the transactional object to instantiate a store object, the storage parameter
class provides the Create method. The method instantiates the corresponding storage
object, passing as a parameter the information stored inside the concrete storage parameter
instance, and then physically creates the storage unit on the device. Non-volatile storage
needs a second creator function, Open, that will instantiate the non-volatile storage class
without creating a new storage unit on the device. Instead, a connection between the already
existing data on the device and the storage object will be established. This technique is an
instance of the well-known Abstract Factory design pattern described in section 5.1 on
page 69. The Create and the Open methods define the connection between the two parallel
class hierarchies.

Sometimes it can be convenient for a user to treat transactional objects in a uniform
way. An object name in the form of a string has proven to be an elegant solution for uniform
object identification [GJS96]. The two functions Storage_Params_To_String and
String_To_Storage_Params provide a mapping between the two identification means.

8.2.4 Storage Management

Once a transactional object has been created and its state saved on a non-volatile storage
device, it will theoretically remain on the device forever. The only way to remove the data
and free the associated storage space is to explicitly delete the object. Forgetting to store the
parameters that allow to identify the object on subsequent application runs can result in per-
manent storage leaks. This can be prevented by hard-coding the parameters in the applica-
tion code, or by storing the parameters in some other transactional object. In a sense,

Non_Stable_Parameter

Storage_Parameter

Volatile_ParameterNon_Volatile_Parameter

Stable_Parameter

Figure 8.5: The Storage_Parameter Hierarchy

Open

String_To_Storage_Params
Storage_Params_To_String
Create
96

Recovery
storage parameters act as persistent pointers to transactional objects. All transactional
objects inside an application must be reachable by following pointers stored inside transac-
tional objects whose parameters are statically known.

In order to create a simple flat hierarchy of transactional objects, an application pro-
grammer can use the transactional directory class provided by the framework. When creat-
ing a new transactional object, the storage parameters must be registered with this directory.
At any time, the application programmer can then consult the list of existing transactional
objects stored in the directory and determine which of them is still needed and which of
them can be deleted. The creation of a transactional object and the updating of this directory
must be atomic, or else again storage leaks can occur. This is why these two actions must be
performed inside the same transaction. The same reasoning applies to the deletion of trans-
actional objects.

When saving the state of the directory, the storage parameters of all transactional
objects that have been created in the system must be written to the associated storage
device. It is therefore important that all storage parameter classes implement the Serializ-
able interface.

8.3 Caching Support

In order to improve the performance of the overall system, the states of transactional objects
are kept in main memory. Accessing memory is in general significantly faster than access-
ing the non-volatile storage devices that are used for permanently storing the states of trans-
actional objects. However, in systems that are composed of lots of transactional objects, it is
often not possible to keep the state of all objects in memory at a given time. This is why
such systems usually use a cache that only keeps a subset of the objects in memory.

State of Object J State of Object P

State of Object Q State of Object Q

State of Object V State of Object R

...

...

Cache in
Main Memory

Non-Volatile
Storage

update

Figure 8.6: Caching for Transactional Objects

All Objects

Subset of All Objects

Thread A Thread B Thread C

T
ra

ns
ac

tio
n

A

T
ra

ns
ac

tio
n

B

97

Cache Fetch Algorithm
As shown in figure 8.6, the existence of the cache is completely transparent to the
threads executing the transactions. When an operation is invoked on an object for the first
time, the state of the object is loaded from the associated storage unit into the cache. Subse-
quent accesses to the object can now be serviced a lot faster. If an operation modifies the
state of an object, the object is marked as being dirty.

In practice, caches are very effective because of the principle of locality, which is an
empirical observation that, most of the time, data in use is either the same data that was
recently in use (temporal locality), or is data “nearby” the data recently used (spatial local-
ity). The behavior of caches can be tailored in order to get a better hit ratio, i.e. by adjusting
the size of the cache, or by choosing appropriate fetch and replacement algorithms.

8.3.1 Cache Fetch Algorithm

In general, objects are loaded into the cache on demand, i.e. when an operation is invoked
on the object. If the object is not present in the cache, the calling thread must wait until the
cache loads the state of the object from the associated non-volatile storage device. As an
alternative, the cache can prefetch objects by guessing which objects are likely to be
accessed in the future.

8.3.2 Cache Replacement Algorithm

When an object’s state is brought into the cache, it is often necessary to delete the state of an
object that is already in the cache due to the lack of space. In a conventional cache, the state
of any object can be replaced. This is not true for caches used in a transaction system.
Firstly, we distinguish between Steal and No-Steal policy. In the Steal policy, objects modi-
fied by a transaction in progress may be propagated to the associated storage unit at any
time, whereas in the No-Steal policy, modified objects are kept in the cache at least until the
commitment of the modifying transaction. We also make a distinction on what happens dur-
ing transaction commit. In the Force policy, all objects that a transaction has modified are
propagated to their associated storage units during the commit process, whereas in the No-
Force policy no propagation is initiated upon transaction commit.

Depending on the application requirements, different replacement strategies can be
appropriate. A well known replacement strategy is Least-Recently-Used (LRU), where for
each cached object the cache keeps track of when it was used the last time. When there is
not enough space for a new object to be loaded into memory, the state of the least recently
used object is written to the storage unit, and then the in-memory state of the object is dis-
carded.
98

Recovery
8.3.3 Extensible Cache Design

In order to make caching possible, the framework must store important information for each
data object, e.g. if the state of the object is currently in memory or on the associated non-
volatile storage unit. When an operation is invoked on the data object and the object’s state
is not currently in memory, the state must be loaded from the associated storage unit. This is
the main task of the Memory_Object class shown in figure 8.7.

Invoking Propagate instructs the memory object to
save the associated data object to the corresponding stor-
age unit. The Load method can be used to re-initialize the
state of the data object with a previously saved state.
Calling Pin will “pin” the data object in memory, mean-
ing that its state can not be propagated to the associated
storage unit, until Unpin is called. The memory object
class has additional methods related to concurrency control and recovery. They are pre-
sented in section 9.2.5 on page 115.

Each instance of the memory object class handles the state of one application object.
The cache manager controls all these instances, replacing application objects in memory by
propagating them to the associated storage unit according to the cache policy. Defining an
optimal cache policy depends on the application requirements. It is therefore important for
the framework to allow a user to define his or her own cache policy. This flexibility can
again be achieved using the Strategy design pattern.

The abstract root class
Cache_Manager defines the opera-
tions that must be provided by a con-
crete cache implementation as
shown in figure 8.8. Create and
Restore are two methods that are
called when a user instantiates a
transactional object. Create will
physically create a new object on the
storage unit identified by the storage
parameter Params, whereas Restore
attempts to initialize the object’s state with a previously saved state. If there is not enough
memory available to allocate space for a new application object, then the abstract method
Apply_Replacement_Policy is invoked. This results in freeing memory by writing the state
of application objects to their associated storage unit. Which objects are chosen depends on
the replacement strategy. The method Tag_Object is called during recovery to tell the cache
manager that the state of the transactional object identified by the Params parameter must be
recovered prior to any further use of the object.

Memory_Object

Propagate
Load
Pin
Unpin
...

Figure 8.7: The Memory Object

Figure 8.8: The Cache_Manager Hierarchy

Cache_Manager

Create (Params, ...)
Restore (Params, ...)
Apply_Replacement_Policy
Tag_Object (Params)

LRU_Cache_Manager User_Defined_Cache

Apply_Repl_Policy Apply_Repl_Policy
99

Consequences of Caching
8.3.4 Consequences of Caching

Although introducing a cache is completely transparent for the users of the transaction sup-
port, it significantly complicates the reasoning about the consistency of the state of the sys-
tem. When using a cache, the current state of a transactional object is determined by the
state of the object in the cache, or if it is not present in the cache, by the state of the object
on the associated storage device. When a transaction aborts, the state changes made on
behalf of the transaction are undone in the cache. These changes might have already been
propagated to the storage unit. Fortunately, we do not have to undo them, since they will be
undone the next time we update the state of the object on the storage device. When a trans-
action commits, we must ensure that at some time in the future, the changes of the transac-
tion will be propagated to the associated storage device.

Using a cache has a significant impact on the actions that must be taken when recover-
ing from a crash failure. On a system crash, the content of the cache is lost, and therefore, in
general, the state of the objects on their associated storage devices can be inconsistent for
the following reasons:

• The storage unit does not contain updates of committed transactions.
• The storage unit contains updates of uncommitted transactions.

When recovering from a system crash, these situations must be remedied. The former prob-
lem can be solved by redoing the changes made by the corresponding committed transac-
tions, the latter by undoing the changes made by the corresponding aborted transactions.
These two techniques are explained in detail in section 8.5.

8.4 Logging

The system log is a sequential storage area located on stable storage (see section 8.2.1). It is
important that the log is stored on stable storage, since it must always remain readable even
in the presence of failures in order to guarantee the properties of transactions. The purpose
of the log is to store information necessary to reconstruct a consistent state of the system in
case a transaction aborts or a system crash occurs. The required information can be split
into five categories:

• Undo Information
• Redo Information
• Creation Information
• Deletion Information
• Transaction Status Information
100

Recovery
There are three situations in which the log is updated:

• A transaction is committed or aborted.
• A transactional object is created or deleted.
• An operation that modifies the state of a transactional object is invoked.

Undo and redo information can be stored in the log in two ways. In the first technique,
called physical logging, copies of the state of a transactional object are stored in the log.
These copies are called before-images or after-images, depending on if the snapshot of the
state of the object has been taken before or after invoking the operation. Unfortunately,
physical logging only works if strict concurrency control is used (see “Strict Concurrency
Control” on page 84). If semantic-based concurrency control such as commutative locking
is used, undo and redo information must be saved using logical logging. In this technique,
the operation invocations and their parameters are written to the log. In order to support
undo, every operation op of a transactional object must provide an inverse operation op-1,
i.e. an operation that undoes the effects of calling op.

After a system crash, the entire log needs to be scanned in order to perform all the
required redo and undo actions. The kind of algorithm to be used to recover from a crash
depends on the chosen recovery strategy and is detailed in the next subsection.

A log could potentially grow to be very long, making recovery prohibitively slow.
This problem can be solved by checkpointing the log, which forces all the updated objects
in the cache to be propagated to their associated storage devices. After checkpointing, the
log entries pertaining to committed and aborted transactions that precede the checkpoint are
obsolete and can be garbage collected. There have been many different proposals for check-
pointing a transaction log, with different performance trade-offs between recovery process-
ing and checkpoint processing, which of course delay normal processing. An overview of
checkpointing mechanisms and how they relate to the different recovery strategies is given
in [BHG87].

8.4.1 Encapsulating Logging Techniques

Physical and logical logging techniques are captured in the class hierarchy presented in
figure 8.9.

Logging_Technique

Physical_Technique Logical_Technique

Undo
Redo

Figure 8.9: The Logging_Technique Hierarchy
101

Encapsulating Log Information
As mentioned before, commutativity-based concurrency control requires logical logging to
be used. Transactional objects using strict concurrency control are free to choose between
physical and logical logging. In this case it is mainly a performance issue. If the size of the
state of a transactional object is small, it might be more efficient to save the entire state of
the object after an operation has been invoked than saving the operation together with its
parameters. Physical logging is also more efficient in situations where a single transaction
performs several calls to operations of a transactional object that update its state. In that
case a single before-image saved to the log allows the changes of all operations to be
undone, whereas logical logging requires all operation invocations and their parameters to
be saved to the log.

8.4.2 Encapsulating Log Information

As mentioned before, five different kinds of information must be stored in the log. Again,
this information can conveniently be encapsulated in objects that are organized in a class
hierarchy as shown in figure 8.10. As a result, the log only contains objects of this hierarchy,
which facilitates the recovery processing in case of a system failure.

Any kind of information stored in the log belongs to a transaction. For that reason the
root-level class has an attribute that stores the transaction identifier. The
Transaction_Information subclass is used to store the state changes of transactions in the
log. The remaining information classes all concern objects. The object is identified using a
storage parameter, stored in an attribute of the Object_Information class. The
Undo_Information and Redo_Information class derive from this class. They store undo
respectively redo information using a physical or logical logging technique object intro-
duced in section 8.4.1. The two classes Creation_Information and Deletion_Information
provide means for undoing creation or deletion of transactional objects in case a transaction
aborts. The Deletion_Information class uses a physical logging technique object to store
the last state of the destroyed transactional object.

Log_Information

Transaction_Information Object_Information

L: Logging_Technique

Redo_Information Creation_Information

T: Transaction

S: Status O: Storage_Params

UndoRedo

L: Logging_Technique

Undo_Information

Undo

S: Physical_Logging

Deletion_Information

Undo

Figure 8.10: The Log_Information hierarchy
102

Recovery
8.5 Recovery Support

The recovery support of a transaction system must ensure that the atomicity and durability
properties of open multithreaded transactions are satisfied, even in the presence of system
failures. As mentioned above this can be achieved by using recovery strategies based on
undo operations, redo operations, or both.

8.5.1 Recovery Strategies

8.5.1.1 Undo/Redo

The Undo/Redo recovery strategy requires both undo and redo actions for every operation
on transactional objects. This strategy allows great flexibility in the management of the
cache by permitting Steal and No-Force object replacement policies. It maximizes effi-
ciency during normal operation at the expense of less efficient recovery processing.

8.5.1.2 Undo/No-Redo

The Undo/No-Redo recovery strategy requires undo but never uses redo actions because it
ensures that all the updates of committed transactions are reflected on the storage devices
associated with the transactional objects. It therefore relies on Steal and Force cache
replacement policies. The commitment of a transaction is delayed until all its updates are
recorded on the storage units associated with the transactional objects involved in the trans-
action. If there happens to be a system failure during this propagation phase causing the
transaction to abort, the previous state can be reconstructed by undoing the corresponding
operations.

8.5.1.3 No-Undo/Redo

The No-Undo/Redo recovery strategy, also known as logging with deferred updates, never
requires undo actions, but relies on redo actions. Updates of active transactions are not
propagated to the storage units associated with transactional objects, but recorded in the
system log, either in the form of an after-image of the state if physical logging is used, or as
a list of invoked operations, also called an intention list, if logical logging is used. If a crash
occurs after a transaction has committed, the lost state can be reconstructed by redoing the
corresponding operations. No-Undo/Redo recovery relies on No-Steal and No-Force cache
replacement policies.
103

Encapsulating Recovery Strategies
8.5.1.4 No-Undo/No-Redo

The No-Undo/No-Redo recovery strategy avoids undo actions by creating private shadow
versions of each modified object on stable storage (see section 8.2.1). Redo actions are
avoided by atomically replacing the actual objects in stable storage with their corresponding
shadow versions associated with the transaction during transaction commit. This, of course,
requires a special form of stable storage that provides a commit-and-replace operation. The
states of all transactional objects must be saved on this kind of storage.

8.5.2 Encapsulating Recovery Strategies

The OPTIMA framework supports Undo/NoRedo, NoUndo/Redo and Undo/Redo recovery
managers. NoUndo/NoRedo recovery is not supported, for it requires a special form of sta-
ble storage that is difficult to implement based on general non-volatile storage. Again, the
different recovery managers are organized using a class hierarchy as represented in
figure 8.11.

All recovery managers provide the same interface as shown in the abstract root class
Recovery_Manager. A general description of the operation is given here. Detailed descrip-
tions of the algorithms used for each recovery strategy are presented in the next subsections.

• Begin_Transaction, Abort_Transaction and Commit_Transaction are called by the
transaction support when the status of a transaction changes. This status change must
be written to the log. Depending on the recovery strategy, the recovery manager uses
different algorithms for aborting or committing transactions.

• Pre_Operation and Post_Operation are called before respectively after every method
invocation on a transactional object. Depending on the recovery strategy used, the
recovery manager must gather undo and redo information.

• Propagate_Object is called by the cache manager when it wants to write the state of a
transactional object to its associated storage unit in order to free up memory. Depend-

Recovery_Manager

Begin_Transaction
Abort_Transaction
Commit_Transaction
Pre_Operation
Post_Operation
Propagate_Object
Recover

Redo_RecoveryUndo_Recovery Undo_Redo_Recovery

Figure 8.11: The Recovery_Manager Hierarchy

Recover_Object
104

Recovery
ing on the recovery strategy, certain actions, e.g. writing undo information to the log,
must be performed before the object’s state may be deleted from memory.

• Recover is called during startup of the system if the system has not been shut down
properly during the previous run. The recovery manager must scan the log and take
the necessary actions to recover a consistent application state. The algorithm used
depends on the recovery strategy. Every object whose state needs to be recovered is
marked as such by calling the Tag_Object method of the cache manager.

• Recover_Object is called by the cache manager when a participant wants to access an
object whose state must be recovered.

The recovery manager must write information to the log in order to be able to perform cor-
rect recovery in the presence of system failure. The information needed to perform recovery
depends on the recovery strategy.

The following general rules must always be followed [BCF+97]:

• Undo Recovery Rule (or Write Ahead Logging):
All information necessary for undoing the changes made to the state of an object dur-
ing execution of one of its operations must be written to the log before the object’s
state is propagated to its associated storage unit.

• Redo Recovery Rule (or Commit Rule):
All information necessary for redoing the changes made to the states of all objects
modified during a transaction must be written to the log before the transaction com-
mits.

The following subsections describe the implementation of the recovery manager methods
for the different recovery strategies by means of pseudo code. Note that although Undo/
Redo recovery uses very complicated algorithms, commercial systems that need to process
large amounts of data often use this technique, because it allows the states of transactional
objects to be written back to their associated storage unit at any time.

8.5.3 Undo/NoRedo Recovery Algorithms

Pre_Operation

• Pin the transactional object
• If physical logging is used

• If this is the first operation modifying the state of this object invoked during this
transaction
• Save before-image in memory

• If logical logging is used
• Save undo information for this operation in memory
105

NoUndo/Redo Recovery Algorithms
Post_Operation

• Unpin the transactional object

Propagate_Object

• Write all undo information for this object from memory to the log

Abort_Transaction

• For all modified objects
• Undo the changes to the object in memory by applying the gathered undo informa-

tion in memory
• Optional: Propagate the state of the object to the associated storage unit
• Discard undo information for this transaction
• Send abort notification to the concurrency control of the object

• Log transaction abort

Commit_Transaction

• For all modified objects
• If the object is dirty

• Propagate the objects state to the associated storage unit
• Log transaction commit
• For all modified objects

• Send commit notification to the concurrency control of the object
• If we are in a top-level transaction

• Delete undo information for this transaction
• Else

• Pass undo information of the object to parent transaction

8.5.4 NoUndo/Redo Recovery Algorithms

Pre_Operation

• Pin the transactional object
• Optional: Save undo information in memory

Post_Operation

• If physical logging is used
• If this is the first operation modifying the state of this object invoked during this

transaction
• Save after-image in memory
106

Recovery
• Else
• Replace previous after-image with new one

• If logical logging is used
• Save redo information for this operation in memory

• Do not unpin the transactional object

Propagate_Object

• Can not be called inside a transaction, since the object stays pinned

Abort_Transaction

• Log transaction abortion
• For all modified objects

• Undo the changes to the object in memory1

• Delete redo information for this transaction
• Unpin the object
• Send abort notification to the concurrency control of the object

Commit_Transaction

• If we are in a top-level transaction
• For all accessed objects

• Write the redo information to the log
• Log transaction commit
• For all accessed objects

• Send commit notification to the concurrency control of the object
• If we are in a top-level transaction

• Unpin the object
• Optional: propagate the objects state to the storage unit

• Else
• Pass redo information of the object to parent transaction

8.5.5 Undo/Redo Recovery Algorithms

Pre_Operation

• Pin the transactional object
• If physical logging is used

• If this is the first operation modifying the state of this object invoked during this
transaction

1. This can be done for instance by using the saved state on the associated storage unit, or by applying undo
operations saved in memory during the Pre_Operation operation.
107

Undo/Redo Recovery Algorithms
• Save before-image in memory
• If logical logging is used

• Save undo information for this operation in memory
 Post_Operation

• If physical logging is used
• If this is the first operation modifying the state of this object invoked during this

transaction
• Save after-image in memory

• Else
• Replace previous after-image with new one

• If logical logging is used
• Save redo information for this operation in memory

• Unpin the transactional object

Propagate_Object

• Write all undo information for this object from memory to the log

Abort_Transaction

• Log transaction abortion
• For all modified objects

• Undo the changes to the object in memory
• Discard redo information for this transaction
• Discard undo information for this transaction
• Unpin the object
• Send abort notification to the concurrency control of the object

Commit_Transaction

• If we are in a top-level transaction
• For all accessed objects

• Write the redo information to the log
• Log transaction commit
• For all accessed objects

• Send commit notification to the concurrency control of the object
• If we are not in a top-level transaction

• Pass redo information of the object to parent transaction
108

Chapter 9:

Interfacing with Programming Languages

The previous three chapters have detailed the design of the three main components of the
framework, namely the transaction support, the concurrency control and the recovery sup-
port. This chapter presents how these components work together, and what must be consid-
ered when designing an interface to the transaction framework for the application
programmer. The elegance of this interface depends on the features available in the particu-
lar programming language.

In order to correctly handle transactions, the transaction support and recovery support
components must be notified in the following situations:

• When modifying the state of an open multithreaded transaction (e.g. when starting,
joining, closing, aborting or committing a transaction), and

• Before and after every method invocation on a transactional object.

When designing an interface for the application programmer, transaction identification
management and calls to the transaction support should be automated and hidden as much
as possible. A good interface will also force the programmer to adhere to the rules that gov-
ern open multithreaded transactions.

9.1 Associating Participants with a Transaction

For every new transaction, a new transaction context is created. In our framework, the trans-
action context is encapsulated in an instance of the transaction class (see section 6.5 on
page 77).
109

Encapsulating Objects
Once a thread becomes a participant of a transaction, the transaction context must be
associated with it. When it subsequently invokes methods on transactional objects or when
it votes on the outcome of the transaction, the transaction support must be able to determine
on behalf of which transaction the participant is working.

For this reason, traditional transaction systems usually define a transaction identifier
type, TID for short. When a new transaction is started, a unique transaction identifier
instance is created, associated with the transaction context and handed back to the thread
that started the transaction. Subsequent method invocations on transactional objects or calls
to the transaction support must pass this transaction identifier as a parameter, in order to
identify the transaction on behalf of which the operation is to be executed.

Of course, this approach is very cumbersome and annoying for the application pro-
grammer. The approach is even error-prone, for it does not enforce one of the basic rules for
open multithreaded transactions, namely that a thread can only participate in one transaction
at a time. With explicit transaction identifiers, a “malicious” transaction programmer can
perform with one thread work for two transactions simultaneously by using two different
transaction identifiers when invoking methods on transactional objects. This violates the
isolation property, since results from one transaction might be “smuggled” to the other one.

Fortunately, most modern concurrent object-oriented programming languages allow a
system programmer to associate data with threads. This can be done e.g. in Java by extend-
ing the thread class and adding attributes. A way of achieving this effect in Ada 95 is pre-
sented in section 10.3.3 on page 135.

Using such a technique, the transaction identifier can be associated with a thread that
starts or joins a transaction. The transaction support is then able to verify that a given thread
only participates in one transaction at a time, and thus information smuggling is impossible.
In addition, transaction nesting can be handled automatically: a participant of a transaction
that starts a new transaction will automatically start a nested transaction.

9.2 Encapsulating Objects

It would be convenient for the application programmer to be able to work with transactional
objects just like with any other kind of object. This illusion can be achieved by writing a
wrapper object, subsequently called the transactional object, that encapsulates the real
object, i.e. the data object.

Ideally, an application programmer should be able to use any data object inside a
transaction. In particular, it should be possible to reuse data objects that have been written
for non-transactional applications, by “magically” transforming them into transactional
objects.

A transactional object must provide a certain set of functionalities. They are summa-
rized below:
110

Interfacing with Programming Languages
Operations called by the Application Programmer
• The transactional object must provide all operations that the original object provides.
• Since transactional objects are durable, the transactional object must provide opera-

tions that allow the application programmer to create new instances of the object, to
restore instances created previously, and to delete obsolete instances.

Operations called by the Components of the Transaction Framework
• The transactional object must provide operations for saving and loading the object’s

state to / from the associated storage unit.
• For each operation on the original data object, the transactional object must provide

concurrency control and recovery information, classifying each operation as observer
or modifier. If semantic concurrency control is used, a compatibility table relating all
operations on the original data object must be provided.

• If logical logging is used, the transactional object must designate undo operations for
each operation on the original object, and provide operations for loading and saving
operation invocations.

9.2.1 The Transactional Object

In order to hide all this complexity from the application programmer, each data object is
hidden behind a wrapper object, the transactional object, that offers the same interface as
the original data object, plus operations for creating, restoring and deleting the transactional
object. The Create and Restore operations use a storage parameter (see section 8.2.3 on
page 95) to identify the storage unit on which the state of the transactional object is to be
stored.

When an operation is invoked on the transactional
object, it must be able to determine on behalf of which
transaction the invoking thread is currently working. If
the programming language provides a mechanism that
allows the transaction support to associate a transaction
identifier with a thread, the transaction context can be
passed to the transactional object in a transparent man-
ner. Otherwise every operation of the transactional
object must have an additional parameter TID that identi-
fies the transaction on behalf of which the operation is to
be executed.

In order to be compatible with the original data
object, the transactional object may inherit from or implement the same interface as the
original data object1. As a consequence, algorithms that work with original objects will also
accept transactional objects2. Figure 9.1 shows an example of a Set data object and its cor-
responding Transactional_Set object.

Set

Insert (Element)
Remove (Element)
Is_In (Element)

Transactional_Set

Insert (Element)
Remove (Element)
Is_In (Element)
Create (Params)
Restore (Params)
Delete

Figure 9.1: A Transactional Set
111

Handling Durability
Parts of the functionality of a transactional object are common to all transactional
objects, e.g. that they must call the recovery manager before and after every operation invo-
cation. Other functions are specific to a particular transactional object, e.g. what operation
can be invoked on the original data object.

The common functionalities are implemented by the memory object class (see
section 8.3.3 on page 99), the specific functionalities must be implemented for each transac-
tional object separately.

9.2.2 Handling Durability

Transactional objects must be capable of loading and saving their state from and to a storage
unit. The classes Loading_Operation and Saving_Operation shown in figure 9.2 encapsulate
this behavior. The Saving_Operation for instance has a single operation Save with two argu-
ments, the original data object and the storage (see section 8.2.1 on page 91) on which the
state must be saved. How the state of a data object must be saved to a storage unit depends
on the specific data object, and must therefore be implemented in the transactional object by
deriving from the Saving_Operation class and implementing the Save operation for the spe-
cific data object. The same applies for the Loading_Operation class.

Creation and deletion of a transactional object also depend on the specific data object,
for they might require complex memory management. This behavior is encapsulated in the
classes Creation_Operation and Deletion_Operation shown in figure 9.2.

9.2.3 Encapsulating Operation Invocations on Data Objects

The Normal_Operation shown in figure 9.2 encapsulates operation invocations on a data
object. It has four abstract operations, namely Do_Operation, Undo_Operation,
Get_Operation_Info and Is_Update. For each operation of the original data object, an oper-
ation class must be implemented that derives from the Normal_Operation class and imple-
ments the required operations. An instance of this class is used during execution to
encapsulate calls to the associated operation of the original data object. If logical logging is
used, the state of the instance of this class representing the operation invocation is written to
the log. It must therefore store the in and out parameters of the operation.

The Insert_Element operation of our Set abstract data type for instance has one input
parameter, namely the element to be inserted. Hence, the operation class for the

1. This does not work if the programming language does not allow to associate the transactional context with
a thread. In that case, the transaction identifier must be passed explicitly to each operation of the transac-
tional object, and hence the interface for the transactional object will differ from the original interface.

2. Of course this technique only works if all objects that are used in transactions are created by the applica-
tion programmer. If a method of a data object A creates a data object B, then the method of the transac-
tional object A should create a transactional object B. If the creation is done based on the Factory design
pattern, then the problem can be solved by replacing the data object B factory by a transactional object B
factory. Otherwise, the method of object A must be rewritten.
112

Interfacing with Programming Languages
Insert_Element operation must define an attribute that can store the element passed as a
parameter to the method call. This attribute is called To_Insert in figure 9.3.

As a consequence, Do_Operation is simple to
implement. A call to Do_Operation must invoke the
operation on the original data object. In our case,
invoking Do_Operation of the Insert_Operation class
will call the Insert_Element operation on the original
set object, passing as a parameter the element stored
in the attribute To_Insert.

The Undo_Operation must only be implemented
if logical logging is used. In the set example, the undo operation is also easy to implement,
for it corresponds to invoking the Remove_Element operation on the original data set, passing
as a parameter the element that has been previously inserted.

Get_Operation_Info is the operation that encapsulates the concurrency control infor-
mation for the operation. It must simply return an instance of the Operation_Information
class hierarchy (see section 7.4 on page 83). If strict concurrency control is used, then the
predefined Read_Write_Information class can be returned. For semantic-based concurrency
control, an application-class-specific operation information class must be implemented by
deriving from the abstract Operation_Information class.

The last operation, Is_Update, is called by the framework to determine if an invoca-
tion of the operation changes the durable state of the transactional object. If this is true, then
the transaction support knows that it must save the new state of the object to the associated
storage unit upon transaction commit.

The necessary calls to the concurrency control and recovery support components to be
performed when executing an operation on a transactional object do not depend on the
transactional object itself. They can therefore be written once and for all, and reused in all
transactional objects. The class Atomic_Call encapsulates concurrency control and recovery
processing in a single operation named Atomic_Do. It executes the following actions:

Figure 9.2: The Operation Hierarchy

Operation

Creation_OperationDeletion_Operation

Normal_OperationLoading_Operation

Saving_Operation

Do_Operation
Undo_Operation
Get_Operation_Info
Is_Update

Delete Create

Load
Create_And_Load

Save

Insert_Operation

To_Insert : Element

Do_Operation
Undo_Operation
Get_Operation_Info
Is_Update

Figure 9.3: An Example Operation
113

Tying Things Together
1. Concurrency Control Prologue: Call the Pre_Operation method (see section 7.3 on
page 82) of the concurrency control manager associated with the transactional object,
passing as an argument the instance derived from the Normal_Operation class that rep-
resents the operation to be executed. This action allows the concurrency control man-
ager to perform the actions necessary for handling competitive and cooperative
concurrency.

2. Recovery Prologue: Call the Pre_Operation method (see section 8.5.2 on page 104) of
the recovery manager, which informs the transaction support that the transactional
object has been accessed by calling the Add_Transactional_Object method of the
transaction class (see section 6.5 on page 77). Then, all operations needed for provid-
ing correct recovery according to the chosen recovery strategy are performed (see
section 8.5.2 on page 104).

3. Execute the Operation: Invoke the operation on the original data object by executing
the Do_Operation method of the Normal_Operation class.

4. Recovery Epilogue: Call the Post_Operation method of the recovery manager, which
again might perform operations needed for recovery, such as storing redo information.

5. Concurrency Control Epilogue: Call the Post_Operation method of the concurrency
control manager associated with the transactional object, informing it of the success-
ful completion of the operation invocation. This action allows the concurrency man-
ager to perform necessary clean-up operations, such as discarding the cooperative
concurrency control information.

9.2.4 Tying Things Together

The interaction of all the previously described “helper” objects is also independent of the
actual data object, and can therefore be written once and for all and reused by all transac-
tional objects. The Memory_Object class introduced in section 8.3 on page 97 already encap-
sulates accesses to the original data object, since it is the class that manages memory and
storage usage. All operation invocations on the data object are done through the memory
object. It therefore is the perfect candidate for managing the concurrency control and recov-
ery information for the data object.

Figure 9.4 illustrates the relations between all helper objects that are created for each
data object. The Transactional_Object class defines and contains instances of all auxiliary
classes that are specific for a particular data object, namely the Loading_Operation,
Saving_Operation, Creation_Operation, Deletion_Operation, and all Normal_Operation
classes. In addition, it contains a reference to the memory object that encapsulates accesses
to the data object.

The memory object contains the storage unit that is associated with the data object,
the concurrency manager for the data object, and it contains a reference to the original data
114

Interfacing with Programming Languages
object, if it is currently in memory. The memory object makes use of the operation objects
defined in the transactional object in order to perform operations on the data object.

9.2.5 In-place Update and Deferred Update

There exist two different strategies for performing updates on the state of a data object,
namely in-place update and deferred update [KS99].

When using in-place update, an operation invocation forwarded from the transac-
tional object to the Memory_Object is directly executed on the data object. The effects of the
operation invocation are therefore visible to all following operation invocations, even those
made on behalf of other transactions1.

When using deferred update, operations are executed on copies of the data object. All
operations executed on behalf of the same transaction are invoked on the same copy of the
data object, and therefore the resulting changes are not visible to other transactions. Only
upon transaction commit, the effects of the operations are applied to the original data object,
either by copying the state changes from the copy to the original data object, or by reapply-
ing the operations executed within the transaction on the original data object.

For each transactional object an update strategy must be chosen. The update strategy
determines the kind of commutativity information that must be provided in case semantic-
based concurrency control is used. In-place update requires backward commutativity,
whereas deferred update requires forward commutativity (see section 7.4.2.1 on page 85).

1. When using pessimistic concurrency control, conflicting operations are caught during the concurrency
control prologue, and therefore will never get to this point.

Transactional_Object Data_ObjectMemory_Object

Storage

Concurrency_ControlAtomic_Call

Normal_Operation Operation_Information

Saving_Operation

Loading_Operation

Creation_Operation

Deletion_Operation
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1..*

1 0..1

1

1

1

1
0..1

0..*1 1

Figure 9.4: Encapsulation of a Data Object
115

Trace of an Operation Invocation
The two update strategies are implemented in subclasses of the Memory_Object class
as shown in figure 9.5.

In addition to the four operations already presented in section 8.3.3 on page 99, figure 9.5
also shows the other operations that the Memory_Object class provides to the recovery man-
ager and the Atomic_Call class.

Execute_Operation first collects undo information depending on the update strategy
and logging technique, and then executes the operation on the data object (or on a copy).
Before returning, redo information is collected, again depending on the update strategy and
logging technique. Execute_Undo_Operation executes the inverse operation.

Get_Undo_List or Get_Redo_List are called by the recovery manager. These functions
return a list of Logging_Technique objects (see section 8.4.1 on page 101) that the recovery
manager can save to the log, e.g. when preparing for transaction commit.

Abort_Transaction and Commit_Transaction are called by the recovery manager to
inform the memory object about the outcome of a transaction. As a consequence, the col-
lected undo and redo information is used to update the state of the original data object,
depending on the update strategy. In case of abortion or commitment of a top-level transac-
tion, the undo and redo information can subsequently be discarded.

9.2.6 Trace of an Operation Invocation

To clarify how the objects presented in figure 9.4 work together, this section describes an
operation invocation in more detail. Figure 9.6 shows a sequence diagram of what exactly
happens when invoking the Insert_Element operation of the Transactional_Set introduced
in figure 9.1.

Figure 9.5: The Memory_Object Hierarchy

Memory_Object

Propagate
Load
Pin
Unpin

Inplace_Memory_Object Deferred_Memory_Object

Execute_Operation

Pin

Execute_Undo_Operation
Get_Undo_List
Get_Redo_List
Abort_Transaction
Commit_Transaction

Unpin
Execute_Operation
Execute_Undo_Operation
Abort_Transaction
Commit_Transaction

Pin
Unpin
Execute_Operation
Execute_Undo_Operation
Abort_Transaction
Commit_Transaction
116

Interfacing with Programming Languages
The Concurrency_Control, Recovery_Manager, Transaction, Memory_Object and
Atomic_Call objects are independent of the particular data object that is to be encapsulated,
and can therefore be reused for different data objects. The data object itself, here the Set
object, and the associated transactional object Transactional_Set must be written for each
data object. The objects that encapsulate method invocations and operation information,
here Insert_Operation and Insert_Operation_Info, must be written for each method of
the original data object.

The invocation begins when a participant thread invokes the Insert_Element method on the
Transactional_Set object. In our example, the transaction on behalf of which the method is
to be executed is transparently linked to the thread as described in section 9.1.

Inside the Insert operation of the Transactional_Set object, an instance of an
Insert_Operation is created and the element to be inserted stored in one of its attributes.
Then, the Atomic_Do method of the Atomic_Call object is called, passing the
Insert_Operation as a parameter. Atomic_Do starts by calling the Pre_Operation method of
the Concurrency_Control object associated with the Transactional_Set. The
Concurrency_Control first asks the Insert_Operation for its operation information, which
results in creating an instance of the Insert_Operation_Info class, and then, in the case of
pessimistic concurrency control, repeatedly calls Is_Compatible to ensure that the operation
invocation does not conflict with any operation invocation made by transactions in progress.
This phase corresponds to handling competitive concurrency, i.e. isolation of transactions.
If this first phase completes successfully, then the Is_Modifier method of the

Figure 9.6: An Operation Invocation on a Transactional Object

Participant Atomic_Call

Concurrency

Recovery_Manager Memory_Object Set

Insert_Element
Create
Atomic_Do

Pre_Operation
Get_Operation_Info

Create

*:Is_Compatible

Is_Modifier

Pre_Operation

Transaction
Control

Is_Update

Insert_Operation

Pin

Add_Transactional_Object

Execute_Operation
Do_Operation

Insert_Element

Transactional_Set

Insert_Operation_Info

Post_Operation

Post_Operation

…

…

117

Initializing and Shutting Down the Transaction Support
Insert_Operation_Info is called in order to determine if the Insert_Element method modi-
fies the state of the Set object or not. If this is the case, then the mutual exclusion lock asso-
ciated with the transactional set must be acquired. This second phase handles cooperative
concurrency.

Next, the Pre_Operation method of the Recovery_Manager is invoked. It asks the
Insert_Operation if the Insert_Element method modifies the durable state of the Set
object, in which case the object is added to the list of modified objects by calling
Add_Transactional_Object of the Transaction object associated with the calling thread.
Then, the real data object is asked to be kept in memory by calling the Pin method of the
Memory_Object. This might require using the Loading_Operation to load the state of the
object from its associated storage unit.

Finally, the Execute_Operation method of the Memory_Object is called. At this point,
depending on the recovery strategy, undo information must be gathered. Then, the
Do_Operation method of the Insert_Operation object is invoked. There, the element to be
inserted that had been stored in one of its attributes is extracted and the actual call to
Insert_Element is executed on the Set data object.

After the call, again depending on the recovery strategy, redo information is gathered,
and the Post_Operation of the Recovery_Manager is invoked to execute the recovery epi-
logue. Finally, the Post_Operation of the Concurrency_Control is called, which will release
the mutual exclusion lock held on the object. Of course, the competitive concurrency infor-
mation can not be discarded. It must be kept until the outcome of the transaction has been
determined.

9.3 Initializing and Shutting Down the Transaction Support

An interface must provide a way to customize the framework to the application needs. In
particular, the programmer should be able to chose what kind of cache manager and what
kind of recovery manager should be used. Moreover, there should be ways to specify on
what kind of storage the log shall be stored.

This can be done by providing a simple operation or equivalent construct that lets the
programmer specify his or her choices. Using C or Java-like syntax such an operation may
look as follows:

void system_init (cache_manager *my_cache_manager,
 recover_manager *my_recovery_manager,
 storage_params my_log_storage_params);

Likewise, if ever the system must be brought down, a special operation should be called. It
writes all dirty transactional objects to their associated storage units, and performs all out-
standing log updates.
118

Interfacing with Programming Languages
9.4 Providing Transactions at the Programming Language Level

Depending on the features available in the programing language, different interfaces for
transactions are possible.

9.4.1 Procedural Interface

The most commonly used interface to transactions is the procedural interface.
For supporting the open multithreaded transaction model we need five operations. For

each operation, the version with a transaction identifier and the one without a transaction
identifier are shown. A C++ or Java-like syntax is used.

Starting an Open Multithreaded Transaction

• With TID: tid begin_transaction();

tid begin_transaction(unsigned participants);

tid begin_transaction(tid parent);

tid begin_transaction(tid parent, unsigned participants);

• Without TID: void begin_transaction();
void begin_transaction(unsigned participants);

Calling this operation starts a new transaction, creating a new transaction object by instanti-
ating the Transaction class and invoking its Begin_Transaction method (see section 6.5 on
page 77). If TID management must be preformed by the application programmer, the TID
of the newly created transaction must be handed back as a result of the operation call. In this
case we also need a separate operation for starting a nested transaction, requiring the appli-
cation programmer to pass the parent transaction identifier as a parameter. If TID manage-
ment can be hidden from the application programmer, there is no need to differentiate
starting a new transaction and starting a nested transaction. The transaction support can
examine the transaction context of the calling thread, and if it is already associated with a
transaction, a nested transaction is created.

In both cases, an additional parameter can be supplied to the begin_transaction pro-
cedure that specifies the maximum number of participants that the transaction will accept.
Once this number is reached, the transaction is closed automatically.

Joining an Open Multithreaded Transaction

• With TID: void join_transaction(tid transaction);

• Without TID: void join_transaction(thread *participant);

This procedure allows a thread to join an ongoing open multithreaded transaction. The
parameter transaction specifies which transaction the thread wants to join. With TID man-
agement, the transaction to be joined is identified by means of a transaction identifier, with-
119

Procedural Interface
out TID management, the transaction to be joined can be identified by passing a reference to
one of its participants. In that case, a check is made to verify that the calling thread is either
a participant of the parent transaction, or is not participating in any transaction at all.

Once the transaction support knows which transaction to join, it calls the
Join_Transaction method of the corresponding transaction object.

Starting or Joining Named Transactions
In some situations it can be convenient to associate a name with an open multithreaded
transaction. As a result, all threads that want to participate in a common transaction do not
have to obtain a tid or a reference to one of its participants before being able to join the
transaction. In this case, there is even no need to distinguish between starting or joining a
transaction.

• With TID: tid begin_or_join_transaction(string s);

• Without TID: void begin_or_join_transaction(string s);

When the first thread executes the operation, the transaction support will start a new trans-
action and associate the transaction with the name provided as a parameter; subsequent
threads calling the operation with the same name will join the transaction.

Closing an Open Multithreaded Transaction

• With TID: void close_transaction(tid transaction);

• Without TID: void close_transaction();

By calling this procedure, a participant can close the transaction, making it impossible for
subsequent threads to join. If hidden TID management is used, the transaction support can
verify that the calling thread really is a participant of the transaction. To close the transac-
tion, the transaction support calls the Close_Transaction method of the corresponding
transaction object.

Committing an Open Multithreaded Transaction

• With TID: void commit_transaction(tid transaction);

• Without TID: void commit_transaction();

This procedure must be called by a participant that wants to commit the changes that it has
made on behalf of a transaction. Again, the TID-less version allows the transaction support
to verify that the calling thread is really a participant of the transaction. Then, the transac-
tion support invokes the Commit_Transaction method of the corresponding transaction
object, which will block the calling thread until the outcome of the transaction has been
determined. If some other participant votes abort, then the transaction is aborted and the
exception Transaction_Abort is raised.
120

Interfacing with Programming Languages
Aborting an Open Multithreaded Transaction

• With TID: void abort_transaction(tid transaction);

• Without TID: void abort_transaction();

Calling this procedure aborts the transaction. Just as with the close and commit procedures,
the transaction support can verify that the calling thread has previously started or joined a
transaction when TID-less management is used. Then, the Abort_Transaction method of
the corresponding transaction object is invoked. Aborting a transaction does not block the
calling thread. Any participants that have been previously suspended while attempting to
commit the transaction are released.

9.4.1.1 Discussion

Of course, the version of the procedural interface that does not expose TID management is
much more secure, since it prohibits information smuggling between transactions.

The procedural interface is very flexible, but unfortunately, it also has some serious
drawbacks.

It is, for instance, possible to start or join a transaction, but forget to vote on its out-
come, which results in blocking all other participants that behave correctly. But what is even
more annoying is that the procedural interface can not catch unhandled exceptions crossing
the transaction boundary and abort the transaction as required.

To still achieve the desired effect, the programmer must adhere to certain program-
ming conventions that depend on the programming language. The conventions that must be
followed for the Ada 95 programming language are presented in section 9.4.1 on page 119.

9.4.2 Object-Based Interface

The trick of the object-based interface consists in associating the lifetime of a transaction
with the lifetime of an object or a group of objects in case of multiple participants.

The object-based interface declares a
Transaction class as shown in figure 9.7.
Threads wishing to start a transaction do so by
declaring an object of that class.

There are three constructors. Calling the
one without parameter will start a new transac-
tion or a new nested transaction. If a reference
to a thread is passed as a parameter to the con-
structor, then the transaction support attempts
to join the current transaction of the referenced
thread. The third constructor provides for starting or joining a named transaction.

class Transaction {

Transaction();
Transaction(thread *participant);
Transaction(String s);
~Transaction();

public void close();
public void commit();

}

Figure 9.7: Object-Based Interface
121

Object-Oriented Interface
Closing and committing a transaction can be achieved by calling the corresponding
methods of the declared transaction object.

There is no need to provide an abort method. When the object goes out of scope, the
destructor is invoked automatically. If the participant has not previously called the commit
method, then the transaction will be aborted. The advantages of using this technique are
three-fold. Firstly, every participant of a transaction is guaranteed to vote on the outcome of
the transaction. If the application programmer forgets to call the commit method of the
transaction object, then, following a safe approach, the transaction is aborted. Secondly,
unhandled exceptions automatically cause the transaction to abort, because the destructor of
the transaction object is invoked when the block in which the object has been declared is
left. Finally, deserters, i.e. threads disappearing without voting on the outcome of a transac-
tion, can also be detected using the same mechanism, resulting in aborting the transaction.

Section 11.2.4 on page 163 presents the object-based interface for the Ada program-
ming language, and section 13.3.3.1 on page 205 and section 13.3.3.2 on page 207 show
how it has been used in the auction system example.

9.4.2.1 Discussion

Clearly, the object-based interface is more elegant than the procedural interface, and it
enforces the rules of open multithreaded transactions by construct. The structure of a pro-
gram reflects the structure of transactions.

This rigid structure, however, is not always appropriate. Event-driven systems, e.g.
user interfaces, often use callbacks that contain the statements to be executed in case a cer-
tain event occurs. The object-based interface does not lend itself to implement a transaction
that encapsulates the execution of multiple callbacks, or a transaction that is started inside
one callback, and committed inside some other callback1.

On top of that, the object-based interface is in this form only feasible in a stack-based
programming language, where the lifetime of an object is associated with a block structure.
In heap-based languages, or languages that use garbage collection as e.g. Java, objects are
not necessarily destroyed when a block is left. Often, such programming languages do not
provide the possibility to declare destructors at all.

9.4.3 Object-Oriented Interface

When using the object-oriented interface, a whole open multithreaded transaction is encap-
sulated inside an object representing the transaction. The work to be performed by an indi-
vidual participant of the transaction is encapsulated in a method of this programmer-defined
object.

1. Work-arounds are of course always possible.
122

Interfacing with Programming Languages
The object-oriented interface defines an
abstract Transaction class with methods for
beginning or joining, closing, committing and
aborting the transaction. These methods are pro-
tected methods, which means that they can only
be called from within the class hierarchy.

To define a concrete open multithreaded
transaction, the application programmer must
derive from the Transaction class, and add public
methods for each type of participant.

Just as in the procedural interface, the appli-
cation programmer must follow certain program-
ming guidelines. At the beginning of each participant method, the Begin_Or_Join method
must be invoked. In this situation, the identity of the Transaction object can be used to
identify the transaction instead of a name. At the end of the execution of the method, Commit
or Abort must be called. In order to correctly handle exceptions, the method must contain an
exception handler for each internal exception, and a default exception handler that calls
Abort to catch unhandled internal exceptions.

Of course, it is also possible to apply the technique presented in the object-based
interface section for each participant method. Instead of calling Begin_Or_Join and Commit
or Abort, each participant method must declare a participant object, whose constructor and
destructor take care of the necessary calls to the transaction support.

The advantage of the object-oriented interface is that the entire open multithreaded
transaction, i.e. the program code for each participant, is grouped together inside a class.
This clearly improves readability, understandability and maintainability of the transaction
as a whole. Code reuse is also possible, for transactions that want to perform similar work
can derive from some other transaction class, override or add new participant methods, and
reuse old ones.

If the programming language provides a syntax to associate exceptions with methods
like in Java, the interface of the transaction class can also clearly state the possible external
exceptions that might be raised by each participant method.

The object-oriented interface that has been developed for Ada is shown in
section 11.2.5 on page 166.

9.5 Additional Considerations

Recently, two new concepts have attracted attention within the community of object-ori-
ented researchers and practitioners, namely reflection and aspect-oriented programming.

Transaction

Figure 9.8: Object-Oriented Interface

#Begin_Or_Join
#Close
#Commit
#Abort

User_Defined_Transaction

+Participant_Method_1
+Participant_Method_2
+...
123

Reflection
These concepts focus on transparency and separation of concerns, and may be helpful when
integrating the transaction framework with a programming language.

The last two sections of this chapter introduce both concepts and give hints on how
these mechanisms can be applied in order to provide even smoother transaction interfaces
for the application programmer.

9.5.1 Reflection

Reflection is a general methodology for describing, controlling, and adapting the behavior
of a computational system. When using reflection, the important static or dynamic execu-
tion characteristics and parameters of a system are made concrete in one or more programs
that represent the default computational behavior. This description or control program is
called a metaprogram. By specializing parts of this metaprogram, a programmer can cus-
tomize the execution of the application program, changing execution strategies, mecha-
nisms and data representations.

The concept of reflection can be quite naturally applied to the object-oriented world.
Just as objects in conventional object-oriented programming are representations of real
world entities, they can themselves be represented by other objects, usually referred to as
meta-objects [Mae87], whose computation is intended to observe, modify and control the
behavior of their referents, i.e. the objects they represent. This idea can be applied recur-
sively, i.e. meta-objects can be represented by meta-meta-objects, and so on. A reflective
system is thus structured in multiple levels, constituting a reflective tower. The objects at the
base level are termed base-objects and perform computations on the entities of the applica-
tion domain. The objects at the meta-levels perform computations on the objects residing at
the lower levels.

The association between base-objects and meta-objects can be many to many, i.e. sev-
eral meta-objects may share a single referent, and a single meta-object may have multiple
referents. The interface between adjacent levels in the reflective tower is usually termed a
meta-object protocol [KdB91], MOP for short.

Meta-computation is often implemented by intercepting the normal computation of
objects. In other words, an action of the referent is trapped by the meta-object, which per-
forms a meta-computation either substituting or encapsulating the referent’s action. Trans-
parency is an important concept of reflection. The objects at each level are completely
unaware of the presence and workings of the objects at the levels above.

9.5.1.1 Applying Reflection

Reflection has been successfully applied to separate functional from possibly multiple non-
functional features in the design and implementation of a system. In a typical approach, the
base-level objects of a system implement the application’s functional requirements, while
meta-objects augment the base-level functionality ensuring non-functional properties.
124

Interfacing with Programming Languages
Reflection has been used in existing systems to control distribution, fault tolerance
and communication [GGM94], persistence [LZ94], atomicity [SW95], and authentication
[ACF99].

 [BP95] describes how reflection techniques have been used for incorporating
extended transaction models such as split and joint transactions (see section 3.4.5 on
page 38) into an existing commercial transaction processing system. In their approach, the
programming interface to transactions is separated into different levels, where each level
represents a different view of the transaction functionality.

The first level, called the transaction demarcation interface, provides the operations
begin-E-transaction, commit-E-transaction and abort-E-transaction. The second level,
the extended transaction interface, provides operations specific to each extended transaction
model. For the split and joint transaction model this level contains operations such as
split-transaction and join-transaction. Level 3, the actual meta-level, extends the
implementation of the transaction processing monitor to support the extended transaction
interface defined in level 2 by defining operations such as instantiate, reflect, delegate-
up, delegate-lock, form-dependency, and no-conflict. By extending the meta-objects at
level 3, the application programmer can tailor the behavior of the underlying transaction
processing monitor to fit the chosen extended transaction model.

9.5.2 Aspect-Oriented Programming

Aspect-oriented programming [KLM+97] has emerged based on the observation that object-
oriented programming techniques fail to clearly express design decisions that cross-cut the
structure chosen to provide a system's functionality. Such cross-cutting concerns may
include error handling, synchronizing concurrent entities, data sharing, memory allocation,
minimizing network traffic, data representation, distribution, etc.

Aspect-oriented programming makes a clear distinction between components, which
represent the properties of the system for which the implementation can be cleanly encapsu-
lated behind a well-defined interface, and aspects, which are cross-cutting properties that
affect the performance and run-time behavior of the components in systematic ways.

To better support the expression of cross-cutting design decisions, aspect-oriented
programming uses a component language to describe the basic functionality of the system,
and aspect languages to describe the different cross-cutting properties. Designing an aspect-
oriented programming system requires to well understand what must go into the component
language, what must go into the aspect languages, and what must be shared among the lan-
guages. The component language must allow the programmer to write component programs
that implement the system’s functionality, while at the same time ensuring that those pro-
grams don’t pre-empt anything the aspect programs need to control. The aspect languages
must support implementation of the desired aspects, in a natural and concise way. The com-
125

Evaluation
ponent and aspect languages usually provide different abstraction and composition mecha-
nisms.

A special language processor called the aspect weaver is used to coordinate the com-
position of aspects and components. Essential to the function of the aspect weaver is the
concept of join points, which are those elements of the component language semantics that
the aspect programs coordinate with. Aspect weavers work by generating a join point repre-
sentation of the component program, and by then compiling the aspect programs with
respect to it. The join point representation can also be generated at run-time using a reflec-
tive run-time for the component language.

9.5.3 Evaluation

Both reflection and aspect-oriented programming techniques can be used to improve the
integration of the transaction framework with a programming language.

A straight-forward idea is to use these techniques to transparently transform data
objects into transactional objects. This approach seems promising, since [LZ94] demon-
strates for example how to use reflection to transparently add persistence to objects. But it is
not enough to be able to add persistence, or recoverability, or concurrency control to an
object. What needs to be investigated is how these aspects interact with each other when
applied together. It is not clear for instance how to avoid inconsistent combinations, such as
choosing physical logging, but commutativity-based concurrency control. Also, it seems
impossible to determine the compatibility table for the operations of a transactional object
without the help of the application programmer.

Aspect-oriented programming and of course reflection can also be used to simplify
the interface to transactions. A possible approach is to associate methods and transactions
by executing an entire method of an object inside a transaction.

Using AspectJ [KHH+01], an aspect-oriented programming environment for Java, a
programmer can for instance write a transactional aspect. The aspect can be defined in a
way that when applying it to a method of a Java class, it will add a call to
begin_transaction at the beginning of the method, and a call to commit_transaction at the
end of the method call. Additionally, the entire method is enclosed in a try - catch block
to catch unhandled exceptions and to abort the transaction if necessary.

Although this approach is very simple, it is also dangerous when applied to methods
that have not been designed to be executed inside a transaction. Consider the following sim-
ple example, where a shared object is used to synchronize two threads. The object provides
two methods, store_result1 and store_result2. Two threads in the system calculate each
a result, and store it in the shared object by calling one of the store_result methods. The
store_result method stores the result in the corresponding attribute of the class, and sus-
pends the calling thread until both results have been calculated.
126

Interfacing with Programming Languages
If the store_result methods are executed normally, the program works perfectly
well. The first thread that has computed the result will be blocked until the second thread
has completed its calculation.

The situation changes if the methods are executed as transactions. The problem arises
due to the inter-transaction concurrency control implementing the isolation property of
transactions. Even though a thread is suspended, the resources obtained on behalf of the
transaction can not be released, since the outcome of the transaction has not been deter-
mined yet. Depending on the interleaving of the operations, either the second thread can not
write its result, since the other thread is holding the rights to access the attribute, or both
threads can write their results, but no one can consult the other’s result to determine if wait-
ing is necessary. In both cases, the resulting deadlock can not be resolved by aborting one of
the transactions.

The point here is that synchronization between threads is actually some form of coop-
eration, and must be performed inside the same transaction. The problem can therefore be
solved by specifying that both store_result methods are to be executed inside the same
open multithreaded transaction.

In larger systems, collaboration between threads can be difficult to survey, and it is not
trivial to guarantee that adding transactional semantics to method calls does not create
potential for deadlocks.

Nevertheless, reflection and aspect-oriented programming open interesting perspec-
tives to integrate the transaction framework with a programming language, and provide ele-
gant means for customizing it to the application needs. There was no time for further
research in this direction, but there are plans to investigate interfaces based on these tech-
niques in the Java implementation of the framework (section 14.2.4 on page 217).
127

Evaluation
128

Part III

Implementation for Ada 95

Chapter 10:

Ada 95

Ada 95 is a revised and much improved version of the “classical” Ada programming lan-
guage developed originally for the United States Department of Defense to match their
requirements for a modern, safe, and efficient structured programming language. Classical
Ada was codified as an ANSI standard in 1983 and is therefore sometimes called “Ada 83”;
an equivalent ISO standard was ratified in 1987. The successor language Ada 95 is defined
by the ISO standard ISO/IEC 8652:1995 [ISO95]. For an overview of the history of Ada,
see the rationale [Bar97].

In order to define an elegant interface between a programming language and the
OPTIMA framework, the way the programming language addresses the fundamental con-
cepts presented in chapter 2 must be analyzed.

10.1 Ada 83 vs. Ada 95

Ada 95 improves over the original definition of Ada 83 in several areas, including the fol-
lowing:

• Addition of language constructs for object–oriented and incremental application
development (“tagged types” and “child packages”).

• Improvements in the area of tasking: a new construct, called “protected type”, imple-
ments passive entities that may be accessed concurrently by several tasks.

• A distribution model based on remote procedure calls is standardized.
131

Object–Oriented Programming in Ada
For a complete description of all the new features in Ada 95, see the language standard
[ISO95] and the rationale [Bar97].

10.2 Object–Oriented Programming in Ada

Object–oriented programming in Ada 95 is based on the concept of derivation classes
formed by type extension [Wir88]. Type extension works by refining an existing record type
by adding new components or operations, or by modifying existing operations. Contrary to
e.g. Oberon–2 [MW91], not all record types can be extended: only tagged types can. This
language design choice was motivated mainly by a concern for efficiency.

The tagged type represents what in general is called a class in object-oriented terms
(see section 2.1.6 on page 12). Methods of a tagged type are called primitive operations in
Ada terms. A tagged type is a record type defined with the keyword tagged, or a type
derived from such a tagged record type. Figure 10.1 shows a simple tagged type with a few
extensions. The derived types inherit all their ancestors’ components and primitive opera-
tions. New components may be added with each derivation, inherited primitive operations
may be overridden if the inherited behavior is not appropriate for the derived type, and new
primitive operations may be added. Ada 95 only supports single inheritance.

Figure 10.1: A Tagged Type Hierarchy

with Canvases; use Canvases;
package Shapes is

type Shape is
abstract tagged null record;

procedure Draw
(S : in Shape;
 Canvas : access Canvas’Class)
is abstract;

end Shapes;

package Shapes.Circles is

type Circle is new Shape with
record
-- Added components
Center : Point;
Radius : Float;

end record;

procedure Draw
(C : in Circle;
 Canvas : access Canvas’Class);

-- Inherited abstract primitive
-- operation, must be overridden.

function Radius
(C : in Circle) return Float;

-- New primitive operation;

end Shapes.Circles;

package Shapes.Rectangles is

type Rectangle is new Shape with
record
Top_Left : Point;
Bottom_Right : Point;

end record;

procedure Draw
(R : in Rectangle;
 Canvas : access Canvas’Class);

-- Inherited and overridden.

function Width
(R : in Rectangle) return Float;

-- New primitive operation;

end Shapes.Rectangles;
132

Ada 95
A particularity of the object–oriented concepts of Ada 95 is class–wide programming. It
makes explicit the dynamic polymorphism that in other object–oriented languages often is
inherent. For each tagged type T there is a corresponding class–wide type T’Class, compris-
ing the whole tree of types derived directly or indirectly from T, including T itself. Values of
such a class–wide type can hold any value of any of the types derived from T. In particular,
access–to–class–wide types may be used to reference any value of any type in the derivation
class, enabling a programmer to implement e.g. heterogeneous collections.

Class–wide types are also used in dispatching calls, i.e. calls to primitive operations
where the target operation is determined at run time depending on the dynamic type of the
value of a class–wide type, i.e. depending on its tag. This is different from most other
object–oriented programming languages, where either all method invocations are dispatch-
ing, e.g. in Java, or where it must be specified at the declaration of the method whether or
not calls will be dispatching, e.g. the virtual methods in C++. In Ada 95, the programmer
can decide at each call whether or not it should dispatch. If the controlling operand, i.e. the
actual parameter, of a call to a primitive operation has a class–wide type, the call is dis-
patched, otherwise, the primitive operation of the type of the controlling operand is invoked.
The difference is illustrated by the code fragment in figure 10.2.

Dispatching in Ada 95 is safe — there always exists a primitive operation to dispatch to at
run time; it is not possible to write a program that would dispatch to a non–existing method
as it may happen for example in Smalltalk: the language rules do not allow this, and hence
such errors will be caught by the compiler.

Dispatching occurs only on primitive operations; it is never controlled by a formal
parameter having a class–wide type. Such subprograms are called class–wide operations.
Any actual parameter that has a type in the given derivation class may be passed in place of
a formal class–wide parameter.

Figure 10.2: Illustrating Dispatching Calls

type Shape_Ref is
access all Shape’Class;

...

declare
A_Shape : Shape_Ref := ...;
A_Canvas : aliased Canvas;

begin
Draw (A_Shape.all,
 A_Canvas’Access);
-- This call dispatches on the
-- actual type of the object
-- ‘A_Shape’ references –– this
-- might be either ‘Circle’ or
-- ‘Rectangle’ in this example.

end;

declare
A_Circle : Circle := ...;
A_Canvas : aliased Canvas;

begin
Draw (A_Circle, A_Canvas’Access);
-- This call is not dispatching:
-- the actual parameter is not of
-- a class–wide type.

end;
133

Controlled Types
Finally, Ada 95 provides abstract tagged types that may have abstract primitive oper-
ations. An abstract type defines characteristics common to all types derived from it; its
primitive operations, be they abstract or concrete, are inherited and form a specification that
all types derived from it have to adhere to. An abstract type may also have concrete primi-
tive operations — this is useful to express default behavior for all types derived from the
abstract type. A concrete type derived from an abstract type must supply implementations
for the inherited abstract operations.

10.2.1 Controlled Types

Controlled types [ISO95, 7.6] have been introduced in Ada 95 to facilitate resource man-
agement within abstract data types while preserving the abstraction. To make a type con-
trolled, it must be derived from one of two standard abstract tagged types,
Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled. The controlled
type then inherits the following operations from these root types:

• Initialize — is automatically invoked whenever an object of the controlled type is
created without explicit initialization.

• Finalize — is called just before a controlled object is destroyed, i.e. goes out of
scope, is deallocated using an instantiation of Ada.Unchecked_Deallocation, or is
overwritten during an assignment.

• Adjust — is invoked for the target object in an assignment just after it has been over-
written. The type Limited_Controlled has of course no primitive operation Adjust,
since objects of limited types can not be copied.

The default implementations of these three primitive operations do nothing at all. By over-
riding the inherited versions in the derived type, the application developer can precisely
control object creation, destruction, and assignment. This can be used for instance to imple-
ment automatic storage management for an abstraction at the application level without hav-
ing to clutter its interface.

10.3 Concurrency in Ada

10.3.1 Tasks

According to the classification introduced in section 2.2.2 on page 16, Ada 95 is an inte-
grated inhomogeneous programming language. In Ada 95, active objects are called tasks.
Tasks are syntactically described by a form very similar to the Ada package. A task has a
specification describing the interface presented to other tasks (see section 10.3.4) and a task
body. The task body may contain hidden data declarations, and contains a special sequence
134

Ada 95
of statements. Once a task is declared, the task is automatically activated and this sequence
of statements is executed. A task terminates once it reaches its end statement.

A task declared in the declarative part of a subprogram, block or task body is said to
depend on that unit. The rule is that a unit cannot be left until all dependent tasks have ter-
minated. This termination rule ensures that objects declared in the unit and therefore poten-
tially visible to dependent tasks cannot disappear while there still exists a task which could
access them.

It is also possible to dynamically create tasks by declaring an access type to a task
type. An instance of the task type can then be created by the evaluation of an allocator, just
as objects are allocated on the heap. Tasks created in this way do not depend on the unit
where they are created, but are dependent upon the block containing the access type decla-
ration itself.

10.3.2 Task Identification

Access types to tasks can serve as a means for identifying tasks. But sometimes it is conve-
nient to be able to refer to a task of any type. A server task might want to keep a record of
past callers so that they can be recognized in the future.

This can be done using the package Ada.Task_Identification, which defines a type
Task_ID and other operations upon tasks in general. The parameterless function
Current_Task returns the identity of the currently executing task. The task identity of a task
T is denoted by T’Identity.

10.3.3 Task Attributes

Not only is it useful to associate a unique identifier with a particular task, it can also be ben-
eficial to assign other application dependent attributes to it. The Systems Programming
Annex [ISO95, Annex C] offers the possibility to declare data structures for which there is a
copy for each task in the system by means of the generic package Ada.Task_Attributes.

Instantiating the generic package somewhere in the program with an application spe-
cific data type results in creating an object of that type for each existing or subsequently cre-
ated task in the system.

10.3.4 The Rendezvous

There are two main ways in which tasks can interact with each other in Ada: directly, by
sending messages to each other, and indirectly, by accessing shared data.

Messages are directly passed between tasks in Ada by a mechanism known as the ren-
dezvous. A rendezvous between tasks is similar to the human situation where two people
meet, perform some action together, and then go on independently.
135

The Rendezvous
The rendezvous model of Ada is based on a client / server model of interaction. One
task, the server, declares a set of services that it is prepared to offer to other tasks (the cli-
ents). For that purpose, it declares one or more public entries in its task specification. Each
entry identifies the name of the service, the parameters that are carried with the request and
the results that will be returned.

A client task issues an entry call on the server task by identifying both the server and
the requested entry. The server indicates its willingness to provide the service at any partic-
ular time by executing an accept statement as shown in figure 10.3.

For the communication to occur, both tasks must have issued their respective statements.
When they have, the communication takes place. It is called a rendezvous because both
tasks have to meet at the entry at the same time. Any in parameters are then passed from the
client to the server, the server task executes the code inside the accept statement, any out
parameters are passed back to the client, and only then both tasks proceed independently. It
is of course possible that the client and the server will not both be in a position to communi-
cate at exactly the same time. In this case, one task must wait for the other one. This syn-
chronous form of communication is illustrated in figure 10.4.

Figure 10.3: The Rendezvous

task Server is
entry Service (I : in Integer);

end Server;

task body Server is
-- Declarations

begin
...
accept Service (I : in Integer) do
-- Perform work

end Service;
...

end;

-- Client task
declare
N : Integer := 0;

begin
Server.Service (N);

end;

Server Object Client ObjectServer Object

bl
oc

ke
d

in Parameters

out Parameters

Client Object

Figure 10.4: Synchronous Communication in the Rendezvous Model

Server.Service

bl
oc

ke
daccept in Parameters

Server.Service

accept

Service

Service

out Parameters
136

Ada 95
Ada 95 allows more elaborate forms of rendezvous. By using the select construct, a server
task can:

• Associate a condition with a rendezvous,
• Wait for more than a single rendezvous at any one time,
• Time-out if no rendezvous is forthcoming within a specified period,
• Withdraw its offer to communicate if no rendezvous is immediately available, or
• Terminate if no clients can possibly call its entries.

Likewise, a client task can also withdraw its offer to communicate if the server task does not
immediately accept the call, or after some specified time-out.

10.3.5 Protected Types

One of the highlights of Ada has always been its integrated model for structuring concurrent
computations using tasks and the rendezvous concept. The rendezvous model presents an
abstraction from low–level synchronization primitives such as signals or semaphores.

However, experience with Ada over the years has shown that the rendezvous alone is
not entirely sufficient to express synchronization in a convenient way. One problem is that
rendezvous basically is control–flow oriented and does not lend itself easily to data synchro-
nization. Shared data often had to be encapsulated within extra tasks in Ada 83, complicat-
ing the programs and leading to poor performance.

Ada 95 therefore introduced the concept of protected types. A protected type encapsu-
lates some data items and offers synchronized access to this data through operations. Oper-
ations may be read–only (expressed as functions) or read–write (procedures and entries).
The language guarantees mutual exclusion between all accesses to a protected object with
the usual semantics of multiple readers or a single writer. In this respect a protected object is
equivalent to a monitor [BH73]. A simple protected object encapsulating some data item
that is to be accessed by several tasks might be written as shown in figure 10.5 below.

protected type Shared_Data is

procedure Set (Val: in Data_Type);

function Get return Data_Type;

private

Item : Data_Type;

end Shared_Data;

protected body Shared_Data is

procedure Set
(Val: in Data_Type) is

begin
Item := Val;

end Set;

function Get return Data_Type is
begin
return Item;

end Get;

end Shared_Data;

Figure 10.5: A Protected Type for Mutual Exclusion
137

Protected Types
C. A. R. Hoare extended this basic monitor concept in [Hoa74] with so–called “condi-
tion variables” that could be declared inside a monitor. These basically are signals. A proce-
dure of a monitor may suspend itself by waiting for the condition to become true. Another
procedure of the monitor will signal on the condition variable to indicate that the condition
has become true. In Hoare’s scheme, the wait operation relinquishes exclusion (to allow
some other task to enter the monitor on the other procedure), and a signal operation imme-
diately resumes a waiting task if there is one, making the signalling task leave the monitor.

The protected types of Ada 95 offer a similar feature, albeit in a more versatile way
and at a higher level of abstraction. It has been noted that condition variables suffer from the
same drawbacks as simple semaphores, notably that their correct use is not always easy and
that the use of explicit wait and signal operations is just as error–prone as the use of P()
and V() operations on a semaphore. Ada 95 solves this problem by introducing barriers: an
entry of a protected type may have an associated barrier, a boolean expression that is (usu-
ally) expressed in terms of the state encapsulated in the protected type. A task calling an
entry can only enter the protected object if the barrier is true; if not, the task is suspended
until the barrier becomes true. Other tasks may enter the protected object through other
entries or procedures, though. The run–time system checks at the end of each procedure or
entry call whether any barriers on which tasks are waiting have become true, and if so,
resumes a waiting task, letting it execute the entry. An example of a protected type imple-
menting a bounded buffer is given in figure 10.6.

Max_Elems : constant Natural := ...;

type Count_Type is
new Natural range 0 .. Max_Elems;

type Index_Type is
new Natural range 1 .. Max_Elems;

type Buffer_Type is
array (Index_Type) of Data_Type;

protected type Bounded_Buffer is

entry Append (Val: in Data_Type);

entry Remove (Val: out Data_Type);

private

Buffer : Buffer_Type;
First, Last : Index_Type := 1;
Size : Count_Type := 0;

end Bounded_Buffer;

protected body Bounded_Buffer is

entry Append (Val: in Data_Type)
when Size < Max_Elems is

begin
Buffer (Last) := Val;
Last := Last mod Max_Elems +1;
Size := Size +1;

end Append;

entry Remove (Val: out Data_Type)
when Size > 0 is

begin
Val := Buffer (First);
First := First mod Max_Elems +1;
Size := Size –1;

end Remove;

end Bounded_Buffer;

Figure 10.6: A Protected Type with Entries
138

Ada 95
Ada 95 enhances this model of monitors even further by offering a few more language con-
structs:

• An attribute ’Count may be applied within a protected object to one of its entries to
obtain the number of tasks waiting on its barrier to become true. (“Entry’Count > 0”
corresponds to Hoare’s “condition.queue” predicate.)

• An attribute ’Caller may be used within an entry to get the task identifier of the call-
ing task.

• A requeue statement allows a programmer to requeue an entry call on the same or
some other entry (in the latter case, the parameter profile must match).

These features greatly extend the expressive power of protected types. In particular, the
requeue statement makes protected types capable of implementing preference control
schemes at the application level; an example would be a resource allocation server that
granted satisfiable requests but queued currently unsatisfiable requests for later servicing. In
Ada 83, there was no satisfactory way to implement such servers.

10.3.6 Asynchronous Transfer of Control

Asynchronous transfer of control (ATC) is another important feature of Ada 95, allowing
one task to signal another task without having to use a (synchronous) rendezvous. The lan-
guage provides an asynchronous select statement of the form given in figure 10.7.

Using the asynchronous select statement, a task may alter its flow of control depending
upon the asynchronous occurrence of external events. Applications of this include for
instance mode changes in real–time systems, user interrupts or time–outs aborting lengthy
computations, or error recovery [BW95].

The abortable part of an asynchronous select statement is started if the triggering
statement is a delay that has not yet expired or an entry call that is queued (or later requeued
using requeue ... with abort). If the triggering statement completes before the abortable
part, the latter is aborted; otherwise, the triggering statement is aborted. The reader is
referred to [ISO95, 9.7.4] for the complete rules (which are quite subtle).

Asynchronous_Select :=
select
Triggering_Alternative

then abort
Abortable_Part

end select;

Triggering_Alternative :=
Triggering_Statement
[Sequence_Of_Statements]

Abortable_Part1 :=
Sequence_Of_Statements

Triggering_Statement :=
Entry_Call_Statement |
Delay_Statement

1. Must not contain accept statements!

Figure 10.7: Syntax for Asynchronous select Statements
139

Integration of Concurrency and Object-Orientation in Ada
If abortion were allowed to occur at any moment during the execution of the abortable
part or of the trigger, it would be nearly impossible to maintain the consistency of the state
accessed in an asynchronous select statement. The standard therefore defines a number of
language constructs that defer abortions [ISO95, 9.8(6–11)], most notably protected actions
and the Initialize, Finalize, and Adjust operations of controlled types. During these
abort–deferred regions, abortions cannot occur: they are delayed until the abort–deferred
region is left.

10.4 Integration of Concurrency and Object-Orientation in Ada

Arguably, Ada 95 does not fully integrate its models of concurrent and object-oriented pro-
gramming [BW95]. For example, neither tasks nor protected objects are extensible. When
Ada 95 was designed, the extensions to Ada 83 for object-oriented programming were, for
the most part, considered separate to extensions to the concurrency model.

While working on my thesis, I participated in a research group that investigated ways
of better integrating the concurrency model of Ada with its object-oriented programming
model by allowing protected types to be extended, in a similar way as it is done for tagged
types.

The requirements for extensible protected types are easy to articulate. In particular,
extensible protected types should allow:

• new data fields to be added,
• new functions, procedures and entries to be added,
• functions, procedures and entries to be overridden,
• and class-wide programming to be performed.

These simple requirements raise many complex semantic issues.

10.4.1 Extensible Protected Types

This section presents the main ideas of extensible protected types by means of an example
and mentions some of the problems associated with the approach. A complete analysis of
potential solutions, corresponding problems (e.g. the so-called inheritance anomaly
[MY93]), thoughts on implementation, and a concrete proposal for extending future ver-
sions of Ada can be found in [WJS+00a, WJS+00b].

In concurrent programming, signals are often used to inform tasks that events have
occurred. Signals often have different forms: there are transient and persistent signals, there
are those that wake up only a single task, and those that wake up all tasks. The following
paragraphs illustrate how these abstractions can be built using extensible protected types.

Consider first an abstract definition of a signal as shown in figure 10.8.
140

Ada 95
For consistency with its usage in standard Ada, the word tagged indicates that a protected
type is extensible . Just as in conventional object-oriented programming, the additional
keyword abstract can be added, specifying that no instances of the type can be created.
Normal protected types declare entry barriers inside the body of the protected type. To avoid
having a child protected object depend on the body of its parent, it is necessary for extensi-
ble protected types to declare entry barriers in the private part of the specification . The
body of the package contains the implementation of the procedure Send . There is no
implementation for the abstract entry Wait.

Entries define the synchronization between operations on protected types. To avoid a
major break of encapsulation, it is mandatory to have a way to reuse existing synchroniza-
tion code defined for a parent class and to incrementally modify this inherited synchroniza-
tion in a child class. In our proposal, entries in a derived protected type inherit the guards of
the parent. In addition, a derived protected type is allowed to incrementally strengthen an
inherited entry barrier by using the and when clause.

A concrete signal, such as the Persistent_Signal that derives from the abstract Signal as
shown in figure 10.9, must implement the entry Wait. In our example it is not necessary to

package Signals is

protected type Signal is
abstract tagged
procedure Send;
entry Wait is abstract;

private
Signal_Arrived : Boolean
:= True;

entry Wait when Signal_Arrived;
end Signal;

type Signal_Ref is access
all Signal’Class;

end Signals;

package body Signals is

protected body Signal is
abstract tagged

procedure Send is
begin
Signal_Arrived := True;

end Send;

end Signal;

end Signals;

1

2

3

Figure 10.8: Abstract definition of a Signal using Extensible Protected Types

1

2

3

with Signals; use Signals;

package Persistent_Signals is

protected type Persistent_Signal
is new Signal with
entry Wait;

private
entry Wait and when True;

end Persistent_Signal;

end Persistent_Signals;

package body Persistent_Signals is

protected body
Persistent_Signal is

entry Wait and when True is
begin
Signal_Arrived := False;

end Wait;

end Persistent_Signal;

end Persistent_Signals;

Figure 10.9: Deriving a Persistent Signal
141

Extensible Protected Types
strengthen the guard of the entry. Syntactically, this is shown by adding the clause and when
True.

Figure 10.10 shows how parts of the implementation of the parent type can be reused,
just as often done in classic object-oriented programming. The protected type
Transient_Signal, again derived from the abstract protected Signal type, overrides the pro-
cedure Send. Send checks the count of the entry Wait , and simply returns if there are no
tasks waiting. Only if there are tasks queued on the entry, the signal is effectively sent by
calling the Send procedure of the parent type .

Extensible protected types can also be used as generic parameters. Figure 10.11 illustrates
this technique by defining a generic package that can be instantiated with any extensible
protected type derived from the type Signal. The resulting package then provides a slightly
modified version of the signal that, when a task calls Send, releases all tasks that are waiting
on the entry Wait instead of just one.

1

2

with Signals; use Signals;

package Transient_Signals is

protected type Transient_Signal
is new Signal with

procedure Send;
entry Wait;

private

entry Wait and when True;

end Transient_Signal;

end Transient_Signals;

package body Transient_Signals is

protected body Transient_Signal is

procedure Send is
begin
if Wait’Count = 0 then
return;

end if;
Signal.Send;

end Send;

entry Wait and when True is
begin
Signal_Arrived := False;

end Wait;
end Transient_Signal;

end Transient_Signals;

1

2

1

Figure 10.10: Deriving a Transient Signal

generic
type Base_Signal is new
protected Signal;

package Release_All_Signals is

protected type Release_All_Signal
is new Base_Signal with
entry Wait;

private
entry Wait and when True;

end Release_All_Signal;

end Release_All_Signals;

package body Release_All_Signals is

protected body Release_All_Signal
is

entry Wait and when True is
begin
if Wait’Count /= 0 then
return;

end if;
Base_Signal.Wait;

end Wait;

end Release_All_Signal;

end Release_All_Signals;

Figure 10.11: A Generic Signal that Releases All Waiting Tasks
142

Ada 95
10.5 Distributed Systems in Ada

The previous section has detailed how Ada 95 supports lightweight concurrency by means
of tasks. Heavyweight concurrency is provided in Ada 95 through the notion of partitions.
Ada 95 is the first programming language that defines a precise model for the development
and structuring of distributed applications in the language standard [ISO95, Annex E].

In an abstract way, a distributed application can be viewed as a collection of cooperat-
ing entities or program fragments (so–called “virtual nodes”) that themselves are indivisible
as far as distribution is concerned and that are distributed on various computers (or “physi-
cal nodes”) in a network, over which they communicate with each other.

A virtual node in Ada 95 is called a partition1. A partition is a collection of library
units, some of which constitute its interface towards the other partitions of the application.
These well–defined interfaces are given by the specifications of certain library units that
have to be marked in the source using special categorization pragmas as belonging to the
interface.

Ada 95 distinguishes active and passive partitions. Passive partitions are intended to
model memory shared between virtual nodes, either physically or through a virtual distrib-
uted shared memory system, and have no thread of control associated with them. Their
interface may contain remotely accessible data objects, which can be accessed by other
(active) partitions. Active partitions do have a thread of control. Different active partitions
communicate with each other only through their interface library units by means of remote
procedure calls. Direct remote data access between active partitions does not exist in
Ada 95.

Partitions are semi–autonomous: while they only make sense as part of a larger dis-
tributed application and thus are intrinsically bound to cooperate with the other partitions,
they evolve independently from each other with regard to tasking, time, I/O, and so on. The
language standard does not require a distributed run–time support that might offer a com-
mon base for such services. A direct consequence of this is that all tasks are local to a parti-
tion; they’re not visible across partitions and hence there is no remote rendezvous in
distributed Ada 95.

The configuration of distributed applications, which covers the assignment of library
units to partitions and the allocation of partitions to physical nodes, is beyond the language
standard. Extensions of the standard are allowed, and even encouraged. [KWS96, PW97]
present transparent encryption of data sent over the network, [Kie97] investigates support
for dynamic client-server applications, and [WS99] addresses transparent replication for
Ada partitions.

1. Not to be confused with a network partition, i.e. the rupture of communication links such that a formerly
connected network is split in several parts that cannot communicate with each other anymore.
143

Remote Procedure Calls
10.5.1 Remote Procedure Calls

Communication between active partitions is based solely on the concept of remote proce-
dure calls [BN84], RPC for short, a communication abstraction for interpartition communi-
cation built on top of simple message passing. A remote procedure call in Ada 95 is
transparent to the application developer: both the implementation of a remotely callable
subprogram as well as its call do not differ at all from a local subroutine.

The internal working of a remote procedure call can be decomposed into five distinct
phases, as shown in figure 10.12.

1. In order to send the arguments of the call over the network, they must be flattened into
a single stream of bytes. This process is called marshaling and is performed transpar-
ently for the application in the caller’s stub version of the remotely callable subpro-
gram. The caller’s stub also adds some identification of the routine to be invoked to
this stream of bytes. The run–time support then sends an RPC request message to the
partition where the implementation of the desired subprogram resides.

2. On the receiving side, the run–time support gets the information which subprogram is
to be called from the request message and invokes the corresponding receiver’s stub
procedure. The receiver’s stub then reconstructs an internal representation of the argu-
ments from the byte stream in the request message (this is called unmarshaling) and
locally invokes the correct subprogram.

3. The remotely callable subprogram executes.

Figure 10.12: Schematic View of a Remote Procedure Call

Application

Partition BPartition A

Stubs Stubs

PCSPCS

Comm.R
un

–t
im

e
Su

pp
or

t R
un–tim

e Support

Layer
Comm.
Layer

P(args) P

The results of the call P(args) follow the inverse route.
144

Ada 95
4. The receiver’s stub marshals all the values returned from the subprogram, i.e. inout–
and out–parameters, function results, or even the identity of an exception, if one was
raised in step 3. The run–time support then sends an RPC answer message back to the
calling partition, containing the results of the call (if any).

5. On the calling partition, the run–time support passes this answer message back to the
caller’s stub, which then unmarshals the results and passes them back (possibly
including the raising of an exception) to the original point of call in the application.

The previous description is that of the basic remote procedure call in Ada 95. It is called a
synchronous or blocking RPC, because the caller proceeds only after having received the
answer message. The language standard also offers so–called asynchronous or non–block-
ing RPCs, in which the steps 4 and 5 of the previous sequence are omitted. The caller can
continue its execution after having sent the request message, possibly before the remotely
called subprogram has finished its execution. Asynchronous RPCs are a way to provide a
type–safe interface to message passing in Ada 95. Asynchronously called operations cannot
return results and may have only parameters of mode in. Any exceptions they might raise
are lost on the caller’s side; they are not propagated to the calling partition. Whether a cer-
tain remotely callable subprogram is to be called asynchronously is defined statically by
applying pragma Asynchronous to the declaration of the subprogram.

The callers’ and receivers’ stubs are generated automatically by the compiler or by a
partitioning tool. The marshaling and unmarshaling process uses the standard Stream facil-
ity of Ada 95 presented in section 10.7 on page 148. An application having special needs
regarding the conversion of certain types into byte streams may provide its own implemen-
tations for marshaling and unmarshaling. The message passing protocol underlying a
remote procedure call and described previously is completely hidden from the application in
the Partition Communication Subsystem, PCS for short, which is part of the run–time sup-
port. The PCS is invoked by the stubs through a standardized interface in package Sys-
tem.RPC.

10.5.2 Distributed Objects

The distribution model of Ada 95 also covers the realm of object–oriented programming.
The language standard uses both the new object-oriented features and the new distribution
features to define a distributed object model, which adds great flexibility to both areas.

An object in Ada 95 always resides on the partition it was created on; despite the des-
ignation “distributed object”, it cannot migrate from one partition to another one. However,
it is possible to have remote accesses to objects that reside on other partitions. In conjunc-
tion with dispatching calls, such remote references provide remote dispatching as a further
means to dynamically designate the destination of a remote call.

It is possible to have objects of the same derivation class or even of the same tagged
type on two different partitions. A third partition may obtain remote references to such
145

Fault Tolerance in Distributed Ada
objects in the form of values of a remote access–to–class–wide type. This third partition can
then use dispatching calls to invoke primitive operations on the partition that created the
object without having to know explicitly which partition that is. The receiving partition is
transparently embedded in the remote access value.

10.5.3 Fault Tolerance in Distributed Ada

The language standard for Ada 95 does not require distributed applications to be fault–toler-
ant at all. The only provision made is the predefined exception Communication_Error that
may be raised on the partition initiating a remote call when the destination partition is inac-
cessible. Apart from that, [ISO95, E.1(12)] specifically states that an implementation may
allow replication of partitions, but this is only an implementation permission, not a require-
ment.

10.6 Exceptions in Ada

Ada 83 was one of the first mainstream programming languages incorporating exceptions.
Exceptions in Ada are provided to address the following situations:

• Error conditions — like arithmetic overflow, storage exhaustion, array-bound viola-
tions, subrange violations, peripheral time-outs, etc. When one of these situations
arises, the Ada run-time notifies the application programmer by means of predefined
exceptions, e.g. Constraint_Error, Storage_Error, or exceptions defined in pre-
defined library units, e.g. Communication_Error.

• Abnormal program conditions — like errors in user input data, need for special algo-
rithms to deal with singularities, or incorrect usage of abstract data types, etc. To
address these situations, Ada allows the application programmer to define new excep-
tions. Later on, when the abnormal condition occurs, the programmer may raise an
exception explicitly.

The latter is illustrated in figure 10.13. The generic package Stacks implements a bounded
stack as an abstract data type. The upper limit of elements that the stack can hold is chosen
at package instantiation time. When this maximum number has been reached, invoking the
Push operation leads to a situation in which the operation can not be completed in the usual
way. In that case, the exception Stack_Overflow is raised.

When an exception has occurred, the control is passed to a specified sequence of
statements which is called the exception handler. Exception handlers are separated, textu-
ally, from the place at which the error is raised so that the normal behavior of the program is
not obscured. The Ada model of exceptions is based on the termination model [Goo75], and
146

Ada 95
does therefore not allow for an automatic return to the point of the error from within the
exception handler.
Any program block or subprogram may contain handlers that can catch exceptions raised
during the execution of that block. The Stacks package declares the exception
Stack_Overflow in its interface. This allows users of stacks to catch the exception and take
appropriate measures, as shown in figure 10.14.

Unfortunately, Ada does not allow to associate
exceptions with subprograms, only with an entire
package. This is rather surprising, given that the Ada
programming language tries to reduce programming
errors by enforcing strict typing rules, by providing
safe language constructs, and by performing run-time
checks. Java for instance allows to associate excep-
tions with methods. As a result, the compiler can ver-
ify that the exceptions declared in a method’s
interface are handled in the code that calls the method.
Otherwise, the exceptions must also be part of the
interface of the calling method.

In Ada, unhandled exceptions in a block are
propagated to the calling block. This fact, and the fact
that exception names can be declared in any declarative region, makes it possible for excep-
tions to be propagated outside of the scope of the exception name, turning them into so-
called anonymous exceptions. To still catch these exceptions, the optional handler “others”
is provided. It guarantees to catch all exceptions raised in the block, excluding those already
mentioned and therefore explicitly handled.

generic
type Element is private;
Max_Elements : Natural := 100;

package Stacks is

type Stack is private;

procedure Push (S : in out Stack;
 E : in Element);

Stack_Overflow : exception;

...

private

type Stack is ...
-- Bounded stack implementation

end Stacks;

package body Stacks is

procedure Push (S : in out Stack;
 E : in Element) is

begin
...
if Condition then
raise Stack_Overflow;

end if;
...

end Push;

...

end Stacks;

Figure 10.13: Exception Declaration and Explicit Raising

declare

package My_Stacks is
new Stacks (Integer, 10);

use My_Stacks;

S : My_Stacks.Stack;

begin

...
My_Stacks.Push (123);

exception

when Stack_Overflow =>
-- Handle error

end;

Figure 10.14: Exception Handling
147

The Package Ada.Exceptions
10.6.1 The Package Ada.Exceptions

Exceptions in Ada are not objects, and therefore it is not possible to create exception hierar-
chies or attach data to exceptions by declaring new attributes.

Fortunately, the package Ada.Exceptions provides further facilities for manipulating
exceptions. It introduces the concept of an exception occurrence, and a number of subpro-
grams to access information about the occurrence. Using these subprograms it is for
instance possible to obtain a string representation of the exception name, even for anony-
mous exceptions, or to get information in form of a printable string describing the details of
the cause of an exception occurrence.

The package also provides a subprogram named Raise_Exception that allows the pro-
grammer to attach a specific message in form of a character string to an exception when
raising it. During exception handling, this message can be retrieved by calling the
Exception_Message function. It is also possible to save or copy an exception occurrence,
and then raise it again later on.

10.7 Persistence in Ada

Although Ada 95 does not provide direct support for data persistence, it nevertheless intro-
duced a new concept called streams that greatly facilitates implementing persistence.

A stream is a sequence of elements comprising values from possibly different types.
The values stored in a stream can only be accessed sequentially. Ada streams can be seen as
one of the first incarnations of the Serializer design pattern described in section 5.2.3 on
page 70.

The standard package Ada.Streams defines the interface for streams in Ada 95
[ISO95, 13.13.1]. Its specification is shown in figure 10.15.

The Ada.Streams package declares an abstract type Root_Stream_Type, from which all
other stream types must derive. Every concrete stream type must override the Read and
Write operations, and may optionally define additional primitive subprograms according to
the functionality of the particular stream. Obviously, the root stream type plays the Reader /
Writer role in the Serializer pattern. Derivations of the root stream type incarnate the Con-
creteReader / ConcreteWriter and the backend interface.

In Ada 95, the predefined attributes ’Write and ’Output are used to write values to a
stream, thus converting them into a flat sequence of stream elements. Reconstructing the
values from a stream is done with the predefined attributes ’Read and ’Input. They make
dispatching calls on the Read and Write procedures of the Root_Stream_Type. When using
’Write and ’Read, neither array bounds nor tags of tagged types are written to or read from
the stream. ’Output and ’Input are used for that purpose.
148

Ada 95
All non-limited types have default implementations of the stream attributes, hence all non-
limited types implement the Serializable interface and can therefore serve as ConcreteEle-
ment. It is possible to replace the default implementation of the stream attributes for any
type via an attribute definition clause. In order to write a value of a limited type to a stream,
such an attribute definition clause is even mandatory. Any procedure having one of the pre-
defined signatures shown in [ISO95, 13.13.2] can replace the default implementation.
Figure 10.16 shows how to replace the predefined implementation of ’Write for an integer
type.

The only concrete stream implementation that is defined in the language standard is
Stream_IO [ISO95, A.12], a child package of Ada.Streams. It provides stream-based access
to files. Stream_IO offers also file manipulation operations such as Create, Open, Close,
Delete, etc. Figure 10.17 shows how to write values of elementary types, array types and
tagged types to a file by means of a stream and how to reconstruct them again.

package Ada.Streams is

 type Root_Stream_Type is abstract tagged limited private;

 type Stream_Element is mod implementation-defined;

 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is Stream_Element_Offset
 range 0..Stream_Element_Offset'Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (Stream : in out Root_Stream_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset) is abstract;

 procedure Write (Stream : in out Root_Stream_Type;
 Item : in Stream_Element_Array) is abstract;

private
 ... -- not specified by the language
end Ada.Streams;

Figure 10.15: The Package Ada.Streams

type My_Integer is new Integer;

procedure My_Write (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : My_Integer);

for My_Integer’Write use My_Write;

Figure 10.16: Overriding the Default Write Procedure
149

Persistence in Ada
with Ada.Streams.Stream_IO;
use Ada.Streams.Stream_IO;

-- writing
declare

My_File: File_Type;
S : Stream_Access;
I : Integer;
My_String : String := “Hello”;
T : A_Tagged_Type’Class := … ;

begin

Create (My_File “file_name”);
S := Stream (My_File);

-- do some work
Integer’Output (S, I);
String’Output (S, My_String);
A_Tagged_Type’Class’Output (S, T);
Close (My_File);

end;

-- reading
declare
My_File : File_Type;
S : Stream_Access;

begin

Open (My_File, “file_name”);
S := Stream (My_File);
declare
I : Integer :=
Integer’Input (S);

My_String: String :=
String’Input (S);

T : A_Tagged_Type :=
A_Tagged_Type’Class’Input (S);

begin
-- do some work

end;

Close (My_File);

end;

Figure 10.17: Writing and Reading Data to / from a Stream
150

Chapter 11:

Implementation for Ada 95

In the previous chapter we have seen that Ada 95 provides good support for object-orienta-
tion, basic exception handling features, support for streaming and elaborate mechanisms for
dealing with concurrency. This chapter presents how these features have been used to
implement the OPTIMA framework and to provide concrete implementations of the inter-
faces presented in chapter 9 for the application programmer.

11.1 Implementing the Framework

11.1.1 Objects

In general, all classes of the framework have been implemented as Ada tagged types, encap-
sulated inside an Ada package. Subclasses have been implemented as extensions of the
tagged type declared in child packages as illustrated in section 10.2 on page 132.

Of course, special attention must be paid when implementing a class that might be
accessed concurrently. The state of such a class must be encapsulated inside a protected
object in order to preserve data consistency. Since Ada does not provide inheritance for pro-
tected types, the protected type must be made a component of a tagged type. This is, for
instance, the case for the Transaction class, because it handles concurrent calls to
Join_Transaction, Close_Transaction, Commit_Transaction and Abort_Transaction.

Ada 95 does not provide automatic garbage collection. In order to prevent memory
shortage, it is important to destroy all objects once they are not needed anymore. This is not
trivial, especially for objects that are shared among multiple tasks. The problem can be
151

Objects
solved by keeping track of all references that point to a given object. Once the last reference
disappears, the object can be safely destroyed.

Reference counting can be achieved in Ada by using controlled types as shown in
figure 11.1. The Controlled_Object_Ref type is a controlled type that encapsulates a refer-
ence to the actual object . When invoking the constructor function Create_Object, the
actual object is created and an instance of Controlled_Object_Ref is handed back to the
caller instead of an ordinary reference . The actual object contains a counter that is initial-
ized to one at creation time. Each time the controlled reference is duplicated, the Adjust
procedure increments that counter . If a controlled reference goes out of scope, the Final-
ize procedure decrements the counter . If the counter reaches zero, the system knows for
sure that nobody is using the object anymore and can safely destroy the object and reclaim
the associated memory.

This technique is for instance used to determine when a Transaction object (see section 6.5
on page 77) is not used anymore. Transaction objects are accessed through
Transaction_Identifier objects, which implement reference counting as described above.

1

2

3

4

Figure 11.1: Reference Counting with Controlled Types

package Reference_Counting is

type Controlled_Object_Ref is
private;

function Create_Object (...)
return Controlled_Object_Ref;

-- Other operations

private

type Controlled_Object_Ref is new
Ada.Finalization.Controlled with
record
Tracked_Object : Object_Ref;

end record;

procedure Adjust (Ref : in out
Controlled_Object_Ref);

procedure Finalize (Ref : in out
Controlled_Object_Ref);

end Reference_Counting;

package body Reference_Counting is

function Create_Object (...)
return Controlled_Object_Ref is
Result : Controlled_Object_Ref;

begin
Result.Tracked_Object :=
new Object (...);

Set_Reference_Count>

(Result.Tracked_Object, 1);
return Result;

end Create_Object;

procedure Adjust (Ref : in out
Controlled_Object_Ref) is

begin
if Ref.Tracked_Object /= null
then
Increase_Reference_Count
(Ref.Tracked_Object);

end if;
end Adjust;

procedure Finalize (Ref : in out
Controlled_Object_Ref) is
if Ref.Tracked_Object /= null
then
Decrease_Reference_Count
(Ref.Tracked_Object);

end if;
end Finalize;

end Reference_Counting;

1

2

3

4

152

Implementation for Ada 95
11.1.2 Concurrency Control

Some of the advanced concurrency features of Ada 95 have been used inside the implemen-
tation of the concurrency control components. The example shown in this section is taken
from the implementation of the lock manager, which handles cooperative and competitive
concurrency control for pessimistic concurrency control schemes based on locking.

The lock manager must handle multiple tasks, and therefore, its functionality has been
implemented inside a protected type as shown in figure 11.2. The lock manager must imple-
ment four operations, namely Pre_Operation, Post_Operation, Commit_Transaction and
Abort_Transaction (see section 7.3 on page 82). They map to the four operations in the
public part of the Lock_Manager_Type specification. Each time a participant of a transaction
wants to execute an operation on a transactional object, the Pre_Operation operation of the
associated lock manager is invoked. The lock manager verifies that the participant can
safely access the object. If this is not the case, then the calling task is suspended. Therefore,
Pre_Operation is a potentially blocking operation, and must be implemented as an entry.

The private part of the specification contains three private entries and some attributes,
e.g. the set of granted operations named My_Info, and a boolean and a natural variable that
are used to implement multiple readers / single writers.

The implementation of the Pre_Operation operation is shown in figure 11.3. It illustrates
the two phases of concurrency control that must be applied to transactional objects. First,
competitive concurrency must be handled. To guarantee the serialization property of trans-

Figure 11.2: The Lock_Manager Specification

protected type Lock_Manager_Type is

 entry Pre_Operation (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref);

 procedure Post_Operation;

 procedure Transaction_Commit (Transaction : Transaction_Ref);

 procedure Transaction_Abort (Transaction : Transaction_Ref);

private

 entry Waiting_For_Transaction (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref);

 entry Waiting_For_Writer (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref);

 entry Waiting_For_Readers (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref);

 Currently_Writing : Boolean := False;
 Currently_Reading : Natural := 0;
 To_Try : Natural := 0;
 My_Info : Info_Set_Type;

end Lock_Manager_Type;
153

Concurrency Control
actions, the lock manager must determine if the operation to be invoked does not conflict
with other operation invocations by still active transactions. This check is performed in the
Is_Compatible function . If a conflict has been detected, the calling task is suspended by
requeuing the call on the private entry Waiting_For_Transaction until the transaction hav-
ing executed the conflicting operation ends .

If, on the other hand, the first phase completes successfully, then the operation infor-
mation is inserted into the list of granted operations and the second phase is initiated by
requeuing on the private entry Waiting_For_Writer .

1

2

3

4

Figure 11.3: Implementing Cooperative Concurrency Control

entry Pre_Operation (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref) when True is
begin
if not Is_Compatible (My_Info, Info, Transaction) then
requeue Waiting_For_Transaction with abort;

else
Insert (My_Info, Info, Transaction);
requeue Waiting_For_Writer with abort;

end if;
end Pre_Operation;

entry Waiting_For_Writer (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref)
when not Currently_Writing and Waiting_For_Readers’Count = 0 is

begin
if Is_Modifier (Info.all) then
if Currently_Reading > 0 then
requeue Waiting_For_Readers with abort;

else
Currently_Writing := True;

end if;
else
Currently_Reading := Currently_Reading + 1;

end if;
end Waiting_For_Writer;

entry Waiting_For_Readers (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref)
when Currently_Reading = 0 is

begin
Currently_Writing := True;

end Waiting_For_Readers;

procedure Post_Operation is
begin
if Currently_Writing then
Currently_Writing := False;

else
Currently_Reading := Currently_Reading - 1;

end if;
end Post_Operation;

1

2

3

4

7

5

6

154

Implementation for Ada 95
The two entries Waiting_For_Writer and Waiting_For_Readers implement the multi-
ple readers / single writer paradigm. Starvation of writers is prevented by keeping readers
and writers on a single entry queue. Requests are serviced in FIFO order.

By calling Is_Modifier , the lock manager determines the nature of the operation,
i.e. read or write. Read operations are allowed to proceed, until a write operation is encoun-
tered. If there are still readers using the transactional object, then the writer is requeued to
the Waiting_For_Readers entry . This closes the barrier of the Waiting_For_Writer entry,
since the latter requires the Waiting_For_Readers queue to be empty .

After the invocation of the actual operation on the transactional object,
Post_Operation is called, which decrements the number of readers respectively unsets the
writer flag.

Now let us go back to the first phase and see what happens to the calls queued on the
Waiting_For_Transaction entry. Tasks queued here have requested to execute an operation
that conflicts with an operation already executed on behalf of a still active transaction. Each
time a transaction ends, this situation might change. When a transaction aborts, the opera-
tions executed on behalf of the transaction are undone, and hence the locks can be released.
This is illustrated in Figure 11.4. Transaction_Abort calls the Delete operation of the
granted operation set , which results in removing all operation information of the corre-
sponding transaction from the set. The same is done upon commit of a top-level
transaction . If the commit involves a subtransaction, then the locks held so far by the
subtransaction must be passed to the parent transaction. This is achieved by calling
Pass_Up .

5

6

7

1a

1b

2

Figure 11.4: Implementing Competitive Concurrency Control

entry Waiting_For_Transaction (Info : Operation_Information_Ref;
 Transaction : Transaction_Ref) when To_Try > 0 is
begin
To_Try := To_Try - 1;
requeue Pre_Operation with abort;

end Waiting_For_Transaction;

procedure Transaction_Commit (Transaction : Transaction_Ref) is
begin
if Is_Toplevel (Transaction.all) then
Delete (My_Info, Transaction);

else
Pass_Up (My_Info, Transaction, Get_Parent (Transaction.all));

end if;
To_Try := Waiting_For_Lock'Count;

end Transaction_Commit;

procedure Transaction_Abort (Transaction : Transaction_Ref) is
begin
Delete (My_Info, Transaction);
To_Try := Waiting_For_Lock'Count;

end Transaction_Abort;

1b

2

3

1a

3

155

Persistence
In any case, the auxiliary variable To_Try is set to the number of tasks waiting in the queue
of the entry Waiting_For_Transaction . As a result, all queued tasks are released and
requeued to Pre_Operation, thus getting another chance to access the transactional object.

11.1.3 Persistence

The implementation of the persistence support [KR00] is based on Ada streams (see
section 10.7 on page 148), which allow to transform any non-limited object into a flat
stream of bytes. The stream concept has been extended to support buffering and different
kinds of storage devices as presented in section 8.2.1 on page 91. This fits exactly the idea
behind Ada streams, which is that programmers can develop their own stream subclasses by
inheriting from the given abstract class.

11.1.3.1 The Storage Hierarchy

Figure 11.5 shows the specification of the Storage_Type class, which implements the root
class of the storage hierarchy presented in figure 8.4 on page 94.

Storage_Type is privately derived from Limited_Controlled in order to allow concrete stor-
age implementations to perform automatic initialization and finalization, if necessary. Disk
files for instance should always be closed, network ports should be freed, etc. Storage_Type
is limited, so it can store, if necessary, other limited data, such as for example file descrip-
tors. Finally, the public view of Storage_Type has unknown discriminants. As a conse-
quence, the user of a storage type is forced to call one of the constructor functions of a
concrete storage type; he or she can not just declare an instance of the type and thereby
bypass correct initialization.

3

Figure 11.5: Specification of type Storage_Type

with Ada.Streams; use Ada.Streams;
with Ada.Finalization; use Ada.Finalization;

package Storage_Types is

type Storage_Type (<>) is abstract tagged limited private;

type Storage_Ref is access all Storage_Type’Class;

procedure Read (Storage : in out Storage_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset) is abstract;

procedure Write (Storage : in out Storage_Type;
 Item : in Stream_Element_Array) is abstract;

private

type Storage_Type is new Limited_Controlled with null record;

end Storage_Types;
156

Implementation for Ada 95
The operations provided by Storage_Type are Read and Write. They have the same
signature as the ones defined for Root_Stream_Type (see section 10.7 on page 148).

Whenever streams are used to access storage devices, it is not always a good idea to
write the data to the device on every call to ’Write or ’Output. At what time the data
should be written to the device is largely device dependent. Disk devices for example are
usually accessed in fixed-sized chunks of data called blocks. In this case, too many individ-
ual write accesses can result in considerable performance loss. It is much more efficient to
buffer the data.

In some situations, buffering is even mandatory. The transaction framework, for
example, uses stable storage to store the transaction log. The recovery algorithm depends on
the fact that updates to the log are performed in an atomic manner, i.e. are either done com-
pletely, or not done at all. The storage hierarchy requires all stable storage to implement
atomic writes, but this atomicity can be broken if an object is written to an unbuffered
stream. As explained in “The Serializer Design Pattern” on page 70, there is often a recur-
sive back-and-forth interplay between the Reader / Writer and the object implementing the
Serializable interface. Likewise, the ‘Read and ‘Write attributes may make multiple calls
to the Read and Write procedures of a stream when serializing the state of an object. To still
achieve atomic writing, buffering is necessary.

11.1.3.1 The Buffer Hierarchy

Buffers come in two flavors, bounded and unbounded as shown in figure 11.6.

Like storage, buffers provide the Read and Write operations, and an additional operation
Flush. Inside the Write procedure, the data is first written into a memory buffer, and only
when Flush is called, the data is written out to the corresponding storage. The Read opera-
tion does the inverse: it will try and read all the data or as much data as possible from the
storage device into the buffer. Subsequent calls can then be served without accessing the
storage.

When implementing the unbounded buffer class, it is possible to use an instance of the
volatile memory storage type to buffer the data. This illustrates the possibilities of reuse
offered by the storage hierarchy.

Buffer_Type

Bounded_Buffer_Type

Read
Write

Figure 11.6: The Buffer Hierarchy

Flush

Storage

Read
Write

0..1

storage

Unbounded_Buffer_Type
157

Persistence
11.1.3.1 Normal and Buffered Streams

Finally, the package Streams provides the link between Ada streams, buffers and the storage
hierarchy. It defines two concrete stream types, Stream_Type and Buffered_Stream_Type,
both descendants of Abstract_Stream_Type, which in turn is derived from
Ada.Streams.Root_Stream_Type. The specification of the package is presented in
figure 11.7.

The package allows the user to choose between a normal stream (one that writes the data to
the storage medium on every ’Write) and a buffered stream (one that buffers the data until
the user calls Flush). The type of buffer and the type of storage that will be used for the
stream must be chosen at object creation time through an access discriminant, following the
ideas of the Strategy design pattern (see section 5.2.2 on page 69).

Figure 11.7: Specification of the Streams package

with Ada.Streams; use Ada.Streams;
with Buffer_Types; use Buffer_Types;

package Streams is

type Abstract_Stream_Type is abstract new
Ada.Streams.Root_Stream_Type with private;

type Abstract_Stream_Ref is access all Abstract_Stream_Type'Class;

type Stream_Type (Storage : access Storage_Type’Class)
is new Abstract_Stream_Type with private;

procedure Read (Stream : in out Stream_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset);

procedure Write (Stream : in out Stream_Type;
 Item : in Stream_Element_Array);

type Buffered_Stream_Type (Buffer : access Buffer_Type’Class)
is new Abstract_Stream_Type with private;

procedure Read(Stream: in out Buffered_Stream_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset);

procedure Write(Stream: in out Buffered_Stream_Type;
 Item : in Stream_Element_Array);

procedure Flush(Stream: in out Buffered_Stream_Type);

end Streams;
158

Implementation for Ada 95
11.2 Transaction Framework Interfaces for Ada 95

The rest of this chapter covers the interface between the Ada programmer and the transac-
tion framework.

11.2.1 Transaction Identifier Management

Once a task is part of a transaction, it can invoke operations on transactional objects. The
recovery and lock manager must know on behalf of which transaction the operation is exe-
cuted. Most systems therefore need to pass a transaction identifier as a parameter to every
operation of a transactional object.

The Systems Programming Annex [ISO95, Annex C] of the Ada Standard offers the
possibility to declare data structures for which there is a copy attached to each task in the
system by means of the generic package Ada.Task_Attributes. This technique, illustrated
in figure 11.8, has been used to associate each task running on behalf of a transaction with
the corresponding transaction object. When calling an operation on a transactional object,
the run-time support can retrieve the transaction identifier using the function
Task_Attributes.Value. This means in practice that, for the application programmer,
there is no difference between calling a transactional object and calling a normal object.

By making the task attribute controlled, it is possible to execute a set of statements on every
task termination. The Finalize procedure of the controlled type is automatically invoked
before the task is destroyed. As a result, it is possible to detect deserter tasks, i.e. tasks that
disappear without voting on the outcome of a transaction. The open multithreaded transac-
tion model treats deserter tasks as an error (see section 4.6.3 on page 59). Therefore, if a ter-
minating task is still associated with a transaction, the Finalize procedure contacts the
transaction support component and aborts the transaction.

Figure 11.8: Associating the Transaction Context with a Task

with Transaction_Identifiers; use Transaction_Identifiers;

type Transactional_Task_Attribute_Type is
new Ada.Finalization.Controlled with record
Current_Tid : Transaction_Identifier_Ref := null;

end record;

procedure Finalize (Attribute : in out Transactional_Task_Attribute_Type);

Null_Task_Attribute : constant Transactional_Task_Attribute_Type
:= (Ada.Finalization.Controlled with Current_Tid => null);

package Transactional_Tasks is new
Ada.Task_Attributes (Transactional_Task_Attribute_Type,
 Null_Task_Attribute);
159

Encapsulating Data Objects
11.2.2 Encapsulating Data Objects

As presented in section 9.2 on page 110, any object used in a transaction must be trans-
formed into a transactional object by programming a wrapper object that, for each operation
invocation, performs the necessary calls to the transaction framework.

Programming such a wrapper object is a mechanical process, and could be done by a
preprocessor. In Ada, such a “transactional object generator” could be implemented by
using the Ada Semantic Interface Specification [ISO99], ASIS for short. ASIS is an inter-
face between an Ada Environment and any tool or application requiring statically-determin-
able information about an Ada program.

Of course, if the programmer wants to use semantic-based concurrency control for
controlling access to some transactional object, then the generation of the needed operation
information classes (see section 7.4.3 on page 87) can not be automated completely, since
only the programmer can reliably determine the semantics of the operations of the data
object. In this case, a semi-automatic approach could be developed.

Up to now, such a preprocessor has not been implemented, and therefore the program-
mer must hand-code the transactional object wrapper for each type of data object.
Section 13.3.1 on page 198 shows an example of how to construct a transactional wrapper
object for an account data type.

11.2.2.1 Interfacing with the Cache Manager

Every transactional object has an associated memory object, which encapsulates the origi-
nal data object. When creating or restoring a transactional object, such a memory object
must be obtained from the cache manager. For this purpose, the transaction interface offers
the two procedures presented in figure 11.9.

The first parameter of the Create function identifies the storage unit on which the data
object is to be created. The other parameters are concrete implementations of the classes
presented in figure 9.2 on page 113. They allow the memory object to create, load, save and
delete objects of the data type that is to be encapsulated. The Logging and Update parameter
determine the kind of logging technique and the kind of update strategy that are to be used.
If the storage unit is already in use, then the exception Object_Exists is raised. The
Storage_Device_Error exception is raised in case some storage related error arises.

The Restore function tries to initialize the state of the data object with data stored on
the storage unit. If the storage unit can not be found, the exception Object_Non_Existant is
raised. The Object_Corrupt exception is raised in case the data on the storage unit has been
corrupted.
160

Implementation for Ada 95
11.2.3 Procedural Interface

The basic interface to transactions is the procedural interface presented in section 9.4 on
page 119. Its implementation in Ada 95 is straightforward. The five procedures are grouped
together in the package Procedural_Transaction_Interface, which is presented in
figure 11.10.

Note the two overloaded operations Begin_Transaction and Join_Transaction. The
versions with a string parameter allow the programmer to start respectively join a named
transaction (see section 4.6.2 on page 59). The optional parameter
Number_Of_Participants of the operations Begin_Transaction and Begin_Or_Join_Trans-
action allows the task that starts a transaction to limit the maximum number of participants.

The package also defines a set of exceptions that might be raised if the application
programmer violates one of the rules of open multithreaded transactions . A task is, for
instance, not allowed to vote on the outcome of a transaction in which it does not partici-
pate. In this case, the No_Current_Transaction exception is raised. Unfortunately, the Ada
exception model does not provide a mechanism to attach exceptions to specific subpro-
grams. Therefore, all possible exceptions have been declared globally inside the package,
and comments have been used to state which exceptions can potentially be raised by which
subprogram.

Figure 11.9: Obtaining a Memory Object from the Cache Manager

type Logging_Kind is (Physical, Logical);

type Update_Kind is (Inplace, Deferred);

function Create (Params : Non_Volatile_Params_Type'Class;
 Creation : Creation_Operation_Type'Class;
 Loading : Loading_Operation_Type'Class;
 Saving : Saving_Operation_Type'Class;
 Deletion : Deletion_Operation_Type'Class;
 Logging : Logging_Kind;
 Update : Update_Kind)
return Memory_Object_Ref;

function Restore (Params : Non_Volatile_Params_Type'Class;
 Loading : Loading_Operation_Type'Class;
 Saving : Saving_Operation_Type'Class;
 Deletion : Deletion_Operation_Type'Class;
 Logging : Kind_Of_Logging;
 Update : Kind_Of_Update)

)
return Memory_Object_Ref;

Object_Exists, Object_Non_Existant, Object_Corrupt,
Storage_Device_Error : exception;

1

161

Procedural Interface
As mentioned in the general discussion in section 9.4.1, the procedural interface is very
flexible, but it is impossible to enforce all rules of open multithreaded transactions by con-
struct. It is, for instance, not possible to guarantee that all participants vote on the outcome
of a transaction, or that all unhandled exceptions crossing the transaction boundary will be
detected.

To properly use the procedural interface, the programmer must follow certain pro-
gramming conventions. For each new transaction, a new Ada block must be created as
shown in figure 11.11 . Just after the begin statement of the block, the programmer must
make a call to Begin_Transaction or Join_Transaction . From then on, the task can work
on behalf of the transaction. Just before leaving the block, the Commit_Transaction proce-
dure must be called .

The Ada block must have an associated exception handling block that handles all
internal exceptions . If recovery has been performed successfully, then
Commit_Transaction can be called from within the exception handler . Otherwise,
Abort_Transaction must be called and an external exception raised . A default exception
handler must be added at the end of the block that intercepts any unhandled exceptions,
calls Abort_Transaction and then propagates the exception to the outside .

Figure 11.10: Procedural Interface for Ada 95

package Procedural_Transaction_Interface is

procedure Begin_Transaction (Number_Of_Participants : Natural := 0);
procedure Begin_Transaction (Name : String;
 Number_Of_Participants : Natural := 0);

procedure Join_Transaction (Task : Task_Id);
procedure Join_Transaction (Name : String);
-- Might raise No_Current_Transaction, Already_Joined_Transaction,
-- Already_Part_Of_Other_Transaction, Transaction_Closed
-- Transaction_Already_Committed, Transaction_Abort

procedure Begin_Or_Join_Transaction (Name : String);
 Number_Of_Participants : Natural := 0);
-- Raises Already_Joined_Transaction, Transaction_Abort,
-- Already_Part_Of_Other_Transaction, Transaction_Already_Committed

procedure Close_Transaction;
-- Raises No_Current_Transaction, Transaction_Abort

procedure Abort_Transaction;
-- Might raise No_Current_Transaction

procedure Commit_Transaction;
-- Might raise No_Current_Transaction, Transaction_Abort

No_Current_Transaction, Already_Joined_Transaction,
Already_Part_Of_Other_Transaction, Transaction_Closed,
Transaction_Already_Committed, Transaction_Abort : exception;

end Procedural_Transaction_Interface;

1

1

2

3

4

5

6

7

162

Implementation for Ada 95
Unfortunately this is still not sufficient to
guarantee correct exception handling. Additional
exceptions might occur during recovery, i.e. in the
exception handling block itself. These exceptions
can not be handled in the same block, and will
therefore propagate to the outside, crossing the
transaction boundary unnoticed. This problem
can only be solved by opening new blocks inside
each exception handler, with at least a default
handler that aborts the transaction.

With the procedural interface it is also not
possible to detect deserters, i.e. tasks that disap-
pear due to asynchronous transfer of control. If,
for instance, the task executes a transaction as
part of a timed select statement (see
section 10.3.6 on page 139), the Commit_Transaction or Abort_Transaction procedures
will never be called if the time-out occurs inside the transaction.

11.2.4 Object-Based Interface

Most of the drawbacks of the procedural interface do not appear in the object-based inter-
face (see section 9.4.2 on page 121). The object-based interface associates the lifetime of a
transaction with the lifetime of an object, or, in case of a transaction with multiple partici-
pants, with the lifetime of a group of objects.

The object-based interface for Ada 95 is shown in figure 11.12. To start a transaction,
the programmer must declare an object of type Transaction. The transaction begins when
the object declaration is elaborated, and ends once the object goes out of scope, i.e. at the
end of the block containing the object declaration. This effect is achieved by making the
Transaction type controlled. The Initialize procedure starts the transaction, the Finalize
procedure ends it. Ada requires objects to be declared inside a declarative region, which
means that the programmer is forced to either associate the transaction with an already
existing block, e.g. a procedure or function body, or open a new block for the transaction.
This block is then at the same time transaction and exception context.

The primitive operation Close_Transaction allows a participant to close an active
transaction. In order to vote commit, a participant must call the primitive operation
Commit_Transaction before the end of the block. Otherwise, the task is considered a
deserter, and the transaction is aborted from within the Finalize procedure of the Transac-
tion object.

begin
Begin_Transaction;
-- perform work
Commit_Transaction;

exception
when ...
-- handle internal exceptions
Commit_Transaction;

when ...
-- handle internal exceptions
Abort_Transaction;
raise External_Exception;

when others =>
Abort_Transaction;
raise;

end;

1

2

3

4

5

6

7

Figure 11.11: Programming Guide-
lines for the Procedural Interface
163

Object-Based Interface
There is no need for providing a procedure Abort_Transaction. Voting abort is simply done
by raising an external exception, e.g. Transaction_Abort. The Finalize procedure of the
Transaction object will take care of aborting the transaction as required.

The Join_Transaction procedure has also been eliminated, and replaced by an
optional discriminant of the Transaction type, identifying the task to be joined. Creating or
joining a named transaction can be achieved by supplying an optional string as a discrimi-
nant constraint. The maximum number of participants of a transaction can optionally be
specified by the Max_Participants discriminant. Note that only discrete or access types can
be used as discriminants for a type [ISO95, 3.7 (5)]. This is the reason why instead of
directly passing a Task_Id or String, an access to Task_Id or an access to String must be
provided by the programmer.

Figure 11.13 shows how a set of tasks can perform an open multithreaded transaction
together using the object-based interface.

A special task, the Starter_Task , starts the open multithreaded transaction by
declaring the transaction object T in the declarative region of its body . Any number of
Joiner_Tasks can then join the transaction by also declaring a transaction object, passing
as a discriminant a pointer to the task ID identifying the starter task . The starter and the
joiner tasks can now work together on behalf of the same transaction. Each participant must

Figure 11.12: Object-Based Interface for Ada 95

package Object_Based_Transaction_Interface is

type String_Ref is access all String;
type Task_Id_Ref is access all Task_Id;

type Transaction (Name : String_Ref := null;
 The_Task : Task_Id_Ref := null;

 Max_Participants : Natural := 0) is limited private;

procedure Close_Transaction (T : in out Transaction);
procedure Commit_Transaction (T : in out Transaction);

No_Current_Transaction, Already_Joined_Transaction,
Already_Part_Of_Other_Transaction, Transaction_Closed,
Transaction_Already_Committed, Transaction_Abort : exception;

private

type Transaction (Name : String_Ref := null;
 The_Task : Task_Id_Ref := null

 Max_Participants : Natural := 0) is new
Ada.Finalization.Limited_Controlled with record
Committed : Boolean := False;

end record;

procedure Initialize (T : in out Transaction);

procedure Finalize (T : in out Transaction);

end Object_Based_Transaction_Interface;

1

2

3

4

164

Implementation for Ada 95
call Commit_Transaction once it has completed its work . Of course it is also possible to
commit the transaction after having handled an internal exception .

Named transactions can be used as illustrated in figure 11.14. The starting of the open
multithreaded transaction is different from the previous example. There is no need for a spe-
cial task that explicitly starts the transaction. Any task that wants to work on behalf of the
transaction can do so, provided it knows the transaction name . An access to this name
must be passed as a discriminant constraint when declaring the transaction object T . The
first task that requests to work on behalf of the transaction effectively starts the transaction,
the other tasks just join it.

The object-based interface is a lot safer than the procedural interface. The procedural inter-
face has to rely on the programmer to follow a set of guidelines when programming transac-
tions. When using the object-based interface, the programmer is forced to associate a block

Figure 11.13: Using the Object-Based Interface

task Starter_Task;

task body Starter_Task is
T : Transaction;

begin
-- perform work on behalf of
-- the transaction
Commit_Transaction (T);

exception
when ...
-- handle internal exceptions
Commit_Transaction (T);

when ...
-- raise an external exception

end Starter_Task;

task type Joiner_Task;

task body Joiner_Task is
T : Transaction (null, new Task_Id
(Starter_Task’Identity), 0);

begin
-- perform work on behalf of
-- the transaction
Commit_Transaction (T);

exception
when ...
-- handle internal exceptions
Commit_Transaction (T);

when ...
-- raise an external exception

end Joiner_Task;

1

2

5a

5b

3

4

5a

5b

5a

5b

1

2

Figure 11.14: Using Named Transactions with the Object-Based Interface

Name : String_Ref := new String’ (“Job”);

task type Worker_Task;

task body Worker_Task is
T : Transaction (Name, null, 0);
begin
-- perform work on behalf of the transaction
Commit_Transaction (T);

exception
when ...
-- handle internal exception
Commit_Transaction (T);

when ...
-- raise an external exception

end Worker_Task;

1

2

165

Object-Oriented Interface
with a transaction. As a result, it is guaranteed by construct that every participant of a trans-
action votes on the outcome of the transaction. If the application programmer forgets to call
the commit method of the transaction object, then, enforcing a safe approach, the transac-
tion is aborted from within the Finalize procedure.

Also, there is no need for having a default exception handler. Unhandled exceptions
automatically cause the transaction to abort, because the Finalize procedure of the transac-
tion object is invoked when the block in which the object has been declared is left. Finally,
tasks executing a transaction as part of a timed select statement are also handled correctly. If
a time-out occurs and the task is interrupted while working on behalf of a transaction, the
Finalize procedure will take care of aborting the transaction as required.

Internally, the implementation of the object-based interface is based on the procedural
interface. The body of the Object_Based_Transaction_Interface is presented in
figure 11.15. The code shows, for instance, that the Initialize procedure of the Transac-
tion type makes calls to either Begin_Transaction, Join_Transaction, or
Begin_Or_Join_Transaction, depending on the discriminant constraints passed to the trans-
action object at declaration time.

11.2.5 Object-Oriented Interface

The third interface that has been developed for Ada 95 is the object-oriented interface. The
package Open_Multithreaded_Transactions, shown in figure 11.16, declares an abstract
tagged type Transaction. A concrete transaction must derive from this type and add code for
each participant by adding primitive operations. A task that wants to work on behalf of a
transaction must create a transaction object or have access to an already existing one, and
then simply call the corresponding primitive operation.

A primitive operation implementing the program code for a participant must follow
the programming conventions shown in figure 11.17.

The basic idea is very similar to the one used in the object-based interface. The trans-
action lifetime is associated with the lifetime of a controlled object P of type Participant.
Every participant operation must declare such a controlled participant object in its declara-
tive region, and must pass a reference to the transaction object as a discriminant constraint.
The reference to the transaction object can be obtained by calling the function Self.

This reference replaces in some sort the name of the transaction. The Initialize pro-
cedure of the participant object calls the Start_Or_Join_Transaction procedure, identify-
ing the transaction to be started or joined by means of the passed reference. Apart from this,
the structure of a participant operation resembles the one described in the object-based
interface. This time, the body of the primitive operation provides the transaction and excep-
tion context.

It is not possible to provide default implementations for participant operations, since
their number and signatures are not known in advance. A possible solution is to provide
166

Implementation for Ada 95
Figure 11.15: Implementation of the Object-Based Interface

with Procedural_Transaction_Interface;
use Procedural_Transaction_Interface

package body Object_Based_Transaction_Interface is

procedure Close_Transaction (T : in out Transaction) is
begin
Close_Transaction;

end Close_Transaction;

procedure Commit_Transaction (T : in out Transaction) is
begin
Commit_Transaction;
T.Committed := True;

end Commit_Transaction;

procedure Initialize (T : in out Transaction) is
begin
if T.Name /= null then
Begin_Or_Join_Transaction (T.Name.all, T.Max_Participants);

elsif T.The_Task /= null then
Join_Transaction (T.The_Task.all);

else
Begin_Transaction (T.Max_Participants);

end if;
end Initialize;

procedure Finalize (T : in out Transaction) is
begin
if not T.Committed then
Abort_Transaction;

end if;
end Finalize;

end Object_Based_Transaction_Interface;

Figure 11.16: Object-Oriented Interface for Ada 95

package Open_Multithreaded_Transactions is

type Transaction is abstract tagged limited private;
type Transaction_Ref is access all Transaction’Class;

-- add code for each participant by adding primitive operations

Transaction_Abort, Already_Part_Of_Other_Transaction,
Transaction_Closed, Transaction_Already_Committed : exception;

private

type Transaction is abstract tagged null record;

function Self (T : Transaction) return Transaction_Ref;

type Participant (Transaction : Transaction_Ref)
is new Ada.Finalization.Limited_Controlled with null record;

procedure Commit_Transaction (P : in out Participant);

procedure Initialize (P : in out Participant);

procedure Finalize (P : in out Participant);

end Open_Multithreaded_Transactions;
167

Object-Oriented Interface
only one primitive operation Execute_Participant_Operation, that takes as a parameter an
access to subprogram value which will point to the actual participant code. As a result, the
programmer does not have to, and therefore can not forget to declare the participant object
in the actual participant operation, since this can be done once and for all in the
Execute_Participant_Operation procedure. On the other hand, using access to subprogram
types is not very elegant and complicates parameter passing.

The advantage of the object-oriented interface is that the entire open multithreaded
transaction, i.e. the program code for every participant, is grouped together inside a class.
This clearly improves readability, understandability and maintainability of the transaction
as a whole. All external exceptions can be grouped together in the specification of the pack-
age containing the concrete transaction type. Unfortunately, Ada does not allow a program-
mer to associate exceptions with primitive operations. Therefore, it is not possible to state
explicitly which participant may raise which external exceptions.

Code reuse is also possible, for transactions that want to perform similar work can
derive from some other transaction class, and override or add new participant methods. All
forms of object-oriented reuse are possible, e.g. reusing the code of a participant operation
of the parent class. One could think that there might be problems due to nested participant
operation invocations, since they would result in creating a hierarchy of nested transactions.
Luckily, this can be avoided. Since the identity of the transaction is represented by the iden-
tity of the transaction object, we are in a situation similar to named transactions. In general,
a call to Begin_Transaction from inside a transaction results in creating a nested transac-
tion. In this case, however, the transaction support can detect that a nested participant object
declaration actually refers to the same transaction object already in use, and therefore does
not need to create a nested transaction. Of course, subsequent calls to Commit must then also
be ignored. Only the calls associated with the outermost participant object must be taken
into account.

Figure 11.17: Programming Guidelines for the Object-Oriented Interface

procedure Participant_Code
(T : in out Your_Derived_Type) is
P : Participant (Self (T));

begin
-- perform work on behalf of the transaction
Commit_Transaction (P);

exception
when ... =>
-- handle internal exceptions
when others =>
Abort_Transaction (P);

end Participant_Code;
168

Implementation for Ada 95
11.2.6 Initializing and Shutting Down the Transaction Support

Regardless of what transaction interface is used, the programmer must initialize the transac-
tion support before starting any transaction. This is done by calling a procedure named
System_Init shown in figure 11.18.

The procedure defines parameters that allow the application programmer to customize the
transaction support according to the application requirements. In particular, a recovery man-
ager, a cache manager, and a storage parameter identifying the storage to be used to store
the log can be specified. If no parameters are supplied, the default implementation chooses a
LRU cache manager, a Redo/NoUndo recovery manager, and a mirrored file on the local
disk named “log” for storing the log.

If ever the system must be brought down, the procedure System_Shutdown should be
called. It writes all dirty transactional objects to their associated storage units, and performs
all outstanding log updates.

Figure 11.18: Initializing and Shutting Down the Transaction Support

procedure System_Init;

procedure System_Init (Log_Params : in Stable_Params_Type'Class;
 Cache_Manager : in Cache_Manager_Ref;
 Recovery_Manager : in Recovery_Manager_Ref);

procedure System_Shutdown;

Object_Exists, Object_Non_Existant, Object_Corrupt : exception;
169

Initializing and Shutting Down the Transaction Support
170

Chapter 12:

Related Work

This section gives an overview of the state of the art in transactional systems, concentrating
on the ones that offer transactions at the programming language level. Clouds [DRJLAR91]
and CHORUS [LJP93] for instance, two operating systems offering transactions as the prime
structuring mechanism for processes, are not discussed because they are not directly con-
cerned with providing transaction support in a programming language.

The transactional systems reviewed in this chapter comprise Argus, Camelot / Avalon,
Arjuna, Venari / ML, Transactional Drago, Isis, and PJava. To illustrate transaction-oriented
middleware, the CORBA Object Transaction Service and Enterprise Java Beans are also
presented.

12.1 Argus

Argus is an extension of the programming language CLU that supports the construction of
fault-tolerant distributed systems [Lis88]. It was developed at MIT in the 1980’s. Perfor-
mance measures and interesting implementation details of Argus can be found in [Lis87].

In Argus, a distributed program is composed of a group of guardians. A guardian con-
trols access to one or more resources. Figure 12.1 shows how a guardian is declared in
Argus [Lis85].

Each guardian resides at a single node of the distributed system, although it can
change its node of residence. A guardian can create other guardians dynamically by calling
creator functions , specifying at which node the new guardian will reside.1
171

Transaction Model
A guardian’s state is split into volatile and stable objects [LS83]. State stored in stable
objects survives crash failures, since these objects are periodically written to stable storage.
A crash destroys all volatile objects of a guardian, and also all processes that were running
at the time of the crash. After the crash, the Argus system restores the guardian’s code and
recovers the state of the stable objects from stable storage. Then, a special recovery process
is started that runs code defined by the guardian to initialize the volatile objects .

The state of a guardian can only be accessed by means of remotely callable proce-
dures called handlers , which form the interface for other guardians.

12.1.1 Transaction Model

To achieve fault-tolerance, handler invocations are performed inside a transaction, which is
called an action in Argus terms. To implement the ACID properties, Argus provides so-
called atomic objects. Built-in types of atomic objects include atomic arrays or atomic
records. Concurrency control is based on locking, providing multiple reader / single writer
semantics. Recovery is based on versioning, i.e. modifications are made on a copy of the
object’s state. If the action commits, the copy becomes the base version, and, if the object is
stable, all data is written to stable storage. If the action aborts, the copy is discarded.
[WL85] shows how user-defined atomic objects can be created that increase concurrency.

All handler invocations are automatically confined inside an action, and nested han-
dler invocations are performed as nested actions. Committing a handler invocation is con-
sidered to be the most common case, and therefore executing a return or signal statement
within the body of a handler indicates commitment. To force the action to abort, the return
or signal statement can be prefixed with the keyword abort.

Actions are also an integral part of the Argus language. Top-level actions can be cre-
ated by means of the statement enter topaction body end. This causes the body to execute
as a new top-level action. Likewise, it is possible to create a subaction using the statement
enter action body end. When the body of an action completes, it must indicate whether it
is committing or aborting. The former is done by executing the leave statement, the latter is
achieved by executing abort leave.

Figure 12.1: Declaration of Guardians and Handlers in Argus

name = guardian [parameter-decls] is creator-names
handles handler-names

{[stable] variable-decls-and-inits}
[recover body end] -- runs after a crash
[background body end]
{creator-handler-and-local-routine-definitions}

end name

name = handler [parameter-decls] returns type
{signals signal-decl} -- external exceptions

end name

1

2

3

4

5

2

3

4

172

Related Work
12.1.2 Concurrency

Argus implements the nested transaction model (see section 3.4.4 on page 36). A guardian
can service multiple handler invocations in parallel. An individual action, although, contains
only one thread of control, and therefore runs sequentially.

Nevertheless, subactions can be executed concurrently using a special language con-
struct, the cobegin statement, as shown in figure 12.2. The action executing the cobegin
statement is blocked. The program code inside the cobegin block is called a coarm. Multi-
ple instances of the coarm will be activated, and started simultaneously as concurrent subac-
tions. Each coarm will have local instances of the variables declared in decl-list. Only
once all subactions have completed, the parent is released. Hence, parent actions cannot
execute concurrently with their children.

12.1.3 Exceptions

Argus has a very elaborate exception model. A handler can either terminate normally or by
raising an external exception, i.e. returning a signal in Argus terminology. All possible
external exceptions are specified in the interface of a handler as shown in figure 12.1 .

After each handler invocation, an optional exception handling block can be added as
shown in figure 12.3. Exceptions can carry data, e.g. strings or other parameters.

A handler is terminated exceptionally by executing the signal statement. This may or may
not abort the corresponding action, depending on whether the statement abort signal or
just signal is used.

A very advanced form of exception handling is provided for the coenter construct.
Each coarm can have a local exception handler attached to it. By executing the exit or
abort exit statement, a coarm can commit or abort and at the same time force all other
coarms to abort. This is illustrated in figure 12.4.

The example executes a read operation on all copies of a replicated database. A
response from any single copy will suffice. Therefore, once a read has completed success-
fully, the exit will commit it and abort all remaining reads. The aborts take place immedi-

Figure 12.2: Executing Nested Actions Concurrently

coenter [action | topaction]
{ [foreach decl-list in iter-invocation] body } end

5

1

Figure 12.3: Exception Handling in Argus

variable := guardian_name.handler_name (parameters)
except when signal_name (parameters): ...

when failure (Why: string): ...
when unavailable (Why: string): ...

end

1

173

Camelot and Avalon
ately. In particular, it is not necessary for the handler calls to complete before the subactions
can be aborted.

12.2 Camelot and Avalon

Camelot [SPB88] is a facility for distributed transaction processing running on top of the
MACH operating system. It was developed at Carnegie Mellon University in the late 80’s as
a successor of TABS [SD+85]. Camelot has been implemented as a C library, and runs on a
variety of systems.

12.2.1 Transaction Model and Concurrency

Camelot is heavily inspired by Argus. The supported transaction model is exactly the same
as the one found in Argus. Concurrent execution of sibling transactions is supported, but
each individual transaction is sequential, and a parent transaction is suspended until all child
transactions have completed their work.

Camelot also provides a node configuration application that permits to create, delete,
start, shutdown, and restart servers, which are the equivalent of Argus guardians. Replica-
tion of servers is not directly supported.

Avalon [EMS91] is a programming language for use with Camelot that integrates
transactions into C++. The new keywords that provide transaction control map nicely to the
ones defined in Argus as shown in figure 12.5.

Avalon Argus

starting a transaction start transaction {}
start toplevel {}

enter action ... end
enter topaction ... end

starting concurrent nested
transactions

costart {...} coenter ... end

committing a transaction
committing with exception

leave
Not Provided!

return
signal exception

aborting a transaction
aborting with exception

undo leave
undo (Integer) leave

abort return
abort signal exception

Figure 12.5: Mapping Avalon Keywords to Argus

Figure 12.4: Pre-Emption of Sibling Actions

coenter
action foreach db: db_copy in all_copies (...)
result := db.read (...)
exit done

end except when done: ... end
174

Related Work
12.2.2 Exceptions

Exceptions are handled slightly differently in Avalon than in Argus. The major difference is
that in Avalon, raising an exception always results in aborting the transaction. Also, excep-
tions in Avalon are integers ranging from 0 to some upper limit defined by Avalon. Numbers
above this limit are used for system defined error conditions.

12.2.3 Transactional Objects

In Avalon, all objects accessed by transactions must be atomic to ensure their serializability,
transaction consistency and persistence. The Avalon language offers atomic versions of all
base C++ types, e.g. atomic_int, atomic_char, atomic_float. All Avalon types are allo-
cated on a special heap. Undo and persistence features are implemented by means of this
heap. Committing a transaction will, for instance, force all updated data from this heap to be
written to stable storage.

Users can define their own transactional types by extending one of the base Avalon
classes Recoverable, Atomic or Subatomic presented in figure 12.6.

The class Recoverable implements persistence. It provides two public methods Pin and
Unpin. Calling Pin ensures that subsequent changes to the object’s state will not be recorded
to stable storage until a later matching call to Unpin. The integer argument to Pin and Unpin
should be the size of the object that is modified. After a crash, a recoverable object will be
restored to a previous state in which it was not pinned. In order to guarantee consistency of
the application, all modifications to recoverable objects must be made between calls to Pin
and Unpin, or in a special pinning block pinning () {...}.

aborting concurrent siblings
aborting with exception

leave
undo leave

exit
abort exit

exception handling except (Integer) ... except when ...

Figure 12.5: Mapping Avalon Keywords to Argus

Recoverable

Atomic Subatomic

+Pin(size)
+Unpin(size)

+Commit(tid)
+Abort(tid)
#Seize

Figure 12.6: The Avalon Base-Classes

#Release
#Pause

+Read_Lock
+Write_Lock
175

Arjuna
The class Atomic provides strict concurrency control, i.e. multiple readers / single
writer. A programmer can derive from this class to implement application-specific atomic
types. All observer methods of the new class must call the operation Read_Lock prior to
accessing any attributes of the class. Likewise, all modifications must be preceded by a call
to Write_Lock. Persistence for the class Atomic is inherited from the class Recoverable.

The class Subatomic can be used if the programmer wants to exploit the object’s
semantics to permit higher levels of concurrency and more efficient recovery. Since the state
of a subatomic object is potentially accessed concurrently, an additional short-term mutual
exclusion lock is provided for each object. This lock must be seized, released, or tempo-
rarily released by means of the protected methods Seize, Release and Pause. This can also
be achieved by using the construct when (expression) statement or whenswitch (expres-
sion) statement.

Classes derived from the Subatomic class are expected to reimplement the Commit and
Abort methods. Both methods carry the transaction id as a parameter. As a result, it is possi-
ble to implement concurrency control based on the so-called hybrid atomicity model
[FLW92].

Even though Avalon is an extension of the C++ programming language specially
designed for Camelot, the application programmer must still adhere to some programming
guidelines [EMS91, chapter 22]. Care must be taken, for instance, not to allocate any
atomic object on the stack by just declaring a variable of an atomic type. Instead, references
to atomic objects must be used.

12.3 Arjuna

Arjuna [Shr95] is an object-oriented programming system implemented in C++ that pro-
vides a set of tools for the construction of fault-tolerant distributed applications. It has been
developed at the University of Newcastle upon Tyne, UK.

The computational model of Arjuna for constructing robust distributed applications is
based upon the concept of using nested transactions for controlling operations on local or
remote objects. Operations on remote objects are invoked using remote procedure calls,
which are implemented using a preprocessor called Rajdoot [SDP91]. Apart from this,
Arjuna is based on standard C++ only. All functionality is implemented inside C++ classes,
some of which can be customized by the application programmer using inheritance.

A Java version of Arjuna, JTSArjuna, that basically is an implementation of the
CORBA Object Transaction Service (see section 12.8 on page 181) for Java, has been
released recently [Arj00].
176

Related Work
12.3.1 Transaction Model

Arjuna supports nested transactions with multithreading (see section 3.6.1 on page 43).
Multiple threads can work on behalf of the same transaction, but threads are not coordinated
on transaction commit.

The interface to transactions is based on
the AtomicAction class [PSWL95], which
provides among others the methods Begin,
Abort and End that control the life cycle of the
transaction. Figure 12.7 shows how nested
transactions can be programmed in Arjuna. To
ensure that nesting is correctly managed,
AtomicAction maintains a class variable
called Current which points to the current active transaction. To support concurrency inside
a transaction, Arjuna provides the class ConcurrentAtomicAction, which is derived from
AtomicAction. Unfortunately, even in [SPW+94] no example was shown that uses this fea-
ture.

Interestingly, the recent Java implementation of Arjuna provides support for thread
control inside a transaction. The Programmer’s Guide [Arj00] states:

“It is possible that if one thread terminates a transaction, other threads may still be
active within it. By default, JTSArjuna will issue a warning in that case. However, it will
allow the transaction termination to continue. Other solutions to this problem are possible,
e.g. blocking the thread which is terminating the transaction until all other threads have dis-
associated themselves from the transaction context.”

Therefore, JTSArjuna provides the class CheckedAction, which allows the thread /
transaction termination policy to be overridden. Each transaction has an instance of this
class associated with it, and application programmers can provide their own implementa-
tions on a per transaction basis.

12.3.2 Exceptions

Exceptions are not integrated with transactions in Arjuna. Because a transaction is not an
exception context, unhandled exceptions crossing the transaction boundary are not detected,
and hence do not affect the status of a transaction.

Exceptions are also not used to notify the application programmer of the transaction
outcome. Instead, the End method of the AtomicAction class returns an error code that must
be checked by the application programmer.

{
AtomicAction A, B;

A.Begin(); // perform work on A
B.Begin(); // work on B
B.Abort();

A.End(); // commit A
}

Figure 12.7: Nested Transactions in Arjuna
177

Transactional Objects
12.3.3 Transactional Objects

Concurrency control in Arjuna is based on locking. The Lock class provides a default imple-
mentation of the multiple readers / single writer paradigm. It can be extended to provide
user-defined locking. The abstract method != is then used to determine if two locks conflict
or not [PS88].

Transactional objects, here called persistent objects, must be derived from the class
LockManager, and must allocate appropriate locks in their access procedures, e.g. an
observer method must allocate a read lock, and pass it to the protected method Setlock of
the LockManager class. For persistence, SaveState and RestoreState methods must also be
implemented by each user-defined class. Details on the implementation of persistence for
Arjuna can be found in [DPSW89].

12.4 Venari / ML

Venari / ML [HKM+94] is a transactional extension of Standard ML. It allows the program-
mer to create transactional versions of higher-order functions. It has been developed at Car-
negie Mellon University, Pittsburgh, USA.

12.4.1 Transaction Model and Concurrency

In Venari / ML transactions are factored into four separable features: persistence, undoabil-
ity, locking and threads. Relying on function composition, these features can be composed
to build the traditional transaction models or other models with weaker semantics. Some
existing transaction models are analyzed, e.g. flat transactions, nested transactions, concur-
rent transactions, and multithreaded transactions. Particular emphasis is placed on the
nested multithreaded transaction model (see section 3.6.2 on page 45).

Given a function f, a transactional version of this function can be created by applying
the transact function to it as shown in figure 12.8.

Since (transact f) is simply a function, and functions are first-class “citizens”, transac-
tions are really an integral part of the language.

12.4.2 Exceptions

Exceptions are used to inform the initiator of a transaction in case the transaction aborts. No
distinctions are made between internal or external exceptions. The Abort exception

Figure 12.8: Creating a Transaction in Venari / ML

((transact f) a)
handle Abort => [some work] 1
178

Related Work
handler allows some special action to be taken if the transaction aborts. Unhandled
exceptions crossing the transaction boundary cause the transaction to be aborted.

12.5 Transactional Drago

Drago [MAAG96] is a language developed in Spain at the Technical University of Madrid
and at the University of Las Palmas de Gran Canaria. It has been designed and implemented
as a fault–tolerant, distributed extension of Ada 83. Fault tolerance is achieved by active
replication of virtual nodes, which are called agents in Drago. Agents are very similar to
Ada tasks (see section 10.3.1 on page 134). They provide entries in their interfaces. The
system ensures that all replicated agents accept entries in the same sequence.

Replicas in Drago form groups. All replicated agents must behave in a deterministic
manner [GMAA97]. Drago also exploits groups as a naming abstraction by offering so–
called cooperative groups whose member agents may be different and may behave non–
deterministically.

12.5.1 Transaction Model

Drago has been recently extended to include transactions [PMJPA98]. Transactional Drago
supports multithreaded transactions (see section 3.6.2 on page 45), i.e. tasks are forked and
joined at the transaction boundaries.

Transactions are provided to the programmer by means of the transactional block
statement begin transaction / end transaction. It can be used wherever a programmer is
allowed to use the normal Ada block statement. A transactional block has the same structure
than a normal block, e.g. it has a declaration part. Concurrency inside a transaction is
achieved by declaring tasks in the declaration part of a transactional block. If tasks want to
synchronize, they must do so explicitly using the Ada rendezvous concept. The transaction
completes once all internal tasks have terminated.

Data declared inside a transaction are subject to automatic atomicity and concurrency
control. Transactional concurrency control is based on read / write locking.

Transactional Drago extends the group concept of Drago to cover transactional
groups. Transactional groups can be either cooperative or replicated. Transactional groups
must be called from within a transaction and may themselves only call other transactional
groups. Transactional agents handle requests from the same client serially, but requests
from different clients are handled concurrently.

Transactional Drago code is translated into Ada via a preprocessor. The generated
code makes calls to the TransLib framework [JPPMA00].

1

179

Exceptions
12.5.2 Exceptions

Transactional Drago integrates exceptions and transactions, i.e. transactions are exception
contexts. Implicit transaction aborts due to crashes or deadlocks are signalled using the pre-
defined exception Transaction_Abort_Error. Any unhandled exception that crosses a trans-
action boundary results in aborting the transaction. Therefore, explicit aborts can be
achieved by raising an exception.

Since multiple tasks are allowed to work concurrently inside a transaction, multiple
exceptions can occur concurrently. The system resolves exceptions raised concurrently by
several participating tasks before signalling a resulting exception to the outside of the trans-
action. In a distributed setting, exception resolution is split into a local resolution phase and
a distributed resolution phase.

Transactional Drago does not allow external exceptions to be declared in the transac-
tion interface, therefore no special distinction is made between internal and external excep-
tions.

12.6 PJama

The PJama project, a collaboration between the University of Glasgow and Sun Microsys-
tems Laboratories formerly known as the PJava project [ADJ+96, AJDS96], aims at provid-
ing orthogonal persistence (see section 2.5 on page 25) for the Java language without
modifying the language.

The system allows a programmer to define roots of persistence, where individual
objects can be registered during run-time. All objects reachable from a persistent root are
made persistent (persistence by reachability). This is achieved by modifying the Java Vir-
tual Machine.

12.6.1 Transaction Model

The design document of PJama [ADS96] also mentions support for transactions. [Day96]
presents a detailed design for extensible transaction management in PJama. Just as persis-
tence, transactions in PJama are transparent to the application, i.e. any normal Java class can
be used in a transaction. Again, this can only be achieved by modifying the Java Virtual
Machine. Classes that want to start or end a transaction are of course transaction aware, and
can therefore not be used with a non-modified Java Virtual Machine.

The concurrency model supported by PJama transactions seems to be close to the
multithreaded transaction model (see section 3.6.2 on page 45). The transaction model itself
is not imposed, though. The design leaves the transaction model open, by defining a class
TransactionShell that can be extended in order to provide support for different transaction
180

Related Work
models, e.g. flat transactions, nested transactions, split transactions (see section 3.4.5 on
page 38) or SAGAS (see section 3.4.8 on page 40).

Transactions are defined by creating an instance of a subclass of the class Transac-
tionShell. The programmer chooses the subclass depending on the transaction model that
suits the application requirements. The constructor of the subclass associates a Runnable
object with the transaction. The real transaction is actually created when the start method
is invoked on the TransactionShell object, which results in executing the run method of the
Runnable object in a transactional manner.

12.6.2 Exceptions

[Day96] mentions that the transaction framework confines exceptions that are uncaught by a
transaction body to the limit of the transaction. Unfortunately, no further details on excep-
tion handling are given.

12.7 Isis

Isis [BvR94] was the first group communication system based on the notion of view syn-
chrony. It offers the abstraction of a group together with operations for determining group
membership and a set of multicast communication primitives with various semantics.

Isis is known in the first place for this model of group communication, but the Isis
toolkit also includes a transaction manager built on top of the group abstraction
[GBCvR93]. Birman describes in [Bir85] the use of replication and transactions for build-
ing reliable distributed applications. Although Birman never clearly describes his assump-
tions about the computational model, it can be deduced that replicas may be multithreaded,
but that each transaction itself must behave deterministically, otherwise, the recovery proto-
col described in [Bir85] would not work correctly. Isis’ transaction toolkit supports nested
transactions; remote calls are viewed as nested transactions. The application is offered con-
structs to declare new top–level transactions and to abort voluntarily.

12.8 CORBA Object Transaction Service

The Common Object Request Broker Architecture [Obj95], CORBA for short, is a middle-
ware that specifies the way in which distributed objects communicate on a network, and
how clients are to invoke methods on these objects, without knowing the locations and par-
ticular execution environments of the objects. Just as UML, CORBA is a standard approved
by the Object Management Group.

CORBA is programming language independent, for it uses an interface definition lan-
guage called IDL to specify the interfaces among objects. Mappings exist from IDL to all
181

Transactional Objects
commonly used programming languages. The communication between objects is provided
by the Object Request Broker, the ORB. ORB implementations for different languages and
platforms can work together using the Internet Inter-ORB Protocol, IIOP for short.

The CORBA standard further defines an elaborate set of standard object services,
such as the Naming Service, the Persistence Service, the Concurrency Service, the Event
Service, the Trading Service, and also the Object Transaction Service [Obj00], OTS for
short. A new revision of the OTS has been released in May 2000.

The Object Transaction Service provides an object-oriented framework for distributed
transaction processing. It defines CORBA IDL interfaces that allow multiple distributed
objects to participate in a transaction. OTS conforms to the X/Open DTP Reference Model
and defines the integration of transactional subsystems using X/Open APIs.

12.8.1 Transactional Objects

Any CORBA object whose behavior is affected by being invoked within the scope of a
transaction must support the Transactional Object interface. A CORBA object whose state
is affected by committing or rolling back a transaction is called a Recoverable Object. A
recoverable object must participate in the Object Transaction Service protocols, in particu-
lar in the two-phase commit protocol by registering a Resource object with the transaction.
The resource interface comprises the prepare, rollback, commit and commit_one_phase
methods.

12.8.2 Transaction Model

Any OTS implementation must provide support for flat transactions (see section 3.4.1 on
page 33). Support for nested transactions is optional. OTS allows multiple threads to be
associated with the same transaction context [Obj00, 1.2.5.2], which means that concur-
rency inside a transaction is allowed (see section 3.6.1 on page 43). However, just as there is
no requirement for an ORB to service multiple requests in parallel, there is also no require-
ment for CORBA Recoverable Objects to be thread safe. It is therefore the responsibility of
the application programmer to implement the resources according to the way the applica-
tion makes use of them, e.g. to protect them from simultaneous accesses.

Transaction control in CORBA OTS is provided by means of the Current interface. It
defines the basic operations begin, commit, rollback, rollback_only. More elaborate opera-
tions allow the programmer to query the status of a transaction (get_status), obtain a string
describing the transaction (get_transaction_name), or even set time-outs for the transaction
(set_timeout). A thread can temporarily suspend its work on behalf of a transaction by call-
ing suspend. As a result, a Control object is handed back to the thread, which can later on
be used to reestablish the transaction context by calling resume.

If such a Control object, which can also be obtained by calling get_control, is
handed over to other threads, they can also be associated with the transaction by calling
182

Related Work
resume. No check is made to verify that the thread is not already working on behalf of some
other transaction. The previous transaction context of the thread is discarded.

The revision of the CORBA OTS in May 2000 also adds the possibility to register a
synchronization object with a transaction. The synchronization object will be notified
before the transaction commits, and after completion of the commitment.

12.8.3 Exceptions

The CORBA OTS does not integrate exceptions and transactions; transactions are not
exception contexts. However, exceptions are used to notify clients of the outcome of a trans-
action, e.g. Transaction_Required, Transaction_Rolledback, Invalid_Transaction or
Subtransactions_Unavaiable.

12.9 Enterprise Java Beans

Enterprise Java Beans is a higher-level component-based architecture for distributed busi-
ness applications [VR99]. The most recent version of the EJB specification released by Sun
Microsystems is version 1.1 [SHM+00]. Version 2.0 is close to completion.

EJB aims at simplifying the development of complex systems in Java by dividing the
overall development process into six different architecture roles that can be performed by
different parties.

One of the architecture roles is the Enterprise Bean Provider. Typically performed by
an application-domain expert, e.g. from the financial industry, the enterprise bean provider
builds a component, called an enterprise bean, that implements the business methods with-
out being concerned about the distribution, transaction, security, and other non-business-
specific aspects of the application.

The EJB Container Provider on the other hand is an expert in distributed systems,
transactions and security. The container provider must deliver tools for the deployment of
enterprise beans, and a run-time system that provides the deployed beans with transaction
and security management, distribution, management of resources, and other services.

The other architecture roles are the EJB Server Provider, the System Administrator,
the Deployer, and finally the Application Assembler1.

12.9.1 Session Beans and Entity Beans

The EJB architecture defines two types of enterprise beans, session beans and entity beans.
The session bean can be transaction-aware, may update shared data in an underlying

database, and is relatively short-lived. It can, for instance, be removed by a client, or be
destroyed due to a time-out. Session beans also disappear if the EJB container crashes. In

1. Version 2.0 of the EJB specification also defines the Persistence Manager Provider role.
183

Transaction Model
general, session beans contain state. However, the EJB specification also defines a stateless
session bean.

Entity beans provide an object view of data in a database and offer shared access to
this data by multiple users. They are long-lived, i.e. their lifetime is not linked to the life-
time of the container, but usually to the lifetime of the underlying database. Therefore, the
entity bean itself, the primary key with which the state of the entity bean can be retrieved
from the database, and its remote references survive a crash of the EJB container.

Structural and assembly information necessary for embedding a bean in an applica-
tion is contained in the Deployment Descriptor of a bean. Besides the name, class and inter-
faces of the bean, it also contains additional information, e.g. if bean-managed or container-
managed persistence is used for the entity bean.

12.9.2 Transaction Model

The Enterprise Java Beans architecture supports flat transactions only (see section 3.4.1 on
page 33). This decision was mainly motivated by the fact that in general only flat transac-
tions are supported by existing transaction processing and database management systems. If
vendors provide support for nested transactions in the future, Enterprise Java Beans may be
enhanced to take advantage of nested transactions.

The methods of an enterprise bean do not handle transactions directly. Instead, the
Deployment Descriptor determines the transactional behavior of a bean or a method. Possi-
ble transaction policies are presented in figure 12.9.

Policy Meaning

TX_NOT_SUPPORTED The method can not be called from inside a transaction.

TX_SUPPORTED The method can be called from inside a transaction.

TX_MANDATORY The method must be called from inside a transaction. If
this is not the case, an exception is thrown to the caller.

TX_REQUIRED The method requires to be executed from inside a transac-
tion. If this is not the case, a new transaction is created.

TX_REQUIRED_NEW The container creates a new transaction before executing
the method.

TX_BEAN_MANAGED The session beans are allowed to manage transactions
explicitly by calling javax.transaction.CurrentTransac-
tion.

Figure 12.9: Enterprise Java Beans Transaction Policies
184

Related Work
Multiple threads are allowed to work on behalf of the same transaction, but some important
restrictions, presented in the next section, apply.

12.9.3 Concurrency Control

Inter-Transaction Concurrency

When writing the entity bean methods, the bean provider does not have to worry about con-
current accesses by multiple transactions. The bean provider may assume that the container
will ensure appropriate synchronization for entity objects that are accessed concurrently by
multiple transactions.

The EJB specification mentions two different implementation strategies. The con-
tainer can activate multiple instances of a bean, one for each transaction, and let the under-
lying database handle proper serialization. Depending on what kind of lock the ejbLoad
method acquires, this may unnecessarily block read-only transactions, or lead to deadlocks.
The other solution is to activate only a single instance of the entity bean, and serialize the
accesses by multiple transactions to this instance, which also restricts concurrency among
transactions dramatically.

Intra-Transaction Concurrency

The EJB transaction model allows multiple threads to be associated with the same transac-
tion context. However, concurrent calls in the same transaction context to the same entity
object are illegal. Only loopback calls, i.e. a call that spreads from an object A to an object
B and then back to A, are allowed. In such a case, the thread executing the first operation on
A is suspended. A second thread is needed to execute the second operation on A. Thus,
loopback calls require a certain form of concurrency.

A bean provider can specify if an entity bean is reentrant or non-reentrant. If an
instance of a non-reentrant entity bean executes a client request in a given transaction con-
text, and another request with the same transaction context arrives for the same entity
object, the container will reject the second request by throwing the RemoteException excep-
tion. In this case, loopback calls are also prohibited. Reentrant beans on the other hand
allow loopback calls, but since the container can not distinguish a loopback call from a con-
current call, the client programmer must be careful to avoid code that could lead to a con-
current call in the same transaction context.

Transaction “diamond” scenarios, e.g. a program A that calls program B and C from
within the same transaction, where B and C both access the same entity bean D, are also
problematic. [SHM+00, EJB.11.7] states that a container must provide support for local dia-
monds, a situation that occurs if A, B, C, and D are deployed in the same EJB container.
Distributed diamond support is not required. However, an implementation supporting dis-
185

Exceptions
tributed diamonds must provide a consistent view of the state of an entity bean within a
transaction.

12.9.4 Exceptions

The EJB specification defines precise rules for exception handling [SHM+00, EJB.12]. Two
classes of exceptions are defined: application exceptions and system exceptions.

Application exceptions can be defined by the bean provider in the throws clauses of
the methods of a bean. Application exceptions are intended to be handled by the client, and
therefore should be used for reporting business logic exceptions. Application exceptions do
not automatically result in aborting the transaction, and therefore the bean provider must
ensure that the instance of the bean is in a consistent state before raising the exception, or
explicitly mark the transaction context for rollback by calling EJBContext.setRollback-
Only().

System exceptions represent situations that prevent a method from successfully com-
pleting, e.g. failure to obtain a database connection, Java Virtual Machine errors, or an
unexpected RuntimeException. If a bean encounters such a situation and it does not know
how to recover from it, the method should throw a suitable system exception, which must be
a RuntimeException, or a subclass of javax.ejb.EJBException. The EJB container catches
all system exceptions, logs them, aborts the current transaction, and throws java.rmi.Remo-
teException to the calling client. The container also ensures that no other method will be
invoked on the bean instance that threw the system exception.
186

Part IV

Case Study

Chapter 13:

Online Auction System

This chapter presents a case study intended to show how open multithreaded transactions
can be used for designing and structuring complex, distributed, and fault-tolerant systems.
The case study is about an auction system, a typical distributed application as found in the
growing field of e-commerce.

13.1 Requirements

The informal description of the auction system presented in this section is inspired by the
auction service example presented in [Vac00], which in turn is based on auction systems
found on various internet sites, e.g. www.ebay.com, www.ubid.com or www.ibazar.com.

13.1.1 General Requirements

The auction system runs on a set of host computers connected via a network. Clients will
access the auction system from one of these computers.

The system allows the clients to buy and sell items by means of auctions. Different
types of auctions are supported, namely English auctions, Dutch auctions, 1st Price auc-
tions, 2nd Price auctions, etc.

The English auction is the most well-known form of auction. The item for sale is put
up for auction starting at a relatively low minimum price. Bidders are then allowed to place
their bids until the auction closes. Sometimes, the duration of the auction is fixed in
advance, e.g. 30 days, or, alternatively, a time-out value can be associated with the auction.
189

Registration
Each time a new bid is registered, the time-out is reset. The auction closes once the time-out
expires.

In a Dutch auction, the starting price is set to a high price. Then, following a pre-
defined interval, e.g. once per day, this price is lowered by a certain amount. The first bidder
wins the auction.

During a 1st Price auction, all bidders place one secret bid. When the auction closes
after a specified amount of time, the bidder that made the highest bid wins the auction. The
2nd Price auction is based on the same principle. However, the winner, i.e. the bidder that
placed the highest bid, must pay only the amount of the next best bid.

13.1.2 Registration

Any client interested in using the auction system services must first register with the system
by filling out a registration form on which he or she must provide his or her real name,
postal address and email address, and a desired username and password.

Moreover, all registered users must deposit a certain amount of money or some other
security with the auction system at registration time. The money is transferred to a bank
account under control of the auction system. When bidding for goods, the sum of the bids
placed by a client may never exceed the money available on his or her account.

Once the registration process is completed, the client becomes a member of the auc-
tion system.

13.1.3 Login

A member of the auction service that wants to make use of the system must first login to the
system using his or her username and password. Once logged, the member may choose
from one of the following possibilities:

• Start a new auction,
• Browse the current auctions,
• Participate in an ongoing auction,
• Consult the history of other members, or
• Deposit or withdraw money from his or her account.

13.1.4 Starting an Auction

A member wanting to start a new auction must fill out an item form describing the item to be
put up for auction. Required information includes a title, a detailed description of the item
the member wants to sell, and an opening bid. In addition, the type of auction to be used
must be specified.

Once the item form has been submitted successfully, the system starts the auction and
inserts it into the list of current auctions.
190

Online Auction System
13.1.5 Browsing the List of Current Auctions

Any member logged into the auction system is allowed to browse the list of current auc-
tions. The information available in the current auction list is the title of the auction, the auc-
tion type, the description of the item for sale and the expiration date of the auction.

13.1.6 Participating and Bidding in an Auction

While browsing the list of current auctions, a member can decide to participate in one or
several of them. To bid on an item, a participant simply has to enter the amount of the bid. A
valid bid must fulfill the following requirements:

• The amount left on the bank account of the member that wants to place a bid is at least
as high as the sum of all his or her pending bids plus the new bid. This requirement
ensures that a member is always in the position to pay for all items he or she placed
bids on.

• The member placing the bid is not the member having started the auction. This rule
prohibits a seller to bid in his or her own auction.

• The auction has not expired.
• In English auctions, the new bid must be higher than the current bid. If nobody has

placed a bid yet, then the bid must be at least as high as the opening bid.
• In Dutch auctions, the new bid is usually equal to the current bid. In general, bids that

are higher than the current bid are also accepted.
• In 1st Price auctions and 2nd Price auctions, the new bid must be at least as high as

the opening bid.

If any of the previously stated requirements is not met, the auction system rejects the bid.

13.1.7 Closing an Auction

The time of closure of an auction depends on the type of auction (see section 13.1.1 on
page 189). If an auction closes, and no participant has placed a valid bid, then the auction
was unsuccessful. In that case, the auction system does not charge any money for the pro-
vided services.

If the auction closes and at least one valid bid has been made, then the auction ends
successfully. In that case, the participant having placed the highest bid wins the auction. The
money is withdrawn from the account of the winning participant and deposited on the
account of the seller, minus two percent, which is deposited on the account of the auction
system for the provided services.
191

Member History
13.1.8 Member History

The auction system keeps track of all auctions started or won by a member. Any member
can consult the history of other members.

13.1.9 Delivery of the Goods

The auction site Ibazar, for instance, trusts its members to effectively send the goods that
have been sold in an auction to the winning member. In these systems, the winning member
can, once he or she has received the item, vote on the quality of the delivery. This vote will
be registered in the history of the seller.

Other systems provide a special escrow service that blocks the money of the winning
bidder until the seller sends the goods. Only when the goods have been received and the bid-
der is satisfied, the money gets transferred to the seller account.

13.1.10 Fault-Tolerance Requirements

The auction system must be able to tolerate failures. Crashes of any of the host computers
must not corrupt the state of the auction system, e.g. money transfer from one account to the
other should not be executed partially. Temporary unavailability is acceptable.

13.2 Application Design

The auction system is an example of a dynamic system with cooperative and competitive
concurrency. The concurrency originates from the multiple connected members, who each
may participate in or initiate multiple auctions simultaneously. Inside an auction, the mem-
bers cooperate by bidding for the item on sale. On the outside, the auctions compete for
external resources, such as the user accounts. The system must be dynamic, since a member
must be able to join an ongoing auction at any time.

To deal with this complexity, the design of the auction system is based on open multi-
threaded transactions.

13.2.1 Transactional Objects in the Auction System

Any data used from within a transaction and also any data that should survive crashes must
be encapsulated inside a transactional object.

The transactional objects needed for implementing the auction system are fairly easy
to identify. Every concrete transactional object must implement the operations Create,
Restore and Delete. The relationships among the classes are presented in figure 13.1 (for
brevity, T_ stands for Transactional_).
192

Online Auction System
Registration and history information of members are stored in the Transactional_
Member_Information class. In addition to providing a constructor method Create, the class
also offers a method that allows a member to change password, and a method
Add_To_History that allows one to append a successful auction to the history of a user.

The Transactional_Member_Directory class defines the set of all registered members.
It provides methods to register and unregister members, and to retrieve the
Transactional_Member_Information object of a member.

The abstract Auction class represents auctions. It defines methods to query informa-
tion about the auction, and a method that can be called by a bidder to know if a previously
placed bid has been accepted. The Auction class has several concrete subclasses, e.g.
English_Auction and Dutch_Auction, that define the different auction types. Every subclass
must implement the required operations Create, Restore and Delete, plus the Place_Bid
operation.

T_Account

Create

Balance: Natural

T_Member_Information

Username: String
Password: String
Real_Name: String
Address: String
Email: String
History: History_List

Create
Restore
Delete

T_Member_Directory

Create

T_Auction_List

Create

T_Auction

Name: String
Description: String
Opening_Bid: Natural
Current_Bid: Natural
Status: enum {Open, Closed}

T_English_AuctionT_Dutch_Auction

Decrement: Natural
Time_Interval: Time

Create

Duration: Time

Create

0..*1 1 1

account

0..*

1

0..*

1

seller

0..1

0..*

current_winner0..1

0..*

winner

Figure 13.1: Transactional Objects found in the Auction System

Change_Password
Add_To_History

Restore
Delete
Register_Member
Unregister_Member
Get_Member

Restore
Delete
Insert_Auction
Delete_Auction
Get_Auction

Restore
Delete
Deposit
Withdraw
Balance
Transactional_Balance

Get_Name
Get_Description
Get_Status
Get_Current_Bid
Place_Bid
Bid_Accepted

T_... stands for
Transactional_

...

Create

Other_Auction

Restore
Delete
Place_Bid

Restore
Delete
Place_Bid

Restore
Delete
Place_Bid
193

Transactional Objects in the Auction System
The Auction_List class contains the list of all current auctions. It provides the usual
operations available on lists, i.e. Insert_Auction, Remove_Auction and Get_Auction.

Finally, every member has a bank account, represented by the Account class.

13.2.1.1 The Account Class

The description of the Transactional_Account class, which encapsulates a member’s bank
account, is given in more detail, because section 13.3.1 on page 198 shows how the class
can be realized in Ada using the Ada implementation of the OPTIMA framework.

The attributes and methods of the non-transac-
tional Account class are presented in figure 13.2. The
Deposit, Withdraw and Balance operations have the
usual semantics. A Withdraw is only possible if there is
enough money on the account, since members are not
allowed to overdraw their account. If this is not the case,
the exception Not_Enough_Funds is raised.

13.2.1.2 The Transactional_Account Class

The Transactional_Account class (see figure 13.1) provides additional Create, Restore and
Delete operations, plus a Transactional_Balance operation. This operation is similar to the
Balance operation, but it allows one to query the current balance of the account even if other
active transactions have modified the balance. Such an operation is necessary, for it allows
the owner of the account to query how much money is available for new bids in case his or
her other bids placed in other auctions are accepted.

Strict concurrency control designates Withdraw and Deposit as modifiers, Balance and
Transactional_Balance as observers. Unfortunately, for accounts, strict concurrency con-
trol unnecessarily restricts concurrency. Analyzing the semantics of the operations of the
Transactional_Account class reveals that some of them commute (see section 7.4.2.1 on
page 85).

The compatibility table for the operations of the Transactional_Account class is
given in figure 13.3. It is based on backward commutativity.

Deposit(y) Withdraw(y) Balance Trans_Bal

Deposit(x) yes yes no yes

Withdraw(x) no yes no yes

Balance no no yes yes

Trans_Bal yes yes yes yes

Figure 13.3: Compatibility Table for the Transactional_Account Class

Account

Deposit
Withdraw
Balance

Balance: Natural

Figure 13.2: The Account Class
194

Online Auction System
Note that the table is not symmetric. A Deposit operation commutes with a Withdraw opera-
tion, but Withdraw does not commute with Deposit. This is due to the fact that the Withdraw
operation can not be completed successfully if there is not enough money on the account.
An uncommitted Deposit operation could give the illusion that a withdraw is possible, but if
the deposit is rolled back later on, the withdraw would not be valid anymore.

The Transactional_Account is an example of a self-checking transactional object
(see section 4.6.4.2 on page 60). If a withdraw can not be completed, the exception
Not_Enough_Funds is raised. The participant of the open multithreaded transaction that
invoked the Withdraw operation is forced to address this abnormal situation by providing a
local exception handler. Otherwise, the exception crosses the transaction boundary and the
transaction is aborted.

13.2.2 Open Multithreaded Transactions in the Auction System

Open multithreaded transactions are used throughout the design of the auction system
according to the following rules:

• Any operation that might potentially interfere with other operations executed concur-
rently must be encapsulated inside a transaction.

• Any set of operations that should never be executed partially must be encapsulated
inside a transaction. This includes also creation of several transactional objects that
logically belong together.

• Any set of operations that might have to be undone must be encapsulated inside a
transaction or subtransaction.

Threads that want to cooperate by accessing the same transactional objects must be partici-
pants of the same open multithreaded transaction.

The following two sections present the design of two open multithreaded transactions
found in the auction system. The Registration transaction uses a single-threaded, non-nested
transaction, whereas the English auction transaction is based on a multithreaded, nested
transaction.

13.2.2.1 Registration Transaction

A client wanting to become a member of the auction system must first register with the sys-
tem (see section 13.1.4 on page 190) by filling out the registration form. As a consequence,
a new Account with the initial deposit is created for the member. Then, a new
Member_Information object is created, initialized with all relevant data from the registration
form and a reference to the new account, and finally inserted into the Member_Directory.
These three operations, namely creating the Account and Member_Information objects and
updating the Member_Directory, must be performed atomically, since a partial execution,
195

Open Multithreaded Transactions in the Auction System
e.g. creating the Member_Information object without registering it in the Member_Directory,
would lead to permanent storage leaks.

In order to prevent this from happening, the two Create operations and the Register opera-
tion are executed in a transaction as shown in figure 13.4. In this case, the structure of the
open multithreaded transaction is identical to the one of a flat transaction, namely single-
threaded, without subtransactions.

Section 13.3.3.1 on page 205 shows how the registration transaction has been imple-
mented using the object-based interface for Ada 95.

13.2.2.2 English Auction

Maybe the most important requirement for auctions is that they must be fault-tolerant. All-
or-nothing semantics must be strictly adhered to. Either there is a winner, and the money
has been transferred from the account of the winning bidder to the seller account and the
commission has been deposited on the auction system account, or the auction was unsuc-
cessful, in which case the balances of the involved accounts remain untouched.

Auctions are complicated interactions among multiple participants. They incorporate
cooperative and competitive concurrency. The participants of an auction cooperate by plac-
ing bids on the same item. Members are allowed to participate in several auctions at the
same time. Concurrently executing auctions compete for the money on the member
accounts.

The number of participants of an auction is not fixed in advance. Therefore, auctions
must also be dynamic: new participants must be able to join the auction at any time.

All these requirements can be met if an individual auction is encapsulated inside an
open multithreaded transaction. A graphical illustration of an English auction is shown in
figure 13.5.

Every member creates a new thread that represents the member inside the auction
transaction. As a result, members can participate in multiple auctions at the same time.

In figure 13.5, member 1 starts a new auction, creating a new seller thread. Once the
item form has been completed, a new open multithreaded transaction, here named T1, is
started. Then, the seller creates a new auction object by invoking the Create function, and
inserts it into the list of current auctions.

Figure 13.4: The Registration Transaction

Thread

Create (...)

Transaction Begin

Member_Directory

Transaction Commit

Member_Information

Register (Member_Information)Create (...)

Account
196

Online Auction System
Other members consulting the current auction list will now see the new auction. In our
example, member 2 decides to participate. A new bidder thread is created, which joins the
open multithreaded transaction T1. It queries the amount of the current bid by invoking the
Get_Current_Bid operation on the auction object. Before placing the bid, a new subtransac-
tion, here named T1.1, is started. Within the subtransaction, the required amount of money
is withdrawn from the account of member 2. Since there is enough money on the account,
the withdrawal completes successfully and the bid is announced to the Auction object by
calling Place_Bid.

In the meantime, some other member, member 3, joins the auction, spawning also a
bidder thread, which joins the open multithreaded transaction T1. After consulting the cur-
rent bid, member 3 decides to overbid member 2. Again, a subtransaction is started, here
named T1.2, and the required amount of money is withdrawn from the account of
member 3. The new bid is announced to the Auction object by calling Place_Bid. Once the
bidder thread of member 2 gets to know this, it consequently aborts the subtransction T1.1,
which in turn rolls back the withdrawal performed on the account of member 2. The money
returned to the account of member 2 can now be used again for placing new bids.

In the example shown in figure 13.5, no other bidders enter the auction, nor does
member 2 try to overbid member 3. The bidder thread of member 2 has therefore completed

Commit T1.2

T1

Member 1

Member 2

Member 3

Auction Object

Member 1 Account

Member 2 Account

Member 3 Account

Create

Get_Current_Bid

Withdraw

Place_Bid

Get_Current_Bid

Withdraw
Place_Bid T1.1

T1.2

Abort T1.1

Get_Status

Deposit

B
id

de
r

B
id

de
r

Se
lle

r

System Account

Deposit

Figure 13.5: The English Auction Transaction

Current_Auction_List
Insert_Auction

Member_1_Information

Add_To_History

Commit T1

Get_Auction

Get_Auction
197

Implementation
its work inside the auction, and commits the global transaction T1. Once the auction closes,
the bidder thread of member 3 gets to know that it has won the auction. It then commits the
subtransaction T1.2, which confirms the previous withdrawal. It also commits the global
transaction T1. The seller thread in the meantime deposits two percent of the amount of the
final bid on the account of the auction system as a commission, deposits 98 % of the amount
of the final bid on the account of member 1, inserts the Auction object into the history of the
Member_Information object of member 1, and finally also commits T1.

Only now that all participants have voted commit, the transaction support will make
the changes made on behalf of T1 persistent, i.e. the creation of the auction object, the bid-
ding, the withdrawal from the account of member 3 (inherited from subtransaction T1.2),
the deposit on the auction system account, the deposit on the account of member 1, and the
insertion of the auction object into the history of the Member_Information object of
member 1.

The Ada implementation of the auction transaction is presented in section 13.3.3.2 on
page 207.

13.3 Implementation

The last part of this chapter sketches the implementation of the auction system using the
prototype implementation of the framework for Ada 95 presented in chapter 11.

Unfortunately, the OPTIMA framework currently does not support distribution. It is not
possible to distribute the individual participants of an open multithreaded transaction onto
different machines. For this reason, the functionality of the system is centralized, imple-
mented on a single server. The program running on the client machines is just a simple user
interface that forwards the individual requests to the server using the distribution features of
Ada (section 10.5 on page 143).

13.3.1 Transactional Objects

This section illustrates how a conventional class can be transformed into a transactional
class. As an example, the transformation of the Account class is presented, resulting in the
creation of the Transactional_Account class.

13.3.1.1 Account_Type Implementation

The Account class has been implemented in the package Accounts, that defines the tagged
type Account_Type together with the primitive operations Deposit, Withdraw and Balance.
Figure 13.6 shows the specification and the body of the package Accounts.
198

Online Auction System
13.3.1.2 Transactional_Account_Type Specification

In order to be able to take part in a transaction, the Account class must be transformed into a
Transactional_Account class following the rules stated in section 9.2 on page 110.

The following paragraphs describe this transformation. Most of the work could be
performed automatically by a pre-processor (see section 11.2.2 on page 160). The specifica-
tion of the Transactional_Account_Type, for instance, can be derived from the specification
of the Account_Type as shown in figure 13.7.

Three additional operations must be provided for transactional objects, namely
Create , Restore and Delete . An object of type Transactional_Account_Type must
store references to the associated memory object and atomic call object .

13.3.1.3 Transactional_Account_Type Implementation

The body of the Transactional_Accounts package is rather complicated, and therefore
explained in incremental steps.

According to figure 9.4 on page 115, which shows all the classes that must be imple-
mented to encapsulate a non-transactional data object, a transactional account must imple-

with Ada.Streams; use Ada.Streams;
package Accounts is

type Account_Type is
limited private;

type Account_Ref is
access all Account_Type;

procedure Deposit
(Account : in out Account_Type;
 Amount : in Natural);

procedure Withdraw
(Account : in out Account_Type;
 Amount : in Natural);

function Balance (Account :
Account_Type) return Natural;

Not_Enough_Funds : exception;

private

type Account_Type is
tagged limited record
Balance : Natural := 0;

end record;

end Accounts;

package body Accounts is

procedure Deposit
(Account : in out Account_Type;
 Amount: in Natural) is

begin
Account.Balance :=
Account.Balance + Amount;

end Deposit;

procedure Withdraw
(Account : in out Account_Type;
 Amount : in Natural) is

begin
Account.Balance :=
Account.Balance - Amount;

exception
when Constraint_Error =>
raise Not_Enough_Funds;

end Withdraw;

function Balance (Account :
Account_Type) return Natural is

begin
return Account.Balance;

end Balance;

end Accounts;

Figure 13.6: Implementation of the Accounts package

1 2 3

4

199

Transactional Objects
ment the classes Account_Creation_Operation, Account_Loading_Operation, Account_
Saving_Operation, Account_Deletion_Operation, and, for each operation of the original
data object, a class derived from Normal_Operation that encapsulates the operation invoca-
tion and the concurrency control information, encapsulated in a class derived from
Operation_Information. The Memory_Object class, the Atomic_Call class, a concrete
Concurrency_Control class and Storage class can be reused for all transactional objects.

13.3.1.4 Type Safety

Ada is a strongly typed language. The memory object, however, must be able to keep a ref-
erence to the data object, which can be of any type. In C++, for instance, a void pointer, i.e.
a pointer that can point to anything, is used in such a situation. The more type-safe Ada

with Accounts; use Accounts;
with Atomic_Calls; use Atomic_Calls;
with Memory_Objects.Concrete; use Memory_Objects.Concrete;
with Storage_Params.Non_Volatile; use Storage_Params.Non_Volatile;

package Transactional_Accounts is

type Transactional_Account_Type is limited private;

type Transactional_Account_Ref is
access all Transactional_Account_Type;

procedure Deposit (Account : in out Transactional_Account_Type;
 Amount : in Natural);

procedure Withdraw (Account : in out Transactional_Account_Type;
 Amount : in Natural);

function Balance (Account : Transactional_Account_Type)
return Natural;

function Transactional_Balance (Account : Transactional_Account_Type)
return Natural;

function Create (Params : Non_Volatile_Params_Type'Class)
return Transactional_Account_Ref;

function Restore (Params : Non_Volatile_Params_Type'Class)
return Transactional_Account_Ref;

procedure Delete;

Not_Enough_Funds : exception renames Accounts.Not_Enough_Funds;

private

type Transactional_Account_Type is limited record
Atomic_Call : Atomic_Call_Ref;
Memory_Object : Concrete_Memory_Object_Ref;

end record;

end Transactional_Accounts;

1

2

3

4

Figure 13.7: Specification of the Transactional_Accounts package
200

Online Auction System
approach is to instantiate the generic procedure Ada.Unchecked_Conversion, creating a pro-
cedure that allows to convert an access type to some other access type. This technique is
illustrated in figure 13.8. The type Data_Ref is defined as an access to a private type in the
package Memory_Objects.

13.3.1.5 Creation, Loading, Saving and Deletion

The memory object associated with a transactional account object must be able to create
accounts, load accounts, save accounts and delete accounts. This functionality is encapsu-
lated in the Creation_Operation, Loading_Operation, Saving_Operation and
Deletion_Operation classes (see figure 9.2 on page 113). Concrete subclasses of these
classes must be implemented for each transactional class. The implementation for the trans-
actional account class is shown in figure 13.9.

The Create function of the Account_Creation_Type just allocates a new Account_Type
object . The Create_And_Load function of the type Account_Loading_Type does alike, and
subsequently initializes the state of the account from a Stream by using the predefined
implementation of the ‘Read attribute . Save writes the state of the account to a Stream by
means of the predefined attribute ‘Write , and Delete frees the memory associated with
an account using an instantiation of Ada.Unchecked_Deallocation .

Based on these classes, the Create and Restore constructor functions are easy to
implement. Figure 13.10 shows the implementation of the Create constructor function. It
allocates a new transactional object , declares a creation, loading, saving and deletion
object , and passes them to the constructor of the memory object class. The last two
parameters specify that logical logging and in-place update will be used . Finally, an
atomic call object is allocated .

13.3.1.6 Concurrency Control

Next, concurrency information for the operations Deposit, Withdraw, Balance and
Transactional_Balance must be provided. This is illustrated in figure 13.11.
The Account_Information_Type derives from the abstract Operation_Information_Type
(see section 7.4.3 on page 87). It encapsulates the concurrency control information for all
four operations. The kind of operation is determined by the Kind discriminant .

function To_Data_Ref is
new Ada.Unchecked_Conversion (Account_Ref, Data_Ref);

function To_Account_Ref is
new Ada.Unchecked_Conversion (Data_Ref, Account_Ref);

Figure 13.8: From Account_Ref to Data_Ref, and Vice Versa

1

2

3

4

1

2

3

4

1

201

Transactional Objects
type Account_Creation_Type is new Creation_Operation_Type
with null record;

function Create (Operation : Account_Creation_Type) return Data_Ref is
Result : Account_Ref := new Account_Type;

begin
return To_Data_Ref (Result);

end Create;

type Account_Loading_Type is new Loading_Operation_Type
with null record;

procedure Create_And_Load (Operation : Account_Loading_Type;
 Data_Object : out Data_Ref;
 Stream : Abstract_Stream_Ref) is
Result : Account_Ref := new Account_Type;

begin
Account_Type'Read (Stream, Result.all);
Data_Object := To_Data_Ref (Result);

end Create_And_Load;

procedure Load (Operation : Account_Loading_Type;
 Data_Object : Data_Ref;
 Stream : Abstract_Stream_Ref) is
Tmp : Account_Ref := To_Account_Ref (Data_Object);

begin
Account_Type'Read (Stream, Tmp.all);

end Load;

type Account_Saving_Type is new Saving_Operation_Type with null record;

procedure Save (Operation : Account_Saving_Type;
 Data_Object : Data_Ref;
 Stream : Abstract_Stream_Ref) is
begin
Account_Type'Write (Stream, To_Account_Ref (Data_Object).all);

end Save;

type Account_Deletion_Type is new Deletion_Operation_Type
with null record;

procedure Delete (Operation : Account_Deletion_Type;
 Data_Object : in out Data_Ref) is

procedure Free_Account is new
Ada.Unchecked_Deallocation (Account_Type'Class, Account_Ref);

Tmp : Account_Ref := To_Account_Ref (Data_Object);
begin
Free_Account (Tmp);
Data_Object := null;

end Delete;

1

2

3

4

Figure 13.9: Implementing Creation, Loading, Saving and Deletion
202

Online Auction System
function Create (Params : Non_Volatile_Params_Type'Class)
return Transactional_Account_Ref is
Result : Transactional_Account_Ref := new Transactional_Account_Type;
My_Creation_Operation : Account_Creation_Type;
My_Loading_Operation : Account_Loading_Type;
My_Saving_Operation : Account_Saving_Type;
My_Deletion_Operation : Account_Deletion_Type;

begin
Result.My_Memory_Object := Concrete_Memory_Object_Ref
(Create (Params,
 My_Creation_Operation, My_Loading_Operation,
 My_Saving_Operation, My_Deletion_Operation,
 Logical, Inplace));

Result.My_Atomic_Call :=
new Atomic_Call_Type (Result.My_Memory_Object);

return Result;
end Create;

1

2

3

4

Figure 13.10: Implementing the Create Constructor for Transactional Accounts

type Operation_Kind_Type is
(Deposit_Kind, Withdraw_Kind, Balance_Kind, Trans_Balance_Kind);

type Account_Information_Type (Kind : Kind_Type) is
new Operation_Information_Type with null record;

type Account_Information_Ref is
access all Account_Information_Type'Class;

function Is_Compatible (Info : Account_Information_Type;
 Other_Info : Account_Information_Type)
return Boolean is

begin
case Info.Kind is
when Deposit_Kind =>
return not Other_Info.Kind = Balance_Kind;

when Withdraw_Kind =>
return Other_Info.Kind = Withdraw_Kind
or Other_Info.Kind = Trans_Balance_Kind;

when Balance_Kind =>
return Other_Info.Kind = Balance_Kind
or Other_Info.Kind = Trans_Balance_Kind;

when Trans_Balance_Kind =>
return True;

end case;
end Is_Compatible;

function Is_Modifier (Info : Account_Information_Type) return Boolean is
begin
return Info.Kind = Deposit or Info.Kind = Withdraw;

end Is_Modifier;

1

2

3

Figure 13.11: Implementing Concurrency Control Information for Accounts
203

Starting the System
The operation Is_Compatible, required for inter-transaction concurrency control,
implements the compatibility table presented in figure 13.3 . The operation Is_Modifier,
required for intra-transaction concurrency control, classifies the Deposit and Withdraw oper-
ations as modifiers and the Balance and Transactional_Balance operations as observers .

13.3.1.7 Encapsulating Operations

Finally, the Deposit, Withdraw, Balance and Transactional_Balance operations must be
encapsulated inside Normal_Operation objects (see section 9.2.3 on page 112).

Figure 13.12 shows how this is accomplished for the Deposit operation. First,
Deposit_Operation_Type is derived from Normal_Operation_Type. The Deposit operation
has one input parameter of type Natural, that represents the amount of money the caller
wants to deposit on the account. Therefore, the Deposit_Operation_Type must declare a
component Deposit_Amount of the same type, which can be used for storing the value of the
input parameter Amount .
The Deposit operation of the transactional account declares an instance of the
Deposit_Operation_Type, initializes the component Deposit_Amount with the value pro-
vided as an input parameter, and passes the declared instance on to the Atomic_Call object
associated with the transactional object .

The Deposit_Operation_Type must implement four mandatory primitive operations,
namely Do_Operation, Undo_Operation, Get_Operation_Info and Is_Update.

Do_Operation is invoked by the Memory_Object after the Atomic_Call object has per-
formed the required concurrency control prologue and recovery prologue. After type-cast-
ing the Data_Object reference back to an Account_Ref reference and extracting the amount
of money from the component Deposit_Amount, Do_Operation finally calls Deposit of the
Account_Type .

The Undo_Operation is implemented in a similar way. Undoing a deposit comes down
to withdrawing the amount of money that has been previously deposited .

Get_Operation_Info must return an operation information object encapsulating the
concurrency control information for the Deposit operation. It therefore creates a new
Account_Information_Type object with the appropriate discriminant, e.g. Deposit_Kind .

Since an invocation of Deposit modifies the durable state of an account object,
Is_Update must return True .

13.3.2 Starting the System

Before starting any transaction, the programmer must initialize the transaction support. This
is done by calling the procedure System_Init described in section 11.2.6 on page 169. In
our implementation no parameters are supplied to the procedure, and hence the default
implementation, i.e. LRU cache manager, a Redo/NoUndo recovery manager, and a mir-
rored file for storing the log are used.

2

3

1

2

3

4

5

6

204

Online Auction System
13.3.3 Example Implementation of Open Multithreaded Transactions

This section presents the implementation of the Registration transaction and the English
auction transaction of the auction system. The code uses the object-based interface for Ada
presented in section 11.2.4 on page 163. For clarity, all code dealing with the graphical user
interface has been omitted, and replaced by calls to the imaginary package GUI.

13.3.3.1 Registration

Figure 13.13 shows the implementation of the procedure that performs the registration of
new members using a single-threaded, flat transaction conforming to the design presented in
section 13.2.2.1 on page 195.

type Deposit_Operation_Type is new Normal_Operation_Type with record
Deposit_Amount : Natural;

end record;

procedure Do_Operation (Operation : in out Deposit_Operation_Type;
 Data_Object : in Data_Ref) is
begin
Deposit (To_Account_Ref (Data_Object).all,
 Operation.Deposit_Amount);

end Do_Operation;

procedure Undo_Operation (Operation : in out Deposit_Operation_Type;
 Data_Object : in Data_Ref) is
begin
Withdraw (To_Account_Ref (Data_Object).all,
 Operation.Deposit_Amount);

end Undo_Operation;

function Get_Operation_Info (Operation : Deposit_Operation_Type)
return Operation_Information_Ref is

begin
return new Account_Information_Type (Deposit_Kind);

end Get_Operation_Info;

function Is_Update (Operation : Deposit_Operation_Type)
return Boolean is

begin
return True;

end Is_Update;

procedure Deposit (Account : in out Transactional_Account_Type;
 Amount : in Natural) is
Deposit_Operation : Deposit_Operation_Type;

begin
Deposit_Operation.Value := Value;
Atomic_Do (Account.Atomic_Call.all, Deposit_Operation);

end Deposit;

1

3

4

5

6

2

Figure 13.12: Encapsulating the Deposit Operation
205

Example Implementation of Open Multithreaded Transactions
First, the user is asked to fill out the registration form. The code outlines this user
interaction by calling operations of the package GUI . In window-based graphical user
interfaces, this interaction might be implemented differently. The Member_Info_Params and
Account_Params variables designate where the state of the new Account and
Member_Information objects will be stored. In our example, they are stored on mirrored
files. Mirrored files are declared in the package Storage.Non_Volatile.Sta-

ble.Mirrored_File_Storage and the corresponding storage parameters can be found in the
package Storage.Non_Volatile.Stable.Mirrored_File_Storage_Params. The username of
the new member, combined with the additional ending “.account” respectively
“.member_info” are used as file names. The member directory is stored in a mirrored file
named “member_directory” .

Next, a Transactional_Member_Info_Ref, a Transactional_Account_Ref and a
Transactional_Member_Directory_Ref are declared. These references are needed to work
with the transactional objects inside the transaction .

Figure 13.13: Implementation of the Registration Transaction

with Object_Based_Transaction_Interface;
use Object_Based_Transaction_Interface;

with Storage_Params.Non_Volatile.Stable.Mirrored_File_Storage_Params;
use Storage_Params.Non_Volatile.Stable.Mirrored_File_Storage_Params;

procedure Register_Client is
Name : String := GUI.Get_Name;
Password : String := GUI.Get_Password;
Realname : String := GUI.Get_Realname;
Address : String := GUI.Get_Address;
Email : String := GUI.Get_Email;
Initial_Deposit : Natural := GUI.Get_Initial_Deposit;

Account_Params : Mirrored_File_Storage_Params_Type :=
String_To_Storage_Params (Name & “.account”);

Member_Info_Params : Mirrored_File_Storage_Params_Type :=
String_To_Storage_Params (Name & “.member_info”);

Member_Directory_Params : Mirrored_File_Storage_Params_Type :=
String_To_Storage_Params (“member_directory”);

New_Member : Transactional_Member_Info_Ref;
New_Account : Transactional_Account_Ref;
Member_Directory : Transactional_Member_Directory_Ref;

Register_Transaction : Transaction;

begin
New_Account := Create (Account_Params, Initial_Deposit);
New_Member := Create (Member_Info_Params, Username, Password, Realname,

 Address, Email, Account_Params);
Member_Directory := Restore (Member_Directory_Params);
Register_Member (Member_Directory.all, Member_Params);
Commit_Transaction (Register_Transaction);

end Register_Client;

1

2

3

4

5

6

7

8

9

1

2

3

206

Online Auction System
Finally, the transaction is started by declaring the Register_Transaction object based on
the Transaction type defined in the package Object_Based_Transaction_Interface .
Inside the transaction, a new Transactional_Account is created by invoking the Create con-
structor function, passing as parameter the initial deposit. As a result, the mirrored file
“username.account” is created on the local disk . Next, a
Transactional_Member_Information_Type object is created, passing all relevant informa-
tion about the new member as parameters to the Create constructor .

In order to register the member, the member directory must first be loaded. This is
done by calling the Restore operation , which will read the directory from the mirrored
file “member_directory”. Only then the member object can be registered in the directory by
invoking Register_Member .

Last but not least, the transaction is committed by invoking Commit_Transaction on
the Register_Transaction object . As a result, the creation and initialization of the
account object, the creation and initialization of the member information object, and the
changes made to the member directory are made durable.

13.3.3.2 English Auction Transaction

Figure 13.14 and figure 13.15 show the implementation of the Seller_Task and
Bidder_Task that represent the seller and the bidders in an auction conforming to the design
presented in section 13.2.2.1 on page 195.

Seller Implementation

Once a member has started a new auction and filled out the item form, a new seller task is
created that represents the member in the auction. The information on the item form is
transmitted to the task. This is symbolized in the code by calling operations of the package
GUI . The Auction_Params and List_Params storage parameters identify where to store the
stable state of the new Auction object, and where to retrieve the Auction_List object con-
taining the list of current auctions . The references Auction and Current_Auctions are
needed to manipulate the transactional objects .

Next, a named open multithreaded transaction encapsulating the auction is started. To
name the transaction after the auction title, a reference to a string containing the title is
passed as a discriminant constraint to the Auction_Transaction object . Then, a new
Transactional_Auction object is created and initialized . The current auction list is
retrieved , and the new auction object inserted into the list . Now, the seller task must
wait until the auction closes , hoping that some bidders will join the auction and place
bids.

Once the auction is closed, the seller task examines the current bid. If it is higher or
equal to the opening bid, then at least one successful bid has been made . In that case, the
account of the seller and the account of the auction system are loaded . 98% of the bid is

4

5

6

7

8

9

1

2

3

4

5

6 7

8

9

10
207

Example Implementation of Open Multithreaded Transactions
transferred to the seller account , 2% of the bid is deposited on the auction system
account . Finally, the transaction is committed by invoking the Commit_Transaction oper-
ation on the Auction_Transaction object .

Bidder Implementation

The implementation of the Bidder_Task is shown in figure 13.15. The Bidder_Task collabo-
rates with the Seller_Task through the Transactional_Auction object.

Figure 13.14: Implementation of the Seller Task

task body Seller_Task is

Title : String := GUI.Get_Title;
Description : String := GUI.Get_Description;
Opening_Bid : Natural := GUI.Get_Opening_Bid;
Timeout : Duration := GUI.Get_Timeout;

Auction_Params : Mirrored_File_Storage_Params_Type :=
String_To_Storage_Params (Title & “.auction”);

List_Params : Mirrored_File_Storage_Params_Type :=
String_To_Storage_Params (“auction_list”);

Auction : Transactional_Auction_Ref;
Current_Auctions : Transactional_Auction_List_Ref;
Current_Bid : Natural;

Auction_Transaction : Transaction := (new String’ (Title), null, 0);

begin

Auction := Create (Auction_Params, Title, Description
 Opening_Bid, Timeout);
Current_Auctions := Restore (List_Params);
Insert_Auction (Current_Auctions.all, Auction_Params);

while Get_Status (Auction.all) /= Closed loop
delay A_While;

end loop;

Current_Bid := Get_Current_Bid (Auction.all);
if Current_Bid >= Opening_Bid then
declare
Seller_Account : Transactional_Account_Ref :=
Restore (String_To_Storage_Params (Username & “.account”));

Auction_System_Account : Transactional_Account_Ref :=
Restore (String_To_Storage_Params (“auction_system.account”));

begin
Deposit (My_Account.all, Natural (Float (Current_Bid) * 0.98));
Deposit (Auction_System_Account.all,
 Natural (Float (Current_Bid) * 0.02));

end;
end if;

Commit_Transaction (Auction_Transaction);
end Seller_Task;

1

2

3

4

5

6

7

8

9

10

11

12

13

11

12

13
208

Online Auction System
Figure 13.15: Implementation of the Bidder Task

task body Bidder_Task is

Auction : Transactional_Auction_Ref := Members.Get_Auction;
Username : String := Members.Get_Username;
Title : String := Members.Get_Title;

My_Account : Transactional_Account_Ref
Current_Bid : Natural;
My_Bid : Natural;

Auction_Transaction : Transaction (new String’ (Title), null, 0);

begin
My_Account :=
Restore (String_To_Storage_Params (Username & “.account”));

while Get_Status (Auction.all) /= Closed loop
Current_Bid := Get_Current_Bid (Auction.all);
select
GUI.Get_Bid_From_User (My_Bid, Current_Bid);

begin

declare
Subtransaction : Transaction;

begin
Withdraw (My_Account.all, My_Bid);
Place_Bid (Auction.all, My_Bid);

while Bid_Accepted (Auction.all)
and Get_Status (Auction.all) /= Closed loop
delay A_While;

end loop;

if Bid_Accepted (Auction.all) then
Commit_Transaction (Subtransaction);

else
GUI.Notify_User (Overbid);
raise Transaction_Abort;

end if;

exception
when Not_Enough_Funds =>
GUI.Notify_User (Not_Enough_Funds);
raise Transaction_Abort;

end;

exception
when Transaction_Abort => null;

end;

or
delay A_While;

end select;
end loop;

Commit_Transaction (Auction_Transaction);
end Bidder_Task;

1

2

3

2

7

5

8a

6

9

10

12

13

14

15

11

16

8b

17
209

Example Implementation of Open Multithreaded Transactions
When a member decides to participate in an auction, a new Bidder_Task is created.
The reference to the Auction object representing the auction, the username of the member,
and the title of the auction are handed to the Bidder_Task, e.g. by using an access discrimi-
nant, rendez-vous or protected object. In the code, this is symbolized using calls to the pack-
age Members . Next, an Transactional_Account_Ref used for manipulating the member
account, and other auxiliary variables are declared . The Bidder_Task then joins the open
multithreaded transaction started by the Seller_Task by also declaring a transaction object
Auction_Transaction, passing the same name, i.e. the title of the auction, as discriminant
constraint .

Inside the transaction, the member account is loaded . The Bidder_Task now
obtains the current bid from the Auction object , and asks the member to place a bid by
calling an operation of the package GUI . As long as the auction is not closed, the member
is allowed to place a bid . If the user does not place a bid, the current bid is updated peri-
odically using a timed select statement .

If the user places a bid, a new subtransaction is started by opening a new Ada block
and declaring another transaction object . An attempt is made to withdraw the required
money from the member’s bank account . If there is not enough money on the account,
the account object raises the Not_Enough_Funds exception. The internal exception is handled
locally: a notification is sent to the user, and the subtransaction is aborted . If the with-
drawal succeeds, the bid is sent to the Auction object .

Now, the Bidder_Task must wait until either the auction closes, or some other bidder
places a higher bid . If finally the bid is accepted, the subtransaction is committed .
Otherwise, the user is notified that someone else has placed a higher bid, the subtransaction
is aborted, resulting in a rollback of the Withdraw operation, and the user is given a chance
to place a new bid .

Each time a member overbids some other member, a subtransaction is aborted.
Attempts to overdraw a member account also result in aborting a subtransaction. Such roll-
backs are part of the normal life cycle of an auction, and should not affect the outcome of
the auction in general. This is why the external exception Transaction_Abort propagated by
the subtransaction upon rollback can be safely ignored .

In any case, once the auction closes, the global transaction is committed by invoking
the Commit_Transaction operation on the Auction_Transaction object .

Additional Considerations

When there is not enough money on the account, or when some other member places a
higher bid, the Bidder_Task aborts the subtransaction by raising the external exception
Transaction_Abort . It is good programming style to explicitly raise this external
exception, but it is not necessary. The implementation could rely on the fact that the object-

1

2

3

4

5

6

7

8a 8b

9

10

11

12

13 14

15

16

17

11 15
210

Online Auction System
based interface detects deserters, i.e. tasks that forget to vote on the outcome of a transac-
tion. Hence, the transaction support would abort the transaction anyway.

The Seller_Task and the Bidder_Task use polling to coordinate their work inside the
auction. A more elegant solution would be to suspend the tasks and wake them up if any-
thing significant happens.

This can be achieved by adding synchronization to the operations of the
Transactional_Auction_Type class. After executing a Place_Bid operation on the encapsu-
lated Auction object, the Transactional_Auction object could suspend the calling task until
some other task calls Place_Bid or the auction expires1.

Another solution to this problem is to add a new operation Get_Coordinator_Object
to the Auction object. The operation returns a protected type that all participants of the auc-
tion subsequently use to synchronize.

1. The synchronization can not be added to the encapsulated Auction class, because the mutual exclusion
lock acquired in the concurrency control prologue (see section 9.2.3 on page 112) must first be released.
211

Example Implementation of Open Multithreaded Transactions
212

Chapter 14:

Conclusion

14.1 Summary of Results

This thesis has tackled the problems that arise when integrating transactions and concurrent
object-oriented programming. In particular, it investigated the problems that arise when pro-
viding transaction support for modern programming languages, i.e. programming languages
with support for concurrency and distribution.

In order to support cooperative and competitive concurrency, the classic single-
threaded transaction model must be extended. An ideal model must allow multiple threads
to be associated with the same transaction context, and still enforce the ACID properties.
An analysis of existing transaction models has shown that they either give too much free-
dom to threads and do not control their participation in transactions, or unnecessarily
restrict the computational model by assuming that only one thread can enter a transaction.

For this reason, a new transaction model named Open Multithreaded Transactions has
been introduced, providing features for controlling and structuring not only accesses to
objects, as usual in transaction systems, but also threads taking part in transactions. The
model allows several threads to enter the same transaction in order to perform a common
activity. It provides a flexible way of manipulating threads executing inside a transaction by
allowing them to be forked and terminated, but it restricts their behavior when necessary in
order to guarantee correctness of transaction nesting and enforcement of the ACID proper-
ties.

The open multithreaded transaction model incorporates disciplined exception han-
dling, well adapted to nested multithreaded transactions. A clear distinction is made
213

Summary of Results
between internal exceptions and external exceptions. Internal exceptions allow individual
threads to perform forward error recovery by handling an abnormal situation locally. The
open multithreaded transaction model promotes a defensive approach for developing trans-
actional objects, so that errors are detected early and dealt with inside the transaction. Self-
checking transactional objects may raise an exception if their consistency criteria is vio-
lated. If the participant that invoked the operation can not handle the exception locally, the
transaction support automatically reverses the system to a previous consistent state by
aborting the transaction. Thus, if forward error recovery is unsuccessful, open multi-
threaded transactions provide automatic backward error recovery. With this behavior, open
multithreaded transactions act as firewalls for errors and hence constitute units of fault toler-
ance.

Transactions in general require considerable run-time support. The detailed design of
the OPTIMA framework, a framework providing support for open multithreaded transac-
tions, has been laid out. It offers transaction control, concurrency control, recovery support
and persistence support. In order to support applications from many different domains, the
framework provides means to customize and tailor it to specific application requirements. In
order to maximize modularity and flexibility, the framework makes heavy use of design pat-
terns.

To integrate open multithreaded transactions with a concurrent object-oriented pro-
gramming language, a procedural, an object-based, and an object-oriented interface for the
framework have been defined. These interfaces are based on standard programming tech-
niques only, and do not use any “magic”.

To demonstrate the feasibility and usefulness of the OPTIMA framework it has been
implemented for the concurrent object-oriented programming language Ada 95. The imple-
mentation takes the form of a library, and is based on standard Ada only. As a consequence,
it is usable on any settings and platforms that have standard Ada compilers. The implemen-
tation has demonstrated the soundness of the OPTIMA approach. Having a working imple-
mentation of open multithreaded transactions allows application programmers to
experiment with the model, and also to evaluate the advantages and disadvantages of the
procedural, object-based and object-oriented interfaces.

Finally, the implementation made it possible to conduct a realistic case study. The
auction system, an example of a dynamic system with cooperative and competitive concur-
rency, shows how the inherent complexity of the application can be reduced by structuring
the execution with open multithreaded transactions. Reasoning about fault tolerance issues
and consistency of the overall system is also made a lot easier. Due to the isolation property
and disciplined exception handling, open multithreaded transactions do not allow errors to
propagate to the outside, and therefore constitute units of fault tolerance.
214

Conclusion
14.2 Future Work

14.2.1 Extending the OPTIMA Framework to Support Distribution

One direction of future work is clearly concerned with adding support for distribution to the
OPTIMA framework. In a distributed setting, different fault assumptions must be applied. In
particular, the individual components of the system may fail separately.

Two main problems must be solved, namely providing distributed access to transac-
tional objects and distributed transaction control.

14.2.1.1 Distributed Access to Transactional Objects

In the current framework, the states of all transactional objects are located on storage units
that can be accessed by the computer on which the application using the framework is run-
ning. When an operation is invoked on a transactional object, the cache manager loads the
state of the object from the associated storage unit into memory.

In a distributed setting, the individual participants of an open multithreaded transac-
tion may execute on different computers, but must still be able to call operations of the same
transactional object.

Different solutions are conceivable, somehow similar to the different alternatives that
an EJB container provider faces when having to deal with concurrent access to the same
EJB from multiple transactions [SHM+00, EJB.9.1.11].

Maybe the best solution is to have only one instance of the transactional object at
some node of the distributed system, and forward all operation invocations made by partici-
pants executing on different nodes to this node1. In that case, the concurrency control of the
transactional object remains the same. The cache manager, however, must be extended to
keep track of the node on which a transactional object is located. This means that all cache
managers of the distributed system must be somehow synchronized. If a local request is
made to instantiate a transactional object that has already been instantiated on some remote
node, then the cache manager must create a stub object instead that forwards all operation
invocations to the real transactional object on the remote machine.

Another solution is to instantiate the transactional object on all machines that want to
work with it. In that case, of course, the state and concurrency control of all these “replica”
objects must be synchronized, which requires very time consuming communication proto-
cols.

1. This is readily possible, since all operation invocations are anyway encapsulated in seri-
alizable subclasses of the Normal_Operation class.
215

14.2.1.2 Distributed Transaction Control

Since participants of an open multithreaded transaction potentially execute on different
nodes of a distributed system, the transaction support component presented in chapter 6
must be extended to support distribution. Each participant sends its vote to the local transac-
tion support component. Once all local votes have been collected, the local transaction sup-
port component must communicate with all other nodes involved in the transaction, since
the outcome of the transaction can only be determined when the votes of all participants
have been collected.

Moreover, because transactional objects used in an open multithreaded transaction are
potentially located on different nodes, the recovery manager must be extended to perform a
two-phase commit protocol among the transactional objects accessed from inside the trans-
action.

Finally, implementations of the distributed framework must also extend the communi-
cation mechanism used to connect the nodes of the distributed system. If a participant of an
open multithreaded transaction makes a remote procedure call to some other node, the
remote procedure must also be executed on behalf of the transaction. Hence, the transaction
context must transparently be sent to the remote node.

14.2.2 Interacting with the CORBA Object Transaction Service

Although it is possible and it makes sense to add distribution to the framework itself, it
might be more realistic to integrate open multithreaded transactions with existing transac-
tional middlewares that provide communication for large-scale distributed systems. The
CORBA standard provides distributed objects, and a naming service that makes it possible
to determine on which node an object resides. The CORBA Object Transaction Service (see
section 12.8 on page 181) provides basic transaction support, and performs the two-phase
commit protocol between objects participating in the same transaction, so-called resources.
The CORBA model of transactions allows multithreading inside a transaction, but leaves
thread coordination inside a transaction to the application programmer.

Implementing open multithreaded transactions on top of the functionality offered by
the CORBA Object Transaction Service could overcome this drawback. The Synchroniza-
tion interface provided for resources, or other CORBA services, such as the CORBA Con-
currency Service, might be useful for achieving thread control in a distributed CORBA
environment. Probably, some sort of controller object that implements the open multi-
threaded transactions protocol must be designed. It would have to provide methods that
allow individual participants to start, join, commit and abort open multithreaded transac-
tions. The individual participants of an open multithreaded transaction would interact with
the controller object, and the controller object would interact with the CORBA OTS.

Another promising approach is to use the OPTIMA framework to implement CORBA
resources. The CORBA OTS does not provide automatic support for recoverability or per-

Conclusion
sistence. Resources must implement this functionality on their own, by forwarding the
responsibility to an underlying database system, or by using other CORBA services. In all
three cases, the task is rather complicated. The OPTIMA framework, on the other hand,
offers everything that is needed to implement a CORBA resource, e.g. concurrency control,
recoverability and persistence. By designing and implementing a bridge between the
CORBA resource interface and the OPTIMA framework, the CORBA OTS can directly com-
municate with the transaction support component and recovery component of the frame-
work, and the two-phase commit protocol can be performed automatically, without further
help from the application programmer.

14.2.3 Formalizing the Open Multithreaded Transaction Model

The ACTA framework [CR90] is a first-order logic-based formalism that allows a transac-
tion modeler to specify the behavioral properties of transaction models. ACTA characterizes
the semantics of transactions in terms of effects that a transaction has on transactional
objects and on other transactions. The effects on objects are expressed in terms of visibility
of state, conflicts between operations, and delegation rules. The effects on other transactions
are expressed in terms of inter-transaction dependencies, e.g. commit and abort dependen-
cies.

ACTA has been used to formalize many existing transaction models, and even to syn-
thesize new ones [CR94]. Formalizing the open multithreaded transaction model using
ACTA would allow to verify the consistency of the open multithreaded transaction rules,
provide a basis for proving relevant properties, and make it a lot easier to compare the
model with other transaction models that have already been formalized.

14.2.4 Experimenting with Aspect-Oriented Programming Techniques

Section 9.5 on page 123 discusses the possibility of using reflection or aspect-oriented pro-
gramming techniques to integrate the OPTIMA framework with a programming language.
Aspect-oriented programming has particularly captured my attention, and I therefore intend
to investigate how aspects can be used to provide elegant interfaces to transactions, and if
aspects can be used to transform conventional objects into transactional objects.

The only aspect-oriented programming environment currently available is AspectJ
[KHH+01], a programming environment for the Java programming language. I intend to
conduct my experiments using this environment. A prototype implementation of the
OPTIMA framework for the Java language is already under construction.
217

Experimenting with Aspect-Oriented Programming Techniques
218

Part V

Annexes

Annex A: Bibliography

[ABC+83] Atkinson, M. P.; Bailey, P. J.; Chisholm, K. J.; Cockshott, W. P.; Morrison,
R.: “An Approach to Persistent Programming”, Computer Journal 26(4),
1983, pp. 360 – 365.

[ACC81] Atkinson, M. P.; Chisholm, K. J.; Cockshott, W. P.: “PS-Algol: An Algol
with a Persistent Heap”, ACM SIGPLAN Notices 17(7), July 1981,
pp. 24 – 31.

[ACF99] Ancona, M.; Cazzola, W.; Fernandez, E. B.: “Reflective Authorization Sys-
tems: Possibilities, Benefits, and Drawbacks”, in Secure Internet Program-
ming: Security Issues for Mobile and Distributed Objects, pp. 35 – 50,
Lecture Notes in Computer Science 1603, Springer Verlag, 1999.

[ADJ+96] Atkinson, M. P.; Daynès, L.; Jordan, M. J.; Printezis, T.; Spence, S.: “An
orthogonally persistent Java”, ACM SIGMOD Record 25(4), December
1996, pp. 68 – 75.

[ADS96] Atkinson, M. P.; Daynès, L.; Spence, S.: “Draft PJava Design 1.2”. Technical
report, Department of Computing Science, University of Glasgow, January
1996.

[AJDS96] Atkinson, M. P.; Jordan, M. J.; Daynès, L.; Spence, S.: “Design Issues for
Persistent Java: a Type-Safe, Object-Oriented, Orthogonally Persistent Sys-
tem”, in Proceedings of the 6th International Workshop on Persistent Object
Systems, Cape May, NJ, USA, May 1996.

[AM95] Atkinson, M. P.; Morrison, R.: “Orthogonally Persistent Object Systems”,
The VLDB Journal 4(3), 1995, pp. 319 – 401.

[Arj00] Arjuna Solutions Limited: JTSArjuna 2.0, Programmer’s Guide Volume 3,
2000.

[AS89] Agrawal, D.; Sengupta, S.: “Modular Synchronization in Multiversion Data-
bases: Version Control and Concurrency Control”, in Proceedings of the
1989 ACM SIGMOD International Conference on the Management of Data,
221

Bibliography
Portland, Oregon, May 31 - June 2, 1989, pp. 408 – 417, New York, USA,
June 1989, ACM Press.

[Bad79] Badal, D. Z.: “Correctness of Concurrency Control and Implications for Dis-
tributed Databases”, in Proceedings of the IEEE International Computer
Software and Application Conference – COMPSAC 79, Chicago, USA,
November 1979.

[Bar97] Barnes, J. (Ed.): Ada 95 Rationale. Lecture Notes in Computer Science
1247, Springer Verlag, 1997.

[BCF+97] Besancenot, J.; Cart, M.; Ferrié, J.; Guerraoui, R.; Pucheral, P.; Traverson,
B.: Les Systèmes Transactionnels: Concepts, Normes et Produits. Editions
Hermes, Paris, France, 1997.

[Bes96] Best, E.: Semantics of Sequential and Parallel Programs. Prentice Hall, New
York, NY, 1996.

[BG81] Bernstein, P. A.; Goodman, N.: “Concurrency Control in Distributed Data-
base Systems”, ACM Computing Surveys 13(2), June 1981, pp. 185 – 221.

[BGL98] Briot, J.-P.; Guerraoui, R.; Lohr, K.-P.: “Concurrency and Distribution in
Object-Oriented Programming”, ACM Computing Surveys 30(3), September
1998, pp. 291 – 329.

[BH73] Brinch Hansen, P.: Operating System Principles. Prentice Hall, 1973.

[BHG87] Bernstein, P. A.; Hadzilacos, V.; Goodman, N.: Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[BI92] Banatre, J. P.; Issarny, V.: “Exception Handling in Communicating Sequen-
tial Processes”. Technical Report 660, Inria, Institut National de Recherche
en Informatique et en Automatique, June 1992.

[Bir85] Birman, K. P.: “Replication and Fault-Tolerance in the ISIS System”, ACM
Operating Systems Review 19(5), 1985, pp. 79 – 86.

[BN84] Birrell, A. D.; Nelson, B. J.: “Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems 2(1), 1984, pp. 39 – 59.

[Boo91] Booch, G.: Object-Oriented Design with Applications. Benjamin/Cummings
Series in Ada and Software Engineering, The Benjamin/Cummings Publish-
ing Company, Inc., Redwood City , CA , USA, 1991.

[Boo94] Booch, G.: Object-Oriented Analysis and Design with Applications. Ben-
jamin Cummings, Redwood City, 2nd ed., 1994.
222

Bibliography
[BP95] Barga, R.; Pu, C.: “A Practical and Modular Method to Implement Extended
Transaction Models”, in Proceedings of the 21st International Conference on
Very Large Data Bases, Zürich, Switzerland, Sept. 11-15, 1995,
pp. 206 – 217, Los Altos, CA, USA, 1995, Morgan Kaufmann.

[BvR94] Birman, K. P.; van Renesse, R. (Eds.): Reliable Distributed Computing with
the ISIS Toolkit. IEEE Computer Society Press, 1994.

[BW95] Burns, A.; Wellings, A. J.: Concurrency in Ada. Cambridge University Press,
1995.

[CAB+94] Coleman, D.; Arnold, P.; Bodoff, S.; Dollin, C.; Gilchrist, H.; Hayes, F.; Jer-
emaes, P.: Object-Oriented Development: The Fusion Method. Prentice-Hall,
Englewood Cliffs, 1994.

[CKS01] Caron, X.; Kienzle, J.; Strohmeier, A.: “Object-Oriented Stable Storage
based on Mirroring”, in Reliable Software Technologies - Ada-Europe’2001,
Leuven, Belgium, May 14-18, 2001, pp. 278 – 289, Lecture Notes in Com-
puter Science 2043, Springer Verlag, 2001.

[CR86] Campbell, R. H.; Randell, B.: “Error Recovery in Asynchronous Systems”,
IEEE Transactions on Software Engineering SE-12(8), August 1986,
pp. 811 – 826.

[CR90] Chrysanthis, P. K.; Ramamritham, K.: “ACTA. A Framework for Specifying
and Reasoning about Transaction Structure and Behavior”, SIGMOD Record
(ACM Special Interest Group on Management of Data) 19(2), June 1990,
pp. 194 – 203.

[CR94] Chrysanthis, P. K.; Ramamritham, K.: “Synthesis of Extended Transaction
Models Using ACTA”, ACM Transactions on Database Systems 19(3), Sep-
tember 1994, pp. 450 – 491.

[Cri91] Cristian, F.: “Understanding Fault–Tolerant Distributed Systems”, Communi-
cations of the ACM 34(2), February 1991, pp. 56 – 78.

[Cri95] Cristian, F.: Exception Handling and Tolerance of Software Faults,
pp. 81 – 108. in Lyu [Lyu95], 1995.

[CS95] Coplien, J. O.; Schmidt, D. C. (Eds.): Pattern Languages of Program Design.
Addison–Wesley, Reading , MA , USA, 1995.

[Day96] Daynès, L.: “Extensible Transaction Management in PJava”, in Proceedings
of the First International Workshop on Persistence and Java, University of
Glasgow, UK, September 1996.
223

Bibliography
[DPSW89] Dixon, G. N.; Parrington, G. D.; Shrivastava, S. K.; Wheater, S. M.: “The
Treatment of Persistent Objects in Arjuna”, in 3rd European Conference on
Object–Oriented Programming (ECOOP ’89), pp. 169 – 189, Nottingham,
July 1989, Cambridge University Press.

[DRJLAR91] Dasgupta, P.; Richard J. LeBlanc, J.; Ahamad, M.; Ramachandran, U.: “The
Clouds Distributed Operating System”, Computer 24(11), November 1991,
pp. 34 – 44.

[EGLT76] Eswaran, K. P.; Gray, J.; Lorie, R. A.; Traiger, I. L.: “The Notion of Consis-
tency and Predicate Locks in a Database System”, Communications of the
ACM 19(11), November 1976, pp. 624 – 633.

[Elm93] Elmagarmid, A. K. (Ed.): Database Transaction Models for Advanced Appli-
cations. Morgan Kaufmann, 1993.

[EMS91] Eppinger, J. L.; Mummert, L. B.; Spector, A. Z.: Camelot and Avalon - A
Distributed Transaction Facility. Morgan Kaufmann Publishers, San Mateo,
CA, 1991.

[FLW92] Fekete, A.; Lynch, N.; Weihl, W. E.: “Hybrid Atomicity for Nested Transac-
tions”, in Proceedings of the 4th International Conference on Database The-
ory (ICDT’92), pp. 216 – 230, Berlin, Germany, October 1992, Lecture
Notes in Computer Science 646, Springer Verlag.

[GBCvR93] Glade, B. B.; Birman, K. P.; Cooper, R. C.; van Renesse, R.: “Light-weight
Process Groups in the ISIS System”, Distributed Systems Engineering 1(1),
1993, pp. 29 – 36.

[GGM94] Garbinato, B.; Guerraoui, R.; Mazouni, K. R.: “Distributed Programming in
GARF”, in Guerraoui, R.; Nierstrasz, O.; Riveill, M. (Eds.), Object-Based
Distributed Programming, Lecture Notes in Computer Science 791,
pp. 225 – 239, Springer Verlag, Berlin, 1994.

[GHJV95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Addison
Wesley, Reading, MA, USA, 1995.

[GJS96] Gosling, J.; Joy, B.; Steele, G. L.: The Java Language Specification. The Java
Series, Addison Wesley, Reading, MA, USA, 1996.

[GMAA97] Guerra, F.; Miranda, J.; Alvarez, A.; Arévalo, S.: “An Ada Library to Pro-
gram Fault-Tolerant Distributed Applications”, in Proceedings of Reliable
Software Technologies – Ada–Europe ’97, pp. 230 – 243, London, UK, June
1997, Lecture Notes in Computer Science 1251, Springer Verlag.
224

Bibliography
[GMS87] Garcia-Molina, H.; Salem, K.: “SAGAS”, in Proceedings of the SIGMod
1987 Annual Conference, pp. 249 – 259, San Francisco, Ca, May 1987,
ACM Press.

[Goo75] Goodenough, J. B.: “Exception Handling: Issues and a Proposed Notation”,
Communications of the ACM 18(12), December 1975, pp. 683 – 696.

[GR93] Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Mateo, California, 1993.

[Han73] Hansen, P. B.: Operating System Principles. Prentice Hall, Englewood Cliffs,
1973.

[HCL90] Haritsa, J. R.; Carey, M. J.; Livny, M.: “On Being Optimistic about Real-
Time Constraints”, in PODS ’90. Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems: April 2 -
4, 1990, Nashville, Tennessee, volume 51 (1) of Journal of Computer and
Systems Sciences, pp. 331 – 343, New York, NY 10036, USA, 1990, ACM
Press.

[HKM+94] Haines, N.; Kindred, D.; Morrisett, J. G.; Nettles, S. M.; Wing, J. M.: “Com-
posing First-Class Transactions”, ACM Transactions on Programming Lan-
guages and Systems 16(6), Nov 1994, pp. 1719 – 1736.

[Hoa74] Hoare, C. A. R.: “Monitors: An Operating Systems Structuring Concept”,
Communications of the ACM 17(10), October 1974, pp. 549 – 557, ACM.

[Hoa75] Hoare, C. A. R.: “Parallel Programming: an Axiomatic Approach”, in Pro-
ceedings of the International Summer School on Language Hierarchies and
Interfaces, pp. 11 – 42, Marktoberdorf, Germany, July 1975, Lecture Notes
in Computer Science 46, Springer Verlag.

[HR73] Horning, J. J.; Randell, B.: “Process Structuring”, ACM Computing Surveys
5(1), March 1973, pp. 5 – 30.

[ISO95] ISO: International Standard ISO/IEC 8652:1995(E): Ada Reference Manual,
Lecture Notes in Computer Science 1246, Springer Verlag, 1997; ISO, 1995.

[ISO99] ISO: International Standard ISO/IEC 15291:1999 (E): Ada Semantic Inter-
face Specification (ASIS), ISO, 1999.

[Iss93] Issarny, V.: “An Exception Handling Mechanism for Parallel Object-Ori-
ented Programming: Towards the Design of Reusable, Robust Software”,
Journal of Object-Oriented Programming 6(6), 1993, pp. 29 – 40.
225

Bibliography
[IY91] Ichisugi, Y.; Yonezawa, A.: “Exception Handling and Real-Time Features in
Object-Oriented Concurrent Languages”, in Concurrency: Theory, Language
and Architecture, pp. 92 – 109, Lecture Notes in Computer Science 491,
Springer Verlag, 1991.

[JPPMA00] Jiménez-Peris, R.; Patiño-Martinez, M.; Arévalo, S.: “TransLib: An Ada 95
Object-Oriented Framework for Building Transactional Applications”, Com-
puter Systems: Science & Engineering Journal 15(1), 2000, pp. 7 – 18.

[KdB91] Kiczales, G.; des Rivieres, J.; Bobrow, D. G.: The Art of the Meta-Object
Protocol. MIT Press, Cambridge (MA), USA, 1991.

[KHH+01] Kiczales, G.; Hilsdale, E.; Hungunin, J.; Kersten, M.; Palm, J.; Griswold,
W. G.: “An Overview of AspectJ”, in 15th European Conference on Object-
Oriented Programming, ECOOP 2001, Lecture Notes in Computer Science,
2001. To be published.

[Kie97] Kienzle, J.: “Network Applications in Ada 95”, in TRI-Ada’97 Conference,
pp. 3 – 9, St. Louis, MO, November 1997, ACM Press.

[Kie99] Kienzle, J.: “Combining Tasking and Transactions”, in Proceedings of the
9th International Real-Time Ada Workshop, Wakulla Springs Lodge, Talla-
hassee FL, USA, March 1999, pp. 49 – 53, Ada Letters XIX(2), ACM Press,
June 1999.

[Kie00] Kienzle, J.: “Exception Handling in Open Multithreaded Transactions”, in
ECOOP Workshop on Exception Handling in Object-Oriented Systems,
Cannes, France, June 2000.

[KJPRPM01] Kienzle, J.; Jiménez-Peris, R.; Romanovsky, A.; Patiño-Martinez, M.:
“Transaction Support for Ada”, in Reliable Software Technologies - Ada-
Europe’2001, Leuven, Belgium, May 14-18, 2001, pp. 290 – 304, Lecture
Notes in Computer Science 2043, Springer Verlag, 2001.

[KLM+97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier,
J.-M.; Irwin, J.: “Aspect-Oriented Programming”, in 11th European Confer-
ence on Object–Oriented Programming (ECOOP ’97), pp. 220 – 242,
Jyváskylá, Finland, 1997, Lecture Notes in Computer Science 1241,
Springer Verlag.

[Knu87] Knudsen, J. L.: “Better Exception-Handling in Block-Structured Systems”,
IEEE Software 4(3), May 1987, pp. 40 – 49.

[Kop97] Kopetz, H.: Real–Time Systems — Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, 1997.
226

Bibliography
[KR81] Kung, H. T.; Robinson, J. T.: “On Optimistic Methods for Concurrency Con-
trol”, ACM Transactions on Database Systems 6(2), June 1981,
pp. 213 – 226.

[KR00] Kienzle, J.; Romanovsky, A.: “On Persistent and Reliable Streaming in
Ada”, in Reliable Software Technologies - Ada-Europe’2000, Potsdam, Ger-
many, June 26-30, 2000, pp. 82 – 95, Lecture Notes in Computer Science
1845, 2000.

[KR01] Kienzle, J.; Romanovsky, A.: “Combining Tasking and Transactions, Part II:
Open Multithreaded Transactions”, in Proceedings of the 10th International
Real-Time Ada Workshop, Castillo de Magalia, Las Navas del Marqués,
Avila, Spain, September 2000, pp. 67 – 74, Ada Letters XXI(1), ACM Press,
March 2001.

[KRS00] Kienzle, J.; Romanovsky, A.; Strohmeier, A.: “A Framework Based on
Design Patterns for Providing Persistence in Object-Oriented Programming
Languages”. Technical Report EPFL-DI No 2000/335, Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland, 2000.

[KRS01] Kienzle, J.; Romanovsky, A.; Strohmeier, A.: “Open Multithreaded Transac-
tions: Keeping Threads and Exceptions under Control”, in Proceedings of the
6th International Worshop on Object-Oriented Real-Time Dependable Sys-
tems, Roma, Italy, 8 - 10 January, 2001, 2001. To be published.

[KS99] Kienzle, J.; Strohmeier, A.: “Shared Recoverable Objects”, in Reliable Soft-
ware Technologies - Ada-Europe’99, Santander, Spain, June 7-11, 1999, vol-
ume 1622 of Lecture Notes in Computer Science, pp. 397 – 411, 1999.

[KSM98] Kurki-Suonio, R.; Mikkonen, T.: “Liberating Object-Oriented Modeling
from Programming-Level Abstractions”, Lecture Notes in Computer Science
1357, 1998, pp. 195 – 199.

[KWS96] Kienzle, J.; Wolf, T.; Strohmeier, A.: “Secure Communication in Distributed
Ada”, in Reliable Software Technologies - Ada-Europe’96, Montreux, Swit-
zerland, June 10-14, 1996, pp. 198 – 210, Lecture Notes in Computer Sci-
ence 1088, Springer Verlag, 1996.

[LA90] Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and Practice”, in
Dependable Computing and Fault-Tolerant Systems, Springer Verlag, 2nd
ed., 1990.
227

Bibliography
[LAB+81] Liskov, B.; Atkinson, R.; Bloom, T.; Moss, J. E. B.; Schaffert, J. C.;
Scheifler, R.; Snyder, A.: CLU Reference Manual. Lecture Notes in Com-
puter Science 114, Springer Verlag, 1981.

[Lap85] Laprie, J.-C.: “Dependable Computing and Fault Tolerance : Concepts and
Terminology”, in Proceedings of the 15th International Symposium on
Fault–Tolerant Computing Systems (FTCS–15), pp. 2 – 11, Ann Arbour, MI,
USA, June 1985.

[Lis85] Liskov, B.: “The Argus Language and System”, in Distributed Systems,
Methods and Tools for Specification, pp. 343 – 430, Lecture Notes in Com-
puter Science 190, Springer-Verlag, 1985.

[Lis87] Liskov, B.: “Implementation of Argus”, in Proceedings of the 11th ACM
Symposium on Operating Systems Principle, pp. 111 – 122, November 1987.

[Lis88] Liskov, B.: “Distributed Programming in Argus”, Communications of the
ACM 31(3), March 1988, pp. 300 – 312.

[LJP93] Lea, R.; Jacquemot, C.; Pillevesse, E.: “COOL: System Support for Distrib-
uted Programming”, Communications of the ACM 36(9), September 1993,
pp. 37 – 46.

[LS79] Lampson, B. W.; Sturgis, H. E.: “Crash Recovery in a Distributed Data Stor-
age System”. Technical report, XEROX Research, Palo Alto, June 1979.

[LS83] Liskov, B.; Scheifler, R.: “Guardians and Actions: Linguistic Support for
Robust, Distributed Programs”, ACM Transactions on Programming Lan-
guages and Systems 5(3), July 1983, pp. 381 – 404.

[LSP82] Lamport, L.; Shostak, R.; Pease, M.: “The Byzantine Generals Problem”,
ACM Transactions on Programming Languages and Systems 4(3), 1982,
pp. 382 – 401.

[Lyu95] Lyu, M. R. (Ed.): Software Fault Tolerance. John Wiley & Sons, 1995.

[LZ94] Lee, A. H.; Zachary, J. L.: “Using Metaprogramming to Add Persistence to
CLOS”, in Proceedings of the 1994 International Conference on Computer
Languages, May 16–19, 1994, Toulouse, France, pp. 136 – 147, Silver
Spring, MD, USA, 1994, IEEE Computer Society Press.

[MAAG96] Miranda, J.; Alvarez, A.; Arévalo, S.; Guerra, F.: “Drago: An Ada Extension
to Program Fault-Tolerant Distributed Applications”, in Reliable Software
Technologies - Ada-Europe’96, Montreux, Switzerland, June 10-14, 1996,
228

Bibliography
pp. 235 – 246, Lecture Notes in Computer Science 1088, Springer Verlag,
1996.

[Mae87] Maes, P.: “Concepts and Experiments in Computational Reflection”, ACM
SIGPLAN Notices 22(12), December 1987, pp. 147 – 155.

[Mat87] Matthews, D. C. J.: “A persistent storage system for Poly and ML”. Techni-
cal Report TR-102, Computer Laboratory, University of Cambridge, January
1987.

[Mey88] Meyer, B.: Object-Oriented Software Construction. Prentice Hall Interna-
tional Series in Computer Science, Prentice Hall International, Hemel Hemp-
stead, UK, 1988.

[Mey92] Meyer, B.: Eiffel: The Language. Object-Oriented Series, Prentice Hall, New
York, NY, 1992.

[Mey97] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Engle-
wood Cliffs, NJ 07632, USA, 2nd ed., 1997.

[MMPN93] Madsen, O. L.; Møller-Pedersen, B.; Nygaard, K.: Object-Oriented Pro-
gramming in the BETA Programming Language. Addison-Wesley, Reading,
MA, USA, 1993.

[MN82] Menascé, D. A.; Nakanishi, T.: “Optimistic Versus Pessimistic Concurrency
Control Mechanisms in Database Management Systems”, Information Sys-
tems 7(1), 1982, pp. 13 – 27.

[Mos81] Moss, J. E. B.: Nested Transactions, An Approach to Reliable Computing.
PhD Thesis, MIT, Cambridge, April 1981.

[MRB98] Martin, R.; Riehle, D.; Buschmann, F. (Eds.): Pattern Languages of Program
Design 3. Addison–Wesley, Reading, MA, USA, 1998.

[MW91] Mössenböck, H.; Wirth, N.: “The Programming Language Oberon–2”. Tech-
nical Report 160, Institut für Computersysteme, Swiss Federal Institute of
Technology, Zürich, Switzerland, May 1991.

[MY93] Matsuoka, S.; Yonezawa, A.: “Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages”, in Agha, G.; Wegner, P.;
Yonezawa, A. (Eds.), Research Directions in Concurrent Object-Oriented
Programming, pp. 107 – 150, MIT Press, 1993.

[NP90] Nierstrasz, O.; Papathomas, M.: “Viewing Objects as Patterns of Communi-
cating Agents”, Proceedings of OOPSLA / ECOOP’90, ACM SIGPLAN
Notices 25(10), October 1990, pp. 38 – 43.
229

Bibliography
[Obj95] Object Management Group, Inc.: The Common Object Request Broker Archi-
tecture Specification, Revision 2.0, 1995.

[Obj00] Object Management Group, Inc.: Object Transaction Service, Version 1.1,
May 2000.

[OC96] Oudshoorn, M. J.; Crawley, S. C.: “Beyond Ada 95: The Addition of Persis-
tence and its Consequences”, in Reliable Software Technologies - Ada-
Europe’96, Montreux, Switzerland, June 10-14, 1996, pp. 342 – 356, Lecture
Notes in Computer Science 1088, Springer Verlag, 1996.

[PK84] Papadimitriou, C. H.; Kanellakis, P. C.: “On Concurrency Control by Multi-
ple Versions”, ACM Transactions on Database Systems 9(1), March 1984,
pp. 89 – 99.

[PKH88] Pu, C.; Kaiser, G. E.; Hutchinson, N. C.: “Split-Transactions for Open-
Ended Activities”, in 14th International Conference on Very Large Data
Bases, pp. 26 – 37, Los Angeles, California, 1988, Morgan Kaufmann.

[PMJPA98] Patiño-Martinez, M.; Jiménez-Peris, R.; Arévalo, S.: “Integrating Groups
and Transactions: A Fault-Tolerant Extension of Ada”, in Reliable Software
Technologies - Ada-Europe’98, Uppsala, Sweden, June 8-12, 1998,
pp. 78 – 89, Lecture Notes in Computer Science 1411, 1998.

[PS88] Parrington, G. D.; Shrivastava, S. K.: “Implementing Concurrency Control in
Reliable Distributed Object-Oriented Systems”, in 2nd European Conference
on Object–Oriented Programming (ECOOP ’88), pp. 233 – 249, Berlin,
August 1988, Lecture Notes in Computer Science 322, Springer Verlag.

[PSWL95] Parrington, G. D.; Shrivastava, S. K.; Wheater, S. M.; Little, M. C.: “The
Design and Implementation of Arjuna”, in Computing Systems, volume 8,
pp. 255 – 308, Berkeley, CA, USA, Summer 1995, USENIX.

[PW97] Pautet, L.; Wolf, T.: “Transparent Filtering of Streams in GLADE”, in TRI-
Ada’97 Conference, pp. 11 – 19, St. Louis, MO, November 1997, ACM
Press.

[Ran75] Randell, B.: “System Structure for Software Fault Tolerance”, IEEE Trans-
actions on Software Engineering 1(2), 1975, pp. 220 – 232.

[RBP+91] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.: Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jer-
sey, USA, 1991.
230

Bibliography
[RC97] Ramamritham, K.; Chrysanthis, P. K.: “Advances in Concurrency Control
and Transaction Processing”. Los Alamitos, California, 1997.

[RJB99] Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Ref-
erence Manual. Object Technology Series, Addison Wesley Longman, Read-
ing, MA, USA, 1999.

[RK01] Romanovksy, A.; Kienzle, J.: “Action-Oriented Exception Handling in
Cooperative and Competitive Object-Oriented Systems”, in Advances in
Exception Handling Techniques, Lecture Notes in Computer Science 2022,
Springer Verlag, 2001.

[Rom99] Romanovsky, A.: “On Structuring Cooperative and Competitive Concurrent
Systems”, The Computer Journal 42(8), 1999, pp. 627 – 637.

[RSB+98] Riehle, D.; Siberski, W.; Bäumer, D.; Megert, D.; Züllighoven, H.: “Serial-
izer”, In Martin et al. [MRB98], pp. 293 – 312.

[RX95] Randell, B.; Xu, J.: The Evolution of the Recovery Block Concept, chapter 1,
pp. 1 – 21. in Lyu [Lyu95], 1995.

[RXR96] Romanovsky, A.; Xu, J.; Randell, B.: “Exception Handling and Resolution in
Distributed Object-Oriented Systems”, in ICDCS ’96; Proceedings of the
16th International Conference on Distributed Computing Systems; May 27-
30, 1996, Hong Kong, pp. 545 – 553, Washington - Brussels - Tokyo, May
1996, IEEE.

[SDP91] Shrivastava, S. K.; Dixon, G. N.; Parrington, G. D.: “An Overview of the
Arjuna Distributed Programming System”, IEEE Software 8(1), January
1991, pp. 66 – 73.

[SD+85] Spector, A. Z.; Daniels, D. et al.: “Distributed Transactions for Reliable Sys-
tems”, in Proceedings of the 10th ACM Sympsium on Operating System Prin-
ciples, pp. 127 – 146, Orcas Island WA, USA, December 1985, ACM
SIGOPS Operating Systems Review 19(5).

[SGR97] Strigini, L.; Giandomenico, F. D.; Romanovsky, A.: “Coordinated Backward
Recovery between Client Processes and Data Servers”, IEEE Proceedings -
Software Engineering 144(2), April 1997, pp. 134 – 146.

[SHM+00] Shannon, B.; Hapner, M.; Matena, V.; Davidson, J.; Pelegri-Llopart, E.;
Cable, L.: Java 2 Platform Enterprise Edition: Platform and Component
Specification. The Java Series, Addison Wesley, Reading, MA, USA, 2000.
231

Bibliography
[Shr95] Shrivastava, S. K.: “Lessons Learned from Building and Using the Arjuna
Distributed Programming System”, in Theory and Practice in Distributed
Systems, pp. 17 – 32, Lecture Notes in Computer Science 938, 1995.

[SMR93] Shrivastava, S. K.; Mancini, L. V.; Randell, B.: “The Duality of Fault-Toler-
ant System Structures”, Software-Practice and Experience 23(7), July 1993,
pp. 773 – 798.

[SPB88] Spector, A. Z.; Pausch, R. F.; Bruell, G.: “Camelot: A Flexible, Distributed
Transaction Processing System”, in Proceedings of the 33rd IEEE Computer
Society International Conference (Spring COMPCON 88), pp. 432 – 437,
San Francisco CA, USA, March 1988, IEEE Computer Society Press.

[SPW+94] Shrivastava, S. K.; Parrington, G. D.; Wheater, S. M.; Little, M. C.; Caughey,
S.; Ingham, D.; Calsavara, A.; Smith, J.: Reliable Distributed Programming
in C++: The Arjuna System Programmer’s Guide, 1994.

[Str91] Stroustroup, B.: The C++ Programming Language, Second Edition. Addi-
son–Wesley, Reading, MA, USA, 1991.

[Sun98] Sun Microsystems: Java Object Serialization Specification, November 1998.

[SW95] Stroud, R. J.; Wu, Z.: “Using Metaobject Protocols to Implement Atomic
Data Types”, in 9th European Conference on Object–Oriented Programming
(ECOOP ’95), pp. 168 – 189, August 7–15, 1995, Aarhus, Denmark, August
1995, Lecture Notes in Computer Science 952, Springer Verlag.

[TLP+93] Thomsen, B.; Leth, L.; Prasad, S.; Kuo, T.-M.; Kramer, A.; Knabe, F. C.;
Giacalone, A.: “Facile Antigua Release – Programming Guide”. Technical
Report ECRC-93-20, European Computer Industry Research Centre,
Munich, Germany, December 1993.

[TOM99] Tripathi, A.; Oosten, J. V.; Miller, R.: “Object-Oriented Concurrent Program-
ming Languages and Systems”, Journal of Object-Oriented Programming
12(7), November / December 1999, pp. 22 – 29.

[Vac00] Vachon, J.: COALA: A Design Language for Reliable Distributed Systems.
PhD Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland,
December 2000.

[VCK96] Vlissides, J.; Coplien, J. O.; Kerth, N. L. (Eds.): Patterns Languages of Pro-
gram Design 2. Addison Wesley, Reading, MA, USA, 1996.
232

Bibliography
[VR99] Vogel, A.; Rangarao, M.: Programming with Enterprise JavaBeans, JTS, and
OTS: Building Distributed Transactions with Java and C++. John Wiley and
Sons, New York, NY, USA, 1999.

[VRS86] Vinter, S.; Ramamritham, K.; Stemple, D.: “Recoverable Actions in Guten-
berg”, in Proceedings of the 6th International Conference on Distributed
Computing Systems, pp. 242 – 249, Los Angeles, Ca., USA, May 1986,
IEEE Computer Society Press.

[Weg90] Wegner, P.: “Concepts and Paradigms of Object-Oriented Programming”,
OOPS Messenger 1(1), August 1990, pp. 7 –87, ACM.

[Wir88] Wirth, N.: “Type Extensions”, ACM Transactions on Programming Lan-
guages and Systems 10(2), April 1988, pp. 204 – 214.

[WJS+00a] Wellings, A. J.; Johnson, B.; Sanden, B.; Kienzle, J.; Wolf, T.; Michell, S.:
“Integrating Object-Oriented Programming and Protected Objects in Ada
95”, ACM Transactions on Programming Languages and Systems 22(3),
May 2000, pp. 506 – 539, ACM Press.

[WJS+00b] Wellings, A. J.; Johnson, B.; Sanden, B.; Kienzle, J.; Wolf, T.; Michell, S.:
“Object-Oriented Programming and Protected Objects in Ada 95”, in Reli-
able Software Technologies - Ada-Europe’2000, Potsdam, Germany, June
26-30, 2000, pp. 16 – 28, Lecture Notes in Computer Science 1845, 2000.

[WK99] Warmer, J.; Kleppe, A.: The Object Constraint Language: Precise Modelling
with UML. Object Technology Series, Addison–Wesley, Reading, MA, USA,
1999.

[WL85] Weihl, W. E.; Liskov, B.: “Implementation of Resilient, Atomic Data Types”,
ACM Transactions on Programming Languages and Systems 7(2), April
1985, pp. 244 – 269, ACM Press.

[WS99] Wolf, T.; Strohmeier, A.: “Fault Tolerance by Transparent Replication for
Distributed Ada 95”, in Reliable Software Technologies - Ada-Europe’99,
Santander, Spain, June 7-11, 1999, pp. 411 – 424, Lecture Notes in Com-
puter Science 1622, 1999.

[XRR00] Xu, J.; Romanovsky, A.; Randell, B.: “Concurrent Exception Handling and
Resolution in Distributed Object Systems”, IEEE Transactions on Parallel
and Distributed Systems 11(11), November 2000, pp. 1019 – 1032.

[XRR+95] Xu, J.; Randell, B.; Romanovsky, A.; Rubira, C. M. F.; Stroud, R. J.; Wu, Z.:
“Fault Tolerance in Concurrent Object-Oriented Software through Coordi-
233

Bibliography
nated Error Recovery”, in FTCS-25: 25th International Symposium on Fault
Tolerant Computing, pp. 499 – 509, Pasadena, California, 1995.

[XRR+99] Xu, J.; Randell, B.; Romanovsky, A.; Stroud, R. J.; Zorzo, A. F.; Canver, E.;
von Henke, F.: “Rigorous Development of a Safety-Critical System Based on
Coordinated Atomic Actions”, in FTCS-29: 29th International Symposium
on Fault Tolerant Computing, pp. 68 – 75, Madison, USA, 1999.
234

Annex B: Author and Citation Index

A

[ABC+83]... 26
[ACC81]... 26
[ACF99] ... 125
[ADJ+96].. 180
[ADS96]... 180
Agrawal, D.

see [AS89]
Ahamad, M.

see [DRAR91]
[AJDS96] ... 27, 180
Alvarez, A.

see [GMAA97], [MAAG96]
[AM95] .. 26
Ancona, M.

see [ACF99]
Anderson, T.

see [LA90]
Arévalo, S.

see [GMAA97], [JPA00], [MAAG96],
[PJA98]

[Arj00].. 176, 177
Arjuna Solutions Limited.

see [Arj00]
Arnold, P.

see [CAB+94]
[AS89].. 82
Atkinson, M. P.

see [ABC+83], [ACC81], [ADJ+96],
[ADS96], [AJDS96], [AM95]

Atkinson, R.
see [LAB+81]

B

[Bad79] .. 81

Badal, D. Z.
see [Bad79]

Bailey, P. J.
see [ABC+83]

Banatre, J. P.
see [BI92]

[Bar97] ...131, 132
Barga, R.

see [BP95]
Barnes, J.

see [Bar97]
Bäumer, D.

see [RSB+98]
[BCF+97]..105
Bernstein, P. A.

see [BG81], [BHG87]
[Bes96] ...30
Besancenot, J.

see [BCF+97]
Best, E.

see [Bes96]
[BG81]..81, 82
[BGL98] ...17
[BH73]..18, 137
[BHG87]...82, 101
[BI92] ...25
[Bir85] ..181
Birman, K. P.

see [Bir85], [BR94], [GBCR93]
Birrell, A. D.

see [BN84]
Blaha, M.

see [RBP+91]
Bloom, T.

see [LAB+81]
[BN84]..17, 144
235

Author and Citation Index
Bobrow, D. G.
see [KdB91]

Bodoff, S.
see [CAB+94]

[Boo91] .. 25
[Boo94] .. 11
Booch, G.

see [Boo91], [Boo94], [RJB99]
[BP95] .. 125
Brinch Hansen, P.

see [BH73]
Briot, J.-P.

see [BGL98]
Bruell, G.

see [SPB88]
Burns, A.

see [BW95]
Buschmann, F.

see [MRB98]
[BvR94].. 181
[BW95] .. 139, 140

C

[CAB+94]... 11
Cable, L.

see [SHM+00]
Calsavara, A.

see [SPW+94]
Campbell, R. H.

see [CR86]
Canver, E.

see [XRR+99]
Carey, M. J.

see [HCL90]
Caron, X.

see [CKS01]
Cart, M.

see [BCF+97]
Caughey, S.

see [SPW+94]
Cazzola, W.

see [ACF99]
Chisholm, K. J.

see [ABC+83], [ACC81]

Chrysanthis, P. K.
see [CR90], [CR94], [RC97]

[CKS01] ...94
Cockshott, W. P.

see [ABC+83], [ACC81]
Coleman, D.

see [CAB+94]
Cooper, R. C.

see [GBCR93]
Coplien, J. O.

see [CS95], [VCK96]
[CR86] ..42
[CR90] ..217
[CR94] ..217
Crawley, S. C.

see [OC96]
[Cri91] ..20
[Cri95] ..23
Cristian, F.

see [Cri91], [Cri95]
[CS95] ..68

D

Daniels, D.
see [SD+85]

Dasgupta, P.
see [DRAR91]

Davidson, J.
see [SHM+00]

[Day96]...180, 181
Daynès, L.

see [ADJ+96], [ADS96], [AJDS96],
[Day96]

des Rivieres, J.
see [KdB91]

Dixon, G. N.
see [DPSW89], [SDP91]

Dollin, C.
see [CAB+94]

[DPSW89] ..178
[DRJLAR91] ..171
236

Author and Citation Index
E

Eddy, F.
see [RBP+91]

[EGLT76]... 80
[Elm93] .. 2
Elmagarmid, A. K.

see [Elm93]
[EMS91]... 174, 176
Eppinger, J. L.

see [EMS91]
Eswaran, K. P.

see [EGLT76]

F

Fekete, A.
see [FLW92]

Fernandez, E. B.
see [ACF99]

Ferrié, J.
see [BCF+97]

[FLW92] .. 176

G

Gamma, E.
see [GHJV95]

Garbinato, B.
see [GGM94]

Garcia-Molina, H.
see [GS87]

[GBCvR93] .. 181
[GGM94].. 125
[GHJV95]..................................... 67, 68, 69
Giacalone, A.

see [TLP+93]
Giandomenico, F. D.

see [SGR97]
Gilchrist, H.

see [CAB+94]
[GJS96] 1, 17, 24, 26, 27, 96
Glade, B. B.

see [GBCR93]
[GMAA97]... 179

[GMS87]...40
[Goo75]23, 34, 56, 146
Goodenough, J. B.

see [Goo75]
Goodman, N.

see [BG81], [BHG87]
Gosling, J.

see [GJS96]
[GR93]..31
Gray, J.

see [EGLT76], [GR93]
Griswold, W. G.

see [KHH+01]
Guerra, F.

see [GMAA97], [MAAG96]
Guerraoui, R.

see [BCF+97], [BGL98], [GGM94]

H

Hadzilacos, V.
see [BHG87]

Haines, N.
see [HKM+94]

[Han73]...80
Hansen, P. B.

see [Han73]
Hapner, M.

see [SHM+00]
Haritsa, J. R.

see [HCL90]
Hayes, F.

see [CAB+94]
[HCL90] ...81
Helm, R.

see [GHJV95]
Hilsdale, E.

see [KHH+01]
[HKM+94] ..178
[Hoa74]...18, 138
[Hoa75]...15
Hoare, C. A. R.

see [Hoa74], [Hoa75]
Horning, J. J.

see [HR73]
237

Author and Citation Index
[HR73] ... 15
Hungunin, J.

see [KHH+01]
Hutchinson, N. C.

see [PKH88]

I

Ichisugi, Y.
see [IY91]

Ingham, D.
see [SPW+94]

Irwin, J.
see [KLM+97]

ISO.
see [ISO95], [ISO99]

[ISO95] 1, 24, 26, 27, 95, 131, 132, 134,
 135, 139, 140, 143, 146, 148, 149, 159, 164

[ISO99] .. 160
[Iss93] .. 24
Issarny, V.

see [BI92], [Iss93]
[IY91]... 25

J

Jacobson, I.
see [RJB99]

Jacquemot, C.
see [LJP93]

Jeremaes, P.
see [CAB+94]

Jiménez-Peris, R.
see [JPA00], [KJRP01], [PJA98]

Johnson, B.
see [WJS+00a], [WJS+00b]

Johnson, R.
see [GHJV95]

Jordan, M. J.
see [ADJ+96], [AJDS96]

Joy, B.
see [GJS96]

[JPPMA00] 67, 179

K

Kaiser, G. E.
see [PKH88]

Kanellakis, P. C.
see [PK84]

[KdB91]..124
Kersten, M.

see [KHH+01]
Kerth, N. L.

see [VCK96]
[KHH+01].......................................126, 217
Kiczales, G.

see [KdB91], [KHH+01], [KLM+97]
[Kie00] ...56
[Kie97] ...143
[Kie99] ...52
Kienzle, J.

see [CKS01], [Kie00], [Kie97],
[Kie99], [KJRP01], [KR00],
[KR01], [KRS00], [KRS01],
[KS99], [KWS96], [RK01],
[WJS+00a]

Kindred, D.
see [HKM+94]

[KJPRPM01] ..67
Kleppe, A.

see [WK99]
[KLM+97]...125
Knabe, F. C.

see [TLP+93]
[Knu87] ..24
Knudsen, J. L.

see [Knu87]
[Kop97] ..22
Kopetz, H.

see [Kop97]
[KR00]..156
[KR01]..52
[KR81]..74, 81
Kramer, A.

see [TLP+93]
[KRS00] ...91
[KRS01] ...49
[KS99] ..115
238

Author and Citation Index
[KSM98] .. 30
Kung, H. T.

see [KR81]
Kuo, T.-M.

see [TLP+93]
Kurki-Suonio, R.

see [KM98]
[KWS96] .. 143

L

[LA90].. 15, 22, 42
[LAB+81] ... 24
Lamping, J.

see [KLM+97]
Lamport, L.

see [LSP82]
Lampson, B. W.

see [LS79]
[Lap85]... 19
Laprie, J.-C.

see [Lap85]
Lea, R.

see [LJP93]
Lee, A. H.

see [LZ94]
Lee, P. A.

see [LA90]
Leth, L.

see [TLP+93]
[Lis85].. 171
[Lis87].. 171
[Lis88].. 171
Liskov, B.

see [LAB+81], [Lis85], [Lis87],
[Lis88], [LS83], [WL85]

Little, M. C.
see [PSWL95]
see [SPW+94]

Livny, M.
see [HCL90]

[LJP93]... 171
Lohr, K.-P.

see [BGL98]

Loingtier, J.-M.
see [KLM+97]

Lopes, C.
see [KLM+97]

Lorensen, W.
see [RBP+91]

Lorie, R. A.
see [EGLT76]

[LS79]...74, 93
[LS83]...172
[LSP82] ..20
Lynch, N.

see [FLW92]
Lyu, M. R.

see [Lyu95]
[LZ94] ..125, 126

M

[MAAG96] ...179
Madsen, O. L.

see [MMN93]
[Mae87] ..124
Maeda, C.

see [KLM+97]
Maes, P.

see [Mae87]
Mancini, L. V.

see [SMR93]
Martin, R.

see [MRB98]
[Mat87]...26
Matena, V.

see [SHM+00]
Matsuoka, S.

see [MY93]
Matthews, D. C. J.

see [Mat87]
Mazouni, K. R.

see [GGM94]
Megert, D.

see [RSB+98]
Menascé, D. A.

see [MN82]
239

Author and Citation Index
Mendhekar, A.
see [KLM+97]

[Mey88].. 14
[Mey92].. 14
[Mey97].. 11, 60
Meyer, B.

see [Mey88], [Mey92], [Mey97]
Michell, S.

see [WJS+00a], [WJS+00b]
Mikkonen, T.

see [KM98]
Miller, R.

see [TOM99]
Miranda, J.

see [GMAA97], [MAAG96]
[MMPN93]... 24
[MN82] .. 82
Møller-Pedersen, B.

see [MMN93]
Morrisett, J. G.

see [HKM+94]
Morrison, R.

see [ABC+83], [AM95]
[Mos81].. 36
Moss, J. E. B.

see [LAB+81], [Mos81]
Mössenböck, H.

see [MW91]
[MRB98] .. 68
Mummert, L. B.

see [EMS91]
[MW91].. 132
[MY93] .. 140

N

Nakanishi, T.
see [MN82]

Nelson, B. J.
see [BN84]

Nettles, S. M.
see [HKM+94]

Nierstrasz, O.
see [NP90]

[NP90].. 16

Nygaard, K.
see [MMN93]

O

[Obj00] ...44, 182
[Obj95] ...181
Object Management Group, Inc.

see [Obj00], [Obj95]
[OC96]..26
Oosten, J. V.

see [TOM99]
Oudshoorn, M. J.

see [OC96]

P

Palm, J.
see [KHH+01]

Papadimitriou, C. H.
see [PK84]

Papathomas, M.
see [NP90]

Parrington, G. D.
see [DPSW89], [PS88], [PSWL95],

[SDP91], [SPW+94]
Patiño-Martinez, M.

see [JPA00], [KJRP01], [PJA98]
Pausch, R. F.

see [SPB88]
Pautet, L.

see [PW97]
Pease, M.

see [LSP82]
Pelegri-Llopart, E.

see [SHM+00]
Pillevesse, E.

see [LJP93]
[PK84] ..82
[PKH88] ...38, 39
[PMJPA98].......................................61, 179
Prasad, S.

see [TLP+93]
Premerlani, W.

see [RBP+91]
240

Author and Citation Index
Printezis, T.
see [ADJ+96]

[PS88] .. 178
[PSWL95] .. 177
Pu, C.

see [BP95], [PKH88]
Pucheral, P.

see [BCF+97]
[PW97]... 143

R

Ramachandran, U.
see [DRAR91]

Ramamritham, K.
see [CR90], [CR94], [RC97], [VRS86]

[Ran75] .. 41
Randell, B.

see [CR86], [HR73], [Ran75], [RX95],
[RXR96], [SMR93], [XRR00],
[XRR+95], [XRR+99]

Rangarao, M.
see [VR99]

[RBP+91] ... 11
[RC97].. 84
Reuter, A.

see [GR93]
Richard J. LeBlanc, J.

see [DRAR91]
Riehle, D.

see [MRB98], [RSB+98]
[RJB99] .. 11
[RK01] ... 30
Robinson, J. T.

see [KR81]
[Rom99] ... 30
Romanovsky, A.

see [KJRP01], [KR00], [KR01],
[KRS00], [KRS01], [RK01],
[Rom99], [RXR96], [SGR97],
[XRR00], [XRR+95], [XRR+99]

[RSB+98] ... 70
Rubira, C. M. F.

see [XRR+95]

Rumbaugh, J.
see [RBP+91], [RJB99]

[RX95]..22
[RXR96] ...30

S

Salem, K.
see [GS87]

Sanden, B.
see [WJS+00a], [WJS+00b]

Schaffert, J. C.
see [LAB+81]

Scheifler, R.
see [LAB+81], [LS83]

Schmidt, D. C.
see [CS95]

[SD+85] ..174
[SDP91] ..176
Sengupta, S.

see [AS89]
[SGR97] ...41
Shannon, B.

see [SHM+00]
[SHM+00].......................183, 185, 186, 215
Shostak, R.

see [LSP82]
[Shr95]..176
Shrivastava, S. K.

see [DPSW89], [PS88], [PSWL95],
[SDP91], [Shr95], [SMR93],
[SPW+94]

Siberski, W.
see [RSB+98]

Smith, J.
see [SPW+94]

[SMR93]...31
Snyder, A.

see [LAB+81]
[SPB88] ..174
Spector, A. Z.

see [EMS91], [SD+85], [SPB88]
Spence, S.

see [ADJ+96], [ADS96], [AJDS96]
[SPW+94] ...177
241

Author and Citation Index
Steele, G. L.
see [GJS96]

Stemple, D.
see [VRS86]

[Str91] .. 24
Strigini, L.

see [SGR97]
Strohmeier, A.

see [CKS01], [KRS00], [KRS01],
[KS99], [KWS96], [WS99]

Stroud, R. J.
see [SW95], [XRR+99]
see [XRR+95]

Stroustroup, B.
see [Str91]

Sturgis, H. E.
see [LS79]

Sun Microsystems.
see [Sun98]

[Sun98]... 72, 95
[SW95]... 125

T

Thomsen, B.
see [TLP+93]

[TLP+93] .. 25
[TOM99] .. 16
Traiger, I. L.

see [EGLT76]
Traverson, B.

see [BCF+97]
Tripathi, A.

see [TOM99]

V

[Vac00] .. 189
Vachon, J.

see [Vac00]
van Renesse, R.

see [BR94], [GBCR93]
[VCK96] .. 68
Vinter, S.

see [VRS86]

Vlissides, J.
see [GHJV95], [VCK96]

Vogel, A.
see [VR99]

von Henke, F.
see [XRR+99]

[VR99]..183
[VRS86] ...40

W

Warmer, J.
see [WK99]

[Weg90]..11, 13
Wegner, P.

see [Weg90]
Weihl, W. E.

see [FLW92], [WL85]
Wellings, A. J.

see [BW95], [WJS+00a], [WJS+00b]
Wheater, S. M.

see [DPSW89], [PSWL95], [SPW+94]
Wing, J. M.

see [HKM+94]
[Wir88] ...132
Wirth, N.

see [MW91], [Wir88]
[WJS+00a] ..140
[WJS+00b]..140
[WK99]...14
[WL85] ...172
Wolf, T.

see [KWS96], [PW97], [WJS+00a],
[WJS+00b], [WS99]

[WS99] ...143
Wu, Z.

see [SW95], [XRR+95]

X

[XRR+95] ...46, 61
[XRR+99] ...48
[XRR00] ...30, 47
242

Author and Citation Index
Xu, J.
see [RX95], [RXR96], [XRR00],

[XRR+95], [XRR+99]

Y

Yonezawa, A.
see [IY91], [MY93]

Z

Zachary, J. L.
see [LZ94]

Zorzo, A. F.
see [XRR+99]

Züllighoven, H.
see [RSB+98]
243

Author and Citation Index
244

Curriculum Vitae

Jörg Andreas Kienzle, born on the 31st of July, 1970 in Princeton, New Jersey, USA.

Education

1989 Graduated from high school (Realgymnasium Basel, Switzerland),
“Matura Typ B” (Latin bias).

1992 - 1997 Computer science studies at the Swiss Federal Institute of Technology
(EPFL) in Lausanne, graduated 1997 with the Engineering Diploma.

1994 - 1995 Exchange year at Carnegie Mellon University, Pittsburgh, USA.

Research

1995 - 1996 Cryptology: Support for transparent data encryption in distributed Ada.
1996 - 1997 Distributed Systems: Support for multi-client / server applications in distrib-

uted Ada. Diploma thesis title: “Network Application Support for Ada 95”.
1997 - 2001 Ph.D. thesis in the field of transaction systems.

Teaching

1997 - 1998 Main assistant of the course “CASE Tools and Project Management”, given
to 4th year computer science students.

1998 - 1999 Assistant responsible for the implementation phase of the software engineer-
ing project for 3rd year computer science students.

1999 - 2000 Main assistant for the course “Programming I & II” for 1st year computer
science students, given in English.

2000 - 2001 Lecturer of the course “Programming I & II” for 1st year computer science
students, given in English.

Other Activities

1989 - 1992 Figure skating training in Füssen and Oberstorf, Germany.
Swiss Ice Dancing Champion in 1992, 18th / 27 at the 1992 World Figure
Skating Championships, San Francisco, California, USA.
245

Publications

1996: J. Kienzle, T. Wolf, and A. Strohmeier: “Secure Communication in Distributed
Ada”, in Reliable Software Technologies - Ada-Europe’96, Montreux, Switzerland,
June 10-14, 1996, pp. 198 – 210, Lecture Notes in Computer Science 1088,
Springer Verlag, 1996.

1997: J. Kienzle: “Network Applications in Ada 95”, in TRI-Ada’97 Conference,
pp. 3 – 9, St. Louis, MO, November 1997, ACM Press.

1999: J. Kienzle and A. Strohmeier: “Shared Recoverable Objects”, in Reliable Software
Technologies - Ada-Europe’99, Santander, Spain, June 7-11, 1999, volume 1622 of
Lecture Notes in Computer Science, pp. 397 – 411, 1999.

J. Kienzle: “Combining Tasking and Transactions”, in Proceedings of the 9th
International Real-Time Ada Workshop, Wakulla Springs Lodge, Tallahassee FL,
USA, March 1999, pp. 49 – 53, Ada Letters XIX(2), June 1999, ACM Press, 1999.

2000: A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T. Wolf, and S. Michell: “Inte-
grating Object-Oriented Programming and Protected Objects in Ada 95”, ACM
Transactions on Programming Languages and Systems 22(3), May 2000,
pp. 506 – 539, ACM Press.

J. Kienzle, A. Romanovsky, and A. Strohmeier: “A Framework Based on Design
Patterns for Providing Persistence in Object-Oriented Programming Languages”.
Technical Report EPFL-DI No 2000/335, Swiss Federal Institute of Technology,
Lausanne, Switzerland, 2000.

J. Kienzle: “Exception Handling in Open Multithreaded Transactions”, in ECOOP
Workshop on Exception Handling in Object-Oriented Systems, Cannes, France,
June 2000.

J. Kienzle and A. Romanovsky: “On Persistent and Reliable Streaming in Ada”, in
Reliable Software Technologies - Ada-Europe’2000, Potsdam, Germany, June 26-
30, 2000, pp. 82 – 95, Lecture Notes in Computer Science 1845, 2000.

J. Kienzle and A. Romanovsky: “Combining Tasking and Transactions, Part II:
Open Multithreaded Transactions”, in Proceedings of the 10th International Real-
Time Ada Workshop, Castillo de Magalia, Las Navas del Marqués, Avila, Spain,
September 2000, pp. 67 – 74, Ada Letters XXI(1), ACM Press, March 2001.

A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T. Wolf, and S. Michell:
“Object-Oriented Programming and Protected Objects in Ada 95”, in Reliable Soft-
ware Technologies - Ada-Europe’2000, Potsdam, Germany, June 26-30, 2000,
pp. 16 – 28, Lecture Notes in Computer Science 1845, 2000.
246

A. Romanovksy and J. Kienzle: Action-Oriented Exception Handling in Coopera-
tive and Competitive Object-Oriented Systems”, in Advances in Exception Han-
dling Techniques, Lecture Notes in Computer Science 2022, Springer Verlag, 2001.

2001: J. Kienzle, A. Romanovsky, and A. Strohmeier: “Open Multithreaded Transac-
tions: Keeping Threads and Exceptions under Control”, in Proceedings of the 6th
International Worshop on Object-Oriented Real-Time Dependable Systems, Roma,
Italy, 8 - 10 January, 2001, 2001. To be published.

J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and M. Patiño-Martinez: “Transac-
tion Support for Ada”, in Reliable Software Technologies - Ada-Europe’2001, Leu-
ven, Belgium, May 14-18, 2001, pp. 290 – 304, Lecture Notes in Computer
Science 2043, Springer Verlag, 2001.

X. Caron, J. Kienzle, and A. Strohmeier: “Object-Oriented Stable Storage based on
Mirroring”, in Reliable Software Technologies - Ada-Europe’2001, Leuven, Bel-
gium, May 14-18, 2001, pp. 278 – 289, Lecture Notes in Computer Science 2043,
Springer Verlag, 2001.
247

	Open Multithreaded Transactions A Transaction Model for Concurrent Object-Oriented Programming
	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	Abstract i
	Résumé iii
	Acknowledgements v
	Table of Contents ix
	List of Figures xvii
	Part I: Transaction Models
	2 Fundamental Concepts 9
	3 Transaction Models 29
	4 Open Multithreaded Transactions 49
	Part II: The Optima Framework
	5 Overall Design 67
	6 Transaction Support 75
	7 Concurrency Control 79
	8 Recovery 89
	9 Interfacing with Programming Languages 109
	Part III: Implementation for Ada�95
	10 Ada 95 131
	11 Implementation for Ada 95 151
	12 Related Work 171
	Part IV: Case Study
	13 Online Auction System 189
	14 Conclusion 213
	Part V: Annexes
	A Bibliography 221
	B Author and Citation Index 235

	List of Figures
	Part I: Transaction Models
	Chapter 1: Fundamental Concepts
	Chapter 2: Transaction Models
	Chapter 3: Open Multithreaded Transactions
	Part II: The Optima Framework
	Chapter 4: Overall Design
	Chapter 5: Transaction Support
	Chapter 6: Concurrency Control
	Chapter 7: Recovery
	Chapter 8: Interfacing with Programming Languages
	Part III: Implementation for Ada�95
	Chapter 9: Ada 95
	Chapter 10: Implementation for Ada 95
	Chapter 11: Related Work
	Part IV: Case Study
	Chapter 12: Online Auction System
	Chapter 13: Conclusion
	Part V: Annexes

	Introduction
	1.1 Context and Objectives
	1.2 Contributions of this Thesis
	1.3 Thesis Organization

	Fundamental Concepts
	2.1 Object-Orientation
	2.1.1 Base Principles
	2.1.2 Concepts
	2.1.3 Object-Oriented Programming
	2.1.4 Evolution of Object-Oriented Programming
	Figure�2.1:� Programming Language Concepts

	2.1.5 Objects
	2.1.6 Classes
	2.1.7 Inheritance
	2.1.8 Polymorphism
	2.1.9 Interactions
	2.1.10 Preconditions, Postconditions and Invariants

	2.2 Concurrency
	2.2.1 Nature of Concurrent Systems
	2.2.2 Concurrency and Object-Oriented Programming
	2.2.3 Direct Communication
	Figure�2.2:� Synchronous vs. Asynchronous Communication

	2.2.4 Communication via Shared Passive Objects
	2.2.5 Deadlocks and Starvation

	2.3 Fault Tolerance
	2.3.1 Terminology
	Figure�2.3:� Fault Tolerance Terminology

	2.3.2 Fault Classification
	2.3.3 Failure Semantics
	Figure�2.4:� Failure Semantics Hierarchy

	2.3.4 Error Processing
	2.3.5 System Structuring for Fault Tolerance
	Figure�2.5:� Idealized Fault-Tolerant Component

	2.4 Exceptions
	2.4.1 Exception Handling in Concurrent Systems

	2.5 Persistence
	2.5.1 Persistence and Programming Languages

	Transaction Models
	3.1 Atomic Units of System Structuring
	3.2 Atomic Units and Exception Handling
	3.3 Competitive and Cooperative Structuring Units
	3.4 Competitive World: Transactions and Derivatives
	3.4.1 Flat Transactions
	Figure�3.1:� A Flat Transaction

	3.4.2 Flat Transactions with Savepoints
	Figure�3.2:� A Flat Transaction with Savepoints

	3.4.3 Chained Transactions
	Figure�3.3:� Chained Transactions

	3.4.4 Nested Transactions
	Figure�3.4:� Serial Nested Transactions
	Figure�3.5:� Concurrent Nested Transactions

	3.4.5 Split Transactions
	Figure�3.6:� Split Transactions

	3.4.6 Joint Transactions
	Figure�3.7:� Joint Transactions

	3.4.7 Recoverable Communicating Actions
	3.4.8 Sagas

	3.5 Collaborative World: Conversations and Derivatives
	3.5.1 Conversations
	Figure�3.8:� Nested Conversations

	3.5.2 Atomic Actions
	Figure�3.9:� An Atomic Action with Coordinated Exception Handling

	3.6 Combining Cooperative and Competitive Concurrency
	3.6.1 Multithreading inside Transactions
	Figure�3.10:� Multithreading in Transactions

	3.6.2 Multithreaded Transactions
	Figure�3.11:� Multithreaded Transactions

	3.6.3 Coordinated Atomic Actions
	Figure�3.12:� A Coordinated Atomic Action

	Open Multithreaded Transactions
	4.1 Motivations
	4.2 Requirements
	4.2.1 Integration Requirements
	4.2.2 Guaranteeing the ACID Properties

	4.3 Analysis of Existing Models
	4.4 Open Multithreaded Transactions
	4.4.1 Starting an Open Multithreaded Transaction
	4.4.2 Joining an Open Multithreaded Transaction
	4.4.3 Concurrency Control in Open Multithreaded Transactions
	4.4.4 Ending an Open Multithreaded Transaction
	Figure�4.1:� An Open Multithreaded Transaction

	4.5 Exception Handing in Open Multithreaded Transactions
	4.5.1 Classification of Exceptions
	4.5.2 Internal Exceptions
	4.5.3 External Exceptions
	Figure�4.2:� Exceptions in Open Multithreaded Transactions

	4.6 Additional Considerations
	4.6.1 Closing an Open Multithreaded Transaction
	4.6.2 Naming an Open Multithreaded Transaction
	4.6.3 Deserters
	4.6.4 Transactional Objects
	4.6.4.1 Two-level Concurrency Control
	4.6.4.2 Enhanced Error Detection
	4.6.4.3 Exception Handling and Transactional Objects

	4.6.5 Exception Resolution
	4.6.6 Open Multithreaded Transactions as Firewalls for Errors

	4.7 Comparison
	Figure�4.3:� Comparison of Transaction Models

	Overall Design
	5.1 General Considerations
	5.2 Design Patterns
	5.2.1 The Abstract Factory Design Pattern
	Figure�5.1:� The Abstract Factory Design Pattern

	5.2.2 The Strategy Design Pattern
	Figure�5.2:� The Strategy Design Pattern

	5.2.3 The Serializer Design Pattern
	Figure�5.3:� The Serializer Pattern

	5.3 Optima Framework Design Overview
	5.3.1 Transaction Support
	Figure�5.4:� Optima Framework Overview

	5.3.2 Concurrency Control
	5.3.3 Recovery

	Transaction Support
	6.1 States of an Open Multithreaded Transaction
	6.2 Synchronizing Participant Exit
	Figure�6.1:� Life Cycle of an Open Multithreaded Transaction

	6.3 Monitoring Accesses to Transactional Objects
	6.4 Handling Nesting
	6.5 The Transaction Hierarchy
	Figure�6.2:� The Transaction Hierarchy

	6.6 Handling Named Transactions

	Concurrency Control
	7.1 Handling Cooperative Concurrency
	7.2 Handling Competitive Concurrency
	7.2.1 Pessimistic Concurrency Control
	7.2.2 Optimistic Concurrency Control

	7.3 Encapsulating Different Concurrency Control Strategies
	Figure�7.1:� The Concurrency_Control Hierarchy

	7.4 Concurrency Control Information for Operations
	7.4.1 Strict Concurrency Control
	Figure�7.2:� Compatibility Table of Read and Write Operations

	7.4.2 Semantic-Based Concurrency Control
	7.4.2.1 Commutativity
	Figure�7.3:� Backward Commutativity Table for the Set ADT

	7.4.3 Encapsulating Operation Concurrency Control Information
	Figure�7.4:� The Operation_Information Hierarchy

	Recovery
	8.1 Global Design
	Figure�8.1:� Recovery Support Overview

	8.2 Persistence Support
	8.2.1 Classification of Storage Devices
	Figure�8.2:� The Storage Hierarchy
	Figure�8.3:� Stable Storage Based On Mirroring
	Figure�8.4:� The Complete Storage Hierarchy

	8.2.2 Object Serialization
	8.2.3 Identification of Transactional Objects
	Figure�8.5:� The Storage_Parameter Hierarchy

	8.2.4 Storage Management

	8.3 Caching Support
	Figure�8.6:� Caching for Transactional Objects
	8.3.1 Cache Fetch Algorithm
	8.3.2 Cache Replacement Algorithm
	8.3.3 Extensible Cache Design
	Figure�8.7:� The Memory Object
	Figure�8.8:� The Cache_Manager Hierarchy

	8.3.4 Consequences of Caching

	8.4 Logging
	8.4.1 Encapsulating Logging Techniques
	Figure�8.9:� The Logging_Technique Hierarchy

	8.4.2 Encapsulating Log Information
	Figure�8.10:� The Log_Information hierarchy

	8.5 Recovery Support
	8.5.1 Recovery Strategies
	8.5.1.1 Undo/Redo
	8.5.1.2 Undo/No-Redo
	8.5.1.3 No-Undo/Redo
	8.5.1.4 No-Undo/No-Redo

	8.5.2 Encapsulating Recovery Strategies
	Figure�8.11:� The Recovery_Manager Hierarchy

	8.5.3 Undo/NoRedo Recovery Algorithms
	8.5.4 NoUndo/Redo Recovery Algorithms
	8.5.5 Undo/Redo Recovery Algorithms

	Interfacing with Programming Languages
	9.1 Associating Participants with a Transaction
	9.2 Encapsulating Objects
	9.2.1 The Transactional Object
	Figure�9.1:� A Transactional Set

	9.2.2 Handling Durability
	9.2.3 Encapsulating Operation Invocations on Data Objects
	Figure�9.2:� The Operation Hierarchy
	Figure�9.3:� An Example Operation

	9.2.4 Tying Things Together
	Figure�9.4:� Encapsulation of a Data Object

	9.2.5 In-place Update and Deferred Update
	Figure�9.5:� The Memory_Object Hierarchy

	9.2.6 Trace of an Operation Invocation
	Figure�9.6:� An Operation Invocation on a Transactional Object

	9.3 Initializing and Shutting Down the Transaction Support
	9.4 Providing Transactions at the Programming Language Level
	9.4.1 Procedural Interface
	9.4.1.1 Discussion

	9.4.2 Object-Based Interface
	Figure�9.7:� Object-Based Interface
	9.4.2.1 Discussion

	9.4.3 Object-Oriented Interface
	Figure�9.8:� Object-Oriented Interface

	9.5 Additional Considerations
	9.5.1 Reflection
	9.5.1.1 Applying Reflection

	9.5.2 Aspect-Oriented Programming
	9.5.3 Evaluation

	Ada 95
	10.1 Ada 83 vs. Ada 95
	10.2 Object–Oriented Programming in Ada
	Figure�10.1:� A Tagged Type Hierarchy
	Figure�10.2:� Illustrating Dispatching Calls
	10.2.1 Controlled Types

	10.3 Concurrency in Ada
	10.3.1 Tasks
	10.3.2 Task Identification
	10.3.3 Task Attributes
	10.3.4 The Rendezvous
	Figure�10.3:� The Rendezvous
	Figure�10.4:� Synchronous Communication in the Rendezvous Model

	10.3.5 Protected Types
	Figure�10.5:� A Protected Type for Mutual Exclusion
	Figure�10.6:� A Protected Type with Entries

	10.3.6 Asynchronous Transfer of Control
	Figure�10.7:� Syntax for Asynchronous select Statements

	10.4 Integration of Concurrency and Object-Orientation in Ada
	10.4.1 Extensible Protected Types
	Figure�10.8:� Abstract definition of a Signal using Extensible Protected Types
	Figure�10.9:� Deriving a Persistent Signal
	Figure�10.10:� Deriving a Transient Signal
	Figure�10.11:� A Generic Signal that Releases All Waiting Tasks

	10.5 Distributed Systems in Ada
	10.5.1 Remote Procedure Calls
	Figure�10.12:� Schematic View of a Remote Procedure Call

	10.5.2 Distributed Objects
	10.5.3 Fault Tolerance in Distributed Ada

	10.6 Exceptions in Ada
	Figure�10.13:� Exception Declaration and Explicit Raising
	Figure�10.14:� Exception Handling
	10.6.1 The Package Ada.Exceptions

	10.7 Persistence in Ada
	Figure�10.15:� The Package Ada.Streams
	Figure�10.16:� Overriding the Default Write Procedure
	Figure�10.17:� Writing and Reading Data to / from a Stream

	Implementation for Ada 95
	11.1 Implementing the Framework
	11.1.1 Objects
	Figure�11.1:� Reference Counting with Controlled Types

	11.1.2 Concurrency Control
	Figure�11.2:� The Lock_Manager Specification
	Figure�11.3:� Implementing Cooperative Concurrency Control
	Figure�11.4:� Implementing Competitive Concurrency Control

	11.1.3 Persistence
	11.1.3.1 The Storage Hierarchy
	Figure�11.5:� Specification of type Storage_Type

	11.1.3.1 The Buffer Hierarchy
	Figure�11.6:� The Buffer Hierarchy

	11.1.3.1 Normal and Buffered Streams
	Figure�11.7:� Specification of the Streams package

	11.2 Transaction Framework Interfaces for Ada 95
	11.2.1 Transaction Identifier Management
	Figure�11.8:� Associating the Transaction Context with a Task

	11.2.2 Encapsulating Data Objects
	11.2.2.1 Interfacing with the Cache Manager
	Figure�11.9:� Obtaining a Memory Object from the Cache Manager

	11.2.3 Procedural Interface
	Figure�11.10:� Procedural Interface for Ada 95
	Figure�11.11:� Programming Guidelines for the Procedural Interface

	11.2.4 Object-Based Interface
	Figure�11.12:� Object-Based Interface for Ada 95
	Figure�11.13:� Using the Object-Based Interface
	Figure�11.14:� Using Named Transactions with the Object-Based Interface
	Figure�11.15:� Implementation of the Object-Based Interface

	11.2.5 Object-Oriented Interface
	Figure�11.16:� Object-Oriented Interface for Ada 95
	Figure�11.17:� Programming Guidelines for the Object-Oriented Interface

	11.2.6 Initializing and Shutting Down the Transaction Support
	Figure�11.18:� Initializing and Shutting Down the Transaction Support

	Related Work
	12.1 Argus
	Figure�12.1:� Declaration of Guardians and Handlers in Argus
	12.1.1 Transaction Model
	12.1.2 Concurrency
	Figure�12.2:� Executing Nested Actions Concurrently

	12.1.3 Exceptions
	Figure�12.3:� Exception Handling in Argus
	Figure�12.4:� Pre-Emption of Sibling Actions

	12.2 Camelot and Avalon
	12.2.1 Transaction Model and Concurrency
	Figure�12.5:� Mapping Avalon Keywords to Argus

	12.2.2 Exceptions
	12.2.3 Transactional Objects
	Figure�12.6:� The Avalon Base-Classes

	12.3 Arjuna
	12.3.1 Transaction Model
	Figure�12.7:� Nested Transactions in Arjuna

	12.3.2 Exceptions
	12.3.3 Transactional Objects

	12.4 Venari / ML
	12.4.1 Transaction Model and Concurrency
	Figure�12.8:� Creating a Transaction in Venari�/�ML

	12.4.2 Exceptions

	12.5 Transactional Drago
	12.5.1 Transaction Model
	12.5.2 Exceptions

	12.6 PJama
	12.6.1 Transaction Model
	12.6.2 Exceptions

	12.7 Isis
	12.8 CORBA Object Transaction Service
	12.8.1 Transactional Objects
	12.8.2 Transaction Model
	12.8.3 Exceptions

	12.9 Enterprise Java Beans
	12.9.1 Session Beans and Entity Beans
	12.9.2 Transaction Model
	Figure�12.9:� Enterprise Java Beans Transaction Policies

	12.9.3 Concurrency Control
	12.9.4 Exceptions

	Online Auction System
	13.1 Requirements
	13.1.1 General Requirements
	13.1.2 Registration
	13.1.3 Login
	13.1.4 Starting an Auction
	13.1.5 Browsing the List of Current Auctions
	13.1.6 Participating and Bidding in an Auction
	13.1.7 Closing an Auction
	13.1.8 Member History
	13.1.9 Delivery of the Goods
	13.1.10 Fault-Tolerance Requirements

	13.2 Application Design
	13.2.1 Transactional Objects in the Auction System
	Figure�13.1:� Transactional Objects found in the Auction System
	13.2.1.1 The Account Class
	Figure�13.2:� The Account Class

	13.2.1.2 The Transactional_Account Class
	Figure�13.3:� Compatibility Table for the Transactional_Account Class

	13.2.2 Open Multithreaded Transactions in the Auction System
	13.2.2.1 Registration Transaction
	Figure�13.4:� The Registration Transaction

	13.2.2.2 English Auction
	Figure�13.5:� The English Auction Transaction

	13.3 Implementation
	13.3.1 Transactional Objects
	13.3.1.1 Account_Type Implementation
	Figure�13.6:� Implementation of the Accounts package

	13.3.1.2 Transactional_Account_Type Specification
	Figure�13.7:� Specification of the Transactional_Accounts package

	13.3.1.3 Transactional_Account_Type Implementation
	13.3.1.4 Type Safety
	Figure�13.8:� From Account_Ref to Data_Ref, and Vice Versa

	13.3.1.5 Creation, Loading, Saving and Deletion
	Figure�13.9:� Implementing Creation, Loading, Saving and Deletion
	Figure�13.10:� Implementing the Create Constructor for Transactional Accounts

	13.3.1.6 Concurrency Control
	Figure�13.11:� Implementing Concurrency Control Information for Accounts

	13.3.1.7 Encapsulating Operations
	Figure�13.12:� Encapsulating the Deposit Operation

	13.3.2 Starting the System
	13.3.3 Example Implementation of Open Multithreaded Transactions
	13.3.3.1 Registration
	Figure�13.13:� Implementation of the Registration Transaction

	13.3.3.2 English Auction Transaction
	Figure�13.14:� Implementation of the Seller Task
	Figure�13.15:� Implementation of the Bidder Task

	Conclusion
	14.1 Summary of Results
	14.2 Future Work
	14.2.1 Extending the Optima Framework to Support Distribution
	14.2.1.1 Distributed Access to Transactional Objects
	14.2.1.2 Distributed Transaction Control

	14.2.2 Interacting with the CORBA Object Transaction Service
	14.2.3 Formalizing the Open Multithreaded Transaction Model
	14.2.4 Experimenting with Aspect-Oriented Programming Techniques

	Annex A: Bibliography
	Annex B: Author and Citation Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X
	Y
	Z

	Curriculum Vitae

