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Abstract

As the use of computer systems becomes more and more widespread in applications
that demand high levels of dependability, these applications themselves are growing in
complexity in a rapid rate, especially in the areas that require concurrent and distributed
computing. Such complex systems are very prone to faults and errors. No matter how
rigorously fault avoidance and fault removal techniques are applied, software design
faults often remain in systems when they are delivered to the customers. In fact,
residual software faults are becoming the significant underlying cause of system
failures and the lack of dependability. There is tremendous need for systematic
techniques for building dependable software, including the fault tolerance techniques
that ensure software-based systems to operate dependably even when potential faults
are present. However, although there has been a large amount of research in the area of
fault-tolerant software, existing techniques are not yet sufficiently mature as a practical
engineering discipline for realistic applications. In particular, they are often inadequate
when applied to highly concurrent and distributed software.

This thesis develops new techniques for building fault-tolerant software, addresses the
problem of achieving high levels of dependability in concurrent and distributed object
systems, and studies system-level support for implementing dependable software. Two
schemes are developed - the t/(n-l)-VP approach is aimed at increasing software
reliability and controlling additional complexity, while the SCOP approach presents an
adaptive way of dynamically adjusting software reliability and efficiency aspects. As a
more general framework for constructing dependable concurrent and distributed
software, the Coordinated Atomic (CA) Action scheme is examined thoroughly. Key
properties of CA actions are formalized, conceptual model and mechanisms for
handling application level exceptions are devised, and object-based diversity
techniques are introduced to cope with potential software faults. These three schemes
are evaluated analytically and validated by controlled experiments. System-level
support is also addressed with a multi-level system architecture. An architectural
pattern for implementing fault-tolerant objects is documented in detail to capture
existing solutions and our previous experience. An industrial safety-critical application,
the Fault-Tolerant Production Cell, is used as a case study to examine most of the
concepts and techniques developed in this research.

Key Words - Concurrent and Distributed Systems, Exception Handling, Industrial
Production Cell, Multi-Version Software, Object Systems, Software Architecture,
Software Fault Tolerance.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 Motivation

The information age is now beginning. Computers are permeating our modem society
and improving the quality of our daily lives. However, as the requirements for and
dependences on computers increase, the likelihood of crises caused by computer
failures, directly or indirectly, also increase! The consequences of these failures might
be just inconvenience, e.g. incorrect billing, missed airline or hotel reservations etc.,
but in certain application areas they could be large economic losses, e.g. interruptions
of banking systems or even loss of human life, e.g. failures of air, rail, and subway
control systems. Although the root causes of computer failures may be physical, design
(typically software), human-machine interaction faults, or even malicious attacks,
software faults are becoming a major source of reported outages and system failures
[Gray 1990] as software becomes more and more complex. Even for control
applications that have less complex software, it is already well established that many
failures are, in fact, caused by software bugs [Hecht& Hecht 1996].

The "software crisis" issue came to the fore in the late 1960s, for example through the
discussions in the 1968 and 1969 NATO Software Engineering Conferences. The
concept of software engineering, aimed at minimizing the risk of software failures, has
offered many improvements in the way software is produced and in its quality. Such
improvements can be achieved by the use of fault avoidance techniques, including
structured programming, software reuse, and formal methods, to prevent software
faults, and by the use of fault removal techniques, including testing, verification, and
validation to detect and remove software faults. Unfortunately, no matter how
rigorously fault avoidance and fault removal techniques are applied, software faults
often escape the software development process and enter the field. In reality, even the
best quality software systems experience 1 - 2 faults per 20,000 lines of uncommented
code [Lyu 1995]. When we are not able to' somehow produce fault-free software, it is
rather necessary to investigate some alternative, or complementary techniques,
including, for example,fault tolerance techniques that attempt to increase reliability by
designing software to continue to provide service despite the bugs that the software
may still contain.
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Chapter 1,' Introduction

Over the last two decades, there has been a considerable amount of research, as well as
practical software engineering, in the area of software fault tolerance, (Chapter Two
will provide a comprehensive overview of the current state of the art and state of
practice for building fault-tolerant software). Unlike hardware failures that are, for the
most part, due to physical degradation, most software faults are the result of software
specification and design mistakes, and thus simple replication of software components
does not provide appropriate protection. Techniques for tolerating software faults
usually require design redundancy, that is, production of two or more software
components is aimed at delivering the same service through independent designs and
realizations. Although there are different experiences and some doubts about design
redundancy and related techniques, academia and industry appear to have reached a
general consensus that fault tolerance techniques for coping with software faults, if
used properly, have the capability of increasing the reliability of a computer-based
system [McAllister & Vouk 1996].

However, existing techniques, especially redundancy-based schemes, are not yet
sufficiently mature as a practical engineering discipline for routine applications. A
number of conceptual and practical issues are still open or not solved satisfactorily.
Though we are clearly aware that fault-tolerant software does improve system
reliability, with the current level of understanding it is difficult to precisely know how
much system reliability will be actually increased by such software in practice. This
leads to the question of whether the use of design redundancy will provide a sufficient
reliability improvement for critical systems that require very high software reliability.
A further question is how cost-effective fault-tolerant software will be, assuming the
desired reliability could be achieved.

Concurrent programs, such as operating systems and real-time control systems, are
usually extremely complex. As compared with sequential programs, there is a stronger
rationale for incorporating fault tolerance into such systems to improve their reliability.
Unfortunately, common fault tolerance mechanisms for sequential systems cannot be
simply applied to concurrent programs where many new technical and practical
problems arise, and some of the problems are still not well understood. Even simple
exception handling, rather than redundancy-based methods, for concurrent software is
still an evolving subject and clear consensus has not yet been reached [Cristian 1995].
Many design concepts, such as conversations [Randell 1975], are well studied and
developed, but the practice has not been well established for the majority of realistic
concurrent systems, so that design concepts often have to be adjusted and recalibrated
when they are considered for actual languages and systems.

Although much is understood about software fault tolerance, techniques for building
fault-tolerant software still require further investigation and better understanding.
Transferring key techniques and methodologies in software fault tolerance from an art
to a routine-based practice is still be a major challenge now and likely to remain well
into the next millennium.
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Chapter 1.' Introduction

1.2 Goals of This Research

The first goal of this research is to develop some innovatory schemes for building fault-
tolerant software and to study the ways of enhancing software reliability and improving
the balance between reliability and efficiency, in comparison with existing techniques
for tolerating software faults. (The proposed schemes are essentially intended for
incorporating fault tolerance into sequential programs though they may be applied to
concurrent systems under an appropriate framework for coping with concurrency.)

The second goal of this research is to study issues related to fault tolerance in
concurrent software systems. With the aim of overcoming the mismatch between the
development of pure design concepts and practical aspects of realistic languages and
systems, an object-oriented environment is assumed to facilitate the discussion of
several key practical issues, such as concurrent sharing of objects, effective prevention
of erroneous information smuggling [Kim 1982] and coordinated exception handling.

System-level support for implementing fault-tolerant software is also important though
they are a relatively weak part of the current research - no technique can become
actually viable for normal usage if the application programmers have to take care of
such additional, low-level details as software version synchronization and state
restoration. The third goal of this research is to design and develop a supporting system
architecture, using the latest pattern technique [Buschmann et al 1996], to alleviate the
development effort of fault-tolerant software for both sequential and concurrent
programs.

We are aware that the maturity of software fault tolerance techniques towards an
engineering practice needs substantial, long-term, industrial and academic efforts. We
hope that all the above goals as a whole represent a consistent attempt of bridging the
gap between theoretical concepts and practical applications.

1.3 Thesis Overview

As taken by others in similar research, this thesis takes a system approach rather than a
programming language approach since the major issues with software fault tolerance
are rooted in system design and language can be regarded as an implementation tool for
the system designer. The key language-related issues are discussed in object-oriented
terms, starting with complex concurrent programs. More programming language issues
and implementation issues are taken into account while addressing the implementation
of a multi-level reference architecture and its associated architectural pattern.

In order to maintain good readability and also to demonstrate a clear track of how basic
concepts could be enriched and extended to practical engineering techniques, this thesis
is organized following two logical strings. One string starts, in Chapter Three, from
simple, sequential program systems and then goes on to tackle more complex,
concurrent program issues in Chapter Four. The other string first deals with pure design

3



Chapter J: Introduction

concepts in Chapter Three, then turns to address in Chapter Four more practical issues
in an assumed object-oriented environment, and, in Chapter Five, finally ends up with
architectural patterns, actual concurrent programs and an industrial case study.

1.3.1 Main Results

The major results obtained from this research are as follows.

• A survey of state of the art techniques and state of practice approaches to
software fault tolerance is given with an abundant bibliography that covers latest
progress.

• Two new schemes are developed for building fault-tolerant software. The tl(n-l)-
VP approach, i.e. tl(n-l)-variant programming, is aimed at increasing software
reliability and controlling additional complexity. The SCOP approach, i.e. self-
configuring optimal programming, presents an adaptive way of dynamically
adjusting software reliability and efficiency aspects.

• Both dependability and efficiency improvements achieved by tl(n-l)-VP and
SCOP are modelled and evaluated analytically, as compared with main existing
schemes like recovery blocks and N-version programming. The analytic
conclusions are also supported by experimental data and evaluation.

• Coordinated Atomic (CA) actions [Xu et al 1995a], as a general scheme for
constructing fault-tolerant concurrent systems, is examined thoroughly. Key
properties of this scheme, in particular enclosure (i.e. error confinement) and
fault tolerance, are addressed in detail and formalized using a simplified logic
system.

• A general model of exception handling, especially for concurrent/distributed
object systems, is developed using CA actions as a system structuring unit. Both
forward and backward error recovery are considered within the combined
framework supported by exception handling and the CA action abstraction. New
object diversity techniques are introduced to provide software fault tolerance in
such concurrent/distributed systems.

• A multi-level system architecture for implementing fault-tolerant software is
presented to help separate different concerns and impose desirable structuring
characteristics. An architectural pattern is described in detail to tackle many
practical issues. Both a reflective implementation and a delegation-based solution
are discussed respectively with experimental data and the sample program code.
Finally, a realistic industrial case study, the Fault-Tolerant Production Cell
[Lotzbeyer 1996], is used to examine and confirm most of the ideas developed in
this research.

4



Chapter 1: Introduction

1.3.2 Thesis Structure and Related Publications

The rest of this thesis is composed of five chapters.

Chapter Two attempts to give a comprehensive survey of the state of the art and the
state of practice for building fault-tolerant software. This chapter is partially based on
[Randell & Xu 1995] prepared for the Wiley book "Software Fault Tolerance" [Lyu
1995]. I undertook the detailed analysis of the various approaches to software fault
tolerance, especially those developed outside Newcastle, that constituted the greater
part of this paper.

Chapter Three develops two advanced techniques, t/(n-l)-VP and SCOP, addressing
respectively the improvement of software reliability and the dynamic trade-off between
dependability and efficiency. An early version of the t/(n-l)-VP approach appeared in
IEEE Trans. Reliability [Xu & Randell 1997]. The SCOP approach was developed
jointly with A. Bondavalli and F. Di Giandomenico [Xu et al 1995b]. My particular
contributions to this work include the trade-off analysis, dependability evaluation and
implementation of SCOP.

Chapter Four investigates the key issues related to fault tolerance in
concurrent/distributed object systems. CA actions and exception handling are used to
constitute a general framework for achieving fault tolerance in such complex systems.
The concept of CA actions was first developed within the Dependability Group at
Newcastle in 1995 [Xu et al 1995a]. Key properties of this scheme was formalized
subsequently with our colleagues at University of Ulm, Germany, especially D.
Schwier. My particular contributions to this formalization include enclosure and fault
tolerance properties. The study of coordinated exception handling was performed
jointly with A. Romanovsky and B. Randell [Xu et al 1998a]. My major contributions
to this research are the conceptual model, correctness proofs, and complexity and
performance analysis.

Chapter Five presents a multi-level system architecture, introduces an architectural
pattern for implementing fault-tolerant software and conducts an industrial case study.
The system architecture is developed partially based on our early work within the
Dependability group in 1995 [Xu et al 1995c]. The task of experimental evaluation
using C++ and Open C++ was undertaken subsequently together with B. Randell and
A. Zorzo [Xu et al 1996]. I made particular contributions to the introduction of a
generic framework, the design of experimental settings and the evaluation of software
fault tolerance based on fault injection. Over the years I have been involved in a
number of experiments and case studies conducted by ESPRIT projects PDCS, PDCS2
and DeVa, such as Production Cell I, II and III. I took the major responsibility of
designing a control program for the Fault-Tolerant Production Cell (i.e. Production
Cell II) [Xu et al 1998b], focusing on the development of various strategies for coping
with software faults and hardware component failures.

Finally, Chapter Six concludes this thesis and discusses the way forward.

5



Paginated
blank pages
are scanned
as found in

original thesis

No information
• • •
IS missing



Chapter 2: Fault-Tolerant Software

Chapter 2

Fault- Tolerant Software

An important method of coping with software design faults is through fault tolerance.
Software is said to be fault-tolerant if it can continue to provide service despite the
existence of residual faults after its development. The term "software fault tolerance",
in the context of this thesis, is concerned with all the techniques necessary to enable a
system to tolerate software faults, although the effectiveness of these techniques is not
usually limited to a precise class of faults. In reality, transient hardware faults,
hardware design faults and software bugs often cause similar system behaviour [Powell
1991].

There are a few survey papers and texts on the subject of tolerance to software faults,
such as [Strigini 1990][Lyu 1995][McAllister & Vouk 1996][Hecht & Hecht 1996].
But most of them focused on sequential programs and few discuss the issues related to
supporting mechanisms. The main goal of this chapter is to provide a broader overview
of the techniques for building fault-tolerant software, covering the recent advances and
problems in both sequential and concurrent programs and discussing the issues with
system-level support for implementing fault-tolerant software.

Section 2.1 gives a taxonomy of terms and introduces a set of concepts which will be
used frequently throughout the whole thesis. Section 2.2 reviews the fault tolerance
techniques mainly for sequential programs. Section 2.3 addresses the issues concerned
with fault tolerance in complex concurrent/distributed systems. Section 2.4 covers the
subject that has received less attention in the literature - system-level support and
environments. The last section gives a brief summary of this chapter.

2.1 Basic Terminology and Concepts

Before discussing basic principle of software fault tolerance and various existing
techniques, we need to first introduce some fundamental concepts and outline an
abstract model for software systems.

2.1.1 System Model

We are concerned with software systems, which may be implemented on a variety of
hardware. A system consists of a number of components, which cooperate under the

7



Chapter 2: Fault-Tolerant Software

control of a design to service the demands of the system environment [Anderson & Lee
1981]. The components and the system environment themselves may be viewed as
systems in their right. The design can be also considered as a special component (or an
algorithm) that is responsible for defining the interactions between components and
establishing connections between components and the system environment.

SYSTEM SYSTEM ENVIRONMENT

Figure 2.1 System and components

In actual software systems, components may be categorized as being either
synchronously or asynchronously related to the design which employs them.
Synchronous components are passive, they are invoked by their calling environment
and will complete before the environment may resume. The top-down decomposition
of a sequential program into a hierarchy of procedures is a typical example of design
using synchronous components. By contrast, asynchronous components are active and,
once invoked, will operate asynchronously with their environment, For example,
communicating concurrent processes is a common form of program design utilizing
asynchronous components.

Systems, and their components, can be regarded as performing operations in order to
provide responses to requests. It is each component's responsibility to alert its
environment when it cannot carry out a requested operation. In fact, with the system
model of Figure 2.1, we need a clear discipline for exception handling. Apart from
normal responses, there are two distinguished classes of exceptional responses: an
interface exception is signalled when interface checks determine that an invalid service
request has been made to a component and its environment that made the invalid
request must deal with the exception; and afailure exception is the means by which the
component notifies its environment that it has been unable to provide the service
requested of it. In addition, within a component a local exception may also be raised
when the component has detected an abnormal condition that its own exception
handlers should deal with, so that if possible the component returns to its normal
activities without affecting its environment.

Indeed, an idealized fault-tolerant component [Anderson & Lee 1981] should in
general provide both normal and abnormal (i.e. exception) responses in the interface
between interacting components, in a framework which minimizes the impact of these
provisions on system complexity. In other words, such components should provide a
means of system structuring which makes it easy to identify what parts of a system
have what responsibilities for trying to cope with which sorts of fault [Randell 1984].

8



Chapter 2: Fault-Tolerant Software

2.1.2 Dynamic Behaviour of Software Systems

Before we can clearly define the failures of a system, we need to further discuss the
dynamic behaviour of software systems and, in particular, the sequence of the events //
that leads to the failure of these systems. In principle, the dynamic behaviour of a
software system is characterized by the series of internal states which the system
adopts during its processing. Certain elements of an internal state will coincide with the
interface between the system and its environment, and these constitute the external
state of the system via which its external behaviour can be realized. Each' internal state
will comprise the set of data values within the scope of the design - output values
produced by the components (i.e. their external states) and the values of any variables
maintained directly by the design. Under normal processing conditions, the system will
advance from one valid internal state to the next by means of a valid transition (see
Figure 2.2).

valid internal states

- - - - ---------..

r-----@
failureerroneous states

@ :some elements of this state form the external state of the system

Figure 2.2 System's dynamic behaviour and erroneous transition Te

2.1.3 Software Faults, Errors and Failures

When a fault is encountered in the software during its processing, an erroneous
transition may occur which transforms the system to an invalid internal state containing
one or more defective values or errors. If an error in an internal state maps on to the
external state, for example when an incorrect value is output, then a failure of the
system will result. Therefore, all system failures can be attributed to errors in the
internal state of the system (but not all errors necessarily result in failure). All errors
and, therefore, all failures are attributable to faults in the system. For a given system, its
failure may be caused by the failure of the system design algorithm to perform its
internal function, i.e. a design fault, or may derive from the failure of a system
component to operate according to its specification (a component fault). Since a system
will eventually decompose purely into a set of designs, all software faults can be
considered as design faults at some level of-abstraction within the software system.

2.1.4 Origins of Software Faults

Traditionally, the failure of a system is considered to occur when the external
behaviour of the system first deviates from that defined in its specification. In reality,
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the specification may contain errors due to incompleteness, inconsistencies and
ambiguities, it may not accurately reflect the true requirements which the environment
places on that system. Therefore, the behaviour which is correct with respect to the
specification may be still viewed as a perceived failure in terms of the expectations of
the environment. Figure 2.3 summarizes the major origins of software faults.

Figure 2.3 Origins of software faults (a recursive view)

Generally speaking, the objective of software fault tolerance is to prevent software
faults from leading to system failure. Software fault tolerance applied to the system
level will basically not deal with system specification faults. The use of the fault
tolerance techniques will however strive to protect against system design faults and
various system component faults. Similarly fault tolerance applied at the component
level will normally not cope with erroneous component specifications. (To improve the
correctness of system specifications, we may need to develop diverse specifications and
use appropriate formal techniques [Avizienis 1985].)

2.1.5 Software Fault Tolerance

A general way of allowing a system to operate successfully in the presence of a design
fault is to construct the entire system from a number of diverse designs (or software
redundancy) derived from a common, presumably correct, specification [Randell
1975][Avizienis & Chen 1977]. These diverse designs should have a low probability of
exhibiting common-mode failure, i.e. by producing similar erroneous output for the
same processing conditions. There are four major activities common to any scheme for
providing software fault tolerance:

1) Error detection: Faults are not directly detectable but the effects of a fault,
namely one or more errors in the internal state of a system (or component), can
be used to identify the presence of a fault. It is important to detect errors before
they affect the external state of the system, namely cause system failure. Error
detection includes various measures and mechanisms, such as executable
assertions, voter of diverse outputs, and memory-protection mechanisms.

2) Damage assessment and confinement: Once the internal state of the system (or
component) contains one or more errors, the extent of this damage must be
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assessed. This is usually achieved by having damage-confinement structures
present within the system that limit the propagation of errors.

Example 2.1: The atomic action concept is an important dynamic structuring
concept that helps to confine damage. The activity of a group of components
constitutes an atomic action if there are no interactions between that group
and the rest of the system for the duration of the activity [Anderson & Lee
1981].

3) Error recovery: Once the extent of the damage to the internal state of the system
(or component) is assessed, this damage must be repaired so that failure of the
system can be averted. Error recovery can be forward - the system is returned to
a further error-free state by applying corrections to the damaged state. Recovery
can be also backward - the system is recovered to a previous error-free state.

4) Fault treatment: Faults remaining in the system after error recovery can lead to
further errors. Removing the fault will usually require off-line diagnosis and
repair. Components should be re-configured into the system after repair.

When multiple software versions of a common specification are considered, further
classification of software faults, such as the terminology used in [Avizienis 1985], is
useful. Independent faults in different versions usually cause distinct errors (although
they may lead to similar errors by chance). Related faults result either from an
erroneous specification, common to all the versions, or from dependences in the
diverse designs and implementations. Related faults manifest under the form of similar
errors. Similar errors can cause common-mode failures of multiple versions while
distinct errors usually lead to separate failures. However, this classification should be
treated as one kind of modelling assumption used by some researchers (e.g. [Laprie et
aI1987][Arlat et al1990D and should not be regarded as a description of reality.

For certain applications the detection of inability to deliver acceptable results may be
crucial. The failure classification defined in [Laprie et al 1987] is based on such
consideration: detected failures indicate no acceptable results found and no results
delivered; undetected failures imply that erroneous results are delivered.

2.1.6 VariousMeasures

Software reliability is defined as the probability of failure-free software operation for a
specified period of time in a specified environment [ANSI 1991]. This definition can
be applied equivalently to system level and. component levels. Software reliability is in
fact one of the attributes of software quality, a multidimensional property including
other customer satisfaction factors such as functionality, usability, performance, and
maintainability [Grady 1992]. But software reliability is generally accepted as the key
factor in software quality since it quantifies software failures.
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There is often confusion between the concept of reliability and of availability. The
availability of a system can be stated as the probability that the system will satisfy a
request for a service. A 0.999999 availability means the software system is not
available at most one hour in million hours. An increase in reliability will improve the
availability of a system but the inverse is not necessarily true. A system with high
availability may in fact fail, but its recovery time and failure frequency must be small
enough to achieve the required availability.

Safety is another related but different attribute of software quality, emphasizing the
non-occurrence of catastrophic consequences on the environment of the software.
[Leveson 1986] details the difference and defines safety as the probability that
conditions that can lead to hazards, do not occur in a specified time, regardless of the
functioning of the system. Again, a reliable system can be unsafe.

A well-known obstacle to a discussion of system reliability and techniques for fault
tolerance is the lack of agreed terminology for the relevant concepts. To overcome
some of these difficulties, dependability is an appropriate generic term and defined as
the quality of the delivered service such that reliance can justifiably be placed on this
service [Laprie 1992]. It describes a general attribute of a system that encompasses
measures such as reliability, availability, safety and security. A terminology tree from
[Laprie 1992] is reproduced in Figure 2.4.

maintainability

availability

reliability

safety

confidentialityattributes

integrity

dependability means fault prevention

fault tolerance

fault removal

fault forecastingimpairments

faults

errors

failures

Figure 2.4 The dependability tree
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2.1. 7 Cost, Effectiveness and Efficiency

Besides the technical factors, there are also economical factors that affect. the
development of fault-tolerant software [Knight & Ammann 1991]. The cost issue of
multi-version software has to be considered carefully. Although there are some
experiments that show multi-version software is capable of reducing failure probability
over the single versions from which they are built, the systems being compared in such
experiments were usually not built with equal cost.

A comparison of the cost of building a fault-tolerant system with the cost of building a
non-fault-tolerant system often becomes essential. To examine the cost effectiveness of
fault-tolerant software properly and precisely, it is necessary to build and operate both a
fault-tolerant system and a non-fault-tolerant system using comparable resources.
Indeed, for a more precise calculation, the cost comparison will further depend upon
whether costs are calculated at the end of development or at the end of operational life
because multi-version software may require extra maintenance efforts.

Closely related to cost considerations, software efficiency is also considered as one of
the attributes of software quality and defined as the good use of hardware resources,
such as processors and communication devices, during the software execution.

2.1.8 System Supportfor Fault-Tolerant Software

Since fault-tolerant software requires the addition of software redundancy to normal
software, some extended syntax and certain run-time support may be needed. If the
application programmers were responsible for treating many low-level details such as
state saving/restoring and message passing between software versions, implementation
and maintenance of fault-tolerant programs would become very complex. The objective
of a supporting system or environment for developing fault-tolerant software is to make
the development a standard, and as much as possible programmer-transparent, activity.
Figure 2.5 shows an example which is similar to the supporting environment developed
in [Ancona et a11990].

application code
with standard ~ ...__ .... __ ...

components

Figure 2.5 An example of supporting systems
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2.2 Fault Tolerance in Sequential Software

In this section, we mainly discuss the schemes used in sequential programs, although
the essence of these schemes can be extended and applied to concurrent software (this
will be discussed in Section 2.3).

2.2.1 Techniques for Dealing with Software Faults

As discussed in Section 2.1, software faults are almost exclusively design- and
implementation-related. However, some software faults may be caused by undetected
hardware errors such as transient or timing faults, which often occur because of
complex hardware/software/operating system interaction. Such faults (called
Heisenbugs in [Gray 1990]) can be rarely duplicated or diagnosed.

Proposals for software fault tolerance started to appear in the mid 1970s [Elmendorf
1972][Horning et al 1974][Avizienis 1975][Fischler et al 1975][Kopetz 1974][Randell
1975]. From then on, some methodological proposals have been defined. Most
proposals, such as recovery blocks (RB) [Homing et al 1974] and N-version
programming (NVP) [Avizienis & Chen 1977], suggest to have independent
programmers produce functionally equivalent software components, namely to use the
design diversity approach.

Design diversity: The production of two or more components is aimed at
delivering the same service through independent designs and realizations
[Avizienis 1985]. The components, produced through the design diversity
approach from a common service specification, are called variants
(alternates in RB or versions in NVP.) By incorporating at least two variants
of a system, tolerance to design faults necessitates an adjudicator [Anderson
1986] (a decision algorithm) that provides an (assumed to be) error-free
result from the execution ofvariant(s).

The diversity idea can also be used in the data domain [Ammann & Knight 1988] as
well as in the operating environment domain [Gray & Siewiorek 1991][Huang &
Kintala 1995]. The resulting approaches may be useful in some specific situations and
be able to cope with certain types of software faults.

Data diversity: In this approach, if a program fails with its original data, the
same program is executed again but with slightly different, or re-expressed
data. This is based on an observation that programs typically fail on some
special inputs. When the input data are modified a little, the failure may not
occur. However, this approach is only appropriate to those applications in
which the accuracy of the input is not very strict and data re-expression is
possible. (Sometimes data diversity is used as the basis for error detection as
well, e.g. by relying on continuity properties of the function implemented.)
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As mentioned at the beginning of this section, the failures exhibited by software faults
can be transient, namely, the failures may not recur if a program is re-executed even on
the same input, but after a certain amount of clean-up and reinitialization. This is /
because the behaviour of a program depends upon not only the input data and message
contents but also upon timing factors, interleaving of different messages, shared
variables and other state values involved in the operating environment of the
application [Huang & Kintala 1995]. (For example, the timing factor is exploited for
developing a time-diversity-based approach in the current Hitachi experiment
[Kanekawa et aI1998].)

Environment diversity: This approach is mainly aimed at software faults that
cause transient errors. If a program fails, the program is rolled back to a
previously valid state and is executed again with certain changes in its
operating environment, such as a different hardware processor and the re-
arrangement of message order. Such a pragmatic approach seems to fit
practical experience, but it is less complete and its effectiveness may be a
matter of luck.

There are some limited form of software fault tolerance; for example, by detecting and
recovering an error, and either ignoring the operation which generated it or by
providing a pre-defined and heavily degraded service. In such cases software cannot be
regarded as truly fault-tolerant since some perceived departure from specification is
likely to occur. However, this approach can result in software which is robust in the
sense that catastrophic failure can be averted. Robust software is discussed usually in
the context of exception handling facilities [Cristian 1984].

Finally, robust data structures [Taylor et al 1980][Taylor & Black 1985] are another
example of coping with special classes of software faults, namely, software faults that
manifest themselves by corrupting data structures. Such techniques attempt to protect
the structural information of data structures by adding redundancy in their
representation in storage.

2.2.2 Basic Schemes: Recovery Blocks and N-Version Programming

This section will concentrate on the two main comprehensive software fault tolerance
schemes, i.e. recovery blocks and N-version programming, both of which include
diverse designs in software for fault treatment. Conceptually, the methods the two
schemes use to tolerate faults are different. Recovery blocks uses backward error
recovery that tries to return the system to a previous, error-free state from which
execution may be re-tried with a new variant, N-version programming uses forward
error recovery to construct a valid, error-free new state from existing redundant
information, provided by multiple software variants.
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A research effort into the recovery block scheme was started in the early 70s by Brian
Randell and his research group [Horning et aI1974][RandellI975]. The basic recovery
block was developed for sequential systems. (Details of extensions for use in
concurrent systems are discussed in Section 2.3.) The recovery block approach
attempts to prevent residual software faults from impacting on the system environment,
and it is aimed at providing fault-tolerant functional components which may be nested
within a sequential program. Figure 2.7(a) shows the usual recovery block syntax and
(b) gives an architectural view of the scheme and its operation.

ensure
by
else by

acceptance test
primary alternate
alternate 2

else by
else error

alternate n

(a)

input/entry

execute
alternate

exception
signals

Ii!

restore
checkpoint

output/exit failure exception

(b)

Figure 2.6 Recovery block syntax and its operation

On entry to a recovery block, the current state of any variables that might be changed
during the execution of the recovery block must be saved in a secure storage area called
a recovery cache [Horning et al 1974][Anderson & Kerr 1976] to permit backward

16



Chapter 2: Fault-Tolerant Software

error recovery, i.e. establish a checkpoint. The primary alternate is executed and then
the acceptance test is evaluated to provide an adjudication on the outcome of this
primary alternate. If the acceptance test is passed then the outcome is regarded as /
successful and the recovery block can be exited, discarding the information on the state
of the system taken on entry. However, if the test fails or if any errors are detected by
other means during the execution of the alternate, then an exception is raised and
backward error recovery is invoked. This restores the state of the system to Whatit was
on entry. After such recovery, the next alternate is executed and then the acceptance
test is applied again. This sequence continues until either an acceptancetest is passed
or all alternates have failed the acceptance test. If all the alternates either fail the test or
result in an exception (due to an internal error being detected), a failure exception will
be signalled to the environment of the recovery block. Since recovery blocks can be
nested, then the raising of such an exception from an inner recovery block would
invoke recovery in the enclosing block.

The overall success of the recovery block scheme rests to a great extent on the
effectiveness of the error detection mechanisms used - especially (but not solely) the
acceptance test. The acceptance test must be simple otherwise there will be a
significant chance that it will itself contain design faults, and so fail to detect some
errors, and/or falsely identify some conditions as being erroneous. Moreover, the test
will introduce a run-time overhead which could be unacceptable if it is very complex.
The development of simple, effective acceptance tests can thus be a difficult task,
depending on the actual specification. In practice the acceptance test in a recovery
block should be regarded as a last line of detecting errors, rather than the sole means of
error detection. The expectation is that it will be buttressed by executable assertion
statements within the alternates and run-time checks supported by the hardware.
Generally, any such exception raised during the execution of an alternate will lead to
the same recovery action as for acceptance test failure.

As described in [Melliar-Smith & Randell 1977] forward error recovery can be further
incorporated into recovery blocks to complement the underlying backward error
recovery. (In fact, a forward error recovery mechanism can support the implementation
of backward error recovery by transforming unexpected errors into default error
conditions [Cristian 1982].) If, for example, a real-time program communicated with its
(unrecoverable) environment from within a recovery block then, if recovery were
invoked, the environment would not be able to recover along with the program and the
system would be left in an inconsistent state. In this case, forward recovery would help
return the system to a consistent state by sending the environment a message informing
it to disregard previous output from the program.

In the first paper about recovery blocks [Homing et al 1974], Homing et allist four
possible failure conditions for an alternate: 1) failure of the acceptance test, 2) failure to
terminate, detected by a timeout, 3) implicit error detection (for example divide by
zero), and 4) failure exception of an inner recovery block. Althoughthe mechanism for
implementing the time-out detection measure was not discussed by the authors, the
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original definition of recovery blocks does cover this issue. Several implementations of
watchdog timers for recovery blocks have been described in [Hecht 1976][Kim &
Welch 1989]. Timeout can be also provided as a syntactic form in the recovery block
structure [Gregory & Knight 1985].

Although each of the alternates within a recovery block endeavours to satisfy the same
acceptance test there is no requirement that they all must produce the same results [Lee
1978]. The only constraint is that the results must be acceptable - as determined by
the test. Thus, while the primary alternate should attempt to produce the desired
outcome, the further alternate may only attempt to provide a degraded service. This is
particularly useful in real-time systems, since there may be insufficient time available
for fully-functional alternates to be executed when a fault is encountered. An extreme
corresponds to a recovery block which contains a primary module and a null alternate
[Anderson & Knight 1983][Anderson et al 1985]. Under these conditions, the role of
the recovery block is simply to detect and recover from errors by ignoring the operation
where the fault manifested itself.

N-Version Programming

Algirdas Avizienis and his research group started in 1976 a research effort into the N-
version programming approach [Avizienis & Chen 1977][Chen & Avizienis 1978]. N-
version programming provides run-time fault tolerance by comparing the outputs
produced by several diverse software versions (i.e. variants) and tries to mask version
failures by propagating only consensus results. The dimension of diversity was
originally based on independent programmers, but more recent studies have extended
the dimension by using a mixture of diverse formal specifications [Avizienis & Kelly
1984]), diverse design (e.g. different algorithms and data structures), different
programming teams, and diverse implementations (e.g. different languages, tools or
compilers).

The NVP approach is a direct application of the hardware N-modular redundancy
approach (NMR) to software. N versions (i.e. variants) of a program that have been
independently designed are executed in parallel and their results compared by a
decision mechanism. By incorporating a majority vote, the system can eliminate
erroneous results (i.e. the minority) and pass on the (presumed to be correct) results
(i.e. the majority). The execution of N variants is supposed to take advantage of the
redundant hardware processors likely to be available in a system that must tolerate both
hardware and software faults. In the situation that hardware resources are not sufficient,
software variants may be executed sequentially. Grnarov, Arlat and Avizienis [Grnarov
et al 1980] sketched such a sequential application of NVP, called NVS. Figure 2.7
illustrates NVP's architecture and its operation. (There is no general syntax proposal for
NVP.)
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input/entry

driver program

data
consistency
mechanism

execute
version 2

execute
version 1

execute
versionN•••

output/exit failure exception

Figure 2.7 NVP architecture

Conceptually NVP is very simple - one of the scheme's advantages. A driver program
(or main program) is responsible for 1) invoking each variant with the identical input
data, 2) waiting for all variants to complete, and 3) executing the decision mechanism
to determine a consensus result. Coordination of each of the variants is based on simple
synchronization primitives. There can be no interaction between variants and they must
be prevented from making global state changes and direct outputs.

The success of NVP critically depends upon the decision mechanism that identifies the
erroneous output of a faulty variant. This requires that special attention be placed on
the design of the decision mechanism, which may itself be diverse. There are two main
functions of the decision mechanism: i) to collect the available results from the
software variants and select the consensus result to be delivered to the user, and ii) to
diagnose the cause of any detected errors and perform the appropriate error recovery. In
order to increase the effectiveness of error detection and decision, it is normal practice
to include in the specification of the variants intermediate cross-check values which
will be delivered to the driver program together with the output results. Using these
cross-check values, the voter can detect certain errors in the internal states of the
variants as well as in their external states. However, this may have a negative impact on
the degree of design independence of the various variants.

In many complex cases, the simple majority vote must be combined with more
sophisticated and application-oriented tests. For example, the performance and fault
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coverage of the decision mechanism can be increased by adding an acceptance test to
each variant to exclude clearly erroneous results from the consensus decision. These
tests can serve as a form of filter [Anderson 1986] to prevent incorrect results from
being sent to the decision mechanism or to prevent the mechanism from waiting for a
result that will never arrive (e.g. using a timeout-based test).

In practice the variants may deliver their results to the decision mechanism at markedly
different times. An individual result may be delayed due to hardware processor
interrupts, internal error detection and recovery, or the use of diverse algorithms. Since
the decision mechanism usually requires the collection of all results from the software
variants before it can determine a consensus, a slow variant would delay the decision
and in some cases the decision cannot be made in the pre-specified amount of time.
This problem will be more serious if real-time applications are taken into account. A
watchdog timer may be used to ensure that the decision is made and the consensus
result delivered in a timely manner.

Another complication occurs in the design of the voting check when the results involve
non-discrete values such as real numbers, since different variants may produce slightly
differing correct results. The problem is often regarded as a form of replica non-
determinism. To allow a consensus to be reached despite these differences requires
inexact voting. This requirement for inexact voting can lead to application dependent
algorithms and hence loss of generality. ([Di Giandomenico & Strigini 1990] gave a
comprehensive survey of various voters and adjudicators for diverse redundant
components. )

Comparison of RB and NVP

There is a detailed discussion of relative advantages and disadvantages of recovery
blocks and N-version programming in [Lee & Anderson 1990]. In general, the critical
importance of effective error detection in software fault tolerance would suggest that N-
version programming is most appropriate if for a given application voting checks may
be easily implemented and replicated hardware is available to reduce run-time
overheads. However, the recovery block scheme is a generally applicable approach
which can be mapped naturally onto nested component structures and would be most
appropriate for those systems where hardware resources are limited and voting checks
is inappropriate.

A brief comparison of the two schemes is given in Table 2.1, summanzmg major
differences between them. In many aspects, recovery blocks and N-version
programming are complementary according to their relative merits. The final choice of
the scheme depends very much upon the characteristics of an actual application and the
support hardware on which it will run. In order to combine various features of each
scheme, many hybrid approaches have been developed and we will review some
typical and advanced schemes in the next subsection.
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Characteristic Recovery Blocks N-Version Programming
Aspects

error detection By acceptance testing by result comparison

Conditionally sequential Parallel execution of N versions
Execution of execution of alternates with

variants respect to detected errors
Single processor required multiple processors required

Adjudication
Acceptance testing voting and majority decision

(absolute test) (relative test)

new alternate following fault masking by ignoring
fault treatment backward recovery erroneous results

(dynamic redundancy) (static redundancy)

degraded designs possible local data structure possible
support for but global data structure but no degradation and cross-

diverse designs required check points may be required

An acceptance test and extra a voter and extra versions
Structural alternates
overheads recovery cache data consistency and

synchronization mechanisms

Less predictable; execution of execution time of the slowest
run-time alternates and the acceptance version and duration of voting
overheads test triggered by detected errors

Conversation-type schemes and lack of related research
Concurrent variations

system recovery (see review in Section 2.3) (see work in Section 4.4)

Table 2.1 Comparison ofRB and NVP

2.2.3 Advanced Schemes

Many applications and varieties of recovery blocks, N-version programming, and their
combinations have been explored and developed by various researchers. Some of the
most typical extensions and advanced schemes are considered below.

Distributed Recovery Blocks

H. Hecht was the first to propose the application of recovery blocks to flight control
systems [Hecht 1976][Hecht & Hecht 1986]. His work included an implementation ofa
watchdog timer that monitors availability of output within a specified time interval and
his model also incorporates a rudimentary system to be used when all alternates of the
recovery block scheme are exhausted. Since then, further researches and experiments
have been conducted by Hecht and his colleagues. For example, M. Hecht et al [Hecht
et al 1989][Hecht et al 1991] described a distributed fault-tolerant architecture, called
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the Extended Distributed Recovery Block, for nuclear reactor control and safety
functions. Their architecture relies on commercially available components and thus
allows for continuous and inexpensive system enhancement. The fault injection
experiments during the development process demonstrate that the system could tolerate
most single faults and dual faults.

K. H. Kim and his colleagues in the DREAM Laboratory have extensively explored the
concept of distributed execution of recovery blocks, a combination of both distributed
processing and recovery blocks, as an approach for uniform treatment of hardware and
software faults [Kim 1984][Kim & Welch 1989][Kim & Yoon 1988][Welch 1983].
The details are given in [Kim 1995]. A useful feature of their approach is the relatively
low run-time overhead it requires so that it is suitable for incorporation into real-time
systems. The basic structure of the distributed recovery block is straightforward: the
entire recovery block, two alternates with an acceptance test, is fully replicated on the
primary and backup hardware nodes. However, the roles of the two alternate modules
are not the same in the two nodes. The primary node uses the first alternate as the
primary initially, whereas the backup node uses the second alternate as the initial
primary (see Figure 2.8). Outside of the distributed recovery block, forward recovery
can be achieved in effect; but the node affected by a fault must invoke backward
recovery by executing an alternate for data consistency with the other nodes. To test the
execution efficiency of the approach, two experimental implementations and
measurements have been conducted on distributed computer networks [Kim & Min
1991][Kim 1993]. The results indicate the feasibility of attaining fault tolerance in a
broad range of real-time applications by means of the distributed recovery blocks.

predecessor computing stations

execute
version 1

primary node

successor computing stations

Figure 2.S DRB architecture
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N Self-Checking Programming

As discussed previously, recovery blocks can be equivalent to stand-by sparing in
hardware and N-version programming can correspond to N-modular redundancy. ,/
Laprie et al [Laprie et al 1987] attempted to identify the equivalent to active dynamic
redundancy used in hardware. They investigated some existing industrial practice and
described it as N Self-Checking Programming (NSCP).

NSCP consists of N self-checking components designed independently ~but with the
same functionality. A self-checking software component is considered as resulting
either from the association of an acceptance test with a variant, or from the association
of two variants with a comparison algorithm. Fault tolerance can be provided by the
parallel execution of N(?:_2) self-checking components. During the execution, a self-
checking component is regarded as being active; the others are considered as "hot"
spares. Upon the failure of the active component, service delivery is switched to a self-
checking component previously regarded as a spare. Error processing is thus performed
through error detection, by an acceptance test or a comparison algorithm, and switching
of the results.

In reality, some of real-life systems such as the Airbus A-320 and the Swedish
railways' interlocking system do not actually employ RB or NVP, but use, perhaps
relatively simple, self-checking software.

input/entry

driver program

data
consistency
mechanism

output/exit failure exception

Figure 2.9 NSCP architecture (N = 4)
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Consensus Recovery Blocks

The consensus recovery block (CRB) [Scott et al 1985] is an attempt to combine the
techniques used in recovery blocks and N-version programming. It is claimed that the
CRB technique reduces the importance of the acceptance test used in the recovery
block and is able to handle the case where NVP would not be appropriate since there
are multiple correct outputs. The CRB requires design and implementation of N
variants of the algorithm which are ranked (as in the recovery block) in the order of
service and reliance. On invocation, all variants are executed and their results submitted
to an adjudicator, i.e. a voter (as used in N-version programming). The CRB compares
pairs of results for compatibility. If two results are the same then the result is used as
the output. If no pair can be found then the results of the variant with the highest
ranking are submitted to an acceptance test. If this fails then the next variant is selected.
This continues until all variants are exhausted or one passes the acceptance test.

input/entry

driver program

data
consistency
mechanism

"

~
.:~

Figure 2.10 CRB architecture

Reliability models are developed in [Scott et al 1987] for the recovery block, N-version
programming and the CRB. In comparison, the CRB is shown to be superior to the
other two. However, the CRB is largely based on the assumption that there are no
common faults between the variants. (This is not totally true according to the
experiments in [Knight et al 1985][Scott et aI1984].) In particular, if a matching pair is
found, there is no indication that the result is submitted to the acceptance test, so a
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correlated failure in two variants could result in an erroneous output and would cause a
catastrophic failure.

The converse of the CRB scheme, proposed by [Athavale 1989][Gantenbein/
1991][Belli & Jedrzejowiez 1991], is called acceptance voting (AV). As in NVP, all
variants execute in parallel. The output of each variant is then presented to an
acceptance test. Ifthe acceptance test accepts the output it is then passed to a voter. The
voter processes only those outputs which have passed by the acceptance test. Since the
voter may not have the same number of outputs at each invocation, the voting
algorithm must be dynamic with respect to the number of acceptable outputs.

input/entry

driver program

data
consistency
mechanism

execute
version 2

execute
versionN

execute
version 1 •••

output/exit failure exception

Figure 2.11 AVarchitecture

The voting itself can be made adaptive as well. A generalization of majority voting is
consensus voting (CV) [McAllister et al 1990]. The CV scheme first seeks for an
absolute majority; if it fails to find the majority, it tries to identify a relative majority
(i.e. less than r(N + 1)/21). When there ~e more than one such majority, CVeither
selects one randomly, in the NVP case, or applies them to an acceptance test, for the
CRB architecture. The CV strategy is shown particularly effective in small output
space because it automatically adjusts the voting to the changes in the effective output
space cardinality.
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Other Schemes and Techniques

There are also other schemes and variations of the basic schemes. We will briefly
discuss two of them below.

The Maximum Likelihood Voting (MLV) method is recently proposed as one of the
voting methods with high reliability [Leung 1995]. This method determines the most
likely correct result from N software variants based on the reliability history of each
variant. Assuming that output space is finite and that the variant failures are statistically
independent, MLV employs the likelihood value of each variant output to select an
answer as a correct output. The original proposal of MLV assumes failure
independence. [Kim et al 1996] examines MLV under the failure correlation conditions
and concludes that MLV outperforms statistically several implementations of NVP, RB
andCRB.

Sullivan and Masson developed an algorithm-oriented scheme, based on the use of
what they term Certification Trails [Sullivan & Masson 1990][Sullivan & Masson
1991]. The central idea of their method is to execute an algorithm so that it leaves
behind a trail of data (certification trail) and, by using this data, to execute another
algorithm for solving the same problem more quickly. The outputs of the two
executions are compared and considered correct only if they agree. An issue with the
data trail is that the first algorithm may propagate an error to the second algorithm, and
this could result in an erroneous output. Nevertheless, the scheme is an interesting
alternative to the recovery block scheme, despite being perhaps of somewhat limited
applicability.

2.2.4 Dependability and Cost Effectiveness

Fault-tolerant software techniques, especially those based on diverse designs, have the
capability of achieving an improvement over non-fault-tolerant software. Practical
experiences (see Sections 2.2.5 and 2.2.6) are more positive than negative, though a
number of issues remain open and controversial. Typical questions include items such
as: how much can fault-tolerant software actually increase system dependability in
practice, and how cost-effective is software fault tolerance?

The potential for common-mode failures among the software variants designed
independently is the major reason for these questions. Experiments show that incidence
of common-mode failures of variants in fault-tolerant software may not be negligible in
the context of current software development and testing techniques [Scott et al
1984][Vouk et al 1985][Knight & Leveson 1986a][Kelly et al 1988][Eckhardt et al
1991]. However, the origins and the extent of common-mode failures in practical
systems are still not well understood. [Lyu & He 1993] conjectured that improving
software development process could increase overall system dependability effectively.

To resolve the above issues, it is essential for us to have some measurable or
predictable confidence in fault-tolerant software's operation. There are two basic ways
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to achieve this: 1) direct measurement of the software dependability, and 2) the use of
an analytic model to predict the dependability. The usual approach to direct
measurement is life testing - a system is exercised in its operational environment (or a /
laboratory approximation of its environment), and the failures of the system over time
are observed. The number of failures observed over time can be then used to derive an
estimate of the probability of failure and to establish a confidence level in that estimate.
Unfortunately, the amount of testing for high dependability levels that are typically
required by critical systems is infeasible [Miller 1989][Littlewood & Strigini 1993].
Unlike hardware testing, there is no general way of testing in an unbiased manner that
can shorten the observation time required to assess the dependability of fault-tolerant
software [Knight & Ammann 1991].

The other way of assessing the software dependability is to use an analytic model to
derive predictions of system dependability from measurements of component
dependability. For multi-version software, quantitative dependability modelling
generally depends upon knowledge of the common-mode failure probability
distribution. Unfortunately, this distribution is not known in general, making the
dependability of fault-tolerant software difficult to assess. We shall further discuss the
analytic evaluation of fault-tolerant software in the next section.

If an adequate level of dependability cannot be easily ensured by the design of multiple
versions, the cost may become a problem. The frequently asked question is: what
dependability would be achieved if the same cost as a multi-version system were spent
on the quality of a single version system? Although there is no a general answer to this,
there is practical evidence that in some cases the design diversity approach is cost-
effective. Table 2.2 reports some empirical results and analytic conclusions.

Experimental Systems Number of Software Extra Cost of Fault-
or Analytic Model Variants Tolerant Software

Ericsson
two < 100%[Hagelin 1987]

Experiment in
two 77%[PanzlI981]

PUUIS
Three 126%[Bishop et al 1986]

naval C2 system two 60%[Anderson et al 1985]

analytic cost model
an additional variant 75 ~ 80%[Laprie et al 1990]

Table 2.2 Extra cost of fault-tolerant software

The experience of the Ericsson company demonstrated that the development cost of
two software variants is not double the cost of a single software version [Hagelin
1987]. Panzl [Panzl 1981] found that dual-program development effectively reduced
the number of software errors from 69 to 2 with an extra development cost of 77%. The
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cost of3-version programming in the PODS project [Bishop et a11986] was estimated
as about 126% of single version costs. Of the nine residual faults detected, only two
faults were common between versions, and all other fault combinations were
effectively masked by the voting mechanism. Another large project was set up at
Newcastle University at the early 80s to evaluate the cost effectiveness of applying
recovery blocks to a naval command and control demonstrator. The results of
experimentation on the completed demonstrator revealed that 74% of potential failures
were averted by the recovery block scheme. The increased development cost was
approximately 60%.

Laprie et al [Laprie et al 1990][Laprie et al 1995] established a simple analytic model
for calculating the cost of fault-tolerant software. A number of sources of increasing
costs, such as synchronization, failure detection and adjudication, are considered.
Several factors that reduce the cost of per version are also taken into account, such as
back-to-back testing. By their abstract cost model, the cost of N-version software is less
than N times of the cost of a single version. In a multi-version setting a typical version
cost is about 75 to 80 percent of a normal single version costs.

The cost of fault-tolerant software has to be treated carefully. Knight and Ammann
[Knight & Ammann 1991] argued that, for a cost comparison to be valid, it is necessary
to built and operate both a multi-version system and a single-version system using
comparable resources, and to calculate the costs at the end of operational life rather
than at the end of development phases. Following their arguments, the total cost of N-
version software would be greater than N times the cost of a single software version. If
multi-version software cannot generally achieve a large improvement in dependability,
can the high cost be justified in practice? We can only answer this if we know the cost
of failure! Typical cases include consumer electronics where recall costs are
extraordinarily high, and fly-by-wire aircraft (see Section 2.2.6) in which software
development costs only make up a small part of the overall cost.

Les Hatton [Hatton 1997] has conducted a detailed analysis based on the well-known
Knight and Leveson experiment [Knight & Leveson 1986a][Knight & Leveson
1986b][Brilliant et al 1990], whose results were originally used to "demonstrate" the
impracticality of multi-version software. Hatton instead used these results, together
with other evidence, to argue that multi-version development techniques can produce
more dependable systems than concentrating all effort into producing one "good"
version. This is because, with the current state of the art and the current state of practice
in software engineering, we are not able to actually make one really good version no
matter how much effort we expend. Although the dependability gain of N-version
software is much less than that which would in theory be gained by N completely
independent versions without possible common-mode failure, the gain is still
substantial: Hatton's study shows that the average (dependability) improvement
obtained by a 3-version system was by a factor of 5 to 9 in comparison with a single
"best" version.
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In summary, multi-version high quality software can offer more dependability than we
can gain any other way. Although there are certain difficulties in directly measuring or
accurately predicting the dependability of multi-version software, and the cost of such /
software can be very high, the analysis based on empirical results suggests that the
multi-version development techniques are significantly superior to even the current
state of the art regarding all other approaches to high software dependability, especially
in situations where cost of failure is high. .

2.2.5 Analytical Evaluation and Experimental Validation

Over the years techniques for fault-tolerant software have been evaluated by a number
of researchers and engineers, both theoretically (e.g. [Scott et al 1984][Arlat et al
1988][Tomek et al 1993][Dugan & Lyu 1995]) and experimentally (e.g. [Anderson &
Kerr 1976][Avizienis et al1988a][Eckhardt et a11991][Lyu & He 1993].)

Analytical Evaluation

Analytical estimations of effectiveness of fault-tolerant software provide an alternate
approach when direct measurement of very high dependability is infeasible. Analytic
modelling of different fault tolerance schemes can give insight into their behaviour and
allows quantification of their relative merits. The major difficulty of using existing
models is that of estimating the values of the parameters used in the models. It is
particularly difficult to predict the probabilities of errors common to software variants.
Intuition suggests that such probabilities should be made as small as possible, and the
related values should be obtained experimentally. Unfortunately, given the current state
of the art and practice we are not able to determine such parameter values with any
high confidence.

The early models usually assumed statistical independence of failures (or a slightly
weaker assumption) in fault-tolerant software. Scott et al [Scott et a11984] were first to
develop models to treat common-mode failures, but their models become quite
complicated and intractable as the number of software versions increases for the
general case. Eckhardt and Lee [Eckhardt& Lee 1985] analyzed the effect of common-
mode failures on the performance of N-version software using a model that
incorporates the observation that certain inputs are more likely to cause failure than
others. Based on this model, the reliability of a multi-version system can be predicted if
the probability distribution associated with common-mode failure is known. [Eckhardt
et al 1991] shows that, using very limited empirical evidence (which may have no
general implication) for such probability distributions, only a modest improvement
factor of 2 to 5 in comparison with a single version under certain conditions can be
achieved by the use of the multi-version software technique. Littlewood and Miller
extended and generalized the Eckhardt and Lee model by addressing the effect of
different development strategies for each of the N version [Littlewood & Miller 1989].
They found that disjoint failures of multiple versions result in even better performance
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(if such a result can be obtained in practice.) Popov and Strigini [Popov & Strigini
1998] further extended the previous conceptual models in [Eckhardt & Lee
1985][Littlewood& Miller 1989][Nicola& Goyal 1990] to improve the understanding
of the various ways failure dependence between versions can arise. Their analysis
provides some useful insight into non-intuitive aspects of the failure process of multi-
version software.

In the late 80's, ArIat et al [ArIat et al 1990] modelled the behaviour of a software
system as a Markov chain, and provided dependability modelling and detailed
evaluation of recovery blocks and N-version programming. The major contributions of
their work to the area of analytic modelling include 1) the definition of a modeling
framework based on the identification of possible types of faults through the analysis of
software production process - an analytic method discussed in detail in [Laprie 1984],
2) the evaluation of both reliability and safety, and 3) the detailed analysis of two
specific architectures: nested RB and NVP with a failed version. Their modelling
framework is subsequently extended for a performability analysis of fault-tolerant
software techniques in [Tai et al 1993] and for a dependability analysis under a
distributed computing environment in [Di Giandomenico et al 1997].

The assumptions regarding common-mode software failures in different versions are
different in various existing models. The model developed in [ArIat et al 1990]
assumes that similar errors are caused by related software faults and different errors
which are simultaneously activated are caused by independent faults. Related and
independent faults are assumed to be mutually exclusive. However, [Dugan & Lyu
1995] assumes that these two types of faults are statistically independent. [Dugan 1994]
gave a detailed comparison of several typical modelling approaches.

There are only a few papers that have considered a combined analysis of fault-tolerant
software and hardware [Laprie et al 1987][Di Giandomenico et al 1997]. Laprie et al
[Laprie et al 1990] conducted a dependability analysis of hardware and software fault-
tolerant architectures adopting a Markov approach. Three special architectures that
tolerate a single hardware or software fault were examined in detail. [Dugan & Lyu
1995] used a combination of fault tree and Markov modelling as a framework for the
analysis of hardware and software fault tolerant system. When a Markov model is used
to represent the effects of permanent hardware faults, a fault tree model is used to .
capture the effects of software faults and transient hardware faults. Such a hierarchical
modelling approach can simplify the development, solution and understanding of the
modelling process.

It is important that practical fault-tolerant systems are analyzed not only with respect to
their data-domain characteristics, but also with respect to their time-domain
characteristics. Tomek etal [Tomek et al 1993] modelled recovery blocks with failure
correlation and analyzed the time-dependent behaviour of RB reliability in
considerable detail. The categories of different events developed in Pucci's model
[Pucci 1992] were used to establish the stochastic reward nets (SRNs) for recovery
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blocks. Kanoun et al [Kanoun et al 1993] have modelled reliability growth of
individual components using the time-dependent hyperexponential model. They
applied the model to the analysis of reliability of RB and NVP and found that NVP is /
much more sensitive to the removal of independent faults at the testing stage than RB
since the failures that did occur are most possibly correlated among different versions
after most independent faults have been removed.

Experimental Work

This section discusses diverse software experiments conducted in different universities,
especially those using recovery blocks, N-version programming and distributed
recovery blocks. Experiments involved in industrial applications will be discussed in
Section 2.2.6).

The first implementation of recovery blocks involved defining and simulating a simple
stack-oriented instruction set, incorporating a recovery cache [Anderson & Kerr 1976].
Simple test programs embodying recovery blocks could be run on this machine
simulator, and have deliberate faults injected into them. Visitors to the project were
typically challenged to try and cause a demonstration recovery block program to fail -
their inability to do so was a persuasive argument for the potential of the recovery
block scheme! Another experimental system is described in [Shrivastava
1978][Shrivastava & Akinpelu 1978] in which recovery blocks were incorporated in
the language Pascal. The modification was made to the kernel and interpreter of Brinch
Hansen's Pascal system to support the syntax of recovery blocks and the associated
recovery caches needed for state restoration. For experimental sample programs, the
run-time overhead ranged between 1 to about 11% of T 1 (execution time of a program
without any recovery facilities) when no errors are detected. If a primary failed, the
time taken to restore system state was up to about 30% of Tl. This experiment also
showed that recovery caches made a substantial saving in space, compared with
complete checkpointing. In order to further enhance the performance of recovery
blocks, the next major work at Newcastle on the implementation of the basic recovery
block scheme involved the design and building of a hardware recovery cache for the
PDP-II family of machines [Lee et al 1980].

The controversial nature of software fault tolerance spurred extensive efforts aimed at
providing evidence of the scheme's potential cost-effectiveness in real systems. (The
developers of N-version programming [Avizienis & Chen 1977] were similarly
motivated to undertake extensive experimental evaluations, as discussed later.) During
1981-84 therefore, a major project directed. by Tom Anderson applied an extension of
recovery blocks in the implementation of a Naval Command and Control system
composed of about 8000 lines of CORAL programming, and made use of the above-
mentioned hardware cache [Anderson et al 1985]. The practical development work
included the design and implementation of a virtual machine which supported recovery
blocks, together with extensions to the CORAL programming language to allow
software fault-tolerance applications to be written in this high-level language. Analysis
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of experimental runs of this system showed that a failure coverage of over 70% was
achieved. The supplementary cost of developing the fault-tolerant software was put at
60% of the implementation cost. The system overheads were measured at 33% extra
code memory, 35% extra data memory and 40% additional run time. These led to the
conclusion that "by means of software fault tolerance a significant and worthwhile
improvement in reliability can be achieved at acceptable cost" [Anderson et aI1985].

Delta-4 was a collaborative project carried out within the framework of the European
Strategic Programme for Research in Information Technology (ESPRIT) [Powell
1991]. Its aim was the definition and design of an open, dependable, distributed
computer system architecture. [Barrett & Speirs 1993] describes the integration of
software fault tolerance mechanisms into the existing Delta-4 architecture. The authors
claimed that the incorporation of recovery blocks and dialogues (structures for
supporting inter-process recovery) into the Delta-4 framework is obtained without
significant overheads.

Experimental evaluations of N-version programming have been mainly performed at
UCLA. The first experiment at UCLA was a small program developed for the
numerical solution of partial different equations [Avizienis & Chen 1977][Chen &
Avizienis 1978]. Eighteen programmers implemented the program using three different
algorithms. Of the 71 cases in which a single version failed, 59 were successfully
masked while 12 cases caused the system to abort. The most significant cause of the
common-mode failures was found to be coincident omission of certain key results. The
initial experiment was followed by an experiment which investigated the impact of
specification on residual faults [Kelly & Avizienis 1983][Avizienis & Kelly 1984].
Based on three specifications written in English, OBJ and PDL respectively, eighteen
PL-l programs were developed for a database application. This experiment
demonstrated a large increase in dependability in the multi-version executions, and
thereby showed the feasibility of design diversity. One of the following research
activities has been concerned with the development of a test bed for N-version
experiments [Avizienis et al 1985][Avizienis et al 1988a], and its use to investigate
issues such as inexact voting strategies and forward recovery of failed versions.

The second generation experiment in fault-tolerant software at UCLA was sponsored
by the NASA Langley Research Center, also involving several other U.S. universities
and research centres [Kelly et al 1986][Kelly et al 1988]. A specification of an avionic
application was supplied to 20 teams. Software versions were developed in Pascal and
ranged in size between 2000 and 5000 lines of code. The analysis of the twenty
versions has provided some insight into the causes of common-mode failure. The
experiment has again shown the effectiveness of N-version programming in tolerating
the faults introduced during the design and coding phases of development. Another
experiment conducted by UCLA and Honeywell-Sperry Commercial Flight Systems
Division was to develop and evaluate six versions of a flight control program in six
different programming languages [Avizienis et al 1988b]. Preliminary results showed
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the effectiveness of using different languages to enforce diversity - few faults were
found to be common to more than one version.

Scott and his colleagues at North Carolina State University and other institutions [Scott '
et al 1984] were first to show, using an experiment, that programs may not fail
independently, and they developed models to treat this issue. A large-scale experiment
was conducted by Knight and Leveson [Knight & Leveson 1986a] to further
investigate the issues regarding the independence of versions and common-mode
failures. A 27-version program was developed and submitted to one- million test
patterns, encountering common-mode failures of two or more versions on 1255
occasions. This was regarded statistically as demonstrating that the failures of versions
were not always independent. Some doubts have been raised about several aspects of
the experiment, such as random test cases without using any enforced diversity,
questionable granularity of the decision vector, and the inappropriate application which
is not complex enough to permit true diversity. In a later experiment [Knight &
Leveson 1986b] the average probability of failure for a three-version system randomly
constructed from the 27 versions was found to be 19 times less than the average for
individual versions, showing that significant reliability improvements can still be
achieved. The later NASA-LaRC study [Eckhardt et al 1991][Vouk et al 1993]
investigated a large number of instances of common-mode failures among 20 versions,
and found that significant reliability improvements may not be always ensured; in some
cases, only minor improvements were observed. Lyu and He [Lyu & He 1993]
considered three and five version configurations formed from 12 different versions and
demonstrated how the improved development process could increase the overall
dependability of multi-version software.

Since the initial formulation of the distributed recovery block (DRB) concept in 1983
[Kim 1984], several experiments were conducted, including the application of the DRB
scheme to adjacent computing stations in real-time parallel processing multi-computer
testbeds [Kim & Welch 1989][Kim & Min 1991] and to LAN based systems [Hecht et
al 1989][Hecht et al 1991][Kim et al 1994]. These experiments essentially
demonstrated the DRB scheme to be a practical technique that could be used in many
real-time applications with acceptable amount of time overheads.

2.2.6 Industrial Applications

Fault-tolerant software based on design diversity, though not yet widely used in
general-purpose industrial areas, has been attempted for use in a number of critical
application areas. For example, in nuclear power plants [Gmeiner & Voges
1979][Bishop et aI1986], in railway systems [Hagelin 1987][Kantz & Koza 1995], and
in aerospace systems [Avizienis et al 1988b][Davis et al 1993]. More on the use of
software diversity in computer-based systems can be found in two books [Voges
1987][Lyu 1995].
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Nuclear Power Plants

Most application examples in nuclear industries have been experimental. Some
experiments were conducted to examine the usefulness of dual programming for back-
to-back testing [Ramamoorthy et aI1981][Dahll & Lathi 1979], and other experiments
were related to N-version programming, including the project run by the
Kemforschungszentrum in Karlsruhe [Voges 1987] and the PODS project [Bishop et al
1986]. The PODS project had three diverse teams in England, Finland and Norway
implementing a simple nuclear reactor protection system application. With good
quality control and experienced programmers no design-related faults were found when
the diverse programs were tested back-to-back. All the faults were caused by omissions
and ambiguities in the requirements specification. However, because of the differences
in interpretation between the programmers, five of the faults occurred in a single
version only, and just two common faults were found in two versions.

There are at least two known examples involving the practical utilization: 1) use of
dual programming techniques in the Candu Plants [Popovic et al 1986] and 2) the
protection of the Darlington nuclear reactor based on the diverse software concept
[Condor & Hinton 1988]. The UK's Sizewell B nuclear reactor primary-protection
system is the other practical example, which has three separate channels. However, the
design diversity used in the current Sizewell B system is hardware-based only since
each channel uses the same control software, as discussed in [Hatton 1997].

Railway Systems

The first industrial use of fault-tolerant software, based on the design diversity
principle, is believed to have occurred in a railway system [Sterner 1978] reported in
[Voges 1987]. Design diversity has been used to either help develop, verify, or actually
implement an operational railway application for deployment in Sweden, Denmark,
Finland, Switzerland, Turkey and Bulgaria [Hagelin 1987], Austria [Theuretzbacher
1986][Erb 1989], Italy [Frullini & Lazzari 1984], Singapore, and the United States
[Turner et al 1987]. Such applications are still increasing. Several recent examples are
the ELEKTRA system [Kantz & Koza 1995], the Shinkansen Train Control system
[Hachiga et aI1993], and the SACEM system [Hennebert & Guiho 1993].

In 1985, A1catel Austria started with the development of the electronic railway
interlocking system ELEKTRA [Erb 1989]. A two channel system based on design
diversity has been developed, and high availability and reliability are achieved by using
actively triplicated redundancy with on-line recovery. In 1989, the first system was put
into operation. Currently, about fifteen railway interlocking systems are in operation
and further installations are ongoing [Kantz & Koza 1995].
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Aerospace Applications

The use of fault-tolerant software in aerospace applications has received a lot of
attention over the years, in both civilian [Sweet 1995] and military [Martin r

1982] [Turner et a11987] aircraft, and in the U.S. space shuttle.

The slat/flap control system for the civilian Airbus A310 airliner consists of two
functionally identical computers with diverse hardware and software [Hills
1983][Wright 1986]. The later Airbus-320 fly-by-wire flight control system has two
types of computers and four software variants [Traverse 1987]. Four software variants
are organized as two self-checking pairs to provide degradable services.

The Boeing 737-300 incorporates the Sperry SP-300 digital autopilot flight director
system which is essentially a 2-version system with diverse hardware and software
[Yount 1986]. The Sperry Corporation has also developed a prototype diverse system
for the yaw damper of the Boeing 757 and 767 aircraft.

The resident back-up software (REBUS) was developed by Draper Labs at the early
80s as a flight experiment on the F-8 digital fly-by-wire flight control system for
NASA [Slivinski et al 1984]. The experimental flights have had no problem so far and
the basic concept has been chosen for the X-Wing and F-16 programs.

The NASA space shuttle [Madden & Rone 1984][Spector & Gifford 1984] carries a
configuration of four computers, each loaded with the same software, to tolerate
hardware faults, but there is also a fifth computer developed by a different
manufacturer and running dissimilar software, which is executed only when the
software in the other four computers cannot reach consensus during critical phases of
the flight. The applicability of design diversity to the European Space Shuttle has also
been investigated [Laprie et aI1987].

Other Known Examples

There are two well-known examples of systems coping with software faults without the
use of diverse programs: the Electronic Switching Systems of the Bell Labs [Haugk et
al 1985] and the Tandem Systems [Gray 1986]. Although both systems were mainly
designed to tolerate hardware faults, their fault tolerance mechanisms are proved to be
quite effective to handle and tolerate many software faults. In practice, a large
percentage of remaining bugs in operational software can be "Heisenbugs" (transient)
rather than "Bohrbugs" (solid) [Gray & Siewiorek 1991][Sullivan & Chillarege 1991].
Errors caused by Heisenbugs can rarely. be duplicated or diagnosed. A common
solution is to re-execute the software in the hope that the transient disturbance is over,
perhaps after a certain amount of clean-up and reinitialization.
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2.3 Fault Tolerance in Concurrent Software

Concurrent and distributed systems often give rise to complex asynchronous and
interacting activities. On the one hand, the provision of fault tolerance becomes a very
difficult task in such circumstances. On the other hand, these systems are very prone to
errors and failures due to their extreme complexity. Fault tolerance is one of the
practical methods for improving their dependability. However, most mechanisms for
fault tolerance in sequential systems cannot be simply applied to concurrent systems in
which many new technical problems arise. The existing techniques (e.g. those
discussed in Section 2.2) must be adjusted and extended to cope with complex
concurrent activities.

2.3.1 Models of Constructing Concurrent Fault-Tolerant Software

Many realistic applications, typically concerned with process control, avionics and
telephone switching systems, are structured as concurrent processes communicating via
messages. Fault tolerance in such systems usually is introduced through a controlled
use of checkpoints by processes and a strict enclosure of communication between
processes. The best-known scheme is the conversation scheme developed at Newcastle
in early 1970s [Randell 1975]. Shrivastava et al [Shrivastava et al 1993] refer to this
way of structuring an application as employing the process-conversation model (PM).

Another widely used technique for introducing fault tolerance, particularly in
distributed systems, is based on the use of atomic actions (atomic transactions) that
operate on objects for structuring programs. The class of applications where such an
object-action model (OM) [Shrivastava et al 1993] has found usage include transaction
processing applications in office information, airline reservation and database systems.

The conversation concept facilitates failure atomicity and backward recovery in
cooperating process systems in a manner analogous to that of the atomic action
mechanism in object systems. This terminological distinction between the area of
communicating process systems and that of object-based systems is, [Shrivastava et al
1993] claimed, of only surface importance, namely PM and OM are dual of each other.

In the following we first review two models and the related developments respectively,
address the specific aspects of the two models, and then argue the need for some
combined and integrated models. In fact, the major difference of the two models is the
kinds of concurrency they attempt to control and handle. In complex computing
systems, there are at least three kinds of inter-process concurrency [Hoare 1978].
Independent concurrency means concurrent processes have access to only disjoint
object sets, without any form of sharing or interacting. Competitive concurrency
implies that concurrent processes compete for some common objects, but without
explicit cooperation. Cooperative concurrency occurs in many actual systems, e.g. real-
time control applications, where concurrent processes cooperate and interact with each
other in pursuit of some joint goal; each process is responsible only for a part of the
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joint goal. Independent concurrency is a trivial case to which all the' fault-tolerant
techniques for sequential programs can be applied directly. However, other kinds of
concurrency must be controlled carefully either by underlying support mechanisms or /
by the application programmers in order to ensure consistent system states and
facilitate error recovery. While OM focuses mainly on competitive concurrency, PM
was developed originally for dealing with cooperative concurrency.

2.3.2 Process-Oriented Systems and Conversations

When a system of cooperating processes employs recovery blocks, each process will be
continually establishing and discarding checkpoints, and may also need to restore the
state to a previously established checkpoint. However, if recovery and communication
operations are not performed in a coordinated fashion, then the rollback of a process
can result in a cascade of rollbacks that could push all the processes back to their
beginnings - the domino effect [Randell 1975]. This simply causes the loss of entire
computation performed prior to the detection of the error. Figure 2.12 illustrates the
domino effect with two communicating processes.

process I

process 2

I II I I
Figure 2.12 The domino effect

The conversation scheme provides a means of coordinating the recovery blocks of
interacting processes to avoid the domino effect. Figure 2.13 shows an example where
three processes communicate within a conversation and process 1 and process 2
communicate within a nested conversation. Communication can only take place
between processes that are participating in a conversation together.

process 1

process 2

process 3

_..

i......-

_..

t inter-process communication

D conversation boundary

I checkpoint

o acceptance test

Figure 2.13 Nested conversations

37



Chapter 2: Fault-Tolerant Software

The operation of a conversation is: 1) on entry to a conversation a process establishes a
checkpoint, 2) if an error is detected by any process then all the participating processes
must restore their checkpoints, 3) after restoration all processes use their next
alternates, and 4) all processes leave the conversation together.

Considerable research has been undertaken into the subject of concurrent error
recovery, including improvements on the conversation and different implementations
of it. There are at least two classes of approaches to preventing the domino effect: the
coordination-by-programmer approach and the coordination-by-machine approach.
With the first approach, the application programmer is responsible for designing
processes so that they establish checkpoints in a well coordinated manner [Randell
1975][Marshall 1980][Russell 1980][Kim 1982]. Many authors have added language
constructs to facilitate the definition of restorable actions based on this approach, such
as [Russell & Tiedeman 1979][Anderson & Knight 1983][Gregory & Knight
1985][Jalote & Campbell 1984][Jalote & Campbell 1986]. In contrast, the
coordination-by-machine approach relies on an "intelligent" underlying processor
system which automatically establishes appropriate checkpoints of interacting
processes [Kim 1978][Barigazzi & Strigini 1983][Koo & Toueg 1987][Kim & You
1990]. If restorable actions are unplanned, so that the recovery mechanism must search
for a consistent set of checkpoints, such actions would be expensive and difficult to
implement. However, such exploratory techniques have the advantage that no
restrictions are placed on inter-process communication and that a general mechanism
could be applied to many different systems [Merlin & Rande111978][Wood 1981]. To
reduce synchronization delays introduced by controlled recovery, some researches have
focused on the improvement of performance, such as the lookahead scheme and the
pseudo-recovery block [Kim et al 1976][Kim & Yang 1988][Ramanathan & Shin
1988][Russell & Tiedeman 1979][Shin & Lee 1984]. (A few researches were also
made into error recovery among the particular sets of so-called competing processes
where the processes communicate only for resource sharing [Shrivastava & Banatre
1978][Shrivastava 1979].)

The original description of conversations provided a structuring or design concept
without any suggested syntax. [Russell & Tiedeman 1979] proposed a syntax called the
name-linked recovery block for the concept of conversations. Kim [Kim 1982] was the
first to address in depth different syntactic forms for conversations based on the
monitor structure. The different implementations deal with the distribution of the code
for the recovery blocks of individual processes. The trade-off is either to spread the
conversation among the individual processes such that all of the code of each process is
in one location or have all the code for the conversation in one location.

There was no provision for linked forward error recovery in the original conversation
scheme. Campbell and Randell [Campbell & Randell 1986] proposed techniques for
structuring forward error recovery measures in asynchronous systems and generalized
ideas of atomic actions so as to support fault-tolerant interactions between processes. A
resolution scheme is used to combine multiple exceptions into a single exception if

38



Chapter 2: Fault-Tolerant Software

they are raised at the same or nearly same time. Issamy extended their work to
concurrent object-oriented systems by defining an exception handling mechanism for
parallel object-oriented programming [Issamy 1993a]. This mechanism was then -r

generalized to support both forward and backward error recovery [Issamy 1993b]. Also
following the proposal in [Campbell & Randell 1986], Jalote and Campbell described a
system which contains both forward and backward error recovery within a conversation
structure (also known as an FT-Action). Their system was based on communicating
sequential processes (CSP) [Hoare 1978] with one extension (the exit) st~tement. The
declaration and general form of an FT-Action for a particular process P are given in
Figure 2.14.

A: FT-Action with (Pl, ..., Pn)

Pl: :[
FT-Action A

<code>
exit unless <e>
<code>
exit unless <e>

end

Figure'2.14 An FT-Action

Forward error recovery in an FT -action is achieved through linked exception handlers
where each process has its own handler for each exception. When an exception is raised
by a process it is propagated to all the participating processes within the FT-action.
Each process then executes its own handler for that exception. Backward recovery
within an FT-action is obtained by recovery blocks. The <code> part in Figure 2.14 can
be used to describe one of the primary and alternate modules of the recovery block
scheme with various primitives that support acceptance testing and state restoration.
Every participating process is required to have the same number of alternates. An FT-
action can combine the two schemes in some limited forms so that forward and
backward error recovery are used within the same structure. It can also cope with the
issue of real-time applications through a simple timer.

Real-time applications may suffer from the possibility of deserters in a conversation -
if a deadline is to be met then a process that fails to enter the conversation or to reach
its acceptance test could cause all the processes in the conversation to miss that
deadline [Kim 1982]. Russell and Tiedeman [Russell & Tiedeman 1979] considered
relaxing the requirement for all processes exiting together so as to enable some
protection against deserter processes, but' this could lead to the domino effect.
Campbell, Horton and Belford [Campbell et al 1979] proposed a deadline mechanism
for dealing with timing faults. Anderson and Knight [Anderson & Knight 1983]
proposed exchanges as a simplification of conversations where the cyclic nature of
real-time systems is exploited. An exchange is a conversation in which all participating
processes enter upon initiation and terminate upon exit. Error recovery is particularly
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easy as the recovery data is only that needed upon initiation, which should only be a
small amount of frame dependent data.

Gregory and Knight [Gregory & Knight 1985] identified a set of problems associated
with conversations. They argued that there ought to be two types of acceptance test -
one for each process within a conversation to check its own goal and one for the whole
structure of the conversation to check the global goal. In addition, within a
conversation or other structures mentioned above the set of processes that attempt their
primary alternate is the same as the set of processes which attempt all other alternates,
i.e. they all roll back and try again with their further alternates. This is overly restrictive
and affects independence of algorithm between alternates. In an effort to solve these
problems, the authors developed two concepts - a colloquy that contains many
dialogs.

A dialog is a way of enclosing a set of processes in an atomic action. It provides no
retry method and no definition of the action to be taken upon failure. If any failure
occurs, the dialog restores all checkpoints and fails, signalling the failure to the
surrounding colloquy. A colloquy that contains a set of dialogs controls the execution
of dialogs and decides on the recovery action to be taken if the dialog fails (see Figure
2.15). The colloquy provides a means of constructing alternates using a potentially
different set of processes, thereby permitting true diverse design. The dialog and
colloquy allow time constraints to be specified and are accompanied by syntactic
proposals that are extensions to the Ada language.

process I - ......

2 ,...,.... L..

~ • ....
J • '"f' ....

process

process

t inter-process communication Icheckpoint

D dialog boundary 0 acceptance test

Figure 2.15 Three processes in a colloquy ofthree dialogs

However, when attempting the integration of the syntax for the colloquy into Ada, the
authors found several new and potentially serious difficulties which arise because of a
conflict between the semantics of modem programming languages and the needs of
concurrent backward recovery [Gregory & Knight 1989]. The practical problems fall
into the general categories of 1) program structure, 2) shared objects, and 3) process
manipulation. All the problems have the potential to allow the state outside a dialog (or
a conversation) to be contaminated by changes inside the dialog, i.e. information
smuggling. Given the complexity and subtlety of these problems, Gregory and Knight
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concluded that "the only workable solution might be that programming language
design begin with backward error recovery as its starting point." Nevertheless, some
preliminary and partial solutions can be found in [Clematis & Gianuzzi 1993][Gregory /
1987]. In fact we have realized that all the problems were in fact caused by the
unfortunate mixture of problem domains, that is, using conversations to deal with the
problems which are not supposed to be handled by conversations and dominate mainly
in transactional applications, such as sharing of objects or servers. This issue will be
further discussed in Section 2.3.4.

There has been relatively little work on actual implementations of conversations in a
distributed system. Implementations of distributed process-oriented conversations are
discussed in [Jalote 1986] and [Yang & Kim 1992]. Clematis and Gianuzzi [Clematis
& Gianuzzi 1993] addressed issues with structuring conversations in
operational/procedure-oriented programming languages such as Ada. Romanovsky and
Strigini [Romanovsky & Strigini 1995] offered a limited, but practical method for
implementing backward recovery and software diversity within the Ada language.
They believe that Ada has sufficient facilities to allow the use of conversations to
develop fault-tolerant software and systems. Wellings and Burns [Wellings & Burns
1997] have recently shown by many program examples how Ada 95 can be used to
implement atomic actions and achieve software fault tolerance. Forward error recovery
is organized in communicating tasks via the simultaneous spreading of exceptions in all
tasks involved in an atomic action.

The actual programming of a conversation is another major difficulty associated with
the conversation concept. Constructing an application into a sequence of conversations
is not a trivial task. The application programmer has to select a boundary composed of
a set of checkpoints, acceptance tests and the side walls to prevent information
smuggling. This boundary should be integrated well into the structure of processes.
[Tyrrell & Holding 1986] suggested a way of identifying adequate boundaries of
conversations based on the specification of the application using Petri Nets. [Carpenter
& Tyrrell 1991] proposed an alternative solution in which the CSP notation [Hoare
1978] is used to describe the application and conversation boundaries are identified
through a trace evaluation, but such traces would cause an explosion of states even for
simple applications. In practice, however, it is possible for some special applications to
decide on the conversation placement without full trace evaluation [Tyrrell &
Carpenter 1992][Tyrrell & Carpenter 1995]. Wu and Fernandez [Wu & Fernandez
1994] proposed a similar method for generating the boundaries of conversations
directly from the specification. The specification is described by a high-level modified
Petri net, which can be easily transformed into an action-ordered tree. The boundaries
are then determined from the tree. Their method is simple and could serve as the basis
of a tool to assist in conversation designs.

Finally, there have been a number of recent proposals for "multiparty interaction
mechanisms" [Jung & Smolka 1996], intended to coordinate interactions among
multiple concurrent processes in distributed programming, e.g. Interacting Processes
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(or IP) [Francez & Forman 1996]. However, to the best of our knowledge, none of the
proposals published to date provides a means for fault tolerance or for avoiding
interference from unrelated processes and parties.

2.3.3 Object-Based Systems and Atomic (Trans)actions

Many new architectural developments in the area of distributed computing systems are,
to some extent, object-based or object-oriented. Object-oriented techniques, with their
modularity, flexibility and reusability features, can be usefully exploited for handling
complexity and dependability issues of a distributed system. An object encapsulates
some data and provides a set of operations for manipulating the data. An application in
an object system can construct its invocations to object operations in the form of
transactions.

The transaction concept is an abstraction which allows programmers to group a
sequence of operations into a logical execution unit. Traditionally, transactions are
expected to satisfy the following four conditions, affectionately known as the ACID
properties [Gray 1978][Haerder & Reuter 1983]. Atomicity, or the all-or-nothing
property, refers to the fact that all the operations enclosed in a transaction must be
treated as a single unit; hence, either all the operations are executed, or none.
Consistency requires a transaction to be correct, i.e. if executed alone, the transaction
take the object system from one consistent state to another. Isolation means no
communication allowed between concurrent transactions. Durability implies that the
results of a committed transaction is made permanent in spite of failure.

The ACID properties of transactions are usually ensured using two different sets of
protocols. Concurrency control protocols ensure execution atomicity, and recovery
protocols ensure failure atomicity [Moss 1981]. Execution atomicity refers to the
problem of ensuring the overall consistency of the object system, and hence the
consistency property of transactions, even when they are executed concurrently. Failure
atomicity ensures the all-or-nothing as well as isolation and durability properties.

In fact, the concept of an atomic action has been used in computing science for many
years. Dijkstra used them in the specification of semaphores in 1968 [Dijkstra 1968],
and Eswaran et al at mM's San Jose Research Laboratory started to seriously use them
in the early 1970s when introducing them, termed transactions, into the database
community [Eswaran et aI1976][Gray 1978]. C.T. Davies pioneered the development
of the atomic transaction concept [Davies 1973][Davies 1978]. He addressed many
concepts concerned with concurrent systems, recovery and integrity within an overall
scheme that he called data processing spheres of control. Spheres of control are
intended to deal with various problems including coordinating multiple processes
within recovery regions, sharing partial (uncommitted) data between processes, and
controlling concurrency across machine boundaries. However, the descriptions of
spheres of control provided little implementation advice for general applications, and
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early work on transactions, though influenced by Davies, was much less ambitious in
its goals.

Basic transaction systems do not allow for nested transactions or support concurrency
within a transaction. Nested transactions [Reed 1978][Moss 1981] extend the flat
transaction model by providing the independent failure property for nested transactions,
and supporting competitive concurrency within a containing transaction. An in-depth
analysis of a large number of algorithms for nested transaction systems can be found in
the book by Lynch et al [Lynch et al 1993]. Figure 2.16 shows an example of a
transaction that encloses two nested transactions.

transaction

Process I
I I
I J

nested transactions

1\ ~

I
r ,

Process 2

Shared Objects

o boundary

......... access to objects

Figure 2.16 Transaction and nested transactions

Traditionally, database systems are modelled as a collection of objects which can only
be read or written by transactions. A number of researchers have considered placing
more structure on data objects and have shown how this structure can be used to permit
more concurrency [Weihl 1989]. In particular, atomic data types are useful for
distributed applications, complex design environments, and object-oriented databases.
Synchronization algorithms for concurrency control and recovery are designed to
exploit the semantics of atomic data types.

In the late 1970s, research begun on distributed databases. One of the important early
distributed database systems was R*, developed at IBM's San Jose Lab [Lindsay et al
1984]. Also starting in the late 1970s and early 1980s, a number of research groups
began exploring atomic transactions as the basis for structuring distributed systems and
applications; out of this work came several languages and systems that successfully
combine transaction processing with the object-oriented programming methodology,
e.g. Argus at MIT [Liskov 1988], TABS [Spector et al 1985], Camelot, and Avalon at
CMU [Eppinger et al 1991][Herlihy & Wing 1987][Spector et al 1985], Clouds at
Georgia Tech [Dasgupta et al 1988], Arjuna at Newcastle [Parrington et al 1995],
AmadeuslRelaX at Trinity College, Dublin {Taylor et al 1994] and FT-SR reported in
[Schlichting & Thomas 1995]. Systems like TABS and Camelot demonstrate the
viability of layering a general-purpose transactional facility on top of an operating
system. Languages such as Argus and AvalonlC++ go one step further by providing
linguistic support for transactions in the context of a general-purpose programming
language. Recently, a commercial system using nested transactions has been released
called Encina [TransArc 1997], a TP-monitor from TransArc in USA in which most of
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the ideas of Camelot have been implemented. In principle application programmers can
now use transactions as a unit of encapsulation to structure an application program
without having to know how transactions are implemented at the operating system
level. However, competitive concurrency is what is assumed to be the major concern
here and no explicit support is provided for cooperative concurrency.

There are a great deal of papers and books that have been written on transactions over
the last two decades. The book by Bernstein et al [Bernstein & Lewis 1993] provides a
good survey of a wide range of concurrent control methods and an informal discussion
of correctness issues. The book by Gray and Reuter [Gray & Reuter 1992] gives an in-
depth description of many techniques, and is an excellent reference. The book by
Lynch et al [Lynch et al 1993] provides a careful rigorous treatment of correctness
issues, showing how a wide variety of transaction-processing techniques can be
analyzed in a single common framework. Madria [Madria 1997] presented a study on
the concurrent control and recovery algorithms in nested transactions and reviewed the
most work done in the area of nested transaction modelling. New applications in
object-oriented database and mobile environments [Chrysanthis 1993], and in
workflow models [Chen & Daya11996] were also addressed. Thomasian of IBM TJ.
Watson Research Center [Thomasian 1998] has recently given a comprehensive review
of concurrency control methods and analyzed their performance in transaction
processing.

A number of generalized transaction models have been developed in order to overcome
some of the limitations of traditional (flat or nested) transactions, such as lack of
support for long-lived actions, cooperatively concurrent activities and multidatabase
systems. As a result, it is becoming ever clearer that the traditional transaction model
does not provide satisfactory support for cooperation between concurrent activities.
Researchers in the area of transactions and databases [Gray & Reuter 1993] are aware
of such limitations and problems:

"The transaction concept has emerged as the key structuring technique for
distributed data and distributed computations. Originally developed and
applied to database applications, the transaction model is now being used
in new application areas ranging from process control to cooperative work.
Not surprisingly, these more sophisticated applications require a refined
and generalized transaction model. The concept must be made recursive, it
must deal with concurrency within a transaction, it must relax the strict
isolation among transactions, and it must deal more gracefully with
failures."

Jim Gray (Foreword for [Elmagarmid 1993])

Most of generalized transaction models and techniques are surveyed comprehensively
in the book by Elmagarmid [Elmagarmid 1993]. Typical examples include layered and
open transactions [Weikum & Schek 1992], split transactions [Pu et al 1988], multi-
colored transactions [Shrivastava & Wheater 1991] and flexible transactions [Warne
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1994]. All the new kinds of transactions are more or less based on the' relaxation of
some of the ACID properties, usually Isolation or Consistency. However, while these
sophisticated models lose most of nice properties possessed by the traditional /
transaction models, they generally provide only limited support for cooperative
concurrency. This issue will be further discussed in detail in the next section.

The Venari Project at CMU [Wing 1993] is another attempt of generalizing the
traditional transaction model for non-traditional applications. They developed separable
modules based on the standard ML modules system to support transactional semantics
for different settings, for example, in the absence or presence of concurrency, thereby
facilitating different kinds of performance tuning. Concurrency is addressed carefully
in two forms: 1) making an individual transaction multi-threaded and 2) allowing
multiple transactions to run concurrently (see Figure 2.17). Their work was the first to
cast within a programming language (i.e. standard ML) a model of computation that
supports multi-threaded transactions [Wing et al 1992]. However, the model they used
assumed that there is exactly one thread that enters a transaction and exactly one that
leaves a transaction. Such an assumption simply excludes the possibility of regarding
their model as a general mechanism for multi-threaded synchronization and
coordination which are the essential part of cooperative concurrency.

Thread 1

O transaction
boundary

Figure 2.17 Multi-threaded concurrent transactions in Venari

2.3.4 Necessity of an Integrated Framework

It is important to note that there are many dual aspects of conversations (or PM) and
atomic transactions (or OM), which are identified carefully in [Shrivastava et al 1993].
The duality leads to a deeper understanding of various fault-tolerant structures and
helps the development of new techniques. However, since both models also have many
independent characteristics and are developed for different application domains (as
discussed previously), conversations and transactions are best viewed as
complementary rather than as alternative approaches for a given application - indeed,
we would argue that fault-tolerant concurrent software should combine both
mechanisms in order to resolve the problems caused by different kinds of concurrency
and by hardware and software faults. We will first explain why transaction-based
approaches to dealing with cooperative concurrency may have certain limitations, and
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then show how an integrated framework can provide more appropriate support for
complex applications that involve both competitive and cooperative concurrency.

Generalized Transaction Models

There have been many generalizations of the basic transaction model, most of which
provide to some extent support for cooperative activities (e.g. [Skarra
1989][Elmagarmid 1993][Taylor et aI1994]). Generally, these models are based on the
concept of nested transactions. At the top-level, a generalized transaction has all the
properties of traditional transactions, that is, the ACID properties. However, nested
transactions in parallel may be allowed somehow to cooperate. With respect to the
permitted degrees of cooperation between nested transactions, there are at least three
major methods for extending traditional transactions. The first is to relax strict isolation
[Taylor et al 1994]: nested transactions are still serializable but uncommitted results
may be shared among them. A nested transaction that uses uncommitted data will
depend on the nested transaction that produced the data. Such a nested transaction
cannot commit or abort independently and may, once terminated, be required to wait
for the commitment of any nested transaction on which it depends before committing.
However, since the ACID properties must be retained, only limited cooperation
between nested transactions is allowed and the extra performance overhead is further
introduced.

The second approach is to enforce the user-defined execution order of nested
transactions, which may be specified in the specification of the top-level transaction.
(There is also some work concerned with the execution order of both top-level
transactions and their nested transactions, for example see [Shrivastava & Wheater
1991].) The atomicity property may be kept for nested transactions but the mechanism
for ensuring the correctness conditions defined by the consistency and isolation
properties must be extended to permit strong conditions defined by the user-specified
execution order. Clearly, such cooperation is restricted by pre-defined execution orders.

By combining the above two methods, a greater degree of cooperation between nested
transactions can be achieved. Nodine and Zdonik [Nodine & Zdonik 1984] proposed
the substitution of a notion of user-defined correctness for the notion of correctness
defined by serializability. Because isolation is not required, correctness conditions on
the execution order of operations involved in cooperative nested transactions could be
defined for special application purposes [Skarra 1989]. For example, the application
programmer can define various correctness conditions based on the relationships like
conflicts, patterns (i.e. specified order), and triggers etc.

Problems and Difficulties with Transaction-Based Approaches

Generalized transaction models start from the concept of traditional transactions and
suffer inevitably from some original limitations of the traditional model. On the one
hand, these models violate the atomicity property of nested transactions, leading to
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inconsistency between the top-level atomic transactions and nested transactions, and
could therefore offer ambiguous semantics of a transaction. Moreover, violation of the
atomicity property will complicate built-in recovery mechanisms and impose extra/
system performance overhead. On the other hand, cooperation among nested
transactions, supported by these models, are still restricted since none of them permits
true cooperative activities - the boundaries of nested transactions can only be opened
up to a limited extent and explicit communications across the boundaries cannot be
allowed (or otherwise semantic contradiction on the transaction notion could be
caused). In the best case, the application programmer can use the specification
mechanism provided by a model to define some operation conditions for a set of
related nested transactions and the system then in effect carries out some kind of
cooperation by enforcing the specified conditions. However, because no integrated
mechanism for possible communication and coordination between nested transactions
can be provided to the application programmer, it becomes a particularly difficult task
to achieve flexible and fine cooperation.

In contrast, the coordinated atomic (CA) action concept [Xu et a11995a] is based on a
much system-wider view on concurrent, particularly cooperative, activities. A CA
action allows different concurrent processes (or threads) to cooperate in performing a
joint task by coming together. Explicit communication and coordination among threads
are permitted completely but must be enclosed within the boundaries of a CA action.
By the use of CA actions, most of the previously-identified limitations in generalized
transaction models can be effectively overcome, as we will now address in the
following section.

An integrated Solution: The Coordinated Atomic Action Approach

In a concurrent object system, a CA action encloses a joint activity between a group of
two or more interacting entities specified by threads. Threads are the agents of
computation, and each of them is responsible for executing a sequence of operations on
objects. Cooperation .between concurrent threads may be based on various different
forms of communication and interaction. Inter-thread cooperation is modelled in the
CA action concept as information transfer via shared objects. Such an abstraction may
cover various actual forms of inter-thread cooperation, including inter-thread
communication by updating shared objects that have some synchronization
mechanisms, or by message passing without requiring shared storage, and of inter-
thread synchronization such as condition synchronization (usually no data passed) and
exclusion synchronization (usually for shared object schemes).

The CA action approach provides an integrated solution to both cooperative and
competitive concurrency. It captures the characteristics of the conversation scheme, or
PM, by supporting multi-threaded cooperation within an atomic action structure, and
represents the transactional aspects, or the characteristics of OM, by performing a set of
operations on a group of objects atomically. Here, threads and transactions are
considered as two orthogonal control abstractions which provide different features and
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benefits. (In contrast, [Strigini et al1997] developed an interesting scheme for dividing
a heterogeneous system into two subsystems using conversations and transactions
respectively.) Depending on one's viewpoint, the CA action scheme can either be seen
as an API for nested multi-threaded transactions that imposes appropriate
synchronization constraints and allows exception handling, or as a way of extending
conversations so as to take advantage of typical transaction mechanisms.

Concurrent transactions have to be atomic. It is not possible to support two-way
cooperation and communication between concurrent transactions without breaking
down the action boundaries. Most of the generalized transaction models discussed in
the last two sections were based on breaking the action boundaries. In contrast, CA
actions support multiple threads independent of the transaction abstraction.
Performance-related concerns are another reason of seeking for an integrated approach.
Transactions require runtime mechanism to support protocols for locking, logging,
committing/aborting, and crash recovery etc. There are practical cases where
cooperative concurrency is desired without the performance overhead imposed by
transactions. Even if the application programmers were to write an example shown in
Figure 2.18 with transactions, they probably would not want to incur the cost of
making each isolated part (e.g. tl , t2, t3, t4, and t5 in the figure) an individual
transaction. In this aspect, CA actions provide flexibility and performance benefits.

Threadl
t1 t4

t2 \ t3 I t5
~

V
a CA action

I:\ /

Thread2

transactions

Figure 2.18 Two-way communication: transactions versus CA actions

Most models for fault-tolerant distributed systems take only hardware-related faults
into account. That is, if a software system is known to be in an error-free state upon
entry to an action, the action will be terminated normally (committed), producing the
intended results, or aborted (due to hardware failures or conflict access), producing no
results. However, residual software design faults in the code of an action could be a
major cause of some erroneous, but committed results (see the detailed discussion in
Sections 2.1 and 2.2.) CA actions are intended to provide a basis for coping with both
hardware-related failures and software design faults. The CA action framework allows
the controlled usage of both backward and forward error recovery techniques (e.g.
involving compensatory messages to external activities, i.e. environment of the system,
that may have been affected by erroneous output from the system). This could be very
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valuable for systems that interact with environmental objects that cannot be simply
backed up. In particular, software fault tolerance properties possessed by CA actions
will be further investigated in Chapter Four.

2.4 System-Level Support and Environments

In order to make software fault tolerance effective and feasible on a routine basis, one
of the important problems that has to be solved is the development of appropriate
linguistic support and easy-to-use environments, which should not complicate greatly
the program's implementation, readability, and maintenance.

2.4.1 Typical System Examples

Early environments for supporting fault-tolerant software have focused on one or other
of the two classical approaches: recovery blocks and N-version programming. Two
systems that support the development of recovery blocks were reported in [Anderson &
Kerr 1976][Shrivastava 1979] respectively (see some details in Section 2.2). The
DEDIX system [Avizienis et al 1985][Avizienis et al 1988a] was actually a supervisor
program for research use with N-version programming, and was implemented as an
application-level Unix package. DEDIX provides support for concurrent execution of
different versions and voting on results, but it is not quite suitable for multi-version
design at the module level and inter-process concurrency.

Ancona et al [Ancona et al 1990] developed a system architecture for fault tolerance in
concurrent software and described a mechanism, called the Recovery Metaprogram
(RMP), for the incorporation of fault tolerance functions into application programs.
They give application programmers a single environment that lets them selectively use
appropriate fault tolerance schemes, including recovery blocks, N-version
programming, programmer-transparent coordination, and conversations.

The proposed architecture contains three basic components: the application program,
the RMP and the kernel. The application programmer must define the software variants
and the validation test, and indicate which portions of the application program are
involved in fault tolerance. The RMP implements the controllers and the supporting
mechanisms for four different schemes, inserting a number of breakpoints in the
program. When a breakpoint is reached, the application program is suspended and the
kernel activates the RMP which takes actions to support the fault tolerance scheme
chosen. The RMP is then suspended, and the application program is reactivated until
the next breakpoint is reached. Figure 2.19 shows the control flow between an
application program and the recovery metaprogram. Ozaki et al. [Ozaki et al 1988]
described a possible implementation of some primitives required by the RMP. The
implementation of the RMP approach however incurs an additional cost in the form of
intensive context switches and kernel calls.
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Application Program Recovery Metaprogram

Enter recovery block;
Save the state
(i.e. the application

program environment)

Execute first alternate Start first alternate

Start the acceptance test

Execute the acceptance test

Figure 2.19 Control transfer between an application program and the RMP

Purtilo and Jalote [Purtilo & Jalote 1991] introduced an environment that supports
execution of programs using both recovery blocks and N-version programming in a
uniform manner. Their environment allows module-level software redundancy,
versions to be written in different programming languages, and executed on different
machines. The environment has been developed for use on Unix-based hosts and
currently runs on a network of Sun and DEC workstations. Figure 2.20 gives an
example of the module definition for recovery blocks. This example shows how the
system supports use of the distributed recovery block scheme. Three versions, whose
object files are c_string.o, p_string.o, and I_lisp. I, are written in C, Pascal and
Lisp and executed on respective machines named brillig, slithy, and tove. But the
system made no provision for concurrent programming, and did not address the issues
with inter-process cooperation and distributed error recovery.

module proc
RB module
interface: proc(proc_list)
implementation: "c_string.o@brillig"
implementation: "p_string.o@slithy"
implementation: "polylisp@tove l_string.l"
acceptance: "at.o"
error-handler: "handler.o"

Figure 2.20 An example of the module definition for RB

Tso and Shokri of SoHaR Incorporated reported a testbed environment for the
construction and evaluation of software fault tolerance systems, called ReSoFT [Tso &
Shokri 1996]. The ReSoFT environment comprises a library of reusable components
implemented in Ada 95 from which a variety of fault-tolerant software systems can be
built. The schemes supported by the environment include recovery blocks, N-version
programming, re-try blocks, and N-copy programming. One of the new characteristics
of ReSoFT is a set of graphical tools to facilitate the construction of fault-tolerant
software, monitoring, and testing of the software through fault-injection. However, this
testbed still provides no support for concurrency.
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There are also a few papers that deal with notation issues. [Liu 1992] proposed a design
notation for a wide class of fault-tolerant software structures, mainly offering generality
and flexibility in a modular fashion. [Bondavalli & Simoncini 1992] showed that their /
BSM design description language is sufficient for expressing the typical structures of
software fault tolerance, such as recovery blocks and N-version programming, without
requiring semantic extensions. [Silva et al 1996] developed a simplified programming
model for communicating process systems and proposed a notion of RP-actions (or
actions for resilient processes). Figure 2.21 illustrates an example of a single process
structured as a set of RP-Actions. However, because the RP-action scheme supports
inter-action communications in a way similar to transactional settings, for certain
applications the overhead mainly contributed by checkpointing can be as high as 606%
[Silva et al 1996].

while (true) do (
begin_action(error_code, ...);
if (time-out)

<emergency block>;
if (first_execution or transient_fault)

<primary block>
if (assertion)

abort_action(error_code);
if (software_fault)

<alternate block>
if (assertion)

abort_action(error_code);
if (permanent_fault)

<entering a fail-safe state>
if (acceptance_test)

abort_action(error_code);

Figure 2.21 An example of a single process structured as a set ofRP-actions

2.4.2 Reusable Components Supporting Software Fault Tolerance

Strigini and Avizienis [Strigini & Avizienis 1985] were the first to suggest the use of a
reusable toolset to develop fault-tolerant software. They argued that such a toolset
should include 1) language-level support for exception handling, 2) low-level run-time
support for message passing, state saving and restoring, and application-independent
adjudicating, 3) libraries for recovery blocks, atomic actions etc., and 4) system
configuration tools. Huang and Kintala of AT&T Bell Labs. [Huang & Kintala 1995]
developed three software reusable components in C that provide software fault
tolerance in the application layer, supporting fault-tolerant structures like
checkpointing and recovery, replication, recovery blocks, N-version programming,
exception handling, re-try blocks etc. Their modules have been ported to a number of
UNIX platforms, already applied to some new telecommunications products in AT&T
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and the performance overhead due to these components has been shown to be
acceptable. But these components provide no support for inter-process communication
and cooperation.

The dependability research group at Newcastle has recently developed a set of reusable
components in C++, providing high-level object-oriented programming interfaces for
software fault tolerance. The recent extension of C++ to include generic classes and
functions ("templates"), and exception handling ("catch" and "throw") makes it
possible to implement both forward and backward error recovery in C++ in the form of
reusable components that separate the functionality of the application from its fault
tolerance [Rub ira & Stroud 1994]. Figure 2.22 shows an example of using the "catch"
and "throw" structure to implement error recovery. More generally, such facilities
show prospect of providing a convenient means of achieving high levels of reuse. This
would apply both to general software components implementing various fault tolerance
strategies (including generalizations and combinations of recovery blocks, and N-
version programs, and encompassing the use of parallelism) and to application-specific
software components [Xu et aI1995c].

class SafeCollection : public FastCollection
public:

virtual boolean find(int);
virtual int min();

Ilbelow a safe implementation of the min function

int SafeCollection :: min()
try
{

return FastCollection ::min();

catch( ...)

return SimpleCollection::min();

Figure 2.22 An example of implementing error recovery in C++

However, there remain certain strategies and types of structuring that cannot be
implemented entirely (or at any rate elegantly) in a language like C++ even given such
mechanisms as generic functions and inheritance. Instead, the programmer who wishes
to employ these strategies has to obey certain conventions. For example, the
application programmer who wishes to make use of the reusable C++ classes would
have to include explicit calls in each operation of an object to facilities related to the
provision of state restoration.

Adherence to such conventions can be automated, by embodying them into a somewhat
enhanced version of C++ and using a pre-processor to generate conventional C++
programs automatically. Although the pre-processor approach can be quite practical it
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does have disadvantages. In particular the language provided to application
programmers becomes non-standard since programmers have in some circumstances
during program development to work in terms of the program generated by the pre-
processor, rather than of the one that they had written. The alternative, that ofleaving it
to the programmer to adhere to the conventions, is of course a fruitful source of
residual program faults. But developing a new language that provides adequate syntax
and runtime support to enable the implementation of various software fault tolerance
schemes could cut the work off from the mainstream of programming language
developments and thus have difficulty in achieving wide acceptance.

2.4.3 Reflective System Architecture

It is important to notice a fundamental difference between simple replication and multi-
version design; the former could be made transparent completely to the application
programmer and performed automatically by an underlying support mechanism, but the
latter requires to certain extent direct effort from the application programmer. Simple
(thus easy to check) language features with powerful expressibility are neverhteless
particularly helpful in properly specifying software variants and the adjudicator. The
further issue is how the underlying support mechanisms can be provided in a more
natural and modular manner rather than by an ad-hoc method such as system calls.
Recent developments in the object-oriented language world, under the term "reflection"
[Maes 1987], show considerable promise in this regard.

A reflective system can reason about, and manipulate, a representation of its own
behaviour. This representation is called the system's meta level [Agha et al 1992].
Reflection improves the effectiveness of the object level (or base level) computation by
dynamically modifying the internal organization (actually the meta level
representation) of the system so as to provide powerful expressibility. Therefore, in a
reflective programming language a set of simple, well-defined language features could
be used to define much more complex, dynamically changeable constructs and
functionalities. As for the development of fault-tolerant software, it could enable the
dynamic change and extension of the semantics of those programming features that
support software fault tolerance concepts, whereas the application level (or object
level) program is kept simple and elegant [Xu et aI1995c]. Although the C++ language
itself does not provide a meta level interface, Chiba and Masuda [Chiba & Masuda
1993] describes an extension of the C++ language to provide a limited form of
computational reflection, called Open C++. Figure 2.23 illustrates how base level
method invocation can be trapped and be then adjusted at the meta level in Open C++.
Some experimental results in [Xu et al 1996] have shown that the run-time overhead
introduced by a reflective operation call in Open C++ is insignificant in comparison
with other overheads imposed by a software fault tolerance scheme.
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lDlTAOBJBCT

void meta_MethodCall() Meta-Level

Meta_HandleMethodCall ();

my_method () Base-Level

Figure 2.23 Invocation trapping in Open C++

Collaborative work between LAAS-CNRS and Newcastle has developed several case
studies and prototypes using Open C++ to implement fault-tolerant applications [Fabre
et al 1995]. The use of metaobject protocols to implement atomic objects in
transaction-based systems is presented in [Stroud & Wu 1995]. But none of them have
addressed the issues of software fault tolerance. [Fabre & Perennou 1998] reported the
recent development at LAAS-CNRS. They presented a reflective system in Open C++
called FRIENDS which provides libraries of metaobjects for hardware fault tolerance,
secure communications and group-based distributed applications. The authors also
gave an excellent summary of the advantages and drawbacks of a metaobject approach
for building fault-tolerant systems. Recently, Beder and Rubira [Beder & Rubira 1998]
reported some progress in their efforts in the definition of a reflective framework for
developing dependable software based on patterns and metapatterns [Buschmann et al
1996].

When considering support for software fault tolerance in concurrent object-oriented
programming, we face a greater challenge because, though a large number of different
models for concurrent object-oriented programming have been proposed, none has yet
received widespread acceptance. There exist only a few tentative proposals for treating
concurrent error recovery such as the Arche language [Issarny 1993a]. However, the
reflection technique seems to be a more promising approach to the structuring of
concurrent object-oriented programs [Yonezawa & Watanabe 1989].

2.S Summary

In this chapter we have provided a comprehensive overview of the techniques for
building fault-tolerant software, covering both sequential and concurrent programs as
well as environments that support the development of fault-tolerant software. Although
various other types of technique for sequential programs were outlined here, such as
data diversity and environment diversity, we have focused our attention on techniques
that are essentially based on diverse designs, i.e. software redundancy through
functionally equivalent software components. One of the major problems associated
with such approaches is that all software versions may suffer from a common-mode
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failure. This would prevent distinction between incorrect and correct outputs, thereby
causing a possible system failure. Nevertheless, the analytic results based on some
common experimental data have shown that multi-version software can offer additional
dependability over and above what we can gain any other way, since we are not able to
actually make a single-version system extremely dependable with the current state of
the art. When the given cost allows the production of multiple versions with yery high
quality, multi-version software will be perhaps the unique way of achieving ultra-high
dependability for critical applications. However, when the time and budg~t are limited,
it is unclear whether multi-version software is still superior to a single-version system.
This is because for the same cost each version of the multi-version software may have
much less quality than a single-version system. The development of advanced fault-
tolerant software techniques with improved dependability figures will certainly help a
software designer to make a correct decision as to which technique, multiple versions
or a single version, is likely to be most effective for a given application with limited
budget.

Fault-tolerant software techniques for concurrent and distributed programs are mainly
concerned with system structuring and providing different ways of controlling and
confining information flows among concurrent activities. We have examined two well-
known system models used in different application domains, i.e. the process-
conversation model and the object-action model, and the related schemes and
techniques. For a more general and thus more complex application, we have argued
that an integrated model is needed that uses processes (or threads) and atomic actions
as two orthogonal control abstractions so as to facilitate the control of both cooperative
and competitive concurrency. There are two similar techniques that are based on the
combined model, the Venari multi-threaded transaction scheme and the coordinated
atomic action scheme. However, to be a practical fault-tolerant software technique,
both schemes require further investigation and development, especially in exception
handling and error recovery aspects.

Existing experience with the environments that support the development and execution
of fault-tolerant software has been limited, and most examples provide no support for
concurrency. Reusable components in the form of libraries and metaobject-based
approaches with reflective capabilities have been quite successful, including such
examples as the reusable components used in the AT&T communications products and
the FRIENDS system developed in LAAS-CNRS. However, both systems are designed
mainly to handle hardware-related faults. Quite what reflective capabilities are needed
for what forms of software fault tolerance, and to what extent these capabilities can be
provided in object-based or object-oriented.programming languages, and allied to the
other structuring techniques such as atomic actions, remain to be determined. In
particular, the problems of the combined provision of significant software fault
tolerance and hardware fault tolerance, and of evaluating cost-effectiveness, are likely
to require much further effort.
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Chapter 3: Advanced Schemes

Chapter 3

Advanced Schemes for Designing
Fault- Tolerant Software

This chapter introduces two advanced schemes, i.e. tl(n-l)-variant programming (tl(n-
1)-VP) and self-configuring optimal programming (SCOP), addressing the issues of
improving software reliability and achieving the dynamic trade-off between
dependability and efficiency, respectively. Dependability and efficiency improvements
obtained by these schemes are modelled and evaluated using a Markov approach, and
the analytic conclusions are also supported by an empirical comparison.

3.1 t/(n-l)-Variant Programming

As discussed in Chapter Two, software fault tolerance usually requires the application
of design diversity in which two or more variants of a component for redundant
computations are independently designed to meet a common service specification.
Variants are aimed at delivering the same service, but implemented in different ways in
the hope that they do not contain the same design faults. Since at least two variants are
involved, tolerance to design faults necessitates an adjudicator (i.e. a decision
algorithm) that determines a single (assumed to be) error-free result based on the results
produced by multiple variants.

It must be recognized that the success of a fault tolerance scheme depends to a great
extent upon its adjudicator and unreliability in the adjudicator can have a dramatic
impact on the overall system reliability [Anderson & Lee 1981]. The design for a
highly reliable adjudicator generally requires that

1) the adjudication mechanism and variants being checked are as independent as
possible, so that they are very unlikely. to be affected by common faults or related
faults;

2) the mechanism itself must be simple enough to provide a good guarantee of its
reliability and the system performance.
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The traditional mechanisms are not entirely satisfactory. In the recovery block software,
an acceptance test is used in its adjudication mechanism to provide a last line of
detecting errors, but since the test is system-specific, and as such very little specific
guidance can be given for its construction, it is difficult to ensure that the acceptance
test and variants will be independent of each other. To overcome this problem, many
schemes adopt an adjudication mechanism that simply selects the results by comparing
the outputs of multiple variants. However, a practical adjudicator used in NVP is much
more sophisticated than the early idea of a simple majority vote, while adjudication
mechanisms constructed in NSCP are too simple to effectively detect the related faults
that may occur in the active self-checking components. We develop an alternative here,
called II(n-1)-Varianl Programming (11(n-1)-VP), which exploits several new research
results in the area of system fault diagnosis [Barborak et al 1993] for the design of a
simplified adjudication mechanism. Our proposed scheme has several favourable
characteristics, including:

1) it has a potential ability to tolerate multiple related faults among variants,

2) the adjudication mechanism is simple and requires only O(n) result comparison
steps,

3) correct service can be delivered even when the number of faulty variants exceeds
the bound I in some fault situations, and

4) there are possible forms of graceful degradation.

3.1.1 Description of the t/(n-1)-VP Scheme and an Example

In the theory of system-level fault diagnosis (see [Barborak et al 1993] where further
references can be found), a particular diagnosability measure, denoted as II(n-1)-
diagnosability, was first introduced in [Friedman 1975]. Its diagnosis goal is, for a
system composed of n units, to isolate the faulty units to a set of size at most (n-1),
under the condition that the number of faulty units is at most I. That is, at least one unit
exists such that it is not in the set of size (n-1) and can thus be unambiguously
identified as fault-free, provided that the system itself is II(n-1)-fault diagnosable and
the number of faulty units in the system does not exceed the bound I. The II(n-1)-
diagnosis technique can be therefore used to select a single correct result from the
results generated by n replicated software modules (of independent design).

We can benefit from the utilization of II(n-1)-diagnosis since this special diagnosis
measure cuts down significantly the requirement on the number of tests (i.e. the number
of result comparisons) relative to previous diagnosis schemes. It is thus possible to use
the idea behind the II(n-1)-diagnosis technique to construct a simple, but dependable
adjudication mechanism. Based on some theoretical results of II(n-1)-diagnosis (see a
subsequent discussion and Appendix A), we develop a new scheme for tolerating
hardware andlor software faults. Our description of this scheme is first in terms of
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application to software fault tolerance, but the approach can also be implemented with
hardware.

A general t/(n-1)-VP architecture can identify the correct result from a subset of the
results ofn software modules (or variants), provided that the number of faulty modules
in the architecture does not exceed t (i.e. it can tolerate at least t software faults). A
syndrome is defined here as a set of information used by an adjudicator or a diagnosis
algorithm to perform its judgement as to the correctness of a result, in general including
those results produced by variants. The semantics of t/(n-1)-VP can be expressed more
directly as follows:

1) each of n independently designed software variants is executed in parallel;

2) just some of their results are compared to produce a syndrome;

3) using the syndrome, a diagnosis program performs t/(n-1)-diagnosis and attempts
to select a presumably correct result as the system output (i.e. through switching
of the results); if no acceptable result is identified, the system will invoke spare
software variants, if any exist, or simply signal an exception.

We now use a concrete example to demonstrate the ability of t/(n-l)-VP to tolerate
software faults, and then address its effectiveness for any given n and t. Two classes of
software faults are distinguished: independent faults and related faults [Laprie et al
1990][Arlat et al 1990]. Independent faults occur in single variants or in the
adjudication mechanism, while related faults can take place among multiple variants
and among the adjudicator and one or more variants. Figure 3.1 shows a t/(n-l)-VP
architecture where n = 5 and t = 2.

To control the output switch Output

t/(n-I )-
Diagnostor

-ml2 73 ~t_f
I Cl • I C2 • I C3 •I . I I I _L

VI V2 V3 V4 Vs

I i j_ I

I Input

Figure 3.1 A t/(n-1)-VP architecture with n = 5 and t = 2

This 2/(5-1)- VP architecture consists of five independently designed software modules,
called variants VI, V2, ... , and V5, which are executed in parallel in a framework that is
intended to cater for up to two simultaneous software faults. Three comparators Ch C2,
and C3 are placed at the outputs of variants VI, V2, V3, and V4- to perform error
detection, where C, compares the results of Vi and Vi+I (i = 1, 2, 3) and generates the
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test outcome lUj,i+I' Three (comparison) test outcomes WJ.2, lU23and £U.34 constitute a
syndrome. In particular, the test outcome my = 0 (1) if the results of the variants V, and
'V_; agree (disagree). A diagnosis program, the tl(n-1 )-diagnostor, selects one of the
results of VI. V4, and Vs according to the value of the syndrome, and switches service
delivery, i.e. the system output, to the selected result. The adjudicator of the
architecture is implemented by the three comparators, the tl(n-1)-diagnostor and the
output switch. Note that V2 and V3 are not connected to the output switch and Vs is not
connected to a comparator. However, this architecture is tl(n-1)-diagnosable for t = 2:
the diagnostor can always select a correct result provided that the number of,
independent or related, faults in variants does not exceed two.

Let rI, r2, ... , and rs be the results of variants V}, V2, ... , and Vs respectively. Table 3.1
gives all possible syndromes and the corresponding results that can be unambiguously
diagnosed as correct while assuming that no more than two faults occur simultaneously.
For example, in the case that WJ.2 = 0, lU23= 1 and £U.34 = 0, a single correct result cannot
be simply identified from among those produced by variants VI, V2, V3, and V4. We can
however infer from the syndrome that two or more of the variants VI, V2, V3 and V4
have generated incorrect results because one single fault cannot lead to such a
syndrome. Hence the result of Vs must be correct. In the case where WJ.2 = lU23= £U.34 =
0, either all of the variants V}, V2, V3 and V4 have to be correct or all of them have to be
incorrect. By the previous assumption that t = 2, these results should be classified as
acceptable. Following a similar method, we can analyze other cases to determine the
correct results. In fact, Table 3.1 may be viewed as a simple diagnosis algorithm for the
specific architecture. In this table, it should be noted that at least one of results rI, r4
and rs must be correct for a given syndrome. Accordingly, this architecture can deliver
the correct system output by choosing just among the results of three variants VI, V4
and Vs.

WJ.2 lU23 £U.34 Presumably Correct Results

0 0 0 rl r2 r3 r4
0 0 1 rl r2 r3
0 1 0 rs

0 1 1
rl r2
r2 r3 r4

1 0 0 rs
1 0 1 r3 r4
1 1 0 rs
1 1 1

Table 3.1 Possible syndromes and result selections for the 2/(4)-VP example
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3.1.2 General t/(n-1)-VP Architecture

Figure 3.2 shows a Petri-net execution model for a general t/(n-1)-VP scheme. In the
interests of simplicity and brevity, we omit some mechanisms in the figure such as
input data consistency. Note that the label K associated with an arc means that the
ensuring transition may be fired only after K tokens have accumulated in the' preceding
place. In particular, K can be less than n for a given diagnostic algorithm; see the
architecture shown in Figure 3.1 for example.

start software
execution

execute
variant 1

coiled
variant results

end variant
execution

start diagnostic
algorltbm

execute
tbe algorltbm

deliver
acceptable
results

end software
execution O signal

failure
exception

Figure 3.2 Execution model of the t/(n-1)-VP scheme

Unlike the NVP scheme and its variations, t/(n-1)-VP does not have to make pairwise
comparisons among the results of n variants in order to identify a presumably correct
result. It is however interesting to study how many result comparisons (corresponding
to the comparators illustrated in Figure 3.1) are normally required for a general t/(n-1)-
architecture. In the simplest case that n = 3 and t = 1, one comparator is necessary and
sufficient for t/(n-1)-diagnosis - the third result must be acceptable when the two
compared results disagree; otherwise they can be identified as correct.

Larger n and t require a more deliberate comparison assignment among the results of
multiple variants so as to guarantee t/(n-1)-diagnosability. For example, result
comparisons of n variants could be organized into a form of chains, where the
comparator Ci (1 :s i:S n-1) compares the results of variants Vi and Vi+l. Alternatively,
result comparisons may be organized into a more complex structure, called H2r,n, such
that the result of variant Vi (1 :s i:S n) is compared with that of Vj if and only if i-r:Sj:S
Hr (mod n+1, r = 1,2, 3, ...). Theorem 3.1 shows several sufficient conditions on the
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result comparison assignments of the systems that are t/(n-l)-diagnosable; its proof is
given in Appendix A.

Theorem 3.1: A system S composed ofn units (or software variants) is t/(n-
1)-diagnosable if n ::::2t + 1 and the assignment of result comparisons in the
system S contains at least

1) a chain of2t units for 1 :::;t:::; 2;

2) a chain of 2t + 1 units for 3:::;t:::; 4;

3) an H2r n structure with r = 1 for 5:::;t:::; 6;,

4) an H2r,n structure with r>: (t-1 )/5 for 7:::;t.

Because the major aim of this section is to show how the t/(n-l )-diagnosis technique
could be applied to the design of software fault tolerance schemes, we will not further
discuss this particular technique itself. The diagnosis algorithms with respect to the
testing assignments in the above theorem have been developed in [Xu 1991] for chains
and in [Xu & Huang 1995] for H2r,n-type systems. For practical values of n (e.g. 3 :::;n
:::;10), a t/(n-1)-VP architecture uses only O(n) comparators and contains a simple
diagnosis algorithm with linear complexity. The adjudicator in such an architecture
would be simpler than a voter used in NVP (which has to be based on O(n2) result
comparison steps).

It is important to realize that for any fault tolerance scheme the correctness of results
output by the system cannot always be guaranteed (e.g. when more than t faults have
occurred). Moreover such fault situations cannot be detected completely. However this
does not present severe problems; there are acceptable probabilities of catastrophic
events in practice (e.g. an aircraft computer system is usually acceptable if the
probability of failure is less than 10-9 per hour in a ten hour flight). Dependability
studies that have been performed for practical fault-tolerant systems can be used to
determine the probability of the occurrence of t faults. This helps to make an
appropriate design decision as to which scheme is likely to be most effective and how
many variants are sufficient for a particular application. Additional fault detection and
exception handling techniques [Cristian 1995] can also be used to improve fault
coverage and fault tolerance. In the 2/(5-1)-architecture of Figure 3.1, for example,
exception-handlers can be incorporated into the variants. The function of the handlers
in a variant is to handle any errors that are detected during the execution of the variant,
signalling an exception to the diagnostor if necessary. The diagnostor comes to final
decision according to the value of the syndrome and the exception signals received so
far: either it delivers a presumably correct result, or signals a failure exception.
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3.1.3 Comparison with Other Schemes

The t/(n-l)-VP scheme has some resemblance to other fault tolerance techniques that
have been previously proposed and examined, especially with those requiring the use of
result comparisons such as NVP and NSCP. The fact that the variants are executed in
parallel necessitates an input consistency mechanism and a synchronization regime,
based essentially on wait and send primitives, and incorporating a time-out mechanism.
However, in each case there are significant and fundamental distinctions. Correct
results in t/(n-l)-VP are not obtained by majority vote (as in NVP), or by detecting and
discarding erroneous results (as in NSCP), but by t/(n-l)-diagnosis.

NVP
It could be argued that t/(n-l)-VP is only a variation ofNVP; however, in our opinion,
the majority voting check is an integral part ofNVP, and each of N software versions in
NVP is of equal importance. In marked contrast, the t/(n-l)- VP scheme does not try to
find a majority of n results, but just to identify a presumably correct result. It can
therefore deliver correct results with some probability even when the majority of results
of n variants are incorrect. Moreover, t/(n-l)-VP has more flexible architectural
features. In the architecture of Figure 3.1, the variant VI can be considered as being
active, actually delivering the system output in the absence of faults; the variant V4 and
Vs are used as "hot" spares, and V2 and V4 are only exploited for detecting errors and
producing test outcomes. In addition, NVP requires that all variants should be designed
to produce the results that are essentially identical. This constraint can be loosened in
the t/(n-l)-VP approach. While the primary variant VI in the 1/(5-1)-VP architecture
should attempt to produce the desired output, the spare variant Vs may only attempt to
provide a degraded service. In this form, the t/(n-l)-VP architecture can be used to
implement a type of graceful degradation.

NVS
In principle, t/(n~I)-VP is also different from NVS (a form of sequential NVP [Grnarov
et al 1980].) The t/(n-l)-VP method is based on so-called hot-standby redundancy,
whereas NVS utilizes the cold-standby technique. More precisely, in the case that the
results of the first two variants disagree (assuming N= n = 3), t/(n-l)-VP will select the
result of the third variant, which has been available, as the system output through the
result switch. NVS however has to first execute the third variant on the same set of
input values and then make a further decision by searching for a majority of the results.
This validation process requires extra execution time for the third variant and for the
final decision. Clearly, in comparison with our scheme, NVS has relatively poor
predictability of task completion time and may be inappropriate for certain time-critical
applications. -
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NSCP

It could be argued that t/(n-l)-VP is somewhat similar to NSCP. However, a
fundamental distinction between the two schemes concerns their capacity for tolerating
related faults. NSCP will fail (and perhaps cause catastrophic consequences) whenever
the two variants that form the active self-checking component produce identical, but
incorrect results (no matter how many spares are still available). In contrast, the t/(n-l)-
VP scheme can tolerate up to t (independent or related) faults; that is, it can deliver
correct service even if t faulty variants compute identical incorrect results.

RB

Finally, from the previous overview of software fault tolerance schemes, it is evident
that the t/(n-l)-VP approach is quite distinct from the recovery block concept. Like
NVP and its variations, t/(n-l)-VP is complementary in many respects to RB.
Recovery blocks can be more appropriate for those systems where hardware resources
are limited and comparison-based adjudicators are inappropriate (a discussion of the
relative advantages and disadvantages ofNVP and RB has been given in Chapter Two).
In the interests of simplicity and brevity, we will focus in the evaluation part (i.e.
Section 3.3) on the comparison of t/(n-l)-VP with NVP and NSCP without further
discussing the recovery block approach.

3.2 Self-Configuring Optimal Programming
",

Most software fault tolerance methods that address dependability issues solely are often
inefficient (this will be discussed in detail in Section 3.2.1). If a software system has to
be structured to treat software faults, efficiency will certainly remain an important
aspect of its quality. Possible resolutions of the efficiency problem are the subject of
this section.

Since the kind of applications which require software fault tolerance are often also
likely to have stringent efficiency requirements, a good use of the available resources,
both in space (hardware) and time (repetition), is highly desirable. In fact, there has
been growing research interest in combining both aspects, typical efforts including Tai's
performability-driven adaptive fault tolerance [Tai 1994] and Stankovic and
Ramamritham's reflective architecture for real-time OS's [Stankovic & Ramamritham
1995].

3.2.1 Software Fault Tolerance versus Software Efficiency

Let us briefly revisit several typical schemes for software fault tolerance and examine
their efficiency aspects. Software variants are organized in recovery blocks in a manner
similar to the standby sparing techniques (dynamic redundancy) used in hardware and
may be executed serially on a single processor. The execution time of a recovery block
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is normally that of the first variant, acceptance test, and the operations required to
establish and discard a checkpoint. This will not impose a high run-time overhead /
unless an error is detected and backward error recovery is required. In this regard, RB is
highly efficient. Limitations of the RB method are mainly connected with the
acceptance test, which is usually derived from the semantics of a given application.
Such an acceptance test will introduce a run-time overhead which could be
unacceptable if the test is complex, but the development of simple, effective acceptance
tests is a difficult task.

NVP, NSCP and t/(n-1)-VP avoid using an acceptance test by taking advantage of
parallel execution of multiple variants and result comparisons (although sequential
execution is conceptually possible just as parallel execution of RB alternates can be
performed in a distributed computing system [Kim & Welch 1989]). The adjudication
mechanisms used in these three schemes are usually based on result comparison and
thus independent of semantics of the applications. The probability of common mode
failure between the adjudicator and the variants is relatively low in these schemes.
When variants are executed in parallel, NVP, NSCP and t/(n-1)-VP have relatively
fixed response time (without repetition), thereby guaranteeing timely responses even in
the presence of faults. However, it is important to notice that these architectures utilize
redundancy in a static manner and always execute all of their variants regardless of the
(normal or abnormal) state of the system. They are intended to tolerate the maximum
number of faulty components that may be present in the system; but, since such a
"worst case" rarely happens, the amount of resources consumed is often higher than
necessary. In this sense, they are not efficient.

All the fault-tolerant approaches require some extra space or extra time, or both. Figure
3.3 summarises space-time overheads in software fault tolerance schemes. Space is
defined as the amount of hardware (e.g. the number of processors in a distributed
system) needed to support parallel execution of multiple variants. Time is viewed here
as the physical time needed to execute one or more variants sequentially. It is important
to notice that efficient or optimal use of the available resources generally requires
dynamic management and conditional execution of the available software variants.
This, as is shown in the diagram, should come with a dynamic trade-off between full
parallel execution and totally sequential execution of variants. Unfortunately, no
existing schemes attempt to provide such a dynamic space-time trade-off though it can
in fact be achieved and so we would argue it should be provided. As a possible
solution, we propose in the next section a new scheme, called Self-Configuring Optimal
Programming (SCOP), which improves the efficiency of software fault tolerance by
diminishing the possible waste of resources, without compromising software
dependability.
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Figure 3.3 Space and time redundancy in fault-tolerant software

In order to use redundancy in a dynamic or conditional manner, a scheme has to decide,
at appropriate intermediate points of its execution, which of the following three
execution states has been reached: i) End-state E, that is, there exists a result that meets
the stated delivery condition and can thus be delivered; ii) Go(ing onl-state G, that is,
there is no result that meets the condition, but it is still possible to obtain such a result if
further (space or time) redundancy is employed; or iii) Failure state F, that is, there is
no further possibility of producing a result that meets the condition. In consideration of
efficiency, our scheme, SCOP, structures its execution in sequential phases, configuring
its variants in a dynamic and adaptive fashion. Each phase includes the execution of the
least number of variants, i.e. one which will lead to an end-state if no error is detected.
At the end of a phase, if a result that meets the delivery condition is found, SCOP
simply outputs it and stops any further execution.

In reality, conditions for delivering a result are usually embedded in the adjudicator
explicitly or implicitly. Some examples for canonical delivery conditions are:

1) a result is deliverable if its probability of being correct is assessed to be equal to
or higher than a previously determined bound a; or

2) the results are passed on if they constitute the majority and the erroneous results
(i.e. the minority) are eliminated.

Note that different conditions generally have different fault coverages though some
conditions seem to be very similar. In further consideration of efficient use of the
available resources, SCOP is devised to admit different delivery conditions, thus
becoming parametric with respect to the level of fault tolerance.
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Dynamic redundancy for the purpose of space-time trade-off is a classical idea, e.g.
Duplicated Configuration with a Spare and NMR with Spares used in hardware. Similar /
schemes have been applied to redundancy management in multiprocessors [Lombardi
1985] or in distributed computing [Babaoglu 1987]. However, all these schemes take
hardware faults into account only, such as processor and communication line faults.
Our major concern here is software fault tolerance. We devote our attention to both
dependability and efficiency, searching for a systematic way of using the minimum
amount of hardware and time resources to attain the required software dependability. It
is particularly emphasized that a quality fault-tolerant software should be obligated to
behave as precisely required (e.g. by different delivery conditions), but it should not be
liable for anything outside of the specified requirement.

Conditional utilization of redundancy requires extra time expenditure once a fault
occurs. However, time is a limited resource in a real-time environment. The
uncontrolled application of time redundancy can lead to a delay in the production of
output information and will result in such information being classed as invalid if
deadlines are missed. The maximum possible delay in our approach must be
determined carefully according to the response time required. Related work exists in
[Campbell et al1979][Hecht 1976][Kim & Welch 1989]. Integration of fault tolerance
and real-time issues is addressed thoroughly in [Bondavalli et al 1993]. It must be
further mentioned that for applications where time redundancy is not acceptable, we
have no choice but to sacrifice software efficiency to guarantee both timeliness and
reliability, and full parallel (unconditional) execution of variants is therefore the only
possible solution.

SCOP is designed intentionally as a general scheme for coping with both dependability
and efficiency issues. In order to tolerate software faults (and some hardware-related
faults), an instance of the SCOP scheme may employ an application-specific strategy
for masking the effect of faults, such as multiple versions of software, diversity in data
space, or simple retry of programs, depending upon special application requirements
and considerations of cost effectiveness.

3.2.2 The SCOP Scheme

Basic Architecture

The SCOP scheme consists of a set of software variants, V = {VI. V2, ... , Vn}, an
adjudication mechanism, and a controller. that coordinates dynamic actions of the
architecture. The main characteristics of SCOP include:

1) Dynamic Use of Redundancy. SCOP always tries to execute the least number of
variants strictly necessary for providing a result which meets the stated delivery
conditions. To do this it organises the execution of variants in phases,
dynamically configuring a currently active set (CAS) Vi (a subset of V) at the
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beginning of the ith phase. An adjudication is made after the execution of Vi in
order to check if conditions for the release of a result are satisfied. The result will
be output immediately and any further phases and actions will be ended once
these conditions are met.

2) Growing Syndrome Space. A syndrome is a set of information used by an
adjudicator to perform its judgement as to the correctness of a result. The
syndrome information in SCOP is accumulated with the increase of phases. All
the results produced and the additional information collected so far are employed
to facilitate the selection of a correct result.

3) Flexibility and Efficiency. SCOP can be designed to obey different delivery
conditions. Since the different conditions will usually have different fault
coverages, SCOP is therefore able to provide different levels of dependability.
Different conditions may be dynamically chosen by different applications,
according to their degrees of criticality, or by the same application at different
times, corresponding to different levels of graceful degradation. The initial CAS
VI in the first phase is determined and could be changed with respect to different
delivery conditions, while the set Vi in the ith phase (i > 1) can be constructed at
run time based on information about the state of the system, so making efficient
utilization of available resources.

4) Generality. Software variants used by SCOP can be designed using design
diversity [Avezienis 1985], data diversity [Ammann & Knight 1988], or simple
replication of a program [Huang & Kintala 1993] (when only transient software
faults are expected).

The behaviour of SCOP can be described by the following control algorithm (shown in
a Pascal-like notation with comments on the right side).

begin
i :~0;

State mark :~ G;
Si ~ {};
C :~ one of { delivery conditions );
decide(max_phase);
while State mark ~ G and
i < max_phase do
begin
i :~ i+l;

configure(C, Si-I' i, Vi);
execute (Vi, Si);
adjudicate(C, Si' State_mark, res);
end;

if State mark ~ E
then deliver(res)
else signal(failure);

end

{i is the index of the current phase. set to O}
{set current state as Go-state}
{set syndrome as empty}

{set required delivery condition}
{based on timing constraints}
{while current state is Go-state and
current phase is less than maximum allowed}

{start new phase}
{create new Currently Active Set}
{execute and obtain new syndrome}
{set new state mark and select result}

{current state is End-state or Failure state?}
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The decide procedure determines the maximum number max_phase of possible phases
to be permitted by the specified timing constraints. Procedure configure constructs the '/
CAS set VI in the first phase according to the selected delivery condition and the given
application environment, and establishes the CAS set Vi (i > 1) based on the syndrome
Si-l collected in the (r-rjth phase and the information on phases. The execution of a
CAS may lead to a successful state E. Note that the variants in Vi are selected from
those variants that have not been used in any of the previous phases, i.e. Y i is a subset
ofv - (VI U V2 U ... U Vi-I). If the ith phase is the last one, Vi would contain all the
remaining spare variants. The execute procedure manages the execution of the variants
in CAS and generates the syndrome Si, where So is an empty set and Si-l is a subset of
Si. Procedure adjudicate implements the adjudication function using the selected
condition c. It receives the syndrome Si, sets the new State_mark and selects the result
res, if one exists. The deliver procedure delivers the selected result and the signal

produces a failure notification.

Example: Suppose that i) a distributed system composed of three processors
is available for the parallel execution of up to three software variants; ii)
seven software variants are provided; iii) the maximum time delay permitted
is three phases, and iv) a result selected from at least three agreeing versions
is considered as being deliverable. Here, V = {v), V2, V3, V4, Vs, V6, V7}, IVII =
3, and 0 < i :5 3. Three examples of possible execution are illustrated in
Table 3.2, where italics are used to indicate the agreeing results as seen by
an ideal omniscient observer and bold characters are used to represent
incorrect, disagreeing results.

Phase Vi Spares Syndrome
Judgement
& result

1 {VI,V2,v3} {V4,VS,V6,V7} ri. rs rs ~ E, rl

1 {VI,V2,V3} {V4,VS,V6,V7} rI, ri. r3 G

2 {V4,VS} {V6,V7} r., rz. r3, r4, rs ~ E, r2

1 {VI,V2,v3} {V4,VS,V6,V7} r., r2, rs G

2 {V4,VS} {V6,V7} r., r2, r3, r4, rs G

3 {V6,V7} {} r., r2, rs, r4, rs. r6, r7 ~F

Table 3.2 Execution examples of SCOP

Figure 3.4 further gives a Petri-net execution model for the SCOP scheme, assuming
that the maximum number of allowed phases is two. The example and the execution
model demonstrate how SCOP reaches the required dependability in a dynamic manner
when the availability of hardware resources is fixed. In practice, the amount of
available resources and real-time constraints may vary. Particularly, in computing
systems that function for a long period of time, the user may impose-new requirements
or modify the original requirements for timeliness, dependability etc. In addition, the
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user may program more variants when the need arises. These uncertain factors require
more complicated and more dynamic control and management. SCOP is further
intended to cope with them.

start software
execution

end software
execution

execute
variantk + 1

execute
variant 1

end variant
execution

deliver
acceptable
results

end variant
execution

Figure 3.4 Execution model of the SCOP scheme

Dynamic Behaviour in a Distributed Computing Environment

In a large distributed system, hardware resources involving processors, memories and
communication devices can be utilized by several competing concurrent applications,
so that the amount of resources available for a specific application often varies.
Furthermore, complex schemes for software fault tolerance may be necessary only for
some critical part of the application which demands extra resources from the system.
Dynamic management can make the allocation of resources more efficient. Let Np be
the maximum number of software variants which can be executed in parallel on
hardware resources currently allocated to a given application, and Td the time deadline
that indicates the maximum response delay permitted for the application. Figure 3.5
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illustrates a possible organization for SCOP and its dynamic behaviour in a varying
environment.

Deliver a
presumably
correct result

Exception Degraded service

User's ~J
requirements Input

Figure 3.5 Dynamic behaviour of SCOP in a varying environment

Each step in the diagram is explained as follows.

1) Establish (for a given application) the delivery condition C (or several delivery
conditions which permit different levels of dependability), according to the user's
requirements, and then configure the initial CAS set, VI, from V,which includes
the minimum number of variants needed to be executed to generate a result
satisfying the condition C in the absence of faults. Determine the timing
constraint, Td, based on the response requirement.

2) Check whether the time deadline Td will be missed when the ith phase is initiated
for the execution of Vi (i = 1,2,3, .:.) and whether Vi is an empty set. If Td allows
for no new phase or Vi = { }, an exception will be raised to signal to the user that
a timely result satisfying the required condition C cannot be provided. In this
case, a degraded service may be attempted.

3) Check whether Np > O. Np = 0 means that no variant can be executed at this
moment due to the limitation of available resources in the system. Wait and go
back to Step 2 to check Td.

4) Check whether !Vi! > Np. If !Vi! > Np, only some of the variants in Vi can be
executed within the current phase and thus additional time is needed for the
execution of Vi'

71



Chapter 3: Advanced Schemes

5) Execute Np software variants in Vi and modify Vi such that Vi excludes the
variants which have been executed. Back to Step 2.

6) Since IVii ~ Np, IVii variants are executed and finished within the current phase. If
the scheduler used by the supporting system allocates Np > IVii processors to
SCOP during the ith phase, it is possible to consider the execution of Np variants
(more than IVi!)' This avoids wasting the resources that would be left idle
otherwise, and requires the ability to select the additional variants among those
not yet used.

7) Generate syndrome Si based on all the information collected up to this point.

8) Check whether a result exists that satisfies the delivery condition C. If so, deliver
the result to the user; otherwise Step 9.

9) Set i = i + 1 and construct a new CAS set, Vi, from the spare variants according to
the information about the syndrome, the deadline and the resources available; if
no sufficient spare variants are available, set Vi empty.

It is worth mentioning that the major purpose of this illustration is to outline the
dynamic behaviour of SCOP. Practical applications will require specific designs. A
design methodology for supporting this kind of dynamic management and control is
developed in [Xu et aI1995b].

Implementation of SCOP

The main mechanisms needed to support a SCOP architecture are those which
implement conditional execution of N software variants. Control of these variants is
provided by a controller (similar to the driver program used in NVP). The controller is
responsible for:

1) ensuring an identical set of input values to each software variant;

2) dynamically invoking an appropriate subset of variants;

3) waiting for the variants in the CAS set to complete their execution;

4) comparing the results produced by the variants and taking selective action.

We will examine below which existing mechanisms or measures used to implement
NVP or RB can be employed directly for implementation of SCOP and which
mechanisms need to be extended and improved.

Input Space. When executed, each variant must have access to an identical set of input
values. (We ignore the possibility of data diversity for a moment.) There are two
methods of implementing this: i) the controller communicates the set of input values to
each variant, or ii) all variants access the input values from a shared, read-only, global
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data structure. In practice, a large set of input values may result in heavy space and
communication overheads. For N-version programming, the set of input values, or the /
data structure, can be updated using new values as soon as each variant receives or
obtains the previous values. NVP also allows a variant to retain private data in
structures local to its instantiation, to be used in subsequent executions of that variant,
which could reduce the amount of input required. However, input values must be
retained in the SCOP scheme until an execution of the scheme is completed, i.e. either
the End-state E or the Failure-state F is reached. Since not all of variants are executed
each time when the SCOP scheme is invoked, the variants must not retain data locally
between executions, otherwise these variants could become inconsistent with each
other. Generally speaking, SCOP may have a more significant input-space overhead
than NVP though their requirements regarding the input mechanism are essentially
identical. The cache mechanism used in recovery blocks [Anderson & Kerr 1976][Lee
et al 1980] would provide a possibility of reducing the extra (both input and output)
space cost imposed by SCOP.

Under a unified control framework provided by SCOP, data diversity (and message
reordering) can be handily supported by a concrete implementation. Because the set of
input values must be kept unchanged for each execution, once the execution of some
spare variants is required, diverse input values to them can still be generated by
diversifying the original, unchanged set of inputs [Ammann & Knight 1988] (or by
reordering these input values [Huang & Kintala 1993].)

Synchronization. A mechanism is necessary for synchronizing the actions of the
controller and the variants, and for communicating outputs from the variants to the
controller. The variants in the CAS set wait and do not start processing until a start
command is issued by the controller. Similarly, the controller waits until complete
responses have been received from all the variants in the CAS set. The comparison
check on the set of the results can then be performed. Some form of timeout mechanism
is further required to deal with the situations that some variants do not complete their
execution due to a design fault. Again, such a mechanism has no basic differences from
that adopted by NVP except that the process of synchronizing the controller and the
variants may be repeated (i.e. several execution phases) within an execution of SCOP.
For example, the output vector method for communicating the results to the controller
in NVP [Avizienis et al 1988b] can be applied directly to an implementation of SCOP.

Atomicity. Like NVP, the SCOP scheme also requires that each variant is executed
atomically with respect to the other variants) namely, without any communication with
or interference from the others. Multiprocessors and distributed computing systems
would be ideal for achieving such atomicity since each variant can be executed
concurrently on independent hardware.

Adjudication and Outputs. Similar to the requirements regarding input values, the
information derived from the output values produced by previously executed variants
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must be retained since any adjudication made by SCOP must be based on all the
syndrome information collected so far. However, this information is not necessarily all
the vectors of output values produced till now, but some representative vectors of
results generated by the controller with the indication of the frequency of their
appearance. The controller makes an adjudication on further actions, referring to data in
the read-only data structure supporting run-time adjudication. Once the End-state E is
reached, the selected vector of output values will be released, and the syndrome
information and the set of input values for this execution will be discarded.

To summarize, the implementation of SCOP will not introduce serious technical
difficulties, in comparison with the classical approaches such as NVP and RB.
However, dynamic execution of software variants could cause extra space (e.g.
memory) overheads for retaining related input and output data. When compared to the
overall gains in hardware by the SCOP scheme (see the next evaluation section), these
overheads should be minimal and not be of major concern in practice. (Table 3.3
compares SCOP with NVP and RB with respect to major implementation details.)

Scheme Data Consistence
Execution Execution Adjudication and

Coordination Atomicity Outputs

Input mechanism Synchronization Isolation of Retention of
similar to NVP, between the separate variants output values for

SCOP but retention of controller and supported by the growing syndrome
input values variants for any hardware system space and dynamic

execution phase adjudication

Control by the Synchronization Isolation of Votes; outputs
driver program between the separate versions without retention

NVP or use of a global driver and supported by the (may retain local
data structure versions hardware system data for efficiency)

Efficient Access to Isolation of Acceptance tests;

RB
recovery cache recovery cache alternates by delivery of
for retention of and invocation to checkpointing and acceptable results
recovery data the spare alternate backward without retention

recovery

Table 3.3 Major implementation characteristics ofSCOP, NVP and RB

3.3 Analytic Evaluation of Fault-Tolerant Software

As discussed in Chapter Two, it cannot be guaranteed that independently designed
software variants will fail independently, i.e. that faults in the different variants will
occur at random and be unrelated. The dependability analysis of fault-tolerant software
must therefore study the effect of related faults. A number of papers devoted to such
dependability analysis have appeared in the literature (see related work addressed in
Chapter Two). In particular, Arlat, Kanoun, and Laprie [Arlat et al 1990] developed
complete fault classifications and presented a detailed evaluation of NVP and RB.
Their analysis concentrated on basic architectures able to tolerate a single fault and
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thereby the analytical conclusions can hold only for those specific instances. We
augment published work by analyzing more general architectures that tolerate two or .r

more software faults and by carefully identifying the ability of various approaches to
tolerate independent and related faults. The results drawn from our analysis provide
designers with richer information about the fault tolerance properties of various
architectures than the results from traditional analysis, and show evidence that both
t/(n-l)-VP and SCOP are a viable addition or alternative to present schemes for coping
with software faults. Table 3.4 explains the notation to be used for the dependability
evaluation.

Notation

Ai state of adjudicator's execution

B,e state of [benign, catastrophic] failure caused by an undetected error

c, result comparator

eX Probability of catastrophic failure of approach X

D,U state of [detected, undetected] failure

E state of software execution

FX probability of failure of approach X

I state of software idleness during the specified exposure period

N, n number of software variants

p probability that all variants produce the same correct results

q[, qA probability of an independent fault in [a variant, the adjudicator]

qAD, qAU probability of a [detected, undetected] independent fault in the adjudicator

qAV probability of related faults among the variants and the adjudicator

qmV probability of related faults among m variants

qU probability of an undetected failure

qC probability of a catastrophic failure due to an undetected error

rt result( s) of Vi

Rx(t), Sx(t) [reliability, safety] of approach X

V State of variant execution

Vi Ith software variant

CT Departure rate from state I

lUi.i+l (comparison) test outcome

Table 3.4 Notation for dependability evaluation
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3.3.1 Evaluation oft/(n-1)-VP

We exploit the modelling framework in [Arlat et a11990] for investigating the software
redundancy needed to tolerate two or more faults and establish a slightly different
model so that the different impacts of independent and related faults on software
dependability can be examined. Three architectures are analysed that can tolerate at
least two software faults: t/(n-1)-VP and NVP using five variants, the former adopting
a simple diagnosis algorithm for result selection (see Table 3.1) and the latter
employing the usual majority adjudication, and NSCP using six variants organized as
three self-checking components. (Note that the NSCP architecture being considered
here can tolerate two faults in most fault situations except related faults that occur in an
active self-checking component.) Expressions for Fx and ex, where X E {t/(n-1)-VP,
NVP, NSCP}, will be derived using a Markov approach.

Our analysis will be based on the following assumptions:

1) During the execution of the X scheme, related faults manifest themselves in the
form of similar errors, whereas independent faults only cause distinct errors; and
furthermore similar errors lead to common-mode failures, and distinct errors only
cause independent failures;

2) all variants have the same probability of fault manifestation (or error);

3) only a single fault type, either independent or related, may appear during the
execution of the scheme and no compensation [Laprie 1992] may occur between
errors of the variants and of the adjudicator, i.e. either an error is detected or it
causes an incorrect output;

4) probabilities of independent and related faults are significantly low such that the
probability p can be approximated to 1 (as assumed by others in similar settings;
see [Arlat et al 1990] for example).

These assumptions are used only to simplify the notation and the complexity in
modelling and should not alter the significance of analytical conclusions. In particular,
assumption 2) can be easily generalized to the case where the variants have respective
fault characteristics. More complex models can be developed without applying
assumption 4), i.e. probabilities of independent and related faults are allowed to be
arbitrary (such models are described in [Tai et a11993] and also used in the next section
for the evaluation ofSCOP.)

Dependability Model

We consider here two different but complementary attributes of dependability:
continuity of service and non-occurrence of catastrophic failure. In general, we define
software reliability as a measure of the time to failure and its safety as a measure of the

76



Chapter 3:Advanced Schemes

time to catastrophic failure [ArIat et al 1990][Laprie 1992]. The time (or the specified
exposure period) in this definition is a relative concept and may mean a single run, a/
number of runs, or time expressed in calendar or execution time units of software. In
the case of multiple runs, software may be idle between its executions. However
software faults can manifest themselves only when software is executed, We will
therefore focus on the execution process of software. Figure 3.6 shows a slight variation
of the software behaviour model proposed by Arlat et al [Arlat et al .1990]. In this
behaviour model, a detected failure (i.e. no service is delivered) is classified as benign;
an undetected failure (i.e. an incorrect result is delivered) can be either benign, or
catastrophic. Since several runs are possible, service delivery may be restored from
benign failures. Note that transitions from D and B to I and from U to B or C are
applied only to the safety evaluation. Based on a Markov approach to modelling,
reliability of the X approach can be evaluated simply by:

Rx(t) = e -( aFx)t

where t the specified exposure time (for a detailed discussion of this formula see
[Arlat et aI1990]);

and safety by:

Sx(t) = e -( oCx)t

Restoration
of Service

Figure 3.6 A modified behaviour model

A tl(n-I)-VP Model for 2/(S-I)-Architecture

Figure 3.7 describes a state-transition diagram for the 2/(5-1)-architecture based on the
notation introduced in Table 3.4. From state E, execution states of the adjudicator are
explained as follows.
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p

qAU 1 1 0.6 0.4 O. 0.8

Figure 3.7 t/(n-l)-VP model

1) State A 1 corresponds to the case in which five variants produce the same correct
results. According to assumption 4), probability p that all variants produce correct
results can be approximated to 1 - 5qJ- 10(qJ)2 - 10(qJ)3 - 5(qJ)4 - (qJ)5 - 10q2v
- 10q3v - 5q4v- q5V- qAV (:::::1). Given no fault in any variant, different types of
adjudicator failure will lead to states D and U with respective probabilities qAD
and qAU'

2) States A2 and A3 indicate activation of one or two independent faults in variants
given no related fault among the variants. These fault types can be tolerated by
this 2/(5-1 )-architecture.

3) States A4, A5 and A6 correspond to cases in which three or more independent
faults manifest themselves in variants. Since the number of faults has exceeded
the bound 2, these states may lead to a failure state. However, through a more
precise analysis, it is found that t/(n-l)-VP can still deliver a correct result in
some situations (see a further discussion below).

4) State A7 represents activation of related faults in any two variants. These faults
can be tolerated.

5) States A8, A9 and Al 0 correspond to cases in which related faults manifest
themselves in more than two variants, which are undetectable.

6) State A 11 corresponds to activation of related faults between the adjudicator and
the variants. This is also regarded as undetectable (see assumption 3).
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In this 2/(5-1)-VP model, there is the transition from state A4 (or A5) to state I, that is,
the architecture considered may still select a correct result as the system output even in/
the presence of more than two faults. Without loss of generality, take state A4 as an
example. If three independent faults affect only three of variants Vt. V2, V3, and V4, by
assumption 1) their results will generate the syndrome where aJt2 = 1D23 = aJ.l4 = 1. The
result of Vs (a correct result) will then be chosen as the system output. Note that this
class of events may occur with the probability 4qj3. Similarly, if three independent
faults affect only Vt. V2 and Vs (or only V3, V4 and Vs), according to Table 3.1, the
selected result can be still a correct one, with the probability 2qj3. To sum up, the
conditional probability of the transition from state A4 to state I is (4qj3 + 2qj3) / (10qj3)
= 0.6. Therefore, the transition from A4 to a failure state can actually take place with
the conditional probability (4qj3) / (10qj3) = 0.4.

From the state-transition diagram of Figure 3.7, it follows that

Ftl(n-I)-VP =P(qAD + qAU)+ 4(q[)3 + 4(q[)4 + (q[)S + lOq3V+ 5q4V+ qsv+ qAv

A close but pessimistic approximation can be:

Ftl(n-I)-VP = qAD+ qAU+ 4(q[)3 + 4(q[)4+ (q[)S + 10q3V+ 5q4V+ qsv+ qAV (1)

For evaluation of safety, only state C is absorbing:

Ctl(n-I)-VP = qc[qAU + 4(q[)3 + 4(q[)4 + (q[)S + lOq3V+ 5q4V+ qsr+ qAV] (2)

An NVP Model for 5VP-Architecture

Figure 3.8 shows the NVP model for the 5VP-architecture.

p

A3 A4

Figure 3.8 NVP model
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The detailed analysis is essentially similar to that made for t/(n-l)-VP. A major
difference is the case where multiple independent faults have an impact on three or
more variants. In NVP, this case is much simpler - these faults will always lead to
state D, assuming they are always detectable (but not tolerated). Thus, for reliability,
FNvpwill be greater than Ftl(n-l)-VP:

FNVP = qAD + qAU+ 10(q[)3 + 5(q[)4 + (q[)5 + IOq3V+ 5q4V+ q5V+ qAV (3)

However, due to the detectability of multiple independent faults we have for safety:

CNVP = qc[qAU+ IOq3V+ 5q4V+ q5V+ qAV] (4)

which is obviously lower than Ctl(n-l)-VP.

An NSCP Model for 3SCP-Architecture

Figure 3.9 shows NSCP model for 3SCP-architecture. The interpretations of the states
are similar to those of the t/(n-l)-VP model though there are thirteen states Al - Al3 to
consider because of the use of six variants. Independent faults in one or two of variants
can be tolerated. Independent faults in three or more variants can be either tolerated or
detected, as indicated by states A4 and A5. This shows that the NSCP scheme is quite
effective for the treatment of independent faults. However, cases where related faults
manifest themselves among multiple variants become more complicated. On one hand,
NSCP is not fault-tolerant in the worst case - any related faults in active self-checking
components could lead to certain failure. On the other hand, some related faults can be
tolerated or detected if they do not affect the pair of variants in an active self-checking
component. Consider a representative case, state A9, in which related faults manifest
themselves in three of the six software variants. There are three sub-cases to consider.

p

qAU 1 10.6

0.4

Figure 3.9 NSCP model

80



Chapter 3: Advanced Schemes

1) If related faults only occur in the spare self-checking components or such faults
affect just a variant in the active component but not affect the first spare /
component, the 3SCP architecture can select a correct result and provide normal
service. The conditional probability that this sub-case does occur is [(6/20) x
(20q3V)] 1 (20q3V) = 0.3.

2) If related faults affect exactly one variant in every self-checking component, they
can be detected effectively; the corresponding conditional probability is [(23/20)
x (20q3V)] 1 (20q3V) = 0.4.

3) The worst sub-case is that related faults have an influence upon the pair of
variants in the active component or an impact on the pair of variants in the first
spare component given these related faults have affected a variant in the active
one. In this sub-case, the 3SCP architecture will produce incorrect outputs, and
the corresponding conditional probability is [(6/20) x (20q3V)] 1 (20q3V) = 0.3.

A similar analysis can be applied to other states. It therefore follows from the state-
transition diagram of Figure 3.9:

Fuse» = qAD + qAU + 8(q[)3 + 12(q])4 + 6(q])S + (q[)6 + q2V+ 14q3V

+ 14q4V+ 6qsv+ q6V + qAv (5)

Since independent faults can be either tolerated or detected, safety of the NSCP
architecture concerns only related faults:

CNSCP = qc[qAU+ q2V+ 6q3V+ 14q4V+ 6qsv+ q6V + qAV] (6)

Remarks

Table 3.5 summarizes the specific expressions for q/s and qu's.

Parameters tl(n-l)-VP NVP NSCP

Q[:x 4(q[)3 + 4(q[)4 + (q[)S lO(q[)3+ 5(q[)4 + (q[)S 8(q[)3 + 12(q[)4+ 6(q])S + (q[)6

qA:X qA(tl(n-I)- VP)(comparators) qA(Nvp)(voter) qA(NSCP)(comparator)

qAV:X qA V(tl(n-l)- VP) qAV(NVP) qAV(NSCP)

qmV:X lOq3V+ 5q4V+ qSV lOq3V+ 5q4V+ qSV q2V+ 6q3V+ 14q4V+ 6qsv+ q6V

Qu:x
qAU+ 4(q[)3 + 4(q])4 + (q[)s + qAU+ lOq3V+ 5q4V+ qAU+ q2V+ 6q3V+ 14q4V+ 6qSV

lOq3V+ 5q4V+ ssv+ qAV QSV+ qAV] +q6V +qAV

Table 3.5 Specific expressions for q/s and qu's

These expressions show that independent failures of the variants have a relatively small
influence upon tl(n-l)-VP, but a larger impact on NVP and even more on NSCP. This
is because the tl(n-l)- VP scheme possesses one of the significant characteristics of the
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t/(n-l)-diagnosis technique; namely, it is possible in some fault situations for our
proposed scheme to identify the correct results even though faulty variants are in the
majority.

As assumed previously, the adjudicators used in the three specific architectures are:
result comparison plus a diagnosis algorithm in t/(n-l)-VP, a voter in NVP, and result
comparison (Plus the result switch) in NSCP. According to their relative complexity, it
would be reasonable to rank qA'S and qAV'S as follows.

qA(NSCP) ::;qA(t/(n-l)-VP) ::;qA(NVP)

qAV(NSCP) S qAV(t/(n-l)-VP) S qAV(NVP)

(7)

(8)

It follows from Table 3.5 that related faults among variants have the same influence
upon t/(n-l)-VP and NVP, but more serious on NSCP. This is a consequence of the
fact that result comparison used in the self-checking components and the NSCP
architecture itself are not effective enough to detect (or further tolerate) the related
faults that may affect both variants in a self-checking component. Generally, this
cannot be overcome by incorporating more variants into a given architecture. In
contrast, both t/(n-l)-VP and NVP can tolerate some related faults under the same
bound and furthermore their fault tolerance capability can be enhanced, at least in
principle, by involving more software variants.

Summarizing, the analysis above could thus suggest the following general conclusions.

For reliability:

Ft/(n-l)-VP < FNVP < FNSCP (9)

The inequality (9) means that the t/(n-l)-VP architecture has the lowest probability of
failure - equivalently, the highest reliability. Due to high detectability of independent
faults, NVP is however less sensitive to undetected faults than t/(n-l)-VP. The
probability qU(t/(n-l)-VP) for t/(n-l)-VP looks relatively high since this scheme may fail
to detect some independent faults when the bound on the number of faulty variants is
violated. This probability could be reduced by using more software variants. Note that
the probability qU(NSCP) is high as well, but again the incorporation of more variants
would have no effect on safety enhancement ofNSCP. So for safety:

CNVP < Ct/(n-l)-VP S CNSCP (10)

Finally, it is important to notice that the evaluation data obtained here was used only to
uncover the relative advantages and disadvantages of these schemes under
consideration. For a given design using a particular scheme, the evaluation results also
show how the design could be modified to further improve its dependability. Since the
notion of software dependability captures many different concerns, including
reliability, availability, safety and security, our analysis demonstrates the need of a
delicate balance between these complementary attributes. In practice, a software
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designer must make a decision as to which technique is likely to be most appropriate
for a specific application.

3.3.2 Evaluation of sCOP

We analyze the SCOP scheme based on an architecture that makes it comparable with
other schemes. The SCOP architecture chosen involves three variants and the
associated delivery condition requires that at least two variants produce the same
results. It executes just two variants in the first phase. The assumptions 1), 2) and 3)
discussed in Section 3.3.1 are still applicable here. However, in the interest of general
applicability, probabilities of independent and related faults are allowed to be
significantly high in the following analysis, with the upper bound up to one.

Due to such adjustments to basic assumptions, the complexity in modelling and state
space will increase. We therefore consider three architectures that are simpler than
those used in our t/(n-l)-VP analysis. The NVP architecture uses three variants based
on the usual majority adjudication, the RB architecture consists of one primary block
and one alternate block, and NSCP contains four variants organized as two self-
checking components. Expressions for Fx and ex, where X E {NVP, RB, NSCP}, will
be derived using a Markov approach.

We condition the probability qA on a conservative base, namely, the fault will always
cause the adjudicator to reject a result (or a majority) given the result (or the majority)
is correct, or the adjudicator to output a result given the result is incorrect and no
majority exists. Note that a comparison-based adjudicator is normally application-
independent. We will no longer consider a related fault between the variants and the
adjudicator in the models for SCOP, NVP and NSCP, but only in the model for RB
which manifests with probability qAV. For reasons of simplicity, it is assumed that an
independent fault in the SCOP adjudicator will only manifest itself at the end of the
final adjudication.

Finally, we will use a simplified version of the model explained in Figure 3.6, as
illustrated in Figure 3.10.

I: Idle Software
E: Execution of Software
B: Benign Failure
C: Catastrophic Failure

Figure 3.10 A simple behaviour model
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A SCOP Model for 3VP-Architecture

A detailed model for SCOP is now constructed as follows. In Figure 3.11 state E is
defined as the execution state of variants in Phase One and states El, E2 and E3 as the
execution states in Phase Two. States from A 1 to A5 and from A6 to A9 are defined as
the execution states of the adjudicator in Phases One and Two respectively.

a = (1 - q1 - q2)(1 - q3 - q4), b = q1(1 - q3 - q4), c = q2(1 - q3 - q4)
q1 = 2qJ(1 - q/), q2 = qr, q3 = 2q2V, q4 = q2V + q3V

Figure 3.11 SCOP model

Execution states of the Adjudicator in Phase One:

1) State A 1 corresponds to the case in which two active variants produce the same
correct results.

2) State A2 corresponds to the case in which an independent fault in one of the
active variants causes an incorrect result.

3) State A3 corresponds to the case in which two independent faults in the active
variants cause two disagreeing results.

4) State A4 corresponds to the case in which a related fault between one of the active
variants and the third variant causes two disagreeing results.

5) State A5 corresponds to the case in which a related fault causes the same, but
incorrect, results.
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Execution States of the Variants in Phase Two:

1) State El corresponds to the case in which an independent fault in one of the
active variants causes the second phase.

2) State E2 corresponds to the case in which two independent faults in the active
variants cause the second phase.

3) State E3 corresponds to the case in which a related fault between one of the active
variants and the third variant causes the second phase.

Execution States of the Adjudicator in Phase Two:

1) State A6 corresponds to the case in which the third variant produces a correct
result given a fault in one of the active variants.

2) State A7 corresponds to the case in which an independent fault in the third variant
occurs given a fault in one of the active variants.

3) State A8 corresponds to the case in which the third variant produces a correct or
an incorrect result given two independent faults in the active variants.

4) State A9 corresponds to the case in which a related fault occurs between one of
the active variants and the third variant.

From the state-transition diagram of Figure 6, we obtain that:

Fscor = (q2 - 2qAq2 + q]ql - 2qAq]ql + qA)(1 - q3 - q4) + Cscor

Cscor = qA(q/ql + q2)(1 - q3 - q4) + q3 + q4

where ql = 2q[(1 - q/), q2 = qr, q3 = 2q2V, and q4 = q2V+ q3V·

For the purpose of comparison with the NVP architecture, let qi = 3qr(l-q/)+q? and
qr= 3q2v+q3V. It follows that

(11)

(12)

(13)

(14)

Following a similar approach to dependability modelling, we conclude that:

CNVP = qAqi(1 - qr) + qr

FRB = qA(1- q/- q2V- qAV) + qAq[(1 - q/) + (1- qA)qr + q2V+ CRB

CRB= qAqr + qAV

(15)

(16)

(17)

(18)
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CNSCP = qAqil(1 - qr) + qrv - 5q2V

where qiv= 2qJ(1 - q/) + qr and qrv= 6q2V+ 4q3V+ q4V·

(19)

(20)

From these specific expressions for probabilities of benign and catastrophic failures, we
could claim that SCOP can provide the same level of dependability as NVP. However
the probability qA is generally different with respect to different architectures. The
SCOP adjudicator we have examined will be invoked twice if some faults are detected
in the first phase. It is therefore possible that SCOP delivers an incorrect result in the
early phase or rejects a correct majority, starting a new phase, due to a manifestation of
a fault in the adjudicator. When such fault situations are taken into account, the
dependability of SCOP would be slightly lower than that of NVP with a simple
majority voter. In fact, probabilities associated with the adjudicator of NVP can also
vary significantly since various complicated adjudicators may be employed [Di
Giandomenico & Strigini 1990].

RB seems to be the best, but an acceptance test or AT is usually application-dependent.
The degree of design diversity between an AT and the variants could be different with
respect to different applications so that qAV (i.e. the probability of a related fault
between an AT and the variants) may vary dramatically. Moreover, the fault coverage
of an AT is an indicator of its complexity, where an increase in fault coverage generally
requires a more complicated implementation.

Consumption of Resources

Let Tx be the time necessary for the execution of a complete phase in the X scheme, and
fbe the maximum number of variant failures to be tolerated by the scheme. Note that
Tx consists of the execution time of the variants and the time for both adjudication and
control. We now conduct an analysis of resource consumption, referring to more
general architectures: 1) the SCOP architecture involves 2! + 1 variants, with the
delivery condition that requires at least! + 1 identical results, executing! + 1 variants in
the first phase, 2) the NVP architecture uses 2! + 1 variants based on the usual majority
adjudication, 3) the RB architecture consists of one primary block and! alternate
blocks; and 4) NSCP contains 2if + 1) variants organized as if + 1) self-checking
components.

In the interests of concentrating on efficiency, we assume no timing constraints on the
service and perfect adjudicators. Table 3.6 reports some results about resource
consumption, in which each cell of the NoVariant column indicates the total number of
variants needed to be executed when a scheme attempts to complete its service, in
direct proportion to the amount of hardware resources. Both the worst and the average
case are shown. In the worst case, SCOP requires the amount of hardware resources
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that supports the execution of (2! + 1) variants, but on an average it needs hardware
support just for the execution of the if + 1) variants.

NoVariant NoVariant TIME TIME
Scheme worst average worst average
SCOP (f+ 1)+f =(f+1) TSCOp+ffSCOp =TSCOp

NVP 2f+1 2f+1 TNVP TNVP

RB 1+f =1 TRB+ffRB =TRB

NSCP 2(f+1) 2(f+1) TN+ftswitch =TN

(switch is the time for switching the self-checking components

Table 3.6 Comparison of resource consumption

SCOP will terminate any further execution if if + 1) agreeing results are obtained in the
first phase, i.e. the condition for delivering a result is satisfied. This scenario happens
when i) a related fault manifests itself and affects all the if + 1) variants; or ii) all the
variants produce the same correct results. Events like the failure or success of
individual variants are usually not independent but positively correlated under the
condition that all the variants are executed together on the same input [Knight &
Leveson 1986]. This factor determines that the probability of observing the "event ii)"
would be higher than what might be expected assuming independence. Let Pv be the
probability that a single variant gives a correct result. We know:

Probability that SCOP would then stop at the end of the first phase>

Probability that the f+ 1 variants would produce correct results> pi+-!

Experimental values of Pv such as reported in [Knight & Leveson 1986a] are
sufficiently high so that we would claim SCOP almost always gives the same fast
response as NVP or even faster, as will be discussed later. Note that the worst case, in
which SCOP operates with the longest execution time Tscor + fl'scor, has in fact a
very rare probability of occurrence. It occurs only when the phase ends with! agreeing
results and every remaining variant, assigned to run in one of phases from Two to if +
1), produces a different result. It is therefore reasonable to rank SCOP as more efficient
than NVP and NSCP. RB seems to be better again, relying to some extent on the use of
acceptance tests. However, acceptance tests for RB are often difficult to devise and, in
many cases, they will provide no guarantee that a variant has executed correctly.

If timing constraints for delivering the result are considered, for example, if the
maximum number of allowable phases is p where p ~! + 1, the SCOP's worst case of
execution time will become p x Tscor- Note, however, that this limitation on the
number of phases heavily impacts the average usage of variants only if p = 1 (in this
case the execution of all the variants is required). Otherwise the first phase, very likely
the only one, always involves just if + 1) variants. The basic RB scheme will not be
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applicable directly to the case that p <f + 1, as RB needs f + 1 phases to deal with
successive manifestations off faults. Parallel implementations of RB may be suitable
[Kim 1984], but they operate at the cost of more variants executed within a phase.

More precisely, the execution times of various adjudication functions (and control
algorithms) can be significantly different with respect to specific fault coverages and
algorithm complexity. Furthermore, the execution times of variants in a scheme can
differ because of the requirements for design diversity and equivalent variant
functionality. Since in SCOP the subsequent phases will be utilized much less than the
first phase, the faster variants (those which correspond to more effective
implementations and whose execution times are shorter) may be chosen in the first
phase. The penalty caused by variant synchronization (that requires the system to wait
for the slowest variant) can be thus reduced, as compared with NVP.

Example: (Comparison of SCOP and NVP) Table 3.7 gives the related
figures of resource consumption in SCOP and NVP where Tscor ~ TNVP
(i.e. TSCOPI ~ T3VP, TSCOP2 ~ T5VP, and TSCOP3 ~ T7VP) and p..= (1 - 10-4)
(which is the average reliability of the variants derived from the experiment
in [Knight & Leveson 1986a]). Data for SCOP have been obtained based on
the assumption that just two phases are allowed. The table shows that SCOP
consumes almost the same amount of time as NVP to provide services, but it
requires just the amount of hardware resources as that which supports if +
I)VP (that only resists at mostfl2 variant failures), rather than (2f + I)VP.

NO. 01 vanants execute a rime consumption
Scheme (Average) (Average)

Average Cost for SCOP (f+ l)+(l-pyf+ l)f [1+(1-pyf+l)]TSCOp

General Case NVP 2f+ 1 TNYP

N=3 SCOP 2.0002 1.0002TSCOPI

f= 1 NVP 3 T3YP

N=5 SCOP 3.0006 1.0003TSCOP2

[=2 NVP 5 T5VP

N=7 SCOP 4.0012 1.0004TSCOP3

f=3 NVP 7 T7VP

Table 3.7 Resource consumption of SCOP and NVP

3.4 Empirical Comparison

We have conducted an experiment in order to examine the effectiveness of both t/(n-l)-
VP and SCOP in comparison with traditional schemes such as NVP and RB. This
experiment was not supposed to study the effectiveness of fault-tolerant software in
general, but was particularly designed to investigate the relative advantages and
disadvantages of the two advanced techniques developed in this chapter. We used GNU
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C++ version 2.6.3 and a target environment composed of a set of workstations running
UNIX and connected through TCP/IP (see Figure 3.12).

TCP/IP (Communication Network)

I I I I
Stobhill Glororan Bowes Yardhope

SPARe 1 ® • • SPARe 10 SPARe 1 SPARe5
(20MHz) (50MHz) (20MHz) (70MHz)

SunOS 4.1.3 SunOS 4.1.4 SunOS 4.1.1 SunOS 5.4

Applications Variant Server 1 Variant Server 2 Variant Server 3

Figure 3.12 Target environment (hardware/software)

The target distributed system follows a client-server manner. Clients and servers
communicate each other by means of TCPIIP BSD sockets. We define a special Socket

object that provides the functionality of communication through sockets. The Socket

object has two operations: ConnectWrite () that is responsible for establishing the
connection between the client and the server and for passing an object onto the server,
and ReadClose () responsible for receiving the result (or object) from the server and for
closing the connection. Because communication costs are not our major concern, we
assume that the supporting communication mechanisms are highly dependable and
effective enough for our experimentation. Other communication mechanisms are
actually possible for our research, such as remote procedure calls (RPC) supported by
the Arjuna system [Shrivastava et aI1991].

3.4.1 C++Implementation oft/(n-1)-VP and SCOP

A large sorting application was implemented using four variations of the basic sorting
algorithm. This implementation consists of an application program (as the client) and
three sorting servers. The client and servers are located on different processing nodes.
First, the client program passes an object that contains a random list of integers onto
every sorting server. The servers then sort the list and send the results back to the client.

The object passed between the client and servers is of type arrayList, associated with
a set of operations that can be re-defined and implemented in an alternative manner by
inheritance. Take the operation Sort as an example. The normal Sort operation may be
based on a simple "bubble sort" algorithm. Sub-classes of class arrayList can be then
implemented as faster versions of sorting, e.g. quickArrayList, heapArrayList, and
shellArrayList, or as more dependable versions, e.g. t/ (n-l) -VPArrayList,

SCOPArrayList, RBArrayList, and NVPArrayList based on t/(n-l)-VP, SCOP, RB
and NVP respectively. Figure 3.13 shows the corresponding class hierarchy.
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Figure 3.13 Class hierarchy of arraysorting

Control mechanisms for different software fault tolerance schemes are implemented as
a collection of C++ library programs. A SFTClass contains various operations that
implement t/(n-1)-VP, SCOP, RB andNVP.

template <class T> class SFTClass
public:

SFTClass();
void Variant (int port, char *machine);

bool t/(n-l)-VP(T& obj);
bool SCOP(T& obj);
bool RB(T& obj);
bool NVP(T& obj);

private:
II internal states of SFTClass

} ;

Program 3.1 Class SFTClass

In Program 3.1, T is the class/type of the object that is passed to remote sorting servers
and manipulated by the sorting variants. The port and machine parameters of the
Variant () operation indicate the addresses of remote servers that actually run sorting
variants through the control of a software fault tolerance scheme. The control operation
such as t/ (n-l) -VP(T& obj) and SCOP(T& obj) returns a boolean result indicating
whether an acceptable result has been obtained (TRUE) or not (FALSE). Program 3.2
shows an implementation of the t!(n-1)-VP scheme.

template <class T>
bool SFTClass<T>: :t/(n-l)-VP(T& obj)

Socket<T> s[MAXVARIANT];
T auxL[MAXVARIANT];
for (int i=O; i<nvar; i++) II activate all variants

sri] .ConnectWrite(port[i], machine[i], obj);
for (int i=O; i<nvar; i++)

sri] .ReadClose(auxL[i]);
if (obj.t/(n-l)-diagnostor(auxL))

return(TRUE);
return (FALSE) ;

II acceptable result found
II no acceptable result found

Program 3.2 Implementation oft/(n-l)-VP
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More precisely, the t/ (n-l) -vs operation receives an object from the client and passes
it to all the remote variants. When the results are returned from the variants, a t/(n-l)- /
diagnostor (i.e. a t/(n-l)-fault diagnosis algorithm) is executed. If an acceptable result
is identified, boolean value TRUE is returned, or otherwise FALSE is returned indicating
that the t/(n-l)-VP scheme fails to find an acceptable result. In a slightly different way,
a two-phase SCOP architecture is implemented as follows.

template <class T>
bool SFTClass<T>: :SCOP(T& obj)

Socket<T> s[MAXVARIANT)i
T auxL[MAXVARIANT)i
II start phase one

for (int i=O; i<nvar/2+1i i++)
sri) .ConnectWrite(port[i], machine[i), obj)i

for (int i=O; i<nvar/2+1i i++)
sri) .ReadClose(auxL[i))i

if (obj.Voter(auxL))
return(TRUE)i

II start phase two

for (int i=nvar/2+1; i<nvari i++)
sri] .ConnectWrite(port[i), machine[i), obj)i

for (int i=nvar/2+1i i<nvari i++)
sri] .ReadClose(auxL[i))i

if (obj.Voter(auxL))
return(TRUE)i

return (FALSE) ;

Program 3.3 Implementation of SCOP

The secs operation first accepts an object from the client and then starts phase one by
passing the object to a subset of sorting variants executed in parallel. When results are
returned from the subset, they are applied to a voter. If an acceptable result is found,
TRUE will be returned, or otherwise phase two has to be started. A new subset of
variants are executed concurrently and their results are voted again together with the
results obtained in the previous phase. TRUE is returned if an acceptable result is found
in the end or FALSE is returned indicating that no acceptable result is achieved. More
details as to the use of these reusable classes will be discussed in Chapter Five when we
address the issues associated with supporting systems.

3.4.2 Timing Results Based on Software-Fault Injection

In order to examine the behaviour and relative effectiveness of various implementations
testing based on software-fault injection was performed. The execution time is
measured in microseconds (useconds), assuming that the time of network
communication is constant. A data set of 200 elements was used to measure times with
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or without injected faults in programs. Table 3.8 reports the testing results from our
experiment, where ",I''' means that a correct result is obtained by a variant or a fault
tolerance scheme for a given testing round.

Experiment Experiment Experiment Experiment
Set One Set Two Set Three Set Four

Quick Sort Result ,I' fail fail fail

Variant One Time 3196 397 397 3319
Heap Sort Result ,I' ,I' fail ,I'

Variant Two Time 12037 12037 9688 12037
Shell Sort Result ,I' ,I' ,I' ,I'

Variant Three Time 2788 2788 2788 2788
t/(n-l)-VP Result ,I' ,I' ,I' ,I'

Implementation Time 13746 13746 11391 13746
scor Result ,I' ,I' fail ,I'

Implementation Time 13741 21660 19300 21660
RB Result ,I' ,I' ,I' fail

Implementation Time 5403 15464 19574 5669
NVP Result ,I' ,I' fail ,I'

Implementation Time 17163 17163 14379 17163

Table 3.8 Effectiveness and performance-related testing results

We start from the normal situation without fault injection (i.e. experiment set one) in
order to examine typical run-time overheads of t/(n-l)-VP, SCOP, RB and NVP. In
this case, every Sort operation was executed normally, and all lists returned are
correctly sorted. Fault-tolerant versions based on various schemes generally have
longer execution times than faster versions of the normal sorting operation. This is
mainly due to the required coordination between variants and the execution of the
adjudicator. RB uses QuickSort as its first alternate and executes a simple acceptance
test that examines the sorted list. Its execution time is therefore slightly longer than that
of the QuickSort operation. However, because other three schemes have to wait for the
completion of the slowest HeapSort variant before being able to execute their
adjudication functions, they need longer execution times than the HeapSort operation.
It is interesting to notice that both t/(n-l)-VP and SCOP (that executes only Phase One
in this case) have faster adjudicators than NVP that uses a voter to compare the results
from different variants.

The situation that a single fault occurs in one variant is considered in experiment set
two. Various software faults are injected into the QuickSort server, e.g. by randomly
commenting a line of the code. All faults are detected successfully by t/(n-l)-VP,
SCOP and NVP. There is little change in the execution times of t/(n-l)-VP and NVP,
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but a significant increase in SCOP. This is simply because SCOP has to perform Phase
Two in this case and then votes all the results from different variants. An increase is //
also observed in the execution time ofRB since the second variant (i.e. HeapSort) must
be invoked. Some faults injected can pass the acceptance test used in RB. Such a
situation will be addressed in experiment set four later.

Experiment set three specifies the situation that independent faults occur in two
different variants. Software faults are injected into both QuickSort and HeapSort.

When t/(n-l)-VP and RB are still able to deliver a correct solution, both SCOP and
NVP fail to identify an acceptable result since there exists no a majority of the sorted
lists. In this case, t/(n-1)-VP selects the result of ShellSort as correct via t/(n-1)-
diagnosis. However, it may make a wrong decision. It is observed that t/(n-1)-VP
delivers an incorrect result when faults are injected into Shell Sort instead of
HeapSort. For certain applications, an acceptance test may be needed on the result of
ShellSort for the consideration of safety. For this multiple fault situation, RB has to
activate all variants in tum to reach a correct decision, with a longest execution time of
19574 microseconds. In the worst case that a related fault injected into both QuickSort

and HeapSort causes identical incorrect sorting, t/(n-l)-VP, SCOP and NVP all pick
up a wrong solution. It is only RB that survives this type of fault.

However, there are some types of faults that cannot be detected by the acceptance test
used in RB. When RB delivers an incorrect result in this case, all the other three
schemes mask this type of faults very effectively, with run-time overheads similar to
those observed in case two. Figure 3.14 illustrates the impact of the number of faulty
variants upon the execution time of various fault tolerance schemes. The overhead of
fault tolerance is also indicated with respect to the fastest Shell Sort operation. Both
t/(n-l)-VP and NVP have much less varying execution times. In particular, t/(n-l)-VP
imposes the least run-time overhead on an average.

total execution time (Jll)

o tl(n - I )-VP
o scor
6. RB
o NVP

shell sort
f------ ___

o 1 2
number of faulty variants

Figure 3.14 Impact upon execution times of fault-tolerant software
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3.5 Summary

Building fault-tolerant software has been studied intensively and many schemes have
been devised, especially for sequential programs. After years of investigation and
development, there are still unsolved problems related to this topic and new schemes
are still being developed and refined for domain-specific applications. In this chapter
we have developed two advanced techniques for improving certain aspects of fault-
tolerant software. The t/(n-l)- VP scheme is aimed at increasing the reliability of some
common techniques such as N-version programming with majority voting. A well-
developed fault diagnosis technique used in hardware was employed to simplify the
adjudication mechanism of t/(n-l)- VP and to precisely identify correct results based on
a limited set of testing information. When t/(n-l)-VP has the common ability of
tolerating multiple related faults between variants, it is in general more reliable than
many existing techniques. In particular, under certain circumstances, t/(n-l)- VP can
deliver correct service even if the majority of variants have produced incorrect results.
It also permits possible forms of graceful degradation.

SCOP is a hybrid technique that combines some advantages of both NVP and RB. It
improves efficiency aspects of NVP-type schemes by providing adaptation of resource
consumption to varying failure characteristics, while at the same time achieving the
degree of dependability similar to that permitted by NVP and its variations. In addition,
from the implementation viewpoint SCOP will not introduce serious technical
difficulties although extra memory space is required for retaining related input and
output data.

Our analytic evaluation based on a Markov approach generally supports the above
conclusions. Unlike existing work, this dependability analysis has considered more
complicated architectures than usual and examined intentionally the ability of various
schemes to tolerate related faults between variants or related faults between the
adjudicator and variants. It demonstrates how a scheme could provide certain degree of
protection from common-mode failures. A small empirical comparison was also
presented to illustrate the relative effectiveness of both t/(n-l)-VP and SCOP in
comparison with traditional schemes such as NVP and RB. The collected data and
timing results show that t/(n-l)- VP scheme imposes the least run-time overhead in
general, which is least sensitive to the failure of the variants as well.
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Chapter 4

Fault Tolerance in Concurrent
Object-Oriented Software

Concurrent and distributed computing systems often give rise to complex asynchronous
and interacting activities. The provision of fault tolerance becomes very difficult in
such circumstances [Randell 1984]. One way to control the entire complexity, and
hence facilitate error recovery, is to somehow restrict interaction and communication
between concurrent activities. Atomic actions are the usual tool employed in both
research and practice to achieve this goal (see the discussion in Chapter Two).

The use of object-oriented (00) techniques is also considered as a very promising
approach for building complex fault-tolerant software. This is because such techniques
are based on many well-established software engineering principles such as data
abstraction, encapsulation, modularity, hierarchies, and strong typing, thereby assisting
complexity control and promoting clear system structuring. In fact, many new
architectural developments in the area of large distributed systems are, to some extent,
object-based or object-oriented.

As a generalized form of the basic atomic action structure, the concept of Coordinated
Atomic Actions (or CA actions) was developed in 1995 [Xu et alI995a], especially for
concurrent/distributed object systems. CA actions provide a general mechanism for
enclosing complex interaction activities and facilitating error recovery. However, this
concept itself was still evolving: in contrast to its part related to the control of
cooperative activities, of which a good understanding had already been obtained,
several important problems including exception handling and software fault tolerance
had to date not been resolved satisfactorily or had not been studied extensively.

In this chapter we will first revisit the CA action concept, following the description of
an abstract model for concurrent/distributedsystems, Significant aspects and properties
of CA actions are described formally based on a linear-time temporal logic system
[Lamport 1994][Manna & Pnueli 1991]. By using CA actions as a basic unit of error
confinement, we then address issues of handling exceptions in complex object systems.
Particular attention is paid to exceptions that occur in the environment of a computing
system, and to exceptions that occur simultaneously in different nodes of a distributed
system. Finally, we will investigate how errors could be recovered within the CA
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action framework based on the use of the design diversity approach to provide software
fault tolerance.

4.1 Abstract Model for ConcurrentlDistributed Systems

This section first introduces a simple abstract model that characterizes
concurrent/distributed systems, and then uses a suitably realistic example to explain
key elements of the model.

4.1.1 Objects, Threads and Actions

We are concerned with software systems, which may be implemented on a variety of
hardware. A system is viewed here as a set of interacting objects. An object is a named
entity that combines a data structure (internal state) with some associated operations;
these operations determine the externally visible behaviour of the object. In general,
computation execution results in invocations on some object operations, possibly
updating their internal state. It is usually assumed that, in the absence of concurrent
invocations and failures, the invocation of an operation will produce consistent state
changes to the object.

A thread is an agent of computation, and an active entity that is responsible for
executing a sequence of operations on objects. A thread can exist syntactically as a
powerful control abstraction or as a purely run-time concept. A system is said to be
concurrent if it contains multiple threads that behave as though they are all in progress
at one time. In a distributed or parallel computing environment, this may be literally
true - several threads may execute at once, each on its own processing node.

An action is also a control abstraction that allows the application programmer to group
a sequence of operations on objects into a logical execution unit. Actions may be
associated with some desirable properties. During their execution, a variety of commit
protocols are required to enforce corresponding properties. For example, atomic
(trans)actions have the properties of atomicity, consistency, isolation, and durability
(see the related discussion in Chapter Two) and can be used to ensure consistency of
shared objects even in the presence of failures and concurrent access. CA actions
further emphasize the enclosure of multi-thread cooperation and the strict prohibition
of information smuggling into or out of the action boundaries [Xu et al 1995a]. This
property facilitates complex error recovery that may involve multiple concurrent
threads.

In order to perform effective concurrency control, it is crucial to identify different
forms of concurrency properly. In [Hoare 1978], a set of concurrent processes is
classified as being in one of three categories, namely independent, competing or
cooperating. This classification is much related to the passing of information between
processes. We will discuss and use a slightly different classification and focus more on
the sharing of common objects.
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Concurrent threads are said to be independent if the sets of objects accessed by each
thread are disjoint - a trivial case. Competitive concurrency arises when concurrent
threads that are designed independently for different computations have access to a set /
of common objects but have to compete for these objects. Cooperative concurrency
arises when several threads are designed collectively and invoked concurrently to
perform a pre-defined computation. Access to a set of common objects from these
cooperative threads is specially ordered according to application-specific requirements.
In reality, different kinds of concurrency may co-exist in a complex application and
thus require a general mechanism for concurrency control.

Practical systems may be structured using the notion of objects and actions, or objects
and threads, or a combination of all three abstractions. To further explain this, we will
examine a realistic system below.

4.1.2 A Realistic Example: The Arjuna System

Arjuna is an object-oriented programming system, originally implemented in C++ and
recently re-implemented in Java, that provides a set of tools for the construction of
fault-tolerant distributed applications. The Arjuna research effort began at Newcastle in
late 1985. Since then, the system has been fully tested and implemented to run on
networked UNIX systems, and has been used for building a number of applications
including the Newcastle University Student Registration system [Parrington et al
1995], distributed database systems, fault-tolerant parallel computing over a network of
workstations, and Internet applications [Little & Shrivastava 1998]. Arjuna system
software has been freely available for research, development and teaching purposes
since 1992, and its Java version, named JavaAIjuna, has been productized in order to
be commercially available (http: / / arj una. nel. ae. uk).

The Arjuna system uses objects as the main repositories for holding the system state,
and supports nested atomic actions for constructing distributed applications.
Distributed computing is achieved by invoking operations on objects which may be
remote from the invoker. Such a remote operation is performed via a remote procedure
call (RPC). By ensuring that objects are persistent and only manipulated within an
atomic action, it can be guaranteed that the integrity of objects, and hence the integrity
of the system, is maintained even in the presence of failures (e.g. hardware node
crashes in a distributed system) and concurrent access to objects.

Figure 4.1 illustrates the hardware architecture used in the Newcastle University
Student Registration system and the organization of the Arjuna software. In particular,
when not in use a persistent object is held in an object store (i.e. a stable object
repository) and is activated on demand, when an invocation is made, by loading its
state and operations from the persistent object store to the volatile store, and
associating with it an object server for receiving RPC invocations. In addition, the
name server keeps identification and location information about persistent objects,
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while atomic transaction modules provide an application-level interface for controlling
operations on objects.

End user sites

RPC Object Store

Applications

Atomic Transaction Modules

Operating System

Arjuna software architecture
Processing sites Dual storages Server site

Figure 4.1 The Arjuna system

The original Arjuna system corresponds precisely to the object and atomic action
model [Shrivastava et al 1993]. However, JavaArjuna adds the multi-threaded
mechanism to the original system and provides application programmer with an
additional abstraction to control complex concurrency. The thread that first arrives at
an atomic action interface starts a transaction, and other subsequent threads will be able
to join the same transaction later. The participating threads may leave the transaction
asynchronously during the execution of the action, but the last one must be responsible
for ending the action. In the JavaArjuna system, competitive concurrency is well
controlled by the atomic transaction structure, and cooperative concurrency may be
achieved by appropriate use of the Java multi-threaded control mechanism.

4.2 Coordinated Atomic Actions Revisited

In this section, the CA action concept is first described informally using a simple
example. Its major properties are then formalized based on temporal logic. The main
purpose of developing a formalization of CA actions here is to help clarify the CA
action concept itself and to promote better understanding of several complicated and
confusable aspects. In particular, a careful and formal treatment is 'given to enclosure-
related properties that characterize how CA actions achieve strict error confinement.
The formal description of the CA action concept indeed facilitates and promotes the
correct use of CA actions as a structuring tool in our subsequent design and
development of an actual CA action-based system (see Chapter Five).

4.2.1 Informal Description and an Example

Given the model for concurrent/distributed systems that was introduced in Section 4.1,
a CA action is an abstract mechanism for coordinating multi-threaded interactions and
ensuring consistent access to shared objects. It also presents a general scheme for
achieving fault tolerance by combining conversations, transactions and exception
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handling into a uniform structuring framework. Three main characteristics of the CA
action scheme are:

1) Multi-Threaded Coordination and Enclosure. A CA action provides a logical
enclosure of a group of operations on a collection of objects. Within the CA
action, these operations are actually performed cooperatively by one or more
roles executing in parallel. The interface to a CA action specifies both the objects
that are to be manipulated by the action and the roles that are to manipulate these
objects. In order to perform a CA action, a group of concurrent' threads must
come together and agree to perform each role of the action, with each thread
undertaking its appropriate role. They enter and leave the action synchronously.
Two forms of concurrency, cooperative and competitive, are permitted by CA
actions. Roles of a CA action that have been designed collectively cooperate with
each other in order to achieve certain joint and global goals, but they must
interact only within the boundaries of the CA action. If the objects that are to be
manipulated by a CA action are external to the action, they may be shared (or
competed for) with other actions concurrently. Any access to such objects from
concurrent actions must satisfy certain atomicity conditions based on appropriate
concurrency control protocols so that the external objects cannot be used as an
implicit means of "smuggling" information [Kim 1982] into or out of an action.

2) Fault Tolerance. If an error is detected inside a CA action, appropriate forward
and/or backward recovery measures will be invoked cooperatively in order to
reach some mutually consistent conclusion. To perform forward error recovery, a
CA action must provide an effective means of coordinating the use of exception
handlers. To perform backward error recovery, a recovery line must be associated
with a CA action, which coordinates the recovery points of the objects and
threads participating in the action so as to avoid the domino effect [Randell
1975]. An acceptance test can and ideally should be provided in order to
determine whether the outcome of the CA action is successful. Based on
appropriate recovery protocols, a CA action, when accessing its external objects,
must satisfy the failure atomicity condition [Lynch et al 1993] so that individual
error recovery or abortion of the -CA action can be performed alone without
affecting other concurrent actions and threads accessing its external objects.

3) Multiple Outcomes. The desired effect of performing a CA action is specified by
a set of post conditions and can be checked by an acceptance test with respect to
these conditions. The effect only becomes visible if the test is passed. The
acceptance test allows both a normal. outcome and one or more exceptional (or
degraded) outcomes, with each exceptional outcome signalling a specified
exception to the surrounding environment. The CA action is considered to have
failed if the action failed to pass the test, or roles of the action failed to agree
about the outcome. In this case, it is necessary to undo the potentially visible
effects of the CA action and signal an abort exception to the surrounding
environment. If the CA action is unable to satisfy the "all-or-nothing " property
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(e.g. because the undo fails), then a failure exception must be signalled to the
surrounding environment indicating that the CA action has failed to pass its
acceptance test and that its effects have not been undone. (The system has
probably been left in an erroneous state and' this must be dealt with by the
enclosing CA action, assuming there is one, e.g. some external perhaps manual
strategy.) As shown in Figure 4.2, a given performance of a CA action will only
produce one of the following four forms of outputs: a normal outcome, an
exceptional outcome, an abort exception, or a failure exception.

~----OR

abort exception, no results

failure exception
("undo" may have failed)

Output of a CA Action

Figure 4.2 Possible outcomes of a CA action

Example 4.1: Figure 4.3 shows an example in which two concurrent threads
enter a CA action in order to play the corresponding roles. Within the CA
action two concurrent roles communicate with each other and manipulate
the external objects cooperatively in pursuit of some common goal.
However, during the execution of the CA action, an exception e is raised by
one of the roles. The other role is then informed of the exception and both
roles transfer control to their respective exception handlers HI and H2 for
this particular exception, which attempt to perform forward error recovery.
The effects of erroneous operations on external objects are repaired by
putting the objects into new correct states so that the CA action is able to
exit with an acceptable outcome. Two threads leave the CA action
synchronously at the end of the action. (As an alternative to performing
forward error recovery, the CA action could undo the effects of operations
on the external objects, roll back and then try again, possible using diversely
designed software alternates.)

CA action

Thread2

raised exception e
, exception handler HI

abnormal control flow J return
role 1 suspended control flow

e~operatiO~(
exception handler H2

exit wi
etween roles abnormal control flow Jrole e suspend~d ~n'.!:.ol flow

return

I V accesses {> repairs I
I I

I I

to normal

Thread I

th success

to normal

External Objects

start transaction commit transaction
Time

Figure 4.3 Example of a CA action
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4.2.2 Temporal Logic

Following the informal description and the example of CA actions presented in the last /
section, we will discuss the CA action concept in more detail and in a precise manner.
To do so we require some high-level formalization of CA actions. Such formalization
should eventually permit us to formally verify properties of systems designed using CA
actions. This is the major reason that we decide to use a logic-based approach, e.g.
linear temporal logic, rather than a more process-oriented formalism.

A linear-time temporal logic system is chosen here as a specification language for
specifying and proving properties of the CA action concept. Lamport [Lamport 1994],
and Manna and Pnueli [Manna & Pnueli 1991] give a detailed discussion of how to
specify and refine programs and their properties within a temporal logic framework.
We summarize those aspects needed for formalizing properties of CA actions.

The syntax of temporal logic formulae extends that of formulae in ordinary first-order

predicate logic by introducing several temporal operators such as 0 (eventually), 0
(henceforth), and Q (sometime in the past). In general, a logic formula is constructed
from variables, functions, predicates, the separator ., the boolean operators -.
(negation), v (disjunction), A (conjunction), and ~ (implication), and the temporal
operators. The temporal operators have higher binding power than the boolean
operators and quantifiers; parentheses may be used whenever the need arises. The
variables appearing in a temporal logic formula may refer to program variables or logic
variables.

Temporal logic formulae are interpreted over, in general infinite, sequences of program
states. Such sequences are generated by the execution of a program, e.g. possible
execution sequences of a CA action instance a. Each state assigns values to the
program variables, and so an execution sequence can be viewed as a trace of the values

of the program variables. A formula with the form DP is true in a state of an execution
sequence if P is true in that state and in all subsequent states of the sequence. A
formula with the form OP is true in a state of an execution sequence if a successor state
of that state in the sequence exists in which P is true. By contrast, QP is true if a
predecessor state exists in which P is true. In fact, most formulae that specify

properties of CA actions are of the form DP, i.e. they specify properties that are
always required to hold henceforth (in the literature frequently referred to as safety
properties or invariants [Schneider 1997]).

The concurrent execution of several programs can be implemented by interleaving the
execution sequences of these programs. However, such interleaving is in general
nondeterministic, but different interleaved sequences may exhibit the same overall
behaviour. A temporal formula describing a property of a concurrent system can
therefore characterize all execution sequences for which the formula holds. Given a CA
action instance, a temporal formula P is said to be a property of the action instance if
all possible execution sequences of it satisfy P.
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Let C be the set of action instances in a given context. When it causes no confusion, we
will use the phrase "action c" instead of "action instance c". The set roles( c) contains
all roles of action c. There are also two important sets of objects: ex-objects(c) is the set
of external objects of action c which can be shared with other actions and threads, and
objects(s) is the set of objects on which the operation sequence s is performed, where s
may be interpreted as a role or as a single operation.

For any c E C, we consider two basic predicates: begin(c) is true in a state where action
c begins, while end( c) is true in a state where action c ends. These two predicates
characterize the initial state and the final state in an execution sequence of a CA action.

4.2.3 Elementary Properties of CA Actions

We will now formally describe some elementary properties of CA actions, including
properties that characterize relative orders of action-related execution states, that
specify action entrances, exits and possible outcomes with respect to pre- and post-
conditions, and that are related to the nesting of actions. More advanced properties such
as enclosure and fault tolerance will be addressed in subsequent sections.

First, it follows from the definition of begin(c) and end(c) that a CA action c that ends
must have begun earlier.

'liCE C. 0 (end(c) => Q begin(c» (PI)

A CA action c that begins will end at some time in the future.

'liCE C. 0 (begin(c) => <> end(c» (P2)

We need to define two new predicates in order to specify certain interface properties:
called(r) is true in the state of an execution sequence where role r is called by a thread
(typically undertaking a role of an enclosing action), and returner) is true in the state
where r returns to its caller.

If a CA action c begins, all of its roles must have been called earlier.

'licE C • 0 (begin(c) => 'lirE rolestcy « Q calledir) (P3)

If a CA action c ends, all of its roles must return in due course.

'liCE C • 0 (end(c) => 'lirE rolesicy» <> returner»~ (P4)

Consider four categories of possible outcomes of an action c: normal outcomes,
exceptional outcomes, no outcome (when the action is aborted) and outcomes caused
by failure. With respect to different outcome categories the final state end(c) can be
further classified into four mutually exclusive sub-states: normalend(c),
exceptionalend( c), abortedend( c), and failedend( c). In order to characterize these sub-
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states, we distinguish between pre-conditions, different types of post-conditions, and
testing conditions: pre(c) is true in the state where the pre-condition holds on the values
of external objects of c, n-post(c) is the post condition associated with the normal"
outcome, and e-post(c) is true in the state where at least one of the post-conditions
corresponding to different exceptional outcomes is satisfied. In addition, accept( c) is
true in the state where the values of external objects of c pass the acceptance test.

If a CA action c began with the satisfied pre-condition and ends normally, its normal
post-condition should hold. .

"if c E C. 0 (Q (begin(c) I\pre(c» 1\ normalend(c) => n-post(c» (PS)

If a CA action c began with the satisfied pre-condition and ends exceptionally (with a
signalled exception), then one of its exceptional post-conditions should hold.

"if c E C. 0 «Q (begin( c) 1\pre( c) 1\ exceptionalend( c) => e-post( c) (P6)

If a CA action c ends with abortion, all its effects on the external objects should have
been undone. (Let Vo be the set of possible values of an object 0 and value(o) be a
function that returns o's value in a specified state.)

"if eEC, 0 E ex-objects(c), 0i E Vo.

o (Q (begin(c) 1\ value(o) = Oi) 1\ abortedend(c) => value(o) = 0i) (P7)

If a CA action c ends with failure, the values of external objects can be arbitrary. No
meaningful post-condition can be given in this worst case.

Acceptance tests are usually regarded as an implementation technique, and can be used
in practice to examine whether the post-conditions will really hold. Ideally, we can
design an acceptance test that provides a necessary and sufficient check, but in practice
one often has to settle for a test that is necessary but not sufficient, i.e.

"if c E C. 0 (n-post(c) v e-post(c) => accept(c» (P8)

Nesting of CA actions allows a CA action instance to be composed of several, possibly
concurrent, actions and operations, but initial and final states of all related actions must
be properly ordered. Now let parent(d) be a function whose return value is the parent,
or enclosing action, of a nested CA action d. It is important to notice that a nested
action d begins only after its enclosing action c has begun; and c ends only after d has
ended earlier.

"if c, dEC I c =parent(d) • 0 (begin(d) => Q begin(c»

"if c, dEC I c =parent(d) • 0 (end(c) 1\ Q begin(d) => Q end(d) .

(P9)

(PlO)
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4.2.4 Enclosure, Unidirectional Enclosure and Non-Enclosure

The enclosure property is one of the most important properties of a CA action, and it
emphasizes failure atomicity [Lynch et a11993] of the CA action and is also relevant to
execution atomicity. More precisely, this property means:

1) Any form of information can be passed into or out of a CA action only at the
entrance and exit of the action, and

2) during the execution of an action, i.e. between the initial state and the final state
of the action, a role inside the action cannot interact in any way with a role or
thread that is not in the action.

In order to state this property formally, we first introduce an additional predicate:
infpassio, c) is true in the state where some information is passed from or to action c
via object o. For a given CA action, its external objects are the only means of passing
information from or to the action. This is because the effect of a CA action can be
observed only through the state (or values) of its external objects. If infpassio, c) is
true in some state during the execution of c, excluding the initial state and final state of
c, then i) other actions or outside threads observe the state change of c's external
objects made by c after it has begun, or ii) c observes the state change of its external
objects made by other actions or outside threads after c has begun. The enclosure
property of a CA action c implies that neither of the above two cases can occur, i.e.

"i/ c E C,o E ex-objects(c) • 0 (infyass(o, c) ~ begin(c) v end(c))

For a given c, it follows immediately that P, holds if a particular implementation
guarantees that c is executed as a whole with respect to its external objects, and no
other actions or outside threads can access these objects during the execution of c. P,
also guarantees that any error recovery or abortion of a CA action can be performed
alone without affecting any other actions and threads at the same level of nesting.

However, this is too restrictive and allows for little concurrent sharing of external
objects. In practice, by carefully interleaving the operations of other actions and/or
threads on the external objects of c, it is possible to increase concurrency and improve
performance, but P; must be relaxed. We will now address two forms of relaxation of
P, in order to achieve a greater degree of (competitive) concurrency.

Unidirectional Enclosure

Define the predicate change(o, c) to be true in the state of an execution sequence of
action c where c changes the state of object o. Consider a constraint on concurrent
sharing of objects: if a CA action c changes the state of an external object 0, then that
object 0 can be accessed by other actions or threads only after c has ended or aborted.
This constraint allows a CA action c to observe the state change of an external object 0

made by other actions as long as c does not change 0 during its execution (i.e. only
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partial or unidirectional enclosure is imposed, and certain information 'may be passed
into a CA action during its execution.)

VeE C,o E ex-objects(c) • 0 (inf_pass(o, c) =>

(begin(c) v end(c) v (-, (Q change(o, c) v 0 change(o, c)))))
(CO)

However, condition CO still ensures that error recovery or abortion of a CA action can
be performed alone without affecting other actions and threads. This is because under
this condition a CA action only has to recover those objects that it has changed. Note
that such change has not yet been seen by the outside. Therefore, error recovery or
abortion of the action will have no impact on other actions and threads.

Non-Enclosure

It is obvious that if more information is allowed to pass into or out of an action, i.e. to
allow a greater degree of interleaving of operations, further concurrency will be
obtained. However, this will greatly complicate the task of performing error recovery
or abortion since cascading recovery or aborts of concurrent actions may be required.
Moreover, the consistency property must be always maintained even though the
isolation property is relaxed. We will derive two conditions that ensure the consistency
of shared objects despite interleaved access to the objects.

Let Cp be the set of action instances at the same level of nesting within a given
enclosing actionp, i.e. Cp = {a E C Ip = parent(a)}. We first define three relationships
between actions and roles at a given level of nesting.

For any actions c, d E Cp, the execution of action c is said to indivisibly precede the
execution of action d if the following holds:

V 0 E ex-objects(c) 11ex-objects(d), 0i E Vo.

o ((begin(d) A value(o) =Oi) =>.Q (end(c) A value(o) = 0i))

We use c » d to represent the execution sequences where c indivisibly precedes d.

Two actions c, d E Cp are said to be concurrent if there is always a state in their
execution sequences where both actions are performing their own operations, that is

o (-,(0 begin(c) v Q end(c) v 0 beg'in(d) v Q end(d)))

We use ell d to represent execution sequences where c and d are concurrent.

Next, we consider a more complex relationship at a given level of nesting between an
action c and the roles of its parent p that do not participate in c, i.e. that bypass c, as
shown in Figure 4.4. We define bypass(p, c) as the set of such roles of p. For any i E
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bypass(p, c), if ex-objects(c) n objects(i) -:f:. 0, i.e. ifrole i accesses some of c's external
objects, then we have to ensure that the operations of role i on these external objects do
not interfere with c. Here we define ex_op(i, c) as the set of such operations. (For a
given operation op of role i, predicate called( op) is true in the state of an execution
sequence where op is called by a thread and return( op) is true when op returns to its
caller.)

role iofp ..
IfII<

action c

action p

Figure 4.4 Action c and the bypass role i

In general, we use c II i to represent interleaved execution sequences of c and role i. The
interleaved execution of c and role i E bypass(p, c) is said to be proper if action c is
executed as a whole between the operations in ex_op(i, c) (i.e. no operation is
interleaved into the execution of c), that is

v op E ex-opii, c) • 0 ((begin(c) => Q return(op)) v (end(c) => 0 called(op)))

We use c .L i to represent properly interleaved execution sequences.

Let s be a set of possible execution sequences characterized by an expression of the
form c » d, c II d, c j_ i or c II i. Let 0 be a set of objects. For each possible execution
sequence in s, we are interested in the values of 0 at the end (the final state) of the
appropriate action (d for c » d, c for c j_ i and c II i, and c or d, whichever ends later, for
c II d.) For any given execution sequence in s, we will have a set of end values for the
objects in O. Define end_values(O, s) to be the set of all possible sets of end values of
o for execution sequences in s.

Given these relationships defined above, we can now formalize two conditions
regarding concurrent access to the external objects of an action.

1) The interleaved execution of an action c and any action d E Cp where p =

parent(c) is in effect equivalent to one of the executions such that c indivisibly
precedes d or d indivisibly precedes c, that is

end-values(ex_objects(c), c II d) c

end-values(ex_objects(c), c » d) U end-values(ex_objects(c), d » c) (Cl)

2) The interleaved execution of an action c and a bypass role i E bypass(p, c) of its
. parent p is equivalent to one of their proper executions, that is:

end-values(ex_objects(c), c II i) ~ end-valuesiexobjectsic), c j_ i) (C2)
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These conditions ensure that the two forms of interleaved execution 'have the same
effects as their serial execution, that is, the consistency of shared objects is always
maintained. Now, let p be the parent action of a CA action c E C. For a given/
concurrency control protocol, if the protocol guarantees: i) for any d E Cp, any
interleaved execution of c and d satisfies Condition Cl, and ii) for any i E bypass(p, c),
any interleaved execution of c and i satisfies Condition C2, then the consistency of CIS

external objects is maintained. If for any c E C in a given system the above constraints
are met, then the consistency of the system will be guaranteed.

4.2.5 Exceptions and Error Recovery

This subsection will briefly describe some characteristics of a CA action under an
exception handling framework and provide only some high-level formalization,
Exception handling and error recovery will be addressed in much more detail in
Sections 4.3 and 4.4. From the fault tolerance point of view, a CA action should have a
simple and deterministic behaviour, that is, either end normally or signal an appropriate
exception to its enclosing action (or its surrounding environment).

Let e(c) be the set of (internal) exceptions that can occur during the execution of action
c, and &(c)be the set of exceptions that c can signal externally. We define two new state
predicates: raise(e, c) is true in the state where an exception e is raised within c, and
signal(e, c) is true in the state where action c signals an exception e to its enclosing
action or its user environment.

The normal end of an action will be reached if no exception occurs or error recovery
inside c is fully successful. However, the exceptional end of an action must lead to the
signalling of an appropriate exception e that specifies an exceptional outcome, that is

VeE C. 0 (exceptionalend(c) ~ 3 e E &(c)• signal(e, c) (Pll)

In particular, the aborted end of an action removes any effect that the action may have
had on its external objects and signals a special abortion exception abort, that is

VeE C • 0 (abortedend(c) ~ signal(abort, c) P(l2)

The failed end of an action is reached if error recovery is not possible. In this worst
case, a special failure exception fail is signalled, that is

VeE C. 0 ifailedend(c) ~ signal(fail, c) P(13)

Within a CA action, it is important to characterize the relative ordering of the execution
states related to exceptions and exception handling. Define handling(e, r, c) as a state
predicate that is true in the state where role r of action c starts handling the exception e.

If an exception is raised within an action, all the roles of the action must stop the
normal computation and handle the exception together:
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VeE C, e E e(c) • 0 (raise(e, c) => 0 (V r E roles(c) • handling(e, r, c») (PI4)

Similarly, the signalling of an exception from a nested action will cause all the roles of
the enclosing action to handle the exception together: .

VeE C, e E l(c) • 0 (signal(e, c) =>

o (V rE rolestparenttcy • handling(e, r,parent(c»» (PIS)

Finally, we discuss the effects of error recovery after exception handling has been
performed by roles. Define three new predicates: recovery(c) is true in the state where c
returns to a normal execution state, p-recoveryi c) is true in the state where c returns to
an exceptional, but valid state, and abortion( c) is true in the state where c returns to its
initial state.

Successful error recovery leads to the normal end of an action, that is

VeE C. 0 (recovery(c) => 0 normalendici (PI6)

Partial recovery can only reach the exceptional end of an action, that is

VeE C. 0 (p-recovery( c) => 0 exceptionalend( c) (PI7)

Successful abortion ensures the aborted end of an action, that is

VeE C. 0 (abortion( c) => 0 abortedend( c) (PI8)

And if none of the above forms of recovery was successful, the failed end of an action
must be reached, that is

VeE C. 0 (--.(Q(recovery(c) v p-recovery(c) v abortion(c») => failedendicy (PI9)

4.3 Exception Handling in ConcurrentlDistributed Systems

In this section, exception handling is considered as a general mechanism for coping
with exceptional system conditions or errors caused by software faults, hardware faults,
and faults that occur in the environment of the computer system but may affect both the
system and its environment.

An exception handling mechanism is a programming language control structure that
allows programmers to describe the replacement of the normal program execution by
an exceptional execution when occurrence of an exception (i.e. inconsistency with the
program specification and hence an interruption to the normal flow of control) is
detected [Cristian 1995]. For any given exception handling mechanism, exception
contexts are defined as regions in which the same exceptions are treated in the same
way; often these contexts are blocks or procedure bodies. Each context should have a
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set of associated exception handlers, one of which will be invoked when a
corresponding exception is raised. There are different models for changing the control
flow, but the termination model is most popular. This model assumes that when an/
exception is raised, the corresponding handler copes with the exception and completes
the program execution. If the handler for this exception does not exist in the context or
it is not able to recover the program, then the exception will be propagated. Such
exception propagation often goes through a chain of procedure calls or nested blocks
where the handler is successively sought in the exception context containing the
context which raised or propagated the exception.

Exception handling and the provision of fault tolerance are more difficult in
concurrent/distributed systems. For example, there would be no problem in sequential
programs when a client object tries to get data from an empty queue - an interface
exception will be signalled by the server object. However, concurrent access to server
objects, permitted by concurrent systems, will complicate such exceptional situations.
If two clients attempt to access a queue concurrently (when the queue contains only an
element), one client may surprisingly receive an interface exception which blames it for
the use of an empty queue! A more serious complication is that several exceptions can
be raised concurrently in multiple concurrent activities [Campbell & Randell
1986][Romanovsky et al 1996]. Obviously, proper exception handling has to involve
multiple interacting activities and additional mechanisms for coordinating multiple
objects are needed.

Exception propagation in concurrent programs may not simply go through a chain of
nested callers, but can require an extra dimension of propagation. In the situation of
nested atomic actions, an exception may need to be propagated upward to the enclosing
action from a nested action. Since the enclosing action can involve more components
than the nested action, the exception may therefore also need to be propagated to all the
components of the enclosing action in order to start a joint recovery activity.
Unfortunately, no known language or system provides appropriate support for such
two-dimensional exception propagation.

Physical distribution of computing further complicates coordination of multiple
concurrent components. In a distributed system, each node may possess a separate
memory; as a consequence, software segments executing on different nodes will reside
in disjoint address spaces and so must communicate by the exchange of messages over
relatively narrow bandwidth communication channels. The time of message passing is
not negligible and the effect caused by the communication delay must be therefore
taken into account.

Finally, proper handling of an exception requires an assessment of the extent of the
damage it might have caused. This is difficult in systems involving complex
interactions among concurrent activities. However, if exception handling is
incorporated into an appropriate abstraction of cooperative activity; such abstractions
can be used as a basis for damage assessment and confinement. Most of the existing
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schemes for exception handling in concurrent/distributed systems use the concept of an
atomic action as a unit of error confinement [Jalote & Campbell 1986][Taylor 1986],
though there is no clear consensus on how to handle exceptions when asynchronous
activities occur.

4.3.1 Conceptual Model

When considering the general model for concurrent/distributed system in Section 4.1, it
appears a natural decision to regard CA actions as a structuring unit for performing
complex exception handling in such systems. We therefore model the dynamic
structure of a concurrent/distributed object system as a set of interacting CA actions.
Every CA action may enclose nested actions if needed, and exceptions can be
propagated over nesting levels.

Exception Declaration

For a given CA action, there are two types of exceptions: those that are totally internal
to the CA action and that when raised are entirely handled within the action, and those
that are known in and can be signalled to the enclosing environment (e.g. its calling
thread or the enclosing action).

The set of exceptions, e = {e" e2, e3, ... }, that can be raised within a CA action must be
declared as part of the action definition. The corresponding exception handlers for
these exceptions are associated with the various roles of the CA action. The set of

exceptions, 8 = {8" 82, 83, ...}, that can be signalled from a CA action to its
environment should be specified in the interface to the CA action. These exceptions are
signalled in order to indicate that, though internal exception handling might have been
attempted (unsuccessfully), an unrecoverable exceptional condition has occurred within
the action, and/or only incomplete results can be delivered by the action. For a nested

CA action and its direct-enclosing action, the definitions of e and 8are fully recursive,
namely,

8 nested c eenclosing

There are two special exceptions f.1 and fin 8. An abort exception, u; implies that the
action has been aborted and all of its effect have been undone. Since abort is not
always possible, a failure exception, /, indicates that the action has been aborted but
that its effect may not have been completely undone.

Exception Handling and Propagation

When a thread enters an action to playa specified role, it enters the related exception
context. Some or all of the participating threads may later enter nested CA actions.
Since the nesting of CA actions causes the nesting of exception contexts, each
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participating thread of the nested action must be associated with an appropriate set of
handlers. Exceptions can be propagated along nested exception contexts, namely the
chain of nested CA actions. Three terms are used here to clarify the route of exception ./
propagation: an exception ei in e is raised by a role within a CA action, other roles of
the same action are then informed of the exception ei and, if handling the exception

within the CA action is not fully successful, a further exception &j in 8will be signalled
from a nested action to its enclosing action (see Figure 4.5).

enclosing action

Tt
nested action

raise _/n/orm
signal....

" ~n/orm -e

T2

T3

T4

Figure 4.5 Exception propagation over nesting levels

There are at least two ways of signalling an exception from a nested action to its
enclosing action. One possibility is that a "leading" role has been pre-defined by the
designer, or is determined dynamically, that has the responsibility of signalling an
agreed exception to the enclosing action. The other approach adopts a more distributed
strategy: each role of the nested action is responsible for signalling its own exception.
(Conceptually, the exceptions signalled by respective roles should be the same. It will
however cause no problem for roles to signal different exceptions because an action in
our model is required to have the ability of handling concurrent exceptions, the
exceptions signalled concurrently from the nested action will be handled simply as if
they are concurrently raised in the enclosing action.)

Distributed exception signalling requires some final-stage coordination on two special
exceptions p and / If any role of a nested action is to signal the exception /. then all
other roles of the nested action must signal the same exception / to the enclosing
action, indicating that some erroneous effect made by the nested action may not have
been undone completely. Similarly, it makes sense only if all roles signal the same
abort exception, u; in order to ensure that all the effects made by the nested CA action
(more precisely, made by respective roles) have been undone completely.

Control Flow

The termination model of control flow is used here - in any exceptional situation,
handlers take over the duties of participating threads in a CA action and complete the

action either successfully or by signalling an exception 8.i to the enclosing action.
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External Objects

Since the effect of a CA action in our system model can be observed only through the
committed state of some external objects, once an exception is raised within the CA
action and hence error recovery is requested, the related external objects must be
treated explicitly and in a coordinated fashion, the aim being to leave them in a
consistent state, if at all possible. The standard way of doing this in transactional
systems is by restoring the objects to their prior states. However, an exception does not
necessarily lead to restoration of all the external objects. (Indeed, external objects,
particularly real ones in the computers' environment, might not be capable of state
restoration.) Appropriate exception handlers may well be able to lead such objects to
new valid states. But if it is detected that one or more external shared objects have
failed to reach a correct state, a failure exception/must be signalled to the enclosing
CA action in the hope that it may be able to handle the situation.

Exception Resolution

If several exceptions are raised at the same time, one simple method for resolving the
exceptions is to prioritize them. The disadvantage of this scheme is that it does not
allow representation of situations where the concurrently raised exceptions are merely
manifestations of a different, more complicated, exception. To provide a more general
method, an exception graph representing an exception hierarchy can be utilized. If
several exceptions are raised concurrently, then the multiple exceptions are resolved
into the exception that is the root of the smallest subtree containing all the raised
exceptions [Campbell & Randell 1986]. Each CA action should have its own exception
graph. For example, the graph would be specified by a keyword like exception

hierarchy in the definition of a CA action, and would have a form like:

e1: •••••••••••• I

where eH e2, ... , ek are the direct low-level nodes of the resolving exception er'

4.3.2 Dealing with Environmental Exceptions

Consider a system and its environment as two concurrent entities. We will now
investigate the problem of how to deal with exceptions that occur in the environment
(or environmental exceptions), but may nevertheless affect both the system and the
environment.

Traditionally, identification of exceptions and the design of their handlers have been
associated with later phases of the software lifecycle, such as operational specification,
architectural design and implementation stages. During these later phases all the effort
is made to protect the software from faults that may occur either in the environment or
in the computer system itself including those faults in the design, the actual
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implementation and the underlying virtual machine upon which the design executes.
However, it is difficult in practice to deal with all forms of exceptions only when the
development enters its later phases. Without bearing exception-related matter in mind",
in early phases, the information and data about certain types of exceptions, especially
those exceptions that occur in the environment, are usually very limited in later stages
of the development, if not completely unavailable. In fact, such crucial information and
data should be collected during the early requirement phase and extracted carefully
from the initial interaction with the user.

Now consider an approach that separates different concerns and introduces exception
handling into different phases of the software lifecycle. Environmental exceptions must
be dealt with as early as possible, starting from the requirement phase. Software
design-re.lated exceptions should be treated during the design phase, and
implementation-related exceptions be addressed in the later implementation phase.
During different phases, various types of exceptions must be defined carefully and the
major obligation or function of their handlers be outlined. Figure 4.6 illustrates this
approach based on a similar lifecycle model used in [Lyu & Avizienis 1993].

Dealing with
implementation-related exceptions

Dealing with
environmental exceptions

Dealing with
design-related exceptions

Unified
treatment

Figure 4.6 Dealing with exceptions through the software lifecycle

As the software development progresses, new exceptions are identified and their
corresponding handlers are specified. Throughout the lifecycle, the process of unified
treatment is essential because all exceptions identified in different phases will be
ultimately handled under a unified implementation framework. This process may
include a global adjustment, removal of repeated exceptions, as well as identification of
certain combined exceptional conditions which could be triggered by events related to
different phases. It must also consider multiple exceptions that may occur at the same
time and could have a serious consequence. For example, in an auto-controlled
aeroplane a failed engine, or an erroneous auto-pilot program or both will usually
require completely different recovery measures.

Most existing work on exception handling is to a great extent concerned with only
design-related or implementation-related exceptions [Cristian 1995]. Exceptions related
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to software design are typically associated with the data structures chosen, with the
means of interactions between components of the design, and with supplementary
processing of the design such as fault-tolerant measures and mechanisms.
Implementation-related exceptions include the invalid use of both the programming
language chosen and facilities provided by the virtual machine. Run-time type errors
and invalid memory access are two typical examples. Environment-related exceptions,
which must be handled based on the controlled interaction between the system and its
environment, have received the least attention. In the following, we will focus on issues
with environmental exceptions, and will not discuss other exceptions further.

Design of Environmental Exception Handling

Identification. During the early requirement phase, the intent is to identify all
exceptions that may occur in the environment of a computer system with the aid of the
user. Maxion and Olszewski [Maxion & Olszewski 1998] recently developed a
practical methodology for identifying exceptional conditions and improving exception
handling coverage based on structured taxonomies and memory aids. Their approach
was shown by experiments to be very effective, and it is directly applicable to the
identification of environmental exceptions.

Detection. After a set of exceptions are identified, the next key step is to provide means
of detecting them effectively at run-time. Some exceptional conditions may be detected
by detection mechanisms embedded in the environment itself; for example hardware
sensors can report to the computer system that certain abnormal conditions have
occurred in the environment. Others may be detected by detection mechanisms
involved in the control software. For example, a control program that cannot actually
actuate some devices of the controlled environment may indicate that an environmental
fault has manifested itself.

Handling. Defining the desired mitigating actions against exceptions is essentially a
non-trivial, application-dependent activity. The functions of handlers for environmental
exceptions should aim at recovering the damaged state of the environment into an
acceptable known state, e.g. a pre-defined safe state.

Refinement of Handling. Mitigating actions against environmental exceptions can be
further refined and detailed when the development enters the design phase. We can
view the design of a software system as an algorithm which is responsible for defining
interactions between components of the software, establishing connections between the
software and its environment, and for providing any supplementary processing for the
software to achieve its required behaviour. As the design phase progresses, it is
necessary to develop a classification of anticipated triggering events and to confine the
damaged scope of each event. Damage confinement and exception handling can be
associated with the different levels of nested CA actions, as outlined by the conceptual
model in Section 4.3.1, or alternatively can be associated with the general software
architecture, i.e. overall system level, task level, and procedure/module level.
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The desired mitigating actions may take such forms as substitution of default values,
retry, termination of the current iteration and return, termination of the task,
termination of the overall program etc. Developing a general exception handling ,
philosophy is difficult, but some intuitive rules can be applied, including

1) At the lower level (e.g. small nested actions or procedures), the intent may be to
mask the failure from the higher levels by using replication and rollback
techniques; the damaged area is limited to a small scope;

2) At the higher level, the intent may be to abort and terminate a containing CA
action, or a task in an orderly fashion; and

3) At the highest level (e.g. the outermost CA action or the system), an orderly
shutdown of the system with an appropriate notification to the client of the
system should be the primary goal of the exception handlers.

Managing Interaction between the System and Its Environment

When an exception occurs in the environment, the system is required to react properly
and to take appropriate recovery measures. We need a clear software solution in terms
of structure, dynamic behaviour and context. We will now devise a pattern that
captures the essentials of interaction between the system and its environment, with a
clear definition of interfaces among interacting components. The pattern presents a
basic guideline for the system to react to environmental exceptions in a disciplined
manner. Three major components that interact each other are as follows: the control
software, the client of the control software, and the controlled environment with
sensors and actuators. Using Class-Responsibilities-Collaborators (CRC) cards
[Buschmann et al 1996], we define the responsibilities and collaborators of these three
components in Figure 4.7. (Notice that only exceptions that occur in the controlled
environment are taken into account.)

Class: Client ,0 Collaborator

Responsibility

• Requests services from control software Control software
• Relies on reliable and robust services

(a)

Class: Control software Collaborator
Responsibility

Client
• Provides services to control software

• Controls the controlled environment Controlled

• Reacts to environmental exceptions enviromnent

(Ill
Class: Controlled environment Collaborator

Responsibility

• Reacts to commands from control software Control software
• Reports exceptions to control software

(c)

Figure 4.7 Class-Responsibilities-Collaborators cards
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The client requests services from the control software and relies on reliable services
provided by the software (see Figure 4.7(a)). The handling of environmental exceptions
and the inclusion of redundancy in the control software must be transparent to the
client. Only when a request from the client is invalid or the control software is not able
to provide the expected service, will an appropriate exception be signalled to the client.

In order to provide the requested services to the client, the control software interacts
with the controlled environment, collecting the related data from the environment,
making necessary computation, and actuating the related objects of the environment
(see Figure 4.7(b)). When the environment responds wrongly or does not respond at all,
the control software must invoke proper recovery activities. Also, when an exception is
signalled from the environment, the software must ensure the control transfer to an
appropriate handler (see Figure 4.7(c)).

In considering an object-oriented solution to the control software, several forces have
to be solved: i) the software should contain a part (or a component) that is responsible
for coping with environmental exceptions in which different policies and schemes can
be used, ii) to control the software complexity, any exception handling part must be
separated from the normal control functionalities, and iii) abstraction of handling
policies must be provided to allow the customization of different policies. Figure 4.8
illustrates the structure of a possible solution.

Figure 4.8 Solution structure

The mam participants in the structure shown in Figure 4.8 include: client,

controlled environment, controller, controlling, normal, exceptional, etc.
The client invokes services of the controller when a reliable service is requested.
The controller requests service from the controlling component, interacts with the
controlled environment using the control information and results provided by the
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controlling component, and returns any necessary information and' results back to
the client. The controlled environment class presents an abstraction of the actual
environment. The controlling class has two sub-components that deal with normal/
and abnormal situations respectively. The normal class is responsible for normal
control functionalities, while the exceptional class is responsible for handling
exceptional conditions. The latter has three further sub-components. The 19calEHand
failureEH classes are related to the handling of exceptions that occur in the computer
system itself, which we will not discuss in more detail. The interf?1ceEHclass is
responsible for dealing with exceptions both in the client and in the controlled
environment. To handle the environmental exceptions independently, the abstract
environmental class declares the common interface for objects that implement
different recovery measures. The stopSignal, recovSignal, and maskSignal
components implement various recovery techniques suitable for use with the
environmental interface.

Three forms of recovery techniques are used in this structure. The simplest
stopSignal scheme is to simply bring the controlled environment to a previously
defined state, e.g. a safe state, and to stop the entire system, sending an appropriate
notification to the client. The recovSignal scheme may use forward recovery,
backward recovery, or a combination of them to attempt to provide the expected
services; in many cases only a degraded service can be provided with an appropriate
signal to the client. The maskSignal technique is based on some redundancy in the
environment to mask certain environmental faults. The expected services can be
usually provided but the exceptional conditions should still be reported to the client,
e.g. to facilitate the subsequent off-line repair.

The interaction diagram in Figure 4.9 shows an example of collaborations between
objects in the proposed structure in the occurrence of an environmental exception. The
client first invokes the services of the controller. The controller then delegates
the required services to the controlling component after it gets the necessary data
from the controlled environment. The controlling component computes the
request and returns its results to the controller. Assuming that an environmental
exception is detected during the control process, the controlling component will
return the results for error recovery and exception signalling instead. The controller
then actuates the controlled environment for the purpose of error recovery and sends
an alarm signal to the client. (Within the controlling component, the request for
exception handling is in fact delegated to the recovSignal object via components
interfaceEH and environmental. It is the recovSignal component that actually
computes the recovery action and prepares-an appropriate notification to be sent to the
client.)
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Figure 4.9 Collaborations between objects

Our pattern is supposed to be used in situations in which a system is responsible for
handling exceptional conditions of its environment. The proposed structure separates
different concerns and different obligations in a disciplined way, and so the complexity
of the control software is well managed. In particular, the control software exercises its
control on the environment through a clearly defined and narrow interface so as to
minimize the negative effect of environmental exceptions on the software itself. These
two important characteristics of our pattern will, we hope, lead to an effective
improvement ofthe overall system reliability.

4.3.3 Dealing with Concurrent Exceptions

We will now study how to deal with another class of exceptions, i.e. exceptions that
occur simultaneously, perhaps in different nodes of a distributed system. A detailed
discussion of the necessity of coping with concurrent exceptions has been presented in
[Romanovsky et al1996]. Campbell and Randell in [Campbell & Randell 1986] argued
that a hierarchy-based approach is essential for handling exceptions raised concurrently
in order to find a higher-order exception that can "cover" all the concurrent exceptions.
This further requires a distributed scheme for determining the proper recovery strategy
and for involving all the related components in the recovery activity. In the following,
we will first introduce the notion of exception graphs, then describe two algorithms for
both exception resolution and signalling, and finally discuss the results of an empirical
study.

Exception Graphs

The exception tree concept (first proposed in [Campbell & Randell 1986]) presents a
simplified form of specifying the relationship between multiple exceptions. However
we have found that in practice an exception hierarchy often has a more complicated
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form than a simple tree. It is therefore important to formalize a general form of such
relationship. We now define an exception graph formally below.

An exception graph is a directed graph G(E, R) where the exception set E = {et. e2, ... ,
en}. Each exception e, E E is represented by a node and each directed edge (e;, ej) E R
represents a simple relationship in which e, E E is the direct high-level node, or parent
node of ej E E. Define the in-degree of node ei, d;n(e;), as I i-lee;) I and the out-degree
dout(e;) as I i(e;) I , where i(e;) = {ej: (e;, ej) ER} and i-ICe;) = {ej: (el' e;) ER}. (For
example, in Figure 4.10 d;n(e)} = 2 and dout(el) = 0.)

For a given G(E, R), there may exist three types of nodes. Nodes with dout(e;) = 0
represent primitive exceptions that cover no other exceptions. Internal nodes with
d;n(e;) f. 0 and dout(e;) f. 0 represent resolving exceptions that cover some other
exceptions. The node with d;n(e;) = 0, called the root of G(E, R), represents a special
universal exception. The raising of a universal exception usually leads to the signalling
of an abort or failure exception to the enclosing action.

Figure 4.10 shows an example of a four-level exception graph containing three
primitive exceptions et. e2, e3 at the level O.The resolving exception elAe2 at level one
will be raised when el and e2 are raised concurrently. Similarly, the exception elAe2Ae3
at level two will be raised in order to cover all the three primitive exceptions. This
resolving exception may still be handled by the current exception context, or otherwise
the universal exception at level three will be further raised.

level 3

level 2

level 1

level 0

Figure 4.10 Example of a four-level exception graph

In general, an (n+l)-level exception graph can be defined with n primitive exceptions at
level O.The first level can contain up to n x (n - 1)/2 resolving exception nodes. Level
two could consist of up to n x (n - 1)(n - 2)/6 nodes, and so on. Level n-l has only one
resolving exception that covers all the primitive exceptions while level n-2 may have at
most n exception nodes. This general definition makes the automatic generation of an
exception graph possible. However, for an actual application a simplified exception
graph, though not necessarily a tree, may be required because of the considerations of
space and performance, There are several ways of simplifying a general exception
graph:
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1) It may not be possible for certain combination of exceptions to be raised
concurrently. The corresponding internal nodes (or resolving exceptions) for
these combinations can thus be removed from the exception graph.

2) At a given level of the exception graph, there may exist another order relationship
between exceptions, i.e. an exception may be able to cover another exception of
the same level. In this case the higher order exception can be moved to a further
higher level.

3) An exception graph can be structured to contain only resolving exceptions that
cover certain combinations of the primitive exceptions. Other concurrently
raised, primitive exceptions will simply cause the raising of the universal
exception.

4) The resolving exceptions may correspond to other logical relationships. For
example, the resolving exception e, ve2ve3 may cover more exceptional
situations than the exception e,l\e2I\e3, but may require a more complicated
handler.

Algorithm-Related Assumptions and Definitions

For a given CA action it is assumed that each participating thread knows the set of all
other participating threads in the action and uses the same exception graph which is
statically declared. Every thread has a name list for the nested actions it is to participate
in. The currently innermost action for a specified thread is called the active CA action.
Let CA-action be the outermost (or top-level) CA action. We define GCA-act;on as the
group of participating threads {T" T2, ..., T;, ..., 1j, ...} in CA-action, where each thread
T; has a unique identifier and the threads are ordered (e.g. thread names and the
lexicographic ordering could be used).

During the execution of the algorithm, a participating thread T; may be in one of the
following states (denoted by S(T;»:

N=Normal,

X = Exceptional (if an exception was raised in Tj), and

S = Suspended (if T; has to stop normal computation due to exceptions raised in
other threads).

Let A be the active action of T; and GA be the corresponding set of participating
threads. We assume that each thread T, keeps the following data structures:

list LE; - records exceptions that have been raised, and suspended states, S, of
threads that have halted normal computation;

stack SA; - stores names of the nested actions T; is currently in.
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It is assumed that application-related message passing is treated independently, and
only the following specific messages are used in our algorithm:

Exception(A, Ti, E) is sent by thread T, to all the other threads of action A when an
exception E is raised by Ti;

suspended(A, T;, S) is sent by each thread T, that does not raise an exception but has
received an Exception or Suspended message from another thread, where S
indicates T, is in the "Suspended" state;

CommiteA, E) is sent by a chosen thread in action A to all the other threads after it
completes resolution of exceptions, where E is the resolving exception. A
corresponding handler for E will be called by each thread once it receives this
Commit message.

It is further assumed that an exception in an enclosing action will stop or abort any
activity of its nested actions (including any nested resolution in progress and execution
of any handlers).

In the interests of simplicity and brevity, our algorithm is not designed to tolerate node
or communication line crashes, though a fault-tolerant version of this algorithm would
be non-trivial, especially when addressing omissions and Byzantine faults. Instead, the
proposed algorithm attempts to handle certain forms of software bugs, transient
hardware faults and hardware design faults, but the disastrous crash of a processing
node or a communication line must be masked at the appropriate underlying or
hardware level, e.g. by using modular redundancy. (Our model described in section
4.3.1 is however general and it is intended to cope with exceptions that may be caused
by various types of faults.)

Algorithm for Coordination and Exception Resolution

Our algorithm assumes the existence of general support mechanisms provided by the
underlying system, including FIFO message sending/receiving between threads/objects
and calls to abortion handlers. In addition, "< >" indicates a data item with one or more
elements, "A*" is the active action of thread Tj, "~" stands for "put in", and "::::::>"
stands for "sent to" in the description of our algorithm.

Figure 4.11 illustrates how the algorithm works when two exceptions El and E2 are
raised concurrently in several nested CA actions. The proposed algorithm first informs
all four participating threads of the two exceptions by message passing between those
threads. Secondly, the algorithm aborts two nested actions because of exception El that
occurred outside the nested actions. (During the abortion, a further exception E3 is
signalled to the outermost enclosing action.) Finally, the algorithm determines a
resolving exception E that covers both El and E3 and starts the handlers for E.
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Algorithm 4.1:

For any Tj, S(Tj): =N; and empty LEj, SAj;
loop
if Tj enters A then

<A> ~ SAj; consume messages having arrived;
end if;
if r,completes A then

delete last element in SAj;

S(Tj): = N if end A with success or S(Tj): = X if end A with failure;
leave A (synchronously)

end if;
if Ej is raised in Tj then

S(T;): =x, <A, T;, Ej> ~ LEj;
Exception(A, t; Ej):::> all1)in GA;

inform external objects (used by T,within A) of the exception;
end if;
if Tjreceives Exception(AII<, 1), Ej) or Suspended(AII<, 1), S) then

if All<contains or equals A then II<A> is the top element in SAj
<All<,1), Er or <All<,1), S> ~ LEj;
exception information ee- uninformed external objects (used by T,within A 11<);

if A II<contains A then
abort all nested actions until All<;
delete the elements in SAj until <AII<>;
remove all elements except <A 11<, 1), Er or <A 11<, 1), S> in LEj;

if Eah is raised by the abortion handler then
S(Tj): = x, <All<,Tj, Eah> ~ LEj;
Exception(AII<, r.. Eah):::> all1)in GA.;
else S(Tj): = S; <All<,t; S> ~ LEj;
Suspended(AII<, Tj, S):::> all1)in GA.;

end If;
else if S(Tj) = N then Ilhere A II<= A

S(Tj): = S; <All<,T;, S> ~ LEj;
Suspended(AII<, T;, S):::> all1)in GA.;
end if;

end if;
else retain the Exception or Suspended message till Tjenters All<;

~m .'.!end if;
if T, has all exceptions, or state S, of other threads within A II<A> is the top element in SAj I

and T,has the biggest identifying number among threads with the state X then !':'.

resolve exceptions in LEj; l/find E in the exception graph
Commit(A, E):::> all1)in GA; i

en:~~ty LEj and handle E; I
if T, receives Commi t(A 11<, E) then i

~:::;; = the top element in ss, then empty LE, and handle E; i

, ;.~.; .. ;.~~~ ..1
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Figure 4.11 Concurrent exception handling and resolution

The proofs of the correctness of algorithm 4.1 and the analysis of its communication
complexity are given in Appendixes B and C. We state two major theorems in the
appendixes as follows.

Theorem 4.1: Algorithm 4.1 is deadlock-free and always performs correct
exception resolution.

Theorem 4.2: In the worst case, algorithm 4.1 requires exactly nmax x (N2-
1) messages, where nmax is the maximum number of nesting levels of CA
actions (if no nesting, then nmax = 0), and N is the number of the threads
participating in the outermost CA action.

Note that the original algorithm in [Campbell & Randell 1986] is of complexity O(nmax
x NJ). Our previous algorithm reported in [Romanovsky et al 1996] could use nmax x
3N x (N- 1) messages. Algorithm 4.1 is less complex because 1) the number of
messages for informing exceptions or suspended states is greatly reduced and no reply
is required, and 2) only one thread (rather than all the threads) resolves multiple
exceptions and only one thread needs to send the Cammi t message. In the interest of
fault tolerance, the algorithm can be easily extended to the use of a group of threads
that are responsible for performing resolution and producing the Cammi t messages. But
this only contributes a constant factor to its total communication complexity.

Algorithm for Exception Signalling

Algorithm 4.1 ensures that a resolving exception er is identified and all the threads start
handling this exception by invoking the appropriate handlers. However, such exception
handling may be only partially successful; or fail completely. In these cases a thread

must signal a further exception & to the enclosing CA action. Following our model
introduced in Section 4.3.1, participating threads of a nested action must signal the
same exception Jl or / if exception handling fails. We therefore need a further
algorithm for coordinating those exceptions to be signalled.
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Again, let A be the active action of T, and GA be the corresponding set of participating
threads. Each thread T, has a list:

list listsignal, - records exceptions that are to be signalled by the participating threads
of action A (if a thread is to signal no exception, rpwill be recorded in the list instead).

A specific message is used in our algorithm:

toBeSignalled(Ti, 8) is sent by thread T, to all participating threads of action A when

an exception 8 is to be signalled by it, where 8 E {rp, 8h 82, 83, ..., u; j}.

Algorithm 4.2:

Ilafter handling the resolving exception E
For any T; of A, empty listSignal; and undo = FALSE;

loop
if T; is to signal E then

<Ti; E> ~ listSignal;; where E E {rp, Elo q, E3, •.• , u; j}
tOBeSignalled(T;, E) => all1jin GA;

end if;
if T;receives tOBesignalled(1j, E) then
<1j, E> ~ listSignal;;

end if;
if IlistSignal;1 = IGAI then

switch(/istSignal;)

case 1: no f.J or /in listSignal;

T; signals Eof<T;, E>;

case 2: f.J but no /in listSignal;
if undo = TRUE then
T; signals u;
else
empty listSignal; and undo = TRUE;

T; executes appropriate undo operations;
T; is ready to signal a new exception E;

end if;

I case 3: /in listSignal; I
I end if; T; signals /. I
L ~~.~.~.~.~.~ ..!

liT; has received all exceptions of other threads to be signalled

The correctness of algorithm 4.2 is obvious. In the case that neither p nor / is to be
signalled by any participating thread, no coordination will be needed; each thread
simply signals its own exception or signals no exception at all. If a thread is to signal
the exception /, other threads just ignore their own exceptions and signal/instead.
Clearly, in these simple cases just N x (N- 1) messages are required where N = I GAl. In
the complicated case that one thread is to signal the exception u; all the threads must
execute appropriate undo operations to ensure the removal of previous effects. Because

124



Chapter 4:FT in Concurrent 00 Software

some undo operations may fail, in this case /: rather than j.1, must be signalled and
messages must be passed again to guarantee that all threads signal the same /.
However, after the second round of message passing no more operations will be "/
executed and all threads will simply signal an appropriate exception j.1 or /. In the worst
case, 2N x (N- 1)messages will be used. (This simple algorithm can be easily extended
to cope with crashes of nodes or communication lines. The corrupted message or lost
message can be simply treated as a failure exception and / is then recorded in
listsignal.. Therefore all the threads that run on fault-free nodes can still signal
exceptions correctly to the enclosing action or the calling thread.)

Empirical Study

In order to identify and tackle some implementation and performance-related issues, a
prototype that supports exception resolution and nested CA actions was implemented.
Figure 4.12 shows the system architecture for our prototype implementation. For each
given CA action, its roles are located on separate computing nodes. Communication
and interaction between these roles are supported by a message passing subsystem
(MPS). Received messages are first kept in a cyclic buffer before being consumed. A
run-time system (caaRTS) that supports the execution of CA actions is established
together with MPS. This support system is decentralized in the sense that every
distributed node has a copy of caaRTS. Apart from basic features of CA actions such as
nested entrances and synchronous exits, coordinated exception handling and resolution
are provided by the support system based on our algorithms. This prototype
implementation shows that the distributed design of our algorithms fits well with the
actual structure of a modem distributed system, and it can be easily implemented - it
actually comprises about one thousand lines of Ada code [Xu et al 1998a].

Communication Network

I
I _L

I MPS I I MPS J I MPS j l MPS J

~ .. (role 2) -:. (role3) : (rolek) ..

I caaRTS I I caaRTS I I caaRTS I 0 0 0 I caaRTS I
OS OS OS

~ OS
node 1 node 2 node 3 CA action node n

caaRTS: CA action run-time support system
MPS: message passing, system with cyclic buffer
• : shared objects OS: Operating System

Figure 4.12 Architecture for a prototype implementation

A simple application using nested CA actions was run on the prototype
implementation. The application program was executed in a 20 times loop and the
execution time measured (in seconds). One of experiment sets was set up as follows:
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one role of a containing action raises an exception and its nested actions have to be
aborted. A further exception is raised by the abortion handler. A high-order exception
(covering both exceptions) is then identified and raised in all the roles. We varied three
parameters, T mmax- Tabort and Treso, in order to examine different effects of these factors
on the execution time (where Tmmax is the maximum time of message passing between
two concurrent execution threads in the system, Tabort is the maximum possible time
for a thread to abort a nested action, and Treso is the upper bound of the time spent in
resolving multiple exceptions.) For example, let Tmmax = O.2s, Tabort = O.ls, and Treso =

O.3s; the execution of the application will take about 94.36s. Table 4.1 presents some
typical data with varying values of Tmmax, Tabort and Treso.

0.4 98.586050
0.6 102.150904
0.8 106.774196
1.0 110.984972
1.2 125.078084
1.4 140.826807
1.6 16 I.766956
1.8 188.284787
2.0 214.519403
2.2 226.543372

Table 4.1 Performance-related results

The experimental data obtained are essentially consistent with the theoretical analysis
presented previously and in the Appendixes. Figure 4.13 illustrates effect on the total
execution time of the application system. When T mmax is limited within 1.Os, the cost of
message passing has a minor impact on the total execution time. The execution time
will increase dramatically once the time of message passing becomes longer than one
second. On the other hand, with an increase in Treso or Tabort' the total execution time
has a very gentle and linear change. This demonstrates, at least by this given prototype
implementation, that the cost of message exchanges is still of the major concern, while
concurrent exception handling does not introduce a high run-time overhead.

Total Execution Time
(seconds)

200

A varying Tmma.
o varying T.bort
o varyingT .....;·

100

~~~~~_L~~~~~~~~~~-4~ T
o 1.0 2.0 3.0 (seconds)

Figure 4.13 Effect on total execution time
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Another set of our experiments is to compare our algorithm with the original CR
algorithm developed in [Campbell & Randell 1986]. The CR algorithm was
implemented by modifying our algorithm appropriately, and the same application //
program was used to collect the related data. The total execution time was then
measured with respect to different Treso and Tmmax. Figure 4.14 demonstrates the major
change of the total execution time when varying Tmmax with Treso = 0.3s,_ and when
varying Treso with Tmmax = LOs. A big difference in the execution time can be observed
even with a fixed N (N = 3 in our case). In particular, the difference becomes more
obvious with an increase of the time of message passing (see Figure 4.14(a)). The
procedure for exception resolution is called N x (N - 1) x (N - 2) times in CR
algorithm but only once in our algorithm. This can be clearly observed in Figure
4.14(b).

Total Execution Time
Total Execution Time(seconds) t, Algorithm 4.1 (seconds)

oCR

20 "ryl~
varying '1;e,.

20

~~
10 ~~ 10 A-fr~~

(seconds) (seconds)

T
0 1.0 2.0 3.0 0 1.0 2.0 3.0

(a) (b)

Figure 4.14 Performance-related comparison of our algorithm and the CR algorithm

4.4 Tolerating Software Faults by Design Diversity

The previous section focused mainly on issues related to the change of control flow in
the occurrence of exceptions. This section will further investigate how actually to
tolerate software faults in concurrent/distributed object systems. Recall the abstract
system model developed at the beginning of this chapter, that contains three basic
elements - objects, actions and threads. We will first address problems and difficulties
associated with the design of diverse objects. Two techniques for achieving action-
level fault tolerance are then developed based on adaptive recovery and fault masking
respectively. Finally, some technical issues with diverse threads will be discussed
briefly.

4.4.1 Object Diversity

Objects have a well-defined external interface that provides operations to manipulate
an encapsulated internal state. To some extent design diversity would be well supported
- different implementations can be provided for the same interface and combined
together to tolerate possible design faults. However, after a close examination we have
found that it is in fact not at all easy to introduce redundancy into the design of objects.
Many new problems arise.
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Granularity

Design diversity can be incorporated into the object model at three different levels of
granularity at least: i) individual operations, i.e. methods, or part of an operation, ii)
different objects from the same class, and 3) different objects from different classes. (A
further level can be the meta level in the context of a reflective object system, which
will be discussed in Chapter Five.)

Operation-level. The variants of an operation or part of such an operation are
independently developed from the same specification. In some sense, this strategy is
not truly object-oriented. However, existing techniques and experience in conventional
programming can be employed most directly. For example, error recovery can be
naturally achieved by restoring all modified non-local variables. In practice, further
decisions need to be made regarding the implementation of this kind operation.
Different degrees of transparency could be provided for the user of the special class -
from full transparency as a normal operation (i.e. redundant realization of the operation
is hidden by the interface) to explicit declaration where the variants, the adjudicator and
the controller are clearly attached to the class.

Object-level. Fault tolerance can be also achieved by diversity in the data space of a
program. For certain applications a minor perturbation of input values, or execution
conditions, will often not have a major effect on outputs. A design fault in operations
or computations may manifest itself under certain special data, but a set of slightly
different data would cause the same operation to produce a correct output. Thus, such
fault tolerance can be obtained by creating a group of objects from a class, with
diversity in their internal data, and by invoking the same operation on the object group.
An acceptance test is then applied to the results produced by the operation. A result
passing the acceptance test, if it exists, can be used as the satisfactory output. A pilot
study by Ammann and Knight [Ammann & Knight 1988] showed data diversity can be
effective and very economical. Of course, redundancy at object-level could be properly
combined with the operation-level redundancy.

Class-level. Redundancy at class-level is usually considered as being truly object-
oriented because both the internal state and the set of operations can be independently
designed from the same specification to a given type. We will mainly consider such a
form of redundancy in this section. There are two similar approaches to introducing
redundancy into the class-level: a set of software variants can be organized into
different subclasses of an abstract class which may contain some basic information as
to the specification (our C++ implementation described in Section 3.4.1 employs this
approach), or the variants can be declared as different classes and regarded as different
implementations to a given type (see for example the approach used in the Arche
system [Benveniste & Issamy 1992] in which classes and types are treated differently).
Although class-level redundancy seems to be the best choice, further problems arise,
especially regarding state saving and restoration.
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Diverse Objects and State Restoration

In the masking redundancy schemes, such as NVP, all variants are normally executed
//

when invoked. Each variant can retain data between calls and, therefore, can be
designed naturally as an object which hides its internal state and structure. This
improves the design independence of variants and reduces the amount of data which
must be passed to a variant upon invocation. In other words, diverse objects fit well
with a scheme that provides fault masking. However, the adaptive redundancy schemes
such as RB are different, in that they do not execute all the variants each time unless it
proves necessary. Therefore all the variants must not retain data locally between calls
since they could become inconsistent with each other due to the different histories of
execution. If they did retain data between calls, there would be a large amount of data
which must be passed to an alternate (i.e. a backup) upon recovery.

There are several ways of resolving this problem. The variants in an adaptive scheme
can be designed i) as history-less functional components rather than objects, i.e. diverse
design is limited to the operation-level; ii) as special objects which do not retain local
data or only retain a limited amount of local data, or iii) as normal objects, but
supported by distributed (parallel) execution of the variants, such as Kim's and Hecht's
experiments on distributed recovery blocks [Kim 1984][Hecht et al 1989] - each
variant is executed in parallel whenever invoked. In the last case, the low overhead
advantages of adaptive redundancy are most lost.

Further problems will emerge if software variants are designed as objects and they
retain data. For example, the system will not be able to reuse a variant which has
produced an incorrect output because its internal state might have become inconsistent
with the other variants. A method of dealing with this could be just to "shut down" the
faulty variant. But, it is in fact critical to have a recovery mechanism that is able to
recover these variants as they fail. Otherwise, the accumulation of failed variants will
eventually exceed the fault-masking ability, and the entire fault-tolerant system will
fail.

Recovery from transient faults requires that the state of the failed variant be brought
into conformance with those forming the majority adjudication. One method of
conducting recovery would be for each diverse object to roll itself back to the state that
it was in prior to its last operation, i.e. to produce no result. Since each object must roll
back, some of the previous history of the system will be lost. This may not be
acceptable for certain applications. Another more complex method is to recover the
internal state of the failed object to one which corresponds to those of the other up-to-
date variants. This can easily be done if the diverse objects have the same internal data
structure, such as the community error recovery method introduced in [Tso & Avizienis
1987]. Recovery is more difficult while supporting true design diversity - diverse
objects should be independently designed and their internal data structures will, in
general, be different. The mapping relationship between the internal state of one variant
object and that of another is the key and must be obtained. If the diagnosis and
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recovery mechanism judges the failure of a variant to be permanent and if an additional
spare variant exists, the new object must be brought on line with its state consistent
with the majority. Even in the absence of failures, we have to deal with the diverse
internal state of variant objects, i.e. the problem of replica determinism, and guarantee
that all the variants show consistent behaviour. An adjudication mechanism must
decide whether the states of two or more diverse objects are equivalent based on a pre-
defined equivalence relation for inexact voting. This equivalence relation should ensure
the required fault coverage and at the same time decrease the probability that the
adjudication mechanism fails to reach a consensus.

Tso and Avizienis [Tso & Avizienis 1987] argued the constraints on full design
diversity that result from requiring the same or similar internal data structures in the
variants for adjudication and easy recovery is the price paid for the increased reliability
made possible by exploiting error recovery. In practical design of a fault-tolerant
software system, we have to make an appropriate trade-off between the two conflict
aspects: the design of internal data structures, which should support a clear and simple
mapping relationship, and truly independent design of objects.

Additional Components

Given a set of diverse objects, we need some additional components to form a complete
mechanism for tolerating software design faults in the objects. An adjudicator, e.g. a
voter, is necessary for identifying faulty objects or ensuring that the erroneous state of
faulty objects is masked and eliminated. Such an adjudication function can in some
cases be provided by the underlying support system if simple (and exact) voting is
possible, but for most realistic applications they have to be defined by the application
programmer based on some application-specific information and they have to handle
such problems as inexact voting and timing errors.

To operate on a set of diverse objects, a controller is required to actually invoke a set of
operations of the objects in some form specified by the application programmer. As
discussed previously, an adaptive control algorithm may be used, i.e. every time only
the operation of a "master" object is actually executed. If the state of the master object
fails to pass the adjudicator after the execution, a backup object will be used instead.
This may however require a large amount of data passing to establish a consistent
initial state for the backup object. Alternatively, the controller may invoke all the
operations of the diverse objects every time in order to achieve effective fault masking.
The return values, if any, are delivered only after they have been selected by the
adjudication function. Other control modes and algorithms are also possible, for
example based on the advanced schemes discussed in Chapter Two and Chapter Three.

4.4.2 Adaptive Recovery and Fault Masking: Two Schemes

Most existing schemes for achieving software fault tolerance in concurrent/distributed
systems are process-oriented and based on the original idea behind the conversation
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concept [Randell 1975], i.e. adaptive and coordinated use of a group of recovery
blocks. This idea can be applied relatively easily to the structure of nested CA actions.
However, to the best of our knowledge, very little work has been done on the
application of masking-type schemes (e.g. NVP) to concurrent/distributed systems.
With our particular emphasis on object systems, we discuss two possible schemes for
incorporating design diversity into CA actions. In the interests of simplicity and
brevity, we assume that no design diversity is involved in external objects, though all
the techniques for creating diverse objects discussed in the last section can be
combined with the two schemes to maximize the power of software fault tolerance.

Scheme One: Adaptive Recovery

For a given CA action A and its specification Sp, we will address a structural approach
to enabling A to tolerate software faults involved in its design. An obvious requirement
is that any provisions within a CA action for tolerating design faults, such as the use of
design diversity, should not be visible from outside the action. We therefore refer to
action A as the container action. Within the container, there is a set of nested CA
actions which are designed independently from the same specification Sp. These nested
actions are software variants. They provide the actual functionality of A and supply
redundancy for coping with software faults.

Action Variants. Each action variant may be designed in a simplified way that permits
the precise semantics of "all-or-nothing", At the beginning ofa variant, recovery points
as to the initial states of external objects of action A are established. The participating
threads then play their corresponding roles within the action variant. Success of the
action is the case that all participating threads leave the action and proceed, discarding
the recovery points. Abortion of the action is the case that states of the external objects
are restored from the recovery points, and the threads proceed, signalling an abort
exception to the container. There is no further obligation from the action variant after
its success or abortion; in either case the action is complete. In order to permit a great
degree of design diversity, a thread may choose to interact with an entirely different
subset of the participating threads within a new action variant as long as every variant
satisfies the same specification Sp.

Container as Controller. The container action A controls the adaptive execution of
action variants, which in effect involves the participating threads of A performing a
sequence of one or more nested CA actions, depending on the errors encountered.
Conceptually, the container does not need to establish appropriate recovery points since
the inside action variants must do so in order to guarantee the "all-or-nothing"
semantics. In practice, complex object recovery mechanisms would better be
implemented at the container level so as to simplify further the development of action
variants. The container action must also permit more general semantics of a CA action,
including the interface checks and the provision of possible exceptional outcomes.
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A container action with three action variants is shown in Figure 4.15, in which action
variants are executed in an adaptive manner. If action variant 1 ends successfully,
container action A will end with a normal outcome. That is, any effects of the final set
of changes that variant 1 has made to external objects will be made visible to other
actions and threads outside the container action. However, if variant 1 aborts, variant 2
will be executed after the state of external objects has been restored, assuming this is
possible. (Whenever the state restoration of external objects is not feasible, the
exception handling scheme we developed in Section 4.3 can be used to perform certain
compensatory operations.) Again, action A will end normally if variant 2 ends
successfully, otherwise variant 3 will be invoked. Exhaustion of all three variants
without success will bring control to the last ditch part after restoration of the state of
the external objects. This gives action A the last chance to achieve its goal. Usually, in
this part A can only deliver some form of exceptional outcome. If even an exceptional
outcome is not possible, the original recovery points are used, and an abort exception
signalled from action A to its surrounding environment. In the worst case that the state
restoration cannot be performed completely, e.g. the recovery points have been
damaged, a failure exception must be signalled.

container action A

o

- r-

- r-
action action action last ditch 0
variant I variant 2 variant :3 recovery 0

0

-r- -
I

~ access ~ ~ ~
I

I I
I I
I I I

I I

Thread 1

Thread 2
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o

Thread k

External
Objects

state state
restoration restoration

state
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Figure 4.15 Adaptive recovery scheme

Recovery of External Objects. Because action variants are executed only sequentially in
this scheme, external objects of container action A do not need replication, but an
appropriate mechanism for checkpointing and object recovery is required. Some well-
known results can be used. For example, in the Argus system [Liskov 1988] an
implementation of built-in atomic objects is based on a simple locking model - read
locks and write locks. Before accessing an object, an atomic action must acquire a lock
in an appropriate mode. When a write lock of an object is obtained, a clone (copy) of
the object is made, and the action then operates on the clone, rather than the original
object. If the action commits successfully, this clone will be retained, discarding the
original object. If the action aborts, the clone is discarded and the unchanged, original
object is retained.
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Scheme Two: Fault Masking

Though some obvious advantages are offered by adaptive schemes, for certain time- //
critical applications the worst-case run-time overhead imposed by such schemes is
often unacceptable. A scheme that is essentially based on the concurrent execution of
action variants in order to provide fault masking, may offer an effective alternative.
However, the implementation of such a scheme is not quite so straightforward, because
of the complications that arise through parallel accesses to objects that are external to
the action (which mayor may not themselves have been similarly replicated). These
accesses will have to be synchronized and voted upon, as well as being subject to the
normal transactional controls that are required for the use of objects that are external to
a CA action. Figure 4.16 illustrates a scheme based on fault masking.

container action A

Thread 1
Thread 2

o
o
o

fork

Threadk

; ~ ~ access ~ ;

Extemal_1~~~~~~~~~~~~~~~~\~iL
Objects make II select& retain a clone

clones discard others

Figure 4.16 Fault masking scheme

Container as Controller. In order to exercise control, the container action A needs two
additional nested actions: one forks the participating threads initially and the other
merges them later, though such functionality may be provided by the system as
standard procedures. As portrayed in Figure 4.16, every thread is forked into n sub-
threads which will participate in n action variants respectively. The fork action is also
responsible for cloning the external objects if the need arises. For example, when a
write lock of an object is required by container action A, n clones of the object must be
made so that n action variants can operate on these clones respectively. When all the
action variants are complete, the merge action becomes responsible for selecting a
correct clone for a given external object by executing an adjudication algorithm. The
selected clone will be retained when the other clones and the original object are
discarded. The write lock is released and the container action ends with a normal
outcome. Whenever the container action aborts, for example whenthe merge action
fails to identify a correct clone, all the clones must be discarded and only the
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unchanged, original object retained. (Note that the process of making and discarding
clones is equivalent to the establishment and removal of required recovery points. The
nested action variants can be thus designed in a further simplified form - without
consultation for the state of external objects.)

Making Clones. In the above scheme, all the clones are hidden from the world outside
the container. An obvious advantage of this method is that there is no need to recover
incorrect clones damaged by faulty action variants. However, since every time n clones
of a given external object must be made for n action variants of the container, when
objects are large, the operations of making clones can be very expensive. A possible
alternative is to always keep n copies of an object during the operational time of a
system, similar to some replicated object schemes for improving object availability (see
[Mancini & Shrivastava 1989] for example). In this case, the container action does not
need to clone its external objects at the start. But it must ensure that all object copies
used will stay in the identical consistent state before the action ends. Any damaged
copies must be repaired by copying the correct state from an unaffected object. While
the action-level overhead might be limited, this approach results in a high systemwide
overhead in space. Nevertheless, the approach can be useful for a system that uses
diverse threads to achieve fault tolerance (see the discussion in the next section).

Adjudication. After the concurrent execution of n action variants, for any external
object used a currently correct state must be decided from the states of its n clones.
There exist many algorithms and mechanisms for result adjudication such as those
addressed in Chapter Two. A simple way is to use a powerful replication checking
technique like voting. The correct states are identified (the majority) and the erroneous
states are eliminated (the minority). A clone from the majority can then be selected as
the final outcome. To further improve reliability, more advanced and combined
algorithms can be used. For example, acceptance tests can be incorporated into the
adjudication process. If for any reason, no correct state can be identified, the container
action will be given a final chance to decide whether to provide a degraded outcome or
simply abort the entire action.

Diverse Threads

From our abstract system model, threads are the third basic element that could be
replicated for the purpose of fault tolerance. However, since these replicated threads
usually undertake roles of a group of action variants, they are in effect diverse. In the
fault masking scheme, we have actually used the idea of diverse threads within a
container action while forking a thread into n diverse sub-threads for n action variants.
In principle, diverse threads can also exist outside a group of consecutive CA actions.
For example, we may consider a combined use of the adaptive recovery scheme and the
fault masking scheme in which forked diverse threads may need to go through a
sequence of action variants as well. It is also possible to replicate threads at the level of
an entire system: every thread may have n copies that are active at the same time.
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Figure 4.17 illustrates two types of container actions that provide a special interface to
n diverse groups of threads. There is no need for forking and merging threads, thereby
simplifying the functionality of a container action. The states of external objects Can be'
voted by a single voter (as in container action A) or using n replicated or diverse voters
to further improve reliability (as in container action B). If threads are replicated at the
system level, external objects of a CA action should be replicated at the same level, e.g.
n copies of an object should be always maintained during the operational time of the
object.
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Figure 4.17 Two types of CA actions that use diverse threads

4.4.3 Prototype Implementation and Empirical Study

Since the original publication of the CA action proposal [Xu et al 1995a], we have
explored various design and implementation issues for CA actions in a wide range of
experiments. Among them, I have developed independently a prototype API system for
programming CA actions, called JavaCAaction, which has been implemented on top of
JavaArjuna. (The JavaArjuna system is an object-oriented programming system which
provides a set of tools for constructing fault-tolerant distributed applications based on
atomic transactions; also see Section 4.1.2). In the following, we will focus on the
implementation details related to the atomicity and software fault tolerance, discussing
how information smuggling [Kim 1982] can be prevented effectively and analyzing
run-time overheads introduced by two CA action-based schemes for tolerating software
faults.
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Figure 4.18 shows a layered view of the overall system. To implement fault tolerance,
applications are allowed to use both the API for CA actions and the tools provided by
JavaArjuna according to different application requirements.

Applications

JavaCAaction API

JavaArjuna

I Name r (Multi-Threaded Atomic Transactions,
Server Replication, Persistence, Distribution etc.)

Operating System

Figure 4.18 Layered diagram of the prototype system

The JavaCAaction API system provides several types of services that perform basic
operations related to: i) entrance and exit - checking the identities of participating
threads (to avoid false participants), activating concurrent roles, and synchronizing role
entry and exit; ii) exception handling - interrupting roles if one of them raises an
exception, resolving concurrent exceptions, and signalling exceptions from nested
actions to their enclosing action; iii) interaction and coordination - supporting the
enclosure property of external objects and providing other mechanisms for inter-role
cooperation; and iv) hardware and software fault tolerance - supporting the container
structure with the use of diverse actions, providing state saving and restoration,
supporting the cloning and destruction of objects, and controlling the execution of the
adjudicator such as the voter and the acceptance test.

There are several possible ways of implementing CA actions as a programming
abstraction such as abstract data types, sets of procedures and abstract classes.
However, in each case our aim is to achieve a good separation of concerns between
application programmers who use CA actions, program~ers who implement CA
actions, and programmers who are responsible for implementing the CA action support
and control mechanism (see a more detailed discussion on the separation of different
concerns in Chapter Five).

In the JavaCAaction syetem CA actions are specified as normal Java classes; each CA
action class provides certain managing and control functions and all the roles of the CA
action are presented as associated operations. To write an actual CA action for a given
fault-tolerant application, a pre-defined CA action class can be extended and can be
reused by adding new action roles or by overriding the old ones. The code of an
abstract CAaction class defined in JavaCAaction is shown below (in a simplified
form).
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import JavaArjuna.Cornrnon.*;
import JavaArjuna.Atomic.*;
class CAaction extends Thread

//specify local variables and objects

private protected Thread[] participants;
private protected int noParticipants;
private protected AtomicObject[] externalObj;
private protected Uid[] uidExObj;
private protected int noExObj;
AtomicAction A = new AtomicAction()
private protected void entrance (Thread partThread) (...}
private protected void exit (int state) (...}
public void inAction(String newRole) throws e (...}
public void adjudicator() throws e (...}
public void String exceptionResolution( ...)(...}

Program 4.1 The CAaction class

The CAaction class is allowed to access most common tools provided by JavaArjuna,
including those for atomic objects and locking policies. There are four major segments
in this class, concerned respectively with i) participating threads, ii) external objects,
iii) action initilization, entrance and exit, and iv) action body, the adjudicator and
concurrent exception resolution.

Participating threads that call roles of a CA action are treated carefully by
JavaCAaction in order to prevent information smuggling and avoid role misuse. When
a thread attempts to participate in a CA action, an additional parameter is used as a
PASS to identify the thread itself so as to guarantee that roles can be called only by the
intended threads. (An alternative approach would be to call each role indirectly via a
proxy object that enforced an access control policy.)

External objects in JavaCAaction must be specified as standard atomic objects
supported by JavaArjuna to ensure that only consistent state transformations occur on
objects despite concurrent access and failures, A simple locking policy is implemented
to permit the unidirectional enclosure condition derived in Section 4.2.4, and thus
recovery or abortion of any CA action can be performed alone without affecting other
actions and threads. In order to provide support for software fault tolerance, the
recovery strategy built in JavaArjuna is used for the AR scheme: a Java class
recoveryRecord is defined to contain the previous state of an atomic object. The
object will be brought back to the previous state in case of rollback. A deferred-update
strategy used in the Argus system [Liskov 1988] is exploited for the FM scheme:
invocations are performed on copies of an atomic object, rather than on the object
itself.
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The JavaCAaction system issues a corresponding transaction on the external objects
(e.g. AtomicAction A in the CAaction class) whenever a new CA action starts, and
the transaction ends when the CA action is complete. The entrance and exit

operations implement the standard interface to a CA action based on the multi-threaded
mechanism developed in JavaArjuna: the thread that first arrives at the CA action
interface starts a transaction, and other subsequent threads will then join the same
transaction, instead of starting any new transaction. The CA action can begin only if all
the expected threads have arrived and all the threads have passed the identity check. At
the exit, the transaction is terminated by removing all the participating threads from the
transaction synchronously.

The inAction operation of class CAaction is an abstract operation which can be
overridden by the programmer to write the actual code for a given action. This
operation can be also re-defined as a container action to implement software fault
tolerance, together with a set of diversely designed nested actions. In addition, the
adjudicator and exceptionResolution operations can be overridden to realize the
application-specific adjudicator and user-defined exception resolution functions.

Using JavaCAaction, we have performed several experiments to evaluate run-time
overheads imposed by two CA action-based schemes for tolerating software faults.
Since overheads caused by the execution mode of multiple software variants (e.g.
executed adaptively or in parallel) and the extra cost introduced by various adjudicators
had been well addressed by several previous experiments, we decided to focus on the
issues with state restoration and object cloning, and investigate how they influence the
run-time performance of CA actions.

In JavaCAaction, without using software variants a CA action that modifies an object
of size 1K takes about 85 ~ 100 milliseconds to commit, including the cost of
necessary disk accesses. To examine the adaptive recovery scheme, we added two
nested actions into the CA action, and used two different methods to save the object
state. The first method makes a clone of the object before the execution of the first
nested action begins (i.e. before the execution of the primary variant), and discards the
clone when the nested action ends successfully. Such clone and discard operations
are quite straightforward and take less than 10 milliseconds in total. The second
method makes no clone at the start, and only if the primary variant fails, the previously
committed state of the object is restored from the disk, which takes about 10
milliseconds.

The fault masking scheme introduces a higher run-time cost because of the distribution
of objects over a set of distributed processing nodes. For the container CA action, three
nested actions corresponding to software variants were executed in parallel on three
different SUN workstations. Making two clones of the original object in two remote
nodes takes about 2 x 11 milliseconds, and fetching the final state of two clones back
for voting requires about 20 milliseconds in total. Discarding two clones contributes
only a very small part to the cost of committing a distributed container action which is
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over 100 milliseconds. Table 4.2 gives the actual timings in milliseconds obtained from
our experiments.

Scheme Cloning Recovery Discarding Collecting
Object from Disk Object Final State

Adaptive Recovery with 4.82 N/A 3.9 N/ATwo Variants

Adaptive Recovery with N/A 9.8 N/A N/ADisk Accesses

Fault Masking with 2 x 10.9 N/A 2 x 3.9 2 x 9.82Three Variants

Table 4.2 Timing results of object cloning and state restoration

The adaptive recovery scheme only imposes a small run-time overhead of saving and
restoring the obj ect states (although the total overhead may increase dramatically if the
primary variant has failed). By contrast, the run-time overhead of cloning objects in the
fault masking scheme is relatively high though acceptable. However, for any actual
implementation of this scheme such performance penalty must be justified carefully.

4.5 Summary

Concurrent/distributed systems are very prone to errors because they are usually
extremely complex. The incorporation of fault tolerance may be a practical method of
improving their dependability. However, fault tolerance in such complex systems
cannot be achieved merely by using sequential schemes such as RB and NVP in each
separate thread. The problems are far more complicated when concurrency and
distribution are taken into account.

The CA action concept (first introduced in [Xu et al 1995a]) addresses many problems
relative to complex concurrent activities and provides special support for error recovery
in concurrent/distributed object systems. CA actions were originally introduced as a
structuring concept for complex system designs, and their semantics were described
only informally (and incompletely) and using a simple sales control system as an
illustrative example. In order to capture further the essence of CA actions, we have
provided in this chapter a formal description of the CA action concept based on a
linear-time temporal logic system. This formalization has been extremely helpful in
clarifying a number of confusing aspects and in identifying many important properties
of CA actions. In particular, we have identified the unidirectional enclosure condition
that can avoid cascading recovery or abortion (a form of the domino effect) but allow a
greater degree of concurrency than the strict enclosure condition. The non-enclosure
conditions are also developed that permit more concurrency but may require cascading
recovery or abortion in some cases.

In complex concurrent/distributed systems, exceptional conditions may arise from
either the system itself or its environment. An effective method of handling exceptions
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can prevent such faults from causing system failure. This is very difficult in systems
involving complex interactions among concurrent activities, and exception handling
facilities in current languages and systems provide little help. Using CA actions as one
kind of structuring unit for damage assessment and error confinement, we have
developed a general conceptual model for exception handling in concurrent/distributed
systems. It is the first and very significant attempt to develop a consensus on how to
handle exceptions when complex and asynchronous activities occur. Based on this
conceptual model, two particular types of exceptions have been investigated in detail.
For exceptions that appear in the environment of a system, we have developed a set of
basic guidelines i) for the designers to improve their way of identifying exceptions and
designing exception handlers during the process of software development, and ii) for
the system to properly react to environmental exceptions in a structured and disciplined
fashion. For exceptions that occur simultaneously, we have developed two algorithms
for coordinating concurrent exception handling. Theoretic analysis and proofs with an
empirical study have shown that these mechanisms are superior to the known solutions
and introduce only acceptable run-time overheads.

Most existing schemes for tolerating software faults in concurrent/distributed systems
have been along the line of the conversation concept using a process-oriented system
model, which cannot be easily applied to object systems. Issarny was first to extend the
idea of conversations to concurrent object-oriented systems, but her scheme only
allows a very limited form of coordination without the provision of structuring support
for effective error confinement [Issarny 1993b]. In the final section of this chapter, we
have discussed different ways of applying the design diversity principle to the notion of
objects. Using a top-level CA action as the container and controller, we have developed
two schemes for tolerating software faults in complex object systems, featured with
adaptive recovery and fault masking respectively.

These new schemes provide implementable answers to two well-known difficulties of
coordinated error recovery - information smuggling and the establishment of recovery
points [Gregory & Knight 1989]. The information smuggling issue can be resolved
nicely as long as either the enclosure condition or the unidirectional enclosure
condition is always maintained by a system or an actual implementation using CA
actions. The object cloning technique, associated with both schemes, offers a practical
and feasible solution to recovery of external objects that may be shared with concurrent
actions and threads. The prototype JavaCAaction API system has been built on top of
JavaArjuna and the experimental evidence obtained from the prototype system is quite
prormsmg,
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Chapter 5

System-Level Support for Implementing
Fault-Tolerant Software

This chapter investigates the issues concerned with the practical development of fault-
tolerant software. Fault-tolerant software usually involves the introduction of software
redundancy to normal program code. The difficulty in finding a non-intrusive way of
incorporating redundancy into a complex system often hinders system development
and implementation. Furthermore, in many cases the redundancy to be added is
application-specific, and the developer has to address both application-dependent and
redundancy-related concerns. This complicates further the task of implementing and
maintaining realistic fault-tolerant software.

System-level support for developing fault-tolerant software can be provided by a
variety of techniques such as high-level programming interfaces, libraries of reusable
components and development environments, singly or in combination. Ideally, such
support should help to i) reduce repetitive development effort, ii) ease the development
process by making it a standard, and as much as possible programmer-transparent,
activity, and iii) offer the application developer a wide range of fault tolerance schemes
that can be selected and customised according to application-specific dependability,
performance, and cost requirements.

In this chapter, we demonstrate how architectural support helps to separate different
concerns and gives application programmers a simple environment for developing
fault-tolerant software. Apart from the use of general techniques for software
architecture, we also address the specific construction of fault-tolerant software
systems with defined properties. In particular, we investigate how patterns for software
architecture provide appropriate support for implementing fault-tolerant software.
Finally, an industrial safety-critical application is used as a realistic case study to
examine and test a variety of ideas and issues addressed throughout the whole thesis,
especially those related to the actual development of complex concurrent fault-tolerant
software.
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5.1 Architectural Support

In order to ease the task of constructing fault-tolerant software and control its
complexity, we believe, it is particularly crucial to separate different concerns properly.
For the development of fault-tolerant software, the respective responsibilities of
different types of programmers should be specified clearly:

Users of Fault-Tolerant Components (or FTC Users). They are responsible
for developing their own programs, but may use services from fault-tolerant
components provided by other programmers. In general, they need to know
little about how fault tolerance is achieved and implemented though they
might be aware of the difference between fault-tolerant components and
non-fault-tolerant components in interface and performance aspects (e.g.
response time).

Programmers of Fault-Tolerant Components (or FTC Programmers). They
are responsible for developing components that tolerate certain sets of
software faults. They have to address both functional requirements and fault
tolerance aspects. In particular, they must be familiar with different software
fault tolerance schemes and be able to develop diverse software variants and
application-specific adjudicators. They are also required to select an
appropriate scheme such as RB or NVP according to application-specific
requirements.

Programmers of Reusable Control Components (or RCC Programmers).
They are responsible for providing the FTC programmers with a high-level
and simple programming interface for the use of various software fault
tolerance schemes. They are also responsible for dealing with low-level
implementation details such as the schedule and execution of software
variants, data consistency, state restoration, and result adjudication. Because
the control part of a given scheme is often application-independent, it should
be made generally reusable in order to reduce repetitive development effort.

We are interested in the development of fault-tolerant software and therefore concerned
with responsibilities of both the FTC and the RCC programmers. We will study and
develop a multi-level reference architecture for structuring fault-tolerant applications so
that different concerns can be addressed properly at separate levels. The major idea
behind our architecture is to hide the control part and the low-level implementation of a
fault tolerance scheme from the FTC programmers. This enables the FTC programmers
to focus mainly on functional requirements and leave the actual implementation of
various software fault tolerance schemes to the RCC programmers.

However, implementing a concrete scheme in an effective way is never an easy task.
Although similar implementation issues have recurred many times in a variety of
experimental studies and industrial applications, the application programmers,
especially novices, still have a hard time understanding and reusing existing solutions.
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In an attempt to resolve this difficulty, we will use the latest pattern technique to
document existing and well-proven experience, including our own experience III

implementing a generic scheme for software fault tolerance [Xu et a11995c]. //

5.1.1 Fault-Tolerant Components

In Chapter Two, we defined a system as a set of components which interact under the
control of a design, and viewed the components themselves as systems at a lower level
of abstraction in their own right.

A component should have an interface and is an encapsulated part of a system.
Components serve as the building blocks for the structure of a system. At a
programming-language level, components may be represented as modules, classes,
objects or a set of functions. Typical examples include MODULA-2 modules, C++
classes and C functions. The CA action definition introduced in Program 4.1 is another
example of a component. A CA action component may be regarded as a generalised
form of a standard function, with multiple synchronous entry points and concurrent
activities enclosed.

Idealized Fault-Tolerant Components

An idealized fault-tolerant component [Anderson & Lee 1981] is a (well-defined)
component which includes both normal and abnormal responses in the interface
between interacting components, in a framework which could minimize the impact of
fault tolerance on system complexity (see Figure 5.1). Three classes of exceptional
situations are distinguished: an interface exception is signalled when the interface
checks of the component determine that an invalid service request has been made to the
component, implying that the part of the system that made the invalid request must deal
with the exception; a local exception is raised inside the component when the
component has detected an error that its own exception handlers should deal with; and
a failure exception is the means by which the component notifies its caller that it has
been unable to provide the service requested of it.

Service
requests

Normal
responses

Interface Failure
exceptions exceptions

j j

I
Return to normal

• I
Normal Activity Exception Handling

I •Local exceptions

Service
requests

Normal
responses

Interface Failure
exceptions exceptions

Figure 5.1 An idealized fault-tolerant component [Anderson & Lee 1981]
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With such a structuring framework, it is possible, and indeed desirable, to specify the
interface between each component and its environment completely. This enables the
design and implementation of the component to be based on just the interface
specification, and so to be undertaken independently of those of its environment, even
with respect to issues of fault tolerance [Randell 1984]. However, while applying this
conceptual framework to an actual implementation of a fault-tolerant component, we
have to extend the framework to address three further concerns: i) degraded services, ii)
concurrency, and iii) embedded software redundancy for tolerating software faults.

Extended Interface Specification

In practice, when an exception is raised within a component, in many cases the
corresponding exception handler cannot deliver a complete service requested by its
environment, but possibly only a degraded one. Such responses are conceptually
different from both normal responses and a failure exception, and should be indicated
by an attached exception. It is up to the environment to decide how to deal with a
degraded service. Similarly, an abort exception should be distinguished from a failure
exception. The former notifies the environment that something wrong happened inside
the component but all possible effects that would affect the environment have been
undone, and the latter cannot guarantee that all effects have been removed. Figure 5.2
illustrates the extended interface specification (in which each exceptional response
must be indicated by the signalling of an appropriate exception). .

Service
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Normal
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Interface Exceptional
exceptions responses

Abort Failure
exceptions exceptions

t j j

I
Normal Activity Exception Handling

'" ,!,,,' '"
A

,
Service
requests

Normal
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Interface Exceptional
exceptions responses

Abort Failure
exceptions exceptions

Figure 5.2 Extended interface of a fault-tolerant component

Interface for Concurrent Requests

In order to support the development of concurrent fault-tolerant software, we believe it
is useful to make concurrency explicit at the interface of a component especially at a
lower level of abstraction than the outermost system level. Linguistically, there are two
concrete examples: the multi-function mechanism proposed in [Banatre et al 1986] and
the CA action scheme (like a multi-threaded procedure call). In general, a component
may be associated with m synchronous entry points. Service requests may be made

144



Chapter 5: System-Level Support

concurrently through the entry points by m calling components or threads. In both
normal and exceptional situations, the component is responsible for giving respective
responses to each of the callers in a synchronous manner. Otherwise, an exception must-:
be signalled to all the calling components. Within the component, there are exactly m
roles that execute in parallel in response to service requests and possibly interact with
each other to carry out the required computation.

Components with Diverse Design

Within an idealized fault-tolerant component [Anderson & Lee 1981], fault tolerance is
obtained by a limited form of software fault tolerance - exception handling. For
example, by detecting and recovering an error, and either ignoring the operation which
generated it or by providing a pre-defined and heavily degraded response to that
operation. In some sense, the component cannot be regarded as truly fault-tolerant since
some perceived departure from specification is likely to occur. Nevertheless, the
exception handling approach can result in software that is robust in the sense that
catastrophic failure can be averted.

In order to incorporate (true) software fault tolerance into a system in a structured way,
we need an abstraction component model that captures common characteristics of the
existing software fault tolerance schemes. Figure 5.3 suggests a possible internal
structure for a fault-tolerant component. There are several diversely designed sub-
components called variants and an adjudicator inside the containing component.
Variants deliver the same service through independent designs and implementations,
and the adjudicator selects a single, presumably correct result from the results produced
by variants. The containing component serves as a sort of controller that controls the
execution of variants and determines the overall component output with the aid of the
adjudicator.

•

Exceptlon Handling

Containing Component

Adjudicator

•
Figure 5.3 A fault-tolerant component with diverse design

Such a component should adhere to the same external characteristics as illustrated in
Figure 5.2, so as to integrate exception handling and software fault tolerance into a
unified framework. At run time, the containing component invokes one or more of the
variants according to different schemes, and waits for the variants to finish their
execution. When all variants are complete, the component invokes the adjudicator to
perform a check on the results from variants and delivers an acceptable result, if one
exists, to its calling environment. The whole structure is in principle fully recursive.
Any sub-component such as a variant or an adjudicator can be an idealized component
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as well and may have a set of exception handlers associated with it. Various software
fault tolerance schemes can be implemented inside a sub-component as long as it
maintains the external characteristics of an idealized component. This structure is also
applicable to a component with m synchronous entry points. To provide the same
service, each variant must have m roles to carry out the required concurrent
computation, but may have a diverse internal design for the purpose of software fault
tolerance.

The system and component structuring discussed above reflects a traditional functional
view of software design. However, the structure is equally appropriate for object
systems. In fact, the object-oriented paradigm fits closely with the idea of idealized
fault-tolerant components. A component can conveniently be thought of as an object
[Lee & Anderson 1990]. Similarly to such components, objects have a well-defined
external interface that provides operations to manipulate an encapsulated internal state.
Design redundancy would be well supported - different implementations can be
provided for the same interface and combined together to tolerate software design
faults.

5.1.2 Supporting the Development of Fault-Tolerant Components

Within a fault-tolerant component or object, apart from variants and the adjudicator,
there are two other concerns related to the implementation of an actual scheme: the
control structure and low-level support for the structure. For example, the recovery
block scheme has the basic control structure: ensure <acceptance test> by
<alternate 1> else by <alternate 2> ... else by <alternate n» else error, and
requires a suitable mechanism for providing automatic state saving and restoration. We
want to make the implementation of such control functions and low-level details
transparent to the FTC programmers, thereby easing their responsibility and tasks.

The simplest method would be to develop a set of guidelines and programming
conventions to show how to use a chosen language to express and implement the
functionality of a scheme like recovery blocks, assuming that the language chosen
provides enough expressibility. The FTC programmers must then strictly adhere to
these conventions. Because all checks of adherence to the conventions can be
performed only by the FTC programmers themselves, this is often a fruitful source of
software bugs and may defeat the original purpose of dependability improvement.

Developing a new language that includes special features such as those related to
recovery blocks would be an attractive solution. However, this could cut the work off
from the mainstream of programming language developments and thus have difficulty
in achieving wide acceptance. Alternatively, the pre-processor approach to extension of
a popular language like Ada 95 and Java seems to be appropriate and quite practical.
Unfortunately, it does have disadvantages. In particular the language provided to
application programmers becomes non-standard, and programmers have in some
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circumstances during program development to work in terms of the program generated
by the pre-processor, rather than of the extended program that they had written.

In practice, it is always desirable that system-level support for implementing fault-
tolerant software is widely available and at the same time, if possible, the development
of a new language or the modification to an existing compiler is avoided. When a
solution that resolves all problems is highly unlikely, it is more realistic to' seek for a
solution that balances well a set of contradictory problems. For example, an approach
based on a library of reusable components and tools appears to be a balanced choice
though it may suffer from some problems similar to the convention-based approach.
This approach can free to a great extent the FTC programmers from addressing low-
level concerns, thereby decreasing the complexity of implementing fault-tolerant
components. Furthermore, such an approach often exploits object-oriented features,
such as inheritance and polymorphism, and needs to use only a limited set of system
facilities commonly found in general-purpose operating systems. Without modification
of a high-level language or an operating system, rapid and instructive experiments are
made possible. (The Arjuna system [Parrington et al 1995] and the ISIS system
[Birman 1993] are two successful examples of taking this approach in the area of fault-
tolerant distributed systems.)

Meta-level software architectures based on computational reflection have recently
attracted a great deal of attention and are opening some new trends in the development
of fault-tolerant distributed systems (e.g. the FRIENDS system developed at LAAS
[Fabre & Perennou 1998]). However, as a newly emerging methodology for structuring
software systems, its concept and potentials have not yet been well understood. In
principle, reflection is the process of reasoning about and acting upon the system itself
[Maes 1987]. A reflective system can reason about, and manipulate, a representation of
its own behaviour. This representation is called the system's meta level [Agha et al
1992]. Reflection improves the effectiveness of the object level or base level
computation by dynamically modifying the internal organization, i.e. the meta level
representation of the system. It also provides powerful expressibility and encourages
modular descriptions of computation by introducing a new dimension of modularity -
the separation of base level descriptions and meta level descriptions. In a reflective
system a set of simple, well-defined base level features could be used to define much
more complex, dynamically changeable constructs and functionalities.

Meta-level software architectures can help to separate different concerns by addressing
them at separate levels. This advantage can be exploited for alleviating the complexity
of developing fault-tolerant components. In. fact, the structuring framework for a fault-
tolerant component discussed in Section 5.1.1 facilitates the separation of base level
and meta level descriptions. At a base level, simple and clear interfaces are required for
specifying variants and the adjudicator and for selecting an appropriate scheme (and its
control structure). Various control mechanisms that control the execution of variants
can be placed at a meta level and implemented as metaobjects. The actual responses to
service requests made to some base level objects is controlled and dynamically reified
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at the meta level. Since a meta level object is also an object, it can be controlled by a
meta meta level object. For example, the meta level operations of the control
mechanisms can be further reified at a meta meta level. Low-level implementation
details such as state restoration, data consistency and variant synchronization can be
addressed at that level. In principle, metaobjects can be organized as an ascending
tower, and hence provide multi-level modularity and support program changes in a
disciplined fashion.

Given this variety of ways to support the development of fault-tolerant components, we
seek for a more general solution at system-level by developing a system architecture
for constructing fault-tolerant applications. We use the definition and terms of [Hayes-
Roth 1995] for domain-specific architectures to describe our architectural solution. Our
architecture comprises:

1) A reference architecture for constructing fault-tolerant applications, which
consists of multiple levels corresponding to different responsibilities and
concerns. For example, at the top level (i.e. the application level), there are both
fault-tolerant and non-fault-tolerant components or objects, but only the fault-
tolerant objects have to meet dependability-related requirements.

2) A configuration method for selecting and configuring components within the
reference architecture to meet particular application requirements. In particular, a
configuration method with simple interfaces is provided for the FTC
programmers. They can customise easily a specific fault tolerance scheme based
on reusable components implemented by the RCC programmers.

3) A library of reusable components, which contains reusable chunks of expertise in
the domain of software fault tolerance. These components may be located at
different levels, implementing various control mechanisms and low-level support
(e.g. the state restoration mechanism). Although different components may have
different responsibilities, they have to interact with each other to achieve a global
goal like tolerance to software faults. A pattern is used to capture well-proven
solutions and to precisely specify relationships between the components and the
ways in which they collaborate.

We will discuss the reference architecture and the configuration method in the next
section, and describe the pattern in detail in Section 5.2.

5.1.3 Multi-Level Reference Architecture

Figure 5.4 illustrates the static view of the reference architecture for the special
application domain - software fault tolerance. This system architecture is composed of
several levels: i) the application level for the implementation of various applications
which may include a set of fault-tolerant components or objects, ii) the system level
composed of interface components and reusable control mechanisms, iii) the low
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system level that provides low-level mechanisms such as state restoration and variant
synchronization, and iv) the OS level such as UNIX.

system
level

Applications

( FT-object I ( FT-object I (FT-rn-object I •••
[ interface components for FT-object I [ interface components for FT-rn-object I

[ NVP 1 [ RB
1

[ coordination I [ infor-exchange I
I I [ I[ t/(1I-1)-VP 1 [ 1

EH AR
SCOP

I FM I •••• • •

state restoration
J [

data consistency J lvariant synchronization J •• •

OS

application
level

low system
level

OS level

Figure 5.4 Reference architecture for fault-tolerant applications

Application Level. This level consists of application-specific objects. Prompted by
dependability concerns, some critical objects may be implemented as fault-tolerant
objects, and some objects may use or invoke fault-tolerant objects to perform their
intended computation. Fault-tolerant objects must adhere to the standard interface
characteristics of an idealized component, as shown previously in Figure 5.2. Two
kinds of fault-tolerant objects are supported: standard ones for sequential invocation
and extended ones for concurrent invocation via m synchronous entry points, named
FT-m-object in the figure. (Section 5.2 will specify further the way of properly using
reusable control mechanisms through an appropriate interface component.)

System Level. This level provides high-level support for the construction of fault-
tolerant objects. There are two categories of interface components: i) external interface
components and ii) generic FT interface components. The external interface
components capture application-independent, external characteristics of a fault-tolerant
object and specify the abstraction interface between the component and its users. The
FTC programmers must follow this structuring framework (e.g. using the inheritance
mechanism) when implementing a concrete fault-tolerant object.

The generic FT interface components provide the FTC programmers with a high-level
programming interface that facilitates the selection and use of various software fault
tolerance schemes. This category of interface components permit i) the selection of
various schemes such as RB and NVP, ii) the invocation to corresponding control
mechanisms, and iii) the use of application-specific adjudicators that may be "plugged
in" through the interface. Pre-implemented control mechanisms include those for RB,
NVP, t/(n-l)-VP and SCOP, and also those for concurrent programs using CA actions,
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such as coordination of entry and exit, information exchange through external and local
objects, exception handling (EH), fault tolerance based on adaptive recovery (AR) and
fault masking (FM). More complicated control mechanisms may be implemented at
this level by composing the basic control components (see Section 5.2 for further
discussion).

Low System Level. This level offers low-level services which are necessary for certain
software fault tolerance schemes, including state saving and restoration for RB, data
consistency and variant synchronization for NVP, t/(n-l)-VP and SCOP. Services for
object distribution, concurrency control, and reliable communication are also provided
at this level. Implementation of all objects at the system level is supported by these
services.

OS Level. This level provides conventional OS capabilities. All objects at the above
three levels may use OS functions directly when the need arises.

Configuring Fault-Tolerant Objects

As discussed in Section 5.1, the FTC programmers must address functional aspects ofa
fault-tolerant object; that is, they are responsible for developing a set of software
variants that satisfy the same functional requirements and for implementing an
application-specific adjudicator if needed .:They are also responsible for certain fault
tolerance aspects of that object. More precisely, they must i) provide the fault-tolerant
object with an external interface to the FTC users according to a specified structuring
framework (e.g. idealized fault-tolerant components), and ii) determine a software fault
tolerance scheme that controls the execution of the software variants and adjudicates
the results generated by the variants.

By the aid of the reference architecture and reusable components, the FTC
programmers can define a fault-tolerant object simply by:

1) reusing (e.g. through inheritance) the standard structure specified by an external
interface component to implement an application-specific interface to the users of
the fault-tolerant object, and

2) specifying a software fault tolerance scheme by selecting the corresponding
control mechanism and plugging in the application-specific adjudicator, if
needed, through a generic FT interface component.

To request services from a generic FT interface component, the FTC programmers
need to pass the references of the variants and the adjudicator to the interface
component. They may also have to specify the maximum number of processors
required for the chosen scheme, and the objects that keep input and output data. The
generic FT interface component should be an idealized fault-tolerant component, and
its execution will only produce one of the following five forms of outputs: a normal
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outcome, an exceptional outcome (signalling a specific exception to Hie fault-tolerant
object), an interface exception, an abort exception, or a failure exception.

A Reflective Implementation of the Reference Architecture

The proposed reference architecture is organized in the form of a multi-level system.
This facilitates the transformation of the original architecture into different
implementations such as a library-based system using inheritance and delegation or a
reflective system. For example, in a reflective implementation the application level
may be regarded as the base level, and the system level may be defined as the meta
level. At the meta level, all the control mechanisms become metaobjects and may be
organized as several libraries. Similar to the generic FT interface components defined
in the original multi-level architecture, a special metaobject protocol (MOP) must be
implemented. This protocol serves as an interface to the meta level, and makes
metaobjects accessible from base level in a well-defined and controlled manner. If
necessary, the low system level may be implemented as a further meta level, or in other
words, a meta meta level. In general, a reflective software system can have an infinite
number of meta levels in which each meta level is controlled by a higher one, and
where each meta level has its own metaobject protocol or MOP. In practice, most
existing reflective languages or systems comprise only one or two meta levels. Figure
5.5 illustrates a reflective implementation in the distributed environment we used for
our experiments in Section 3.4, Chapter Three.

Communication Network

I I I I
base-objects base-objects base-objects base-objects

C:r::J 00 00 00
meta-objects meta-objects meta-objects 0 0 0 meta-objects

00 00 00 0
INMI ISM IINMI ISM IINMI O·INMI

OS OS OS OS
node 1 node 2 node 3 node n

SM: System Managing Object NM: Node Managing Object OS: Operating System

Figure 5.5 Reflective architecture in a distributed environment

Fault-tolerant objects in the original reference architecture, including software variants
and the adjudicator, have been written in C++ and implemented at the base level.
Various control mechanisms for different software fault tolerance schemes have been
implemented at the meta level in Open C++. (Open C++ [Chiba & Masuda 1993] is a
reflective version of C++ that provides the ·programmer with two levels of abstraction:
the base level, like traditional C++ object-oriented programming; and the meta level
which allows certain aspects of C++ to be redefined. In Open C++ operation calls to
base level objects can be intercepted at the meta level by metaobjects.)
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A major advantage of this reflective implementation is that for a given fault-tolerant
object, the software fault tolerance scheme associated with it can be changed
dynamically (even at run time) by changing and composing different control
mechanisms at the meta level. When such dynamic changes are often desirable for
certain applications, a reflective implementation minimizes the possible impact of the
changes on application programs at the base level. However, a reflective
implementation adds overheads to applications because of extra-level computation and
indirection mechanisms. Its effectiveness also depends upon reflective facilities
provided by a target implementation language.

We have conducted a set of experiments to find out different run-time overheads
imposed by different implementation approaches. In particular, the experiment sets
used in Section 3.4 have been re-run on four SUN workstations in an experimental
distributed environment. Table 5.1 summarizes run-time overheads introduced by
reflective operation calls. Normal C++ operation calls at the base level take from 3 to
64 microseconds, depending upon the location of different computing nodes. The
corresponding operation calls in a reflective scheme (supported by Open C++) take
from 6 to 100microseconds. The overhead ratio is about 156% to 200%. However, the
overhead imposed by reflective operation calls is insignificant in comparison with the
entire cost introduced by fault tolerance schemes in both a library-based approach and a
reflective approach. Moreover it can be seen to contribute an even smaller part to the
whole overhead if the communication cost is taken into account. (These performance
figures obtained from our experiments [Xu et al 1996] are very similar to the data
generated subsequently from the FRIENDS system developed at LAAS [Fabre &
Perennou 1998].)

Workstation Workstation Workstation Workstation
One Two Three Four

Normal operation call 56 3 64 8
Reflective operation call 100 6 100 16

Ratio 1.78 2 1.56 2

Table 5.1 Run-time overheads imposed by reflective operation calls

5.2 Architectural Pattern for Implementing Fault-Tolerant Objects

In this section we will detail further our solution to the problems that arise in designing
and implementing fault-tolerant objects (as discussed in Section 5.1). Our solution
scheme describes a pre-defined set of reusable components, classes or objects (located
at separate levels of the reference architecture), and details their responsibilities and
relationships, as well as their cooperation. The solution should be presented in an
appropriate form so as to help the programmers to understand and grasp its essence.
We therefore decided to use the latest pattern technique to capture the static and
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dynamic structures of a fault-tolerant object, including rules and guidelines for
organizing relationships between the interacting components.

Patterns also help in the system-level context of software architecture. Most patterns do
not usually exist in isolation. A pattern depends upon the smaller patterns it contains
and upon the larger patterns in which it is contained. A pattern-based system or pattern
system [Buschmann et al 1996] with well-defined criteria for the interaction between
patterns will provide a simple and natural way to incorporate software redundancy (e.g.
the redundancy enclosed in a fault-tolerant object) into a large and complex system.

Design patterns can be described using different formats. The format used here is based
on the work of Buschmann et al. [Buschmann et al 1996]; it contains the following
parts:

• Name

• Context

• Problem

• Solution principle

• The structure and roles of classes in the solution

• The responsibilities and collaborations among classes

• Implementation guidelines

• Known uses

• Consequences

• References to related patterns

5.2.1 Pattern: Generic Software Fault Tolerance (GSFT)

Name

A pattern must be named, preferably with. an intuitive name that conveys the essence of
the pattern. A good pattern name is vital, as it will become part of the design
vocabulary [Gamma et al 1995]. We decide to name our pattern Generic Software
Fault Tolerance (GSFT). This GSFT pattern provides a general way of implementing
software components or objects that have the ability to tolerate residual software faults
based on a variety of software fault tolerance schemes such as RB, NVP, or more
advanced approaches like t/(n-l)-VP and SCOP. The pattern can also be used to
implement the fault-tolerant objects that respond to multiple concurrent requests and
enclose concurrent activities based on the CA action scheme.

Context

The GSFT pattern is intended for use when the need for ultra dependability of a
(sequential or concurrent) object system arises, and the cost of developing multiple
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software variants and other associated costs are justified. The system may be built from
a set of interacting objects, but only typically some critical objects need to be fault-
tolerant and must provide reliable services for other objects.

Problem

Software fault tolerance is often necessary, but can itself be dangerously error-prone
because of the additional effort that must be involved in the programming process. The
incorporation of additional redundancy can be quite intrusive and may increase overal
system size and complexity, thereby adversely affecting software dependability. For
example, if the application that needs fault-tolerant services has to handle fault
tolerance itself, the resulting system will face several dependencies and limitations. The
system becomes dependent on the software fault tolerance mechanism used, clients
need to know many implementation details of the chosen fault tolerance scheme, and in
many cases the solution is limited to a specific programming language.

In practice, a complex software system should be built from a set of decoupled and
interacting components. This helps to control the system complexity since a component
only has to address a specified concern by providing a required service. Applications
that use a service should not depend upon system-specific details. For example, a client
object that uses a fault-tolerant object should only see the interface offered by the fault-
tolerant object. It should not need to know anything about the implementation details of
fault tolerance aspects. Similarly, to achieve fault tolerance a fault-tolerant object needs
to use services provided by a generic FT interface component, but should not know
how a concrete fault tolerance scheme is actually implemented.

The GSFT pattern is used to balance the following forces:

• The application, or client, objects, the fault-tolerant objects, and the generic FT
interface objects should interact only through well-defined interfaces. Fault-
tolerant aspects should be hidden from the client objects and implementation-
specific details of fault tolerance schemes should be hidden from the fault-
tolerant objects.

• A generic FT interface component should provide the fault-tolerant objects with a
general framework in which a concrete fault tolerance scheme can be treated as a
special case and may be specified at run-time. In this way, the same design and
control structure can be reused for a variety of fault tolerance schemes.

• An easy and flexible way should be provided to add (or remove) software
variants and the adjudicator to (or from) the system.

Solution

Based on the multi-level reference architecture that addresses different concerns at
separate levels, our pattern combines the structured characteristics of idealized fault-
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tolerant components with the extensibility and flexibility offered by the object-oriented
approach.

The application objects, or the clients of a fault-tolerant object, address their own
functional requirements and request services from the fault-tolerant object through a
well-defined interface. This interface produces one of the following five forms of
responses: a normal outcome, an exceptional outcome, an interface exception, an abort
exception, or a failure exception. A special base class (i.e. an external interface
component) is defined for fault-tolerant objects from which an application-specific
fault-tolerant object can be derived, with inherited interface methods overridden.

The fault-tolerant objects provide dependable services for the clients. They address
functional aspects by implementing several software variants for the same functionality
and a specific adjudication function. The fault-tolerant objects request services from a
generic FT interface component and must pass the references to the variants and the
adjudicator to the interface component.

A generic FT interface component actually controls the execution of the software
variants and adjudicates their results. It allows fault-tolerant objects to specify a
particular fault tolerance scheme and, if needed, to change the scheme to another at
run-time. This interface component contains a core component called the FT controller
from which various schemes can be derived and implemented. Implementing the
control mechanism for a special scheme such as RB requires further low-level services
including state saving and restoration, but the FCC programmers should not need to
know any implementation details of those low-level services.

5.2.2 GSFT Structure

The notation used in Figure 5.6 for inheritance, delegation, aggregation and classes has
the usual meaning and is the same as the notation used in [Gamma et al 1995]. In
Figure 5.6, the client object invokes services of the fault-tolerant object when a fault-
tolerant service is requested. The fault-tolerant object is derived from the external
interface component to conform to the interface characteristics of an idealized
component. It also requests services from the generic FT interface component to
execute software variants and the adjudication function.

The generic FT interface component i) requests services from two or more functionally
equivalent but diverse software variants, ii) sends the results of the variant executions
to the adjudicator, iii) receives results back from the adjudicator and iv) reports the
results back to the fault-tolerant object (which returns the results back to the client in
turn). This interface component also contains an FT controller from which the RB,
NVP, t/(n-l)-VP and seop subclasses etc. can be derived. These subclasses are
responsible for actually controlling the execution of software variants and the result
adjudication.
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Figure 5.6 Structure of the GSFT pattern

The variant IS an abstract class that declares the common interface for software
variants, and n variant subclasses execute 'the requested computation and report the
results back to the generic FT interface component. Similarly, the adjudicator is an
abstract class that declares the common interface for adjudication functions. The voter,
accepTest (i.e. the acceptance test) and combined (i.e. the combined use of voters and
acceptance tests etc.) can be derived from the adjudicator class to implement actual
adjudication schemes.

The structure of Figure 5.6 is also applicable to concurrent programs. Figure 5.7 shows
a slightly extended structure which provides software fault tolerance based on an
atomic action framework. Take the CA action scheme as a general instance. Clients 1,
2, ... and m are the participants of a CA action. They enter an FT-m-object
synchronously by requesting services of the object. The FT-rn-object behaves like a CA
action and must inherit the standard CA action interface declared by the external
interface component. It also requests services from the generic FT -m-interface
component to control the execution of its software variants and adjudication function.
The generic interface component contains an FT -m-controller from which the EH
(exception handling), AR (adaptive recovery) and FM (fault masking) subclasses etc.
can be derived to implement their respective schemes for tolerating software faults.
These subclasses are responsible for actually controlling the execution of software
variants and performing the corresponding adjudication operation on the results
produced by the variants.
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FT-rn-object
external interface

>-----1 (for CA actions)

variant subclasses adjudicator subclasses

Figure 5.7 Extended structure for concurrent fault-tolerant software

The CA action scheme is developed for constructing complex concurrent systems and
so is far more complex than a scheme for sequential programs. To implement the CA
action scheme, the FT -m-object requires some additional support including the
implementation of cooperative roles, external shared objects and local shared objects.
We will discuss these problems and our solutions further when we investigate an actual
application example in Section 5.3.

Finally, for a particular fault tolerance scheme, certain low-level services may be
needed. Take the RB scheme as an example again. State saving and restoration are
required. They can be as simple as making a copy of the original object or as complex
as recovery cache memory implemented in hardware [Lee et al 1980]. However, the
RB component should not need to know the low-level implementation details. It just
requests a service from the state restoration component to save the system state prior to
the execution of a variant and to restore the state if the execution fails to satisfy the
acceptance test. Figure 5.8 shows this simple client-server structure.

I savestatei)
restorestatei)

RB I state restoration

Figure 5.8 Structure for the use of Iow-level services

Dynamics

It is difficult to describe the dynamic behaviour of fault-tolerant software systems in
general. We therefore present two typical scenarios based on the t/ (n-l )-VP scheme for
sequential programs and the CA action scheme for concurrent/distributed systems.
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Scenario I illustrates the collaboration between components in the pattern that
represents tl(n-l)-VP (see FigureS.9). The client invokes the services of the fault-
tolerant object. The fault-tolerant object handles the required service by requesting a
service from the generic FT interface. It specifies the 'chosen scheme as tl(n-l)- VP and
passes the references to variants and tl(n-l)-diagnostor to the interface. Both the fault-
tolerant object and the interface component can refuse an invalid service request by
signalling an interface exception to their client.

I client I[ FT-object Jlgeneric FT interface I [t/(n.-1)-VP Il variant 1 j. ·l variant n J l t/(n-1 )-diagnostor J

request()--- request() reference tointerface
exception 1----- variants and

adjudicator
interface execute
exception

execute

1-----
result

1----- -----

res ult
execute

1-- -~-- ----
1----- result or

exception
1----- result or

1---- result or exception
result or exception
exception

Figure 5.9 Interaction diagram for tl(n-l)- VP

The generic FT interface then delegates the requested service, via the tl(n-l)-VP
controller, to n functionally equivalent software variants. Each variant performs the
requested computation and returns its result to the controller. The tl(n-l)- VP controller
then forwards the results to the tl(n-l)-diagnostor. Next, the diagnostor adjudicates the
results and returns one of them as the correct answer, or it signals an exception. The
generic FT interface receives a correct result or an exception from the controller and
determines its own response to the fault-tolerant object. Finally, the fault-tolerant
object returns a result back to the client or signals an appropriate exception.

Scenario II illustrates the collaboration between components in the pattern that
represents the CA action scheme that uses fault masking to achieve software fault
tolerance (see Figure 5.10). Multiple clients 1,2, ... , and m invoke the services of the
FT-m-object through m synchronous entry points and pass the references to external
shared objects to it. The FT -m-object handles the required service by requesting a
service from the generic FT-rn-interface. It specifies the chosen scheme as FM (fault
masking) and passes the references to external objects, variants and the voter to the
interface. Again, both the FT-rn-object and the interface component can refuse an
invalid service request by signalling an interface exception to their clients.
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Figure 5.10 Interaction diagram for CA actions using FM

The generic FT -m-interface then delegates the requested service to the FM controller.
The controller invokes the execution of n functionally equivalent software variants by
forking each thread (corresponding to a client) into n sub-threads and making n clones
of each external object. The m roles of each variant act upon the corresponding clones
of the external objects, and all the clones are forwarded to the voter. The voter attempts
to adjudicate these clones and select one of them as the correct answer or it signals an
exception if no majority is found. The FM controller then merges the sub-threads into
m threads and decides the final state of all external objects. The generic FT -m-interface
determines its own response to the FT -m-object based on the final state of the external
objects. The FT-m-object finally returns an agreed result (i.e. the current state of the
external objects) back to the client or signals an appropriate exception.

5.2.3 GSFT Implementation

We have discussed many important implementation issues in the previous chapters,
including software fault tolerance for sequential programs in Chapter Three and for
concurrent/distributed systems in Chapter Four. We will also deal with
implementation-related problems, such as using CA actions to structure realistic
applications, in more detail when we investigate an industrial case study in Section 5.3.
Here, we consider some of most typical issues in the implementation of the pattern,
which are applicable to both sequential and concurrent software systems.

System analysis and development. First of all, use an appropriate analysis method to
define a model for the given fault-tolerant application. Identify the services the
software should provide, the components that fulfil these services, and the relationships
and collaboration between these components. Secondly, analyze the model developed
in the first step and determine which of the application services may request fault-
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tolerant services and which of the services must be fault-tolerant themselves. Define
fault-tolerant services that are used to address the dependability aspects of the entire
application, and decide the corresponding fault tolerance schemes that support these
services. Thirdly, define a set of reusable components that implement control
mechanisms for the fault tolerance schemes chosen. Identify and define low-level
services that support these control mechanisms. Finally, define a generic FT interface
that serves as an external interface to fault-tolerant services or objects. The fault-
tolerant objects can specify a particular scheme, or change from one to another, through
the interface. The generic FT interface is responsible for performing all the required
changes statically or at run time.

Controlling the execution of software variants: There are several key technical issues
we have to deal with very carefully when implementing a software fault tolerance
scheme. One of them is to control the execution of software variants. Different
implementations are available, including the solutions developed in [Xu et a1 1995c],
[Rubira & Stroud 1994] and [Tso & Shokri 1996], with different trade-offs between the
forces of simplicity, generality and flexibility. We provide an alternative object-
oriented solution here based on the Composite pattern introduced in [Gamma et al
1995]. This alternative implementation suggests a neat way of using inheritance and
aggregation, leading to a simple, but very flexible mechanism for controlling the
execution of software variants. The control- mechanism is general enough for any fault
tolerance scheme using multiple variants. We take the adaptive recovery (AR) scheme
for CA actions as a fairly general example to explain this implementation strategy.

Figure 5.11 shows the control structure based on the Composite pattern. The AR
controls the execution of several variants by sending requests to class variant. The
variant class is actually an abstract class that provides a common interface for a set of
concrete variants that perform the operations requested. Apart from n subclasses
implementing software variants, an additional subclass, called Controller, is organized
as an aggregate of those variants and performs the actual control operations. The
Controller has to know how many and which variants are needed for a particular
request and how they are executed (e.g. sequentially, adaptively, or in parallel). To
control the execution of variants, a Controller object has to create and store a list of
concrete variant objects of its sibling classes.

I AR I variant - variant objects
I requests}

I I I I
variant 1 variant 2 variant n Controller
requesu) requesu) ... requesu) accep'Iestt) <>-undo()

Figure 5.11 Control structure for CA actions using AR
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According to the requests received, an AR object decides how many and which variants
are needed and then adds the chosen variants to the Controller object. An add ( )

operation must be declared in the variant abstract class in order to allow the AR objecf
to add the variants to the Controller. This add ( ) operation must be defined in the
Controller subclass, but may not in the other variant subclasses if they do not support
the addition operation. The sample code in C++ is as follows:

Class AR: public FT-rn-controller {
public:

AR( }{
createVariant( }; l/constructor for AR

private:
Variant ~variant;
void createVariant( }; l/create and initialize variants

} ;

void AR :: createVariant(
variant = new Controller; l/create a Controller object
variant. add (new variantl); Iladd all the variants chosen

variant.add(new variant2};

variant.add(new variantN};

Program 5.1 The AR class

For the AR scheme the order of addition determines the order in which variants are
tried. Because the subsequent variants are executed only if their predecessors fail to
satisfy the acceptance test, there is a need to maintain information about which variants
have failed and which one should be tried next. This can be done by maintaining the
state of the current variant being executed, e.g. using a variable called currVariant.

The AR class has a private variant instance variable. The createVariant operation
can initialize the variable to an instance of any variants if fault tolerance is not required
(e.g. variant = new variantl;) or to an instance of the Controller class for the
purpose of software fault tolerance. The Controller class may be defined as follows:

Class Controller: public Variant {
public:

Controller ( );
void add(Variant*};
void undo( );
int action (ext.ernaLob j ect j,

private:
int accepTest( };
List<Variant*> variants;
Variant* currVariant;

Ilapplication-specijic operation

Ilacceptance test

} ;

Program 5.2 The Controller class
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The Controller constructor has to initialize a list of variants, i.e. the instance member
variants, and initialize the current variant pointer: currVariant

variants. first ( ). The add operation can be used by an ARobject to create and add
the variant objects in order:

Controller:: add(Variant* v) (
variants.append(v);

Program 5.3 The add operation

A pointer to the current variant is maintained in the Controller and it points to the
first member of the list initially, as shown in the code of the constructor. The variants
in the list will be executed in order until one variant passes the acceptance test. The
Controller implements the control in the following form:

int Controller :: action( ) (
while (accepTest (currVariant.action( )) == ERROR) (
undo( );
currVariant = variants.next( );
... ... ... ... Ilexecute next variant

Program 5.4 Implementation of the actual control

Finally, the undo ( ) operation can be implemented as a virtual function which is
bound to certain low-level checkpointing services.

Degraded functionality. In practice, it is possible to implement different variants that
provide the similar functionality with different levels of complexity or efficiency
[Anderson & Lee 1981]. For example, in an adaptive recovery scheme the alternate
actions for the primary can be some older versions of the primary and thus do not
contain the faults that can be introduced by functional upgrades to the primary. Or
these alternates may be designed deliberately to be less efficient in order to pass the
acceptance test more easily. The primary usually attempts to deal with all possible
input cases, whereas the alternates may handle only some of the input cases.

State restoration. The implementation of a particular fault tolerance scheme requires
certain low-level support. For example, the state saving and restoration are essential for
those schemes based on backward error recovery. This pattern implements state
restoration operations as low-level services, which are transparent to the FTC
programmers when they develop their software variants. The implementation of the
undo ( ) can use the Memento pattern for checkpointing in [Gamma et a11995] to save
and restore the original state of the objects affected by the execution of the current
variant. The operation may have to restore the state of the system, e.g. values of
variables for the RB scheme or restore the state of all the external objects for a given
CA action.
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Adjudication functions. Two basic adjudication functions are the acceptance test for RB
and voting for NVP. They can be used singly or in combination. Consensus recovery
Block (CRB) and Acceptance Voting (AV) are two typical examples of the combined/
use. CRB votes the results first, and if it fails to find the majority, then an acceptance
test will be used to find the correct answer. On the contrary, AV adjudicates the results
first using an acceptance test, and only the results that pass the test will be voted to find
the final answer. Similar to the reliable hybrid pattern [Daniels et al 1997], we can use
the Composite pattern introduced in [Gamma et al 1995] to recursively combine
various adjudication functions. Such combined instantiations permit a wide range of
adjudication strategies, from the very simplest to highly complex solutions. Figure 5.12
shows the structure that allows recursive combination of the adjudication components.
Take AV as an example again. The FT controller in our pattern needs to create an
instance of the Combined component which, in tum, creates an accepTest object to
test the results and creates a simple voter object to check the results that pass the
acceptance test.

adjudicator .. adjudicator objects
getltesulu)

I I I I
simple voter accep'Test complex voter Combined
getResultO getliesulu) ... getkesulu) getkesulu) "'"

Figure 5.12 Recursive combination of adjudication functions

Reflective implementation. Following the reference architecture introduced in Section
5.1.3, it is quite straightforward to implement this pattern based on inheritance and
delegation. However, our experience shows that a reflective implementation is also
feasible when using a similar multi-level architecture. The meta level and base level
can be treated as two separate levels in our reference architecture, each of which
provides its own interface. For example, the base-level specifies the user interface for
exploiting application functionality, and the meta-level defines the interface and
components that determine the fault-tolerant behaviour of the application.

In a normal multi-level architecture, every level usually builds upon the levels below.
There are no obvious bi-directional dependencies between two levels. In contrast with
this, there are some mutual dependencies between levels in a reflective implementation.
The base level builds on the meta level and vice-versa. For example, metaobjects can
implement exceptional behaviour in case of an exception. However, this kind of
exception handling must react according to the current state of computation. The meta
level needs to retrieve the information from the base level, often from different
components to those providing the interrupted service.
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A reflective implementation can provide a greater degree of transparency than an
implementation based on inheritance and delegation. It supports the change of fault
tolerance schemes, statically or dynamically, even without modifying any source code
of the fault-tolerant objects using the schemes. However, the reflective implementation
is less efficient because of the complex relationship between the base level and the
meta-level. Reflective capabilities often require extra processing including information
retrieval, changing metaobjects, consistency checking, and communication between the
two levels. All of these impose some performance penalty.

Known Uses

There has been a large amount of research and practical engineering in the area of fault-
tolerant software, although in most cases they are critical applications such as
aerospace systems, nuclear power plants and railway control systems (see the related
survey in Chapter Two). The pattern itself arises partially from those known uses and
partially from our practical experience over the years in developing fault-tolerant
components for sequential and/or concurrent object-oriented software. It captures the
most useful aspects of our experimental implementations that have in fact used a
variety of programming languages including C++, Open C++, Ada 95 and Java.

5.2.4 Consequences of Using GSFT·

The GSFT pattern provides some important benefits:

Desirable system-level support. All the desirable aspects expected from system-level
support, as described at the beginning of this chapter, have been treated by the pattern
thoroughly and quite satisfactorily. In particular, repetitive development effort is
reduced greatly by introducing a large number of reusable interface components,
reusable control mechanisms and low-level services. The development process is eased
through a multi-level transparency mechanism. For example, each special type of
programmer, the FTC users, the FTC programmers, or the FCC programmers, only
have to address a limited set of concerns, ignoring any other implementation details.
The application developer can specify, change or customise a special scheme for
software fault tolerance through a simple interface without modifying any
functionality-related source code. Different programmers may also choose the different
number of variants and a special adjudicator depending upon application-specific
requirements.

Improved dependability. The dependability of various approaches to fault-tolerant
software has been studied extensively (see the related sections in Chapter Two).
Academia and industry appear to have reached a general consensus that fault tolerance
techniques for coping with software faults, if used properly, have the capability of
increasing the entire dependability of a computer-based system [McAllister & Vouk
1996].
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Transparency. The clients requesting fault-tolerant services are not aware of how fault
tolerance is actually achieved. The fault-tolerant objects providing dependable services
simply use the reusable control mechanisms to execute software variants and the/
adjudication function without knowing any implementation details of the mechanisms.
The reusable control mechanisms may request further low-level services such as state
restoration and synchronization, but do not need to know how services are
implemented.

Flexibility. This pattern offers high flexibility. The choice of schemes, number and
order of the variants can be determined dynamically in the pattern. Moreover, apart
from support for a variety of fault tolerance schemes, the clients can also decide to use
fault-tolerant services only when the need arises. This is because the clients have a
reference to a fault-tolerant object but not directly to the generic FT interface. It is
possible for different instances of the client to request different services including non-
fault-tolerant one, i.e. only a single variant is executed without any adjudication.

Changeability and extensibility of components. If fault-tolerant objects change but their
interfaces remain the same, there will be no functional impact on clients. Similarly,
modifying the internal implementation of a fault tolerance scheme, but not the interface
the generic FT interface component provides, will have no effect on both clients and
fault-tolerant objects other than possible performance and dependability changes. The
generic FT interface component provides a safe and uniform mechanism for changing
and extending the software system. The components supporting a new fault tolerance
scheme can be easily added to the system without touching any existing fault-tolerant
objects. To use a new scheme, the fault-tolerant objects may have to pass a new
parameter to the interface, but will not need to change any functionality-related source
code.

Portability. This pattern hides operating system and network system details from
clients, fault-tolerant objects and generic FT interface components by using a multi-
level indirection architecture. When porting is needed, it will be sufficient in most
cases to port the reusable interface components to a new platform and to recompile
clients and fault-tolerant objects. If the low-level services hide system-specific details
from the components located at higher levels of the reference architecture, only these
low-level components need to be ported.

Reusability. First, the architectural pattern can be reused whenever software fault
tolerance is required. Secondly, control mechanisms for a wide variety of fault
tolerance schemes can be also reused. Thirdly, when building new client applications,
even the functionality of the new application can be based on existing services. For
example, if certain common services have been implemented as fault-tolerant objects,
clients will not need to re-implement these services themselves. It may instead be
sufficient to integrate these services into the new client application.

The generic software fault tolerance pattern imposes some liabilities:
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Development and execution overheads. The implementation of different software
variants and the adjudicator does lead to a high development cost. Thus, the use of this
pattern can be justified only in systems that require a very high level of dependability.
There is also a run-time overhead in terms of the execution time to perform the
software variants, sequentially or in parallel, to switch over the variants, and to
adjudicate the results.

Increased number of components. As there are different variants for a given function
and the adjudication function, the size of the software increases. If an application
system has constraints on the size of the software, introducing redundancy into the
code may not be acceptable. This pattern also includes many more components than the
components normally required by a non-fault-tolerant system. This may have a
negative impact on system efficiency.

Restricted efficiency. Applications using this software fault tolerance pattern are
usually slower than applications that do not use fault-tolerant services. Systems that
depend directly upon a concrete fault-tolerant mechanism also give better performance
than our general architecture, because the architecture introduces multiple indirection
levels so that different concerns can be addressed separately and portability, flexibility
and changeability can be improved. The performance penalty is also caused by the
interaction between an increased number of components. A reflective implementation
may require extra processing and coordination between the base level and meta level,
which can decrease further the overall performance of the system.

Testing and debugging. Tested reusable components may ease the task of testing a
client application developed based on these reusable components. However, debugging
and testing a system involving many components can be difficult. For example, the
cooperation between a client and a fault-tolerant object, or between a fault-tolerant
object and a generic FT interface, can fail for various reasons - either the fault-tolerant
object fails to deliver the requested service or something goes wrong on the
communication path between the client and the fault-tolerant object.

Language support. Our reference architecture and pattern may be implemented using
different implementation strategies and different programming languages. An
implementation based on inheritance and delegation can use most object-oriented
languages such as C++, Ada 95 and Java. However, a reflective architecture may be
hard to implement in some languages, such as C++, which offers little or no support for
reflection at all. It is almost impossible in such languages to exploit the full power of
reflection, for example, adding new methods to a class dynamically. Limited
capabilities of reflection could be added on an existing language. Open C++ is one of
the examples.

Related Patterns

The NVP scheme has been previously implemented in various different ways, and one
particular implementation is documented as Master-Slave pattern in [Buschmann
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1995]. Another special implementation ofRB is identified as Backup design pattern in
[Subramanian & Tsai 1995]. Largely based on the object-oriented approach to software
fault tolerance discussed in our previous work [Xu et al 1995c], [Daniels et al 1997r
describes a pattern, called the Reliable Hybrid Pattern, to support the development of
fault-tolerant applications that use NVP, RB or other advanced hybrid techniques.
[Ferreira & Rubira 1998] introduces a Metapattern called Software Redundancy to
achieve fault tolerance based on a reflective meta-level architecture. Our pattern is
much more general and not limited to a single possible implementation such as the
reflective solution. It also documents existing solutions and experience in
implementing fault-tolerant concurrent software.

5.3 Case Study: The Fault-Tolerant Production Cell

Our reference architecture in Section 5.1 and the associated architectural pattern in
Section 5.2 determine the basic structure of the solution to the problem of building
fault-tolerant software, but they do not specify a fully-detailed solution. They provide a
scheme for a generic solution to a family of problems, rather than a prefabricated
module that can be used "as it is". This scheme must be implemented according to the
specific needs of a particular application in hand. In this section, we will use a realistic
case study to investigate various design and implementation details specific to a
concrete implementation. In particular, we will examine the feasibility of using CA
actions as a structuring tool to design industrial safety-critical applications.

An industrial production cell model, based on a metal-processing plant in Karlsruhe,
Germany, was first created by the FZI (Forschungszentrum Informatik) in 1993
[Lewerentz & Lindner 1995], within the German Korso Project, in order to evaluate
and compare different formal methods and to explore their practicability for industrial

. applications. Since then, this original case study, Production Cell I, has attracted wide
attention and has been investigated by over 35 different research groups and
universities. In 1996, the FZI presented the specification of an extended model of the
original production cell, called the "Fault-Tolerant Production Cell" or Production Cell
II [Lotzbeyer 1996]. This second model, which has an additional press, extra sensors
and warning light systems to facilitate component failure detection and fault tolerance,
is much more complex and realistic than Production Cell I. Unlike the first model,
failures of electro-mechanical components and sensors in Production Cell II are of
major concern. The cell is required to provide continuous service even if one of the two
presses is out of order.

The original, rather simplistic, production cell model assumes no device or sensor
failures occur. Under such assumptions, we used the CA action concept to organize and
design a control program, and implemented it in Java [Zorzo et al 1999]. The control
program that we had developed was then applied to a FZI-provided. TcllTk simulator,
demonstrating how functional and safety-related requirements could be separately

167



Chapter 5: System-Level Support

satisfied by controlled multi-threaded cooperation and the strict enclosure of interaction
between cooperating devices.

The Fault-Tolerant Production Cell exposes more and richer issues related to failures
and fault tolerance, and it is therefore a valuable case study for investigating and
developing concurrent fault-tolerant software. Because devices, sensors, actuators and
the control program itself can fail, the required control program is necessarily much
more complex, hence more realistic, than the program that we developed for the
original, non-fault-tolerant production cell. Many dependability-related issues must be
addressed properly.

Following a brief description of the Fault-Tolerant Production Cell model, we provide
an analysis of software faults and possible hardware component failures. Based on the
failure analysis, we will describe a design for a control program that uses CA actions to
deal with both safety-related and fault tolerance concerns, and outline an
implementation of the control program. Finally, we will discuss our experience with,
and lessons learnt from, this practical case study.

5.3.1 Description of the Fault-Tolerant Production Cell

The Fault-Tolerant Production Cell consists. of six devices: two conveyor belts (a feed
belt and a deposit belt), an elevating rotary table, two presses and a rotary robot that
has two orthogonal extendible arms equipped with electromagnets (see Figure 5.13).
These devices are associated with a set of sensors that provide useful information to a
controller and a set of actuators via which the controller can exercise control over the
whole system. The task of the cell is to get a metal blank from its "environment" via
the feed belt, transform it into a forged plate by using a press, and then return it to the
environment via the deposit belt.
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Figure 5.13 The Fault-Tolerant Production Cell (top view)

Moreprecisely, the production cycle for each blank is: i) if the traffic light for insertion
shows green, a blank may be added, e.g. by the blank supplier, to the feed belt from the
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environment, ii) the feed belt conveys the blank to the table, iii) the table rotates and
rises to the position where the magnets of the robot are able to grip the blank, iv) arm 1
of the robot picks the blank up and places it into an unoccupied press, either press 1 of"
press 2, v) the chosen press forges the blank, vi) arm 2 of the robot removes the forged
plate from the press and places it on the deposit belt, and vii) if the traffic light for
deposit is green, the plate may be forwarded further and carried to the environment
where a container may be used, e.g. by the blank consumer, to store the forged pieces.
(Normally both presses are used and a certain amount of interleaving of two such
production cycles, one for each press, is possible.)

The controller that controls the entire cell can be implemented in hardware, and/or
software. In this thesis we will investigate a software-implemented controller only. Our
design and control program will support a varying, adaptive operating sequence of the
robot in order to achieve high flexibility.

Normally both presses are used. Assuming that the blanks arrive at the feed belt
frequently enough, the Production Cell II model specifies two typical operating
sequences of the robot. The movement of the robot for interacting with press 2 can be
exactly the same as that defined in Production Cell I [Lewerentz & Lindner 1995]. That
is, i) arm 1 picks up a blank from the table, ii) arm 2 picks up a forged blank from press
2, iii) arm 2 places the forged blank on the deposit belt, and iv) arm 1 drops the
unforged blank into press 2. However, since press 1 is closer to the table, the
appropriate operating sequence of the robot for interacting with press 1 is slightly
different: i) arm 2 picks up a forged blank from press 1, ii) arm 1 picks up an unforged
blank from the table, iii) arm 1 drops the blank into press 1, and iv) arm 2 places the
forged blank on the deposit belt.

The above two sequences of the robot are normally executed alternately. If one of the
presses is out of order, the corresponding operating sequence is skipped. In more
complicated cases, e.g. uncertain arrival of blanks from the feed belt, the movement of
the robot is required to be more intelligent and adaptive. A variety of operating
sequences will be possible, depending upon how the control program is designed.

Basic System Requirements

A control program and the controlled cell must satisfy certain requirements specified
by the Fault-Tolerant Production Cell model, namely:

Safety. i) device mobility must be restricted, ii) device collisions must be prevented,
iii) blanks must not be dropped outside safe areas (i.e. feed belt, table, press, and
deposit belt,) and iv) sufficient distance must be maintained between blanks.

Liveness. Any blank put into the cell via the feed belt must eventually leave the cell
via the deposit belt and have been forged by one of the presses, In addition, this
property must still hold if only one of the two presses fails.
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Failure Detection and Continuous Service. When any of a large number of defined
failures occurs, it must be detected and unless it just concerns one of the presses
the system must be stopped in a safe state. After recovery from the failure, which
typically would require action by the user of the Production Cell, the system
should be able to resume operations starting from this safe state. Similarly, after a
failed press has been repaired, it should be able to resume its contributions to the
production process. (Certain safety requirements can no longer be met if some
special failures occur, e.g. a blank is dropped outside safe areas, but other safety
properties must still be guaranteed, e.g. restricted device mobility.)

Other requirements such as flexibility and efficiency may be taken into account, but
must not conflict with the above requirements.

System Clock and Stopwatches

The Fault-Tolerant Production Cell model provides a global system clock that gives the
current time at any instant. Based on the system clock, a control program can
implement several stopwatches supervising certain processes, e.g. the movement of the
feed belt. Whenever the system starts or re-starts, the system clock is initialized. The
current time is transmitted with every transmission of sensor values. In order to help
detect certain failures, upper time bounds on the movement of some devices are defined
and can be checked using stopwatches. Once the timeout expires, a failure will be
reported. (For example, fjeedbelt is defined as the maximum time during which the feed
belt carries a blank from the start to the end of the belt, and a typical value for fjeedbelt
is 50 seconds [Lotzbeyer 1996].)

Alarm Signals

The Fault-Tolerant Production Cell model also provides an alarm signal mechanism for
reporting component failures to the user of the Production Cell. The control program is
required to switch on the alarm signal whenever a hardware failure is detected. (In our
design, the alarm can be also switched on in order to indicate the occurrence of a
software fault in the control program itself.) An attached message can be sent to the
user with more detailed information about hardware failures and software errors. The
model assumes that this alarm signal can be turned off only by the operator, indicating
that all faulty devices, sensors, actuators or software faults have been repaired.

5.3.2 Assumptions and Failure Analysis

Before analyzing possible software faults and component failures of the cell, we state
the major assumptions made in the Fault-Tolerant Production Cell model, as defined by
FZI:

Assumption 1: The system clock, two traffic lights, and the alarm signal mechanism
are fault-free and do not fail.

170



Chapter 5: System-Level Support

Assumption 2: Values of sensors, actuators and clocks are always transmitted
correctly without any loss or error.

Assumption 3: No failure can cause devices to exceed certain limiting positions; in the
worst case devices are stopped automatically.

Assumption 4: All sensor failures are indicated by sensor values. Boolean sensors
return a zero value, and enumeration type sensors return a specified value that
indicates a failure.

Assumption 5: All actuator failures will cause devices to stop.

Software Faults in the Control Program

A control program for the Fault-Tolerant Production Cell is a complex program with
multiple concurrent control threads that must coordinate the interaction of multiple
concurrent devices in a highly safe manner. Due to the complexity, it cannot be simply
assumed that the control software itself will be free of error. Software faults might
manifest themselves during the system operation time. Especially for addressing safety-
related concerns, software faults must be taken into account and be handled properly by
means of various techniques discussed in previous chapters.

Apart from possible incomplete or inconsistent specifications of computation
requirements, there are two other sources which may introduce software bugs into the
control program. One source is the selection of inadequate or insufficient algorithms
which do not cover all realistically possible application situations, especially those rare
but possible system conditions. Another source is mistakes in converting a selected
algorithm into a program for a specific environment such as the Fault-Tolerant
Production Cell. In addition, since the control program involves concurrency and/or
distribution, software faults can be further introduced into the part that integrates and
coordinates multiple concurrent modules. Although individual modules may meet their
respective specifications, the specifications are often incomplete and inaccurate as to
coordination and cooperation between modules.

Software fault avoidance is particularly difficult in realistic safety-critical applications.
Although the use of formal methods is very helpful in improving the software quality,
formal verification of designs and implemented programs has not yet advanced to the
level where the absence of any error in sizeable software can be verified by machine.
(This topic will be addressed further in Section 5.3.4).

The Production Cell can be viewed as tlie environment of a control program, and
component failures of the cell can be regarded as environmental failures with respect to
the control program. For a given device of the Production Cell, we classify possible
component failures into: i) sensor failures, ii) actuator failures, and iii) lost or stuck
blanks. We also show how a given failure can be detected by sensors, actuators,
stopwatches, singly or in combination. It is important to notice that in many cases
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different types of failures cannot be distinguished just based on the on-line information
available. We therefore discuss failure detection only, and assume that fault diagnosis
and subsequent device repair are performed off-line. In the interests of simplicity and
brevity, our discussion just treats the case of failures of either the robot or a press; for a
complete treatment, see [Xu et al 1998b].

Failures of the Robot

Sensor Failures. There are three sensors associated with the robot - each sensor
returns one of several pre-defined values about the position of one of the robot's arms
or the robot's rotary position. Three electric motors are responsible for rotating the
robot or extending/retracting its arms. Sensor failure or electric motor failure is
indicated automatically by a special sensor value, but these two types of failures cannot
be distinguished using this sensor value alone.

Actuator Failures. There are three kinds of actuator associated with the robot and each
has its own failure modes: i) failure modes of actuators that retract an arm of the robot
include: no response (i.e. cannot move) and unexpected stopping of a moving arm,
which can be detected by checking values of robot sensors, ii) failure modes of
actuators that switch an arm magnet on or off include: no response (e.g. the arm cannot
pick up or cannot drop a blank) and unexpected picking or dropping, which can be
detected only by checking values of other devices interacting with the robot, and iii)
failure modes of the actuator that rotates the robot, that include: no response (i.e.
cannot rotate) and unexpected stopping of the rotating robot, which can be detected
immediately by checking values of the sensor that indicates the robot's rotary
positions.

Lost Blank. This type of failure can be detected only by checking a group of sensor
values from various devices interacting with the robot.

Failures of a Press

Sensor Failures. There are four sensors associated with this press, one reporting
whether a blank is in the press (called blank sensor), and others reporting press
positions. A failure of the blank sensor can be detected by checking whether a robot
arm has transferred a blank to or from the press. The failure of a sensor that reports
press positions can be detected by using a stopwatch to measure the moving time of the
press and by checking other sensor values on press positions.

Actuator Failures. Failure modes of the actuators that move the lower part of press 1
include: no response (i.e. cannot move) and a moving press unexpected stopping,
which can be detected by checking values of the press position sensors and values of
stopwatches.

Stuck or Lost Blank. This failure can be detected only by checking the value of the
sensor that reports whether a blank is in a press.
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Error Detection Measures

In order to detect software errors, appropriate detection measures must be incorporated
into a software design. For this Production Cell application, any control commands sent
to the cell cannot be simply recalled. For example, a wrongly forged blank cannot be
easily restored. In some cases, the possibility of using backward error recovery in an
effective way is rather limited. It is therefore important to detect errors before the
control program actually sends a command to the cell. In fact, the practical
effectiveness of any scheme for coping with software faults rests critically on its ability
to detect software errors before they can impact on the system environment. Assertion
statements are a common form of error detection measure. Other detection mechanisms
and measures may be used as well. By implementing different schemes such as
adaptive recovery and fault masking, we can use acceptance tests and voting checks to
mitigate the fallibility of run-time assertions. The use of nested actions can provide
further protection - an error which is not detected at a low level might be identified by
a detection mechanism or measure at a higher level.

These mechanisms and measures can also be used to detect hardware component
failures of the cell. For example, after the control program has sent a control command
to the robot and asked the robot to drop a blank into press 1, the value of the sensor that
reports a blank in the press must be checked by an assertion statement. If the sensor
returns 0, indicating that no blank in press 1, then an exception must be raised.

However, there are several possibilities that could have caused this exception: i) the
blank might have been lost, ii) arm 1 of the robot might have failed to drop the blank,
and iii) the sensor of press 1 might have failed to report that the blank has been dropped
into the press. If a powerful on-line diagnosis algorithm could identify this failure as
the sensor failure, exception handling and error recovery would be quite
straightforward - just report the exception to the user and continue normal operations
of the cell. However, our analysis shows that distinguishing these failures from each
other at run-time is extremely difficult, if not impossible. In most cases, if a failure
occurs and thus an exception is raised, the cell will simply have to be stopped in a safe
state, if at all possible, for the user to deal with. (Certain safety requirements cannot be
met if a blank is dropped outside the safe areas, but the others must still be maintained.)

Failures of sensors that report press positions and failures of the press actuator can be
detected by assertion statements and identified unambiguously with the aid of
stopwatches. Such failures must be reported to the user through the alarm. However,
because the Fault-Tolerant Production Cell has two presses, normal operations can be
maintained using a single press, albeit with 'some performance degradation.

A fault-tolerant program should have the ability to confine damage and failures. For the
production cycle of the cell, a device or sensor failure should not affect normal
operations of other devices. For example, when a failure of the robot occurs and is
handled by the control program, the deposit belt should still deliver an already forged
blank, if there is one, to the blank consumer. In the following, we will demonstrate how
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CA actions can confine damage and failures effectively, and minimize the impact of
component failures on the entire cell.

5.3.3 Design of a Control Program Using CA Actions

As discussed in Section 5.3.1, a control program for controlling the Fault-Tolerant
Production Cell must satisfy a number of requirements regarding safety, liveness and
correctness. Moreover, these requirements must be met even when one of the two
presses has failed. The main characteristics of our CA action-based design are the way
it separates safety, functionality, and efficiency concerns among a set of CA actions,
which thus can be designed, and validated, independently of each other, and of the set
of device/sensor-controllers that dynamically determine the order in which the CA
actions are executed at run-time. In particular, the safety requirements are satisfied at
the level of CA actions, while the other requirements are met by the device/sensor-
controllers. There is a detailed discussion in [Zorzo et al 1999] as to how these design
decision were made and why we used certain actions to enclose the interaction between
certain devices in our control program for Production Cell I. Our design for Production
Cell II follows a similar strategy. It includes 12 main CA actions; each action controls
one step of the blank processing and typically involves passing a blank between two
devices. Any device can move only within a CA action. (An action can contain further
nested actions - see Figure 5.15 for an exainple.)

There are six concurrent execution threads in the control program, corresponding to the
six devices: FeedBelt, Table, Robot, Pressl, Press2, and DepositBelt, each of
which threads basically performs a simple endless loop. All device movements are
performed within CA actions, and the devices involved in each action are switched off
before the action is left, so that when not under the control of an action each device is
stationary. Two additional threads model activities in the environment:
BlankSupplier, and BlankConsumer. Note that FeedBelt is responsible for
controlling the traffic light that indicates when another blank can be inserted, while
BlankConsumer is responsible for controlling the light that indicates when a processed
blank can be deposited. A blank is designed as an external object with respect to the
top-level CA actions. Usually, one role of a CA action takes the blank as an input
argument, and the device corresponding to this role passes it to another role which
returns it as an output argument.

Figure 5.14 portrays the 12 related CA actions as overlays on the FZI simulator
diagram [Lotzbeyer 1996]. Note that an intersection between CA actions in Figure
5.14, e.g. between TransportBlank and LoadDepositBelt, represents the fact that
those CA actions cannot be executed in parallel. The mutual exclusion feature of CA
actions guarantees that a blank or a device cannot be involved in more than one action
at a time so that neither blanks nor devices can collide. Furthermore, even if the actions
that devices participate in are invoked in the wrong order, because of a control program
design fault, then the result will be at worst a safe deadlock.
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Figure 5.14 CA actions that control the Fault-Tolerant Production Cell

As mentioned previously, each hardware device is associated with a device-controller
(i.e. an execution thread) which is responsible for dynamically specifying the sequence
of actions that the device will participate in. For example, without compromising safety
and functionality requirements, the robot thread can skip all the CA actions related to
one of the presses if this press has failed, and so tolerate this fault.

Design of CA Actions

Our design assumes that an action will begin only if its pre-conditions are valid, and
that if no exception is raised during the execution of an action then its post-conditions
will hold (though this could, if so wished, be checked using an acceptance test). In the
following, we first address the normal pre- and post-conditions for actions that control
the entire cell. For a given action, these conditions are used to ensure that the execution
of that action will not violate in any way the system requirements given in Section
5.3.1, especially those related to safety and fault tolerance. Due to limitations of space,
we take just the action LoadPre s s 1 as an example.

CA action LoadPressl

Pre-conditions Post-conditions

robot off robot off
blank on arm 1 no blank on arm 1

both arms retracted both arms retracted
robot at one of defmed angles robot angle: arm 1 towards press 1

press 1 off press 1 off
no blank in press 1 blank in press 1

press 1 in bottom position press 1 inmiddle position

Table 5.2 Pre- and post-conditions of CA action LoadP:ces s 1

175



Chapter5: System-LevelSupport

Values of the related sensors or states of the related actuators that can be used to check
these conditions are identified in our detailed design to facilitate the actual
implementation of a control program (see [Xu et al 1998b]). For example, to check
whether the robot is off, we can check whether allthree related actuators (i.e. that
retracts arm 1 or arm 2, and that rotates the robot) are in the stop state. To make sure
that arm 1 and arm 2 are retracted (a safe state), we can check values from the sensors
that report arm positions.

The robot has six defined rotary positions or angles so the robot-related CA actions
could specify a defined angle as one of their pre-conditions. But this would affect the
flexibility of the robot and limit the possible execution sequences of CA actions. The
weaker pre-condition "robot at one of the defined angles" permits more possible
execution sequences, thereby improving system performance.

We will now show how CA actions can deal with various types of failures in a well-
controlled manner (e.g. by specifying the exceptional post-conditions for a given
action, as shown in Section 5.3.5). Consider the action LoadPressl again. Figure 5.15
illustrates the interactions (themselves involving nested CA actions) between the
participating threads within the LoadPressl action. This action has four roles: Robot,
Pressl, RobotSensor, and PresslSensor,. and represents the cooperation that
arranges for arm 1 of the robot to drop a blank into press 1.

concurrent threads CA actionLoadPressl

RobotSensor -
extendarm1

retract
rml) rotaterobot arm1

-,-

\ drop blanksynchronizingensor
movepress1 \to themiddle

1 position

Robot(A

PressIS

Press

External
object
Blank--+-------------------+---

"" access

Figure 5.15 CA action LoadPressl

In the form of a specification language, action LoadPressl is described below using
the COALA notation, which was developed for the formal specification of CA actions
[Vachon et a11998]. (Our Java implementation of the control program is based on a set
of pre-defined components for CA actions that can be used to implement CA action
designs specified in COALA.)
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CAA LoadPressl;
Interface

Use
MetalBlank;

Roles
Robot: blankType, robotActuator;
Pressl: blankType, presslActuator;
RobotSensor: armlExtensionSensor, robotAngleSensor;
PresslSensor: blankSensor, lowPositionSensor, midPositionSensor;

Iispecify external objects

Exceptions
PresslFailure, ArmlFailurel, ... ;

End LoadPressl;
Ilexceptions to signal

Program 5.5 Interface ofCA action LoadPressl

The exceptions declared in the Interface part of an action are those that can be
signalled to the enclosing action. The roles of an action can signal an exception directly
but must guarantee that the exception that is signalled has been agreed by all the roles
of that action. In the case of abortion or failure, the CA action support mechanism
(which can be assumed by the application programmer to be fault-free) will enforce the
abortion and signal the appropriate exception, either abort or failure, to the
enclosing action.

CAA LoadPressl;
Body

Use CAA Iispecify nested actions

RotateRobot, MovePressltoMid, ExtendArml, RetractArml;
Object

robotPresslLocal: Local;
Exceptions

pressl failure, blank sensor failure,
Handlers

pressl_handler, blank_sensor_handler,
Resolution

Iishared local objects

Ilinternal exceptions

pressl_failure -> pressl_handler,
Role Robot( );
Role Pressl( );

Ilresolution graph

End LoadPressl;

Program 5.6 Body ofCA action LoadPressl

Exceptions declared within the Body of a CA action can be raised by roles. When
multiple exceptions are raised within an' action, the CA action support mechanism
controls the execution of a resolution algorithm based on an exception resolution graph
declared in the Resolution part. After a resolving exception is identified, the
corresponding handler declared in the Handlers part will be invoked.

An exception handler will attempt to bring the system back to normal. If it is
successful, the CA action will end with a normal outcome. However, in most situations
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the handler can only provide some degraded service, i.e. an exceptional outcome, and
must signal the corresponding exception. Again, in the case of abortion or failure, the
CA action support mechanism will take control. If a further exception is raised during
the execution of an exception handler, control is transferred to the CA action support
mechanism immediately and the action must either abort or signal a f ai 1ure

exception.

Design of Device-Controllers

Given a set of CA actions to control the interaction of devices in the Production Cell,
device/sensor-controllers are used to determine dynamically the order in which the CA
actions are executed. Eight controllers are designed: FeedBel t, Table, Robot, Press 1,
Press2, DepositBelt, Supplier, and Consumer. Two queue objects are defined in
order to improve the flexibility of operations of both the robot and the deposit belt:
robotQueue and depositBeltQueue. The Press1 controller is shown below as a
simple example:

PresslController:

loop forever {

robotQueue. put (PRESSl FREE) Ilput message in robotQueue

LoadPressl. Press (plate) Ilactivate action LoadPressl

ForgeBlankl. Press (plate) Ilactivate action ForgeBlankl

robot Queue . put (FORGED_PLATEIN PRESS1) Ilput message in robotQueue

UnloadPressl. Press (plate) Ilactivate action UnloadPressl

Program 5.7 The Pressl controller

Figure 5.18 shows the interactions between the controllers and CA actions, where
boxes represent CA actions and ovals represent controllers. A grey line indicates
message passing between controllers, while a black line connects an action to a
controller or vice versa and implies that the controller plays a role in that action.

path of message passing

path of blank passing

Figure 5.18 Interaction between controllers and CA actions
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5.3.4 Dealing with Software Faults in the Control Program

We first investigate situations involving software faults only, i.e. we assume that only
faults that can occur are software faults in the control program, and all the hardware
components of the Production Cell are fault-free. (More complex situations involving
hardware component failures will be discussed later.)

The major software faults that may remain in the control program include i) interaction
faults that occur when the interaction relationship between roles of a CA action,
between interacting CA actions, or between the control program and the Production
Cell has not been specified properly or analyzed sufficiently, and ii) timing faults that
occur when an operation, a role or a CA action is not completed in a pre-specified
amount of time.

Software faults can be also involved in error detection and recovery mechanisms for
CA actions. They may cause a mechanism to handle an error improperly or may invoke
the mechanism when no error exists. We regard these mechanisms as part of a CA
action support mechanism, and assume that the support mechanism itself has been
tested extensively and is fault-free. To provide support for this assumption, these
mechanisms are implemented as reusable and well-tested components in our GSFT
pattern. The CA action support mechanism also contains a concurrency-control
mechanism for controlling access to external objects. In the Fault-Tolerant Production
Cell, the external objects (i.e. metal blanks) cannot be shared by two or more
concurrent CA actions due to safety-related concerns. We choose to use a simple
concurrency-control mechanism to minimize the probability of residual software bugs.
This mechanism allows a monitor object to get the state information of a blank
concurrently with a running CA action.

Software faults such as interaction faults and timing faults have not been addressed
adequately in the initial requirements for the Fault-Tolerant Production Cell [Lotzbeyer
1996], while the early high-level COALA specification for implementing the control
program (see Section 5.3.3) focused mainly on hardware device and sensor failures.
For these reasons, and the inadequacy of available fault removal techniques, we had to
admit that despite our best efforts to the contrary, software faults might exist in our
control program. This indeed turned out to be the case since we have observed
subsequently that some software design faults occur while our control program is in
use. For example, a transient software fault occurs in the FZI simulator when arm 1 of
the robot is required to place the blank into an unoccupied press. The arm performs
most specified operations but it fails to. drop the blank into the press. This fault
manifests itself only occasionally and makes its removal extremely difficult. Another
software bug appears in our control program in the form of interaction fault. This
interaction fault manifests itself only when more than two blanks are placed into the
system. Under certain conditions at run-time, two interacting GA actions can be
involved in a deadlock situation from which no further operations are possible.
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It is therefore evident that we have to deal with remaining software faults that may
occur while the Production Cell is in operation. There are a variety of software fault
tolerance schemes we may take into account. For transient software faults, a simple
"re-try" strategy is often effective [Gray 1990]. For example, the LoadPressl action
(see Figure 5.15) may have dropped a blank into press 1 properly, but the nested action
RetractArrnl failed to retract the arm to a correct position. Instead of attempting to
execute an action variant, the recovery operation can simply re-execute the nested
action in the hope that the same error may not recur. If the control program is executed
in a distributed environment, the nested action in question may be re-executed on a
different node of the distributed system. Timing faults can be treated by a simple
timeout mechanism associated with the CA action support mechanism. For a given task
(e.g. the execution of a role or an action) we specify a pre-defined amount of time. If
the task is not completed in the time, a timeout exception will be raised. Since there is
no strict timing constraints in the initial requirements for the Fault-Tolerant Production
Cell, the recovery measure can be quite simple, such as re-execution and abortion.

However, for most software design faults (e.g. the interaction fault in our control
program) a rollback and re-try approach is insufficient. Instead, tolerance of such
software faults must rely on the application of design diversity. We want to use design
diversity to minimize the probability that the independently designed variants contain
similar errors that can cause the variants to fail simultaneously. (Although it is possible
introduce diversity into the specification and other phases of the system life cycle, in
this case study we will focus on the use of diversity in the design phase and the
implementation phase.) While random diversity may be achieved by different
programmers and designers, we feel that diverse data structures and algorithms are less
likely to fail simultaneously. Such an approach is often called "enforced diversity"
which enforces systematically the use of diverse structures and algorithms in different
program variants. For example, based on our CA action-based design of the control
program, two software variants for the LoadPressl CA action are developed using
enforced diversity. Variant One is implemented in the same form as that shown in
Figure 5.15, which involves several concurrent activities and two concurrent nested
actions RotateRobot and MovePressltoMiddle. Variant Two is designed to provide
the identical functionality but following a simpler algorithm without any concurrency.
Within the second variant, five nested CA actions are executed sequentially in the order
of Move Press ItoMiddle, RotateRobot, ExtendArrnI, DropBlank, and RetractArrnl.
Because the interaction relationship between these nested CA actions is essentially
diverse in two variants, the probability that the variants fail identically should be
reasonably low.

We discussed two particular techniques for incorporating design diversity into CA
actions in Section 4.4.2: Adaptive Recovery (AR) and Fault Masking (FM). The AR
approach uses a container CA action as a form of controller. The container action uses
an acceptance test and other assertion statements to detect software faults at run-time
and performs the test on the state of the related external objects that may have been
changed by the first (nested) action variant. Once an error is detected, the container
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action will roll the external objects back to the previous, correct state and invoke the
second action variant.

The FM approach also uses a container action to control the execution of n (nested)
action variants. These variants are executed in parallel, performing required operations
on the related external objects. For each of these external objects, n clones must be
generated for n action variants. Each participating thread of the container action must
be forked into n sub-threads which will participate further in n variants respectively.
When these variants are complete, the container action must decide the correct state of
external objects based on the state of all the clones. Before the container ends, the sub-
threads are merged and redundant clones discarded. (Notice that both threads and
external objects can be replicated at the system level, i.e. outside the container action.
This may simplify the responsibility of a container action, but the related overheads are
added to the level of the overall system.)

Now we have to decide which of the above schemes should be used in 12 main CA
actions of the control program. We have found that the AR approach is more
appropriate due to the following considerations:

1) The AR scheme introduces relatively low additional complexity without having
to make clones of the external objects and to replicate threads. In our design, each
action performs certain operations of the blank object and other device objects.
The device objects such as Robot and Pressl are treated as a special form of the
external objects, i.e. the hardware objects in the environment of our control
program. The atomicity of these device objects is still maintained because all
device movements must be performed within CA actions and a device must be
stationary whenever it is not under the control of an action. However, making
clones of these device objects are extremely difficult, if not impossible, and
would be very expensive if additional hardware devices are required.

2) The full strength of the FM scheme requires the use of multiple processors and
the mechanism for forking and merging threads. It is particularly suitable for a
system with stringent real-time ~equirements. The AR scheme provides more
flexibility since it allows the control program to run on a single processor, but it
may be at a disadvantage in a real-time system. However, the Fault-Tolerant
Production Cell has no any strict timing constraints. Most of the time, the AR
scheme executes only the first action variant. The occasional execution of a
backup variant is quite acceptable for this particular application. For normal
external objects the state saving ru:d restoration required by the AR scheme
impose only a small run-time overhead (see Section 4.4.3). The device
movements for the purpose of error recovery may take a longer time than the
state restoration of a blank object, but they do not compromise the safety
concerns since all recovery operations must be performed within the related CA
action.
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3) Unlike the FM approach, the AR scheme uses an acceptance test to validate a
single result at a time without having to examine all the results produced by
multiple variants. However, we have to keep the test reasonably simple and
reduce the probability that the test itself contains software faults. In our design,
we have developed sets of pre- and post-conditions for each main CA action. All
the required acceptance tests for CA actions are derived from the corresponding
post-conditions. The correctness of these tests were also validated when our
design was examined by extensive formal verification and model-checking. The
error-detection coverage is further improved by a large number of executable
assertion statements within CA actions and run-time checks supported by the
hardware platform. Some assertion statements may be switched off when the
system performance has to be increased.

Figure 5.16 illustrates the control structure of the LoadPressl CA action using the AR
scheme to tolerate software faults. CA action LoadPressl is designed as a container
action which contains two diversely designed variants. Normally, the container action
just executes the first variant. If no error is detected, then the container action ends with
a normal outcome. However, if an error is detected by either an assertion statement or
the acceptance test (at the end of the first variant), this error must be reported to the
container action.

container action LoadPressl

RobotSensor - _..
Handler

~- Variant One (retore th cell Variant Two
(concurrent to the initial (sequential

- implementation) state before implementation) _..
the action)

- ~

RobottArml}

Press ISensor

Press I

External
objectBlank -'- 1---

V access

Figure 5.16 LoadPressl as container action to tolerate software faults

In principle, error propagation and error recovery should be performed within a
structuring framework for exception handling. When an error occurs in Variant One, an
appropriate exception must be signalled from the variant to the container. The
corresponding handler will then be called, which has to restore the related device
objects and the blank object to their original state - the state before the execution of
action LoadPress 1. After finishing the restoration, the handler will invoke the second
variant in the hope that the same software error will not occur again. In the worst case
that an error takes place again, it is always possible for action LoadPressl to signal an
abort exception, if the sate restoration is successful, or a failure exception to its
containing action. By way of example, we consider the arm 1 position error again. A
handler must handle the exceptional situation where the nested action RetractArml
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fails to place the ann in a correct position. This handler can use both a re-try strategy
and a diversely designed variant for the action. We outline the basic requirements for
the handler as follows.

Handler for Arm 1 Position Error: Re-execute the RetractArml action and
check the ann position. If the same error persists even after a pre-determined
number ofre-executions, then restore both the device objects (i.e. Robot and
Pressl) and the blank object to their original state. Invoke the second
variant. If the variant signals an exception, instead of a normal outcome,
then restore the state again. If the state restoration is successful, signal an
abort exception to the container action, otherwise signal a failure

exception.

Our design of the control program uses 12 main CA actions to address the safety
requirements. The application of software fault tolerance techniques at this level
enhances the ability of the control program to handle software errors so as to improve
both system reliability and safety. Our design also establishes a set of device/sensor-
controllers on the top of these CA actions to coordinate the execution order of the main
actions. Conceptually, this device/sensor-controller level may be considered as a
special, systemwide CA action. This outermost CA action starts when the control
system begins, and it ends when the system stops normally according to user
requirements. To achieve software fault tolerance at the level of the overall control
system, all the schemes for sequential programs discussed in Chapter Two including
recovery blocks and N-version programming can be applied directly by treating the
outmost action as a single sequential system that encloses complex concurrent
activities inside itself. Since we are concerned mainly with safety aspects in this case
study, which have been addressed at the level of 12 main CA actions, we will not
discuss further details of obtaining software fault tolerance at the level of the outermost
system.

5.3.5 Dealing with Hardware Component Failures in the Cell

We now investigate situations involving single hardware faults, i.e. we assume that
only one component failure of the Production Cell can occur before the system stops,
and the component is repaired. Based on our previous failure analysis in Section 5.3.2,
the following table shows the related failure modes of robot and press 1 within the
LoadPressl action and the means of detecting these failures. (Because the movement
of ann 2 and the top position of press 1 are not involved in this particular action, ann 2-
related failure's and the failure of the sensor that reports the top position have not been
listed in the table.) During the execution of a CA action, if any failure in Table 5.3
occurs and is detected by an assertion statement or an acceptance test, a corresponding
exception will be raised within the action by one of its roles. The exception is
propagated immediately to other roles of the action and all roles then transfer control to
their exception handlers for this exception so that they can attempt to perform
appropriate error recovery. In most cases when a component failure takes place in the
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cell, it is not possible to recover completely from the error and the normal post-
conditions of the action can no longer be satisfied. Thus, exceptional post-conditions
with respect to various given failures must be defined to specify the exceptional
outcomes of an action.

Failure modes of robot Failure detection

Sensor failure
position and rotary sensors related values in these sensors

Actuator failure
retract motor fails retract sensor
arm 1 magnet fails press 1 blank sensor
rotary motor fails rotary sensor

Blank
stuck or lost press 1 blank sensor

Failure modes of Press 1 Failure detection

Sensor failure
blank and position sensors other sensors and stopwatch

Actuator failure
motor fails position sensors and stopwatch

Blank
stuck or lost press 1 blank sensor

Table 5.3 Failure types of robot and press 1 and failure detection

By way of example again, we outline the basic requirements for the handlers of two
typical exceptions:

Handler for the Press 1Failure: The LoadPressl action performs forward
error recovery by moving the robot to an appropriate position so that it will
be able to put the unforged blank, which is still on arm 1, into press 2 once
the press is available.

Handler for the Rotary Sensor or Motor Failure: (In this case, action
LoadPressl fails to rotate the robot to the intended position.) The action
will simply use backward error recovery to attempt to move the robot back
to its initial position and rotate it again. If the failure persists, the action will
produce an exceptional outcome as defined below.

For the LoadPressl action we identify seven exceptional outcomes and corresponding
exceptional post-conditions (see [Xu et al 1998b]). By way of example, Table 5.4
illustrates two exceptional outcomes, i.e. those when press 1 or the blank sensor (that
reports a blank in the press) failed. It is important to notice from the table that different
exceptional outcomes may lead to different states of the celL For example, the
exceptional outcome caused by the press 1 failure corresponds to the situation where
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the Production Cell continues with only one operational press. (In fact, without
compromising safety and functionality requirements, the robot thread or robot-
controller can skip all the CA actions related to press 1, and so tolerate this failure.) On
the other hand, since the blank sensor is a redundant component of the cell, if both
presses are still operational its failure merely requires a report to be made to the user of
the cell. However, the other five exceptional outcomes will have to stop the entire cell
in a safe state.

Exception to signal Exceptional post-conditions

robot off
blank on arm 1

Pressl failure both arms retracted
robot angle: arm 1 towards press 2

press 1 off

no blank in press 1

robot off
no blank on arm 1

both arms retracted
Blank-sensor failure robot angle: arm 1 towards press 1

press 1 off
blank in press 1

Press 1 inmiddle position

Table 5.4 Two examples of exceptional post-conditions

By means of such analyses, given the way in which CA actions enable the different
failure situations to be treated independently of each other, the design of the actual set
of handlers for the various exceptional outcomes of each of the 12 top-level CA actions
becomes rather straightforward - some details can be found in [Xu et al 1998b].

Dealing with Concurrent Hardware Failures

Now let us address the problem of possible concurrent failures. In the interests of
simplicity, we assume that only two failures may occur within the same time interval
before the system is stopped and the related components repaired.

In the Fault-Tolerant Production Cell, some concurrent sensor and device failures can
be covered implicitly by the corresponding single failure situation. In these cases, the
error recovery measure for the single failure situation will be sufficient for handling
concurrent hardware failures. However, most of concurrent sensor and device failures
must be handled respectively and separate post-conditions must be specified. The
following table shows exceptional post-conditions for an example of concurrent sensor
and device failures:
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Exception to signal Exceptional post-conditions

robot off
(Rotary sensor or motor failure) & blank on arm 1

Pressl failure both arms retracted
press 1 off

no blank in press 1

Table 5.5 Exceptional post-conditions as to concurrent failures

The failure of the robot's rotary sensor or motor can be detected automatically and
indicated by a special sensor value. However, the returned sensor value does not
indicate which component, i.e. the sensor or the motor, actually failed. This causes
difficulty in performing effective error recovery. Very often, despite a failure having
been detected, it is not possible to determine from the available sensor readings which
of several possible failures has actually occurred. In such circumstances the control
program is designed simply to bring the system to a stop in a safe state, so that off-line
diagnosis can be performed. However, where feasible, online diagnostic programs can
be used to identify actual failures, e.g. decide whether it is a press sensor failure or a
press motor failure by a combined use of sensors, the actuator and stopwatches.

Since the Fault-Tolerant Production Cell. model assumes that sensor readings are
always correct and accurate, errors caused by software design faults can be easily
distinguished from hardware component failures which are indicated immediately by
certain sensor values. If an error is detected but no sensor value indicates a hardware
component failure, our design will treat the error as the manifestation of a software
fault, and will use appropriate software fault tolerance measures to perform error
recovery.

For each (enclosing or nested) action, various exceptions are defined based on failure
analysis and an exception graph for resolving concurrent exceptions is defined. For
example, the LoadPressl action may give rise to exceptions such as prl_failure

(press 1 failure), b_sensor_failure (blank sensor failure), arml_failurel (blank
lost), arml_failure2 (cannot drop the blank), rs_m_failure (rotary sensor or motor
failure), as_m_failurel (arm 1 sensor or motor failure while the blank on arm 1),
as_m_failure2 (arm 1 sensor or motor failure while the blank in press 1), cs_failure
(control software failuretsj), and rt_except (run time exceptions such as overflow).

An exception graph for this action is shown in Figure 5.17, again assuming that no
more than two exceptions are raised concurrently. For example, if both press 1 and
robot rotation motors fail simultaneously, this exception graph will be searched and the
resolving exception rs_m_failure & prl_failure will be raised instead of the
individual exceptions rs_m_failure and prl_failure, so that a suitable handler for
this particular situation can be invoked. Any undefined exception pairs will not be
resolved and will simply lead to the raising of the universal exception. (The handler
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for the universal exception is responsible for stopping the system' and leaving the
production cell in a pre-defined safe state, ifpossible.)

Figure 5.17 Exception graph for CA action LoadPres s 1

5.3.6 Implementation of the Control Program

In this section, we will discuss an actual implementation of a control program for the
Fault- Tolerant Production Cell based on our CA action-based design in Section 5.3.3
and using the GSFT architectural pattern introduced in Section 5.2. We first explain
why we choose Java as the implementation language and why we take an
implementation method different from a reflective solution. We then examine to what
extent the GSFT pattern helps easy the implementation of the control program and
which aspects of the implementation are application-specific and thereby requiring
application-dependent solutions. Finally, we describe briefly the support mechanism
for dependability evaluation based on fault injection.

Implementation Language and Architecture

The Fault-Tolerant Production Cell to be controlled by a control program is actually a
Tc1/Tk simulator provided by the FZI. The simulator offers a set of standard interfaces
through which a control program can get various sensor values from the simulator and
send various control commands to the simulator. In response to a given control
command, the simulator performs the required device movement. The control program
itself is independent of the simulator and can be written using any general-purpose
programming language.

We would have chosen C++ or Ada 95 as the implementation language because of our
previous C++ experience in implementing software fault tolerance for sequential
programs (see Section 3.4) or our Ada experiment for evaluating exception handling in
a distributed object system (see Section 4.3.3). However, our major. experience related
to CA actions has been the prototype implementation of JavaCAaction - an API for
programming CA actions based on the JavaAtjuna system (see Section 4.4.3). Within
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JavaCAaction, a library of reusable objects that provides main services needed for
implementing a CA action has been available together with the tools provided by
JavaAtjuna for constructing multi-threaded atomic transactions. Given our previous
experience, the Java language seems to be the best' choice for implementing a CA
action-based control program for the Fault-Tolerant Production Cell. This choice
becomes more evident when we want to exploit the power of both the GSFT pattern,
supported by reusable components, and the transaction system, supported by
JavaAtjuna.

We would have chosen a reflective software architecture for the control program due to
our experience with the use of Open C++ to implement a fault-tolerant sorting
application (see Section 5.1.3). However, we found that it is often difficult to
implement a reflective architecture in a language that offers little or no support for
reflection. The Open C++ is a successful example, but it provides only a limited form
of reflection. There are some experimental Java systems that provide reflective
capabilities, but none of them has received wide acceptance. Another reason for
choosing a non-reflective architecture is that we has documented the GSFT pattern in
Section 5.2 as an object-oriented solution using inheritance and delegation. A similar
implementation architecture will help us to examine the benefits and drawbacks of
using the GSFT pattern in an actual application.

Using the GSFT Pattern to Facilitate the Implementation

The GSFT pattern for implementing software fault tolerance in a concurrent object
system includes four reusable components: external interface, generic FT-m-

interface, variant and adjudicator (see Figure 5.7). These components are
defined respectively in the form of a Java class to facilitate the implementation of a
Java-based application. The abstract CAaction class defined in Program 4.1 provides a
standard external interface for CA actions. (It is important to notice that this abstract
class is a direct implementation of the CA action specification in COALA in Section
5.3.3.) The generic FT-m-interface component is a Java class that offers a set of
operations for controlling the execution of software variants and adjudicators according
to a variety of fault tolerance schemes (e.g. adaptive recovery and fault masking). This
interface component exercises the actual control through two abstract classes variant
and adjudicator.

In order to implement the control program for the Fault-Tolerant Production Cell, we
define each of 12 main CA actions as a Java class, which may be associated with
several action variants and an adjudicator for the purpose of tolerating software faults.
To actually program a CA action using the GSFT pattern, the initial step is to define a
Java class that extends the abstract CAaction class. By way of example, Program 5.8
shows part of the definition of the LoadPressl CA action. This extended definition
specifies the actual body of the action by overriding the abstract inAction operation in
class CAaction. It is also responsible for declaring the shared local objects used for
coordinating the roles within the action.
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Class LoadPressl extends CAaction
local robotPresslLocal;
public LoadPressl() {

robotPresslLocal = new Local (this, "robotPresslLocal");
SharedLocalObject list[) = {robotPresslLocal};

Illocal object used by roles

public void inAction (...) throws e { Ilactual body of the LoadPressl action
Ilother related operations

Program 5.8 The LoadPressl action

With respect to action variants and the adjudicator, the LoadPressl CA action serves
as a container action that is responsible for controlling the execution of both the
variants and the adjudicator. However, the container action does not implement the
actual control mechanism. Instead, it uses services provided by the generic FT -m-
interface in the GSFT pattern. The inAction operation of the container action simply
requests the service that implements the control using the AR scheme, and passes the
reference to the action variants and the adjudicator to the interface component.

The action variants are defined by extending the abstract variant class (instead of
being derived from the abstract CAaction class). Each action variant is implemented
to meet the same functionality requirements but using diverse data structures and
algorithms. For a CA action, an acceptance test is designed mainly based on the post-
conditions of the action specified in the design phase. To implement the test, an
accepTest class is defined by extending the abstract adjudicator class. The actual
acceptance test is implemented as an operation that overrides the abstract getResul t ( )

operation in the definition of class adj udicator.

Following a similar and simple method, each of 12 main CA actions can be
implemented as an FT -m-component and thereby equipped with the ability to tolerate
software faults. The software fault tolerance scheme chosen for these actions is the AR
approach. The original AR control mechanism built in the interface component
provides only a basic version of the control. However, the GSFT pattern offers us the
flexibility of enhancing the control mechanism by modifying the Controller class
(see Figure 5.11). The action operation of class Controller can be re-defined using
some more advanced control functions. The current implementation of the action

operation uses the following control algorithm based on a structuring framework for
exception handling:

1) execute the inAction operation· of Variant One and then perform the
getResul t () operation of class accepTest - if no any exception is raised, go
back to the caller;

2) if an exception is raised during the execution or getResuLt () returns ERROR,

then invoke the corresponding handler; if no corresponding handler is found,
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invoke the generic handler. (In either of the two exceptional cases the control is
passed to the handler.)

The generic handler is responsible for i) restoring the blank object by calling its undo

operation, ii) restoring the device objects by executing a set of reverse operations, and
iii) invoking a new action variant. In the interests of simplicity and brevity, the current
implementation of this handler permits just one alternate, i.e. Variant Two. Whenever
an exception is raised or the acceptance test returns ERROR,the handler will signal an
abort exception if the state restoration is successful, or signal a failure exception to
the caller, i.e. an instance of the ARclass.

Together with the CA action abstraction, the exception handling framework we used to
perform error recovery allows the controlled usage of both forward and backward
recovery techniques. For example, to implement forward error recovery a handler can
send compensatory messages to external device objects that may have been affected by
an erroneous command from the control program. This is particularly useful for our
control system that has to interact with environmental objects that often cannot be
simply backed up, e.g. situations in which a blank has been forged incorrectly or a
blank has been dropped outside the device area.

By definition, the execution of a CA action will only produce one of the four forms of
output: a normal outcome, an exceptional outcome, an abort exception, or a failure

exception. Following the GSFT pattern, it is also possible that a CA action refuses
performing any required computation. Instead, it signals an interface exception to the
part of the system that made the invalid request. This type of exceptional situations
may occur due to a variety of possible reasons. For example, the interface checks of the
CA action detected that the pre-conditions for the execution of the CA action do not
hold, or some unexpected threads attempted to participate in the performance of the CA
action. We have used a PAss-based method for identifying the intended participants
and for excluding any other unwanted threads (see Section 4.4.3).

During the process of using the GSFT pattern to implement the control program, we
have leant several lessons. It is evident that the GSFT pattern enables reuse of the
reference architecture for implementing software fault tolerance and simplifies to a
great extent the development of a fault-tolerant object by separating different concerns.
However, the pattern provides little support for addressing functional aspects of a CA
action. While a pattern captures many key properties of a software architecture, it
suppresses many implementation details. We feel that patterns should be treated as just
one of many important tools in a toolkit of supporting software development. It is not
realistic to expect that patterns free developers completely from complex analysis,
design and implementation issues. An actual application like the Fault-Tolerant
Production Cell often requires the use of application-specific design and
implementation strategies. For example, the room for reusing an application-
independent backward recovery strategy is rather severely limited in the Production
Cell case study since it involves very intensive interaction between the control program
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and the cell. In many cases, application-specific reverse operations are required in order
to bring external device objects to a previous state.

The interaction that must be controlled within a CA action includes the cooperation
between roles of the CA action, concurrent access to the external objects, and
interaction between device objects and the action. We take the blank object as an
example to demonstrate how its atomicity is maintained in our implementation. An
blank object must be defined as an external atomic object, and can be implemented by
extending the abstract AtomicObj ect class of the JavaCAaction API system. Every
new class extended from this class is provided with transactional semantics, i.e. begin,
commit, and undo operations, but must provide its own definitions of commitState

and undoState operations. The actual transactional semantics of CA actions are
achieved by implementing a multi-threaded CA action interface on top of the
JavaArjuna system. JavaArjuna then employs nested transactions to control the state
changes of atomic objects and to ensure that only consistent state transformations occur
on the objects despite concurrent access and hardware-related failures such as node
crashes in a distributed system.

Unlike internal objects declared by a related CA action and used for coordinating the
cooperation of roles of the action, external objects are passed to CA actions via input
parameters when activating a role. A corresponding transaction will be issued on the
external blank object passed to a CA action whenever a new instance of the action
starts. The transaction will end when the CA action ends. Our JavaCAaction API
system implements these operations based on the multi-threaded mechanism in
JavaArjuna: the thread that first arrives at the CA action interface starts a transaction,
and other subsequent threads will then join the same transaction (instead of starting a
new transaction). At the exit, the transaction is ended by removing all the participating
threads from the transaction synchronously.

Supporting Fault Injection and Dependability Evaluation

Once the control program is implemented, it must be evaluated to determine whether
the Fault-Tolerant Production Cell system meets reliability and safety objectives.
Although our design of the control program has been validated using the model-
checking technique in [Canver et aI1998], an analytical model such as a Markov model
(see Section 3.3) should be developed to evaluate various dependability metrics for the
system. Another important way to evaluate dependability is fault injection. We have
used a simple method of injecting software faults directly into the control program
during the implementation and testing phases of the system life cycle. Hardware device
and sensor failures can be injected into the system through a failure injection panel
even when the Production Cell is in operation.

Figure 5.19 shows a modified version of the failure injection panel provided originally
by FZI. By using this panel various mechanics and sensor failures can be easily
injected into the Production Cell simulator. For example, a rotary motor failure or a
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rotary sensor failure of the robot can be injected by pressing the corresponding buttons
in the panel. We have extended the original FZI panel to permit the injection of
concurrent failures: a pair of failures can be injected into the simulator if the failure
mode selection is set to "double". In this mode, two "different failure buttons may be
pressed sequentially, but only the second press will stimulate the actual injection of
concurrent failures. After one or more failures are injected into the simulator, failure
detection measures embedded in our control program should be able to detect them
promptly. One or more corresponding exceptions will thus be raised. The simulator
will then portray how such exceptions are handled within the CA action framework, in
particular how the system is, if necessary, brought to a stop in a safe state.

Figure 5.19 Revised failure injection panel

During the testing phase and the demonstration of our implementation, all injected
device or sensor failures were caught successfully and handled immediately by the
control program. This demonstrates the control program is highly robust when dealing
with environmental faults. However, it is difficult to determine precisely the ability of
the control program to tolerate software faults although we know that the ability
depends mainly upon the error-detection coverage provided by a combination of the
acceptance test, executable assertion statements and run-time checks by the hardware
system. We also found that creating a set of meaningful software faults that could pass
these tests and checks is not an easy task at all. Nevertheless, some events that occurred
at run-time provided quite encouraging feedback. A previously unknown software fault
remaining in the FZI simulator was detected successfully by the acceptance test of a
CA action and recovered by the re-try operation associated with that action. It becomes
evident that if a similar software error occurred inside the CA action, it would have
been caught by the acceptance test and would have been tolerated successfully by a
second action variant. Weare now in the stage of collecting experimental data for
further dependability and performance-related evaluation. We are also developing an
analytical model for performing some theoretical analysis.

5.3.7 Experience and Lessons

Our experimental implementation demonstrates that the use of CA actions facilitated
greatly our ability to guarantee the reliability and safety requirements of the Fault-
Tolerant Production Cell. The resulting system has a clear and simple design that is
easy to understand and validate.
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System structuring and complexity control. Software bugs and failures of electro-
mechanical components in the Fault-Tolerant Production Cell are of major concern and
must be handled carefully. This requires a control program which is much more
complex than the program developed for the original, non-fault-tolerant production
cell. CA actions serve as a basic structuring tool to organize and design the control
program. The main characteristics of our design are the way it separates safety,
functionality, and efficiency concerns. In particular, the reliability and safety
requirements are satisfied at the level of CA actions, while the other requirements are
met by the device/sensor-controllers. The CA action structuring facilitated both the
design and validation tasks by enabling the various dependability problems (involving
possible clashes of moving machinery) to be treated independently of each other and of
all the other aspects of the system. Even complex situations involving the concurrent
occurrence of many possible software faults, mechanical failures and sensor failures
could be handled simply yet appropriately.

Design for validation. Based on our design, a significant proportion of the safety,
liveness, and fault-tolerance requirements for the Production Cell II case study have
been formalized and model-checked in [Canver et al 1998]. The properties were
expressed in terms of CTL formulae over the transition system for the CA action-based
design formalized in SMV. The analysis of properties of the Fault-Tolerant Production
Cell was carried out in parallel with the development of our design. Model-checking
helped us to find several flaws in early versions of the design.

For example, a problem was identified that affected the order in which the robot
interacts with the devices around it. This problem does not occur in the single blank
instance and it is thus hard to detect by just reviewing the specification text. However,
if two blanks are put into the system then the robot could manoeuvre itself into a
deadlock situation from which no further activities were possible. Such "critical"
sequences of actions can be derived from counter-example paths generated by the
model-checker. Moreover, the counter-example also helps in finding solutions to the
detected problem: we solved the problem by appropriately weakening the pre-
conditions of the actions that should be executed if no deadlock occurs.

Exception handling and software fault tolerance. As a result of the experience we have
gained during the process of designing and formalizing the control software, we
conclude that all the dependability aspects, especially reliability and safety, of the case
study can be solved very directly using the CA action mechanism, despite the need to
add extensive exception handling mechanisms. The general model and mechanisms we
developed in Section 4.3 provided appropriate and convenient support for handling
complex exceptional situations in the Fault-Tolerant Production Cell. The schemes
discussed in Section 4.4 also helped us to cope with software faults within the CA
action structure. We feel that the CA action structuring together with concurrent
exception handling and software fault tolerance provides an extremely powerful means
of error containment and recovery, capable of dealing with very complex situations,
including various concurrent failures.
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System-level support and reusable components. Our previous experience of
implementing fault-tolerant software for a variety of applications such as banking
systems and large data sorting has greatly facilitated fast prototyping of our
experimental system that controls the Fault-Tolerant Production Cell. The system-level
support introduced in Sections 5.1 and 5.2 has provided a well-structured way of
addressing different concerns. The reusable CA action support mechanism and
components have been used quite successfully for both Production Cell I [Zorzo et al
1999] and the Fault-Tolerant Production Cell and is now being used for developing
fault-tolerant control programs for the Real-Time Production Cell model [Romanovsky
et a11998].

System performance. We have concentrated on clear system structuring rather than
maximizing the system performance. Performance could be improved by allowing
more concurrent actions but at the cost of simplicity, maintainability and perhaps
safety. What we have done is to allow as much parallelism as possible without
compromising reliability and safety. CA actions themselves impose performance
overheads as well, such as additional message passing and overall system
synchronization. Itwould be possible for us to design a system with better performance
by taking advantage of certain low-level knowledge of the application and by making a
good trade-off between information encapsulation and parallelism.

5.4 Summary

The design and implementation of fault-tolerant software for critical computer
applications are a complex and error-prone task. It needs an architectural solution that
separates different concerns and makes certain aspects transparent to a given type of
programmers. We have developed a multi-level reference architecture for
implementing fault-tolerant software, which separates application-specific
functionality, interfaces to fault tolerance schemes and application-independent control
mechanisms. Such separation has helped us to promote better understanding of both
functional and non-functional aspects of an application and might have resulted in
increased dependability of the application. Our proposed architecture is simply based
on a variety of reusable components that may be constructed according to the
structuring framework of an idealized fault-tolerant component.

Our approach provides system-level support for fault-tolerant software using pre-
defined classes and run-time libraries. In principle, it does not require special pre-
processors or builders like the architecture introduced in [Ancona et al 1990] or a new
programming language with particular syntax for specifying fault tolerance schemes.
Since different groups of components are located at different levels and low-level
services and implementation-details are hidden from higher-level components, our
reference architecture may be ported to a number of different platforms, without
requiring any direct support from a special underlying operating system. Huang and
Kintala of AT&T Bell Labs [Huang & Kintala 1993] developed a library-based
approach to checkpointing and backward error recovery. They introduced three
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reusable components in C that provide fault tolerance in the application layer. Our
solution is much more general and can be used as a unifying architecture for
implementing a wide range of software fault tolerance schemes for both sequential and
concurrent programs.

Although there are various solutions to the problem of supporting software fault
tolerance in the application layer, it remains difficult to reuse fault-tolerant software
directly for complex applications due to the growing heterogeneity of hardware and
software architectures and the increasing diversity of operating system platforms. We
believe design patterns are a very promising technique for achieving widespread reuse
of our architectural solution. We have used the GSFT pattern to detail the reusable
components in our reference architecture and to capture the static and dynamic
structures and collaborations of those components. Our pattern expresses the structure
and collaboration of participating components at a level still higher than source code or
object-oriented design models that focus on individual objects and classes. Thus, the
GSFT pattern can facilitate reuse of software architecture, even when other forms of
reuse are infeasible. In general, patterns can help to reduce the development effort and
make it easy to customize the core solution, but they do not specify a fully detailed
solution. To find out further the design and implementation details specific to an actual
application, we have conducted a case study that presents a realistic industry-oriented
problem, where fault tolerance and safety requirements playa significant role.

Our case study is based on an extended production cell model that represents a
manufacturing process involving redundant mechanical devices provided in order to
enable continued production in the presence of faults. The challenge posed by the
model specification is to design a control system that maintains specified dependability
and liveness properties even in the presence of a large number and variety of software
faults, device failures and sensor failures. In order to develop the required control
program, we have conducted an analysis of possible software bugs and component
failures and identified the various ways of detecting and handling these failures. We
have used the results of this analysis to guide the design of a system employing what is
in fact a very sophisticated exception handling scheme, capable of dealing
appropriately even with concurrent occurrences of any of the wide variety of possible
failures. We have also used the GSFT pattern to facilitate the implementation of the
control system.

In light of the fact that the original (non-fault-tolerant) Production Cell was the subject
of extensive studies using various formal approaches, we should emphasize that to the
best of our knowledge our work represents the first and so far only complete design
with formal analysis and validation [Canver et al 1998] for the much more complex
and realistic Production Cell II. The work in [Matos & White 1998] describes a system
design for Production Cell II that focuses just on a dynamic and transparent
reconfiguration scheme that preserves safety properties. Our design is essentially
different, and focuses mainly on cooperation between devices during both normal
execution and the process of exception handling. A Formal Risk Analysis approach
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was developed in [Liggesmeyer & Rothfelder 1998] for analyzing the run-time
behaviour of Production Cell II, and studying how various sensor and actuator faults
could affect both system reliability and safety. However, their analysis is not complete,
and only uses the elevating rotary table of the Production Cell as an example. In
contrast, our analysis is much more comprehensive and complete, including the
classification of various software faults and mechanical failures and the identification
of possible failures related to every device in the cell. This analysis leads further to the
design of a complete control system and an actual, workable implementation.
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Chapter 6

Conclusions

This thesis has developed several new techniques for building fault-tolerant software,
addressed the problem of achieving fault tolerance in concurrent and distributed object
systems and studied system-level support for implementing such dependable software
and systems. This final chapter will summarize the major contributions of our work and
give an indication of possible directions of future research.

6.1 Major Contributions

In this thesis, two advanced software fault tolerance schemes have been developed in
order to increase software reliability and improve trade-offs between dependability and
efficiency. For complex concurrent and distributed systems, the coordinated atomic
action scheme has been examined thoroughly, together with the development of formal
descriptions, concurrent exception handling and object-based diversity techniques. The
problem of providing appropriate system-level support has been addressed in detail by
defining a multi-level reference architecture and its associated architectural pattern.
Most of the concepts and techniques developed in this work have been applied to an
industrial safety-critical application and the resulting control system has been proved to
be both reliable and safe through experiments and formal validation [Canver et al
1998]. To be more specific, the major contributions which have been made by this
research can be summarized as follows:

• A comprehensive survey of state of the art techniques and state of practice
approaches to software fault tolerance has been given with an abundant
bibliography which covers latest progress. It has been used as the basis for the
development of new techniques and experiments in this thesis. We believe it will
be also very helpful for any project developed by other researchers in the area of
software fault tolerance.

• For building sequential fault-tolerant software, two new schemes have been
developed. The t/(n-l)- VP technique is aimed at increasing software reliability
and controlling additional complexity, while the SCOP technique presents an
adaptive means of dynamically adjusting software reliability and efficiency
aspects. Both dependability and efficiency improvements achieved by t/(n-l)- VP
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and SCOP have been proved analytically and supported by experimental
evaluation as well.

• For constructing fault-tolerant concurrent systems, CA actions have been used as
a general structuring mechanism. Extensive exception handling strategies have
been developed within the CA action structuring abstraction, including models,
algorithms and experiments. New object diversity techniques have been also
introduced to the CA action mechanism to cope with potential software faults.
Major properties of the CA action scheme have been described formally, and a
prototype API system for programming CA actions, called JavaCAaction, has
been implemented on top of the JavaAIjuna system.

• For providing system-level support for implementing fault-tolerant software, a
multi-level reference architecture with a configuration method and an
architectural pattern has been proposed. Based on an object-oriented structuring
method, the new pattern technique, we believe, has a significant potential and
represents a very promising way to facilitate the task of implementing complex
fault-tolerant software. Finally, an actual industrial case study, the Fault-Tolerant
Production Cell has been used to examine and confirm most of the ideas
developed in this research.

6.2 Directions for Future Research

Having summarized the work that has been presented in this thesis and shown that the
aims set out in Chapter One have been satisfied, we must examine several important
avenues down which further research could be directed. There are two immediate areas
that are particularly related to our prototype implementation and experimental
evaluation. It will be very interesting to extend the JavaCAaction API system to
support more complex concurrency-control mechanisms and object recovery
mechanisms and to investigate further the practical feasibility of the complex FM
scheme. It will be also very useful to collect more experimental data and establish an
appropriate analytical model in order to evaluate further the dependability of the
control system for the Fault-Tolerant Production Cell. However, in an attempt to search
for better understanding and thus better solutions at a more fundamental level, the
following topics, we believe, are the important continuation of our work and merit
further investigation.

6.2.1 N- Version Design versus One Good Version

The first research area of future work concerns the actual effectiveness of the multi-
version approach to fault-tolerant software. For a complex critical application, we may
decide to use either a single version design method with various advanced fault
avoidance and fault removal techniques or the N-version design approach. The well
known fact is: i) when the budget is so limited that each version of the N-version
software has poor quality with very low reliability, the single version method will
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produce a better system based on the same budget, and ii) when the budget is virtually
or almost unlimited, and thus each version of the N-version software has the highest
reliability that can be obtained using the best state of art techniques, the N-versio'n
method will achieve higher reliability than any single version design.

Figure 6.1 illustrates a brief relationship between the system reliability, and the cost
factors for the single version software and the N-version software. (The figure is for the
purpose of illustration only, and the cost may be treated as a multi-dimensional factor
in an actual cost model.) The grey part of the figure indicates an area where many
applications belong to, but it is unclear for a given critical application which design
method would achieve higher reliability.

Reliability

known area
(unreliable
versions)

known area (e.g. [Hatton 1997])
unclear area

3- Version System
--,-~---'--"'--"-'-'

Single- Version

o cost (time, people, money etc)

Figure 6.1 Software reliability versus cost

The real problem with which industry is often faced is whether the limited resources of
a given critical application should be spent in producing a multi-version system, or it
would be more cost-effective to spend the resources on a single version system.
Unfortunately, there is no any direct answer to this question. This is one of major
contributors to the decision on Boeing 777 not to use the N-version approach.
However, when it is dangerous to rely on the N-version approach without strong
theoretical and empirical evidence, it is also dangerous to use the single-version
software in critical systems just because the approach has been used traditionally for
years.

It is extremely important to seek fundamental understanding of a set of particularly
difficult problems involved in such decision making. The future research should focus
on the comparison of N-version design and one good version and the evaluation of their
reliability using controlled and comparable resources. The expected results should
include both experimental evaluation and analytic results, and should help industry to
make decisions with an improved level of confidence.
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6.2.2 Real-Time CA Actions

An important extension to the CA action mechanism is to add the support for real-time
applications. From the fault tolerance viewpoint, it is important to extend the ability of
CA actions to deal with exceptions in both the value and the time domain. However,
this is not an easy task at all. First, exception handling in concurrent programs is still a
difficult, evolving subject: no widely accepted models or approaches exist. Secondly,
although most existing distributed systems are to some extent object-oriented (00) or
object-based, the object-oriented paradigm adds a new complication to system design
since several aspects of this paradigm conflict with the principle of structured
exception handling [Miller & Tripathi 1997]. Thirdly, real-time requirements cause
further difficulties with regard to modelling the real-time behaviour of a system and to
handling time-related exceptions properly. Therefore, developing a general exception
handling approach that can effectively cope with distribution (and concurrency), object
orientation, and real-time aspects is, though most desirable, a great challenge.

We have established a simple system model in Chapter Three that captures concepts of
objects, execution threads, and CA actions. The real-time behaviour of such a system
may be modelled through action-level timing constraints and time-triggered CA actions
together with objects that encapsulate real-time data. In particular, it will be interesting
to investigate how a given CA action can be triggered either by messages (i.e. multiple
participating threads start the action jointly) or by a real-time clock that causes the
automatic creation of multiple internal threads to play their respective roles. While an
operation-level deadline mechanism may be incorporated into the real-time model, an
extension of the conventional object model will be almost unavoidable if real-time data
are to be taken into account. Attaching timing constraints to some internal data of an
object becomes a natural decision since we usually assume that a CA action may not
retain data. We have recently used Production Cell III, the Real-Time Production Cell
model [Lotzbeyer & Muhlfeld 1996], as a new case study to deal with possibly
concurrent timing and value faults. A control program for the cell is now being
developed using the JavaCAaction API system. (Some initial results can be found in
[Romanovsky et alI998].)

6.2.3 Diverse Security Measures

Another interesting area of future work has become apparent during the development of
our research in this thesis, which concerns security measures in large distributed
systems. As a tool to guard information systems from malicious attacks, the role of
software diversity should be examined. In order to achieve software fault tolerance, we
have to make redundant software as diverse as possible in the hope that diverse
software components do not share common design flaws. In a similar manner, the
diversity approach could guard an information system effectively from malicious
attacks not only by diverse software components, but also, perhaps more significantly,
by diverse security measures in the sense that diverse components are not susceptible to
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the same set of attacks. In other words, replaying previously successful attacks against
a diverse component with a different security measure will make little sense and have
little hope of success.

For a large distributed computing system under malicious attack, the real problem is
again whether a single-version system is dependable, in particular secure enough to
survive malicious attacks. In the situations where the cost of failure caused by attacks is
extremely high and single-version systems are not secure enough, the diversity
approach will be worthwhile. Some researchers may argue that redundant components
are not diverse enough to survive the same attack. We believe that the whole point of
the diversity approach for improving system survivability is to develop diverse
components that can survive different kinds of attacks. If an attacker is not good at
devising new or respective attacks on a set of di~erse security measures, which can
result in high cost, the entire system will survive even if some redundant components
have been subverted.

6.2.4 Pattern-Oriented Architecture and Systems

The architectural pattern we discussed in Chapter Five was not supposed to be a unique
solution to the development of fault-tolerant software. With the evolution of
technology new patterns may evolve. The application programmers should be able to
extend, modify and tailor existing patterns to their specific needs. It will be very
interesting to find out how sharing of patterns could establish a common vocabulary for
the design and implementation of fault-tolerant software. The development of new
pattern-oriented architectures and pattern systems in this area should further ease and
speed up the implementation, making fault-tolerant programs more understandable and
maintainable.

6.3 In Conclusion

In this thesis, we have demonstrated a systematic approach for building fault-tolerant
software, from basic concepts to object-oriented design, from sequential programs to
complex concurrent systems and from architectural patterns to realistic industrial
applications. As a result of the experience of we have gained during the process of
developing this approach, we feel that we now have a much better understanding of
software fault tolerance, including those design and implementation issues involved in
realistic applications.

Any scheme for achieving software fault tolerance is based on certain form of
redundancy. The additional redundancy can increase the complexity of a software
system and may thereby decrease the system's dependability. The incorporation of
software fault tolerance into actual systems must be performed in a disciplined and
structured way. It was very pleasing to confirm from our experience that the
combination of advanced fault tolerance techniques and powerful system structuring
mechanisms (e.g. object-oriented structuring methods and high-level control
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abstractions) often offers a quite straightforward solution to complex reliability and
safety problems. System structuring aids not just the design and implementation of a
software system, but also the formal verification and validation, for example by model-
checking.

However, we must be clearly aware that, though contributions we made to this
important area, software fault tolerance as a practical engineering discipline remains
out of the reach of the average programmer and computer user. While past research in
obtaining solutions for tolerating hardware faults has been much more effective,
transferring advanced techniques and methodologies in software fault tolerance from an
art to a routine-based practice is still a major challenge and likely to remain so for some
time.
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A Correctness of the t/(n-l)-VP Scheme

For the purposes of determining how "diagnosable" a given system is and performing
diagnosis, a fundamental model is used. The model encompasses a representation of
the system's testing assignment (who tests whom), the nature of tests and faulty units,
and the implications of test results. A diagnosable system S consists of n units denoted
by the set U = {u» U2, ... , un}. Each Ui E U is assigned a particular subset of the
remaining units in S to test. A test link, denoted by cij' corresponds to an "equality
checking element" between units Ui and Uj (e.g. hardware or software comparator). The
complete collection of tests in S is called the comparison test assignment and is
represented by an undirected graph G = (U, E), where each Ui E U is represented by a
vertex and each edge (Ui, Uj) is in E if and only if cij is a comparison test in the
comparison test assignment. A test outcome (or test result) 0Jij is associated with (ui,
Uj), where 0Jij = 0(1) if the results of a particular test task which is carried out by both
units Ui and Uj agree (disagree). The collection of all outcomes is called the comparison
syndrome. Only permanent faults are considered, even though the situation where units
are intermittently faulty can be readily handled. Two classes of faults, independent
faults and related faults, are further differentiated. So, two faulty units performing a
same test task can compute the same incorrect results due to the manifestation of
related faults.

The concept of t/(n-1 )-diagnosability was first proposed by Friedman [Friedman
1975].

Definition A.1 {Friedman 1975J: A system S is t/(n-1 )-fault diagnosable if and only if,
given any syndrome, all faulty units can be isolated to within a set of at most n-1 units,
provided that the number of faulty units in S does not exceed t.

It is helpful to contrast Definition 1 with the following definition of t-diagnosable
systems.

Definition A.2 {Preparata et al1967J: A system Sis t-fault diagnosable if and only if,
given any syndrome, all fault units can be uniquely identified, provided that the
number of faulty units in S does not exceed t.
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Definition A.3: For a system S and a comparison syndrome, a subset FeU is a
consistent fault set (CFS) if and only if 1) 1F1 ~ t; 2) U) E F if CUi) = 1 and UiE U - F; 3)
U)E U - F if CUi) = 0 and Ui E U - F.

Thus, F is a CFS for a given syndrome if and only if the assumption that the units in F
are faulty and the units in U - F are fault-free is consistent with the given syndrome.

Definition A.4: For a system S, a set of subsets of U, :r = {VI' V2, , Vs} where Vi C
U (i = 1,2, ... , s), is a cover of Uifand only ifui Vi = U(i = 1,2, , s). A cover zris
said to be standard if and only ifui Vi = U (i = 1, 2, ... , s) and for each) (j = 1,2, ... ,
s), ui Vi * U where i *).

With each unit Ui E U and a set of subsets of U, :r = {VI' V2, ... , Vs} where Vi c U (i=
1,2, ... , s), we associate the setsflui) = {¥';: ¥'; E :r /\ Ui E Vi}. For each unit Ui E U
and a subset U' c U, we define D(Ui) = IflUi) I and D(U') = L D(Ui) where Ui E U').

To facilitate the proof of a main theorem we now introduce several simple lemmas. For
t-fault diagnosable systems, Prep arata, Metze, and Chien [Preparata et al 1967] gave
the following necessary condition.

Lemma A.I [Preparata et al I967}: If a system S composed of n units is t-diagnosable,
then n ~ 2t + 1.

Lemma A.2: Ifa system S composed ofn units is tl(n-I)-diagnosable, then n ~ 2t + 1.

Proof Let G = (U, E) be an undirected graph representing a system S, where lUI = n.
Suppose that Sis tl(n-I)-diagnosable and, to the contrary, n < 2t + 1. Now add some
undirected edges into G such that G becomes a complete graph G'. Since G' is also
tl(n-l)-diagnosable, at least one fault-free unit can be identified. The fault-free unit can
further locate all faulty units through these direct test edges between. itself and the
others. Therefore, G' is t-diagnosable, contracting the conclusion in Lemma AI.

Q.E.D.

Lemma A.3: Given any syndrome, let FI, F2, ... , Fs be CFS's for the syndrome. A
system S represented by an undirected graph G = (U, E) is tl(n-I)-diagnosable if and
only if U - ui Fi * lP(i = 1,2, ... , s).

By Definition AI, the statement in Lemma A3 is immediate. Xu and Huang [Xu &
Huang 1990] characterized tl(n-I )-diagnosable systems as follows.

Lemma A.4 [Xu & Huang I990}: A system S represented by an undirected graph G =

(U, E) is tl(n-l)-diagnosable if and only if for any cover zrof U, :r = {VI' V2, ... , Vs}
where IVi I ~ t (1 s i ~ s), an edge (Ui,U))exists such thatflui) *flu)) andflui) Uflu)) *
n:
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Unlike t-fault diagnosable systems, there is no requirement on the number of units that
test a unit in t/(n-I)-diagnosable systems. For instance, a five-unit system with four
units connected as a form of "chain" and an isolated unit can be shown to be t/(n-l)-
diagnosable (t = 2) by Lemma A.4 (see Figure AI).

Lemma A.5: Let zrbe a cover of a unit set U A standard cover rf of U can be produced
from n:

Proof A standard cover rf of U can be produced from tr according 'to the following
steps. Step 1: rf = n: Step 2: for any Vj E n', if ui Vi = U (i "* j), then tr' = tr' - {Vd.

Q.E.D.

Lemma A. 6: Let tr = {VI' V2, ... , Vs} be a cover of a unit set U. There exists a subset Vi
E tr such that IVi I ~ D(U)/s.

Proof Note that Li lVil = Lj D(Ui) = D(U) where i = 1, 2, ... , s and j = 1, 2, ... , n.
Assume that for any Vi E 1r, IVi I < D( U)/s. Then, Li IVi I < s x D( U)/s = D( U), which
is a contradiction.

Q.E.D.

The first class of systems we will examine is chains. A chain is formally defined below.

Definiton A.5: A chain C in an undirected graph G = (U, E) is an alternating sequence
of distinct vertices and edges ofG, ulelu2e2 ... uk-Ieksuch that for i = 1,2, ... , k-I, ei=
(Ui, Ui +I) The set of vertices (or edges) of C is denoted by U(C)(or E(C)). L(C) = k is
referred to as the length of chain C.

In the following, we will fully characterize t/(n-I )-diagnosable chains by analysing the
consistency of multiple fault sets with any given syndrome. Recall the necessary
condition that n ~ 2t + 1. It is hoped that n would only increase linearly with the upper
bound t.However, Theorem Al will show that this is impossible.

Lemma A.7 [Xu 1991J: For a chain C and a standard cover zr of U(C) where IU(c)1 = n
and 11Zj = s ~ 3, if for any edge (Ui,Uj),j{Ui) = j{Uj) orj{ui) Uj{Uj) = zrthen

D(C)~n+(s-it

Theorem A.l: A chain C composed ofn units is t/(n-I)-diagnosable if and only if

n > 2t+ 1

n > ((t + 2)/2)2 - 1

for n ~ 8;

for n > 8.

Proof By Lemmas A.2 and A3, the necessity holds. By Lemmas A.4, A5, A6 and
A 7, the sufficiency is straightforward.

Q.E.D.
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From Theorem A.1, it follows that an optimal tl(n-1)-diagnosable chain contains at
least ((t + 2)/2)2 units (for n > 8) butuses only n-1 comparison tests. When we perform
more tests, we can certainly obtain higher diagnosability. This leads to the study of
loops and H2r,n graphs.

Definition A.6: An undirected graph is said to be an H2r,n graph if there exists an edge
in H2r,n formed by u, (1 ~ i ~ n) and Uj if and only if i - r <j ~ i + r (mod n + 1, r = 1,
2,3, ...).

A loop is a special H2r,n graph with r = 1.

Theorem A.2: A loop H2,n composed ofn units is tl(n-1)-diagnosable if and only if

~ > ((t + I)/2f

Theorem A.3: An H2r,n system composed ofn units is tl(n-1)-diagnosable if and only if
n ~ 2t + 1 and

r~(t-1)/5 for t ~ 6.

We omit the proofs of both Theorem A.2 and Theorem A.3 due to its similarity to
Theorem 1. We can now have the following theorem which give a special class of
design. This class of design can be used directly to build a practical tl(n-1)- VP scheme
for software fault tolerance because the chains, loops and H2r,n'S specified in the
theorem have only modest requirement on the number of tests (i.e. tests by comparing
the results produced by software variants).

Theorem A.4: A system S composed of n units (or software variants) is tl(n-I)-
diagnosable if n ~ 2t + 1 and the assignment of result comparisons in the system S
contains at least

1) a chain of 2t units for 1 ~ t s 2;

2) a chain of 2t + 1 units for 3 ~t~4;

3) an H2r n structure with r = 1 for 5 ~ t ~ 6;,

4) an H2r,n structure with r ~ (t-1 )/5 for 7 ~ t.

Proof For t = 1 or 2, it is straightforward to construct 1/2- and 2/4-diagnosable systems
with the corresponding edges (see Figure A.1). For t > 3, the conclusions follow from
Theorems A.1, A.2 and A.3.

Q.E.D.

Figure A.1 summarizes several examples of tl(n-I)-diagnosable systems derived from
Theorem AA (i.e. Theorem 3.1 stated in Chapter Three), where vertices represent
software variants and edges represent an assignment of result comparison pairs. For
example, the tl(n-1 )-diagnosable architecture for n = 5 and t = 2 only needs three
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comparison pairs (or comparators) which can produce enough test results for the t/(n-
l)-diagnostor to perform fault diagnosis (i.e. identify the faulty variants).

t n tI(n-l)-Fault Diagnosable Architectures

1 3 o
2 5 o

3 7

5 11

Figure A.1 Examples oft/(n-l)-fault diagnosable systems

B Proofs of the Correctness of Algorithm 4.1

In order to prove the correctness of our algorithm, we re-state the following
assumptions.

Assumption B.1: Dependable communication between threads/objects IS

guaranteed, i.e. no message loss or corruption.

Assumption B.2: FIFO message passing is supported by the underlying
system, i.e. two messages from thread T,will arrive at thread 1) in the same
order as they were sent.

For a specific distributed system, we assume that the following time elements can be
bounded if no a fault occurs. Let Tmmax be the maximum time of message passing
between two concurrent execution threads in the system; Treso be the upper bound of
the time spent in resolving exceptions, Tabort be the maximum possible time for a
thread to abort one nested CA action, nmax be the maximum number of nesting levels of
CA actions (if no nesting, then nmax = 0), and 8max be maximum possible time of
handling a (resolving) exception. We now show that no deadlock is possible in our
proposed algorithm.

Lemma B.1: Consider N execution threads that interact within nested CA actions. For
any thread Tj, if it reaches the state X (exceptional) or S (suspended), it will complete
exception handling ultimately in at most T, where

T"3::. (2nmax + 3)Tmmax + nmaxTabort + (nmax + l)(Treso + 8max).

Proof In order to prove the above bound, let us consider the worst case, i.e. a thread
that raises an exception is in the innermost CA action and each time the abortion of a
nested action occurs right at the end of exception handling within that nested action.
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Without loss of generality, assume that a thread T, in the innennost action raises an
exception and changes its state into x. It will send the exception message to all the
other participating threads, by assumption 1, which will reach them in Tmmax- Since
there are no further nested actions within the innermost action, any message from the
other threads about an exception or suspended state will come to T, in at most 2T mmax-
Note that actual exception resolution may take Treso. Therefore, T, will receive a
resolving exception and then complete exception handling in at most (3Tmmax + Treso +
dmax).

If T, has not yet left the innennost action, but a further exception occurs in its direct
containing action, then the abortion of the innennost action will have to be performed.
After the abortion, T, will send either an abortion exception or suspended message to
other threads, which will arrive at them in (Tabort + Tmmax). Ti will then receive the
resolving exception (or resolve the exceptions by itself) in at most (Treso + Tmmax) and
complete exception handling within dmax. The whole process costs at most (2Tmmax +
Tabort + Treso + dmax)·

In the worst case, the above process could be repeated nmax times until the outermost
CA action is reached. Totally the repeated process will cost at most nmax(2Tmmax +
Tabort + Treso + dmax). Adding the time spent in the innennost action, we therefore have
that

namely, thread T,will complete exception handling ultimately and leave the outennost
CA action.

Q.E.D.

By Lemma B.1, we know that any thread will complete exception handling within a
finite time bound. Therefore, deadlock during the process of exception handling will be
impossible while executing the proposed algorithm. However, in order to prove the
entire correctness of the proposed algorithm, we must show that any resolving
exception is a proper cover of the multiple exceptions that have been raised
concurrently so far.

Lemma B.2: For a given CA action A, ifno exception is raised in any containing action
of A, then no more new exceptions will be raised within A once the exception
resolution starts.

Proof Assume that, to the contrary, a new exception message arrives at the resolving
thread after it has started the resolution. Note that, from the proposed algorithm, the
resolving thread must know all the states (x or S) of the participating threads in A
before it can begin any actual resolution. Hence, by assumption B.2, the only
possibility is that the newly arriving exception is caused by an abortion event, namely,
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A must be aborted by some containing action, contradicting the assumption that no
exception is raised in any containing action of A.

Q.E.D.

Lemma B.3: Consider N execution threads that interact within nested CA actions. If
multiple exceptions are raised concurrently, an ultimate resolving exception that covers
all the exceptions will be generated by the proposed algorithm.

Proof An exception that is raised in the containing CA action will abort any effect the
nested action may have made or be making (even if a resolving exception for the nested
action has been identified and the corresponding exception handling has been in
operation). Note however that the number of nesting levels is finite and bounded by
nmax. Abortion will be no longer possible if the current active action A is the outermost
(or top-level) CA action. By Lemma B.2, the exception resolution will start finally and
no more new exception will be raised.

Q.E.D.

From Lemmas B.2 and B.3, we know that a resolving exception produced by
Algorithm 4.1 will always cover all the exceptions raised concurrently so far. Any
further exception will cause the abortion of any effect of previous resolutions and
trigger a new exception resolution. Because deadlock is not possible, within a limited
amount of time a final resolving exception will be raised in the end. We therefore have
the conclusion (i.e. Theorem 4.1 in Chapter Four) below.

Theorem B.l: The proposed algorithm is deadlock-free and always performs correct
exception resolution.

C Communication Complexity of Algorithm 4.1

Without the nesting of CA actions, it is obvious that the message complexity of our
algorithm is O(Nl) messages, where N is the number of the threads participating in the
outermost CA action. More precisely, .

1) when only one exception is raised and there are no nested actions, then the
number of messages is (N + 1) x (N - 1), i.e. (N - 1) Exception, (N - 1)2
Suspended, and (N - 1) Commit messages;

2) when all N participating threads have the exceptions raised simultaneously, the
number of messages is also (N + 1)·x (N - 1), i.e. N x (N - 1) Exception and (N
- 1) Commit messages.

From the proposed algorithm, we can see that the number of messages is in fact
independent of the number of concurrent exceptions, which is a great improvement
over our previous algorithm in [Romanovsky et al 1996]. Taking the nesting of actions
into account, we have the theorem (i.e. Theorem 4.2 in Chapter Four) below.
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Theorem C.2: In the worst case, our proposed algorithm requires exactly nmax x (N'L 1)
messages.
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